DESIGN CHARACTERISTICS FOR
BYPRODUCT FATTY ACID RECOVERY

by

LILBURN EVERETT WARD, JR.

A Thesis Submitted to the Graduate Committee
For the Degree of

MASTER OF SCIENCE
in
Chemical Engineering

Approved:

Head of Department

Dean of Engineering

Chairman, Graduate Committee

Virginia Polytechnic Institute
1937
Attention Patron:

Page \textit{ii} omitted from numbering
ACKNOWLEDGMENT

The author desires particularly to express his appreciation to Dr. F. C. Vilbrandt, head of the Department of Chemical Engineering, whose aid and constructive criticism made possible the completion of this research; also to Dean E. B. Norris for his assistance in obtaining the necessary supplies and equipment.

Valuable assistance was also rendered by , head of the research staff of the West Virginia Pulp & Paper Co., New York, and by , of the research staff of the International Nickel Co., New York.

The courtesy of the various companies who furnished the test specimens was deeply appreciated.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgment</td>
<td>iii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>5</td>
</tr>
<tr>
<td>Historical</td>
<td>7</td>
</tr>
<tr>
<td>Refining of Crude Fatty Acids</td>
<td>10</td>
</tr>
<tr>
<td>Part I</td>
<td></td>
</tr>
<tr>
<td>Distillation Characteristics</td>
<td>11a</td>
</tr>
<tr>
<td>Sketch of Equipment</td>
<td>12</td>
</tr>
<tr>
<td>Procedure</td>
<td>13</td>
</tr>
<tr>
<td>Data and Results</td>
<td>15</td>
</tr>
<tr>
<td>Graphs</td>
<td>23</td>
</tr>
<tr>
<td>Discussion and Conclusions</td>
<td>31</td>
</tr>
<tr>
<td>Part II</td>
<td></td>
</tr>
<tr>
<td>Effect of Change in Absolute Pressure</td>
<td>34</td>
</tr>
<tr>
<td>Introduction</td>
<td>34</td>
</tr>
<tr>
<td>Procedure</td>
<td>35</td>
</tr>
<tr>
<td>Data and Results</td>
<td>37</td>
</tr>
<tr>
<td>Graphs</td>
<td>45</td>
</tr>
<tr>
<td>Discussion</td>
<td>53</td>
</tr>
<tr>
<td>Conclusions</td>
<td>56</td>
</tr>
<tr>
<td>Part III</td>
<td></td>
</tr>
<tr>
<td>Corrosion Characteristics</td>
<td>57</td>
</tr>
<tr>
<td>Introduction</td>
<td>58</td>
</tr>
</tbody>
</table>
Page

Procedure.. 50
Data and Results... 62
Plates.. 73
Graph XVII.. 80
Discussion... 81
Conclusions.. 91
Bibliography... 92
PART I
INTRODUCTION
INTRODUCTION

In the manufacture of kraft paper pulp from pine wood the original fats and resins present in the wood are saponified by the action of the caustic cooking liquor during digestion of the pulp and pass off as soluble soaps in the waste liquor from the digesters.

After the pulp is washed free of waste liquor, the washings are combined with the original waste liquor and sent to the evaporators as the first steps in the recovery of the chemicals present. During the process of evaporation, as the black liquor becomes more and more concentrated the saponified fats and resins separate out. Due to this separation their presence causes real trouble in the evaporators for two reasons: viz.—the first is that the soaps cause a tremendous amount of foaming and the evaporators prime over, thus making operation difficult; second, the soaps cake and dry on the evaporator tubes, cutting down the coefficient of heat transfer, and necessitating frequent cleaning.

For years the resin soap has been removed at an intermediate stage in evaporation and then pumped to the furnaces where it is burned for its heat value. Beginning approximately in 1907 a considerable amount of research has been done on the material, particularly in Europe, both as to the identification of the constituents of the resin soaps and also as to their utilization.

A number of plants for the recovery of this material are in operation in Europe, but so far as is known, only one such plant is operating in the United States.

According to an editorial (11-a) the total sulphate and soda pulp
produced in the United States in 1935 was 1,415,096 tons. The estimated production for the year 1936 was 1,802,000 tons; and there are ten new kraft mills under construction in the Southern states which will add an estimated 1,225,000 tons capacity to the present capacity.

From the above it will be seen that a conservative estimate of the production for the year 1937 would be 2,000,000 tons.

According to Schmid (52) for each ton of pulp produced there are 30 kg. of fats and resins available or 3.3%; by weight; Bergstrom and Cederquist (5-a) state that there are 32.5 kg. of fats and resins present in the wood used to make one ton of pulp, and that after cooking there is available 13.5 kg., or 1.5% by weight. Hilding (27) states that there is available in the wood 1.5% by weight of the fats and resins. From the evidence as above, the amount of fats and resins available can be conservatively estimated at 1.5% by weight for each ton of pulp produced. However, it must be remembered that these analyses were all made on the coniferous woods of Northern Europe, and we would expect a higher yield from the Southern pine. This assumption is borne out by the experience of the author in a kraft mill producing 350 tons of pulp per day; the average over a four-year period being approximately 2% by weight of the pulp produced. This percentage varied according to the greenness of the wood being cooked, the greenest wood giving the largest yield of sodium resinate. This fact was also reported by Cirves (25).

Thus for a total annual production of 2,000,000 tons of sulphate and soda pulp there would be available 40,000 tons of crude fatty acids on a conservative estimate. At the present time the only value that the material has is for fuel, at a value not exceeding $6.00 per ton. By refining the material the value per ton can be increased to $30.00 with conversion costs of approximately $24.00 per ton, thus yielding to the
industry a net increase of $5000 per ton or a total annual increase of $2,000,000.

From the evidence it may be seen that the recovery of this byproduct is attractive to any kraft mill using Southern pine as a raw material.

The purpose of this investigation is to determine the distillation characteristics of the crude fatty acids from the sodium resinate and their corrosion characteristics in order that efficient units may be designed for the recovery of valuable products.
Nomenclature

Owing to the involved nomenclature which has developed in the past years it is deemed advisable to review briefly the various characterizations which have been used, and to clearly define the terms used in this investigation.

The saponified fats and resins that separate out from the waste or black liquor of the soda and sulphate pulp processes, have been called sodium resinate, sodium rosinate, liquid rosin, liquid resin, floating resin, raw sulphate resin, resin soap. Sodium resinate is the term most frequently used in the U. S. and floating resin the most common in Europe. In this discussion sodium resinate will be used to denote the saponified fats and resins.

After the sodium resinate has been treated with a mineral acid to regenerate the fatty acids, the resulting oily, viscous liquid has been called liquid rosin, liquid resin, crude fatty acids tall oil, tallol, pinolein, Swedish rosin oil, and various trade names. Crude tall oil is the most widely accepted term in Europe and liquid rosin in the U. S. For the purpose of this discussion crude fatty acids has been selected as the term most clearly indicating the material.

For the first fraction from the distillation of the crude fatty acids all of the above mentioned terms have been used. In European practice distilled tall oil is the usually accepted term, and for our usage distilled fatty acids has been selected.

For the intermediate fraction that crystallizes from the distillate, the terms abietic acid, crystalline rosin, and resin acids are generally used. This crystalline product has been identified by a number of investi-
gators as abietic acid, which term will be used in this investigation.

Pitch is the only name that has been given to the residue from the distillation.
Historical

In 1911 Hilding (27) formed crude fatty acids from the rosin soaps and reported that after distillation under reduced pressure an analysis (by Twitchell's method) of the distillate showed 53.1% fatty acids and 46.9% rosin acids. The distillate after being freed of crystals of rosin acids and distilled again showed oleic, palmitic and linolenic acids. Examination of the rosin acids after washing with petrol and recrystallization from alcohol showed the product was a mixture with a melting point of 166-180°, acid number 186.6 and dextrorotatory. He also reported that phytosterol may be extracted.

In 1919, Aschan and Eckholm (2) reported "pinabietic acid" present in the crude fatty acids, isolated as shining needles (m.p. 176°). They also reported that the specific rotation of the material depended upon the solvent used, the crystals being d-rotatory in aromatic hydrocarbons but l-rotatory in aliphatic hydrocarbons.

In 1921 Hubscher (31) reported the following analysis:

<table>
<thead>
<tr>
<th></th>
<th>Tall Oil</th>
<th>Tall Oil Distillate</th>
<th>Tall Oil Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Gravity</td>
<td>0.976</td>
<td>0.958</td>
<td>---</td>
</tr>
<tr>
<td>Acid Number</td>
<td>114</td>
<td>152</td>
<td>50.3</td>
</tr>
<tr>
<td>Saponification Number</td>
<td>129</td>
<td>162</td>
<td>75.5</td>
</tr>
<tr>
<td>Iodine Number</td>
<td>---</td>
<td>107</td>
<td>---</td>
</tr>
<tr>
<td>Melting Point</td>
<td>---</td>
<td>---</td>
<td>85°</td>
</tr>
</tbody>
</table>
The crystals obtained from the distillate, when twice recrystallized from alcohol showed a melting point of 170° and a saponification number of 195.6. Hubscher also stated that the crystals were considered to be pure abietic acid.

In 1926 Dittmer (14) reviewed previous investigations of rosin soaps (tallow) and upon analysis resolved it into the following fractions: petroleum ether insoluble, 2.2%; unsaponifiable 12.4%; "fatty acids" 54.9%; resin acids 30.4%. He identified oleic, linolenic and linolic acids by oxidation and bromination products and also concludes that the rosin acids consist of abietic acid only.

Keghel (34) in 1927 identified "talloweic", linolenic and lauric acids. Pyhala (45) also identified oleic, linolenic and ricinoleic and small amounts of erucic and palmitic acids. However, Hasselstrom (23) pointed out that the palmitic acid is probably produced from oleic acid by the cooking process.

From the agreement of the published data on crude and distilled fatty acids, and the entire lack of any contradictory evidence, it may safely be concluded that the composition of the divisions are as follows:

Crude fatty acids: principally oleic, with linolenic, linolic and small amounts of related acids.

Rosin acids: Abietic acid.

Pitch: Undetermined, but probably consisting principally of polymerization products.

At this point it would be advisable to state that the resin contents and of the coniferous pulp wood of Europe in the Southern pine wood do not differ to any marked extent in their constitution but principally in the quantity present. This is confirmed in the literature and by comparison.
of the physical and chemical characteristics of published results of European investigators with unpublished analyses by the author of crude fatty acids and distilled fatty acids from Southern pine pulp production.

In order to more clearly illustrate this similarity the following table has been prepared. The analyses on the crude and distilled fatty acids from Southern pine were made by the author and those on the European crude and distilled fatty acids were taken from the following references: Alberti (1); Hilding (27); Pyhala (46); de Kegel (34); Hubscher (31); Dittmer (14); Dittler (13).

<table>
<thead>
<tr>
<th></th>
<th>European Crude</th>
<th>Southern Crude</th>
<th>European Distilled</th>
<th>Southern Distilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid Number</td>
<td>114</td>
<td>120-130</td>
<td>150-185</td>
<td>150-170</td>
</tr>
<tr>
<td>Saponification Value</td>
<td>129</td>
<td>120-130</td>
<td>150-185</td>
<td>150-170</td>
</tr>
<tr>
<td>Iodine Value</td>
<td></td>
<td></td>
<td>107-140</td>
<td>100-118</td>
</tr>
<tr>
<td>% Fatty Acids</td>
<td>17-25</td>
<td>45-55</td>
<td>43-50</td>
<td></td>
</tr>
<tr>
<td>% Rosin Acids</td>
<td>45-65</td>
<td>30-47</td>
<td>38-45</td>
<td></td>
</tr>
<tr>
<td>% Unsaponifiable (Sterols)</td>
<td>20-30</td>
<td>8-30</td>
<td>13-18</td>
<td></td>
</tr>
</tbody>
</table>
Refining of Crude Fatty Acids

In general the refining of crude fatty acids or any very high b. p. material by distillation is carried out at the highest possible vacuum and with steam to lower the vapor pressure of the desired product. The use of steam was necessary in the past since it was not economically possible to attain high vacuums, or more correctly, low absolute pressures, under plant conditions. However, recent industrial developments along this line now permit almost any desired absolute pressure to be attained in plant practice. As a natural result the use of steam for distillation of high boiling point materials is rapidly decreasing. Other contributing factors are the large amount of steam required over the theoretical amount due to the fact that the intimate mixing of the material to be distilled and of steam have proved impossible of attainment, thus necessitating the use of a large excess of steam. For very high boiling point materials steam becomes merely an efficient stirring device to prevent local overheating and acting as a carrier for the vapors, but not as the theory of steam distillation would have us believe.

The most modern designs for the distillation of high boiling point materials have eliminated the use of steam altogether.

For the reasons as stated above the distillation work of this research was carried out at an absolute pressure of 5-7 mm. and without the use of steam in order to permit the use of the data obtained for the design of modern distillation units according to the best practice.

A search of the literature revealed no information whatever on the distillation characteristics of crude fatty acids from the production of paper pulp from Southern pine wood. It is hoped that the information
obtained from this investigation will furnish the basic information necessary for the proper design of byproduct recovery units.
DISTILLATION CHARACTERISTICS
LEGEND

A ELECTRIC HEATER
B DISTILLATION FLASK
C THERMOMETER
D THERMOMETER
E ARM OF FLASK
F DISTILLING RECEIVER
G COLLECTION TUBES
H VACUUM CONNECTION
DISTILLATION CHARACTERISTICS

Procedure

A five gallon sample of the crude fatty acids was used as the crude oil for distillations numbers 1, 2, and 3 for runs under 5-7 mm. absolute pressure respectively.

A sample of the crude fatty acids was weighed into a tared Claisen flask, stoppered with two rubber stoppers bearing A. S. T. M. Fahrenheit thermometers, one extending down into the oil and the other in the vapor outlet of the flask. The temperatures read on these thermometers are designated the oil temperature (\(F_0\)) and the vapor temperature (\(F_v\)), respectively. The flask was placed on an adjustable electric heater of 760 watts capacity. An adjustment to about 530 watts was found to give a good rate of distillation and so was made standard. The flask was completely lagged with asbestos rope. The arm of the flask was connected to a Pyrex distilling receiver, containing nine weighed tubes. Each of these tubes held approximately 30 c. c. and so in each case approximately 300 grams was weighed into the flask.

The connection to the vacuum line was made next and the vacuum turned on at the same time as the heat.

Approximately two hours was required for the first drop of distillate to come over; distillation was then completed in another hour. Three temperature readings were taken while each sampling tube was being filled, as near as possible for each 10 c. c. distilled.

After all of the tubes were filled with distillate, the heat was turned off, and the vacuum maintained until the tubes had cooled. This was done in order to prevent oxidation of the contents of the tubes and
the flask. The lagging was removed and the flask and its contents weighed.

The content of each tube was weighed and analyzed, after being thoroughly mixed to prevent possible erroneous results due to layering off in the tubes. No analysis was run on the pitch or residue since we know of no reliable methods of analyzing this substance. From the constants determined as above the fatty acid content, calculated as oleic acid, the content of rosin acid, calculated as abietic acid, and the unsaponifiable matter or sterols, calculated by difference, were made.

Tables and charts were prepared illustrating the results.
Data and Results

DISTILLATION A.

This was a preliminary distillation undertaken as a guide into the more complete research. It was performed before the Pyrex distilling receiver was available, and the results are rather brief.

The distillation was performed in exactly the same manner as the others, except that an ordinary vacuum flask was used in the place of the Pyrex receiver as shown on the sketch of the equipment. At two intervals during the course of the distillation the flask and its contents was weighed in order to determine what percentages were distilled at the specified temperature.

The comparatively large loss is probably due to the fact that the distillation was stopped at these intervals and consequently there was some vapor loss. Also the accuracy of the weighings is somewhat lower than the other distillations, since it was impossible to use an analytical balance on the flask.
DISTILLATION A

TABLE I--A

Distillation of Crude Fatty Acids at 5-7 mm. Absolute Pressure

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Temp: (°Fv)</th>
<th>Total: (gms.)</th>
<th>Acid: (No. Acids)</th>
<th>Abietic: (Acids %)</th>
<th>Rosin: (Acid %)</th>
<th>Fatty: (Acid %)</th>
<th>Sterols: (calc. %)</th>
<th>Recovery: (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distillate</td>
<td>435-490</td>
<td>360</td>
<td>155</td>
<td>117</td>
<td>19</td>
<td>63</td>
<td>18</td>
<td>81</td>
</tr>
<tr>
<td>Pitch</td>
<td></td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Losses, etc.</td>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Crude</td>
<td></td>
<td>445</td>
<td>138</td>
<td>106</td>
<td>16</td>
<td>57</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

Distillation of Crude Fatty Acids at 5-7 mm. Absolute Pressure
DISTILLATION NO. I.

Gas began to evolve at $140^\circ F_0$ and continued until the boiling point was reached. This evolution was not violent but rather steady. The liquid began to boil steadily at $410^\circ F_0$, but the temperature continued to rise until it reached $488^\circ F_0$ where it remained constant as the oil refluxed back into the flask. After the flask and lagging had been thoroughly warmed, this refluxing ceased and the distillate began to come over. Fumes became visible in the distilling receiver at a vapor temperature of $166^\circ F_v$.

In this distillation the arm of the flask was not lagged, and just after the fourth tube was filled the distillate froze in the arm of the flask, thus breaking the vacuum in the flask. As the frozen arm cleared, the sudden decrease in absolute pressure caused the flask to prime over and the distillation was stopped.
DISTILLATION NO. I

TABLE I

Distillation of Crude Fatty Acids at 5-7 mm. Absolute Pressure

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Temp. (°Tv)</th>
<th>Total (gms.)</th>
<th>Acid (No.)</th>
<th>Rosin (No.)</th>
<th>Fatty (Acid)</th>
<th>Abietic (Acids)</th>
<th>Sterols (Acid)</th>
<th>Recovery (calc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>444</td>
<td>29.3</td>
<td>124</td>
<td>41</td>
<td>42</td>
<td>22</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>449</td>
<td>30.1</td>
<td>163</td>
<td>71</td>
<td>46</td>
<td>33</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>460</td>
<td>31.2</td>
<td>171</td>
<td>92</td>
<td>40</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>477</td>
<td>32.9</td>
<td>175</td>
<td>120</td>
<td>28</td>
<td>65</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td>282</td>
<td>139</td>
<td>98</td>
<td>17</td>
<td>56</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distillation incomplete due to freezing of distillate in the arm of the flask.
DISTILLATION NO. 2

The same characteristics were observed in this distillation as in No. 1, with the temperatures agreeing within one or two degrees. However, in this case, the arm of the flask was lagged and no difficulty was experienced with the distillate freezing. The distillation proceeded smoothly, with no unusual features until the ninth tube was being filled. The distillate had begun to darken slightly in filling tube eight, but when tube nine was about half full, the distillate darkened rapidly and quite a lot of gas began to evolve. After cooling, a distinct layer was apparent between the upper and the lower half of the tube. The two layers were easy to separate, the upper being much less viscous, and so it was thought best to analyze each of them separately, which was done. The upper half of the tube was called number 10 in the sampling series.
DISTILLATION NO. 2

TABLE II

Distillation of Crude Fatty Acids at 5-7 mm. Absolute Pressure

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Temp.</th>
<th>Total</th>
<th>Acid</th>
<th>Rosin</th>
<th>Fatty</th>
<th>Abietic</th>
<th>Sterols</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°Fv</td>
<td>gms.</td>
<td>No.</td>
<td>Acid</td>
<td>Acids</td>
<td>Acid</td>
<td>(calc.)</td>
<td>%</td>
</tr>
<tr>
<td>1.</td>
<td>428</td>
<td>29.1</td>
<td>128</td>
<td>43</td>
<td>40</td>
<td>25</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>444</td>
<td>28.5</td>
<td>155</td>
<td>63</td>
<td>47</td>
<td>34</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>453</td>
<td>29.3</td>
<td>167</td>
<td>82</td>
<td>43</td>
<td>44</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>460</td>
<td>29.6</td>
<td>171</td>
<td>104</td>
<td>34</td>
<td>56</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>468</td>
<td>29.5</td>
<td>175</td>
<td>123</td>
<td>26</td>
<td>66</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>478</td>
<td>30.1</td>
<td>175</td>
<td>145</td>
<td>15</td>
<td>78</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>486</td>
<td>30.2</td>
<td>172</td>
<td>155</td>
<td>10</td>
<td>84</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>491</td>
<td>31.7</td>
<td>165</td>
<td>150</td>
<td>11</td>
<td>82</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>498</td>
<td>16.5</td>
<td>147</td>
<td>125</td>
<td>11</td>
<td>67</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>512</td>
<td>16.9</td>
<td>124</td>
<td>105</td>
<td>10</td>
<td>57</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

Total

Distillate: 271.6 -- -- 25.8 53.6 14.6 82.3

Residue: 54

Loss, etc.: 4

Crude: 330 135 104 17 56 27
DISTILLATION NO. 3

Due to observations made during distillation No. 3, it was thought that there might be some definite point at which the fatty acids begin to decompose. In order to clarify this point a slightly different procedure was followed in this distillation. It was begun in the same manner except that the distillate was caught in a flask placed in the distilling receiver, until approximately 150 c. c., or half of the original sample was distilled off. The same characteristics were observed in this distillation as in the previous ones. After the flask had been filled, the distillation was stopped, the flask removed, and the sample tubes placed in the receiver. For the remainder of the run only 15 c. c. were caught in each tube and even less in the case of the last two tubes. Three temperature readings were taken as before, but this time they were for each c. c. instead of each 10 c. c. There was no layering off noted in the tubes, but at a vapor temperature of 490°F, the same as in distillation No. 2, there was considerable darkening of the color of the distillate and gas began to evolve increasing tremendously at 495°F. The residue in the flask was carbonized.
DISTILLATION NO. 3

TABLE III

Distillation of Crude Fatty Acids at 5-7 mm. Absolute Pressure

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Temp. °C</th>
<th>Total Acid</th>
<th>Resin %</th>
<th>Fatty %</th>
<th>Abietic %</th>
<th>Sterols %</th>
<th>Recovery %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>467</td>
<td>137.1</td>
<td>87</td>
<td>37</td>
<td>47</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>467</td>
<td>19.3</td>
<td>150</td>
<td>19</td>
<td>70</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>470</td>
<td>19.3</td>
<td>145</td>
<td>15</td>
<td>78</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>475</td>
<td>19.6</td>
<td>155</td>
<td>8</td>
<td>84</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>476</td>
<td>17.4</td>
<td>153</td>
<td>8</td>
<td>82</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>481</td>
<td>18.5</td>
<td>142</td>
<td>6</td>
<td>77</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>490</td>
<td>11.1</td>
<td>136</td>
<td>10</td>
<td>63</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>495</td>
<td>11.7</td>
<td>103</td>
<td>14</td>
<td>41</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>508</td>
<td>12.5</td>
<td>65</td>
<td>36</td>
<td>15</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>568</td>
<td>10.9</td>
<td>42</td>
<td>26</td>
<td>8</td>
<td>14</td>
<td>78</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distillate</td>
<td>277.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90.8</td>
</tr>
<tr>
<td>Residue</td>
<td>30.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss, etc.</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Crude</td>
<td>306.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>
DISTILLATION OF CRUDE FATTY ACIDS

GRAPH NO. I

Absolute Pressure 7 m.m.

PERCENT OF COMPONENTS BY ANALYSIS

FATTY ACID

ABIETIC ACID

STEROLS (CALC.)

PERCENT OF DISTILLATE BY WEIGHT

0 10 20 30 40 50 60 70 80 90 100
DISTILLATION OF CRUDE FATTY ACIDS

GRAPH NO. II

Absolute Pressure 7 mm.

- O FATTY ACID
- @ ABIETIC ACID
- ● STEROLS (CALC)

PERCENT OF COMPONENTS BY ANALYSIS

PERCENT OF DISTILLATE BY WEIGHT
DISTILLATION OF CRUDE FATTY ACIDS

GRAPH NO. III

Absolute Pressure 7 mm.

PERCENT OF COMPONENTS BY ANALYSIS

PERCENT OF DISTILLATE BY WEIGHT

○ FATTY ACID
○ ABIETIC ACID
○ STEROLS (CALC.)
GRAPH IV.

Percentage of Sterols in Distilled Fatty Acids

From Distillations 1, 2, + 3 at 7 M M. Absolute Pressure
GRAPH V.

Percent Abietic Acid in Distilled Fatty Acids.

From Distillations 1, 2, + 3.
at 7 in in. Absolute Pressure
Graph VI.

Percent Fatty Acids in Distilled Fatty Acid.

From Distillations 1, 2, & 3.
at 7 mm. Absolute Pressure
GRAPH VII

Vapor-Temperature Range of Crude Fatty Acids at 7 mm. Absolute Press.

Vapor Temperature in Degrees Fahrenheit

Percent Distilled by Weight
GRAPH VIII

Oil-Temperature Range of Crude Fatty Acids at 7 mm. Absolute Pressure.
Discussion and Conclusions

The curves illustrating the results of the distillation were plotted on a differential percentage basis in order to more clearly indicate breaks in the curves. The close agreement of the results of the three distillations show that if any errors were present they were relative in their magnitude. Since the results were in such close agreement it was considered permissible to make summation curves for average values.

In distillation No. 1, illustrated by curve I, it is shown that as distillation progresses the resin content of the distillate rises rapidly from an initial value of 20% when approximately 10% is distilled; while the fatty acid content of the distillate remains fairly constant at a value of 40% for the first 25% of distillate, and then drops off rapidly. The unsaponifiable matter from an initial value of 35% for the first 10% of distillate, drops off rapidly as the distillation progresses. Owing to the freezing of the distillate in the arm of the flask as previously noted, this distillation was not completed. However, it does show that the fatty acids and one part of the unsaponifiable matter constitute the lower boiling constituents, and that the abietic acid is the higher boiling point constituent.

In distillation No. 2 a complete distillation was attained, being stopped only when there was unmistakable evidence that decomposition was taking place. From curve II it is definitely shown that decomposition does take place when approximately 70% is distilled. The trends of the fatty acid content and the unsaponifiable content, as indicated in the first distillation are confirmed. The fatty acid content reaches approximately a constant value of 10% when 50% of the material is distilled. The
unsaponifiable matter, decreasing rapidly at first, reached approximately a constant value of 8% when 33% has been distilled and continued at this value until 70% had been distilled over. At this point the unsaponifiable content began to rise rapidly. The abietic acid content of the distillate rises to a maximum value of 84% when 60% has been distilled over, and at 66% distilled, began to fall rapidly. This decrease in the abietic acid content, coupled with the concurrent rise in the unsaponifiable content, necessitates some explanation. Two interpretations may be placed upon this: first, that the high temperature at this point (540°F) caused a decomposition of the abietic acid to form unsaponifiable matter; second, that the unsaponifiable matter originally present is divided into two fractions, one a comparatively low boiling point material and the other a high boiling point material. An examination of the analyses of the original material shows that there was present at the start of the distillation 89 gms. of unsaponifiable matter. When 70% of the crude had been distilled only 12.11 grams of unsaponifiable, out of a total of 89 gms., had been distilled over. From this evidence it is concluded that the second possibility as mentioned above is the correct assumption. A corollary of this is that the pitch or residue consists principally of high-boiling unsaponifiable matter.

In order to more clearly indicate this point, it was decided that in the next distillation approximately half of the material would be distilled off, and then small samples taken over the rest of the distillation. This was done and an inspection of the results clearly shows that there is decomposition taking place.

Both the oil temperature and the vapor temperature curves indicate a break at the point when 70% of the oil is distilled off, shown by a sudden
increase in the rate of temperature rise. This is confirmed by the analyses, which show that when 70% of the oil is distilled, practically all of the available fatty acids and abietic acid have been recovered, and that a continuation of the distillation would only yield an additional amount of the higher boiling unsaponifiable matter, undesirable in any refined oil, and also a darkening of the color of the distillate, which is also highly undesirable.

From the evidence as presented, the following conclusions are drawn:

1. Boiling range of the crude fatty acids, 400°F to 600°F at an absolute pressure of 5-7 mm.

2. It is feasible only to distill 70% of the crude, which will come over at a maximum temperature of 500°F.

3. Approximately 95% of the available fatty acids are distilled over in the first 45% distilled.

4. Approximately 98% of the available fatty acids and 85% of the available abietic acid have been recovered when 70% of the crude is distilled.
PART II
EFFECT OF CHANGE IN ABSOLUTE PRESSURE
EFFECT OF CHANGE IN ABSOLUTE PRESSURE

Introduction

In the previous distillation of crude fatty acids it was noted that there was an apparent decomposition of the abietic acid to form sterols. This division of the research was then undertaken, to determine the minimum absolute pressure at which it is possible to economically distill the material.

The expense of maintaining a high vacuum is well known to the industry, and any increase of the absolute pressure necessary to distill the material would correspondingly decrease the cost of production. The importance of determining this condition, both from a design and a cost of production basis, is indisputable and so their evaluation was attempted.

The raw material selected for this distillation was the crystallized abietic acid. This material was used so that the cracking phenomena could be more clearly distinguished and also, since it is practically pure abietic acid, it was assumed that the crystals would be much more sensitive to changes in absolute pressure than a mixture of materials such as crude fatty acids.
Procedure

Two hundred and fifty pounds of the abietic acid crystals from plant operation were taken as a sample for the following distillations. As near as possible a representative five-pound sample was taken for each distillation, thoroughly mixed and then quartered down to the desired amount, approximately three hundred grams for each distillation.

Four distillations were undertaken in this investigation, one at 5 mm. absolute pressure, one at 25 mm., one at 60 mm., and one at 211 mm. The differences and characteristics of each distillation were noted and analyses run on the distillates.

The sample of abietic acid crystals was weighed into a Claisen flask, stoppered with two rubber stoppers bearing Fahrenheit thermometers, one extending down into the melted crystals and the other located in the vapor outlet of the flask. The temperatures read on these thermometers are designated as the oil temperature \((\text{OF}_O) \) and the vapor temperature \((\text{OF}_V) \) respectively. The flask was placed upon an adjustable electric heater of 760 watts capacity. Varying adjustments were needed on the heater as will be explained later. The flask was lagged completely with asbestos rope. The arm of the flask was connected to a Pyrex distilling receiver, containing nine previously weighed tubes. Each of these tubes hold approximately 30 cc. The connection to the vacuum line was made next, and the vacuum turned on at the same time as the heat.

It required about two hours to get the first drop of the distillate over; distillation was complete in another hour. Three temperatures were taken on each tube of distillate caught as near as possible for each 10 cc. distilled.
After the distillation was complete, the heat was turned off and the tubes and flask allowed to cool down, with the vacuum still on. This was done in order to prevent possible oxidation of the material by exposure to the air while hot. The insulation was then removed and the flask and its contents weighed, and the tubes and their contents weighed.

The content of each tube was analyzed after being thoroughly mixed in order to obtain a representative sample. This analysis consisted of a rosin acid number and an acid number, determined as given in the methods of analysis. No analysis was run on the residue in the flask.

From the constants as determined above the content of fatty acids and the abietic acid was determined, and by difference the amount of unsaponifiable matter was determined.

Tables and curves were prepared illustrating the results.
Data and Results

DISTILLATION NO. 4

There was a small amount of gas evolved at the beginning of the distillation. The first drop of distillate came over at 100°F. Distillation actually began at 360°F, continuing smoothly until a temperature of 493°F was reached when gas again became apparent. At a temperature of 525°F the gas increased tremendously and then the distillation was stopped.

The last portion of the distillate turned a dark brown color as compared to a light straw color for the other samples. The distillate in fractions 1, 2, 3, 4, was liquid, but in all the rest except tube 9 (the last), it solidified after cooling and the tubes had to be broken in order to obtain a sample.
DISTILLATION NO. 4

TABLE IV

Distillation of Abietic Acid Crystals at 5-7 mm. Absolute Pressure

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Temp.</th>
<th>Total</th>
<th>Acid:Abietic</th>
<th>Fatty:Abietic</th>
<th>Sterols:Abietic</th>
<th>Recovery: %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°F</td>
<td>gms.</td>
<td>No. :Acid</td>
<td>Acids : Acid</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>1.</td>
<td>460</td>
<td>31.4</td>
<td>156 : 115</td>
<td>21.0 : 62.0</td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>468</td>
<td>32.1</td>
<td>178 : 133</td>
<td>21.0 : 75.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>470</td>
<td>32.8</td>
<td>180 : 167</td>
<td>6.5 : 90.0</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>472</td>
<td>26.9</td>
<td>183 : 176</td>
<td>3.5 : 95.0</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>473</td>
<td>32.0</td>
<td>183 : 185</td>
<td>0.0 : 100.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>475</td>
<td>32.0</td>
<td>186 : 187</td>
<td>0.0 : 100.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>478</td>
<td>30.4</td>
<td>186 : 184</td>
<td>0.0 : 100.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>482</td>
<td>30.2</td>
<td>184 : 182</td>
<td>0.0 : 100.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>525</td>
<td>23.3</td>
<td>147 : 134</td>
<td>7.0 : 72.0</td>
<td>21.0</td>
<td></td>
</tr>
</tbody>
</table>

Total Distillate : 271.1 : -- : -- : 6.6 : 88.6 : 4.8 : 96.1

Residue : 5.0 : : : : : 1.8

Loss : 6.0 : : : : : 2.1

Abietic Acid Crystals : 232 : 178 : 161 : 8.0 : 97.0 : 5.0
DISTILLATION NO. 5

The same procedure was followed in this distillation as in No. 1, except the absolute pressure was raised to 25 mm. The oil temperature at which the distillation began was approximately 60° higher than in the previous distillation. At the beginning of the distillation approximately one c.c. of a water-like material distilled over into tube 1. The oil began to distill over and formed a layer on top of the supposed water of decomposition. When the tube was nearly full the heat from the oil in the tube apparently caused the water to vaporize and blow the principal portion of the sample out of the tube. No other particular differences were noted.
DISTILLATION NO. 5

TABLE V

Distillation of Abietic Acid Crystals at 25 mm. Absolute Pressure

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Temp.</th>
<th>Total: Acid</th>
<th>Rosin</th>
<th>Fatty: Abietic</th>
<th>Sterols</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°C</td>
<td>gms. No.</td>
<td>Acid</td>
<td>Acids: Acid</td>
<td>(calc.)%</td>
<td>%</td>
</tr>
<tr>
<td>1.</td>
<td>510</td>
<td>12.3: 121</td>
<td>103</td>
<td>15.0: 55.0</td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>523</td>
<td>23.1: 169</td>
<td>137</td>
<td>16.0: 74.0</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>524</td>
<td>22.3: 174</td>
<td>150</td>
<td>12.0: 81.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>532</td>
<td>23.3: 177</td>
<td>166</td>
<td>5.0: 90.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>554</td>
<td>28.3: 179</td>
<td>171</td>
<td>4.0: 92.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>536</td>
<td>22.0: 176</td>
<td>174</td>
<td>2.0: 94.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>541</td>
<td>22.4: 176</td>
<td>174</td>
<td>2.0: 94.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>545</td>
<td>24.2: 177</td>
<td>162</td>
<td>7.0: 87.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>550</td>
<td>25.5: 164</td>
<td>159</td>
<td>3.0: 86.0</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distillate</td>
<td>208.9</td>
<td>--</td>
<td>--</td>
<td>6.8: 85.5</td>
<td>7.7</td>
<td>77.7</td>
</tr>
<tr>
<td>Residue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.0</td>
</tr>
<tr>
<td>Losses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.3</td>
</tr>
</tbody>
</table>

Abietic Acid Crystals:

| Acid | 269 | 178 | 161 | 8.0: 87.0 | 5.0 |
DISTILLATION NO. 6 (60 mm. absolute pressure)

In this distillation the starting oil temperature was approximately 50°F higher than in the previous distillation. Also the same phenomenon of the supposed water of decomposition was observed, and again it vaporized, blowing the contents of the tube out, and the sample was lost.

No other particular differences were noted.
DISTILLATION NO. 6

TABLE VI

Distillation of Abietic Acid Crystals at 60 mm. Absolute Pressure

| Fraction | Temp. | Total: Acid | Rosin:Acids | Fatty:Acid | Abietic: Acid (calc.) | Recovery % | % |
|----------|-------|-------------|-------------|------------|----------------------|------------|
| | °F | gms. No. | No. Acid | | | |
| 1. | 531 | 4.1: --: -- | --: --: -- | --: --: -- | --: --: --: -- | --: --: -- |
| 2. | 555 | 32.3: 149 | 106: 22.0: 57.0 | 21.0 |
| 3. | 562 | 29.2: 168 | 137: 14.0: 75.0 | 11.0 |
| 4. | 567 | 30.2: 170 | 153: 9.0: 82.0 | 9.0 |
| 5. | 570 | 24.2: 172 | 158: 7.0: 85.0 | 8.0 |
| 6. | 572 | 25.6: 176 | 162: 7.0: 87.0 | 6.0 |
| 7. | 573 | 24.0: 173 | 161: 6.0: 87.0 | 7.0 |
| 8. | 573 | 24.4: 169 | 159: 5.0: 86.0 | 9.0 |
| 9. | 575 | 25.2: 161 | 156: 3.0: 84.0 | 13.0 |
| Total | | | | | | |
| Distillate | 219.2 | --: --: 9.8 | 79.5: 10.7 | 73.0 |
| Residue | 41.0 | | | | | 13.7 |
| Loss | 39.8 | | | | | 13.3 |
| Abietic Acid Crystals | 300 | 178: 161 | 8.0: 87.0 | 5.0 |
DISTILLATION NO. 7 (211 mm. absolute pressure)

A rise of 60°F in the starting temperature of the oil was noted in this distillation. The water decomposition came over this time also but did not vaporize, and so the first sample was obtained.

Temperatures became too high to complete the distillation before all of the tubes were full.
DISTILLATION NO. 7

TABLE VII

Distillation of Abietic Acid Crystals at 211 mm. Absolute Pressure

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Temp. $^\circ F_v$</th>
<th>Total gms.</th>
<th>Acid Acids</th>
<th>Rosin No.</th>
<th>Fatty Acids</th>
<th>Abietic Acid</th>
<th>Sterols (calc) %</th>
<th>Recovery %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>29.4</td>
<td>127</td>
<td>76</td>
<td>27.0</td>
<td>41.0</td>
<td>32.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>32.8</td>
<td>98</td>
<td>63</td>
<td>7.0</td>
<td>45.0</td>
<td>48.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>30.8</td>
<td>92</td>
<td>59</td>
<td>12.0</td>
<td>37.0</td>
<td>51.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>25.7</td>
<td>113</td>
<td>100</td>
<td>6.0</td>
<td>54.0</td>
<td>40.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>24.6</td>
<td>123</td>
<td>117</td>
<td>6.0</td>
<td>63.0</td>
<td>31.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>24.9</td>
<td>131</td>
<td>123</td>
<td>4.0</td>
<td>66.0</td>
<td>30.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>24.2</td>
<td>130</td>
<td>127</td>
<td>2.0</td>
<td>68.0</td>
<td>30.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>23.5</td>
<td>126</td>
<td>125</td>
<td>0.0</td>
<td>68.0</td>
<td>32.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>24.6</td>
<td>110</td>
<td>110</td>
<td>0.0</td>
<td>60.0</td>
<td>40.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>233.6</td>
<td>--</td>
<td>--</td>
<td>7.6</td>
<td>54.4</td>
<td>38.0</td>
<td>79.3</td>
</tr>
<tr>
<td>Distillate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.3</td>
</tr>
<tr>
<td>Loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abietic Acid Crystals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISTILLATION OF ABIETIC ACID CRYSTALS

GRAPH NO. 3

Absolute Pressure 7 mm

- FATTY ACID
- ABIETIC ACID
- STEROLS (CALC.)

PERCENT OF COMPONENTS BY ANALYSIS

PERCENT OF DISTILLATE BY WEIGHT
DISTILLATION OF ABETIC ACID CRYSTALS

GRAPH NO X

Absolute Pressure 25 mm.

PERCENT OF DISTILLATE BY WEIGHT

PERCENT OF COMPONENTS BY ANALYSIS

○ FATTY ACID
○ ABETIC ACID
● STEROLS (CALC.)
DISTILLATION OF ABIETIC ACID CRYSTALS

GRAPH NO XII

Absolute Pressure 211 mm

PERCENT OF DISTILLATE BY WEIGHT

PERCENT OF COMPONENTS BY ANALYSIS

○ FATTY ACID
○ ABIETIC ACID
● STEROLS (CALC.)
GRAPH XIII.

Effect of Absolute Pressure on Fatty Acid Content of Distillate

Percent Fatty Acids by analysis

Absolute Pressure

- Distillation No. 4; 7 mm.
- Distillation No. 5; 25 mm.
- Distillation No. 6; 60 mm.
- Distillation No. 7; 211 mm.

Percent distillate by weight
Effect of Absolute Pressure on Abietic Acid Content of Distillate

GRAPH XIV.

Percent Abietic Acid by analysis

Absolute Pressure

A - Distillation No. 4; 7 mm
B - Distillation No. 5; 25 mm
C - Distillation No. 6; 60 mm
D - Distillation No. 7; 211 mm

Percent distillate by weight
GRAPH XV

Effect of Absolute Pressure on Sterol Content of Distillate

Absolute Pressure

A. Distillation No. 4; 7 m.m.
B. Distillation No. 5; 25 m.m.
C. Distillation No. 6; 60 m.m.
D. Distillation No. 7; 211 m.m.

Percent of Distillate by weight

Percent sterols. (calc.)
GRAPH XVI

Effect of Absolute Pressure on Boiling Range of Crude Fatty Acid

Absolute Pressure

A. Distillation No.4; 7 m.m.
B. Distillation No.5; 25 m.m.
C. Distillation No.6; 60 m.m.
D. Distillation No.7; 211 m.m.

Vapor Temperature - Degrees Fahr.

Percent of Distillate by Weight

10 20 30 40 50 60 70 80 90 100
Discussion

In distillation No. 4 everything ran as expected with no differences from the original crude fatty acid distillation in so far as the actual physical characteristics of the distillation were concerned. However, when an examination of the tubes of distillate (after cooling) was made it was noted that the contents of the first four tubes was liquid, the contents of the next four had solidified, and the last tube was liquid. No crystallization was noted in any of the tubes. This may be explained by the fact that the second four tubes contained pure abietic acid which solidified upon cooling. The contents of the first four tubes were diluted by a certain amount of fatty acids and unsaponifiable matter and thus the melting point was lowered below that of room temperature. In the case of the last tube it probably contained sufficient decomposition products to accomplish the same result.

These assumptions are borne out by the analysis (Table III) which shows that up to the fourth tube fatty acids and unsaponifiable matter were present, that the second four tubes contained pure abietic acid, and fatty acids and unsaponifiable matter were present in the last tube.

Distillation No. 5 was conducted in exactly the same manner as No. 4, with the exception of the absolute pressure which was raised to 25 mm.

At the start of this distillation it was noted that approximately one cc. of a material resembling water distilled over later vaporizing suddenly and blowing most of the contents of the first tube out, causing considerable loss on that sample. This material must have been water of decomposition, for no other substance would have had sufficient vapor pressure to cause such sudden and complete vaporization. The crystals themselves contained no water of crystallization or any moisture. In addition, no similar phenomenon was observed in the first distillation.
Other differences noted in this distillation were a 50°F rise in the initial boiling point (Curve VIII); the abietic acid content of the sampling tubes at a maximum of 94% as compared to 100% in the first distillation; a 76.7% abietic acid total recovery as compared to 97.8% in No. 1.

It should be pointed out that due to the fact that approximately one half of the first sample was lost the above figure for the recovery of abietic acid is low. However, allowing for the maximum recovery possible the figure would not exceed 80.7%.

In addition, it is noted that only 65.5% of the fatty acids originally present were recovered (Table IV). This figure is in error, and estimating the amount lost we conclude that the actual recovery is probably in the neighborhood of 90%. In the case of the unsaponifiable matter it is noted that the recovery is 122%. This is also low, and the estimated recovery is 130%. This evidence points unmistakably to the fact that the abietic acid is decomposing to form unsaponifiable matter.

Distillation No. 6 was conducted in the same manner with the absolute pressure raised to 60 mm. Examining the results of this distillation as was done with No. 2, we find that the per cent of abietic acid recovered drops to 55.5%, estimated at 70%. The per cent unsaponifiable rises to 153%, estimated to be 150%. The fatty acid recovery is approximately the same as in the previous distillation, at 87% and estimated to be 95%. The small quantities involved in the fatty acid content cause a reduction in the precision of the results, which on a percentage basis becomes greatly magnified. It is then permissible to assume that the fatty acid recovery for No. 2 and No. 3 are the same.

Following the same method of interpretation for distillation No. 7
which was carried out at an absolute pressure of 211 mm., it was found that the abietic acid recovery drops to 49.6%; the unsaponifiable rises to 600%; the fatty acid drops to 75%. In this case the first sample was not lost and so the percentages are correct as stated.
Conclusions

From the evidence as presented it is concluded that the abietic acid decomposes, when the absolute pressure is increased, to form unsaponifiable matter. It also proves that the distillation of this and related material such as crude fatty acids should be carried out at absolute pressures not greater than 7 mm.

It is also evident that it is not possible to produce fatty acid by cracking of abietic acid by means of absolute pressure variations.
PART III
CORROSION CHARACTERISTICS
Introduction

In plant practice it had been found that stills constructed of 18-8 stainless steel corroded very rapidly, and that copper was fairly resistant to the corrosive action of the crude fatty acids. Therefore, copper was used for the construction of the additional stills. However, copper did not prove at all satisfactory as a material of construction because of scaling and pitting. Scale formation constituted a tremendous handicap in the operation of the still, cutting the rate of heat transfer to such an extent that it was necessary to clean the stills at least once a week in order to secure average results from the distillation. This scale removal also increased the rate of corrosion because fresh surface was exposed to corrosive attack. In addition to this undesirable situation, pitting of the copper occurred to such an extent that 1/4" thick tubes had an effective life of only three months. This fact entailed a tremendous replacement charge on the still; coupled with the cost of replacement of insulation on the stills after cleanout periods, the net result was to double the cost of refining the crude fatty acids.

This research was undertaken in order to discover, if possible, some metal or alloy of construction that would be resistant to the corrosive action of the crude fatty acids, or that would not be subject to scaling and pitting. Such a result, if obtained, would mean not only that the cost of refining the crude fatty acids could be reduced to half its former value but also that the capacity of the stills would be doubled with no increase in size.
The only reference in the literature was by de Keghel (68) who, in 1927, reported that tallol on boiling six hours appreciably attacked wrought iron, cast iron, copper, zinc, tin, nickel, and aluminum slightly.

Therefore, for the purpose of this investigation a series of twenty-four metals and alloys of construction were selected, embracing almost every general type of metals and alloys available for commercial use in still construction.
Procedure

The test used for determination of the corrosion resistance of the test specimens was an adaptation of the standard static corrosion test as outlined in Perry, "Chemical Engineers' Handbook" (69).

Equipment

A solid nickel kettle, 9.5" in diameter and 10" depth was placed on an electric hot plate and approximately two gallons of crude fatty acids poured in and brought to temperature. The samples, after careful weighing and calipering, were suspended from the cover of the kettle by means of glass rods arranged so that the samples were not in contact with each other or with the container. Next the glass stirrer shaft was connected to the motor and the speed adjusted by means of a rheostat to 300 r. p. m. Then a thermostat bulb was placed in a thermometer well on the cover and adjusted to maintain the temperature as near as possible to 580°F. Actually the temperature varied from 560-590°F, which was as close control as was possible with the equipment available.

Corrosion Treatment

A sample of the crude fatty acid was taken at the beginning and end of each run and an acid number run on it in order to determine the extent to which decomposition was taking place during the course of the run.

At the end of 24 hours the samples were removed and weighed and then returned to the bath for an additional 48 hours at which time they were again removed and weighed. Temperatures were read continuously during each run at each hour with a few exceptions.

Specimen

No special treatment of the test specimens was resorted to in any case,
since it was desired to approximate as near as possible conditions as they would actually be encountered in the plant. The samples were first sheared to approximate size of one inch by two inches, then drilled for the glass suspension rod and the rough edges smoothed out with a file. This was not followed by annealing.

Final Treatment of Specimen

At the end of the test period the samples were removed from the bath, washed twice in kerosene and wiped clean and dry with clean bleached sheeting, and then washed again in carbon tetrachloride. After weighing the samples were compared with the original samples by microscopic examination. No grinding to remove pits was resorted to, nor was any attempt made to evaluate the depth of pitting.

Corrosion Rate Formula

In all cases the corrosion rate was expressed as inches penetrated per year, calculated according to the formula as given in Perry, (69) p. 1725, as follows:

\[C = \frac{24 \times 360 \times W}{(2.54)^3 \times A \times S \times T} \]

Where

- \(C \) = inches penetrated per year
- \(W \) = loss in weight in grams
- \(S \) = specific gravity in grams/cubic centimeter
- \(T \) = time of exposure in hours
- \(A \) = area of test specimen
TABLE I

Twenty-four Hour Low Temperature Corrosion Test

<table>
<thead>
<tr>
<th>Sample</th>
<th>Material</th>
<th>Area</th>
<th>Wt. Loss</th>
<th>Inch Penetration (\times 10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-#1</td>
<td>99.4% Al</td>
<td>4.30</td>
<td>0.0023</td>
<td>2.16</td>
</tr>
<tr>
<td>I-#2</td>
<td>99.4% Al</td>
<td>4.32</td>
<td>0.0023</td>
<td>2.63</td>
</tr>
<tr>
<td>I-#3</td>
<td>99.4% Al</td>
<td>4.85</td>
<td>0.0025</td>
<td>2.09</td>
</tr>
</tbody>
</table>

Time = 24 hours

Temperature = 395° - 410° F.

Corroding Agent = Crude fatty acids

Acid Value = Start 142; finish 79

In this test the samples were suspended from a wooden stirrer shaft, which was then rotated.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Composition</th>
<th>Area</th>
<th>Wt. Loss</th>
<th>Inch Penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cr : Ni : Fe : Cu : Mn : Al : Sq. In. : Gms. : Per Year x 10^{-3}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-1</td>
<td>199 : 4 : 4.30 : 0.0014 : 2.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-2</td>
<td>99 : 4 : 4.32 : 0.0030 : 5.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>99 : 4 : 4.68 : 0.0022 : 3.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>29 : 9 : Bal : 6.23 : 0.0017 : 0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>18 : 22 : Bal : 5.62 : 0.0060 : 3.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>68 : 29 : 8.00 : 0.0429 : 13.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>68 : 29 : 8.00 : 0.0270 : 11.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.25 : Bal : 4.80 : 0.0027 : 4.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.25 : Bal : 4.66 : 0.0035 : 6.09</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time: 24 hours
Temperature Range: 570° = 590° F.
Corroding Agent: Crude fatty acids
Acid Value: Start, 139; finish, 75
TABLE III

Seventy-two Hour High-Temperature Corrosion Test

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Composition</th>
<th>Area</th>
<th>Wt. Loss</th>
<th>Inch Penetration</th>
<th>Per Year x 10⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>III-1</td>
<td></td>
<td>99.4</td>
<td>4.30</td>
<td>0.0456</td>
<td>38.0</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>99.64</td>
<td>0.0472</td>
<td>27.4</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>99.44</td>
<td>0.0430</td>
<td>26.3</td>
</tr>
<tr>
<td>4</td>
<td>12; 20; 8</td>
<td></td>
<td>8.00</td>
<td>0.0014</td>
<td>0.15</td>
</tr>
<tr>
<td>5</td>
<td>12; 20; 8</td>
<td></td>
<td>8.00</td>
<td>0.0009</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Time: 72 hours
Temperature Range: 570° - 595° F
Corroding Agent: Crude fatty acids
Acid Value: Start, 115; finish, 64
TABLE IV-A

Twenty-four Hour High-Temperature Corrosion Test

<table>
<thead>
<tr>
<th>Sample</th>
<th>Composition</th>
<th>Area</th>
<th>Wt. Loss</th>
<th>Inch Penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Cr</td>
<td>Ni</td>
<td>Fe</td>
<td>Mo</td>
</tr>
<tr>
<td>IV-1</td>
<td>18.7</td>
<td>0.3</td>
<td>Bal.</td>
<td></td>
</tr>
<tr>
<td>IV-2</td>
<td>17.7</td>
<td>10.8</td>
<td>Bal.</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>17.8</td>
<td>8.8</td>
<td>Bal.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>17.7</td>
<td>0.2</td>
<td>Bal.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16.7</td>
<td>8.3</td>
<td>Bal.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>17.3</td>
<td>12.7</td>
<td>Bal.</td>
<td>2.9</td>
</tr>
<tr>
<td>7</td>
<td>25.2</td>
<td>19.9</td>
<td>Bal.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>22.2</td>
<td>10.4</td>
<td>Bal.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>58.0</td>
<td>20.0</td>
<td>20.0</td>
<td>2.0</td>
</tr>
<tr>
<td>10</td>
<td>25.0</td>
<td>20</td>
<td>Bal.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>29</td>
<td>9</td>
<td>Bal.</td>
<td></td>
</tr>
</tbody>
</table>

Time: 24 hours
Temperature Range: 520° - 560° F.
Corroding Agent: Crude fatty acids
Acid Value: Start, 146; finish, 95
TABLE IV-B

Seventy-two Hour High-Temperature Corrosion Test

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Composition</th>
<th>Area</th>
<th>Wt. Loss</th>
<th>Inch Penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-1</td>
<td>18; 7; 0.3; Bal.;</td>
<td>5.24</td>
<td>7.8280</td>
<td>1400.0</td>
</tr>
<tr>
<td>IV-2</td>
<td>17; 7; 10; 8; Bal.;</td>
<td>5.25</td>
<td>0.0058</td>
<td>1.04</td>
</tr>
<tr>
<td>3</td>
<td>17; 8; 8; Bal.;</td>
<td>4.70</td>
<td>0.1760</td>
<td>25.10</td>
</tr>
<tr>
<td>4</td>
<td>17; 7; 0.2; Bal.;</td>
<td>4.99</td>
<td>6.5662</td>
<td>1235.0</td>
</tr>
<tr>
<td>5</td>
<td>16; 7; 8.3; Bal.;</td>
<td>4.98</td>
<td>0.1432</td>
<td>27.0</td>
</tr>
<tr>
<td>6</td>
<td>17; 8; 12; 7; Bal.;</td>
<td>4.00</td>
<td>0.0072</td>
<td>1.69</td>
</tr>
<tr>
<td>7</td>
<td>25; 8; 19; 9; Bal.;</td>
<td>4.95</td>
<td>0.0058</td>
<td>1.11</td>
</tr>
<tr>
<td>8</td>
<td>22; 5; 10; 4; Bal.;</td>
<td>4.78</td>
<td>0.0292</td>
<td>5.73</td>
</tr>
<tr>
<td>9</td>
<td>.58; .20; .20; 2;</td>
<td>4.25</td>
<td>0.0344</td>
<td>7.60</td>
</tr>
<tr>
<td>10</td>
<td>25; .30; Bal.;</td>
<td>4.70</td>
<td>0.0286</td>
<td>5.25</td>
</tr>
<tr>
<td>11</td>
<td>29; 9; Bal.;</td>
<td>6.23</td>
<td>0.0025</td>
<td>0.374</td>
</tr>
</tbody>
</table>

Time: 72 hours
Temperature Range: 560° - 590° F.
Corroding Agent: Crude fatty acids
Acid Value: Start, 146; finish, 62
TABLE V-A

Twenty-four Hour High-Temperature Corrosion Test

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Composition</th>
<th>Area (in²)</th>
<th>Wt. Loss (gms)</th>
<th>Inch Penetration Per Year x 10⁻⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-1</td>
<td>12.7 Cr, 0.3 Ni, 88.3 Bal</td>
<td>5.09</td>
<td>4.1560</td>
<td>2300.0</td>
</tr>
<tr>
<td>V-2</td>
<td>17.7 Cr, 10.8 Ni, 2.3 Fe, 69.2 Bal</td>
<td>5.549</td>
<td>0.0004</td>
<td>0.806</td>
</tr>
<tr>
<td>3</td>
<td>17.8 Cr, 8.8 Ni, 81.2 Bal</td>
<td>4.93</td>
<td>0.1972</td>
<td>115.0</td>
</tr>
<tr>
<td>4</td>
<td>17.7 Cr, 0.2 Ni, 89.9 Bal</td>
<td>5.06</td>
<td>4.1874</td>
<td>2335.0</td>
</tr>
<tr>
<td>5</td>
<td>16.7 Cr, 8.3 Ni, 82.2 Bal</td>
<td>5.20</td>
<td>0.1435</td>
<td>77.7</td>
</tr>
<tr>
<td>6</td>
<td>22.2 Cr, 10.4 Ni, 67.4 Bal</td>
<td>4.52</td>
<td>0.0035</td>
<td>2.18</td>
</tr>
<tr>
<td>7</td>
<td>25.2 Cr, 19.9 Ni, 54.9 Bal</td>
<td>4.10</td>
<td>0.0070</td>
<td>4.83</td>
</tr>
<tr>
<td>8</td>
<td>17.8 Cr, 12.7 Ni, 81.2 Bal</td>
<td>4.28</td>
<td>0.0024</td>
<td>1.58</td>
</tr>
<tr>
<td>9</td>
<td>58.4 Cr, 20.2 Ni, 2.1 Bal</td>
<td>4.21</td>
<td>0.0236</td>
<td>15.8</td>
</tr>
<tr>
<td>10</td>
<td>25.8 Cr, 20.2 Ni, 54.9 Bal</td>
<td>4.60</td>
<td>0.0118</td>
<td>7.25</td>
</tr>
<tr>
<td>11</td>
<td>29.9 Cr, 9.1 Ni, 69.0 Bal</td>
<td>6.43</td>
<td>0.0010</td>
<td>0.434</td>
</tr>
</tbody>
</table>

Time: 24 hours
Temperature Range: 575°C - 590°C F
Corroding Agent: Crude fatty acids
Acid Value: Start, 146; finish 90
TABLE V-B

Seventy-two Hour High-Temperature Corrosion Test

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Composition</th>
<th>Area</th>
<th>Wt. Loss</th>
<th>Inch Penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cr : Ni : Fe : Mo : Mn : Si : Sq. In. : Gms.</td>
<td>Per Year x 10^-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-1</td>
<td>12.7 : 0.3 : Bal. : 5.99 : 7.6670</td>
<td>1410.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-2</td>
<td>17.8 : 10.3 : Bal. : 2.3</td>
<td>5.49 : 0.0004</td>
<td>0.0685</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>17.9 : 8.8 : Bal. : 5.93</td>
<td>0.3225</td>
<td>61.4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>17.7 : 0.2 : Bal. : 5.06</td>
<td>7.4349</td>
<td>1375.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16.7 : 8.5 : Bal. : 5.20</td>
<td>0.2240</td>
<td>57.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>22.2 : 10.4 : Bal. : 4.52</td>
<td>0.0050</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>25.2 : 19.9 : Bal. : 4.10</td>
<td>0.0090</td>
<td>2.06</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>17.8 : 12.7 : Bal. : 2.9</td>
<td>4.28</td>
<td>0.0030</td>
<td>0.657</td>
</tr>
<tr>
<td>9</td>
<td>58 : 20 : Bal. : 4.21</td>
<td>0.0311</td>
<td>6.92</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>25 : 20 : Bal. : 4.60</td>
<td>0.0305</td>
<td>6.22</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>29 : 9 : Bal. : 6.43</td>
<td>0.0010</td>
<td>0.145</td>
<td></td>
</tr>
</tbody>
</table>

Time: 72 hours
Temperature: Range: 575° - 590° F
Corroding Agent: Crude fatty acids
Acid Value: Start, 146; finish 55
TABLE VI-A

Twenty-four Hour High-Temperature Corrosion Test

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Composition: Cr : Ni : Fe : Mo : Mn : Si : Cu : Ta</th>
<th>Area: Sq. In.</th>
<th>Wt. Loss: Gms.</th>
<th>Inch Penetration: Per Year x 10^-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI-1</td>
<td>16 : 22 : Bal. : 1 : 3</td>
<td>5.44</td>
<td>0.0039</td>
<td>2.01 x 10^-3</td>
</tr>
<tr>
<td>VI-2</td>
<td>20 : 25 : Bal. : 1</td>
<td>4.59</td>
<td>0.0255</td>
<td>15.7</td>
</tr>
<tr>
<td>3</td>
<td>14 : 58 : 6 : 17</td>
<td>5.11</td>
<td>0.0032</td>
<td>1.76</td>
</tr>
<tr>
<td>4</td>
<td>Bal. : 14 : 5</td>
<td>7.93</td>
<td>0.0025</td>
<td>0.836</td>
</tr>
<tr>
<td>5</td>
<td>0.35 : Bal. : 0.35</td>
<td>5.66</td>
<td>1.5355</td>
<td>764.0</td>
</tr>
<tr>
<td>6</td>
<td>0.35 : Bal. : 0.35</td>
<td>4.86</td>
<td>1.3164</td>
<td>764.0</td>
</tr>
<tr>
<td>7</td>
<td>12 : 80 : 8</td>
<td>8.00</td>
<td>0.0179</td>
<td>5.76</td>
</tr>
<tr>
<td>8</td>
<td>68 : 29</td>
<td>8.00</td>
<td>0.0430</td>
<td>13.30</td>
</tr>
<tr>
<td>9</td>
<td>99 : 99</td>
<td>8.00</td>
<td>0.0400</td>
<td>12.80</td>
</tr>
<tr>
<td>10</td>
<td>99</td>
<td>1.96</td>
<td>0.0010</td>
<td>0.25</td>
</tr>
<tr>
<td>11</td>
<td>99</td>
<td>1.96</td>
<td>0.0005</td>
<td>0.113</td>
</tr>
<tr>
<td>12</td>
<td>99</td>
<td>7.31</td>
<td>0.0040</td>
<td>1.26</td>
</tr>
<tr>
<td>13</td>
<td>99</td>
<td>7.31</td>
<td>0.0715</td>
<td>24.3</td>
</tr>
</tbody>
</table>

Time: 24 hours
Temperature Range: 550° - 570° F.
Corroding Agent: Crude fatty acids
Acid Value: Start, 142; finish 102
TABLE VI-B

Seventy-two Hour High-Temperature Corrosion Test

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Composition</th>
<th>Area</th>
<th>Wt. Loss</th>
<th>Inch Penetration</th>
<th>Per Year x 10^-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI-1</td>
<td>18 : 22 : Bal. : 1 : 3</td>
<td>5.44</td>
<td>0.0060</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>VI-2</td>
<td>20 : 25 : Bal. : 1</td>
<td>4.59</td>
<td>0.0275</td>
<td>5.62</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14 : 58 : 6 : 17</td>
<td>5.11</td>
<td>0.0052</td>
<td>0.955</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bal. : 14.5</td>
<td>7.93</td>
<td>0.0041</td>
<td>0.485</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.35 : Bal.</td>
<td>0.35</td>
<td>5.66</td>
<td>2.6230</td>
<td>434.0</td>
</tr>
<tr>
<td>6</td>
<td>0.35 : Bal.</td>
<td>0.35</td>
<td>4.86</td>
<td>2.2345</td>
<td>434.0</td>
</tr>
<tr>
<td>7</td>
<td>12 : 80 : 8</td>
<td>8.00</td>
<td>0.0201</td>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Bal. : 29</td>
<td>8.00</td>
<td>0.0790</td>
<td>8.23</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Bal. 99</td>
<td>8.00</td>
<td>0.0445</td>
<td>4.74</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Bal. : 99</td>
<td>1.96</td>
<td>0.0010</td>
<td>0.225</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Bal. : 99</td>
<td>1.96</td>
<td>0.0005</td>
<td>0.113</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>99 : Bal.</td>
<td>7.86</td>
<td>0.0115</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>99 : Bal.</td>
<td>7.31</td>
<td>0.0905</td>
<td>10.20</td>
<td></td>
</tr>
</tbody>
</table>

Time: 72 hours
Temperature Range: 560° - 590° F.
Corroding Agent: Crude fatty acids
Acid Value: Start, 142; finish, 61
TABLE VII

Maximum Corrosion Rate of All Test Metals

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Composition</th>
<th>Inches Penetration</th>
<th>Scaling/Fitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII-1</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>2340.0</td>
<td>Yes</td>
</tr>
<tr>
<td>VII-2</td>
<td>Cr:17.7; Ni:0.3; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>2300.0</td>
<td>Yes</td>
</tr>
<tr>
<td>5*</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>764.0</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>113.0</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>77.7</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>58.2</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>28.0</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>27.4</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>24.3</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>15.8</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>15.7</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>13.3</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>12.8</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>10.6</td>
<td>Yes</td>
</tr>
<tr>
<td>15</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>6.49</td>
<td>Yes</td>
</tr>
<tr>
<td>16</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>5.73</td>
<td>Yes</td>
</tr>
<tr>
<td>17</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>3.33</td>
<td>Yes</td>
</tr>
<tr>
<td>18</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>2.74</td>
<td>Yes</td>
</tr>
<tr>
<td>19</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>2.01</td>
<td>Yes</td>
</tr>
<tr>
<td>20</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>1.77</td>
<td>Yes</td>
</tr>
<tr>
<td>21</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>1.76</td>
<td>Yes</td>
</tr>
<tr>
<td>22</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>1.18</td>
<td>Yes</td>
</tr>
<tr>
<td>23</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>0.886</td>
<td>Yes</td>
</tr>
<tr>
<td>24</td>
<td>Cr:17.7; Ni:0.2; Fe:Bal; Mo:1.2; Mn:0.5; Si:0.3; Cu:1.4; Ta:0.4; Al:0.9; Mg:0.5; Per Year x 10<sup>-3</sup></td>
<td>0.250</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Corroding Agent: Crude fatty acids
* Cast iron
* Rough surface before test
TABLE VIII

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Composition</th>
<th>Inches Penetration</th>
<th>Scaling</th>
<th>Fitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIII-1</td>
<td>Cr:17.7; Ni:0.2; Mo:Bal.; Fe:2340,0</td>
<td>Case</td>
<td>Marked</td>
<td>Marked</td>
</tr>
<tr>
<td>VIII-2</td>
<td>Cr:12.7; Ni:0.2; Mo:Bal.; Fe:2300,0</td>
<td>Case</td>
<td>Marked</td>
<td>Marked</td>
</tr>
<tr>
<td>3</td>
<td>Cr:17.8; Ni:8.8; Mo:Bal.; Fe:113,0</td>
<td>Case</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Cr:16.7; Ni:8.5; Mo:Bal.; Fe:77,7</td>
<td>Case</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Cr:20.0:25; Ni:Bal.; Fe:15,7</td>
<td>Case</td>
<td>Slight</td>
<td>Slight</td>
</tr>
<tr>
<td>6</td>
<td>Cr:22.2:10.4; Ni:Bal.; Fe:6,49</td>
<td>Case</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Cr:17.8:12.7; Ni:2.9; Mo:Bal.; Fe:3,38</td>
<td>Case</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>Cr:25.2:19.9; Ni:Bal.; Fe:2,74</td>
<td>Case</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>Cr:17.7:10.8; Ni:2.3; Mo:Bal.; Fe:1,77</td>
<td>Case</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>Cr:29; Ni:9; Mo:Bal.; Fe:1,12</td>
<td>Case</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Corrodin Agent: Crude fatty acids

Temperature: 560 - 595°F

Temperature: 560 - 595°F
PLATE I
Corrosion Test Specimen

Left hand: Before exposure
Right hand: After exposure
Corroding agent: Crude fatty acids
Temperature: 570°-595° F
Time of exposure: 72 hours
Photograph: Two diameters
Composition of specimen: Cr: 12.66
 Ni: 0.32
 Fe: Balance
PICTURE II

Corrosion Test Specimen

Left hand: Before exposure
Right hand: After exposure
Corroding agent: Crude fatty acids
Temperature: 570°-590° F
Photograph: Two diameters
Time of exposure: 72 hours
Composition of specimen: Cr: 17.56
Ni: 0.24
Fe: Balance
PICTURE III
Corrosion Test Specimen

Left hand: Before exposure
Right hand: After exposure
Corroding agent: Crude fatty acids
Temperature: 570°-585° F
Time of exposure: 72 hours
Photograph: Two diameters
Composition of specimen: Cr: 16.69
Ni: 8.26
Fe: Balance
PLATE IV
Corrosion Test Specimen

Left hand: Before exposure
Right hand: After exposure
Corroding agent: Crude fatty acids
Temperature: 570°-595° F
Time of exposure: 72 hours
Photograph: Two diameters
Composition of specimen:
\[\text{Cr: } 17.76 \]
\[\text{Ni: } 8.75 \]
\[\text{Fe: } \text{Balance} \]
PLATE V
Corrosion Test Specimen

Left hand: Before exposure
Right hand: After exposure
Corroding agent: Crude fatty acids
Temperature: 570°-595° F
Time of exposure: 72 hours
Photograph: Two diameters
Composition of specimen: Cr: 17.7
Ni: 10.78
Mo: 2.34
Fe: Balance
PLATE VI
Corrosion Test Specimen

Left hand: Before exposure
Right hand: After exposure
Corroding agent: Crude fatty acids
Temperature: 570°-595° F
Time of exposure: 72 hours
Photograph: Two diameters
Composition of specimen: Cr: 22.2
Ni: 10.4
Fe: Balance
PLATE VII
Corrosion Test Specimen

Left hand: Before exposure
Right hand: After exposure
Corroding agent: Crude fatty acids
Temperature: 570°-595° F
Time of exposure: 72 hours
Photograph: Two diameters
Composition of specimen: Cr: 25.2
Ni: 19.9
Fe: Balance
GRAPH XVII

Corrosion Rate of Stainless Steels in Crude Fatty Acids

Time of exposure: 24 hours
Temperature: 570°-595°F

Inches penetration per year \(\times 10^{-3} \)

Percent of Chromium in Steel
Discussion

Theory

Corrosion, in general, may be divided into two classes: first, direct chemical attack; second, electrochemical action. Examples of the first type are the action of dry chlorine, hydrogen sulphide, or other gases on dry metals. The course and extent of such a reaction is dependent on the physical properties of the product, provided the energy relationship is such that the action takes place spontaneously. If the product is liquid or gaseous it will be continuously removed and the action will continue until the reactants are completely used up. On the other hand, if the product is solid and remains where it is formed, the film formed will hinder to some extent the action of the corrosive material on the metal. Such films as this have different characteristics, and if the film is porous it allows the corrosive agent to penetrate it and the corrosion continues but at a slower rate than formerly. However, if the film so formed is dense and impervious to the attacking agent, the metal will be protected.

It is interesting to note that a little over one hundred years ago Faraday (65) evolved the idea that a protective film of oxide was formed in order to explain the chemical passivity of iron to concentrated nitric acid. Due to the fact that this film was exceedingly thin and also invisible, the theory fell into disrepute for a long period of time, but researches in the last few years have definitely proved that such oxide films actually do exist, since they have been isolated and identified by Evans (63a) and other investigators.
Film on Stainless Steel

It is now a definitely accepted fact that the rust-resisting properties of the stainless steels are related directly to the properties of the invisible oxide film. Actually the film on the stainless steels is thinner than that on ordinary steel due to the fact that a truly protective film effectively hinders its own growth. The corrosion resistant properties of the stainless steels may be ascribed to the fact that the oxide film on the surface is automatically kept in repair by the action of the atmosphere. The same phenomenon is observed with chromium and aluminum.

Film Characteristics

Accepting then the fact that the corrosion resistance of the stainless steels is due to the repair of the oxide film by the atmosphere, the characteristics of the film in question should be determined for each specific case.

Hedges (66) states that "the protective power of a film is a relative term depending on all existing conditions, both physical and chemical," and "films of the oxide type are not resistant to wear, and unless they are automatically kept in repair, have only a limited use."

Effect of Cold Working

Evans (63) showed that the breakdown of the protective film on iron, steel, zinc, or aluminum tends to occur where the specimen has been bent or otherwise distorted with corrosion occurring preferentially at the bend. Breakdown of the film is also likely to occur where the surface has been cut or scratched. He emphasizes the fact that internal stresses are important in determining corrosion if they are of such a nature as to weaken the film. These conclusions are of great interest, since they throw new light on the preferential corrosion, or pitting of strained metal which has usually been
attributed to differences in electrolytic potential of adjacent sections of the metal due to the cold working of the metal; and they also suggest that part of the acceleration of corrosion by the presence of impurities in the metal may be due to the tendency of the protective film to fail at the phase boundary, especially as it has often been observed that inclusions of nonconducting materials form the focal point of accelerated attack and pitting.

Confirmation of Oxide Film

Johnston (57) states that the rate of reaction is the controlling factor in direct chemical attack, and that if this rate can be made substantially zero, the reaction will not proceed no matter how large the driving force. He continues, "it is now well known that the presence of chromium in steel lessens the rate of scaling to such an extent that the rate of scaling at 1200°C of a steel containing 27 per cent chromium is only about 1 per cent of that in the absence of chromium; but it is difficult to give an explanation for this behavior (for chromium is not a noble metal with respect to oxygen) except in general terms to the effect that chromium does form an oxide film which is adherent and highly impervious and can do this even when a majority of the atoms on the original surface are iron atoms. Apparently, however, the addition of chromium is much more effective in reducing scaling when at least 12 per cent is present; this corresponds to about one atom in eight by volume or one atom in two along any straight line on the surface. In other words, it would seem that every iron atom on the surface must be adjacent to a chromium atom if the latter is to be really effective in lowering the rate of scaling at high
temperature, and that further increase in chromium content beyond this point becomes more and more effective." He also states that the rate of scaling is proportional to the rate of diffusion of the oxygen through the oxide film, and if the oxide film is impervious to oxygen no further scaling or corrosion will occur.

This view is also held by Hedges (66), and is supported by the work of Pilling & Bedworth (70) and also by Evans (64).

From the evidence as presented it is reasonable to assume that an oxide film is present over the surface of the metals and that if this film is impervious to the corrosive agent no action will take place; and that if the film is only partially protective selective corrosion will take place at the weakest points, and this will be manifested by pitting.

Formation of Metallic Soap

Hedges (66) p. 11, defines corrosion by direct chemical attack as corrosion when no electrolyte is present. Since the crude fatty acids are non-conductors and the temperature at which the tests were carried out (580°F) precluded the presence of water, the corrosion takes place by direct chemical action.

Following the theory developed above, the action is controlled first by the diffusion of the fatty acids through the oxide film on the surface of the metals and following that by diffusion through the product of the reaction.

It was noted that for all samples that were appreciably corroded, a very sticky, but porous scale was formed that corresponded to that found in actual plant practice. From a purely physical examination it would seem
that this reaction product was a metallic salt of the fatty acids.

Classification of Metal Groups on Basis of Corrosion

For all the pure metals tested, with the single exception of Tantalum which was practically unaffected, the scale formed was very adherent to the surface of the metal. In the case of the low chromium nickel steels the scale was much more porous and easier to clean from the samples. For those samples that were not attacked to any marked extent, there was present only a trace of scale or none at all. From the above observations, the pure metals should be expected to fall between the low chromium nickel steels and the high chromium nickel steels in their resistance to corrosion, and an inspection of Table VII shows that this is indeed the case.

An examination of the results obtained from the tests shows that the chromium and nickel alloy steels show a complete range of resistances from the maximum to practically the minimum of any value found. Since these alloys from a commercial viewpoint are the most useful and since they have received more research attention than the others, this discussion will be concerned primarily with them.

Effect of Composition on Corrosion Rates

The remarkable fact unearthed in this research was the tremendous increase in resistance to corrosion from the 18-8 chromium nickel alloy to the 22-10 composition alloy. An examination of Table VIII shows that the corrosion rate decreases to approximately 1/12 of its former value by the slight change in composition, and microscopic examination of the specimen at 435 diameters showed no trace of scaling or pitting. It should be noted that the addition of approximately 3 percent molybdenum to the 18-8 series also increases the corrosion resistance
to a value approximately equal to that of the 25-20 chromium nickel alloy. The addition of molybdenum to steels serves the same purpose as the addition of chromium, in increasing the strength or impenetrability of the oxide film. However, in the case of the chromium-nickel-molybdenum alloys it was noted that the finish of the specimen was tarnished to a considerable extent. Considering the short length of time that the samples were exposed to the corroding agent, it is doubtful whether the resistance to corrosion exhibited by these alloys would be as good as that of the chromium-nickel alloys of equal value when exposed over long periods of time. However, this remains to be proved by further research.

The Chromium-Nickel Content as Influencing Corrosion Rates

As previously noted, beginning with the 22-10 chromium nickel alloy and continuing up the series examination under a microscope at 435 diameters showed no trace of scaling or pitting.

This behavior of the metals can be accounted for very plausibly by the theory as developed. The samples having the least resistance to attack were those containing Cr 17.7, Ni 0.2 and Cr 12.7, Ni 0.3. For these alloys the oxide film was either discontinuous and non-protective or else somewhat porous so that the fatty acid diffused through it very readily and once the film was broken the corrosion proceeded apace since the fatty acids are very corrosive. The examination of the surface showed that corrosion was practically uniform over the entire surface of the specimen. There was marked pitting of the surface, but this was of the same relative magnitude over the entire specimen.

The next most resistant alloys were those of the so-called 17-7 and 18-8 compositions. These alloys showed deep pitting and selective attack wherever a file had scratched the surface in preparing the specimen and also
around the edges of the hole drilled in the specimen for the glass suspension rod. Much of the surface showed no marked signs of attack, but there were tiny pits more or less uniformly scattered over the entire surface. Scaling was present but not nearly so great as for the less resistant alloys. This would indicate that the oxide film was particularly weak in the spots where the metal had been cold worked and therefore very susceptible to attack at those points. Another logical deduction is that the oxide-forming tendencies of the chromium atoms present in the alloy were insufficient to completely protect the adjacent iron atoms over the entire surface and that the fatty acids diffused through the weak portion of the film at those points, thus beginning the attack.

The next alloy in resistance value had a composition of 22-10 chromium nickel and from microscopic examination showed no evidence whatsoever of either scaling or pitting. At 435 diameters it was impossible to detect any difference between the exposed and unexposed specimen. This would indicate that sufficient chromium had been added to the alloy to permit the formation of an almost completely impervious oxide film over the entire surface of the alloy.

The final alloy of the series, having the composition 29-9 chromium nickel gave the best resistance value of the entire series and repeated immersions failed to produce any visible evidence of attack. In the case of this alloy the percentage of the alloying element has apparently reached a value such that the oxide film is for all practical purposes impervious to the action of the crude fatty acids.

Effect of Molybdenum on Chromium-Nickel Steels

The next alloy in resistance value was a so-called 18-8 chromium nickel, 3 molybdenum alloy. In this case no evidence of attack was apparent, but the
finish of the alloy was darkened considerably. An alloy of 25-30 chromium nickel and other 18-8 chromium nickel, 3 molybdenum alloy showed somewhat the same resistance value and should probably be grouped together. Again no surface evidence of corrosion was apparent for all of the above-mentioned alloys.

Effect of Silicon Content on Chromium-Nickel Steels

Samples #11 and #15 in Table VII are apparently out of place in the chromium-nickel resistance series. However, these are special alloys containing appreciable amounts of silicon, and this fact should account for their slightly decreased resistance. Sample #19 shows too high a resistance according to the chromium nickel resistance series and may be accounted for by the fact that its surface was very rough and difficult to clean free of fatty acids and a slight gain in weight from such a cause would account for its apparent increased resistance. The same reasoning applies to the high silicon iron, sample #23, since it is believed that this is also slightly out of place.

Effect of Other Metals on Corrosion Rates

1. Cast Iron. Referring to Table VII to evaluate the other specimens of metals and alloys tested, it is found that the following is true. Sample #3 was a sample of cast iron containing small percentages of Cu and Cr. The corrosion rate on this was so rapid as to leave no doubt of its unsuitability.

II. Aluminum. Aluminum and its alloys are next in line in order of increasing resistance to corrosion, and their rate and scaling preclude any use against crude fatty acids. However, one fact was noted in the case of these samples that should be mentioned; they were the only samples tested that showed an increase in corrosion rate during the second period of immersion. This is to be expected though, since aluminum is a very reactive
metal and depends entirely upon its oxide film for protection. Once this film is weakened or broken the reaction should proceed very rapidly, as it apparently does.

III. Copper. Copper apparently formed a very adherent scale upon reaction with the fatty acids, and the rate of corrosion is probably dependent upon the removal of this scale. In a pipe still with high velocities of the corroding material, this rate would probably be much larger. Pitting was also apparent.

IV. Nickel. Nickel is apparently the most resistant of the pure metals of construction, but it too has the disadvantage of scale formation, although pitting was very slight.

V. Tantalum. Tantalum was apparently unattacked but cannot be considered for any industrial application since the operating temperatures are so close to the temperature at which it is embrittled. Fabrication difficulties would also preclude the use of the high silicon iron except for auxiliary equipment. Further test should be run on smooth finished samples of this material before any reliability can be placed on the test data.

In the test runs as performed it was attempted to duplicate as near as possible conditions that would be encountered in actual plant practice. However, there are certain facts which must be considered before any but a relative interpretation can be placed upon the results. The first and most important of these considerations is that the fatty acids were continuously decomposed during the course of the runs by destructive distillation. This is evidenced by the drop in the acid value of the crude fatty acids during the course of each test. This of course would indicate that the corrosion rates as shown are of a lower value than would be
expected in plant practice where the metals would be continuously subjected to the action of fresh material. The other factor, and one that is much more difficult to evaluate, is the effect of heat transmission through the metal itself as would be the case in actual practice. In the case of the test runs heat was supplied to the specimen from the fatty acid itself. This may or may not have an effect on the corrosion rate and will probably have to await further research for an actual decision, but should be remembered in any case.

The volume of fatty acids used for the tests was very large (two gallons) in comparison to the size of the specimens of metals. Therefore it is reasonable to assume that the quantity of fatty acids consumed by reaction with the metals to produce a metallic soap was negligible.
CONCLUSIONS

From the evidence as presented, the following conclusions are possible:

1. Copper, nickel, aluminum, and their alloys have corrosion rates too high to permit their use as a material of construction for stills.

2. Stainless steels up to and including 18-8 chromium nickel content are entirely unsatisfactory in their corrosion resistant properties.

3. 18-8 chromium nickel stainless steels with approximately 3% molybdenum added are satisfactory in their resistance.

4. Stainless steels with a minimum nickel content of 8% and a minimum chromium content of 22% are satisfactory, and increasing the chromium content above that percentage increases the resistance of the alloy to corrosive attack by crude fatty acids. The choice of the particular alloy composition will depend on economic factors.

5. It is indicated that the resistance of the high chromium stainless steels is due to the property of chromium of forming an oxide film over the surface of the alloy that is impervious to the action of crude fatty acids. The protective quality of this film is probably dependent upon the distance between the chromium atoms on the surface.
BIBLIOGRAPHY
BIBLIOGRAPHY

Parts I and II

1. Alberti, B.
 Constants of Tall Oil.
 Seifensieder-Ztg., 53, 58-9, (1923)

2. Aschan, O., & K. E. Ekholm
 "Pinabiotic Acid," A Resin Acid from the Sulphate Cellulose Liquors.
 Finska Kem. Medd. p. 8, (1918)

3. Aschan, O.
 Structure of Pinabiotic Acid.
 Fanno-Chem., I, 18-27, (1929)

4. Bergstrom, Karl G.
 Resin Recovery from Alkaline Lyes of Cellulose Manufacture.
 Fr. 563, 416 (1928)

5. Bergstrom, H., & Karl Cederquist
 Hydrogenation of Waste Liquor from Sulphate Cellulose Cooking.
 Iva. 1931, No. 2, 40-4, (1931)

5a. Bergstrom, H., & Karl Cederquist
 The Quantity of Liquid Rosin Obtained in Sulphate Cellulose.
 Cooking vs Resinie and Fatty Acid Content of the Wood.
 Iva. 1934, No. 2, 42-5, (1934)

6. Bergstrom, Hilding
 Refining of Floating Rosin.
 Svensk Pappers-Tid., 55, 155-61, (1932)

7. Bergstrom, Hilding
 The Utilization of Wood Wastes.
 Tek. Tid. Uppl. C. Kemi., 63, 61-6, (1933)

8. Bent, Leavitt N.
 Rosin Recovery from Rosin-containing Soap Formed in Pulp Manufacture.
 U. S. 1, 898, 881 (to Hercules Powder Co.), (1933)

 Purifying Liquid Rosin.
 Can. 272, 392 July 19, 1927

10. Boernstein, E.
 Extraction of Higher Fatty Acids and other Acids from Wood Tar.
 Am. Perfumer, 15, 311, (1930)

 Use of Tall Oil, etc., in Core Binders.
 Brit. 348, 315 Mar. 29, 1930

11a. Pulp & Paper
 Chem. & Met., 14th Annual Review
 44, No. 2, pp. 66-7
13. Girves, Francis J.
General Analysis of Sulphate Black Liquor.
Paper Trade J., 91, No. 19, 55-8, (1930)

14. Dittmer, K.
The Use of Tallol (liquid rosin) in the Alkali Wash of Petroleum Distillates.
Chem. Ztg., 52, 577-8, (1928)

15. French, Edward H.
Rosin Recovery from Spent Wood.
U. S. 1, 773, 525 (to West Va. Pulp & Paper Co.)

16. von Euler, Astrid Cleve
Some Experiments on the Separation of Fatty Acids and Rosin Acids in Liquid Rosin from the Sulphate Process.
Arkiv. Kemi. Min. Geol., 8, No. 4, 21, (1921)

17. French, Edward H.
Recovering Resinous Products in the Manufacture of Wood Pulp.
U. S. 1, 693, 536, (1929)

18. French, Edward H.
Recovering Resinous Substances in Wood Pulp Manufacture.
U. S. 1, 810, 472, (1931)

19. French, Edward H.
Rosin Recovery from Alkaline Liquors Containing Resinates.
U. S. 1, 997, 171 Apr. 9, 1935

20. Fricke, K.
Investigation of a Distillate of Tallol.
Allgem ol. u. Fettzig, 24, 45-6
Chem. Zentr. 1927, I., 1907, (1927)

21. Greenwood, F. E.
Rosin from Pulp Mill Black Liquor.
U. S. 1, 862, 217, (1926)

22. Hasselstrom, Torsten
The Fatty Acids in Pine Oil Obtained as a By-Product in Sulphate Pulp Manufacture.
Pappers och Trav. for Finland, 1895, No. 25, 632-8, (1926)
Paper Trade J., 83, No. 2, 80-4, (1926)

23. Hasselstrom, Torsten
Sulphate Black Liquor Investigation.
Paper Trade J., 85, No. 1, 49-53, (1927)

24. Hasselstrom, T.
Refined Sulphate Black Liquor Tall Oil.
U. S. 1, 986, 815 Jan. 8, (1935)
25. Hein & Comp.
Aqueous Emulsions or Solutions of Tall Oil.
Ger. 479, 085 June 10, 1928.

Investigations Relating to the Composition of Floating Rosin.

27. Hilding
Papier-fabrikant, 9, 81-2.

28. Hodges, Paul
Paint Remover, Metal Cleaner, Rust Inhibitor, Degreasing Composition.
U. S. 1, 993, 096
U. S. 1, 993, 097
U. S. 1, 993, 098
U. S. 1, 993, 099 (to Gulf States Paper Co.)

29. Hough, W. J.
Treating Spent Alkaline Pulping Liquors.
U. S. 945, 397 (1910).

30. Hough, W. J.
Recovery of Resinous Materials from Alkaline Pulping Liquors.
Ger. 254, 223 (1911).

31. Hubscher, F.
Swedish Rosin Oil.
Seifensieder-Ztg., 46, 231-2, (1921).

32. Hyde, Elmer H.
Disinfectant Composition.
U. S. 1, 882, 618 Oct. 11, 1932 (to American Tar Products Co.)

33. Hedges, E. S.
"Protective Films on Metals"
D. Van Nostrand Co. (1933).

34. de Keghel, Maurice
Composition and Uses of Tallol.
Rev. chim. ind., 35, 170-8, 202-6, (1926).

35. Kleine, C. W. A.
Refining Alkali Salts of Raw or Refined Sulphate Resin.
Swed. 57, 947 Dec. 24, 1924.

36. Lomanovich, A., and W. Tret'yakova
Uses of Tallol in Soap Making.
Chimie & Industrie, 24, 643, (1934).

37. Michelson, Carl E.
Working up Cellulose Industry Byproducts.
39. Michelson, Carl H.
Refining the "Soap" Floating on the Waste Liquors of Cellulose Manufacture.
U. S. 1, 823, 752 Aug. 15, 1931

40. Nordenfjeld, Ivar
Resin Accumulation in Pine Wood.

41. Oel & Fett-Chemie Ges.
Fatty Acids and Other Substances from Tallow.
Brit. 278, 097 Oct. 11, 1926

42. Oel & Fett-Chemie Ges.
Tallow Products.

43. Oel & Fett-Chemie Ges.
Working Up Tallow.
Ger. 484, 245 Oct. 12, 1927.

44. Patch, R. H., & Fritz Dambacher
Polymerizing, Condensing and Oxidizing Crude Tallow.
U. S. 1, 933, 532 Dec. 5, 1933 (to E. P. Houghton & Co.)

45. Palkin, S.
Acids of Pine Oilsresin and Rosin.

45a. Perry, John H.
"Chemical Engineers' Handbook"
1st ed. 1934, pp.1723-78
McGraw-Hill Book Co.

46. Pyhala, E.
Composition of So-called Floating Resin.
Svensk Pappers-Tid., 28, 601-4, 627-9, (1926)

47. Pyhala, E.
The Importance of Sulphate Soaps as Raw Material for Large Scale Production.
Svensk Pappers-Tid., 37, 574-6, (1934)

48. Pyhala, E.
Refining and Decolorizing Sulphate Soap.
Swed. 80, 900 July 10, 1934 (to O. Y. Methods, Ltd.)

49. Ruzicka, L., & H. Schinz
Isomerism in the Resin Acids of the Abietic Acid Group.

50. Sandquist, H.
Phytosterols from Sulphate Soap.
Swed. 72, 858 Oct. 15, 1931.
51. Sandquist, H., & T. C. H. Lindstrom
Phytosterol, Fatty Acids and Resin Acids from Raw Tall Oil Soap.
U. S. 1, 940, 372 Dec. 19, 1933.

52. Schmid, W.
Liquid Resin and Its Possible Uses.
Papier-Fabri., 29, Tech-Wiss, Teil, 1-4, (1931)

53. Schmid, W.
Tall Oil and Its Possible Uses.
Farben-Chemiker, 2, 306-10, (1931)

54. Schmid, W.
Liquid Rosin and Its Utilization.
Zeissstoff u. Papier, 13, 571-2, (1933)

55. Schultze, A. & Co.
Treating Tall Oil.
Brit. 281, 637 Dec. 4, 1926.

56. Schultze, Willi
Treating Tall Oil
U. S. 1, 736, 802 (1929)

57. Schultze, Willi
Liquid Fatty Acids from Tall Oil.
U. S. 1, 926, 224 (1931)

Purifying Oils.
Fr. 626, 728 (June 29, 1928.)

59. Tukhovitzkii, N. V.
The Fatty Acids Contained in Stump Rosin.
Lesokhimicheskaya Prom., 6, No. 9-10, 10-13, (1934)

60. Wahlberg, H. E.
Experiments with Sulphate Soap and Sulphate Oil.
Svensk Pappers-Tid., 27, 148-9, (1934)

61. Wolff, H., & E. Scholze
Concerning the Determination of Rosin in Varnish, Oils and Soaps.
Chem. Zeit., 28, 359-70, 382-3, 430, (1914)

62. Ziv, Josef
Tall Oil.
Ger. 494, 950 June, 1923.
BIBLIOGRAPHY

Part III

63. Evans, U. R.
 J. C. S. 55, 62, 73, 47 (1926)

63a. Ibid
 J. C. S. 547, 563, 46 (1927)

64. Ibid
 "Corrosion of Metals"
 Arnold & Co., London (1926)

65. Faraday, Michael
 Phil. Mag. 5, 57, 122 (1856)

66. Hedges, E. S.
 "Protective Films on Metals"
 D. Van Nostrand Co. (1933)

67. Johnston, John
 Ind. Eng. Chem. 26, 1233 (1934)

68. deKeghel, Maurice
 Rev. Chem. Ind., 35, 170-3, 202-6, (1926)

69. Perry, John H.
 "Chemical Engineers' Handbook"
 McGraw Hill Book Co., (1934)

70. N. B. Pilling and R. E. Bedworth
 Ind. & Eng. Chem., 17, 372, (1925)
SUMMARY

This investigation was undertaken in order to determine the characteristics of crude fatty acids, recovered from the resin soap wastes of kraft pulp manufacture, so that efficient distillation units may be designed for distillation of the crude fatty acids.

It was found that the crude fatty acids could be distilled at a maximum absolute pressure of 7 m.m., and at a temperature range of 400° to 520° F. At this temperature range approximately 70% of the total can be recovered as distillate without impairing the quality of the distillate. The remaining 30% is removed as pitch.

It was found that when 70% of the total has been distilled approximately 85% of the fatty acids and 60% of the abietic acid originally present have been recovered.

Crude fatty acids corroded to a marked extent all of the feasible alloys and metals of construction with the exception of the stainless steel containing not less than 20% chromium and not less than 9% nickel.

It was found that the most suitable alloy was a chromium-nickel-iron alloy containing 29% chromium and 9% nickel, the balance being iron.