TAILORING CONSERVATION AGRICULTURE TO LOCAL CONTEXTS AND CONDITIONS OF SMALLHOLDER FARMERS IN AFRICA

Marc Corbeels, Bernard Triomphe, Pablo Tittonell, François Affholder, Rabah Lahmar, Eric Scopel, Véronique Alary, Damien Jourdain
corbeels@cirad.fr
Background

- ‘Push’ of Conservation Agriculture in Sub-Saharan Africa as a means to overcome continuing poor-profitability, food insecurity and soil degradation on smallholder farms
 - FAO, Worldbank
 - Several donors: SIDA, Norway, USAID, DFID, AFD, ..
 - Several NGOs: CARE international, Worldvision, Foundations for Farming, ...
 - Research institutes such as CIMMYT, ICRISAT, ICARDA and CIRAD
 - Governments in southern and eastern Africa have endorsed CA as a pathway to food security
- Often promoted as a “panacea”

« In Zambia, conservation agriculture has helped vulnerable households pull through drought and livestock epidemics. In the 2000-2001 drought, farmers who used conservation agriculture managed to harvest one crop, others farming with conventional methods faced total crop failure.» FAO news release October 4, 2005
Conservation agriculture

- 3 principles underpin CA: (FAO www.fao.org/ag/ca)
 1. Minimize soil disturbance by reduced or zero-tillage
 2. Keep the soil covered with organic materials (crop harvest residues or cover)
 3. Use crop rotations
Many CA systems

Planting lines with Magoye ripper – minimum tillage

Direct seeding – no tillage

Jab-planter – no-tillage

Planting basins – Conservation Farming, Zai
Low adoption rates in SSA

- CA has been widely adopted by farmers in North and South America, and in parts of Asia.
- Much less success with smallholders in Africa despite > 2 decades of research and development investments.

<table>
<thead>
<tr>
<th>Country</th>
<th>Area (in 1000 ha)</th>
<th>CA % of cropland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>19719</td>
<td>58.8</td>
</tr>
<tr>
<td>Brazil</td>
<td>25502</td>
<td>38.3</td>
</tr>
<tr>
<td>Australia</td>
<td>12000</td>
<td>26.9</td>
</tr>
<tr>
<td>Canada</td>
<td>13481</td>
<td>25.9</td>
</tr>
<tr>
<td>USA</td>
<td>26500</td>
<td>15.3</td>
</tr>
<tr>
<td>South Africa</td>
<td>368</td>
<td>2.4</td>
</tr>
<tr>
<td>Zambia</td>
<td>40</td>
<td>0.8</td>
</tr>
<tr>
<td>Kenya</td>
<td>33</td>
<td>0.6</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>15</td>
<td>0.4</td>
</tr>
<tr>
<td>Mozambique</td>
<td>9</td>
<td>0.2</td>
</tr>
<tr>
<td>Morocco</td>
<td>4</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Major constraints for adoption/challenges for research and development

1. Yield benefits usually in the long term, while costs are immediate
2. Strong trade-offs with other activities at the farm level and above
3. Poor functioning of and access to (input) markets
4. Knowledge-intensive nature of implementing CA
5. Need for ‘tailoring’ CA to the huge diversity of farmers, local practices and local / regional environments
1. Yield benefits in the long term: meta-analysis

- Yield benefits from CA are mostly realized in the long-term, and when rotations are applied.
- Short-term yield reductions: requires further research.
- Farmers often attribute higher value to immediate benefits and costs than those realized or occurred in future.

2. Strong trade-offs of implementing CA

- Competing uses for crop residues, preventing their availability for mulching;
 - feed is typically in short supply and takes preference
 - especially under semi-arid conditions (where livestock is of great importance and biomass production is low)
 - often non-exclusive products/communal land use: free grazing – local by-laws?
- The reallocation of labour, especially to weeding
2. Strong trade-offs of implementing CA

- CA without herbicides increases labour demand for weeding
- Implying a shift of work
 - from mechanized to manual labour
 - from men to women

3. Poor functioning of markets

- Limited access to inputs: no-till equipment, herbicides, and fertilizer
 - Expensive
 - Lack of effective input supply chain
4. Knowledge-intensive nature of implementing CA

- Implementing CA successfully requires understanding and/or making use of ecological principles
- ‘Full’ CA systems require major simultaneous changes in soil/crop management
- CA requires significant capacity building (farmers, extension, research)
- As a result- adoption is unlikely to be ‘immediate’
5. Need for tailoring CA

- Potential of CA is site- and farmer-specific
- and thus depends on local bio-physical, socio-economic and institutional conditions
- Major challenge for research community: assess *where*, *which* and *for whom* CA practices may best fit?
5. Need for tailoring CA: framework for ‘ideotyping’

Likelihood of adoption by farmers?

- Flat land
- Clayey soils
- Poor productivity
- Many livestock
- Little capacity to invest
- Unsecure access to land
- Poor markets
- Poor institutional environment

- Steep slopes
- Sandy/loam soils
- Abundant biomass
- Few livestock
- Wealthier farmers who can afford inputs
- Stable land tenure arrangements
- Good markets
- ‘Enabling’ institutional environments
CA, a complex innovation process

- A multi-scale process

- At each scale opportunities and constraints exist that may favour or impede the adoption of CA
- Technical performance (yield) is clearly but one of the determinants of adoption
- CA is a successful ‘innovation’ when fully embedded in contexts of the 3 scales
CA, a complex innovation process

- A multi-stakeholder innovation process

- Non-linear, but interactive approach
- Getting the right stakeholders on-board with their adequate role
- Key role of farmers & their associations
In summary: 5 key points

- Three CA principles but huge diversity of possible CA systems
- CA offers potential yield benefits, especially in the long-term and with « full » CA
- Many R&D challenges in « fitting » CA to local conditions and achieving adoption among smallholders in SSA
- Complex, multi-scale, multi-stakeholder nature of a successful CA innovation process
- Markets, policy and institutional issues are crucial
Did we fail in Africa with CA?

- Lead questions for a fruitful debate:
 - Is the situation for CA development in Africa different from elsewhere?
 - Is it more a question of technologies, or a question of approach to innovation?
 - Does CA addresses a need identified by farmers or by agronomists?