Impact of conservation tillage on soil quality under smallholder farming systems in eastern Uganda and western Kenya

Okeyo¹ M. Jeremiah, Norton¹,* Jay, Omondi¹ Emmanuel, Norton² Urszula, Ngosia³ Dominic, Odhiambo² Judith, Ashilenje⁴ Dennis

¹Department of Ecosystem Science and Management, ²Department of Plant Science, University of Wyoming, Laramie, USA; ³Sustainable Ecological Agricultural Training and Extension Centre, Kitale, Kenya; ⁴Manor House Agricultural Center, Kitale, Kenya

Introduction
Sustainable land management practices are required to improve soil quality and crop productivity under smallholder farming systems in the tropical highlands of East Africa. Conservation agriculture (CA) has shown potential as such an approach. CA is based on 3-interlinked practices:
- Minimum tillage or no-till;
- Soil cover (crop residue or cover crops); and
- Crop rotations/associations.

A synergetic effect created by simultaneous application of all the 3 practices.

Widespread adoption and impact of CA under smallholder farming systems is still limited.

Materials and Methods
Study sites were in eastern Uganda and western Kenya (Fig. 1).

Objectives
The main objective of the study was to evaluate the impact of tillage: conventional tillage (CT), minimum tillage (MT) and no-till (NT) combined with 3 cropping systems: intercrop, relay and strip system on:
- Total and labile SOC and N pools;
- Bulk density (BD), penetration resistance (PR) and water infiltration.

Materials and Methods
Study sites were in eastern Uganda and western Kenya (Fig. 1).

Results
- MT and NT treatments are trending towards more SOC accumulation in 3 of the 4 study sites (Fig. 2).
- Use of mucuna, a leguminous cover crop, enhanced N fixation in Tororo (Fig. 3).
- Labile C & N pools were not significantly influenced by treatment effects (data not shown).
- Reduced tillage tended to increase soil compaction as indicated by higher BD and PR (Fig. 4 & 5).
- No till promoted formation of macropores in the soil (Fig. 6).

Conclusion
- Reduced tillage is showing positive trends in SOC accumulation.
- Leguminous cover crops such as mucuna can be used to enhance N fixation.
- Near surface soil tends to compact under MT & NT, hence we recommend:
 - Rippling to break the hardpan, and
 - Retention of sufficient crop residue/cover crop biomass.
- Below the plough depth, MT & NT are showing lower PR perhaps due to better soil structure.

References

Acknowledgement
This work was funded by USAID through the SANREM Innovation Lab, Conservation Agriculture Production Systems Project.