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Abstract—For decades, the streaming architecture of FPGAs
has delivered accelerated performance across many application
domains, such as option pricing solvers in finance, computa-
tional fluid dynamics in oil and gas, and packet processing
in network routers and firewalls. However, this performance
comes at the expense of programmability. FPGA developers use
hardware design languages (HDLs) to implement the application
data and control path and to design hardware modules for
computational pipelines, memory management, synchronization,
and communication. This process requires extensive knowledge
of logic design, design automation tools, and low-level details of
FPGA architecture, this consumes significant development time
and effort.

To address this lack of programmability of FPGAs, OpenCL
provides an easy-to-use and portable programming model for
CPUs, GPUs, APUs, and now, FPGAs. Although this signifi-
cantly improved programmability yet an optimized GPU im-
plementation of kernel may lack performance portability for
FPGA. To improve the performance of OpenCL kernels on
FPGAs we identify general techniques to optimize OpenCL
kernels for FPGAs under device-specific hardware constraints.
We then apply these optimizations techniques to the OpenDwarfs
benchmark suite, which has diverse parallelism profiles and
memory access patterns, in order to evaluate the effectiveness
of the optimizations in terms of performance and resource
utilization. Finally, we present the performance of structured
grids and N-body dwarf-based benchmarks in the context of
various optimization along with their potential re-factoring. We
find that careful design of kernels for FPGA can result in a highly
efficient pipeline achieving 91% of theoretical throughput for the
structured grids dwarf.

Index Terms—OpenDwarfs; FPGA; OpenCL; GPU; MIC;
Accelerators; Performance Portability

I. INTRODUCTION

For decades, the streaming architecture of FPGAs has
delivered accelerated performance across many application
domains, such as option pricing solvers in finance [1], com-
putational fluid dynamics in oil and gas, and packet process-
ing in network routers and firewalls. However, this perfor-
mance comes at the expense of programmability, i.e., the
performance-programmability gap. FPGA programmers use
hardware design language (HDL) to implement the application
data path and to design hardware modules for computational
pipelines, memory management, synchronization, and commu-
nication interfaces at the Register Transfer Level (RTL), i.e.,
the programmers must specify the cycle-accurate behavior for
the data path in every module and register in the design [2].
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This process is similar to programming traditional CPUs in as-
sembly language with the additional complexity of scheduling
the instructions and data on a cycle-by-cycle basis, which re-
quires extensive low-level knowledge of the target architecture
and consumes significant development time and effort. In con-
trast, GPUs took the parallel computing community by storm
in the late 2000s by significantly enhancing the programma-
bility of GPUs via higher-level programming abstractions for
general-purpose computing, namely CUDA and OpenCL. To
address this lack of programmability of FPGAs, OpenCL
provides an easy-to-use and portable programming model for
CPUs, GPUs, APUs, and now, FPGAs [3] . However, this sig-
nificantly improved programmability and portability can come
at the expense of performance. Although FPGA compilers for
OpenCL can generate functionally-correct hardware designs
from architecture-agnostic OpenCL kernels, it is unlikely that
these designs will utilize the FPGA resources efficiently to
meet the required performance; that is, there still remains a
performance-programmability gap.

In this paper, we use the OpenDwarfs benchmark suite [4],

a suite of architecture-agnostic OpenCL kernels that capture
common computation and communication patterns across a
wide spectrum of scientific and engineering applications, to
study the performance of the OpenCL programming model
on FPGAs. In OpenDwarfs, none of the benchmark contains
optimizations that favor a specific architecture over another.

Our contributions in this paper are following:

1) We assess the performance gap between fixed and recon-
figurable architectures by characterizing the performance
of a small subset of benchmarks in the OpenDwarfs
benchmark suite on multi-core CPUs, GPUs, Intel MIC
and FPGAs. We show that architecture-agnostic OpenCL
kernels result in inefficient hardware designs on FPGAs
(Section III).

2) To improve the performance of OpenCL kernels on FP-
GAs, and thus, bridge the performance-programmability
gap, we identify general techniques to optimize OpenCL
kernels for FPGAs under device-specific hardware con-
straints. We then apply these optimization techniques to
two example cases from OpenDwarfs benchmark suite.
in order to evaluate the effectiveness of the optimizations
in terms of performance and resource utilization and
present the performance of the optimized implementa-
tions (Section IV).

3) A realization of an efficient algorithm for a three-
dimensional stencil using OpenCL for FPGA and an
evaluation of its performance (Section V).



Rest of the paper is structured as follows: in Section II,
we discuss the motivation behind our work, followed by
performance of benchmarks across different architectures in
Section III. In Section IV we discuss compiler optimizations
using the Altera OpenCL compiler and provide results for
these optimizations applied to the benchmarks under study fol-
lowed by an accelerator design for 3D-Stencil using OpenCL
in Section V. Section VI presents related work and Section VII
concludes the paper.

II. MOTIVATION AND BACKGROUND

OpenCL is a portable and standard programming model for
heterogeneous systems that typically consists of a hierarchical
array of processing elements and memory structure. At a high
level, OpenCL defines a unified and abstract machine model
for the different many-core architectures to provide both porta-
bility and programmability. The target architecture consists
of multiple compute units (CUs) that share a single global
memory and constant memory space. The global memory can
be used across CUs. Each CU has its own local memory
and contains multiple processing elements (PEs) that share
this local memory. In addition, each PE has a low-latency
private memory. Using OpenCL, the programmer can control
the parallelism at different granularity levels, such as task-
level parallelism and data-level parallelism, and manage data
movement between memory levels.

Unlike traditional high-level synthesis (HLS) programming
models [5] for FPGAs, OpenCL is explicitly parallel, which
allows OpenCL-FPGA compilers to automatically generate
hardware accelerator from the OpenCL kernel implementation
based on the available resources on the target reconfigurable
fabric. Therefore, HLS on FPGAs using OpenCL has the
potential to design a custom hardware accelerator that matches
the application’s characteristics and improve performance and
power efficiency [6].

Although OpenCL’s abstract machine model allows pro-
grammers to write their applications once and run them on
multiple architectures, including CPUs, GPUs, Intel MIC, and
FPGA:s, it is unlikely that these applications will efficiently
utilize the underlying hardware architecture, i.e., OpenCL
provides functional portability but not performance portability.
For example, CPUs favor task-level parallelism (due to their
limited vector units) and have special hardware that implicitly
utilizes data locality and reduces memory access latency; in
contrast, GPUs require massive data-level parallelism, and the
programmer is responsible for reducing the memory access
latency by explicitly utilizing the data locality. In FPGAs,
the problem of efficient utilization of the target hardware is
even more complicated, as the programmers have access to an
array of logic elements and embedded memory blocks that can
be configured to be CPU-like, a GPU-like or an application-
specific architecture.

III. PERFORMANCE CHARACTERIZATION

In this paper, our main goal is to study the performance
of the OpenCL programming model on FPGAs using the

TABLE I: OpenDwarfs Benchmarks Used

Dwarf Benchmark Input data
N-body Methods GEM nucleosome 80 1 0
Structured Grid 3D Stencil 8 % 2565

TABLE II: Specification of Test Architectures

Model Intel Intel Intel MIC  Tesla Tesla
i5-2400 Xeon 7100 C2070 K20X
E5-2700
Type CPU CPU Co-proc. GPU GPU
Freq. (GHz) 3.1 2.7 1.238 1.15 0.732
Cores 4 12 61 14 14
SIMD (SP) 8 8 16 32 192
GFLOPS (SP) 198.4 5184 2415.6 1030 3950
On-Chip mem.  7.125 33.375 32.406 3.375 3.032
B/W (GB/s) 21 59.7 352 148.42 250
Process (nm) 32 22 22 40 28
TDP (W) 95 130 270 238 235

OpenDwarfs benchmark suite. First, we assess the perfor-
mance gap between fixed and reconfigurable architectures by
characterizing the performance of the OpenDwarfs benchmark
suite on multi-core CPUs, GPUs, Intel MIC and FPGA.

Table I presents the OpenDwarfs subset considered in this
study, i.e., structured grid (3D stencil) and N-body (GEM),
and their input data-sets and/or parameters. Table II lists the
target fixed architectures. Our FPGA board is the BittWare S5-
PClIe-HQ-D8 board with high-density Altera Stratix V FPGA
(28nm process), supporting the Altera OpenCL SDK v14.0.
Additional details about FPGA used in study are provided in
Table III.

A. Benchmarks

1) Stencil: In “structured grid” algorithms, computation
proceeds as a series of update steps to a regular grid data
structure of two or more dimensions. The 3D stencil from
OpenDwarfs is a structured grid that solves partial differential
equations by applying a 7-point finite-difference algorithm on

TABLE III: FPGA Details

Device ALM Block Memory(bits) DSP Blocks
5SGSMD8K2F40C2 262,400 52,572,160 1963
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Fig. 1: Architecture-Agnostic Kernel Performance for Stencil and
GEM Normalized to TeslaK20Xm (lower is better)



a three-dimensional (3D) regular grid. In the 7-point finite-
difference code, each cell value is computed as a weighted
average of its six immediate neighbors along the X,Y and
Z dimensions, which are the east, west, north, south, top,
and bottom cells. The 3D stencil, similar to all stencil com-
putations, is a regular, memory-bound algorithm with low
computational intensity, where each grid cell can be updated
independently. However, synchronization is required before
proceeding to the next grid update step. Therefore, it requires
a large number of PEs and high memory-bandwidth, thus
making suitable for GPU architectures.

2) GEM: N-body algorithms are characterized by all-to-
all computations within a set of particles. In GEM, the
electrostatic surface potential of a bio-molecule is calculated
as the sum of charges contributed by all atoms in the bio-
molecule due to their interaction with a specific surface vertex
(two sets of bodies). The algorithm complexity is O(N x M),
where N is the number of points along the surface, and M is
the number of atoms.

B. Characterization

1) Stencil: An efficient GPU version of the 3D-Stencil
algorithm divides the problem into smaller three-dimensional
blocks, where each element of the smaller blocks is a com-
puted by a separate thread. Each thread in a thread-block
fetches the element to operate upon and waits for other threads
to reach a barrier. Once each of the threads have reached the
barrier, threads proceed to calculate the function and then wait
at a barrier, once each element on the plane is computed;
threads proceed to compute the next plane. Figure 1 shows
the performance of the Stencil across fixed and reconfigurable
architectures. Tesla K20XM and Tesla C2070 outperform other
architectures for this implementation owing to efficient intra-
block synchronization and utilization of (fast) shared memory,
while former doing better than latter due to higher memory
bandwidth. Intel MIC 7100 performs better than CPUs(Intel
Xeon E5-2700 and Intel i5- 2400) because of more number of
cores and higher memory bandwidth. FGPAs perform poorest
due to the large synchronization overhead.

2) GEM: GEM is a regular compute-bound algorithm,
given that atoms’ data are reused, as each thread independently
accumulates the potential at a single point due to every atom in
the molecule, requiring a large number of processing elements
(PEs) and being sensitive to data locality. Hence, GPUs with
their massive number of PEs achieve the best performance
(Figure 1).

Architecture-agnostic implementation of the OpenCL ker-
nels results in inefficient hardware designs on FPGAs. Thus,
we detail optimization strategies to improve the performance
on the FPGA in Section IV.

IV. FPGA OPTIMIZATIONS AND INSIGHTS

To improve the performance of OpenCL kernels on FPGAs,
we exploit different levels of parallelism — task, data (i.e.,
SIMD vectorization) and pipeline parallelism — and mini-
mize memory access latency by controlling data movement
across the memory hierarchy levels and coalescing memory

Speed Up

Fig. 2: Optimized Stencil Kernel implementations (Higher is better)

accesses. Because FPGAs have limited hardware resources
and memory bandwidth, it is imperative that we analyze
different combinations of these optimization techniques to
identify the best set and generate the most efficient (in terms
of performance and resource utilization) hardware design for
the OpenDwarfs under consideration. We explore the FPGA-
oriented optimization space and articulate insights that may be
leveraged in future OpenCL compilers targeting the FPGA.

In the following sections we use the OpenCL-specific

terminology listed below (for details refer to the OpenCL
specification [7]):

e NDRange: The host program invokes a kernel over an
index space called NDRange. It can be a 1-, 2-, or 3-
dimensional space.

o Work-item: A single kernel instance at a point in the index
space is called a work-item.

o Work-group: Work-items are grouped into work-groups
that are conceptually scheduled together for execution.

o Single work-item kernel: A kernel specified to run as a
one-dimensional NDRange, with a work-group size of 1
is called single work-item kernel.

A. 3D Stencil Benchmark

To improve the poor performance of NDRange kernel
on FPGA, we employ different optimizations techniques.
Abridged version of these optimization results are following:
Rewriting the kernel as single work-item improved perfor-
mance. Static memory coalescing, and algorithmic re-factoring
further increased the performance of the single work-item
kernel. Conversely, designs with multiple compute units, com-
piler vectorization, or data sharing among work-items using
intra-kernel channels resulted into little or no performance
improvement or even performance degradation. Insights and
details of the these optimizations are discussed in the following
subsections.

1) Single Work-Item Kernel: FPGAs benefit from pipeline
parallelism when work-items are launched every cycle. This
allows a result to be produced every cycle, once the pipeline is
full. Programming a kernel as a single work-item enables the
compiler to attempt creating an efficient pipeline. However,
pipeline stalls reduce the throughput. Pipeline stalls can occur
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for many reasons. For an example, if the number of memory
read accesses per cycle exceeds the number of available read
ports then compiler inserts an arbiter to provide more ports.
This, in turn, increases access latency and results in pipeline
stalls and, overall, an inefficient implementation. Barriers can
also result in pipeline stalls. The stencil NDRange kernel (as
originally designed for the GPU) results in sub-par perfor-
mance when compiled and synthesized for the FPGA (Stratix
V in Figure 1, GPU(unopt) in Figure 2).

To benefit from pipeline parallelism on the FPGA, we
implement the kernel as a single work-item kernel (SWI-1,
Listing 1). An improvement of approximately 16x (SWI-1
in Fig 2) was obtained for the FPGA over the unoptimized
kernel originally designed for the GPU for a grid size of
(256)3 double-precision floating-point elements. This kernel
is launched with a work-group size of 1 and dimension of the
grid provided using arguments.

We implemented a similar version (RWG-1, Listing 2) with
a work-group size of 1, but without the loop and launch the
kernel with a work-group size of dimension and block size
1. RWG-1 results into a larger footprint on the FPGA (has
additional 5% ALM usage) and performs slightly better than
SWI-1. Furthermore, it results in better memory bandwidth
because of larger burst size and more efficient coalescing, as
indicated by bar RWG-1 in Figure 3. Both kernels perform the

__attribute__ ((reqd_work_group_size (1,1,1)))
kernel_stencil_db (dimension, in,out) {
for(i=0; i < dimension; i++) {
fetch_neighbors ();
do_stencil ();

Listing 1: Single Work-item (SWI-1)

__attribute__ ((reqd_work_group_size (1,1,1)))
kernel_stencil_db (in,out) {
int id = get_group_id(0);
fetch_neighbors (id);
do_stencil ();

Listing 2: Work Group Size One (RWG-1)

exact same operations, so this difference in area could poten-
tially be attributed to compiler optimizations done for memory
access coalescing. We also noted during our experiments that
SWI-1 is a better style of writing kernel for FPGA because of
the benefits in using the shared memory and private registers
across work items without introducing a barrier or stalls in
pipeline.




Insight: Single work-group size kernels are suitable for
FPGA.

2) Manual Vectorization or Static Coalescing: FPGAs have
limited memory bandwidth but high computational capability.
Efficient memory accesses can potentially accelerate the ap-
plication, and this is particularly true for 3D stencil. In order
to improve the performance of RWG-1, we apply manual
vectorization with SIMD width of 2, 4, 8 and 16. Figure 2
shows the corresponding performance in bars MV-2, MV-4,
MV-8, and MV-16, respectively. MV-16 results in the highest
memory bandwidth and, accordingly, in the best performance
with a speed up of 29x over the unoptimized kernel. This
improved performance comes at the cost of area usage (Fig-
ure 3). We did not observe an increase in memory usage by
applying manual vectorization owing to the simplicity of the
stencil benchmark’s kernel. Increasing the SIMD length results
into higher number of stalls, but performance gains are still
obtained due to increased memory bandwidth.

Insight: Manual vectorization may result into efficient mem-
ory coalescing and can potentially augment the performance.

3) Compiler Vectorization: An OpenCL directive hints the
Altera OpenCL compiler to attempt automatic code vector-
ization. This requires a work-group size that is a multiple of
vectorization length. We choose the RWG-1 implementation
to evaluate compiler-generated vectorization. Bars AV-2, AV-
4, AV-8, and AV-16 in Figure 3 correspond to the performance
for vectorization width of 2, 4, 8, and 16 respectively. Being a
memory-bound application, stencil benchmark does not ben-
efit from compiler vectorization. Specifically, although burst
size increases because of memory access coalescing, high
percentage of stalls results in poor bandwidth. Performance
deteriorates for RWG-1 with increase in the vectorization
width. This optimization is not as useful for memory-bound
algorithms, as opposed to compute-bound. Finally, increase
in vector width results in lower clock frequency and higher
resource utilization (ALM usage) (Figure 3).

Insight: Compiler vectorization may not result into im-
provement of performance for memory bound algorithms.

4) Multiple Compute Units: Performance gains can be ob-
tained by replicating the pipeline of single work-item kernels.
However, since stencil implementation RWG-1 is memory-
bound, we do not expect, nor obtain, any performance gain
with respect to RWG-1 by this optimization, as shown by bars
MCU-2, MCU-4, and MCU-8 in Figure 2, which correspond
to 2, 4, and 8 compute units respectively. However, it is worth
observing that the area usage, clock frequency, and memory
stalls percentage (Figure 3) grow linearly as the number of
compute units are increased. Clock frequency remains roughly
the same for all cases of compute units.

Insight: Multiple compute units optimization may not en-
hance performance for memory bound algorithms

5) Intra-Kernel Channels: Altera introduces channels, a
custom solution that functions as the equivalent to OpenCL-
2.0 [7] pipes. Channels are communication links that can be
used to transfer data among kernels. This eliminates the need
for memory transfers between the host and device and the
corresponding data transfer overhead. To enhance the data
locality for RWG-1, we perform computation along the X
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Profiling

direction in blocks of 8 and 16 double words and reuse
the data in the X direction. We use the channel to transfer
data among the work items in the same kernels. The above
optimization results into poor kernel design, as synthesized
by Altera OpenCL compiler, and instead of improvement,
we notice a slowdown compared to RWG-1 attributed to the
channel’s latency (IKC-1-8, IKC-1-16 in Figure 2), which
is stalled 98.7% of the time for both implementations. The
above optimization applied for SWI-1 implementation using
private registers results in performance improvement (IKC-2-
8 and IKC-2-16 in Figure 2) over SWI-1. This difference in
performance can be likely attributed to channel-related latency
considerations in the pipeline implementation.

Insight: Intra-kernel channels may degrade the perfor-
mance without proper latency considerations. However, in-
creasing data locality for single work-items definitely improves
performance.

6) Algorithmic Refactoring: To improve data locality in
Stencil, we implement an algorithm similar to the GPU imple-
mentation. The problem in 3D space is divided into smaller
blocks, where each smaller block has the same height, but
smaller size in the X and Y dimensions. Data is fetched into a
cyclic buffer of size (2% (z+2)* (y+2)+ 1), where z and y
are the size of the smaller blocks in X and Y dimensions. An
additional 2 elements (added to x) is needed to account for the
boundary elements in the smaller blocks. This implementation
is discussed in more detail in Section V, where we focus on
designing a fixed plane size problem. Implementation for an
8x8 plane size did not result into better performance (AF-8
in Figure 2) because of poor memory coalescing. However,
a 16x16 plane size (AF-16 in Figure 2) enables performance
gains mainly due to higher data-reuse. Moreover, AF-8 and
AF-16 result into a smaller foot-print on the FPGA (Figure 4)
compared to SWI-1 and no memory stalls. The Altera OpenCL
compiler could not statically resolve the complex calculations
on array indices. This would have enabled memory coalescing
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and corresponding performance gains. However, the above
optimization can be applied and its benefits are observed when
the algorithm is explicitly coded with a fixed plane size of grid,
as we discuss in Section V.

Insight: Kernels designed with taking into consideration the
FPGA memory hierarchy and pipeline parallelism are most
likely to exploit the benefits of reconfigurable computing.

B. GEM Benchmark

1) Use of Restrict/Const Keywords and Kernel Vectoriza-
tion: An optimization strongly suggested by Altera is use of
the restrict keyword for kernel arguments that are guaranteed
to not alias (i.e., point to the same memory location). Using
restrict allows more efficient designs in terms of performance
by eliminating unnecessary assumed memory dependencies.
Although a side effect of such an optimization could be lower
resource utilization, we find that this is not the case in our
application. Cases IMP2 and IMP4 (Figure 5) highlight the
difference (1.31 times higher utilization with restrict) across
two otherwise identical implementations. Performance-wise,
IMP4 is 3.94 times faster and this stems from the vast ma-
jority of memory accesses resulting in cache hits. Conversely,
IMP2 is characterized by sub-optimal memory accesses that
result in cache misses and pipeline stalls (about 80% of the
time). As far as const keyword is concerned we observe no
difference neither in resource utilization, nor in execution time.
Automatic kernel vectorization (SIMD), which is enabled with
the appropriate OpenCL attribute, can yield easy performance
gains of 5.85x (IMP4, IMPS) at the cost of increased (double)
resource utilization.

Insight: Using restrict keyword may result into higher
performance but not necessarily lower footprint on FPGA

2) Compiler Resource-Driven Optimizations: In compila-
tion with resource-driven optimization the compiler applies
a set of heuristics and estimates resource utilization and
throughput given a number of kernel attributes, like loop unroll
factor, kernel vectorization, number of compute units. This
process should not be always expected to provide the best
implementation. In our example application, we identify at
least one case where manual choice of kernel vectorization
width surpasses (by 3.33x) the compiler-selected attributes
(pragma unroll 4) (IMP6, IMPS5 in Figure 5). Profiling the
kernel, we find that IMP6 benefits from coalesced memory
accesses, while memory accesses in IMP5 result in costly
pipeline stalls. Also, bandwidth efficiency is higher (more than
double) in IMP6 (i.e., more of the data acquired from the
global memory system is actually used by the kernel). Altera
discusses the inherent limitations of static resource-driven op-
timizations in their optimization guide [8]. Developers should
consider the aforementioned limitations when compiling using
the resource-driven optimization option.

Insight: Manual search of optimization space can out
perform automatic compiler resource driven optimizations.

3) Algorithmic Refactoring: A given algorithm implemen-
tation may solve an actual problem, but this does not mean that
a set implementation is appropriate for every platform (e.g.,
CPU, GPU, FPGA). A different implementation for solving
the same problem, i.e., produce the same output given the
same input, may be necessary. While this may not be intuitive,
or even applicable for all cases, certain algorithmic restruc-
turing can prove very beneficial. To illustrate the above, we
apply basic algorithmic refactoring in our example application.
Specifically, we remove the complex conditional statements for
different cases encapsulated in a single kernel, and tailor the
kernel to the problem at hand. This provides a two-fold benefit:
(a) better resource utilization (in our examples the refactored
algorithm requires about 10% less FPGA resources, and (b)
better performance (5% faster, IMP2, IMP3). What is more
important, though, is that better resource utilization may allow
wider SIMD or more compute units to fit in a given board. In
our example (IMP6, IMP7 in Figure 5), the reduced resource
utilization of the refactored algorithm allows SIMD length of
16, whereas the original one accommodated up to 8 (logical
elements being the limiting factor). This translates to an 1.22x
faster execution of the former compared to the latter.

Insight: Our experiments with GEM refactoring reiterates
our experiments with Stencil, kernel designed with FPGA
architecture in consideration has the potential to exploit
reconfigurable architecture

V. ACCELERATOR FOR 3D-STENCIL

We design a FPGA accelerator for 3D-Stencil computation
using OpenCL for a 32x32 double-word plane size and vari-
able height. This implementation is similar to the streaming
element for stencil as discussed by Sano et al. [9]. Data
from memory is fetched into a cyclic buffer that has a size
of (32x32x2+1) double words. Once the first two planes are
fetched into local memory, computation can proceed as new
data is being fetched. Full utilization of memory bandwidth



int sh_register[size];

#pragma unroll

for(int i = 0; i< size;
sh_register[i] = 0;

i++)

for(int k = 0; k < loop_count; k++) {
#pragma unroll

for (int i=0; i < (size —

sh_register[i] =

1); i++)
sh_register[i+1];

sh_register[size —1] = input_data ;

Listing 3: Shift Register Implementation in OpenCL

stems from enhanced data reuse and locality. This imple-
mentation generates an efficient pipeline and in theory can
perform one computation per data fetch, once the pipeline is
full. In following subsections we discuss refactored algorithm,
followed by optimizations used to design it in OpenCL, and
do an evaluation of design generated by Altera compiler.

A. Refactored Algorithm

Listing 4 shows the pseudo-code for stencil implementation
using a single work-item kernel. The outermost loop (variable
i) iterates over the planes, the inner loop (variable j) iterates
over rows, and the innermost loop (variable k) processes
elements in column. Sustaining highest throughput i.e. compu-
tation of a grid-point in single cycle requires six read requests
to local memory, but the available memory on board has only
two ports. To avoid the need of an arbiter on the buffer, which
would result in a higher latency on read request completion,
the cyclic buffer is divided into multiple banks acting together
as a large buffer that comprises 65 smaller buffers of size
256 bytes. Dividing the buffer into multiple smaller buffers
resolves contention and reduces pipeline stalls. The benefit of
splitting reflects in minimal memory stalls while unrolling the
innermost loop up to 4 in Figure 6.

B. Implementing Cyclic Buffer

This implementation employs shift register inference op-
timization, as explained in the OpenCL optimization guide.
Listing 3 is an implementation of shift registers in OpenCL
using compile pragma (#pragma unroll). Shift registers are
a powerful tool and are used extensively in hardware design.
An accelerated implementation for dynamic programming [10]
uses shift registers to resolve complex dependencies among el-
ements in the Smith-Waterman algorithm for sequence match-
ing. Small shift registers can be implemented in the register
space while large shift registers can be implemented using
block-RAMs (BRAM) on the FPGA.

C. Loop Unrolling

The FPGA implementation of the above algorithm with-
out any loop unrolling suffers from low memory bandwidth
utilization. Unrolling the innermost loop (variable k) results

#define N 32
#define SIZE (2xN«N +1 )
__attribute__ ((reqd_work_group_size (1,1,1)))
__kernel kernel_stencil(in_d,out_d,dim_z)
__private double sh_mem[SIZE];
for(int i = 0; i < dim_z; i++)
for(int j = 0; j< N; j++) {
#pragma unroll <UNROLL_FACTOR>
for (int k = 0; k< N; k++) {
__private double neighbors[6];
__private double in;
in = in_data[index + k];
get_neighbors_from_buffer ();
out_d[index+k—Nx«N] =
compute_stencil (neighbors ,in);
sh_mem|[size —1] = in;
shift_registers;
}
}

Listing 4: Pseudo Code For 3D-Stencil Implementation

in better utilization of memory bandwidth, as more compute
units are generated. Higher number of compute units in turn
increase the number of buffer accesses per cycle and results in
diminishing bandwidth gains. An unroll factor of 8 results in
a high number of memory stalls, however, performance still
increases due to increased memory bandwidth. The gain in
bandwidth does not scale with unrolling.

Insight: Loop unroll can help improve utilization of under-
utilized memory bandwidth if unrolling does not increase local
memory access latency, after which there are diminishing
returns.

D. Evaluation

Our implementation of 3D-Stencil algorithm without any
unrolling achieves the near-maximum possible throughput for
a single pipeline. A pipeline operating at 228.4 Mhz and
working on 8-bytes of data imposes a bandwidth requirement
of 228.4 + 8 = 1.872 GBps for computation of one point of
grid in each cycle. Our implementation utilizes 6.678% of
memory bandwidth or 1.709G Bps, translating to an efficiency
of 91.32% of theoretical throughput. This design performs
stencil computation for one point per cycle, and each compu-
tation performs six floating point operations translating into a
performance of 1.25 GFlops. This floating point performance
increases to 7 GFlops with an unroll factor of 8. Figure 6
shows the speed-up attained using unrolling for heights of
2048, 16384, and 131072 elements. This speed-up does not
scale linearly with unrolling because a larger unrolling factor
results into increased stalls introduced by memory banks.

VI. RELATED WORK

Many approaches have been proposed to address the chal-
lenges of programming FPGAs by abstracting the hardware
implementation details using high-level programming models.
Traditional high-level synthesis (HLS) tools, such as Catapult
C, AutoPilot, Handel-C and C-to-Silicon, use a variation of
C/C++ with non-standard and special language extensions [5].
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Moreover, these C-like programming models are inherently
sequential and lack the specifications for concurrency and data
transfer, which usually result in poor hardware design [11].
Unlike traditional HLS approaches, OpenCL is a standard and
portable programming model. In addition, it is explicitly paral-
lel, which allows software developers to control the parallelism
at different granularity levels, and manage data movement
explicitly through the memory hierarchy. Hence, OpenCL
has the potential to generate efficient hardware designs that
matches the applications characteristics [2].

After the release of Altera OpenCL compiler in 2013,
which is the first OpenCL-to-FPGA compiler to pass Khronos
conformance test, several research studies investigated the use
of this HLS framework in diverse application domains includ-
ing option pricing [1], information filtering [12], embedded
systems [13], DSP and image processing [14], [15], [13].

Inggs et al. [1], used an options pricing benchmark (with

Black-Scholes and Heston models) to evaluate the perfor-
mance of several HLS tools including Altera OpencL. The au-
thors analyzed several optimization techniques such as pipelin-
ing, task-level parallelism and data blocking, and showed
that FPGAs achieve two order of magnitude speedup over
sequential CPU, when programmed with optimized OpenCL
implementation. In [12], Chen et al. demonstrated an efficient
FPGA design of a document filtering algorithm, implemented
using optimized OpenCL kernels. The authors explored the
OpenCL optimization space on FPGAs, and showed that their
FPGA implementation outperform CPUs and GPUs by a factor
of 5 in terms of performance per watt.

In [14], the authors studied the performance and pro-
grammability of OpenCL in comparison with VHDL using
three image processing kernels. The results showed that
OpenCL improve the productivity by 6 folds, while consuming
up to 70% more resources than VHDL designs. Chen et
al. [15] evaluated CPUs, GPUs and FPGAs using fractal
video compression application implemented in OpenCL. The
authors showed that with application-specific optimizations,
FPGAs achieved 3x and 114x speedup over GPU and CPU
respectively.

CHO [13] is an OpenCL benchmark suite for FPGAs
that contains workloads implemented using the single work-
item programming model. Although CHO kernels are drawn
from real world applications, they are limited to DSP and
embedded computing domain, which is the traditional domain
for reconfigurable computing architectures. In addition, since
the benchmark suite is intended to evaluate the effectiveness of
FPGA HLS tools, the authors don’t provide optimized kernels.

Unlike previous approaches, we addresses the challenges
of programming FPGAs using OpenCL in high-performance
computing (HPC) and scientific computing workloads, which
are the traditional domain for many-core accelerators such as
GPUs and Intel MIC.

VII. CONCLUSION AND FUTURE WORK

In this work we discuss the performance-programmability
gap in employing OpenCL to program an FPGA. We started
with GPU-favorable implementations of certain OpenDwarfs
applications, ported them to the FPGA without architectural
considerations and explored compiler optimizations to ac-
celerate them. Further, we explored the refactoring a 3D
Stencil algorithm, implemented a highly efficient design using
OpenCL, and showcased the performance. We show that
OpenCL programming model can indeed be used to design ef-
ficient accelerators. We exhibit the potential of reconfigurable
architectures with high programmability and no-so-detailed
necessary knowledge of digital design for an end user. In
future work we plan to design accelerators using OpenCL for
a broader set of algorithms from the OpenDwarfs benchmark
suite, identify appropriate optimizations based on common
computation and communication patterns, as identified by the
dwarfs categorization, and subsequently incorporate them into
an OpenCL compiler for FPGA.
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