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ABSTRACT 

 

 

Fires occur extensively across Zambia every year, a problem recognized as a major threat to 

biodiversity. Yet, basic tools for mapping at a spatial and temporal scale that provide useful 

information for understanding and managing this problem are not available.  The objectives of this 

research were:  to develop a method to map the spatio-temporal seasonal fire occurrence using 

satellite imagery, to develop a technique for estimating missing data in the satellite imagery 

considering the possibility of change in land cover over time, and to demonstrate applicability of 

these new tools by analyzing the fine-scale seasonal patterns of landscape fires in eastern Zambia. 

A new approach for mapping burned areas uses multitemporal image analysis with a fuzzy 

clustering algorithm to automatically select spectral-temporal signatures that are then used to 

classify the images to produce the desired spatio-temporal burned area information. Testing with 

Landsat data (30m resolution) in eastern Zambia showed accuracies in predicting burned areas 

above 92%.  The approach is simple to implement, data driven, and can be automated, which can 

facilitate quicker production of burned area information. A profile-based approach for filling 

missing data uses multitemporal imagery and exploits the similarity in land cover temporal profiles 

and spatial relationships to reliably estimate missing data even in areas with significant changes. 

Testing with simulated missing data from an 8-image spectral index sequence showed highly 

correlated (R2 of 0.78-0.92) and precise estimates (deviations 4-7%) compared to actual values. 

The profile-based approach overcomes the common requirement of gap-filling methods that there 

is gradual or no change in land cover, and provides accurate gap-filling under conditions of both 

gradual and abrupt changes. The spatio-temporal progression of landscape burning was evaluated 

for the 2009 and 2012 fire seasons (June-November) using Landsat data.  Results show widespread 

burning (~ 60%) with most fires occurring late (August-October) in the season. Fire occurrence 

and burn patch sizes decreased with increasing settlement density and landscape fragmentation 

reflecting human influences and fuel availability. Small fires (< 5ha) are predominant and were 

significantly under-detected (>50%) by a global dataset (MODIS Burned Area Product (500m 

resolution)), underscoring the critical need of higher geometric resolution imagery such as Landsat 

imagery for mapping such fine-scale fire activity. 
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The Challenge of Mapping Landscape Fires 

1.1 ROLE OF FIRE IN THE ENVIRONMENT 

 Fire occurrence 

Fires are widespread seasonal events in many regions around the world and affect millions of 

hectares of vegetated land every year. Estimates from satellite imagery of the total global burned 

area between 2000 and 2008 ranged from 330 to 431 million hectares with the majority, about 250 

million hectares, occurring in Africa (FAO, 2007; Giglio et al., 2010; Giglio et al., 2006; Tansey 

et al., 2008). Future projections from climate change models show increasing trends in global fire 

activity leading to an increase in global burned area (Doerr et al., 2006; Pechony and Shindell, 

2010). The majority of fires in the tropics and subtropics, and in some temperate-boreal transition 

zones, are caused by human activities usually associated with land-use practices and changes 

(Goldammer et al., 2001; Pereira et al., 1999). In many cases, especially in developing countries 

where fire management is inadequate, these fires burn out of control eventually covering large 

areas (Chuvieco, 1999). In Boreal biomes and in a few temperate and tropical biomes, lightning is 

also a significant source of fire (Lafon and Grissino-Mayer, 2007).  

 Fire effects 

Fire can play an integral role in the function of ecosystems.  In fire-dependent ecosystems such as 

savannas, it helps maintain biodiversity, productivity and recycling of nutrients (Cochrane and 

Ryan, 2009; Goldammer and De Ronde, 2004). Fire may also be detrimental to the normal 

functioning of ecosystems if it is excessive or occurs in a fire-sensitive ecosystem.  Fire can cause 

excessive heating of the soil and local environment contributing to plant mortality, reduced surface 

cover, and impairment of soil structure leading to ecosystem and watershed damage (Chuvieco, 

1999; DeBano et al., 1998; Miller and Yool, 2002). The burning of plant biomass also contributes 

to air and water pollution through the deposition of burned biomass and release of large amounts 

of sulfur dioxide and particulates into the atmosphere (Innes et al., 2000). Thus, resource managers 

and policy makers must evaluate the positive against and the negative impacts of fire so net benefit 

is realized from the interaction of fire and the environment (DeBano et al., 1998; FAO, 2007).  
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The effects of fire can be observed at various spatial and temporal scales (DeBano et al., 1998; 

Geraci et al., 2009; Lhermitte et al., 2011). At a small scale, fire can impact soil structure, plant 

nutrition, species composition and competition, and the cumulative effect of these can lead to 

changes in composition, structure and function of ecosystems at a landscape level. Further, these 

impacts can lead to changes in vegetation distribution and atmospheric chemistry at regional or 

global scales (Lentile et al., 2006; Lhermitte et al., 2011). The timing of fire also influences fire 

impacts on ecosystem resources which are a function of varying fire intensity and individual plant 

phenology cycles (Cochrane and Ryan, 2009; Gillanders et al., 2008).  In the tropics, fires burning 

late in the dry season tend to burn more intensely thus are more damaging because of the dry 

biomass and hot weather compared to those burning early in the season (Goldammer et al., 2001). 

Fires also tend to be more destructive if they occur at certain critical points in plant’s cycle. For 

instance, fire can hamper regeneration of it occurs at seed set versus if it occurs during the plant’s 

dormant or senescent periods (Cochrane and Ryan, 2009). Therefore, better understanding of fire 

disturbance in a given area requires an appreciation of where, how often, and when fire occurs 

(Pereira, 2003; Pricope and Binford, 2012). The combination of such information with other 

relevant ecosystem information can enable a wide variety of fire related impacts to be assessed 

(Geraci et al., 2009). Because of that, there is need for mapping of burned areas and collection of 

related ecosystem information (French et al., 2008; Roy et al., 2002). Burned area maps are a vital 

input to a number of terrestrial and atmospheric fire impact assessments. Burned area maps enable 

co-location of the burning with affected vegetation so localized assessments such as plant 

mortality, vegetation regeneration, soil degradation can be carried out (Pereira, 2003). Burned area 

is also an important input in climate modelling where it is used with available fuel load and burn 

efficiency information to estimate trace gases or aerosol emissions into the atmosphere (Geraci et 

al., 2009; Smith et al., 2007). In regions where fire often causes human and infrastructure losses, 

burned area information can be used to assess the economic impact of the fire (Chuvieco, 1999). 

All these applications underscore the need for the availability of reliable burned area information 

in the management of natural resources.  
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1.2 OBTAINING BURNED AREA INFORMATION USING REMOTE SENSING TECHNIQUES 

Remote sensing presents the only practical way of collecting information on burned areas from a 

local to global level (Roy et al., 2002). The capability of mapping fire patterns at regular time 

intervals makes it a more suitable for collecting such information than field observation (Flasse et 

al., 2004). The regular data capture allows the study of spatial and temporal occurrence of fire and 

associated interactions with the ecosystem and environment in a more complete way (Archibald 

et al., 2010). By capturing data across a wider range of the electromagnetic spectrum than can be 

seen by humans, remote sensing permits the extraction of a wider range of fire-related information 

than is possible with other methods (Coppin et al., 2004; Flasse et al., 2004).  

 Spectral characterization of fire response 

Generally, remote sensing methods are based on developing a relationship or correlation between 

variations on the Earth’s surface and spectral variations observed from remote sensors (Campbell 

and Wynne, 2011; Flasse et al., 2004). In the case of mapping burned areas, physical changes due 

to fire such as loss of vegetation, charring of the surface and relative temperature rises (Flasse et 

al., 2004) can be related to observed spectral changes that enable the discrimination of burned 

areas from unburned ones (Pereira et al., 1999). A number of studies have documented the 

characteristic spectral responses to fire in the different regions (visible, near-infrared, mid-infrared 

and thermal) of the electromagnetic spectrum and these have enabled the application of wide array 

of approaches to mapping burned areas. In the visible spectrum, a general reduction of reflectance 

after a fire has been observed in many studies.  However, deviations from this pattern have been 

reported and are usually associated with prevailing factors such as soil background reflectance, 

combustion completeness (presence of white ash), and vegetation structure (grassland vs forest) 

any of which may result in an increase in reflectance (Pereira et al., 1999; Roy and Landmann, 

2005). The near-infrared region has also been extensively used to discriminate burned areas and is 

considered more effective than the visible region (Koutsias et al., 1999). Because unburned 

vegetation has very high reflectance in this region and very low reflectance after a fire (Lentile et 

al., 2006), there is a marked decrease in reflectance which provides for better discrimination of 

burned areas. This characteristic is the basis for the design of burn-specific spectral indices such 

as the normalized burn ratio (Key and Benson, 2003). In the mid-infrared portion, the loss of water 

or moisture from plants causes a general increase in reflectance from the pre-fire state (Trigg and 
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Flasse, 2001). The mid-infrared region suffers minimal atmospheric scattering compared to the 

visible and near-infrared (NIR) spectra region making sensing in this region more attractive 

(Pereira et al., 1999). The thermal region has been used by basing classification on the relative 

temperature rise of a burned area to surrounding unburned areas (Flasse et al., 2004). The 

suitability of a method is thus constrained by the availability of data since all satellite imagery does 

not capture data in all these wavelength bands (Pereira et al., 1999). 

 Remote sensing data for mapping burned areas 

Due to differences in fire severity, burn completeness, land cover type, phenology and the 

persistence of the burn signal since fire, burned areas can exhibit wide spectral, spatial and 

temporal variability which complicates burned area mapping (Bastarrika et al., 2011; Pereira, 

2003; Roy and Landmann, 2005). In addition, the general spatial heterogeneity of the landscape 

also raises questions on the optimum scale of imagery to characterize fire events (Koutsias et al., 

1999). These two aspects are of vital importance in the application of remote sensing for burned 

area mapping and determine the suitable data, in terms of spatial, spectral and temporal resolution, 

and to some extent the techniques for retrieving the required burn information (Jensen, 2007; 

Koutsias et al., 1999).  Coarse spatial resolution data (250m to 1km ground sample distance) from 

sensors such as Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution 

Imaging Spectro-radiometer (MODIS) or SPOT VGT have been extensively used to generate 

active fire (Giglio et al., 2009; Justice et al., 2002) and burned area (Boschetti et al., 2009) 

information.  The daily imaging frequency in the case of MODIS enables the characterization of 

the daily and seasonal patterns of burning at a regional or global level which is useful in the study 

of fire patterns and their inter-relation with environmental and anthropogenic factors at regional 

scales (Archibald et al., 2010; Pricope and Binford, 2012). However, such coarse data are limited 

for local more detailed mapping of fire especially in the fragmented landscapes were fire sizes tend 

to be small (Kull and Laris, 2009; Sá et al., 2007). To meet this need, higher spatial resolution data 

such as Landsat are needed and are increasingly being used to generate burned area maps 

(Bastarrika et al., 2011; Laris, 2005). These data provide a more detailed view of the landscape 

and therefore burn estimates and derivatives such as carbon emissions are much better than what 

can be obtained using coarse resolution imagery (Eva and Lambin, 1998; Pereira, 2003). The now 
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free archive of Landsat data enables multitemporal burn mapping which has not been widely 

explored before because of the high cost of acquiring the imagery (Giri et al., 2013). 

 Burned area mapping methods 

Remote sensing methods for mapping burn areas are usually classified in terms of the number of 

images used in the analyses (Koutsias et al., 1999; Quintano et al., 2011), with the three primary 

approaches summarized as the following.   

1) Single image approaches, where one post fire image is used. Supervised techniques such 

as object based classification (Gitas et al., 2004), classification and regression trees 

(CART) (Cassidy, 2007), support vector machines and neural networks (Cao et al., 2009), 

or unsupervised techniques such as clustering (Laris, 2005), have mostly been applied.  

2) Bitemporal methods, where both a pre-fire and post-fire image are used and detection is 

based on temporal change of the spectral signature of the burned area from its unburned 

state. Thresholding of differenced spectral index data such as the normalized burn ratio 

(NBR) (Key and Benson, 2003) is primarily used to discriminate burned from unburned 

areas (Koutsias et al., 1999).   

3) Multitemporal or time series approaches, where more than two images are used for the 

analyses (Quintano et al., 2006). In this category supervised neural networks (Al-Rawi and 

Casanova, 2001; Gomez and Martin, 2011) and physical models such the Bi-Directional 

Reflectance Model-Based Expectation change detection approach (Roy et al., 2002) have 

been applied 

Factors such as phenological changes, persistence of the burn signal, and time since the fire point 

to the need for a temporal dimension in burn mapping. Thus, it should not be surprising that use 

of single or bitemporal approaches often leads to the confusion of burned areas with spectrally 

similar land covers such as wetlands or with phenological changes during the fire season (Cassidy, 

2007).  Given that landscape burning  is a dynamic event, burn data obtained through single and 

bitemporal approaches are less informative at capturing the spatio-temporal patterns of fire 

(Thackway et al., 2013). The use of multiple images over a fire season or over a chosen timespan 

can significantly overcome such limitations and provide a more comprehensive way of mapping 

spatio-temporal distribution of burned areas (Lhermitte et al., 2011; Lu et al., 2004).   
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1.3 OBJECTIVES 

Developing countries such as Zambia face difficulties in monitoring their natural resources such 

as forests due to budgetary constraints, lack of qualified personnel for monitoring activities and 

sometimes low political will to address issues pertaining to the environment. As such, there is often 

little or no effective management of natural resources, and disturbances such as forest fire go 

uncontrolled (Goldammer and De Ronde, 2004). Fire is increasingly recognized as one of the 

major threats to biodiversity in Zambia (Forestry Department, 2013; Kokwe and Mickels-Kokwe, 

2012; Vinya et al., 2011). Widespread fire activity in the dry season results in the proportion of 

burned land exceeding  50% in many regions of the country (Archibald et al., 2010). Fire activity 

in Zambia also ranks highest in terms of monthly fire radiative energy release power (FRP) which 

measures the strength of fires. This has vital implications for biomass emissions, given the direct 

relationship of FRP to the rate of biomass consumption (Ichoku et al., 2008).  However, little has 

been done to control the frequent occurrence of fires and there is lack of reliable burned 

information to study fire impacts at local scales (Pricope and Binford, 2012; Zimsky et al., 2010). 

More effective management could be aided through the use of remote sensing fire products 

(Goldammer and De Ronde, 2004). However, currently available global datasets are not locally 

relevant because of the coarse spatial resolution. Fires in many regions of Africa occur as many 

widely dispersed small events and there is a high potential to miss them or over-estimate the burned 

areas with these coarse data (Goldammer and De Ronde, 2004; Kull and Laris, 2009). The main 

study area in Eastern Zambia is a mixed landscape with wide land cover variation ranging from 

large homogenous areas of woodland and grassland to highly settled, fragmented areas dominated 

by cropland, shrubs and fallow. Thus, burned areas sizes may vary considerably (Lafon and 

Grissino-Mayer, 2007). Fires in agricultural fields are limited in size by small crop field sizes 

which may not be detectable with course imagery data, thus missing subtle but important changes 

in fire distribution (Loboda et al., 2007; Randerson et al., 2012). Effective remote sensing data and 

techniques are needed to characterize the fine to broad-scale burn patterns in such mixed land use 

landscapes. 

The goal of this study was to develop methods for mapping the fine-scale mosaic of burning 

created by fragmented fire events using higher spatial resolution (30 m ground sample distance) 

Landsat data.  With ready access to Landsat scenes spanning the fire season there is the possibility 
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of developing multitemporal burn mapping methods that would be able to better characterize 

seasonal fire activity. However, the usability of these data is often hampered by missing data due 

to cloud cover and sensor specific problems such as the scan-line corrector (SLC) error in Landsat 

7 (Brooks et al., 2012). Therefore, effective methods for gap-filling are also needed to make these 

data more useful for assessing environmental disturbances such as fire. Existing gap filling 

methods (Chen et al., 2011; Scaramuzza et al., 2004; Zhu et al., 2012) are not designed to model 

abrupt changes in the landscape such as is due to fire, thus conceptually cannot adequately estimate 

missing data under these conditions. With multitemporal data there is great potential to model 

these changes more accurately (Thackway et al., 2013) to provide better estimates for missing data. 

This research was structured as three independent but related studies which are developed and 

described in Chapters 2 - 4.  The three primary objectives of these studies are expressed in the 

following: 

1) Develop a method for fine scale mapping of the spatio-temporal progression of burned 

areas in Eastern Zambia over a fire season using multitemporal Landsat imagery. 

2) Develop and evaluate a change-preserving gap filling method for estimating missing values 

in a multitemporal spectral index derived from Landsat data to provide a method that can 

accurately estimate missing values even under abrupt change due to fire.  

3) Characterize the spatial and temporal patterns of landscape fires across three physiographic 

regions in the Eastern Province of Zambia, and assess variability in burn patterns as a 

function of land cover, topography and settlement density.   
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Mapping Seasonal Fire Progression:  Automatic Training Signature 

Selection for Multitemporal Mapping 

 

2.1 ABSTRACT  

The need to monitor the occurrence of fire has prompted a wide range of burned area mapping 

methods. Single and bitemporal techniques have commonly been applied. However, multitemporal 

analysis approaches present the opportunity for generation of spatio-temporal burn information in 

a more efficient way. This paper presents an approach for spatio-temporal mapping of seasonally 

burned areas. The method relies on the distinctive temporal signatures exhibited by various burn 

events over a fire season to map burned areas. The spectral-temporal signatures are automatically 

selected from sampled spectral index data using fuzzy clustering by imposing minimum 

membership and cluster purity criteria in the selection process and then applied to a Random Forest 

classifier to derive the required spatio-temporal burned area information. The method was assessed 

for the 2009 and 2012 fire seasons in eastern Zambia (~8000km2) using 8 Landsat images in each 

case. The assessment was conducted over two sites with different land cover distributions to test 

performance in different landscapes. To account for the random nature of clustering in the training 

sample selection step, 30 runs were carried out by modifying the seed value of the random process 

and results averaged to get the final accuracy measures. The use of multiple runs enabled 

identification of the general trends in overall accuracy with respect to the variation in number of 

clusters and number of training samples selected. Using over 1000 validation points for each year, 

we obtained overall accuracies above 92%. While the number of clusters and training samples 

varied in the 30 runs, the absolute difference in accuracies were not large and do not detract from 

the overall good performance of the method. The presented approach is data driven and automatic 

which has the potential to support fire monitoring programs to generate more detailed burned area 

inventories than are currently possible from coarse datasets such as the MODIS burned area 

product.  

Keywords: Fire, Burned area mapping, Abrupt change, Fuzzy c-means, Landsat, Random Forest. 
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2.2 INTRODUCTION 

Globally, fire is a widespread seasonal phenomenon that has local to regional impacts on 

ecological and atmospheric processes (Lhermitte et al., 2011; Roy et al., 2002). Because fire 

impacts can vary with time and space, mapping spatio-temporal fire occurrence is a vital resource 

for understanding the wide range of fire related impacts (Lhermitte et al., 2011). Information from 

burn maps can support various environmental studies including atmospheric emission estimation 

(Smith et al., 2007), and localizing fire related impacts such as erosion and surface runoff, plant 

mortality, vegetation succession and property loss (Doerr et al., 2006; Flasse et al., 2004).  Burned 

area information can also be used to guide fire and ecosystem management planning (Geraci et al., 

2009; Goldammer and De Ronde, 2004). Satellite remote sensing presents the only practical means 

of monitoring fire occurrence over large areas (Roy et al., 2002) and with regular and repeated 

observations, satellite sensors present a cost effective and efficient way of collecting consistent 

data on fire occurrence (Flasse et al., 2004; Kennedy et al., 2007).  

Coarse spatial resolution data from sensors such as Advanced Very High Resolution Radiometer 

(AVHRR), Moderate Resolution Imaging Spectro-radiometer (MODIS) and SPOT VGT have 

been extensively used to generate burned area information (Boschetti et al., 2009).  The higher 

temporal sampling capability of these sensors systems enables the characterization of the daily and 

seasonal patterns of burning at regional and global level which is useful in the study of fire patterns 

and their inter-relation with environmental and anthropogenic factors at regional levels (Archibald 

et al., 2010; Pricope and Binford, 2012). However, such coarse data are limited for more detailed 

local mapping of fire, especially in fragmented landscapes were fire sizes tend to be small (Kull 

and Laris, 2009; Sá et al., 2007). To meet this need, higher spatial resolution data such as Landsat 

are increasingly being used to generate burned area maps (French et al., 2008; Lentile et al., 2006). 

These data provide a more detailed view of the landscape thus burn estimates or any dependent 

estimates such as carbon emissions are more reliable than what is obtained using coarse resolution 

imagery (Eva and Lambin, 1998; Pereira, 2003). The now free archive of Landsat data can also 

support seasonal multitemporal burn mapping to derive adequate spatio-temporal information 

which would enable a better linkage between fire disturbance and pertinent applications such as 

fire management, ecosystem impacts and carbon emissions assessments (Eva and Lambin, 1998; 

Korontzi et al., 2003).   
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Eastern Zambia has very distinct rainy and dry seasons, with 850 - 1050 mm rainfall between 

November and April, and less than 10mm in the entire dry season of May to October (Celis et al., 

1991).   Landscape composition varies from wide extents of woodland and grassland to more 

fragmented landscapes dominated by cropland, scrub and fallow. As the vegetation dries up 

following the last rainfalls of April, landscape fires become a common occurrence in the fire 

season, mainly June to November.  Since there are no lightning storms during the dry season, fires 

can be solely attributed to anthropogenic origins.  Fires are started for a wide variety of reasons:  

to clear crop residue and weeds from fields, to prepare new forest land for cultivation, to hunt 

small game, and to clear undergrowth for safety along forest paths.  Such fires frequently burn out 

of control and cover large areas due to the dry conditions (Frost, 1999; Goldammer et al., 2001).  

Burned areas remain in a charred state until the advent of significant rains in December when 

vegetation re-emerges and covers the landscape in green.  Much of the landscape is thus touched 

by fire every year as a seasonally re-occurring event. Given the extensive burning, burned area 

mapping techniques are needed that can be effective across the broad range of land cover types 

and scales. It is also critical that the derived burn area information provide information on the 

temporal patterns of burning since fire intensity (and thus fire impacts) can vary during the fire 

season (Laris, 2005). Such temporal information on burned areas in various land cover types could 

inform current Reducing Emissions from Deforestation and Forest Degradation (REDD+) 

programs (Vinya et al., 2011) and contribute to local scale fire inventory and general fire 

management.  

Burned areas are detected based on the post-fire changes that result in the removal of vegetation 

and the deposition of charcoal (Flasse et al., 2004). These changes cause spectral contrasts between 

burned areas and unburned areas in the different portions of the electromagnetic spectrum which 

enable multispectral remote sensing techniques to be applied (Laris, 2005; Lentile et al., 2006). A 

variety of burn mapping methods using Landsat data exist, ranging from single-image post-fire 

classification (Koutsias and Karteris, 2000) to bitemporal change detection approaches based on 

image thresholding, principal components and spectral mixture analyses (Hudak et al., 1998; 

Loboda et al., 2007; Smith et al., 2007). While single and bitemporal methods have been 

successfully applied to map burned areas, they are not efficient for deriving spatio-temporal 

information especially for longer image sequences. Separate classification of each image or 

consecutive image pairs in the series tend to suffer from accumulation of error as overall accuracy 
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is the product of the component accuracies (Bovolo et al., 2012; Demir et al., 2012). The detection 

of  burned areas using one or two images can also be problematic due to the wide spectral and 

spatial variability of burned areas caused by differences in fire severity, burn completeness, land 

cover type, phenology and the persistence of the burn signal since fire (Bastarrika et al., 2011; 

Pereira, 2003; Roy and Landmann, 2005). Burned areas tend to be confused with spectrally similar 

land covers such as wetlands or with phenological changes leading to less reliable burn 

information. Further, the need to determine an optimal threshold in some bitemporal methods and 

the requirement of near anniversary imagery to avoid phenological influences also places further 

constraints especially if seasonal burn information is sought (Lhermitte et al., 2011; Loboda et al., 

2007).   

Multitemporal methods, on the other hand, have been found to provide a more efficient way of 

deriving spatio-temporal burn information as multiple images can be analyzed together (Huang et 

al., 2010). Multitemporal analysis can provide unambiguous detection of burned areas as tracking 

through time provides sufficient information for classification.  Further, we are freed from the 

constraint of finding suitable anniversary imagery (Coppin et al., 2004).   The use of more than 

two images for monitoring also affords the ability to identify a greater range of processes of 

landscape change, including rates and dynamics (Gillanders et al., 2008) which makes 

multitemporal analysis well suited for dynamic events such as fire.   Some studies have attempted 

to generate seasonal burn information using a series of images. However, none has taken advantage 

of the full temporal information that multitemporal data provides. Laris (2005) used 5 Landsat 

ETM+ images over the season in Mali and applied the ISODATA algorithm to cluster each image.  

Clusters were then visually interpreted for each image and classified as burned or unburned. The 

overall seasonal burn map was obtained by overlaying the individual classifications. Because of 

the separate classifications, this approach can suffer from accumulation of error as highlighted 

earlier. Bastarrika et al. (2011) used a two-step process aimed at minimizing omission and 

commission errors in which highly probable burn samples were first selected from a database then 

burn patches were grown using a hybrid contextual algorithm based on logistic regression analysis. 

Separate classifications of burn samples were also done using rules based on post fire data and 

bitemporal changes between pre-fire and post-fire images. The approach was tested over a wide 

range of areas with varying levels of success.  
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To capitalize on the growing availability of the multitemporal Landsat data, the objective of this 

study was to develop an effective method for mapping the spatio-temporal progression of seasonal 

landscape fires. Rather than carry out separate image analyses, the method relies on distinctive 

temporal signatures exhibited by various burn events over a fire season to map burned areas in a 

supervised but automatic way. The spectral-temporal signatures are automatically selected using 

fuzzy clustering by imposing minimum membership and cluster purity criteria in the selection 

process and then applied to a Random Forest classifier (Breiman, 2001) to derive the required 

spatio-temporal burned area information. We demonstrate and evaluate the performance of this 

approach over two sites, with different land cover patterns, in eastern Zambia.  

2.3 METHODS 

 Study area  

The study area covers about 8000 km2 stretching between Magodi and Kazembe chiefdoms in 

eastern Zambia. The area is characterized by three main physiographic regions with the plateau 

region (elevation ~1100 m) on the east bordering Malawi, the Luangwa valley floor (elevation 

~700 m) to the west, and a hilly transition zone between. The Plateau region is highly settled with 

landscapes characterized mainly by a patchwork of cropland, forest (mostly open forests or 

woodland), wetlands and fallow land (Celis et al., 1991; Her and Heatwole, 2008). The Luangwa 

valley floor is predominantly light forests and grassland and most of the area in our study extent 

is designated as a Game Management Area which serves as a buffer around national game parks. 

Settlements and farming activities are mainly confined to areas with alluvial soils that are found 

along the tributaries of the Luangwa River. Seasonal rainfall occurs between November and April, 

with May to November typically having little to no rain.   Daily temperatures range from 4-35˚C 

(ECZ, 2001).  
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Figure 2.1: Study area in eastern Zambia. The top map highlights the general location of the study area 

while the bottom map shows a detailed view including the two sub study regions, the Plateau and Valley. 

A 432 false color Landsat image backdrop is used to provide a sense of the differences in land cover 

between plateau, hilly transition, and valley regions 
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 Input data and preprocessing 

Landsat data (path 169 row 68) for 2009 and 2012 covering the fire season (June – Nov) were 

downloaded from the USGS Global Visualization Viewer (GLOVIS) website. All images were 

Standard Terrain Corrected (Level 1T) which involves systematic radiometric and geometric 

corrections using ground control points and a Digital Elevation Model (DEM) for topographic 

accuracy (USGS, 2014). We selected fairly clear scenes (<15% cloud cover over study site) from 

available Landsat 5 and Landsat 7 scenes from May to November in each year. Scenes from May 

were included to provide a pre-fire reference for the burn mapping analysis. The images acquired 

for this study are listed in Table 2.1. In addition, high-resolution GeoEye-1, Pleiades and Google 

Earth Historical imagery were used as validation data. 

Table 2.1: Landsat data (path 169 row 68) for 2009 and 2012 used in the analysis 

2009 2012 

Date of acquisition Julian day Sensor Date of acquisition Julian day Sensor 

19-May 139 TM 19-May 140 ETM+ 

04-Jun 155 TM 06-Jul 188 ETM+ 

06-Jul 187 TM 22-Jul 204 ETM+ 

14-Jul 195 ETM+ 07-Aug 220 ETM+ 

15-Aug 227 ETM+ 23-Aug 236 ETM+ 

16-Sep 259 ETM+ 24-Sep 268 ETM+ 

02-Oct 275 ETM+ 10-Oct 284 ETM+ 

03-Nov 307 ETM+ 11-Nov 316 ETM+ 

The detectability of burned areas can be influenced by the spatial pattern of burned areas and the 

degree of spectral contrast with the background. This in turn is dependent on the land cover 

distribution and other factors such as the time since fire, weather conditions, and vegetation 

recovery rate (Pereira, 2003; Sá et al., 2007; Silva et al., 2005). Given the differences in land cover 

distribution between the plateau and the valley regions in the study area we considered smaller 

separate areas of interest as a way of assessing the performance of the algorithm to different land 

cover conditions (Figure 2.1). Landsat data from 2009 was used for a study area in the valley 

landscape while 2012 data was used for analysis in the plateau region.   

Landsat data were converted to surface reflectance using the Landsat Ecosystem Disturbance 

Adaptive Processing System (LEDAPS) (Masek et al., 2006). Procedures in Jones ( 2013) were 
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used to extract cloud, shadow and Landsat 7 ETM+ scan line error gap information from each 

image. A composite mask was then applied to each image to exclude these pixels from further 

analysis.  

 Calculation of MIRBI data 

The observation of broad spectral changes associated with burning has motivated the use of various 

spectral indices (Koutsias et al., 1999; Lentile et al., 2006). Spectral indices are widely used due 

to conceptual simplicity and the reduced data dimensionality they afford (Veraverbeke et al., 2011; 

Verstraete and Pinty, 1996). The performance of many spectral indices varies with ecoregion and 

vegetation type (Epting et al., 2005; Harris et al., 2011). We used the Mid-Infrared Bispectral Index 

(MIRBI) because it demonstrated superior performance in discriminating burned from unburned 

areas over similar spectral indices such as normalized burn ratio (NBR) in savanna environments 

over Botswana and Zambia (Smith et al., 2007). Schepers et al (2014) evaluated a number of 

spectral indices for their capacity to discriminate burned from unburned areas and also reported 

highest correlations with burned areas for MIRBI. MIRBI has also been shown to discriminate 

burned from unburned even longer times since fire (Mohler and Goodin, 2013). 

The MIRBI index is based on the concurrent increase in short-wave infrared reflectance after as 

fire which highly sensitive to spectral changes due to burning and relatively insensitive to intrinsic 

variability such as vegetation type, the surface heterogeneity and temporal-spectral evolution of 

burned surfaces (Trigg and Flasse, 2001). After a fire, MIRBI index values abruptly increase 

(Figure 2.2), and the good discriminative power is partly attributed to use of data from the mid-

infrared region which is highly responsive to burning (Trigg and Flasse, 2001).  A number of 

studies have assessed the effectiveness of various spectral indices for burned area mapping  and 

spectral indices that use information from the near-infrared (NIR), the short-wave infrared (SWIR) 

or thermal-infrared (TIR) bands have been reported to provide greater discrimination between 

burned and non-burned areas compared to two-dimensional indices that only use visible and NIR 

bands (Holden et al., 2005; Pereira, 2003; Smith et al., 2007; Veraverbeke et al., 2011).  

The MIRBI index was calculated per pixel for each image in the sequence as:  

𝑀𝐼𝑅𝐵𝐼 = 10𝜌𝑆𝑊𝐼𝑅 − 9.8𝜌𝐿𝑁𝐼𝑅 + 2.0 Equation 2.1 
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where ρSWIR is the shortwave infrared reflectance (band 7 in Landsat 7) and ρLNIR is the second 

shortwave infrared reflectance (band 5 in Landsat 5 and 7) (Smith et al., 2007; Trigg and Flasse, 

2001). MIRBI is not a normalized index with known minimum and maximum values as the 

normalized difference vegetative index (NDVI), thus can have a wide range of values, typically 

300-4000 in this study and negative values are possible. For the analysis, MIRBI image data for 

each year (or fire season) were stacked into a multitemporal dataset.  

 Algorithm development for training sample selection 

Overview 

The response of vegetated land cover to fire has been a focus of many studies thus there is a good 

body of knowledge on the associated spectral signatures (Pereira et al., 1999; Quintano et al., 

2010). The removal of vegetation, alteration of vegetation structure, and deposition of charcoal 

and ash depending on burn completeness results in spectral changes which can be used to 

differentiate burned from unburned areas (Flasse et al., 2004; Smith et al., 2007). In addition, the 

persistence of the burn signal over time provides useful distinctive temporal profiles for 

multitemporal burn mapping (Pereira, 2003). Ancillary structural information associated with 

these profiles such as gradients and change points (location of abrupt changes in a sequence) can 

be used to uniquely define fire events by date. Figure 2.2 shows a sample temporal spectral index 

plot of the MIRBI index over the 2009 fire season in eastern Zambia. Two fire events, one prior 

to August 15 and the other prior to August 31, can be inferred by the abrupt change in profile 

values while the unburned samples show little or gradual change in MIRBI values. 

By using these properties we can select representative temporal training samples from a 

multitemporal dataset. To facilitate the selection of training samples, the data are first clustered 

using an iterative fuzzy clustering process. Training samples are selected from generated clusters 

and are uniquely labelled based on structural information. The vagueness or non-crisp nature of 

natural landscapes (Chen et al., 2010; Shih and Chen, 1994) can present challenges for clustering. 

By allowing different degrees of membership to all clusters, fuzzy clustering enables selection of 

samples with high membership which contributes to high quality of training samples. The samples 

selected from the clustering are then available to train a classification model, and we used Random 

Forests (RF) classifier for this purpose. Given the uncertainty intrinsic to clustering, the 

performance of the method was assessed over a number of realizations by controlling seed values 
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of the random process. Multiple realizations enabled assessment of the variation in the number of 

clusters and its impact on training sample selection and overall classification accuracy. From these 

results we can identify general trends in overall classification accuracy by plotting the number of 

clusters against number of samples selected.  

 

Figure 2.2: Progression of MIRBI values through the fire season in eastern Zambia for 9 pixels sampled 

from forest, wetland and cropland. Burned profiles have a step function pattern with lower MIRBI values 

before a fire and higher ones afterward while unburned profiles show a near flat or slowly decreasing trend. 

Data sampling for training sample selection 

Given the large increase in the MIRBI index after a fire, an approximate burn map can be obtained 

by thresholding differenced MIRBI data, where pixels above the set threshold are burn candidates 

and those below are unburned candidates. A suitable threshold can be found by examining 

differenced MIRBI values of known burned areas and here a threshold of 300 was used. To capture 

burn samples by date, differences are computed consecutively between two images and any pixels 

meeting the set threshold for a particular image pair form a separate stratum. Equal random 

samples are then selected from each of the burn candidate strata while four times that number is 

selected from unburned candidates. We select a higher number for the unburned candidate 

category to increase the chance of selecting actual unburned samples as some of the pixels below 
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the threshold may still be burned. In this way all burn events have a greater chance of being part 

of the sample which would not be guaranteed by a simple random sampling of the data.  

Multitemporal clustering of sampled MIRBI data 

Fuzzy c-means (FCM) (Bezdek et al., 1984), a well-known fuzzy clustering algorithm is used for 

clustering the sampled multitemporal MIRBI data. Fuzzy clustering allows different degrees of 

membership to all clusters which makes it well suited to handle the non-crisp nature of natural 

landscapes and the wide spectral variability associated with burned areas (Chen et al., 2010; Shih 

and Chen, 1994).  By allowing varying grades of membership, it allows selection of samples that 

are more representative of a particular cluster thus high quality training data can be selected. It is 

also more efficient at dealing with noisy data than non-fuzzy algorithms such as k-means 

(Schwämmle and Jensen, 2010).  

Setting optimal values for the number of clusters and the fuzzy parameter is critical to the 

application of fuzzy c-means. The use of non-optimal values for these parameters often leads to 

poorly formed clusters where potentially real clusters are lost or random noise is retained as real 

clusters (Futschik and Carlisle, 2005; Schwämmle and Jensen, 2010). Following Futschik and 

Carlisle (2005), an estimate of  number of clusters is obtained by iterative clustering of a sample 

drawn from the main dataset in which the number of clusters is gradually incremented after each 

run until one or more empty clusters are formed. The number of clusters used just before an empty 

cluster is detected is taken as the best estimate for the optimal number of clusters. The idea of an 

empty cluster is used because for fuzzy cluster analysis a threshold or α-cut, such as 0.5,  is usually 

specified to determine to which clusters objects maximally belong (Pedrycz, 2007; Schwämmle 

and Jensen, 2010). Thus any cluster comprising only objects with membership values less than a 

set threshold is considered empty or random – resulting from noise in the data. An optimal number 

of clusters should generate a set of clusters each containing a least one object with  a membership 

meeting the set threshold (Futschik and Carlisle, 2005).  

The fuzzy parameter also has to be carefully selected. The fuzzy parameter determines the level of 

fuzziness in the clustering thus influences the impact of noise on the clustering (Futschik and 

Carlisle, 2005). High values of the fuzzy parameter usually lead to low membership values, so a 

compromise value must be set so the fuzzy aspect of the clustering is maintained while real clusters 

are composed of samples with high membership values. It is desirable to have a fuzzy parameter 
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that results in membership values greater than 0.5 to weed out noisy samples (Schwämmle and 

Jensen, 2010). Thus, the fuzzy parameter was determined empirically by making a few clustering 

runs at different values of the parameter on known number of clusters until membership values in 

known clusters were greater than 0.5. Once determined, the fuzzy parameter was kept constant for 

all clustering runs.  

To minimize impact of outlying observations and scale biases at different dates (Pedrycz, 2007), 

the MIRBI data was first normalized using the overall median and median standard deviation 

values for the whole dataset to give a form of a z-score. Then clustering of the data followed in a 

two-step procedure. First, the dataset is repeatedly clustered retaining only clusters and pixels per 

cluster that meet a set membership threshold. The Euclidean distance is used as a (dis)similarity 

measure between cluster centers and samples. The samples that do not meet the set threshold are 

then re-clustered separately.  Each clustering run updates earlier centroid and fuzzy partition 

matrices by appending the new centroid and fuzzy partition. This is repeated until a stopping 

criterion is met: a set maximum number of iterations, or when improvement in the objective 

function is less than a specified tolerance or the proportion of data for a run falls below 10% of 

original data. The 10% criterion is applied to prevent clustering noisy data which most likely 

remains after real clusters have been removed in preceding runs. Second, the final centroid and 

fuzzy matrix -a summation of all clustering runs – is used as input for a refining step. This step 

allows for a holistic adjustment of clusters which is possible in the first step since each clustering 

run uses a different dataset. Membership thresholds are again imposed on clusters to realize the 

final clustering. Figure 2.3 shows the process flowchart. 

Selecting and labeling training profiles per cluster 

Training samples are collected per cluster from the final clustering (OCf, OUf in Figure 2.3). It is 

worth noting that even after repeated clustering and refinement some clusters may still be poorly 

formed because of the impact of noise in the data. Typically, a valid cluster is compact (members 

close to each other) and well separated from other clusters (Halkidi et al., 2001; Tan et al., 2005a). 

To ensure that samples are collected only from valid clusters we impose a minimum per-cluster 

purity criterion and samples are only selected from clusters with a set minimum level of purity.  
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Figure 2.3:  Multitemporal clustering using repeated fuzzy c-means. The clustering process starts with input 

D, initial estimated cluster centers iC and fuzzy partition iU. It then re-clusters any low-membership data d 

to produce clusters oc and partition ou which are then appended to results from previous clustering runs. If 

the low-membership condition is not met, oC and oU are retained and used as starting estimates for the 

refining step to obtain oCf and oUf as final Clusters and fuzzy partition respectively. 

 

Cluster purity is one of the many cluster validity measures that can be used to assess the quality of 

clusters in a clustering process. An external cluster validity metric measures the extent to which 

cluster labels match externally supplied class labels, which enables selection of clusters that match 
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reference characteristics (Halkidi et al., 2001). After Rendón et al (2011), per-cluster purity P of a 

cluster vk is defined as:  

𝑃 = max
𝑗

(𝑣𝑘 ∩ 𝑐𝑗) × 100 𝑁⁄   Equation 2.2 

where cj is a instance in a set of classes (c1,c2,…cj) and N is the total number of  samples per cluster. 

Expressed as a percentage, high purity values such as 90% represent a good match with reference 

information (high validity) and are preferable. In a fuzzy setup the clustering must be defuzzified 

in order to get the total number of samples per cluster (N). This is done by considering only samples 

that meet the membership threshold in the calculation.  

Class label information is derived by analyzing change points in the temporal profiles of the data. 

For each temporal profile successive gradient values are calculated by dividing successive MIRBI 

differences by number of days between the data points. Typically, successive gradient values for 

unburned profiles fall on or are close to a (zero) horizontal line while for a burned profile there is 

a noticeable outlier corresponding to the fire event while the rest of the values fall close to the 

horizontal line as shown in Figure 2.4 a) and b). Therefore, the labeling of the profiles is treated 

as an outlier detection problem - detection of an outlier signals a burned profile with location of 

the outlier in the sequence indicating the approximate burn date while non-detection signifies an 

unburned profile. Note that an actual burn date cannot be determined from 16-day Landsat cycles 

but is understood to fall between imagery dates that exhibit the point of abrupt change. The Dixon’s 

Q-test (Dean and Dixon, 1951) – an outlier detection test for univariate data, is applied to detect 

outliers at a set confidence level, typically  95%. The Dixon’s Q-test is performed by taking the 

difference of the suspected value and the value nearest to it, and dividing the difference by the 

range of the data. If the difference is larger than the tabulated value, the null hypothesis is rejected 

and the associated value is flagged as an outlier. Since burns are only associated with positive 

outliers, the detected outlier is further tested to exclude negative outliers which can occur in 

unburned profiles. This is done by checking if the detected outlier is below or above the mean. 

Once a cluster has the required purity level, samples are labeled as ‘Burned by’ and the 

approximate burn date appended (e.g. ‘Burned by Aug15’ as in Figure 2.4 a. and b) for pixels 

burned prior to August 15. Unburned samples as in Figure 2.4 c) and d), are labelled ‘Unburned’.  
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a) Burned pixel profile 

 

b) Gradient data for burned pixel 

 

c) Unburned pixel profile 

 

d) Gradient data for unburned pixel 

Figure 2.4: Structural characterization of pixel profiles: a) An example of a burned pixel profile with a fire 

event between Julian days 227 and 259 and b) Successive gradient values showing a significant departure 

from the horizontal line at 259 (filled marker) than at other points. c) An unburned pixel profile between 

days 140-310 and d) Gradient values for unburned pixel showing small departures from the horizontal line 

indicating no outliers.      

 Random Forest classification model 

RF is an ensemble method for classification and regression which aggregates multiple “weak 

classifiers” to form a stronger classifier with higher predictive power than individual weak 

classifiers. RF uses a decision tree as a weak learner and fits a number of trees on various random 

sub-samples of the dataset. Classification is then based on majority vote of all built decision trees 

(Breiman, 2001; Tan et al., 2005b). RF makes no assumptions about the statistical distribution of 

data and on relationships between dependent and independent variables which makes it effective 
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at capturing the underlying structure of the data and it provides consistently high classification 

accuracies (Roy et al., 2010; Tan et al., 2005b). RF is also desirable because out-of-bag (OOB) 

samples - samples not used to build a particular decision tree -  can be used to calculate an unbiased 

error rate and variable importance which avoids the requirement of a test set or cross-validation to 

estimate generalization error (Breiman, 2001; Prasad et al., 2006).  

In training a RF model, dependent and independent variables must be selected and several 

parameters specified such as the number of decision trees to build, and parameters related to 

decision tree formation such the split criterion, random sampling and variable importance (Tan et 

al., 2005b). Most of these parameters can be run at their default levels except the number of 

decision trees. 

 Assessment 

Parameters for training sample selection  

The selection of training samples was based on parameters shown in Table 2.2. The fuzzy factor 

and the membership thresholds were determined as described previously. The sample sizes were 

determined based on success in trial runs. 

Table 2.2: Parameter settings for training sample selection 

Parameter setting Plateau area (2009 data) Valley area (2012 data) 

Fuzzy factor 1.6 1.3 

Membership threshold 0.5 0.5 

Per-cluster purity threshold 85% 85% 

Sample size for training sample selection 5500 6600 

Training the RF model 

To assess the validity of the selected training samples, we used them to train a random forest (RF) 

model which in turn was used to classify known burn samples. The premise here is that correctly 

selected training samples should give accurate prediction of known burn samples. To train the RF 

model the following classification features were used: 

a) 8 features representing the normalized MIRBI pixel profile data for each image (see section 

0 for details on normalization). 

b) 3 features for the minimum, maximum and mean values of normalized MIRBI pixel data. 
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c) 7 features for the pixel gradient data, 𝒈 calculated as: 

                            𝑔 = ∆𝑀𝐼𝑅𝐵𝐼 ∆𝑡⁄                                                 Equation 2.3  

where ∆𝑀𝐼𝑅𝐵𝐼 is the difference in MIRBI values between any two successive image     dates 

and ∆𝑡 is the duration in days between the two images. 

d) 3 features for the minimum, maximum and mean values of pixel gradient data. 

In all 21 classification features were used for an 8-image dataset with 200 trees built for the RF 

model. The number of trees was determined based on preliminary analyses. OOB accuracy from 

the trained model was used to assess generalization error and to check for consistency of the 

selected training data – high overall OOB accuracy (>90) gives high confidence in selected training 

samples and the built classification model. The model trained in this step is then used to classify 

the reference burn data. 

To gain understanding of the classification features that contribute more to the burn classification, 

we assessed variable importance using the OOB permuted variable delta error. The importance for 

a particular variable in the classification is measured by the increase in prediction error when the 

values of that variable are permuted across the out-of-bag observations. It is calculated over the 

entire ensemble as the normalized mean of the increase in prediction error from individual trees 

(Breiman, 2001; MathWorks Inc, 2014).  

Classification accuracy and impact of cluster number variability 

Accuracy assessment of the classified data was based on reference data from high spatial resolution 

imagery: GeoEye-1 (2m multispectral ground sample distance, 19 July 2012), Pleiades (2m ground 

sample distance, 18 October 2012) and Google Earth historical imagery (24 September 2009). The 

high resolution data provided detailed visual information on burn and unburned condition while 

the temporal or dating reference information was derived by visual interpretation of the Landsat 

sequence data itself. The interpretation of the Landsat data was enhanced by using false-color 4-

3-2 band combinations (burned areas appear dark) which are effective at discriminating burned 

from unburned areas (Pereira et al., 1999). Differenced MIRBI images between successive dates, 

with large increases in the MIRBI index indicative of fire, were also incorporated to aid the 

interpretation. 

For each of the two datasets (2009 and 2012), a stratified random sampling approach was used to 

select pixels for validation.  To ensure the validation sample contained all burn events and covered 
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all land covers, strata were created by combining 2010 land cover set obtained from Regional 

Centre for Mapping of Resources for Development (RCMRD)1 with an approximate burn map 

(See section 0). The classification scheme for the land cover data comprised six land cover classes: 

forest, grassland, cropland, settlements, wetland and other. The overall accuracy of the land cover 

map is 80.4 % (Oduor, 2013). For our analysis, the wetland class was aggregated with grassland, 

other and settlement classes with cropland to get three generalized classes of forestland, grassland 

and cropland. Because of the significant effort involved in interpreting validation samples only 15-

50 samples were selected for each stratum yet the total number per burn class was adequate to 

make it statistically representative following recommendations by Congalton (1991). Each sample 

was visually analyzed to determine the appropriate burn condition and burn date. A summary of 

validation data collected for the two datasets is shown in Table 2.3 and Table 2.4. 

The performance of the overall procedure was assessed using error matrices between reference 

and predicted burn classes from which the overall, producer and user accuracy measures were 

derived. The Kappa statistic (Cohen, 1960) was also calculated to determine the level of agreement 

between the map and the reference information. To account for the random nature of the training, 

the accuracy assessment was based on multiple realizations of the error matrices. Different 

realizations of the error matrices can be obtained by varying the seed value of the random number 

generator which controls the initialization of the cluster process. A random sample of 30 seed 

values from a pool of 1000 generated random numbers was selected and separate runs were made 

with each seed value. Accuracy measures were then determined using mean values of the 30 

realizations. The multiple realizations also provided a way of assessing the uncertainty of the 

method which is not possible with one error matrix. Other aspects of the procedure such as the 

variation of number of clusters and its relationship to the number of training samples selected and 

overall classification  accuracy were also investigated using these multiple results. To assess the 

relationships, the number of training samples and the overall accuracy were each fitted against the 

number of clusters and testing was done on the estimated gradient parameters. 

                                                 
11 RCMRD established in Nairobi – Kenya in 1975 under the auspices of the United Nations Economic 

Commission for Africa (UNECA) and the then Organization of African Unity (OAU), promotes sustainable 
development through generation, application and dissemination of Geo-Information and allied ICT services 
and products in the Member States including Zambia. 
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Table 2.3: Multitemporal burn validation samples by land cover type for 2009 

 
Forest Grassland Cropland Total 

Unburned 46 44 46 136 

Burned by Jun04 17 54 4 75 

Burned by Jul06 46 46 44 136 

Burned by Jul14 46 49 46 141 

Burned by Aug15 46 47 41 134 

Burned by Sep16 50 50 44 144 

Burned by Oct02 50 50 44 144 

Burned by Nov03 45 47 47 139 

Total 346 387 316 1049 

 

Table 2.4: Multitemporal burn validation samples by land cover type for 2012 

 Forest Grassland Cropland Total 

Unburned 65 33 36 134 

Burned by Jul06 20 21 25 66 

Burned by Jul22 42 42 49 133 

Burned by Aug07 52 49 49 150 

Burned by Aug23 49 55 49 153 

Burned by Sep24 47 51 49 147 

Burned by Oct10 48 47 48 143 

Burned by Nov11 33 25 27 85 

Total 356 323 332 1011 

2.4 RESULTS 

 Selection of training profiles and model training 

With 8 scenes for each of 2009 and 2012, we defined eight (8) burn classes from generated clusters. 

Table 2.5 gives the breakdown of average number of training samples selected for each pattern 

over the 30 realizations. The higher numbers of training samples per class for the 2012 dataset are 

reflective of the larger sample 6600 from which they are selected compared to 5500 for the 2009 

dataset. The training profiles corresponding to the eight burn classes for the 2009 dataset are shown 

in Figure 2.5. Profiles obtained for the 2012 dataset are similar, so are not shown here. Notice the 

abrupt increase in MIRBI values in profiles corresponding to burned areas and note the differences 
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in time of these points of abrupt change. These differences make it possible to map the progression 

of burned areas in the fire season. 

Table 2.5: Summary of the average number of training samples selected based on 30 realizations  

2009 2012 

Class Mean Min Max STD Class Mean Min Max STD 

Burned by Aug15 104.1 72 138 12.8 Burned by Aug07 275.6 234 320 22.5 

Burned by Jul06 99.3 38 120 18.2 Burned by Aug23 299.1 267 326 15.9 

Burned by Jul14 111.6 78 139 15.7 Burned by Jul06 154.3 118 179 14.4 

Burned by Jun04 89.9 70 112 9.4 Burned by Jul22 216.2 185 234 11.2 

Burned by Nov03 129.0 83 155 17.5 Burned by Nov11 223.3 150 271 30.6 

Burned by Oct02 129.9 79 150 16.0 Burned by Oct10 253.6 228 275 10.5 

Burned by Sep16 112.2 86 138 12.9 Burned by Sep24 353.3 330 373 12.5 

Unburned 74.3 30 119 20.2 Unburned 298.9 258 345 22.6 

 

The trained RF models for 2009 and 2012 had overall OOB accuracy over 99% which shows high 

consistence among the selected training samples. Figure 2.6 and Figure 2.7 show the variable 

importance measures for all the variables for each model. The plots shows that features based on 

successive gradients were more important for the classification of different burn events than 

features based on normalized MIRBI. All the gradient features had high variable importance scores 

except gradient Jun04, minimum, mean and maximum gradient for 2009. Similar results were 

obtained for 2012 though the maximum gradient was more important compared to the 2009 case. 

The high ranking of most gradient features is reflective of the unique points of abrupt change for 

the burn different classes which reinforces the basis selected for labeling the training data (see 

section 0).  
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Figure 2.5:  Temporal profiles corresponding to training classes for the 2009 dataset. Clusters centers are 

represented by the thick dashed line. Abrupt increases in the profiles indicate a response to burning in the 

interval since the previous image except for the unburned class. 

 

a) Unburned class b) Burned by Jun04 

c) Burned by Jul06 d) Burned by Jul14 

e) Burned by Aug15 f) Burned by Sep16 

g) Burned by Oct02 h) Burned by Nov03 
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Figure 2.6:  Variable importance for 2009 RF model. The higher the variable importance score the more 

important the variable is for the classification. 

 

 

Figure 2.7: Variable importance for 2012 RF model. The higher the variable importance score the more 

important the variable is for the classification. 
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 Accuracy assessment 

Error matrices generated by comparing the validation data with classification results for the two 

datasets are given in Table 2.7 and Table 2.8. Overall accuracy obtained was 97.3±0.6 % for 2009 

data and 92.6±1.6 % for 2012 data. Class specific accuracies are represented by user and producer 

accuracies with results from the 2009 dataset having higher accuracy values than those from 2012 

dataset. On average 97.1% user (UA) and producer accuracies (PA) were achieved for the 2009 

dataset compared to 92.1% UA and 92.5% PA for the 2012 dataset. Kappa statistics for the two 

datasets were 0.972 and 0.912 for 2009 and 2012 respectively showing a high level of agreement 

between predicted and reference data. 

Lower omission and commission errors (0-4 %) were observed in the 2009 dataset than in the 2012 

(1-20%). It is not clear why this was the case. Higher misclassification is especially observed for 

the 2012 dataset in the unburned class, the Burned by Jul06 and Burned by Nov11 with a higher 

number of unburned samples committed to the other two classes. The commission of unburned 

samples to the other two could be explained by their high similarity in the temporal profiles of the 

three classes Figure 2.5. Classification features, other than the ones used here such as texture might 

provide improved discrimination between these classes. A number of studies have reported 

improved classification by texture information or other spatially oriented features (Gitas et al., 

2004; Mitri and Gitas, 2004; Polychronaki and Gitas, 2012). 

The distribution of error by land cover shows better performance for samples in the forest land 

cover class than in grassland and cropland areas. Table 2.6 show the rate of misclassification in 

the three land cover classes based on the 30 runs. The distribution of error could be attributed to 

differences in the burn signal in terms of magnitude and signal persistence in the three land cover 

types - forested areas tend to show larger responses to fire and the signal persists for a longer time 

than in grassland and cropland areas(Pereira, 2003). Results for 2009 showed lower number of 

misclassifications by land cover than results from 2012. Given the difference in land cover 

distribution between the two regions, this may suggest that spatial patterns influence the 

performance of the algorithm (Silva et al., 2005).  
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Table 2.6: Burn misclassifications by land cover based on the 30 runs. This analysis only took into account 

unique incidences, thus pixels misclassified multiple times in the 30 runs was counted only once. 

Value  
Total sampled 

No. associated with misclassified 

burn validation samples 
Percentage of total 

2009 

Cropland  316 36 11.4 

Grassland  387 32 8.3 

Forest 346 20 5.8 

2012 

Cropland  332 88 26.5 

Grassland  323 66 20.4 

Forest 356 84 23.6 

 Sensitivity to randomness of clustering process 

The results from the 30 realizations showed that the number of clusters obtained can vary with 

random seed used. The number of clusters ranged from 53 to 80 for 2009 and 144 to 184 for 2012 

data. The mean values were 63.7 with standard deviation of 6.7 and 170.3 and a standard deviation 

of 9.0, for 2009 and 2012 datasets respectively. Figure 2.8 shows the distribution of the estimated 

number of clusters for the two datasets. While a similar number of clusters was obtained in a 

majority of the runs, we must conclude that the procedure is not completely insensitive to the 

random initialization of the cluster process. 

 

 

Figure 2.8: Variation of number of clusters created with random seed for 2009 and 2012. The fitted 

histogram graph, emphasizes the observed variation in the number of clusters selected based on random 

seed values. 
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Table 2.7: Contingency table for 2009 result with reference data in columns and predicted class in rows. Overall accuracy 97.3±0.6 %, Kappa 0.972 

 
Unburned 

Burned 

by Jun04 

Burned 

by Jul06 

Burned 

by Jul14 

Burned by 

Aug15 

Burned by 

Sep16 

Burned 

by Oct02 

Burned by 

Nov03 

User 

Accuracy 

Producer 

accuracy 

Unburned 128.0 0.9 3.6 0.3 1.4 0.1 0.0 0.0 95.4 94.1 

Burned by Jun04 5.1 71.1 0.0 0.4 0.1 0.0 0.0 0.0 92.8 94.8 

Burned by Jul06 1.2 1.9 128.7 0.3 0.3 0.1 0.0 0.0 97.2 94.6 

Burned by Jul14 0.0 0.0 0.0 134.6 0.0 0.0 0.0 0.0 100.0 95.4 

Burned by Aug15 1.1 0.0 0.7 0.5 131.9 0.0 0.0 0.0 98.3 98.5 

Burned by Sep16 0.4 0.0 0.4 0.5 0.0 143.6 0.0 0.1 99.0 99.7 

Burned by Oct02 0.0 0.0 1.0 2.0 0.0 0.0 144.0 0.0 98.0 100.0 

Burned by Nov03 0.3 1.2 1.6 2.4 0.3 0.2 0.0 138.9 95.8 99.9 

 

Table 2.8: Contingency table for 2012 data with reference data in columns and predicted class in rows. Overall accuracy 92.6±1.6 %, Kappa 0.912 

 Unburned 
Burned 

by Jul06 

Burned 

by Jul22 

Burned by 

Aug07 

Burned by 

Aug23 

Burned 

by Sep24 

Burned by 

Oct10 

Burned by 

Nov11 

User 

accuracy 

Producer 

accuracy 

Unburned 89.4 0.0 4.3 0.0 2.9 0.7 1.3 1.0 89.6 66.7 

Burned by Jul06 0.1 62.4 1.0 0.0 0.0 0.0 0.0 1.1 96.5 94.5 

Burned by Jul22 3.9 0.5 124.0 0.0 0.0 0.0 0.0 0.0 96.5 93.2 

Burned by Aug07 0.9 1.0 0.0 149.0 0.0 0.0 1.6 0.0 97.7 99.3 

Burned by Aug23 4.5 1.6 0.5 0.4 143.4 0.0 0.1 0.2 95.1 93.7 

Burned by Sep24 2.0 0.0 0.7 0.4 3.7 145.1 0.0 0.5 95.2 98.7 

Burned by Oct10 0.0 0.0 2.0 0.2 0.0 0.0 139.0 0.0 98.4 97.2 

Burned by Nov11 33.1 0.5 0.5 0.0 2.9 1.1 0.9 82.1 67.8 96.6 
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The variation of the number of clusters has a bearing on the number of training samples selected 

per class and ultimately on the overall accuracy. There was a significant (p-value < 0.001) general 

decrease in the number of training samples selected with increasing number of clusters in all 

classes for 2009. However, this trend was not observed with the 2012 dataset. In that case, most 

of the per-class trend lines did not show any relationship between number of clusters and number 

of training samples selected. In fact burn classes such as the Burned by Nov11 and Burned by 

Aug23 showed a positive relationship implying that having more clusters resulted in more training 

samples selected. Figure 2.9 and Figure 2.10 show the variation of training samples with number 

of clusters while the estimated slope values per class with significance test values are summarized 

in Table 2.9 

 

Figure 2.9: Variation of training samples with the number of cluster for 2009. The number of training 

samples selected decreased with increasing number of clusters 
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Figure 2.10: Variation of training samples with the number of cluster for 2012. The number of training 

samples selected for most of the classes did not show any correlation with number of clusters 

 

The fit of the number of clusters against the overall accuracy showed that an increase in the number 

of clusters resulted in a corresponding decrease in the overall accuracy for 2009 as shown in Figure 

2.11. This could be linked to the observed decrease in training samples. This relationship was 

significant (p-value = 0.0018) at a 0.05 significance level. Results for 2012 also showed a 

decreasing trend for overall accuracy but the relationship was not statistically significant (p-value 

= 0.299). This could be attributed to the mixed trends for number of training samples observed in 

Figure 2.10. The OOB accuracies were higher than the test accuracies in both cases and did not 

suffer any impact with respect to number of clusters. Higher accuracies from OOB than test 

samples are expected as the generalization error usually gets worse when applied to test data (Tan 

et al., 2005b). 

In summary, the number of clusters created in the iterative clustering process can have an impact 

on the number of training samples selected and ultimately on the overall classification accuracy. 

However, while differences were statistically significant, the absolute difference in accuracies is 

not large and does not detract from the overall good performance of the method. The reduction in 

number of training samples selected and classification accuracy for the 2009 data could  be 
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attributed to the over-partitioning or over-fitting of the dataset leading to weakly formed clusters 

(Tan et al., 2005a). Larger sample sizes could alleviate this as shown by the 2012 case where a 

larger sample (6600) showed better stability than the 2009 case where a smaller sample (5500) 

used. Implementation of intermediate merging and splitting steps during the iterative clustering 

process, as in the ISODATA algorithm (Ball and Hall, 1965), could also improve the stability of 

the number of clusters.  

Table 2.9: Per-class estimated slope values with significance test statistics. P-values less than 0.05 indicate 

a significant relationship (increasing or decreasing) between the number of clusters and the number of 

selected training samples. In this case all 2009 classes had a significant decreasing trend while only two (in 

bold) had significant increasing trend for 2012. 

2009 2012 

Burn class 

Slope 

estimate 

Std. 

Error 

p-

value Burn class 

Slope 

estimate 

Std. 

Error 

p-

value 

Unburned -2.62 0.28 <.0001 Unburned 0.37 0.47 0.436 

Burned by Jun04 -1.19 0.14 <.0001 Burned by Jul06 0.57 0.28 0.051 

Burned by Jul06 -2.43 0.23 <.0001 Burned by Jul22 -0.08 0.23 0.741 

Burned by Jul14 -2.20 0.16 <.0001 Burned by Aug07 0.09 0.47 0.845 

Burned by Aug15 -1.49 0.23 <.0001 Burned by Aug23 0.86 0.29 0.007 

Burned by Sep16 -1.81 0.12 <.0001 Burned by Sep24 -0.08 0.26 0.775 

Burned by Oct02 -2.04 0.24 <.0001 Burned by Oct10 0.13 0.22 0.545 

Burned by Nov03 -2.33 0.22 <.0001 Burned by Nov11 1.64 0.56 0.007 

 

  

Figure 2.11: Variation of overall accuracy with number of clusters for 2009 and 2012 datasets. Trend lines 

show there is no systematic relationship between number of clusters and overall OOB and test accuracies. 
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2.5 DISCUSSION 

Because fire disturbance has important implications for vegetation patterns, carbon emission 

budgets and fire monitoring strategies, information about spatial and temporal occurrence of fire 

events is required in understanding the wide range of fire effects. The approach presented in this 

paper presents an effective and efficient approach that can support operational generation of spatio-

temporal burned area information. It also contributes to the growing number of multitemporal 

approaches aimed at characterizing ecosystem disturbance. A common feature in a number of them 

is the reliance on known spectral-temporal responses of  land cover to change processes, such as 

fire, deforestation and insect infestation, to provide information not only on the type and extent of 

change but also the timing of the change (Huang et al., 2009; Kennedy et al., 2007). Such detailed 

information promotes better understanding of linkages between land use and land cover change 

and impacts upon populations, communities, and the environment as a whole (Gillanders et al., 

2008). The other feature is the reliance on known spectral-temporal responses with the goal to 

automate analyses. This is mainly driven by the increase in the number of images in multitemporal 

analyses which complicate tasks such as collection of training data or labeling and make them time 

consuming and expensive (Bovolo et al., 2012; Bruzzone and Prieto, 2001).   Automating the 

training sample selection, as implemented in this study, reduces human intervention which can be 

error prone, and significantly enhances the generation of required information (Giri et al., 2013; 

Kennedy et al., 2007).  

Classification results obtained for the two sites in eastern Zambia show the effectiveness of the 

approach in different landscapes. Nevertheless, further testing in other regions is required to 

establish a more complete perspective of generalization power of the approach. With successful 

performance shown in mapping burned areas in these savanna environments in eastern Zambia, 

wider applicability can be expected in many southern Africa countries where such environments 

exist. The general approach may be adaptable with other burn spectral indices such as the 

normalized burn ratio (NBR) for application in other environments such as boreal ecosystem, and 

more broadly,  may also be adaptable to applications where abrupt changes are observed such as 

with deforestation or flooding. 

The success of training sample selection and final classification is attributable to a number of steps 

implemented in the process. A strict iterative clustering procedure in which unsuitable clusters are 
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excluded by enforcing cluster validity measures was used. The repeated clustering and cluster 

refining steps reduces variability in the training samples but provides a more inclusive definition 

of a particular class. Techniques such as guided clustering (Fox and Mayer, 1979; Musy et al., 

2006; Wayman, 2000) work under a similar premise of partitioning training data into more 

homogeneous sub-classes for improved classification accuracy. However, further improvement is 

needed to ensure stability in the number of clusters created. Merge and split mechanisms as 

implemented in the ISODATA algorithm could be useful in this regard. The good performance is 

also a function of the MIRBI index which provides good discrimination between burned and 

unburned areas (Smith et al., 2007). The robustness of the MIRBI index to land cover type (Trigg 

and Flasse, 2001) certainly also contributes to the good performance across the three land covers 

from which samples were selected. The high classification accuracy can be attributed to the reliable 

training data used and use of a non-parametric Random Forest model. Random Forest is well suited 

for the abrupt changes in the data while algorithms such as maximum likelihood are not because 

of the underlining normality assumption (Richards and Jia, 1999). However, other methods such 

as support vector machines or CART could otherwise be applied. With this flexibility, several 

classification algorithms can be evaluated and the best one used.  

There are a few sources of error and drawbacks that must be highlighted. The approach is sensitive 

to residual clouds and cloud shadows. From visual inspection of classified data, unfiltered clouds 

and cloud shadows can cause abrupt changes in the temporal profile of a pixel which impacts the 

labeling and final burn classification. Clouds and cloud shadows tend to cause sharp changes in 

band 5 (Kennedy et al., 2007) which has direct impact on MIRBI values. An abrupt increase in the 

MIRBI due to cloud shadows had an impact especially if it occurred in the last value of a pixel 

profile. In that case an unburned pixel, as in Figure 2.5 a), would have similar temporal profile as 

one that burned at the end in the sequence, as in Figure 2.5 h). On the other hand, clouds can cause 

a decrease in the index which also impacts labeling and burn classification. Implementation of on-

the-fly detection techniques of such contaminated pixels could enhance the robustness of the 

approach. However, the difficulty lies in discriminating abrupt changes due to fire and those due 

to cloud shadows. A new algorithms called Tmask (Zhu and Woodcock, 2014) with improved 

capability for detecting residual clouds and cloud shadows by applying multitemporal data has 

been developed and would provide another option for reducing the impact of residual clouds. 

Abrupt changes in MIRBI values were also observed in bright open areas such as settlement and 
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exposed river beds. This also led to some misclassification. These misclassifications could be 

reduced by masking these areas. The other drawback relates to the efficiency of the analysis. The 

repeated clustering could be a concern if large samples are involved. Nevertheless, the selection 

of training samples was done in reasonable time for the samples used in this study. Processing 

times were within a minute or two using a 2.66 GHz Duo Core processor. Sub-setting large datasets 

to smaller manageable amounts and applying the process to each at a time would be one way to 

alleviate the burden of large datasets. 

There are also a few challenges and opportunities for operational application of Landsat data for 

seasonal multitemporal burned area mapping. While current data policies guarantee access to free 

Landsat data, images spanning the fire seasons may not always be available due to dropped scenes 

and cloud cover. This could be overcome by applying fusion techniques such as STARFM (Gao 

et al., 2006) to generate synthetic data for the dropped scenes. The feasibility of such techniques 

to burn mapping has already been successfully demonstrated (Gao and Masek, 2006). Application 

of fusion techniques to other environments such as drylands (Walker et al., 2012) also favors the 

possibility of success in savanna environments. Lastly, instrument errors such as the scan-line 

corrector (SLC) error hampers the utility of Landsat data. This is even worse for multitemporal 

analyses as the SLC error gaps may shift with time affecting a larger portion of a study area.  

Effective gap filling methods, especially one that can recover change information in multitemporal 

images are required. 

2.6 CONCLUSION 

While most approaches to mapping burned areas have used one or two images (French et al., 2008; 

Roy et al., 2002), this study took advantage of the growing temporal depth of Landsat data to 

develop an effective seasonal burn mapping method that provides information on  where and when 

an area was burned. By detecting burned areas based on general characteristics of temporal 

profiles, the approach is effective, data driven and can adapt to a particular set of events in the 

temporal sequences. The automated training sample selection can enhance the capture of necessary 

spatio-temporal burned area information over large areas which is often time consuming, requires 

significant human effort and is costly. Further, Landsat data provides adequate spatial detail for 

monitoring many important land surface dynamics (Giri et al., 2013; Kennedy et al., 2007) and the 
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multitemporal analysis procedure presented here can contribute to generation of more detailed 

burned area inventories than currently offered by coarse datasets such as the MODIS burned area 

product.  
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Profile Based Missing Value Estimation for Abrupt Change Processes 

 

3.1 ABSTRACT 

Ease of access to large data stores is facilitating the use of multitemporal imagery analysis to assess 

changes in natural resources and the environment.  However, missing data caused by cloud cover 

and the scan-line corrector (SLC) error gaps in Landsat 7 imagery confound analysis, and effective 

estimation methods for gap-filling could greatly improve the usability of these data.  Several 

methods for filling gaps in Landsat data have been proposed but most assume no abrupt or 

significant change has occurred and that prediction can be based on interpolation from one or two 

temporally adjacent images.  By exploiting longer sequences of multitemporal images we have 

developed a profile based spatio-temporal k-Nearest Neighbors method, for estimating missing 

values in spectral index data. Different land cover and changes over time exhibit characteristic 

temporal profiles. By matching these profiles based on profile shape, reliable estimates of missing 

values can be obtained.  A total of k similar pixel trajectories, both complete and incomplete (with 

data in points to be estimated), are selected and a weighted average of selected values is used to 

estimate missing value(s). An alignment pre-step is included to ensure selected pixel profiles 

match the pixel to be estimated as closely as possible. We tested the profile based approach on an 

8-image sequence by simulating between 1 (12.5%) and 6 (75%) missing values per pixel profile 

in mid-infrared bi-spectral index (MIRBI) data. The profile based approach reliably predicted 

missing data in the multitemporal data. R2 values against actual MIRBI ranged from 0.78 to 0.92 

indicating high correlation with the actual values. The prediction also showed reasonably high 

precision with mean absolute error (MAE) values ranging from 55 to 80.9 which represented 

deviations of 4-7% from actual MIRBI values. The profile based approach was also effective when 

applied to filling large gaps in multitemporal MIRBI data, generating spatially and temporally 

consistent filled data even in cases where abrupt changes have occurred.  

Keywords: Gap-filling, k-Nearest Neighbors, Multitemporal analysis, Abrupt change, Fire. 
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3.2 INTRODUCTION 

The Landsat satellites have provided an extensive data set for land surface mapping and monitoring 

at local and global scales (Hansen et al., 2013; Kennedy et al., 2007). However, the utility of these 

data is often hampered by missing values caused by cloud cover and sensor specific problems such 

as the scan-line corrector (SLC) error in Landsat 7 (Brooks et al., 2012). The extent of missing 

data is even higher in multitemporal analyses due to the dynamic nature of cloud cover and SLC 

gaps, further limiting the amount of usable data. Effective methods for gap-filling are needed to 

make these data more useful for assessing environmental change. But gap filling methods must be 

able to restore change information, even abrupt changes such those resulting from deforestation 

and fire, so that reliable information about landscape dynamics can be derived from the 

reconstructed datasets.  

Several methods for filling missing values in remote sensing data have been proposed, ranging in 

complexity from temporal image compositing (Roy et al., 2010b), bitemporal local weighted 

averaging (Chen et al., 2011; Scaramuzza et al., 2004), to geostatistical interpolation (Pringle et 

al., 2009; Zhu et al., 2012). However, these approaches are limited in that they are formulated with 

the assumption of gradual or no change in the images being corrected (Chen et al., 2011; 

Scaramuzza et al., 2004; Zhu et al., 2012), and may be biased towards a particular change or land 

cover such that they might recover burned areas but distort unburned areas (Barbosa et al., 1998; 

Roy et al., 2010b).  Except for compositing techniques, these methods are mostly bitemporal in 

nature making them inadequate to reliably model change information over time (Thackway et al., 

2013). 

Most gap filling methods rely on selection of similar samples to estimate missing values, thus 

assuming stationarity in the data. This inherent assumption is clearly a weakness in applications 

where the overall goal is to document change over time.  The growing availability of multitemporal 

image series presents the opportunity to use a sequence of images to better document change over 

time as it contains more information from which to estimate missing values (Jensen, 2007; 

Skidmore et al., 2011). The distinctive temporal signatures associated with various land cover 

types or changes can be exploited in selecting samples by matching the temporal profile of pixel 

values. Spectral index data provide a good basis for modeling such profiles because the 

relationships to physical characteristics of the landscape are well defined and indices are more 



55 

 

robust to variability in solar irradiance, atmospheric conditions, land cover variables (canopy 

background, and canopy structure and composition) than are brightness values (Huete et al., 1999). 

Abrupt changes associated with disturbances such as fire or deforestation are clearly 

distinguishable in temporal profile data enabling selection of pixel samples with similar profiles 

to estimate missing values in a particular pixel.  

We present a multitemporal profile-based approach for estimating missing values in spectral index 

data with the goal of recovering and preserving as much change information, both gradual and 

abrupt, from the data as possible. To be able to model these changes, we use longer sequences of 

image data, enabling better temporal definition of the changes, together with local spatial 

information. The similarity between selected samples and the one being estimated is enhanced 

through profile alignment, and this leads to better estimates for the missing data. Profile alignment 

translates the selected samples to the target profile so deviations between them are minimized. 

Because of the improved similarity, a locally weighted k-Nearest Neighbors method is adequate 

for estimation, avoiding the need for more complex models. We demonstrate the effectiveness of 

the method by estimating missing values resulting from the scan-line error, clouds and cloud 

shadows, in seasonal mid-infrared bi-spectral index data (MIRBI) (Trigg and Flasse, 2001) over a 

fire season in eastern Zambia. While the application here is based on burn-specific spectral index 

data, in the development and evaluation of the method we consider the potential for broader 

applicability to indices used in other disturbance studies, such as drought and deforestation, which 

exhibit abrupt changes analogous to those of fire.  

3.3 APPROACHES FOR GAP-FILLING REMOTE SENSING DATA 

Gaps due to missing data in imagery impact the amount of information that can be derived: land 

cover type information, area estimates, and land cover change estimates (Xiao, 2012). The goal of 

gap filling methods is to estimate missing values so the derived datasets are spatially and 

temporally complete to support various applications. 

Image compositing is among the many ways bad data or missing data can be corrected in an image. 

Image compositing techniques aim to replace a missing or bad value with a plausible value from 

other data obtained over a specified period of time. A missing value is filled based on a set criteria 

such as a mean, minimum or maximum value of observed vegetation index (Holben, 1986), surface 
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reflectance (Ql and Kerr, 1997) or surface temperature (Barbosa et al., 1998; Pereira, 2003) values 

in a temporal sequence. Image compositing is a common processing technique to obtain cloud-

free and spatially continuous data and is simple to implement (Xiao, 2012). It is well suited for 

high temporal resolution data such as that from MODIS or AVHRR. The quality of the recovered 

data depends on the length of the compositing period – longer periods may not reflect real changes 

while shorter periods may not be able to filter out clouds. The data generated through these 

techniques may also be biased toward a particular land cover or phenomenon and degrade others. 

Barbosa et al.(1998) compared the suitability of five different multitemporal image compositing 

criteria for burn mapping using AVHRR data. Two were based on maximum value compositing 

using normalized difference vegetation index (NDVI) and surface temperature while the other 

three were based on minimum value compositing of channel 1 (visible), 2 (near infrared) and 

surface Albedo. While results showed minimum-based compositing retained the burn signal better 

than the others, the vegetation signal was degraded. Therefore, such approaches are more useful if 

adapted to a specific application or land cover type but may not perform well in general.  

A large majority of gap filling methods seek to build a deterministic or statistical relationship 

between images obtained at different times to predict missing values. Scaramuzza et al (2004) 

proposed a local histogram matching method for filling SLC gaps in a Landsat 7 ETM+ image 

based on another existing complete image. By assuming minimal or gradual change in the period 

between the images, missing values are filled by applying a corrective gain and bias to the pixel 

values in the complete image over a moving 17-pixel window in the target image. This method 

performs better in homogenous areas with minimal or no change. However, its performance in 

heterogeneous areas or areas with significant change is poor (Zeng et al., 2013). Zeng et al (2013) 

developed a bitemporal gap-filing approach using weighted linear regression. The regression 

model is built using common existing data in the two images then used to predict missing values 

in SLC gaps. Another approach by Chen et al (2011) called the neighborhood pixel similar 

interpolator (NSPI), uses land cover classification information to guide the selection of locally 

similar pixel between dates. Using an adaptive moving window, the method selects similar pixels 

in the neighborhood of a gap and estimates the missing value as a weighted average of the selected 

pixels. Spatially consistent results were obtained in both cases. However, both methods use the 

underlying assumption that no change has taken place between the two images, so the techniques 

are not applicable where abrupt change occurs as in cases of deforestation or fire.  
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Geostatistical interpolation approaches have also been used to fill missing data. These methods 

model the spatial relationship among observed (non-missing) data to predict values in missing 

locations (Pringle et al., 2009). Zhu (2012) improved upon the NSPI method (Chen et al., 2011) 

by applying a geostatistical approach using ordinary Kriging. Improved results were obtained with 

the geostatistical NSPI approach and had fewer stripping artifacts than the original NSPI method. 

However, the underlying assumption of stationarity in geostatistical methods is clearly violated 

when deforestation, fire or other abrupt changes occur (Mariethoz et al., 2012). Other Kriging 

based  methods include those by Pringle et al (2009) who were able to recover missing values in 

SLC gaps, and filled datasets were smoothly continuous without stripping. However, prediction 

performance was low in regions of significant change.  

The different model-based methods outlined above assume only gradual or no change occurred in 

the images being corrected. However, land cover is constantly changing and abrupt changes 

resulting from deforestation and fire often occur in many areas. Thus, a gap-filling method that is 

able to restore abrupt change in images is desired.  

3.4 GAP FILLING USING A PROFILE-BASED APPROACH 

 Overview and general assumptions 

The profile based spatio-temporal k-Nearest Neighbors method relies on translating (offsetting) 

similarly shaped pixel profiles to a pixel profile being estimated so deviations between them are 

minimized as much as possible. This assumption is based on the premise that similar land covers 

show similar temporal profiles (shapes) but only differ in the response level which may be due to 

differences in structural factors such as percent tree cover, background reflectance, species and so 

on (Jensen, 2007) (Moody et al., 2005). Therefore, a translation of one to the other will result is a 

closer fit which can improve the predictive performance of the estimation. Because of the close fit 

resulting from translation, a locally weighted k-Nearest Neighbors method is adequate for 

prediction avoiding use of complex models. By analyzing the multitemporal image stack at the 

same time, missing values are estimated in one step which is more efficient than consecutive 

processing of several bitemporal image pairs (Huang et al., 2010). 

The synergistic use of temporal and spatial information is especially important in resolving 

ambiguities at points of abrupt change. Figure 3.1a shows a pixel profile with an abrupt change 
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between the fourth and sixth points (images). However, the fifth point (open diamond) is missing 

and needs to be estimated. By using the remaining values – points 1-4 and 6-8 as reference in 

finding similar pixel profiles for estimating the missing value, any of the three cases in b) would 

qualify as similar pixel profiles. Estimation using all of them would lead to poor prediction for the 

missing value. To resolve this ambiguity, similar pixels are selected based on the temporal profiles, 

then local (spatial) information weighted by distance from the target pixel is used to determine the 

final estimate for the missing value. In that way, local similarity helps tilt the selection toward 

samples that are more likely to represent the target pixel condition, thus improving the accuracy 

of the estimate.  

 
a) 

 
b) 

Figure 3.1: Ambiguity of missing values when there is abrupt change: a) shows a profile with a missing 

value from the day 236 image (the dotted oval circle illustrates the range of possible values, with the correct 

value shown as the open diamond); b) sample trajectories that would qualify as matches for the target 

profile. 

 Temporal profile alignment 

Let xi and yi, i = 1…t, be two pixel temporal profiles in a multitemporal dataset D with similar 

temporal profiles. Assuming the two profiles only differ in level of response, the one can be 

mapped onto the other by subtracting an offset. Temporal profile alignment aims to make yi as 

similar as possible to xi by constant translation of yi onto xi. Expressing xi as yi-T, where T is a 

constant translation value, T is estimated by minimizing the square error between the two profiles. 

After Bari and Rueda (2006), T  is estimated as: 
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𝑇 =
1

𝑡
∑(𝑥𝑖 − 𝑦𝑖)

𝑡

𝑖=1

 Equation 3.1 

Profile alignment ensures profiles selected are not only close based on distance but are also similar 

in profile shape. To illustrate, three hypothetical examples in Table 3.1 represent a target pixel (0) 

and two pixels (1, 2) selected as nearest neighbors based on calculated profile value distances of 

966 and 842.3 respectively.  Based on this information, pixel 2 would be ranked higher and 

contribute more to the estimation than pixel 1. But from Figure 3.2, it is clear that pixel 0 and pixel 

2 do not have similar profiles. Pixel 1 is similar in shape but is disadvantaged by the large offset 

from pixel 0. For alignment, the values of T for pixel 1 and pixel 2 will be -337.9 and -12.5 

respectively. Subtracting the T value from pixel values gives the translated values in columns 5 

and 6 of Table 3.1. The distances between pixel 0 and pixels 1 and 2 are now 142.4 and 841.6 

respectively. In this case pixel 1 is correctly selected as a better pixel for the target (pixel 0) than 

pixel 2. Figure 3.2 shows the profiles before and after translation. From the translated profiles, a 

similarly shaped profile should contribute better estimates if one of the values of pixel 0 were 

missing.  

Table 3.1: Hypothetical pixel profile values for a target pixel (0) and two nearest-neighbor samples. 

 Original values Translated values 

Day of year Pixel 0 Pixel 1 Pixel 2 Pixel 1 Pixel 2 

140 1008 658 1448 995.9 1460.5 

164 1157 900 1230 1237.9 1242.5 

188 1056 706 1296 1043.9 1308.5 

212 1042 692 1282 1029.9 1294.5 

236 1968 1700 1448 2037.9 1460.5 

260 1968 1540 1700 1877.9 1712.5 

284 1945 1595 1850 1932.9 1862.5 

308 1910 1560 1700 1897.9 1712.5 
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Figure 3.2: An illustration of Profile alignment. a) Original pixel profiles b) Pixel 1 and 2 translated onto 

pixel 0. 

 Steps for k-nearest neighbor missing value estimation 

The k-Nearest Neighbors algorithm is a non-parametric prediction method that relies on a selected 

set of samples (k-Nearest Neighbors) to estimate missing values (Keerin et al., 2012). The number 

of samples, k, is selected using various measures such as the Euclidean distance, Pearson 

correlation, or cosine distance. Different measures may lead to a different set of k nearest-neighbor 

samples. The estimation procedure is typically divided into two steps: 1) selection of k nearest 

neighbor samples and 2) estimation by weighted averaging of the selected samples.  

Weighting schemes for estimation depend on the conceptual view of the relationship between 

observed data and locations to be estimated. There are several ways data can be weighted in the 

estimation including inverse weighting, exponential or uniform weighting (Atkeson et al., 1997). 

The type of data – spatial, temporal, and spatial-temporal – influences what weighting is applied 

in estimating missing data. For spatial data, we assume that farther objects have less influence on 

the estimation  than those closer to the point of interest, while for temporal data, values closer in 

time are expected to play a bigger role in the estimation than those farther away (Atkeson et al., 

1997).  Here, we base selection of similar samples on temporal profile similarity, and from those 

samples an inverse weighting based on spatial Euclidean distance used to estimate the missing 

value.   

Selection of similar profiles for estimation of missing values 

Pixels with similar temporal profiles are selected within a set processing window and data common 

to both the missing pattern and the fill pattern are used to calculate similarity measures. Missing 
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value(s) may occur anywhere in the temporal sequence; thus there are numerous permutations in 

which this may happen, and various options in which data can be selected to estimate missing 

values. To maximize data for the estimation, we use both complete profiles and complementary 

incomplete profiles. To explain the difference, we define a missing pattern and a fill pattern.  

A missing pattern is a logical array of a temporal sequence with 0 and 1 representing missing and 

observed values respectively. For instance, for a 5-value sequence with fourth missing value, its 

missing pattern is 11101. A fill pattern is any pattern that has observed values at missing point(s) 

in the missing pattern. For this 5-value sequence missing pattern (11101), the fill patterns that have 

a 1 (value) in the fourth place are 11111, 01111, 11110...  Further, we describe 11111 as a complete 

profile, while profiles that have missing values of their own, such as 01111 and 11110, in other 

positions are called complementary profiles. 

Data in the neighborhood defined by a window centered on the pixel to be estimated (target pixel) 

forms the sample from which similar profiles are selected. Using common data between the target 

pixel and each pixel in the sample, profiles are translated to the target profile as described 

previously.  Due the potential differences in common data for different fill patterns, use of the 

Euclidean distance would be problematic as direct comparison is not possible.  To avoid this 

difficulty, the maximum deviation percent, mdevj, was used to define similarity between the target 

profile and each of the translated profiles, and is calculated as   

 

𝑚𝑑𝑒𝑣𝑗 = max
1≤𝑖≤𝑝

(100 ∗ |𝑥𝑖 − 𝑦𝑖|/𝑥𝑖)  
Equation 3.2 

where xi the yi are values of the estimated and fill profiles respectively, p the number of values 

remaining after excluding missing ones, and j ranges between 1 and N, the number of samples in 

a given image window.  

A pixel profile is selected if it meets a threshold, mdevj  β, and is among the best k nearest 

neighbor profiles. k is taken as the round value of square root of the number of samples in a given 

processing window –  a rule of thumb which has been found to work well (Duda et al., 2001). If 

there are no gaps over the processing window, then K is equal to the window size. The value of K 
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may also be determined through cross-validation approaches but such approaches usually require 

more computing resources (Atkeson et al., 1997).  

Estimating missing values 

Estimation of missing data using the k-nearest neighbor method involves taking a weighted 

average of the selected similar values. For a missing value xm, and selected similar pixel values x1, 

x2…xK, the estimate of the missing value, �̂�𝑚, is calculated as: 

 

�̂�𝑚 = ∑ 𝑤𝑖𝑥𝑖

𝐾

𝑖=1

∑ 𝑤𝑖

𝐾

𝑖=1

⁄ ;      𝑤𝑖 = 1/𝑑𝑠𝑖
𝑝 Equation 3.3 

The weights, wi, are based on the spatial Euclidean distances, dsi, of each point from the target 

pixel location, and p is a positive real number which determines the influence of points on the 

estimation.  Pixels closer to the target pixel contribute more to the estimate that those farther away 

(Shepard, 1968). Values between 0.5 to 3 are recommended for most implementation of inverse 

distance weighting (Atkeson et al., 1997). 

 Implementation of the Profile Based Approach for Generating Filled Data 

Due to the shifts in location of SLC gaps and cloud cover from one image scene to the next, very 

large gaps of missing data may be created in a multitemporal Landsat dataset.  Figure 3.3a shows 

a 400x400 pixel mask for an 8-image MIRBI dataset, where black areas represent pixel locations 

with complete data after missing values are masked. From inspection of various parts of the data, 

the gaps of missing data can be as wide as 30 pixels, and over 80 % of the area has some missing 

data. The distribution of missing values per pixel is given Figure 3.3b. The values in brackets in 

the legend represent total counts for each case. This high rate of missing data requires a systematic 

approach to adequately reconstruct the dataset. 
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To fill these large gaps, the order of the estimation process is managed so adequate spatial and 

temporal information is available for each missing pattern being estimated. If pixels with complete 

profiles exist, the estimation process is initialized at the boundaries of the complete data and 

proceeds outward as in a region growing algorithm. Otherwise, data with the fewest missing values 

are predicted first and estimation proceeds in a region-growing fashion which enhances 

consistency with existing complete data and avoids accumulation of error. A morphological 

dilation on an image mask (Figure 3.3a) is carried out resulting in one-pixel expansion of the 

regions with complete data. This result is then subtracted from the original image mask to obtain 

pixels with missing data next to existing complete data or already estimated data. The estimation 

is then carried out on each of these pixel, updating the image mask each time. The process is 

iteratively repeated until all missing pixel values are filled.  

For each run, an adaptive window size is used with sizes ranging from 5 to 41 pixels to ensure 

enough samples are selected. Priority is given to pixels with fewer missing values per profile at 

each run, since the prediction accuracy is expected to be better when there are fewer missing 

Figure 3.3: Distribution of missing data in a 400x400 pixel area of an 8-image Landsat data stack, a) shows 

the binary image mask showing missing (white) and complete (black) data, b) shows the number of 

missing values for each pixel, with the values in brackets in the legend giving the total counts for each 

case. 

a) Image mask: black = complete data, 

white =–missing data 

b) Distribution of 

missing data ¯
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values. Where the estimation cannot be done such as in the case where pixel profile values are all 

missing or only one value remains, a local mean of the neighboring pixels in the window is used 

to fill the missing values.  From assessment of the various permutations of missing patterns in the 

Landsat data used in this study, these cases were found to be quite rare and are expected not to 

have a significant impact on the final result. 

3.5 PERFORMANCE ASSESSMENT  

 Study area  

The study area in eastern Zambia (approximately centered at 12° 1’ S and 32°58’E) is a region 

with widespread human-induced forest disturbance mainly due to shifting cultivation and 

landscape fires.  During the dry season – May to November – landscape fires are common and 

widespread and our desire to characterize and map this dynamic land cover condition provided 

both the motivation for developing and the data for testing this new change-preserving gap filling 

algorithm. 

 Data and preprocessing 

Landsat data (path 169 row 68) for 2009 covering the fire season (May – Nov) were used to 

evaluate the profile based spatio-temporal k-nearest neighbor method. We obtained fairly clear 

scenes (<15% cloud cover over the study site) from available Landsat 5 and Landsat 7 archived 

data (Table 3.2).  

Raw Landsat data were calibrated to surface reflectance using the Landsat Ecosystem Disturbance 

Adaptive Processing System (LEDAPS) (Masek et al., 2006). Pixels affected by clouds, cloud 

shadows and scan-line error gaps were masked for each image scene following Land Data 

Operational Products Evaluation (LDOPE) procedures (Jones et al., 2013; USGS, 2011).  

We used the MIRBI burn index as the main data input in the performance assessment. MIRBI is 

highly sensitive to burned areas and retains the burn signal for weeks making detection possible 

even with 16-day Landsat data. The MIRBI has been used to map burned areas in southern Africa 

(Smith et al., 2007) and showed better performance than other indices, and is calculated as:  

𝑀𝐼𝑅𝐵𝐼 = 10𝜌𝑆𝑊𝐼𝑅 − 9.8𝜌𝐿𝑁𝐼𝑅 + 2.0 Equation 3.4 
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where ρSWIR is the shortwave infrared reflectance (band 7 in Landsat 5 and 7) and ρLNIR is the second 

shortwave infrared reflectance (band 5 in Landsat 5 and 7) (Smith et al., 2007). Typically, MIRBI 

values range from 300 – 4000, although negative values are possible. The MIRBI values for each 

scene are then stacked into a multitemporal dataset. Figure 3.4 shows a sample of burned area 

temporal profiles for the multitemporal MIRBI data. 

Table 3.2: Landsat images for study area (Path 169, Row 68) used in analysis. 

Sensor Date of acquisition Julian day 2009 

Landsat 5 TM 19-May 139 

Landsat 5 TM 04-Jun 155 

Landsat 5 TM 06-Jul 187 

Landsat 7 ETM+ 14-Jul 195 

Landsat 7 ETM+ 15-Aug 227 

Landsat 7 ETM+ 16-Sep 259 

Landsat 7 ETM+ 02-Oct 275 

Landsat 7 ETM+ 03-Nov 307 

 

 Assessing predictive performance 

Accuracy testing using simulated missing data 

In the absence of independent observed data for validation in the SLC gaps, we assessed 

performance by simulating missing data in areas with complete data. Since we were working with 

a multitemporal imagery set with SLC gaps, the areas of complete data were significantly reduced, 

thus it was not possible to simulate full SLC gaps as has been done in other studies (Chen et al., 

2011; Zeng et al., 2013). 

The simulation assessment was based on a 5x5 pixel processing window, with the number of k 

nearest neighbors set at 5, and a similarity cut off threshold of 10%. A total of 1050 randomly 

selected profiles were used in the assessment. The sampling was stratified according to patterns in 

Figure 3.4 using an existing multitemporal burn classification.  Equal samples (75) were selected 

for each of the burn temporal profiles and the rest came from the unburned class.  

Various missing patterns were simulated by designating some values as missing according to 

actual missing patterns obtained from the multitemporal dataset. Given the numerous permutations 
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in which missing value(s) may occur in a pixel profile, we ran 6 simulations based on the total 

number of missing values per profile to limit the number of cases. Table 3.3 shows the six 

simulation cases. For each of the six cases, the respective number of missing values were simulated 

in the 1050 selected profiles with each pattern per case equally allocated to the selected samples. 

To determine if there were significant differences in performance between the six groups of 

missing patterns, multiple comparison testing using the Tukey method was carried out.  The mean 

absolute deviation data (described below) obtained for each case of missing values were used to 

test the difference at a 95% significance level. Cases for pixels with 7 or 8 missing values were 

not tested because these are estimated by a local mean of neighbors as described in section 0.   

Table 3.3: Six simulation cases with varying number of missing values per profiles. In each case 0 

represents a missing value in a sequence while 1 represents observed (valid) data. 

Simulation 

case 

Number of missing 

values simulated 

Examples of missing patterns for 8-

image sequence 

Total No. values 

estimated 

1 1 10111111, 01111111, 11111011 1050 

2 2 10110111, 01011111, 11011011 2100 

3 3 10011101, 01101110, 10111010 3150 

4 4 10101100, 00110110, 01101001 4200 

5 5 10010100, 00101001, 00010011 5230 

6 6 00000110, 00000011, 11000000 6300 

 

The R-squared statistic (R2) and the mean absolute error (MAE) were used to evaluate the 

goodness of fit for the prediction. The metrics represent two different aspects of the goodness of 

fit for the estimated data: that of correlation between predicted and observed values and one of 

size (precision) of differences between predicted and observed values. Since the two aspects of 

performance are different, it is usually recommended that models are evaluated on both aspects of 

performance (Schunn and Wallach, 2005).  
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Figure 3.4: Temporal profiles of normalized MIRBI values for groups of pixels (n = 25) from 2009 data: a) Pixel 

profiles for an unburned area between day of year 139 (May 19) and 307 (November 3); b – h) Pixel profiles from 

burned areas with different burn times. Abrupt increases in the profiles values indicate a fire occurred in the period 

between those image dates. 

 

a) b) 

c) d) 

e) f) 

g) h) 
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R2 is a linear regression based metric which measures the degree of association between predicted 

and actual values - providing information on the direction and relative magnitude between the two 

sets of data. R2 varies from 0 to 1 with high values showing higher linear association between 

predicted and actual values. However, two profiles may have large differences but still have a high 

R2, thus high association alone is not enough to define good performance.  The mean absolute 

error (MAE) complements information provided by R2 with an estimate of the precision of the 

predicted values, and is commonly expressed in percentage form as mean absolute percentage error 

(MAPE) (Schunn and Wallach, 2005).  These statistics are calculated as:  

𝑀𝐴𝐸 =
1

𝑁
 ∑|𝑥�̂� − 𝑥𝑖|

𝑁

𝑖=1

 Equation 3.5 

𝑀𝐴𝑃𝐸 =
100

𝑁
 ∑|𝑥�̂� − 𝑥𝑖|/𝑥𝑖

𝑁

𝑖=1

 Equation 3.6 

where 𝑥�̂�  is the predicted value, 𝑥𝑖 is the observed value and N is the total number of values 

estimated.  MAPE provides a measure of relative comparison even when data vary in magnitude.  

For both MAE and MAPE, lower values indicate better fit and are preferable.  

Qualitative assessment of filled data 

The quality of filled data was tested over a 400x400 pixel extent of the study area. Several parts 

of the area selected had experienced a number of fire events over the sequence of images used. 

Filled data were assessed qualitatively through visual inspection by looking for inconsistencies in 

completeness of land cover objects and for evidence of residual stripping effects. 

3.6 RESULTS 

 Accuracy assessment   

Table 3.4 shows a summary of results obtained for the different number of missing values per 

profile.   R2 values between predicted and observed values ranged from 0.78 to 0.92 indicating 

high correlation with the actual values. Figure 3.5 shows the respective scatter plots for the six 

simulations. MAE values ranged from 55.9 -80.3 (MIRBI values) representing absolute deviations 

(MAPE) of 4-7%.  As seen in Table 3.4, profiles with fewer missing values (1-3) were estimated 

more accurately than those with a higher number of missing values (4-6) per profile.  Despite the 
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reduction in predictive accuracy as the number of missing values increases (as would be expected), 

the high correlation of estimates to actual values, even when most values in a profile are missing, 

is notable.  Thus, in the case where 6 out of 8 values are missing (75% missing), the method still 

provided fill estimates with an R2 = 0.78 (Table 3.4).  

Table 3.4: Summary results on predictive performance of proposed method using simulated data 

No. missing per profile Ordinary R2 Adjusted R2 MAE MAPE Total values predicted 

1 0.92 0.92 54.9 4.6 1050 

2 0.90 0.90 58.0 4.8 2100 

3 0.86 0.86 60.4 5.0 3150 

4 0.82 0.82 66.1 5.6 4200 

5 0.85 0.85 65.8 5.5 5230 

6 0.78 0.78 80.3 6.7 6300 

 

Table 3.5: MAE confidence limits between the six groups based on Tukey pairwise comparison  

Reference 

group 

Group 

compared to 

Lower 95% 

confidence limit 

MAE 

difference 

Upper 95% 

confidence limit 

Significant 

difference? 

1 2 -9.3 -3.0 3.3 No 

1 3 -11.4 -5.4 0.6 No 

1 4 -17.0 -11.2 -5.4 Yes 

1 5 -16.6 -10.9 -5.3 Yes 

1 6 -31.0 -25.4 -19.8 Yes 

2 3 -7.1 -2.4 2.3 No 

2 4 -12.6 -8.2 -3.7 Yes 

2 5 -12.2 -7.9 -3.6 Yes 

2 6 -26.6 -22.4 -18.1 Yes 

3 4 -9.7 -5.8 -1.8 Yes 

3 5 -9.3 -5.5 -1.7 Yes 

3 6 -23.6 -20.0 -16.3 Yes 

4 5 -3.2 0.3 3.7 No 

4 6 -17.5 -14.2 -10.9 Yes 

5 6 -17.6 -14.5 -11.3 Yes 

 

Table 3.5 shows the set of confidence intervals on the differences in MAE between groups obtained 

by Tukey pairwise comparison. The last column in the table shows which pairs are significantly 

different thus implying different predictive performance. There was no significant difference in 

predictive performance for cases with 1 to 3 missing values per profile but performance was poorer 
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for cases with 4 to 6 missing values. Not surprising, 6 missing values resulted in significantly 

lower performance compared to all other cases.   

 Gap filled products 

Figure 3.6 shows the test area image with gaps filled using profile based spatio-temporal k-nearest 

neighbor method. Each row shows the reflectance data, the unfilled MIRBI data and the 

corresponding filled MIRBI data at a particular date. Reflectance data is displayed with the 4-3-2 

false color combination to highlight burned areas in the image. With this combination, burned 

areas appear black while unburned vegetation appear red (Pereira et al., 1999).  Both the unfilled 

and the filled MIRBI data are displayed using the same continuous color ramp with red and green 

representing the lowest and highest MIRBI values respectively.  

Figure 3.6 a), b) and c) show the scene of July 14, 2009.  At this time very little of the area has 

been burned. A visual comparison of the unfilled and filled data shows the missing data was 

estimated reasonably well. Given the nature of scan-line error gaps and the fact these are larger in 

multitemporal data, line artifacts (striping) may form if the interpolation is not done well. In this 

case, stripping is significantly reduced and is hardly noticeable. 

Figure 3.6 d), e) and f) shows the scene of September 16.  A larger portion of the image has been 

affected by fire as indicated by the black regions in Fig. 3.6d.  Despite the high number of abrupt 

changes due to fire, the gap filling was able to restore the missing values in the SLC gaps. By 

observing the patterns of fire at site A and unburned vegetation at site B (middle row), it can be 

concluded that there is continuity of the phenomenon (burned or unburned) in the two sites. At 

each site the gap filling consistently restored the missing values to match the surrounding area. 

Some stripping effects are noticeable especially in the upper part of the image. 

The last row of Figure 3.6 g), h) and i) shows the image of October 2. The increase in area burned 

since the previous scene is clearly evident. As with the earlier images, the gap filling in most areas 

provides fill patterns that appear to be representative of the surrounding areas.  There are a few 

locations where the estimated values do not conform to existing patterns in the image, for example 

at site C (Fig 3.6h), the SLC gap seems to influence the shape of the land cover object.  Overall, 

the gap filling appears to be very good in spite of the large amount of missing data in the 

multitemporal dataset. 
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3.7 DISCUSSION 

Landsat data are an invaluable resource for earth resources mapping and analysis, but the 

malfunction of the scan line corrector for Landsat 7 caused approximately 22% loss of data in 

images captured after 2003 (Scaramuzza et al., 2004). Developing effective methods for filling in 

the data gaps in these images while maintaining possible change information is important for 

capitalizing on the historical record of land surface information in this archive. We have 

demonstrated that by exploiting richer temporal information together with local spatial 

information, missing data including abrupt changes can be restored with good accuracy. 

The rationale for this new gap filling method was to use similarly shaped pixel temporal profiles 

to guide the estimation of missing values. By exploiting the whole image sequence, missing values 

can be estimated at any point in the sequence. Some existing approaches (Chen et al., 2011; Pringle 

et al., 2009) require cloud free or complete images to guide the gap filling process which essentially 

restricts these methods to forward prediction. In our case, both forward and backward estimation 

are possible avoiding the need for cloud free or complete scenes. While having complete data in 

the sequence will improve the prediction, it is not a requirement in the approach described here. 

The other advantage of this new method is that it processes all images in the multitemporal set at 

once, thus is more efficient and consistent than doing separate bitemporal processing. Separate 

analyses are subject to accumulation of error resulting in low overall prediction accuracy which is 

close to the product of separate prediction accuracies (Bovolo et al., 2012).  
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a) Prediction for profiles with 1 missing value b) Prediction for profiles with 2 missing values  

c) Prediction for profiles with 3 missing values d) Prediction for profiles with 4 missing values 

e) Prediction for profiles with 5 missing values  f) Prediction for profiles with 6 missing values 

g)  
Figure 3.5 Comparison of predictive performance for 1 to 6 missing values in the pixel profile. The plots 

show predicted versus actual MIRBI values with respective R2, MAE and MAPE values. The red dashed 

line represents the perfect fit – larger departures from this line indicate poorer estimates. 
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Figure 3.6: Examples of algorithm performance in filling SLC gaps in MIRBI data. The first column (a,d,g) 

contains surface reflectance data displayed as 432 false color combination, the middle column (b,e,h) is the 

unfilled MIRBI data, while the last column(c,f,i) shows the gap-filled MIRBI image. The first row (a,b,c) 

show data on July 14 (minimal fire activity); the second row (d,e,f) show data on September 16 (high fire 

activity), and the last row (g,h,i) represent data for Oct 2 (highest fire activity). Sites A, B and C are points 

for comparing visual assessment of the filled product. 
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Even though the method presented here was applied to fire mapping, it is not limited to this 

application. Forest disturbances such as deforestation and respective recovery processes show 

characteristic pixel value trajectories in time (Kennedy et al., 2007) which should also be 

candidates for estimating missing values in respective vegetation indices such as NDVI or the 

enhanced vegetation index (EVI). Also, the fact that it was possible to estimate missing values due 

to abrupt changes from spectral index data shows that there is potential to predict actual reflectance 

data by using spectral index data as proxy. Work in this direction is underway to enable recovery 

of the full reflectance product.  

The approach used in this application is effective but does have a few limitations. Since missing 

data are estimated by matching similar pixel profiles, it is possible to recreate unwanted data, 

particularly if there are remnant clouds or cloud shadows. Therefore, adequate masking of clouds 

and cloud shadows is necessary for effective application of the approach. New algorithms such 

Tmask (Zhu and Woodcock, 2014) present improved capability for detecting residual clouds and 

cloud shadows by applying multitemporal data and would be well suited for application with the 

approach developed here. With current Landsat 8 data, there is also an opportunity to further 

enhance cloud detection by applying data from the cirrus band that provides better detection of 

high-altitude clouds that may not be detected by using  traditional bands in Landsat data (Roy et 

al., 2014). From the efficiency point of view, the calculation of several distances when predicting 

each missing point, can result in lengthy (inefficient) processing especially if a dataset is large. 

Processing times are related to the size of the processing window - larger windows demand more 

computing resources. The current availability of free high speed computing platforms such as 

Google Earth Engine2 and Hadoop3 provide an opportunity of achieving this gap filling goal in 

more efficient manner. There are also a number of parameters that must be defined such as the 

number of nearest neighbors and the cut-off similarity threshold. Optimal selection of these 

parameters and evaluation of their impact on prediction is being evaluated. However, it is quite 

clear from other studies that the number of nearest neighbors has some impact on estimation – a 

balance is required between very low and very high numbers (Tan et al., 2005). We set the cut 

threshold (10%) to weed out bad samples but that could have excluded legitimate samples and 

compromised the estimation. Choosing an optimal weighting scheme is important for any 

                                                 
2 https://earthengine.google.org/ 
3 hadoop.apache.org/ 



75 

 

interpolation method. We choose inverse distance weighting because it is intuitive that farther 

samples will be less similar to the target point, and this concept is easy to implement. Other 

weighting schemes, especially those that have a bandwidth parameter should also be evaluated.  

Finally, there are opportunities to improve the definition of pixel temporal profiles by 

incorporating data from other sensors, potentially increasing prediction performance.  For instance 

combining Landsat 8 data with Landsat 7 can improve the temporal sampling to 8 days from the 

nominal 16 days which would contribute to high prediction accuracy of the developed approach.  

There is also a wide spectrum of data from other satellites which can be exploited, through fusion 

techniques, to enhance spatial and temporal information for estimation of missing data.  Data from 

SPOT satellites offer comparable data which can be used to fill Landsat acquisition gaps especially 

in some African regions where Landsat coverage may be limited (Justice et al., 1986; Roy et al., 

2010a). Future missions such as the Sentinel 2 with improved revisit times and wide range of 

spatial resolutions will also provide even better opportunities for creating spatially and temporal 

consistent Landsat datasets (Drusch et al., 2012). 

3.8 CONCLUSION 

Estimation of missing data in remote sensing data is a vital processing step to make the data more 

usable for Earth resource applications. Although several methods for filling gaps in Landsat data 

have been proposed, they do not consider the possibility of abrupt changes in the images being 

corrected. As such, change detection studies face limitations when using images with missing data. 

By using longer sequence of images and exploiting pixel temporal profile characteristics, we 

presented an effective approach for estimating missing data in spectral index data with the 

possibility of preserving change information in the filled data. Results obtained from objective 

accuracy assessment and subjective observation demonstrate that even abrupt changes occurring 

in the data gaps can be restored by using this new approach.   
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Fine-scale Seasonal Fire Patterns in Eastern Zambia Derived from 

Multitemporal Landsat Data 

 

4.1 ABSTRACT 

We analyzed patterns of seasonal fire occurrence in eastern Zambia using burned area maps 

derived from multitemporal Landsat data for 2009 and 2012 fire seasons. The occurrence of fire is 

widespread in the region with about 60% of the area burned by end of the June to November fire 

season. Temporally, fire activity is characterized by a unimodal distribution peaking in August and 

September. Spatially, the early fires occur predominantly in the valley region, but as the season 

progresses the spatial distribution of fire is similar across all physiographic regions. Comparison 

of the Landsat derived burned area with the MODIS burned area product revealed high under-

estimation by the MODIS product which emphasizes the need for higher spatial resolution data to 

capture the fine scale burning. Using raster overlay functions, the spatial distribution of fire was 

analyzed with respect to topography (elevation, slope and aspect), land cover and settlement 

density.  Results show that these landscape factors work in concert to influence fire occurrence. 

Areas of forest and grassland with higher slopes (>4%), north-facing aspect, and lower settlement 

densities experience significantly higher fire occurrence. Examining the distribution of burn patch 

size found that smaller burn patches (<5 ha) predominate although larger patches (>50 ha) 

contribute more to the total burned area. The size of burn patches in cropland and on the plateau 

were significantly smaller than for other land covers and landscape regions, reflecting the level of 

fragmentation of the landscape and the more controlled use of fire in field parcels. The findings 

have implications for remote sensing data for mapping these fire fragmented landscapes in Zambia. 

Coarse spatial resolution datasets such as MODIS, are incapable of characterizing such fine-scale 

fire activity and higher spatial resolution imagery such as Landsat are recommended. 

Keywords: Burned area, fire patterns, landscape structure, Landsat, Zambia 
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4.2  INTRODUCTION 

Spatial and temporal patterns in landscape fires has direct impacts on vegetation patterns, carbon 

emission budgets and fire monitoring strategies (DeBano et al., 1998; Flasse et al., 2004; Korontzi 

et al., 2003). Variation in fire occurrence is driven by the complex interaction of topography, fuels, 

weather and ignition sources (Cochrane and Ryan, 2009). The topography of an area can influence 

the amount of radiant energy transfer during combustion, fuel moisture content due to variable 

insolation (Lafon and Grissino-Mayer, 2007; Mermoz et al., 2005) and together with wind can 

restrict fire spread in some directions (Pyne et al., 1996). Land cover controls the amount of 

available fuels which in turn influences fire intensity and impact of affected areas (Cochrane and 

Ryan, 2009). Availability of unfragmented fuels supports continuous burning which has 

implications for sizes of areas burned. Human activity and lightning are the main sources of fire 

ignition. Human activities such as agriculture, establishing of settlements, and paths and roads also 

modify fuel sources through fragmentation of the landscape which impacts the occurrence of fire 

in an area (Archibald et al., 2009). By understanding the interaction of fire occurrence with these 

factors and associated impacts, researchers can help resource managers and policy makers devise 

sound natural resource management strategies (Kasischke et al., 2002; Turner, 2010). This 

understanding also requires appreciation of the spatial and temporal scales over which they occur 

(Cochrane and Ryan, 2009; Lentile et al., 2006; Pyne et al., 1996).  

Fire is widespread across eastern Zambia during the June to November fire season and is 

characterized mainly by surface fires which burn dead and dying grasses, crop residue, and small 

trees and shrubs (Frost, 1999; Pereira, 2003; Roy et al., 2005). Fires are mostly linked to rural 

livelihood activities such as clearing fields for agricultural purposes, improving visibility along 

paths for safety, hunting, regenerating green vegetation for livestock, and for controlling pests and 

parasites such as ticks (Baars, 1999; Frost, 1999; Roy et al., 2005; Shea et al., 1996). With the 

conditions of ready fuel and dry windy weather, fires often burn out of control, ultimately affecting 

large areas (Archibald et al., 2009; Frost, 1999). These fires are a significant source of carbon 

emissions that impact regional and global atmospheric chemistry (Cochrane, 2009; Innes et al., 

2000). Fires have, over time, also shaped vegetation patterns in the country by expanding grassland 

extents at the expense of woodland (Lawton, 1978). Information on sizes, patterns and timing of 

fires and the land covers impacted would be valuable to resource managers to plan fire 

management in the country and would also inform current REDD+ projects (Vinya et al., 2011). 
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Scale is an important factor in understanding spatial patterns as it determines what entities on the 

landscape can be mapped and what spatial relationships can be assessed (Lentile et al., 2006). Fire 

has extensively been mapped at regional and global scales using coarse imagery such as MODIS 

(Roy et al., 2006), AVHRR (Barbosa et al., 1997; Giglio et al., 2010) or SPOT VEGETATION 

(Gregoire et al., 2003). While these datasets have short revisit cycles which enable detailed 

temporal fire monitoring, their utility for local landscape fire monitoring is limited by their coarse 

spatial resolution.  Depending on the spatial pattern of the landscape and fires, burned areas can 

be either under-estimated or over-estimated (Sá et al., 2007; Zhang et al., 2011). To address this 

weakness of coarse data, developed countries such as the United States also collect burned area 

information using higher spatial resolution imagery such as Landsat (French et al., 2008; Miller 

and Thode, 2007). However, in developing countries such as Zambia, such programs are not 

widely implemented leading to a gap in information for studying such disturbances at local scale 

(Goldammer and De Ronde, 2004; Pricope and Binford, 2012).  The use of free available Landsat 

data would meet this information need and would enable better understanding of the scale of fire 

activity that occurs in landscapes in Zambia.  

To address this gap in the availability of higher resolution burn mapping products, Malambo and 

Heatwole (2015a) developed a multitemporal burn mapping procedure to analyze a sequence of 

images spanning the fire season with procedures of gap-filling the Landsat-7 missing data 

(Malambo and Heatwole, 2015b). The burned area mapping procedure is based on automatic 

selection of temporal training signatures using fuzzy clustering and classification using Random 

Forest (Breiman, 2001). The method provides an effective way of deriving the spatial and temporal 

distribution of burned areas within a fire season. Generation of burned area information is 

enhanced by an effective gap-filling method that estimates missing data in Landsat scenes due to 

clouds and the scan-line error gaps. The gap-filling method exploits longer sequences of 

multitemporal images to estimate missing data using characteristic land cover temporal profiles. 

Both gradual and abrupt changes can be estimated using this procedure making it well suited for 

applications such as for burned area mapping. 

Eastern Zambia is characterized by three physiographic regions – a plateau region with an average 

elevation of 1100 m adjacent to the border with Malawi, the Luangwa valley floor (average 

elevation 700 m)  to the west, and a hilly transition zone in the middle (Celis et al., 1991). The 

three regions present distinct topographic, demographic and fuel patterns that may contribute to 
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variation in fire activity. The plateau region is a highly settled with landscapes characterized by a 

patchwork of cropland, forest (mostly open forests or woodland), wetlands and fallow land (Celis 

et al., 1991; Her and Heatwole, 2008). The Luangwa valley floor is predominated by light forests 

and grassland and most of the area is reserved for a game management area which is a buffer area 

around the national game parks. Settlements and farming in the valley region are mainly confined 

to areas of alluvial soils formed by rivers tributary to the Luangwa River.  The annual landscape 

fires cover extensive portions of the landscape as we have observed from numerous visits to the 

region.  However because of the limited spatial resolution of the existing burn inventories, the 

extent and relationship of fires to characteristics of the region are not known.  The objective of this 

study was to apply the multitemporal analysis tools of Malambo and Heatwole (2015a, b) to 

characterize the spatio-temporal burn patterns in eastern Zambia, to compare similarity of burn 

extent and patterns between two years, to highlight the improved burn detection with respect to 

MODIS burned area data (Roy et al., 2006), and to analyze the relationship between fires and 

physiographic region, land cover, population presence, and fire size.  Specific questions we wanted 

to address in this analysis were to examine:  1) the occurrence of fire with respect to land cover, 

topography and settlement density, and 2) the distribution of burn patch sizes by land cover and 

physiographic region. 

4.3  METHODS 

 Study area 

The study area is located in the eastern part of Zambia between latitude 11°32’ and 12° 20’ S and 

longitude 32°18’E and 33°18’E representing a total area of 7677 square kilometers. The region 

has a tropical climate with very distinct wet/dry seasons, with the dry season generally extending 

from May to November and the rainy season from November to April. Mean daily temperatures 

range from 15 to 36°C and depend on the elevation of the area – the Luangwa valley region which 

is part of the study area has some of the hottest temperatures in the country. Generally, cooler 

temperatures (12-15°C) are prevalent in June and July while temperatures above 30°C mainly 

occur September through November (Astle et al., 1969). Annual rainfall, mainly driven by the 

Inter-tropical Convergence Zone (ITCZ), ranges from 850 to 1050 millimeters (Celis et al., 1991) 
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and is concentrated in the months December to March. The valley area in the study area receives 

relatively lower rainfall compared to the plateau regions (ECZ, 2001).  

Miombo is the principal vegetation type in the area characterized by an intermingling of woodland 

and grasses (Pereira, 2003). It is a type of savanna woodland which is composed of  two-storied 

canopy with trees 10-12 m high (ECZ, 2001). There is widespread human induced forest 

disturbance mainly due to shifting cultivation and landscape fires.  Fire incidences are prevalent 

in the dry season with peak fire activity from August through October. Fire occurs almost 

everywhere affecting all land cover types including cropland, forests, and wetlands. 

  Data and preprocessing 

Data sources 

Landsat data (path 169 row 68) for the 2009 and 2012 fire seasons (May to Nov) were used to 

derive burned areas for each of the image dates. All images were Standard Terrain Corrected 

(Level 1T) which involves systematic radiometric and geometric corrections using ground control 

points and a Digital Elevation Model (DEM) for topographic accuracy (USGS, 2014). Fairly clear 

scenes (<15% cloud cover over study site) were obtained from the USGS website from available 

Landsat 5 and Landsat 7 scenes from May to November in each year. The list of images acquired 

for this study is given in Table 4.1. 

Other data used for the study include a land cover map and the 90m Shuttle Radar Topographic 

Mission (SRTM) elevation data. The 2010 land cover dataset was obtained from the Regional 

Center for Mapping Resources for Development (RCMRD), Kenya. These data were created as 

part of the US Environmental Protection Agency (EPA) effort to support greenhouse gas (GHG) 

inventory reporting in selected east and southern African countries including Zambia. The 

classification scheme - based on IPCC guidelines for land cover mapping and greenhouse gas 

emission estimation - comprise six land cover classes: forest, grassland, cropland, settlements, 

wetland and other. The overall accuracy of the land cover map is 80.4 % (Oduor, 2013). We also 

digitized settlement locations with the aid of ArcGIS® online high resolution base map imagery 

for use in estimating settlement density. 
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 Preprocessing Landsat data 

The raw Landsat data were calibrated to surface reflectance using the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) (Masek et al., 2006). The LEDAPS 

processing chain also includes cloud masking. We used procedures described in Jones ( 2013) to 

mask pixels affected by clouds, cloud shadows and scan-line error gaps. The procedure used 

quality information derived in the LEDAPS processing chain to identify pixels affected by clouds, 

cloud shadows and scan-line error. These routines are much less computationally intensive than 

programs such as Fmask (Zhu and Woodcock, 2012) and provide reasonable detection of clouds 

and cloud shadows. 

Table 4.1: Landsat images selected for the study. 

2009 2012 

Sensor Date of acquisition Julian day 2009 Sensor Date of acquisition Julian day 2012 

TM 19-May 139 ETM+ 19-May 140 

TM 04-Jun 155 ETM+ 06-Jul 188 

TM 06-Jul 187 ETM+ 22-Jul 204 

ETM+ 14-Jul 195 ETM+ 07-Aug 220 

ETM+ 15-Aug 227 ETM+ 23-Aug 236 

ETM+ 16-Sep 259 ETM+ 24-Sep 268 

ETM+ 02-Oct 275 ETM+ 10-Oct 284 

ETM+ 03-Nov 307 ETM+ 11-Nov 316 

 Generation of MIRBI multitemporal dataset 

The MIRBI index was used for mapping burned areas, and is calculated for each image using the 

expression:   

𝑀𝐼𝑅𝐵𝐼 = 10𝜌𝑆𝑊𝐼𝑅 − 9.8𝜌𝐿𝑁𝐼𝑅 + 2.0 Equation 4.1 

 where ρSWIR is the shortwave infrared reflectance (band 7 in Landsat 5 and 7) and ρLNIR is the 

second shortwave infrared reflectance (band 5 in Landsat 5 and 7) (Smith et al., 2007). All 

calculated data were then stacked into one multitemporal dataset arranged in ascending order by 

acquisition date. 

Missing (masked) data in areas affected by clouds, shadows and the SLC gaps were estimated 

using a trajectory based spatio-temporal imputation procedure described by Malambo and 

Heatwole (2015b). The procedure uses pixel data with similar temporal profiles to estimate 
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missing values in a target pixel trajectory. The procedure has been evaluated by simulating missing 

data in known pixel trajectories and showed good performance in recovering the missing values.  

  Burned area classification 

Seasonal burned area data was derived for the two years by classifying the multitemporal MIRBI 

data using a procedure of Malambo and Heatwole (2015a). Burned areas are classified by burn 

date using trained Random forests (Breiman, 2001) models for each year. Overall mapping 

accuracies for the 2009 and 2012 models are 97.3±0.6 and 92.6±1.6 percent respectively. Full 

details on the training and validation procedures of these models are given in Malambo and 

Heatwole (2015a).  

To enhance spatial coherency and reduce speckle in the classified data, isolated pixels (1-3 pixels) 

were reassigned to their nearest neighbors. These isolated pixel represented about 1% of the total 

area so this reassignment is not expected to have a significant change of the burn distribution. The 

derived burned area information was then edited to mask identifiable errors such as those resulting 

from the residual clouds and other outliers in the dataset. For comparison of burned area patterns, 

all masked locations were applied to both datasets so that the same areas were considered in each 

year. 

We evaluated general characteristics of fire activity including the extent of burned area by date, 

total burned area for the whole season, and burned area size distribution. Burned area by date 

represents the area burned prior to the date of the Landsat image acquisition. The total area burned 

over the fire season was then calculated by summing these individual contributions. The difference 

in total burned area between the two years was tested using the two sample test for proportions. 

The McNemar test (McNemar, 1947)– a statistical test of paired nominal data used to compare 

paired proportions, was also used to test the general patterns of burned area between the two years. 

Each pixel’s burn state (burned or unburned) in 2009 and 2012 was used to compare paired 

proportions and to test the general patterns of burned area between the two years at 0.05 

significance level. 

 

 



87 

 

Table 4.2: Temporal aggregation of MODIS burned area data. 

2009 2012 

Landsat date range 

(Julian days) 

Fire season class Landsat date range 

(Julian days) 

Fire season class 

139 - 195 Early 140 - 204 Early 

196 - 259 Mid 205 - 268 Mid 

260 - 307 Late 269 – 316 Late 

 Comparison with MODIS Burned Area Product 

Burned area data from the MODIS Burned Area Product were obtained for the years 2009 and 

2012 from the University of Maryland4. The data covered May through November which 

coincided with the Landsat time span. To compare the two products the MODIS burned area data 

was temporally aggregated over date ranges defined by the Landsat data. The fire season was 

divided into early, mid and late season as shown in Table 4.2. For each part of the season the total 

burned area was calculated. 

  Assessing variation of fire occurrence as a function of landscape factors 

To facilitate the combination with burn maps and comparisons between categories, appropriate 

categorical data were created from the continuous dataset representing elevation, slope, aspect, 

and settlement density.  Datasets generated included the following:  

a) Elevation data ranged from 581 to 1365 m and was grouped into 5 ranges: 581-670 m, 671 

– 750 m, 751 – 935 m, 936 – 1060 m and >1060 m.   

b) Percent slope data, derived from the elevation data, ranged from 0 to 69.80% and was 

classified in 4 categories: 0-4%, 4.01 – 8.00%, 8.01 - 15.00% and >15%.  

c) Slope aspect data, also derived from elevation, were classified into 8 aspects classes 

representing the 8 cardinal directions. Flat areas were not included in the analysis.  

d) Settlement density, calculated as the number of settlements per unit area, ranged from 0-

5.34 and was recoded into 4 categories: 0 (Unsettled), 0.01 - 1.00, 1.01 – 3.00 and >3.00. 

                                                 

4 MODIS Burned Area Product.  ftp://ba1.geog.umd.edu/   Accessed   10/10/2014.  
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e) The land cover data was reclassified into three broad categories of forest, grassland and 

cropland by aggregating the ‘wetland’ class with ‘grassland’, and the ‘settlement’ and 

‘other’ classes with ‘cropland’.  

The categorized datasets were then spatially combined using standard raster overlay operations 

with the total burned area maps for each year to get a cross-tabulation of each group with burned 

data. The percentage of area burned for each class/category for each was calculated with respect 

to the total available area in that class. Our aim was to identify the classes that have significantly 

higher or lower fire occurrences, thus differences among proportions in each case were tested using 

the analysis of means for proportions (Nelson, 2005). This statistical test is not a pair-wise 

comparison but compares each group mean to the overall average of all the groups 

 Assessing burn patch size distribution 

For burned area size analyses, individual burn patches were extracted from the two seasonal burn 

datasets using 8-pixel connectivity to define patches. The extracted data was used to assess the 

general distribution of burn patch size, with comparison between burn patch size, land cover, and 

physiographic region. Because the burn patch size distribution did not satisfy normality 

assumptions, non-parametric tests were used for analysis.  To test for differences in burn patch 

size between the years, among land cover classes and physiographic regions we used the Kruskal-

Wallis test - a non-parametric version of one-way analysis of variance (ANOVA) (Rice, 2006). 

Pairwise comparisons of mean burn patch size were done using the Steel-Dwass test (also non-

parametric) controlling the experiment-wise error rate at 0.05.  

Physiographic regions were defined by grouping the elevation dataset. Earlier studies define the 

Plateau region to lie at elevations above 1000 m above sea level while the valley floor was defined 

to lie between 400 and 700 m (Astle et al., 1969; Celis et al., 1991). Using available land cover 

and hillshade analysis as auxiliary information to accurately define the boundaries, these ranges 

were adjusted so the valley floor was lay between 581 and 760 m, the hilly transition between 761 

and 960 m and the plateau between 960 and 1365 m above sea level. Figure 4.1 shows the map for 

the three regions. Inconsistent low or high elevation islands in each region were edited to make 

the regions uniform. 
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Figure 4.1: The three physiographic regions in eastern Zambia: Valley floor between 581 and 760 m, the 

hilly transition between 761 and 960 m and the plateau between 960 and 1365 m above sea level. 
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4.4 RESULTS 

 Spatial and temporal distribution of burned area 

Of the 7677 km2 in the study area, 60% on average had burned by November in both years. A total 

of 4596 km2 was mapped as burned for 2009 while 4649 km2 was mapped for 2012 representing 

burn proportions of 59.9% and 60.6% respectively. The two sample test for proportions (p-value 

< 0.0001) showed that the proportion of burned area in the two years was different. McNemar test 

(χ2 = 1275.96, df = 1, p-value < 0.0001) also indicated that there was a significant difference in 

the pixels that burned (or did not burn) between the two years. This means that amount and the 

actual areas affected by fire varied from 2009 to 2012. This disparity could be partly attributed to 

the different end dates for the two image sequences used – since there reasonably could be 

unmapped burned areas for 2009 between November 3 and November 16, last date in the 2012 

sequence. Table 4.3 shows details of contingency table for the two datasets.  

Table 4.3: Summary of agreement and discordant pairs between burned area maps for 2009 and 2012 

Pair Combination 2009 2012 Count Percent 

Pairs in agreement (Burned) Burned Burned 3772319 42.2 

Discordant pairs Burned Unburned 1334296 15.6 

Pair in agreement (Unburned) Unburned Unburned 2030912 23.6 

Discordant pairs Unburned Burned 1393290 16.3 

Figure 4.2 shows the temporal distribution of total burned area from May to November for the two 

years. The burned area exhibits a unimodal distribution with the majority of fires occurring 

between August and September (days 213 – 273). The peak burning period accounts for nearly 75 

percent of the total burned area. While the results from the two years are not directly comparable 

because of the different image dates, the graphs show that the temporal burning trends for the two 

years are similar.   
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Figure 4.2: Temporal progression of fire in the 2009 and 2012 fire seasons in eastern Zambia. Data labels 

for 2012 are italicized to differentiate them from 2009 data labels. The temporal distribution of burned area 

is unimodal with the amount of burned area initially lower, in June and July (days 152 - 212), is highest 

between August and September (days 213 – 273) and then drops again in October through November (days 

274 - 315). 

Figure 4.3 summarizes the distribution of burned area over the three physiographic regions during 

the 2012 fire seasons. The trend in burning is also spatially depicted by the seasonal burn maps for 

the two years in Figure 4.4 and Figure 4.5. Most of the early fire activity (before August) occurs 

on the Luangwa valley floor. However as the fire season reaches peak activity there is a more even 

spatial distribution of burned area between the three regions.   

 

Figure 4.3: Distribution of burned areas during by physiographic region for the 2012 fire season in eastern 

Zambia. Similar trends were observed for 2009 but are not displayed here for space  
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Figure 4.4: Progression of burned area during the 2009 fire season in eastern Zambia. The first five maps show incremental areas burned 

between two image dates while the last (in row 2, column 3) show the overall burned area during the fire season. 

 

a) May 19 - July 31 b) Jul 31 - Aug 15 c) Aug 15 – Sep 16 

d) Sep 16 – Oct 02 e) Oct 02 – Nov 03 f) May 15 – Nov 

´
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Figure 4.5: Progression of burned area during the 2012 fire season in eastern Zambia. The first five maps show incremental areas burned 

between two image dates while the last (in row 2, column 3) show the overall burned area during the fire season. 

a) May 19 - July 22 b) Jul 22 - Aug 23 c) Aug 23 – Sep 24 

d) Sep 24 – Oct 10 e) Oct 10 – Nov 16 f)  May 15 – Nov 

´
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 Comparison of Landsat burn extent with MODIS burned area product. 

Table 4.4 shows the burn extent in each part of the fire season for the two datasets. Compared to 

the 60% burn extent between the two years, the MODIS data only showed 20% of the area had 

burned by the end of the season. The disparity between Landsat and MODIS is greater at the 

beginning and end of the fire season compared to mid-season. There was also a higher level of 

agreement on detections between the Landsat and MODIS data in the valley and transition regions. 

However, most of the burned areas on the plateau were undetected by the MODIS data.  Burned 

area maps for the three parts of the season are shown in Figure 4.6.  

Table 4.4: Comparison of Landsat with MODIS derived burned area for 2009 and 2012 fire seasons in 

eastern Zambia. Area figures are in square kilometers and percentages are based on the total area of 7677 

square kilometers. 

2009 

Fire season Landsat burned area Percent burned MODIS burned area Percent burned 

Early 529.5 6.9 106.5 1.4 

Mid 3097.0 40.3 1232.1 16.0 

Late 969.4 12.6 238.5 3.1 

Total 4596.0 59.9 1577.0 20.5 

2012 

Fire season Landsat burned area Percent burned MODIS burned area Percent burned 

Early 686.0 8.9 170.2 2.2 

Mid 3304.7 43.0 1169.5 15.2 

Late 658.4 8.6 152.5 2.0 

Total 4649.0 60.6 1492.1 19.4 



95 

 

 

Figure 4.6: (a-f) Burned area maps based on Landsat and MODIS data for 2009 fire season in eastern 

Zambia. Black areas in the Landsat maps represent areas masked because of clouds. 

a) Early season - Landsat b) Early season - MODIS 

c) Mid-season - Landsat d) Mid-season - MODIS 

e) Late season - Landsat f) Late season - MODIS 
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  Spatial distribution of fires as a function of land cover, topography and settlement 

density 

Spatial distribution of burned area by land cover 

Figure 4.7 shows the distribution of burned area by land cover. The relative percent of burned area 

in each land cover type, shown as bar charts in the figure, was 64-67% for forestland, 56-58% for 

grassland and 42-53% for cropland. The analyses of means for proportions showed that fire 

occurrence in forest land was significantly higher while fire occurrence in cropland and grassland 

was significantly lower than average fire occurrence. Results for the two years were consistent 

(Table 4.5). 

 

Figure 4.7: Fire occurrence by land cover category for 2009 and 2012 fire seasons in eastern Zambia. The 

total burned area in each land cover category is represented by the linear graphs 

Table 4.5: Analysis of fire occurrence by land cover for the 2009 and 2012 fire seasons in eastern Zambia. 

Any individual group proportion not contained in the lower and upper limit interval is deemed significant 

- larger than the overall average of all group proportions if it lies above the upper decision line and smaller 

if it lies below the lower limit. 

2009 

Level Group N Lower Limit Group Proportion Upper Limit Limit Exceeded 

Cropland 1032282 0.598 0.422 0.600 Lower 

Forest 5474734 0.598 0.638 0.599 Upper 

Grassland 2023801 0.598 0.583 0.599 Lower 

2012 

Cropland 1032282 0.604 0.506 0.607 Lower 

Forest 5474734 0.605 0.645 0.606 Upper 

Grassland 2023801 0.605 0.550 0.606 Lower 
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 Spatial distribution of burned area as a function of topography 

Figure 4.8 shows the percent fire occurrence as a function of elevation. Elevations from 670 to 

1060m showed significantly higher fire occurrences than elevations below 670 or above 1060m. 

A summary of the test is given in  

Table 4.6. Elevation ranges with higher fire occurrence correspond with areas in the valley and 

hilly transition that have large extents of grassland and forest while the ones with lower fire 

occurrence lie the plateau and valley floor where fuels are scattered and continuous spread of fire 

is limited.  

 

Figure 4.8: Fire occurrence by elevation category for 2009 and 2012 fire seasons in eastern Zambia. The 

total burned area in each elevation category is represented by the linear graphs. Note that the total available 

area in the 671-750 category was much lower than the other categories causing a dip in the linear plots. 
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Table 4.6: Analysis of fire occurrence by elevation for the 2009 and 2012 fire seasons in eastern Zambia. 

Any individual group proportion not contained in the lower and upper limit interval is deemed significant 

- larger than the overall average of all group proportions if it lies above the upper decision line and smaller 

if it lies below the lower limit.  

2009 

Level Group N Lower Limit Group Proportion Upper Limit Limit Exceeded 

>1060 263293 0.597 0.472 0.601 Lower 

581-670 277379 0.597 0.548 0.601 Lower 

671-750 110681 0.595 0.729 0.602 Upper 

751-935 144961 0.596 0.671 0.602 Upper 

936-1060 150994 0.596 0.750 0.602 Upper 

2012 

Level Group N Lower Limit Group Proportion Upper Limit Limit Exceeded 

>1060 263266 0.604 0.511 0.608 Lower 

581-670 277556 0.604 0.494 0.608 Lower 

671-750 110758 0.602 0.775 0.609 Upper 

751-935 145070 0.602 0.700 0.608 Upper 

936-1060 151066 0.603 0.761 0.608 Upper 

 

Figure 4.9 shows the variation of burned areas as a function of slope. The fire occurrence was 

significantly lower than average in the 0-4% slope range while the other slope ranges have 

significantly higher fire occurrences than average. These gentle slopes are mainly located on the 

plateau where most of the human activity is concentrated and some parts of the valley near the 

Luangwa River with less vegetation. 

 

Figure 4.9: Fire occurrence by slope category for 2009 and 2012 fire seasons in eastern Zambia. The total 

burned area in each slope category is represented by the linear graphs. 
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Table 4.7: Analysis of fire occurrence by slope for the 2009 and 2012 fire seasons in eastern Zambia. Any 

individual group proportion not contained in the lower and upper limit interval is deemed significant - larger 

than the overall average of all group proportions if it lies above the upper decision line and smaller if it lies 

below the lower limit. 

2009 

Level Group N Lower Limit Group Proportion Upper Limit Limit Exceeded 

0.00-4.00 669383 0.598 0.567 0.600 Lower 

4.01-8.00 200541 0.597 0.676 0.601 Upper 

8.01-15.00 60899 0.594 0.681 0.604 Upper 

>15.00 16485 0.590 0.645 0.608 Upper 

2012 

Level Group N Lower Limit Group Proportion Upper Limit Limit Exceeded 

0.00-4.00 669732 0.605 0.569 0.606 Lower 

4.01-8.00 200616 0.603 0.699 0.608 Upper 

8.01-15.00 60896 0.601 0.692 0.610 Upper 

>15.00 16472 0.596 0.647 0.615 Upper 

The analysis of fire activity against slope aspect showed that the distribution of fire is dominated 

by slopes facing North, West, Northwest and Southwest. Burned area in these directions accounted 

for over 60% of the total mapped burned area from both datasets. 

 

Figure 4.10: Fire occurrence by slope aspect category for 2009 and 2012 fire seasons in eastern Zambia. 

The total burned area in each slope aspect category is represented by the linear graphs. 
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Table 4.8: Analysis of fire occurrence by aspect for the 2009 and 2012 fire seasons in eastern Zambia. Any 

individual group proportion not contained in the lower and upper limit interval is deemed significant - larger 

than the overall average of all group proportions if it lies above the upper decision line and smaller if it lies 

below the lower limit. 

2009 

Level Group N Lower Limit Group Proportion Upper Limit Limit Exceeded 

East 87189 0.595 0.586 0.603 Lower 

North 120586 0.595 0.622 0.603 Upper 

Northeast 92931 0.595 0.602 0.603  

Northwest 160532 0.596 0.631 0.602 Upper 

South 102595 0.595 0.566 0.603 Lower 

Southeast 91417 0.595 0.571 0.603 Lower 

Southwest 127301 0.596 0.580 0.603 Lower 

West 161688 0.596 0.608 0.602 Upper 

2012 

Level Group N Lower Limit Group Proportion Upper Limit Limit Exceeded 

East 87301 0.602 0.583 0.610 Lower 

North 120711 0.602 0.622 0.609 Upper 

Northeast 92928 0.602 0.602 0.610  

Northwest 160583 0.603 0.640 0.609 Upper 

South 102562 0.602 0.577 0.610 Lower 

Southeast 91497 0.602 0.580 0.610 Lower 

Southwest 127273 0.602 0.590 0.609 Lower 

West 161787 0.603 0.620 0.609 Upper 

 Distribution of burned area as a function of settlement density 

Figure 4.11 shows the variation of fire occurrence with settlement density. Areas with higher 

settlement densities (greater than 1) had relatively lower fire occurrence than those with lower 

settlement densities for both years. Of all settlement categories, only 0.01 – 1.00 had significantly 

higher fire occurrence than average. The other categories had significantly lower fire occurrence.  
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Figure 4.11: Fire occurrence by settlement density for 2009 and 2012 fire seasons in eastern Zambia. The 

total burned area in each settlement density category is represented by the linear graphs. 

 

Table 4.9: Analysis of fire occurrence by settlement density for the 2009 and 2012 fire seasons in eastern 

Zambia. Any individual group proportion not contained in the lower and upper limit interval is deemed 

significant - larger than the overall average of all group proportions if it lies above the upper decision line 

and smaller if it lies below the lower limit. 

2009 

Level Group N Lower Limit Group Proportion Upper Limit Limit Exceeded 

>3.00 64739 0.5939 0.3338 0.6033 Lower 

0.01-1.00 4702070 0.5982 0.6370 0.5990 Upper 

1.01-3.00 447041 0.5969 0.3614 0.6003 Lower 

Unsettled 3316967 0.5981 0.5813 0.5991 Lower 

2012 

Level Group N Lower Limit Group Proportion Upper Limit Limit Exceeded 

>3.00 64739 0.6009 0.3609 0.6102 Lower 

0.01-1.00 4702070 0.6052 0.6606 0.6059 Upper 

1.01-3.00 447041 0.6038 0.3938 0.6073 Lower 

Unsettled 3316967 0.6050 0.5608 0.6060 Lower 
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  Burn patch size distribution 

General distribution of burn patch size 

A total of 46546 and 55916 individual burn patches were extracted from the 2009 and 2012 burn 

maps respectively. Mean patch size significantly differed between the two years (Kruskal-Wallis5 

test, χ2 = 38.4, df =1, p < 0.001). Table 4.10 summarizes the descriptive statistics of individual 

burn patches. The minimum individual burned area size was 0.4 ha and the maximum, which 

occurred in 2009, is 20530.8 ha. The mean burned area size for the two years is 9.1 ha with a large 

average standard deviation of 116.7 ha, indicative of high variability in burned patch sizes. The 

median size was much lower than the mean in both cases indicating a very skewed distribution of 

burn patch size dominated by smaller burn patches.  

Table 4.10: Descriptive statistics of burn patch size by year in eastern Zambia. All areas are expressed in 

hectares 

 Overall statistics Individual burn statistics 

Year 
Burn patch 

count 

Total burned 

area 
Minimum Median Mean Maximum 

Standard 

deviation 

2009 46546 459600.0 0.4 1.3 9.9 20530.8 130.9 

2012 55916 464900.0 0.4 1.2 8.3 13727.3 102.4 

Mean 51231 462200.5 0.4 1.22 9.1 17129.1 116.7 

Figure 4.12 shows the burned area size distribution for the two years categorized in a number of 

patch size ranges. The dominance of burn patches up to 5 ha is quite evident – these relatively 

small burn patches represented on average 83.5% of the total number of burn patches. However, 

patches greater than 50 ha contributed more - 60 percent - to the total burned area in the two fire 

seasons despite their lower frequencies. The contribution of each patch category is given in Figure 

4.13.  

                                                 
5 The Kruskal-Wallis is the same as the Wilcoxon test when the variable being tested only has two levels- in 

this case ‘year’ has two levels 2009 and 2012. 
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Figure 4.12: Burned area size distribution for the 2009 and 2012 fire seasons in eastern Zambia. For the 

two years, fires with sizes up to 5 ha were more frequent (over 80 percent) than those larger than 50 ha. 

 

 

Figure 4.13: Contribution to total burned area by burn patch size for the 2009 and 2012 fire seasons in 

eastern Zambia. A larger proportion of the total burned area is contributed by fire with sizes larger than 50 

ha despite their lower frequencies as shown in Figure 4.12 

 

Distribution of burn patch size by land cover 

The variation of burn patch size for the three land covers is shown in Figure 4.14. In forest and 

grassland the largest contribution comes from patches with sizes greater than 100 ha while patches 

1 – 5 ha contributed more to total burned area in the cropland class. Patches less than a hectare are 

more prevalent in cropland than in the other two classes. In general, cropland patches showed 

decreasing proportional representation with increasing patch size compared to forestland and 
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grassland which showed increasing trends. The last two classes (50.01 – 100 and >100) are 

virtually absent in the cropland class indicating that the large fires occur in forest and grassland 

areas. 

 

Figure 4.14: Overall burn patch size variation with land cover in eastern Zambia 

 

The significant differences in burn patch sizes among the land covers was confirmed by the 

Kruskal-Wallis test (Kruskal-Wallis test, χ2 = 3720.9, df =2, p-value < 0.0001) but the difference 

in burn patch sizes between the two years was found to be insignificant (Kruskal-Wallis6 test, χ2 

= 0.7600, df =1, p-value = 0.3833). Pair-wise comparisons using the Steel-Dwass test (Table 4.11) 

revealed that forest land burn patch sizes (5.96 ± 57.91 ha) are significantly larger than cropland 

(1.56 ± 3.00 ha) and grassland (3.20 ± 27.36 ha).  In addition, grassland burn patches are 

significantly larger than cropland burn patches. Variability in burn patch size is greater in 

forestland and grassland as shown by their respective high standard deviations. 

 

 

 

                                                 

6 The Kruskal-Wallis is the same as the Wilcoxon test when the variable being tested only has two levels- in 

this case ‘year’ has two levels 2009 and 2012. 
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Table 4.11: Non-parametric pairwise comparison of burn patch size by land cover using Steel-Dwass test.  

(A positive score mean difference between levels indicates that the second level (-Level) is smaller than the 

first (Level) and vice versa. Small p-values (<0.0001) in each case indicate significant pairwise differences 

in mean burn patch size.) 

Level - Level Score Mean Difference Standard Error Difference Z score p-Value 

Forestland Cropland 520.65 28.48 18.28 <.0001 

Grassland Cropland 221.44 18.98 11.67 <.0001 

Grassland Forestland -273.51 25.99 -10.52 <.0001 

 Variation of burn patch size by physiographic region 

Figure 4.15 shows the proportional representation of burn patch sizes in each region. The plateau 

showed a decreasing proportional representation with increasing size while increasing trends were 

observed for the other two regions. This implies that larger fires are rare on the plateau than in the 

valley or the hilly transition zone. 

 

Figure 4.15: Distribution of burn patch size by physiographic region 

 

Table 4.12 shows the descriptive statistics for burn patch size for the two years. Statistical testing 

showed that the mean burn patches sizes were significantly different by year (χ2 = 39.17, df = 1, 

p-value < 0.0001) and by physiographic region (Kruskal-Wallis test, χ2 = 456.18, df =2, p-value < 

0.0001 for 2009 and χ2 = 634.55, df =2, p-value < 0.0001 for 2012) with the Hilly transition having 

the largest mean burn patch sizes, followed by the valley and then plateau for 2009. Results for 

2012 were similar, and details of the pairwise comparison are given in Table 4.13. As with the 
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results in the previous section there is high variability in the size of burn patches as shown by the 

high standard deviations. 

Table 4.12: Burn patch statistics by physiographic region for the 2009 and 2012 fire seasons in eastern 

Zambia 

  2009   2012  

Level Number Mean Std Dev Number Mean Std Dev 

Hilly transition 6523 14.7284 88.955 6296 15.6766 107.396 

Plateau 29200 5.8756 57.238 36955 4.6646 48.272 

Valley 11724 14.0825 105.056 13565 13.5672 117.788 

 

Table 4.13: Pairwise comparison of mean burn patch size in the three physiographic regions. (A positive 

score mean difference between levels indicates that the second level (-Level) is smaller than the first (Level) 

and vice versa. Small p-values (<0.0001) in each case indicate significant pairwise differences in mean burn 

patch size.) 

2009 

Level - Level Score Mean Difference Standard Error Difference Z p-Value 

Valley Plateau 2531.6 149.6 16.92 <.0001 

Valley Hilly transition -570.1 211.3 -2.70 0.0209 

Plateau Hilly transition -3101.8 187.4 -16.55 <.0001 

2012 

Level - Level Score Mean Difference Standard Error Difference Z p-Value 

Valley Plateau 3188.0 164.4 19.38 <.0001 

Valley Hilly transition -1190.1 249.8 -4.76 <.0001 

Plateau Hilly transition -4378.2 223.4 -19.60 <.0001 

4.5  DISCUSSION 

Understanding how landscape patterns influence fire processes and vice versa is vital for both fire 

and vegetation management (Rollins et al., 2002). This study assessed patterns of seasonal fire 

with respect to landscape characteristics in eastern Zambia using seasonal burned area information 

derived from multitemporal Landsat data. The relative fire activity for different levels of landscape 

factors was assessed by determining fractions of burned area in each level.  

Seasonal burn mapping showed that fire is widespread in the region with 60% of the area burning 

by the end of the dry season. This would not come as a surprise to researchers that are familiar 

with fire regimes in southern African countries, especially Zambia. Fire activity has been reported 



107 

 

to be widespread in many regions of Zambia. Archibald et al (2010), using MODIS burned area 

product,  estimated over 50% of the area burned in many parts of  Zambia every year. Another 

study estimated between 40 – 85% in the western part of the country (Pricope and Binford, 2012). 

Considering the under-estimation as shown by the comparison between Landsat and MODIS 

derived burned area data, these estimates could be considered conservative.  The high fire 

occurrence may be a reflection of ineffective or non-existent fire management policies in Zambia. 

Research by Pricope and Binford (2012) indicated that countries with better organized fire 

management programs such as Botswana and Zimbabwe showed lower fire incidences.  

Seasonal fire activity is characterized by peak activity around August and September with lower 

fire activity earlier in June and July and late in October to November. These results conform to 

reports from other studies (Archibald et al., 2010; Roy et al., 2005). The peak fire activity generally 

coincides with the availability of dead and dry leaf matter along with hot, dry and windy weather 

that encourage extensive burning of the landscape. Spatially, the valley floor had a higher 

percentage of the early fires in the two seasons analyzed, but as the fire season progressed the 

distribution of fire events across all regions (valley, plateau, and hills) was similar. This spatial 

trend in likely reflective of different crops and agricultural practices in the valley and plateau which 

influence the timing of burning and clearing fields.   Maize is predominately grown on the plateau 

and is usually harvested from May to June, while the millet and sorghum crops grown in the valley 

are harvested from March to May (FAO, 2014). 

Fire occurrence was found to be higher in forestland and grassland, in elevation between 671 and 

1060 m, in areas with slopes greater than 4% and settlement densities from up to 1 per square km. 

These patterns in fire occurrence highlight the roles played by human activity, fuel availability and 

landscape fragmentation. Areas with higher human activity as reflected by the high settlement 

density tended to have lower fire occurrences. Considering that fire activity in eastern Zambia is 

mainly anthropogenic, this finding might seem counter intuitive. However, research shows that 

higher settlement density entails higher landscape fragmentation due to increased agriculture and 

infrastructure such as roads (Archibald et al., 2009).  This limits the extent of land for burning and 

areas around settlements and roads act as fire breaks either physically or through suppression by 

people (DeWilde and Chapin III, 2006). The location of the forest and grassland also coincides 

with less settled areas (valley and hilly transition) compared to cropland which is mostly located 

near highly settled areas on the plateau. The variation of fire occurrence with elevation and slope 
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showed similar correspondence. Despite the differences among the land cover types, the 

proportion of area in each land cover category that burns is quite high, underscoring the widespread 

extent of fire activity in the area. 

The distribution of burn patch size is dominated by small fires up to 5 ha. However, large fires 

contribute more to the total burned area. Large fires comprised less than 5% of the total number of 

areas (pixel groups) burned in the two fire seasons but accounted for more than 60% of the total 

burned area. This has been observed in many fire regimes (Lafon and Grissino-Mayer, 2007). Burn 

patches in cropland were significantly smaller than in forest and grassland. The size of crop fields 

places a limitation of how large fires in this land cover class can spread (McCarty et al., 2009). 

The average agricultural holding in eastern Zambia is about 3 ha but holdings less that a hectare 

are quite common (Sitko et al., 2011). On the other hand, the large expanse of forest and grassland 

enables uninhibited burning in these cover types resulting in higher mean burn patch size. Analysis 

of burn patch sizes by physiographic region also reflects the difficulty placed on fire spread by 

landscape fragmentation. Small fires less than 5 ha are more frequent on the plateau than in the 

other regions. This has been observed in other studies which found that areas of higher human 

activity and landscape fragmentation had relatively smaller burn patches (Sá et al., 2007). 

The burn patch size distribution observed in this study has implications for remote sensing data to 

use in mapping fire in Zambia. While large burn patches may be reliably mapped with coarse 

resolution data such as Moderate Resolution Imaging Spectro-radiometer (MODIS) most of the 

smaller fires are missed. Missing these small fires can have a large impact on burned area 

estimation and on derived information such as biomass emission estimates. Randerson et.al (2012) 

accounted for the influence of small fires by combining 1-km thermal anomalies (active fires) with 

500 m MODIS burned area observations. Small fires significantly increased the total burned area 

by as much as 157% in some continental-scale regions and by as much as 35% globally. This 

increase in burned area substantially increased the estimated biomass emissions by as much as 

35%. The new multitemporal Landsat data in this study enabled the quantification of these small 

fire providing a more detailed view of fire activity in eastern Zambia.  
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4.6  CONCLUSION 

With the benefit of analysis at a higher spatial resolution, this study showed the fine-scale 

incidence of burning in eastern Zambia where about 60% of the area burned by end of the fire 

season in November. The burning pattern is characterized by a distinct spatial trend in which the 

valley region burns earlier than the plateau and transition regions. The burning is also characterized 

by small and dispersed fires earlier in the season and larger more homogenous fires occurring in 

the mid of the season. The study also showed the inadequacy of coarse spatial resolution MODIS 

data in characterizing the fine-scale fire activity and adds to earlier studies that have documented 

this limitation (Laris, 2005; Sá et al., 2007; Silva et al., 2005). Most of the fire activity, for example 

on the plateau region, was missed by the MODIS burned area product because of its coarse spatial 

resolution which is inadequate to map small fires associated with the higher level of fragmentation. 

Thus, to gain a better understanding of fire activity in such landscapes, it is of critical importance 

that higher resolution data such as Landsat data are used. 

This study relates fires, spatially and temporally, with landscape factors that modify fire behavior. 

The imagery analysis can now confirm how human activity and landscape structure interact to 

influence the spatial and temporal patterns of fire in eastern Zambia. The high fire occurrence 

observed in forest and grassland, in elevation between 671 and 1060 m, in areas with slopes greater 

than 4%, and in low settlement areas provide immediate insight on where fire management efforts 

must be directed. Higher human activity on the plateau has caused fragmentation of the landscape 

which provides some control on fire activity and might be considered a lower priority area.  

Lastly, this study demonstrated how available free earth observation data can be leveraged to 

address resource management issues such as fire disturbance in developing countries. Given the 

difficulties faced by developing countries in allocating budgets for resource management, the use 

of earth observation data presents a cost effective and efficient way of deriving relevant 

information about natural resources and the environment. This application provides a baseline for 

comparison with future studies in other areas of Zambia. Such studies are needed to provide 

resource managers with detailed and more specific information on sizes, patterns and timing of 

fires and the land covers impacted to plan fire management activities. The analysis was made 

possible by new tools developed to capitalize on the growing multitemporal Landsat data: 1) The 

multitemporal analysis with automatic training sample selection that makes the analysis data-
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driven and simple to implement, and produced greater than 92% accuracy in classification 

(Malambo and Heatwole, 2015a). Such automatic tools help reduce cost of training tasks that may 

require substantial human effort and support operational generation of relevant information, 2) The 

gap-filling tool that preserves change information, thus opens the archive of Landsat 7 imagery to 

meaningful multitemporal analysis (Malambo and Heatwole, 2015b). Land cover is in constant 

flux in many developing countries such as Zambia (Hansen et al., 2013) and spatially and 

temporally consistent data afforded by such tools can contribute to the assessment of various 

disturbances including deforestation, drought and fire.   
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Summary and Conclusions 

Fire burns extensive areas of vegetated landscapes across Zambia each year, a problem recognized 

as a major disturbance to biodiversity in the country. However, little has been done to manage the 

frequent occurrence of fires and there are very few studies on the dynamics of landscape fires.  A 

few regional studies (Archibald et al., 2010; Pricope and Binford, 2012) that included Zambia were 

carried out using coarse (500m ground sample distance) spatial resolution data. Access to 

multitemporal Landsat data has created the opportunity for mapping and monitoring fire 

disturbance at spatial resolutions adequate to capture the small and dispersed burn patches which 

characterize fire activity in Zambia. Research presented in the preceding chapters demonstrate the 

benefits and effectiveness of using multitemporal analysis for seasonal burn mapping, gap filling 

and in characterizing the spatial-temporal fire patterns in eastern Zambia.  

The first objective of this research was to develop and evaluate a multitemporal method for 

seasonal burned area mapping. While most methods use one or two images to map burned areas 

(French et al., 2008; Roy et al., 2002), this study capitalized on the growing temporal depth of 

Landsat data to develop a method  providing information on  where and when an area was burned 

and at a spatial resolution appropriate for monitoring many important land surface dynamics (Giri 

et al., 2013; Kennedy et al., 2007). We used eight images per sequence (over the May-Nov fire 

season) and detected burned areas based on characteristic temporal profiles is a new approach for 

Landsat based burned area mapping. The method also has potential to support fire monitoring 

programs and development of burn area inventories at higher spatial resolutions especially in 

developing countries such as Zambia where such inventories are currently lacking. By providing 

a timeline of when an area was burned, derived fire disturbance information can more explicitly 

applied to address fire management objectives, ecosystem impacts and carbon emissions (Eva and 

Lambin, 1998; Korontzi et al., 2003). The abrupt effect of burning on land cover spectral properties 

is shared by other disturbances such as deforestation and drought. Thus there is potential to adapt 

the method to map these disturbances as well. Other adaptations could also include the use of burn 

spectral indices other than the MIRBI used here and thus be better suited for environments where 

such indices are more effective. 
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The rich depth of temporal information was also used in developing a method for estimating 

missing values in multitemporal MIRBI data (Chapter 3). Again, existing approaches have mostly 

used two images to fill gaps in Landsat data based on the assumption of insignificant changes 

between the two images. To address the possibility of significant change due to fire, we used eight 

multitemporal images in estimating missing values. This study found that both spatial and temporal 

information are essential for adequate estimation of missing data when abrupt phenomena such as 

fire are involved. The similarity in phenological responses for broad classes of land cover was 

further exploited in profile alignment which enhanced the prediction of the missing values. Despite 

high levels of missing data, reasonably accurate estimates were obtained for all missing values 

which we attribute to use of the longer sequence of images. While the application here was based 

on burn-specific spectral index data, in the development and evaluation of the method we 

considered the potential for broader applicability to indices used in other disturbance studies, such 

as drought and deforestation, which exhibit abrupt changes with similarities to those of fire.  

Having developed methods for multitemporal burn mapping and the estimation of missing data in 

the first two objectives, the third objective sought to broaden our understanding of fire patterns in 

the study area by examining the correlation between derived seasonal burned areas with respect to 

land scape factors such as topography, land cover and settlement density. While a few regional 

studies (Archibald et al., 2010; Pricope and Binford, 2012) included Zambia in assessing fire 

patterns, these studies used coarse spatial resolution data which cannot capture the fine scale burn 

activity taking place in land cover such as cropland.  The use of Landsat-based burn information 

enabled quantification of burn patterns with high spatial detail. Results suggest that human activity 

and landscape structure interact to influence the spatial and temporal patterns of fire. The human 

factor has implications for fire management as highlighted by other studies. The use of fire is 

highly entrenched with many cultural and livelihood practices, thus any fire management strategies 

should involve local people (Eriksen, 2007). Different fire occurrence patterns by land cover were 

observed with forest land showing higher incidences for fire and larger burn patch sizes. However, 

the fire occurrence in cropland, though lower, is not insignificant. The impact of burning in each 

land cover type on carbon emissions must be appreciated even for current REDD+ programs in 

Zambia (Kokwe and Mickels-Kokwe, 2012; Vinya et al., 2011). As observed by Barlow et al 

(2012), REDD+ programs tend to focus narrowly on avoiding deforestation but overlook the 

impact of fire which may have consequences on reaching long-term emission reduction goals.  
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This research has demonstrated the effectiveness of multitemporal analysis for both extracting 

burn information and for estimating missing data, and has also contributed to knowledge of spatial 

and temporal patterns of fire in eastern Zambia. One opportunity for further research is the 

evaluation of fused datasets, such as those derived using STARFM, to improve the temporal 

resolution of the image sequence. The use of fused datasets would improve the reliability of burn 

detection and gap-filling in cases where Landsat data are not adequate. Fusion techniques could 

also be applied to comparable data such as that from SPOT satellites to enhance spatial and 

temporal information for estimation of missing data and for spatial-temporal mapping change 

detection.  Future missions such as the Sentinel 2 will also offer even better opportunities for 

creating spatially and temporal consistent Landsat datasets because of their wide range of spatial 

and temporal resolutions (Drusch et al., 2012). The other opportunity for further research concerns 

the evaluation of the imputation method developed here in estimating actual reflectance. 

Recovering actual reflectance data would support an even wider range of earth science 

applications.  
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Appendices 

APPENDIX A: CODE FOR PERFORMANCE ASSESSMENT OF BURNED AREA MAPPING METHOD 

(CHAPTER 2) 

MATLAB code to perform accuracy assessment, gather cluster sensitivity and variable importance 

data. The code requires MATLAB Statistics, Fuzzy Logic and Parallel Computing toolboxes. 

% ************************ Prepare input data **************************** 

% 

clc;clear;close all 

load sample2009 % load preselected sample for training sample selection 

minmf=0.5; % minimum membership cut-off 

ffactor=1.6; %fuzzy exponent 

jd=[139 155 187 195 227 259 275 307]; % Image acquisiotn dates -Julian 2009 

dtxt={'May19' 'Jun04' 'Jul06' 'Jul14' 'Aug15' 'Sep16' 'Oct02' 'Nov03'}; 

% /### for 2012 use: 

%   load sample2012; minmf=0.5;ffactor=1.3; 

%   jd=[140 188 204 220 236 268 284 316]; % Julian days 2012 

%  dtxt={'May19' 'Jul06' 'Jul22' 'Aug07' 'Aug23' 'Sep24' 'Oct10' 'Nov11'}; 

% ###/ 

% *************** Transform data to zscores/pre-allocate ****************** 

% 

[nr,ncol]=size(X);X=X(:);sd = mad(X,1);mn=median(X); 

X=(X-repmat(mn,size(X,1),1))./sd; X=reshape(X,nr,ncol); 

 

% seed values to control random processes 

s=[815,906,127,914,633,98,279,547,958,965,158,971,958,486,801,142,422,... 

    916,793,960,656,36,850,934,679,758,744,393,656,172]; 

% pre-allocate matrices 

vlmat=zeros(length(s),6); % holds performance metrics 

confmat=zeros(8,8,length(s));% N-D confusion matrix for all 30 runs 

trainmat=zeros(8,length(s)); % keeps track of no. train samples/class 

labelmat=cell(size(trainmat));% keeps track of corresponding class labels 

varImp=zeros(30,21); % variable importance matrix 

 

% *************** Run following stes for each seed value ***************** 

% 

for z=1:length(s) 

    rng(s(z)) 

 

    % Repeated clustering and refinement clustering 

    [center, mfmat, ~] = repeatedClustering(X, ffactor,minmf); 

    [ocenter, o_mfmat, ~] = refiningfcm(X, mfmat, ffactor,minmf); 

 

    % Select training signatures from refined clustering 

    esh=85; 

    [trData,trLabels, trClass] = selectTrainSamples(X,ocenter,o_mfmat,... 

                                                       minmf,esh,jd,dtxt); 

    d=tabulate(trLabels); 

    % triain RF 

    if ~matlabpool('size') 
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        matlabpool open 

    end 

    trdata=prepareData(trData,jd); % calculate 

    RandStream.setGlobalStream(RandStream('mlfg6331_64','seed',s(z))); 

    options = statset('UseParallel','always',... 

        'Streams',RandStream.getGlobalStream,... 

        'UseSubStreams','always'); % settings for parallel computing 

    ntrees=200; 

    mdl = TreeBagger(ntrees,trdata,trLabels,'options',options,'OOBPred',... 

                'On', 'oobvarimp','on','NVarToSample','all'); 

    varImp(z,:)=mdl.OOBPermutedVarDeltaError; % get variable importance 

    % Assess accuracy using out of bag samples 

    [lbl1OOB, pscore] = oobPredict(mdl); 

    [conf,classorder] = confusionmat(trLabels,lbl1OOB,'order',trClass); 

    %disp(dataset({conf,classorder{:}},'obsnames',classorder)); 

    occ=sum(diag(conf))/sum(conf(:))*100; % OOB overall accuracy 

 

    % Validate model with independent reference data 

    % 

    load Valdata2009 % loads validation data 

    [nr,ncol]=size(Y); 

    Y=Y(:); 

    Y=(Y-repmat(mn,size(Y,1),1))./sd; 

    Y=reshape(Y,nr,ncol); 

    Y=prepareData(Y,jd); 

    [predClass, Class_Score] = predict(mdl,Y); 

    [conf1,classorder1] = confusionmat(BurnClass,predClass,'order',... 

        {'Unburned' 'BurnJun04' 'BurnJul06' 'BurnJul14'... 

        'BurnAug15' 'BurnSep16' 'BurnOct02' 'BurnNov03'}); 

    occa=sum(diag(conf1))/sum(conf1(:))*100; % overall test accuracy 

    index = cellfun(@strcmp, BurnClass, predClass); 

    rg=1:length(BurnClass);rg=rg'; 

   xsx=table(rg(not(index)),BurnClass(not(index)),predClass(not(index)),... 

                                         LC(not(index)),'VariableNames',... 

                            {'Index' 'Reference' 'Predicted' 'Landcover'}); 

    if z==1 

        T=xsx; 

    else 

        T=[T;xsx]; %#ok<*AGROW> 

    end 

    % Capture performance metrics 

    confmat(:,:,z)=conf1; % multi-dimensional confusion matrix 

    vlmat(z,:)=[z s(z) size(ocenter,1) length(trLabels) occ occa]; 

    [st,lx]=sort(d(:,1)); labelmat(:,z)=st;trainmat(:,z)=cell2mat(d(lx,2)); 

end 

Supporting functions for Performance Assessment Code (Chapter 2) 

MATLAB function for repeated clustering step 

MATLAB code for repeated fuzzy clustering as described in section 2.3.4 and Figure 2.3 

function [center, mfmat, remp] = repeatedClustering(X, ffactor,minmf) 

% repeatedClustering Dataset clustering using repeated fuzzy c-means 

% 

%   [center, mfmat, remp] = repeatedClustering(X, ffactor,minmf) repeatedly 
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%   clusters dataset X using fuzzy c-means by imposing min. membership, 

%   minmf  to return the cumulative center matrix,center and 

%   partition matrix,mfmat. 

%       X  - is nxp matrix, 

%       ffactor - is scalar representing the fuzzifying paramter 

%       minmf - scalar representing min. membership 

%       center - kxp matrix, k is cumulative no. clusters 

%       mfmat -kxn cumulative fuzzy patrttion matrix 

%       remp - remainder unclustered samples 

% 

%  Lonesome Malambo, 11/8/2014 

dtm=X; [nr,~]=size(X);i=1; n=0;lmp=nr;ctrtmp=0; 

while not(ctrtmp) 

    if i==1 

        % determine optimal number of clusters 

        noClusters = getOptimalClusters(dtm, 

ffactor,minmf);%round(sqrt(size(dtm,1)/2)); 

        % do fuzzy partitions 

        [center,mfmat,~]=fcm(dtm,noClusters,[ffactor,200,0.00001,0]); 

        tw=(mfmat>=minmf); 

        sm=sum(tw,2); 

        ex=sm<=1; 

        if max(ex)>0 % delete low membership clusters 

            center(ex,:)=[]; 

            mfmat(ex,:)=[]; 

        end 

    else 

        % determine if there lower membership profiles in previous clustering 

        mxm=max(mfmat,[],1); 

        lmp=find(mxm<minmf);% low membership profiles 

 

        dtm=X(lmp,:); 

        % determine optimal number of clusters 

        if (n==length(lmp)) 

            noClusters = getOptimalClusters(dtm, 

ffactor,minmf)+1;%round(sqrt(size(dtm,1)/2)+5); 

        else 

            noClusters = getOptimalClusters(dtm, 

ffactor,minmf);%round(sqrt(size(dtm,1)/2)); 

        end 

        % stop if no of cluster is greater than data volume or is no of 

        % low membership profiles is less than 10pct of data 

 

        % Recluster low membership profiles only 

        [ctr,fmt,~]=fcm(dtm,noClusters,[ffactor,200,0.00001,0]); 

 

        mf=zeros(noClusters,nr)+0.00000001; 

        mf(:,lmp)=fmt; 

        % Update fuzzy matrix and center profiles 

        mfmat=[mfmat;mf];%#ok<*AGROW> % final membership matrix 

        center=[center;ctr]; 

 

        tw=(mfmat>=minmf); 

        sm=sum(tw,2); 

        ex=sm<=1; 

        if max(ex)>0 % delete low membership clusters 

            center(ex,:)=[]; 
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            mfmat(ex,:)=[]; 

        end 

        

%isempty(lmp)||(n==length(lmp))(length(lmp)<noClusters)||(length(lmp)<0.15*nr

) 

        ctrtmp=(isempty(lmp))||(length(lmp)<0.10*nr)||... 

            (n==length(lmp))||(length(lmp)<noClusters); 

    end 

n=length(lmp); 

i=i+1; 

 

end 

% final clean up 

remp=lmp; 

end 

MATLAB function for refining fuzzy clustering step 

MATLAB code for repeated fuzzy clustering as described in section 2.3.4 and Figure 2.3 

function [ocenter, o_mfmat, obj_fcn] = refiningfcm(data, mfmat, 

ffactor,minmf) 

%FCM_MR Data set clustering using fuzzy c-means clustering with specified 

% partition matrix. 

%%   [center, mfmat, obj_fcn] = fcm_mr(data, mfmat, ffactor,minmf) clusters 

%   data into k clusters based on fuzzy partition matrix mfmat. 

%       data - is mxn matrix, m is no. of data points, n is no. variables 

%       mfmat - pxm matrix for the fuzzy partition matrix 

%       ffactor - scalar for fuzzy paramter 

%       minmf - scalar for min. membership 

%       center - kxn center matrix, k==p is no deletions 

%       mfmat -  kxm output fuzzy partition matrix 

%   Lonesome Malambo, 11/09/2014 

%   stepfcm is function in Fuzzy Logic Toolbox, The MathWorks,Inc.1994-2014 

 

max_iter = 200;  % Max. iteration 

 

obj_fcn = zeros(max_iter, 1); % Array for objective function 

 

% Main loop 

cluster_n=size(mfmat,1); 

for i = 1:max_iter, 

 [mfmat, ocenter, obj_fcn(i)] = stepfcm(data, mfmat, cluster_n, 

ffactor); 

 % check termination condition 

 if i > 1, 

  if abs(obj_fcn(i) - obj_fcn(i-1)) < 0.00001, break; end, 

 end 

end 

iter_n = i; % Actual number of iterations 

obj_fcn(iter_n+1:max_iter) = []; 

% Delete low membership clusters if exist 

tw=(mfmat>=minmf); sm=sum(tw,2); ex=sm<=0; o_mfmat=mfmat; 

if max(ex)>0 

    ocenter(ex,:)=[]; 

    o_mfmat(ex,:)=[]; 

end 
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MATLAB function for training sample selection and labeling 

MATLAB code for training sample selection and labeling as described in section 2.3.4 and Figure 

2.4 

function [trData,trLabels, trClass] = 

selectTrainSamples(X,center,mfmat,minmf,esh,jd,dtxt) 

% selectTrainSamples selects training samples based on cluster purity of a 

% cluster core using changepoints as class labels. 

 

% X - input data 

% center - cluster centers 

% mfmat - fuzzy partition matrix 

% minmf - minimum membership value 

% esh - minimum purity value for cluster to be taken as pure and fit for 

% training purposes. 

% jd - sequence of image acquisition dates in julian calendar 

 

% convert to gradient values 

XX=diff(X,1,2); jdd=diff(jd); nn=round(mean(jdd)); 

jdn=min(jd):nn:min(jd)+(length(jd)-1)*nn; % make uniform 

jddn=diff(jdn); XX= (XX./repmat(jddn,size(XX,1),1)); % gradient data 

 

% updated center gradient profiles 

ctrg=diff(center,1,2); ctrg= ctrg./repmat(jdd,size(ctrg,1),1); 

 

trD=zeros(size(XX,1),1); % training sample index vector 

trL=trD;% training sample label vector 

 

z=0; [nc,~]=size(ctrg); [hh,ss]=sort(mfmat,2,'descend');%sort by column 

selmat=zeros(nc,3); 

% characterize cluster quality 

for i=1:size(ctrg,1) 

    cc=hh(i,:); 

    ix=find(cc>=minmf,100,'first'); tt=ss(i,:); ix=tt(ix);% core indices 

 

    if ~isempty(ix)&&(length(ix)>=3) % core must >= 3 

        bot=zeros(length(ix),1);% per cluster purity matrix 

    else 

        selmat(i,:)=[100 0 1]; 

        continue 

    end 

    for j=1:length(ix) 

        r=ix(j); 

        ctr=XX(r,:); 

        [outlier_point,~] = dixonQtest(ctr,95); 

        if ~isempty(outlier_point) 

            mnc=mean(ctr); 

            if mnc<ctr(outlier_point) 

                bot(j)=outlier_point;% if +ve outlier then burned 

            elseif mnc<0 

                bot(j)=0; % if -ve outlier then unburned 

            else 

                bot(j)=-9; 

            end 

        else 
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            mnc=mean(ctr); 

            if mnc<0 

                bot(j)=0;% if no outlier then unburned 

            else 

                bot(j)=-9;% if no outlier then unburned 

            end 

        end 

    end 

 

    e=entropyc(bot); 

    if e(2)<esh 

        del=1; % do not use for training selection 

    else 

        del=0;mlb=mode(bot); % mode label 

        ts=bot==mlb;ix=ix(ts); % exclude discordant samples 

        xx=(z+1):(z+length(ix));trD(xx,:)=ix'; trL(xx,:)=mlb;z=xx(end); 

    end 

    selmat(i,:)=[e del]; 

end 

trD(z+1:end)=[];trL(z+1:end)=[]; trainData=unique([trD trL],'rows'); 

 

% Label training data 

class=sort(unique(trainData(:,2))); trc=cell(size(trainData(:,2))); 

classorder=cell(size(class)); 

for i=1:length(class) 

    cid=class(i); 

    tf=trainData(:,2)==cid; 

    if cid>0 

        lb={['Burn' dtxt{cid+1}]}; 

    elseif cid==0 

        lb={'Unburned'}; 

    else 

        lb={'trash'}; 

    end 

    trc(tf)=lb; 

    classorder(i)=lb; 

 

end 

% restrict to valid data 

gx=trainData(:,2)>=0;td=trainData(:,1);gx1=td(gx);trData=X(gx1,:); 

trLabels=trc(gx,:); 

 

ht= ~cellfun(@(x) strcmp(x,'trash'),classorder); % indices for non-crop 

trClass=classorder(ht); 

 

end 

Miscellaneous MATLAB supporting functions (Chapter 2) 

function [outlier_point,outlier_value] = dixonQtest(X,conf) 

% dixoQtest Outlier detection using Dixon Q test for 3<=N<=10 

% 

%  [outlier_point,outlier_value] = dixonQtest(X,conf) finds the positive 

%  outlier in X at a conf confidence level and returns the outlier 

%  position in X, outlier_point, and the corresponding outlier value, 

%  outlier_value. 

%       X - nx1 or 1xn vector 
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%       conf - scalar for confidence level valid values=[90,95,99] 

%       outlier_point - scalar if outlier is detected, otherwise is empty 

%       outlier_value - scalar if outlier is detected, otherwise is empty 

% 

%  Lonesome Malambo 11/08/2014 

% 

%  References: 

%       http://www.chem.uoa.gr/applets/AppletQtest/Appl_Qtest2.html 

% 

%       Rorabacher, D.B. (1991). Statistical Treatment for Rejection of 

%       Deviant Values: Critical Values of Dixon Q Parameter and Related 

%       Subrange Ratios at the 95 percent Confidence Level. Anal. Chem. 

%       83, 2, 139-146. 

 

% Critical values of Q,90,95 and 99% CL by column 

Qtable=[3 0.941 0.970 0.994; 

    4 0.765 0.829 0.926; 

    5 0.642 0.710 0.821; 

    6 0.560 0.625 0.740; 

    7 0.507 0.568 0.680; 

    8 0.468 0.526 0.634; 

    9 0.437 0.493 0.598; 

    10 0.412 0.466 0.568;]; 

 

if ~ismember(conf,[90,95,99]) 

    error('Only 90, 95 or 99 are valid values for confidence interval') 

end 

if ~isvector(X) 

    error('X must be a vector') 

end 

if length(X)<3||length(X)>10 

    error('X must be length 3-10') 

end 

 

[xs,id]=sort(X); % sort values 

q=(xs(end)-xs(end-1))/range(xs); % q statistic 

n=length(X); 

if conf==90 

    tf=ismember(Qtable(:,1),n); 

    qt=Qtable(tf,2); 

elseif conf==95 

    tf=ismember(Qtable(:,1),n); 

    qt=Qtable(tf,3); 

else 

    tf=ismember(Qtable(:,1),n); 

    qt=Qtable(tf,4); 

end 

% Q test 

if q>qt % then its an outlier 

    outlier_point=id(end); 

    outlier_value=xs(end); 

else 

    outlier_point=[]; 

    outlier_value=[]; 

end 

 

end 



127 

 

 

function noClusters = estimateNumberClusters(X, ffactor,minmf) 

% estimateNumberClusters estimates the number of clusters,noClusters,by 

% repeatedly clustering a samples of the dataset X until one or more empty 

% clusters are detected following: 

% Futschik, M. E. and B. Carlisle (2005). 

%   "Noise-robust soft clustering of gene expression time-course data." 

%   Journal of Bioinformatics and Computational Biology 03(04): 965-988. 

% 

% ffactor - scalar for the fuzzifying parameter 

% minmf - scalar for min. membership 

 

[nr,~]=size(X); 

if nr>1000 % get a 40% radom sample if data is large. 

    smp=floor(0.4*nr); 

    y = datasample(1:nr,smp,'Replace',false); 

    X=X(y,:); 

end 

nc=3:50; 

    for i=1:length(nc) 

            [~,fmat,~]=fcm_m(X,nc(i),[ffactor,100,0.001,0]); 

            tw=(fmat>=minmf); 

            sm=sum(tw,2); 

            %ec=max(fmat,[],2); 

 

            nec=numel(find(sm(sm<2))); 

            if nec>0 % if empty cluster found 

                noClusters=nc(i)-1; 

                break 

            else 

                noClusters=nc(i); 

            end 

    end 

 

end 

 

function enty = entropyc( bot ) 

%ENTROPYC calculates the entropy and cluster purity of cluster using 

% change point label frequencies 

 

uv=unique(bot); 

ent=zeros(length(uv),1); 

pcnt=zeros(length(uv),1); 

for i=1:length(uv) 

   id=uv(i); 

   ix=find(bot==id); 

   pcnt(i)=length(ix); 

   p=length(ix)/length(bot); 

   ent(i)=-p*log2(p); 

end 

enty=[sum(ent),max(pcnt)/length(bot)*100]; 

end 

 

function [ data ] = prepareData(X,jd) 

%prepareData calculate features from data X for classification 

% jd is the sequence of julian days 
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% Fetaures calculated include the min,max,mean and successive gradients of 

% X 

mnmx_X=[min(X,[],2) mean(X,2) max(X,[],2)]; 

% gradient data 

XX=diff(X,1,2); 

jdd=diff(jd); 

nn=round(mean(jdd)); 

jdn=min(jd):nn:min(jd)+(length(jd)-1)*nn; 

jddn=diff(jdn); 

XX= 100*(XX./repmat(jddn,size(XX,1),1)); % gradient data 

mnmx_grad=[min(XX,[],2) mean(XX,2) max(XX,[],2)]; 

 

data=[X mnmx_X XX mnmx_grad]; %all data 

 

end 

APPENDIX B: VALIDATION DATA FOR BURNED AREA MAPPING  (CHAPTER 2) 

Validation points for 2009 used in Chapter 2, with X and Y coordinates (WGS 1984 UTM Zone 

36S), burn class and associated land cover type. The Burn class labels have been shortened due to 

space limitation e.g. BurnJun06 instead of Burn by Jun06 used in Chapter 2.  

ID X Y Land cover Burn class ID X Y Land cover Burn class 

1 445845 8694145 Grassland Unburned 526 450345 8656225 Grassland BurnJul06 

2 446505 8693155 Grassland Unburned 527 446565 8655805 Grassland BurnJul06 

3 451065 8692315 Grassland Unburned 528 448215 8655415 Grassland BurnJul06 

4 439095 8692255 Grassland Unburned 529 454395 8652535 Grassland BurnJul06 

5 454215 8691865 Grassland Unburned 530 451575 8651005 Grassland BurnJul06 

6 442665 8691655 Grassland Unburned 531 459015 8694235 Forest BurnJul06 

7 461235 8690815 Grassland Unburned 532 460425 8693995 Forest BurnJul06 

8 448605 8690755 Grassland Unburned 533 460215 8693905 Forest BurnJul06 

9 438765 8690305 Grassland Unburned 534 462945 8692735 Forest BurnJul06 

10 459435 8690155 Grassland Unburned 535 461895 8692735 Forest BurnJul06 

11 440955 8689945 Grassland Unburned 536 452325 8692225 Forest BurnJul06 

12 450165 8689555 Grassland Unburned 537 465525 8689165 Forest BurnJul06 

13 436635 8688715 Grassland Unburned 538 455595 8688805 Forest BurnJul06 

14 456945 8687695 Grassland Unburned 539 465375 8688295 Forest BurnJul06 

15 440055 8687215 Grassland Unburned 540 447765 8688025 Forest BurnJul06 

16 462135 8686915 Grassland Unburned 541 465285 8684335 Forest BurnJul06 

17 443445 8686615 Grassland Unburned 542 461805 8683975 Forest BurnJul06 

18 439275 8686255 Grassland Unburned 543 461835 8683915 Forest BurnJul06 

19 442005 8684845 Grassland Unburned 544 467505 8682175 Forest BurnJul06 

20 434535 8684065 Grassland Unburned 545 459105 8681275 Forest BurnJul06 

21 447165 8683225 Grassland Unburned 546 467445 8677315 Forest BurnJul06 
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ID X Y Land cover Burn class ID X Y Land cover Burn class 

22 439215 8682445 Grassland Unburned 547 446625 8673445 Forest BurnJul06 

23 437775 8681605 Grassland Unburned 548 462885 8672995 Forest BurnJul06 

24 436965 8678755 Grassland Unburned 549 464835 8671795 Forest BurnJul06 

25 457995 8678665 Grassland Unburned 550 465285 8671585 Forest BurnJul06 

26 435765 8677975 Grassland Unburned 551 465075 8666635 Forest BurnJul06 

27 443505 8677795 Grassland Unburned 552 464475 8665885 Forest BurnJul06 

28 437625 8677675 Grassland Unburned 553 466335 8662705 Forest BurnJul06 

29 437925 8677675 Grassland Unburned 554 455325 8660335 Forest BurnJul06 

30 439365 8677435 Grassland Unburned 555 455235 8660245 Forest BurnJul06 

31 454215 8677165 Grassland Unburned 556 463485 8660215 Forest BurnJul06 

32 447615 8676145 Grassland Unburned 557 438435 8658835 Forest BurnJul06 

33 452415 8675485 Grassland Unburned 558 448395 8657455 Forest BurnJul06 

34 453165 8674345 Grassland Unburned 559 459555 8656795 Forest BurnJul06 

35 434025 8673265 Grassland Unburned 560 476235 8656165 Forest BurnJul06 

36 471255 8665855 Grassland Unburned 561 453885 8655685 Forest BurnJul06 

37 443055 8663215 Grassland Unburned 562 447285 8655625 Forest BurnJul06 

38 465435 8658955 Grassland Unburned 563 447405 8655565 Forest BurnJul06 

39 464115 8657905 Grassland Unburned 564 455355 8655415 Forest BurnJul06 

40 462135 8656345 Grassland Unburned 565 450645 8655085 Forest BurnJul06 

41 464745 8655025 Grassland Unburned 566 476355 8654245 Forest BurnJul06 

42 450315 8652205 Grassland Unburned 567 472395 8653945 Forest BurnJul06 

43 444525 8651995 Grassland Unburned 568 472005 8653885 Forest BurnJul06 

44 445035 8651005 Grassland Unburned 569 473445 8653615 Forest BurnJul06 

45 439395 8693185 Cropland Unburned 570 472755 8652955 Forest BurnJul06 

46 449595 8692585 Cropland Unburned 571 472665 8652865 Forest BurnJul06 

47 436845 8692525 Cropland Unburned 572 473325 8652805 Forest BurnJul06 

48 456975 8692525 Cropland Unburned 573 472755 8652715 Forest BurnJul06 

49 476265 8692495 Cropland Unburned 574 441285 8652625 Forest BurnJul06 

50 438315 8692315 Cropland Unburned 575 462915 8652325 Forest BurnJul06 

51 458805 8692225 Cropland Unburned 576 453825 8651575 Forest BurnJul06 

52 459495 8692075 Cropland Unburned 577 449085 8688865 Cropland BurnJul06 

53 476055 8691775 Cropland Unburned 578 436665 8688595 Cropland BurnJul06 

54 475395 8691685 Cropland Unburned 579 437325 8662945 Cropland BurnJul06 

55 476355 8691535 Cropland Unburned 580 440805 8660425 Cropland BurnJul06 

56 456855 8691535 Cropland Unburned 581 436155 8660275 Cropland BurnJul06 

57 476025 8691535 Cropland Unburned 582 443295 8660215 Cropland BurnJul06 

58 476595 8691445 Cropland Unburned 583 436095 8660185 Cropland BurnJul06 

59 475515 8689825 Cropland Unburned 584 443235 8660125 Cropland BurnJul06 

60 435555 8689825 Cropland Unburned 585 443445 8660035 Cropland BurnJul06 

61 476355 8689615 Cropland Unburned 586 445005 8659795 Cropland BurnJul06 
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62 475215 8688955 Cropland Unburned 587 447915 8659525 Cropland BurnJul06 

63 474195 8688835 Cropland Unburned 588 447945 8659495 Cropland BurnJul06 

64 451935 8687305 Cropland Unburned 589 441525 8659495 Cropland BurnJul06 

65 435435 8686915 Cropland Unburned 590 441915 8659405 Cropland BurnJul06 

66 444375 8686525 Cropland Unburned 591 442035 8659405 Cropland BurnJul06 

67 439215 8684395 Cropland Unburned 592 441375 8659375 Cropland BurnJul06 

68 471285 8682415 Cropland Unburned 593 442485 8659345 Cropland BurnJul06 

69 439845 8682295 Cropland Unburned 594 452895 8658775 Cropland BurnJul06 

70 433845 8681155 Cropland Unburned 595 452715 8658715 Cropland BurnJul06 

71 437835 8679565 Cropland Unburned 596 452745 8658685 Cropland BurnJul06 

72 438705 8677555 Cropland Unburned 597 446205 8657785 Cropland BurnJul06 

73 438855 8677555 Cropland Unburned 598 446745 8657695 Cropland BurnJul06 

74 438435 8677555 Cropland Unburned 599 446535 8657695 Cropland BurnJul06 

75 438795 8677555 Cropland Unburned 600 440355 8657665 Cropland BurnJul06 

76 438645 8677525 Cropland Unburned 601 446925 8657665 Cropland BurnJul06 

77 438885 8677525 Cropland Unburned 602 440055 8657635 Cropland BurnJul06 

78 438525 8677525 Cropland Unburned 603 446625 8657635 Cropland BurnJul06 

79 438465 8677525 Cropland Unburned 604 448155 8657425 Cropland BurnJul06 

80 435315 8677105 Cropland Unburned 605 445785 8656915 Cropland BurnJul06 

81 442005 8677045 Cropland Unburned 606 445335 8656915 Cropland BurnJul06 

82 433695 8671405 Cropland Unburned 607 445725 8656885 Cropland BurnJul06 

83 468615 8670265 Cropland Unburned 608 445725 8656855 Cropland BurnJul06 

84 433755 8669485 Cropland Unburned 609 446115 8656825 Cropland BurnJul06 

85 445005 8657935 Cropland Unburned 610 446205 8656795 Cropland BurnJul06 

86 462915 8656375 Cropland Unburned 611 445515 8656795 Cropland BurnJul06 

87 449985 8655265 Cropland Unburned 612 446475 8656765 Cropland BurnJul06 

88 449685 8655175 Cropland Unburned 613 446565 8656765 Cropland BurnJul06 

89 450525 8653195 Cropland Unburned 614 446235 8656735 Cropland BurnJul06 

90 450285 8653135 Cropland Unburned 615 446895 8656705 Cropland BurnJul06 

91 436185 8691715 Forest Unburned 616 446835 8656675 Cropland BurnJul06 

92 472755 8691145 Forest Unburned 617 446595 8656615 Cropland BurnJul06 

93 435495 8688865 Forest Unburned 618 446985 8656585 Cropland BurnJul06 

94 438675 8688385 Forest Unburned 619 441585 8656435 Cropland BurnJul06 

95 445125 8685505 Forest Unburned 620 443565 8656105 Cropland BurnJul06 

96 463455 8683645 Forest Unburned 621 474315 8693035 Forest BurnSep16 

97 436935 8682745 Forest Unburned 622 473445 8692105 Forest BurnSep16 

98 437985 8682595 Forest Unburned 623 464595 8688535 Forest BurnSep16 

99 452025 8682385 Forest Unburned 624 469305 8687845 Forest BurnSep16 

100 446895 8681185 Forest Unburned 625 455745 8686915 Forest BurnSep16 

101 473985 8678215 Forest Unburned 626 469335 8686735 Forest BurnSep16 
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102 476355 8677765 Forest Unburned 627 468435 8685865 Forest BurnSep16 

103 433965 8677195 Forest Unburned 628 472365 8683285 Forest BurnSep16 

104 437115 8675875 Forest Unburned 629 461205 8681065 Forest BurnSep16 

105 455955 8675035 Forest Unburned 630 444105 8679715 Forest BurnSep16 

106 438165 8674645 Forest Unburned 631 441855 8679115 Forest BurnSep16 

107 473235 8672515 Forest Unburned 632 462015 8678125 Forest BurnSep16 

108 473805 8670445 Forest Unburned 633 461235 8677255 Forest BurnSep16 

109 464085 8669875 Forest Unburned 634 453255 8675275 Forest BurnSep16 

110 452085 8668675 Forest Unburned 635 454905 8675095 Forest BurnSep16 

111 431235 8667805 Forest Unburned 636 443685 8673925 Forest BurnSep16 

112 470805 8666725 Forest Unburned 637 457575 8673865 Forest BurnSep16 

113 436335 8666125 Forest Unburned 638 450135 8673835 Forest BurnSep16 

114 450495 8665975 Forest Unburned 639 445335 8673625 Forest BurnSep16 

115 453465 8665555 Forest Unburned 640 470565 8672695 Forest BurnSep16 

116 467205 8664385 Forest Unburned 641 443535 8671885 Forest BurnSep16 

117 470475 8664085 Forest Unburned 642 458115 8671675 Forest BurnSep16 

118 443445 8664025 Forest Unburned 643 443145 8670955 Forest BurnSep16 

119 468255 8663245 Forest Unburned 644 449295 8670115 Forest BurnSep16 

120 459675 8662645 Forest Unburned 645 443535 8669905 Forest BurnSep16 

121 459135 8661625 Forest Unburned 646 437145 8669875 Forest BurnSep16 

122 469725 8661115 Forest Unburned 647 440295 8669515 Forest BurnSep16 

123 470475 8660965 Forest Unburned 648 442005 8669155 Forest BurnSep16 

124 457515 8660095 Forest Unburned 649 444135 8667835 Forest BurnSep16 

125 473175 8658565 Forest Unburned 650 438345 8663845 Forest BurnSep16 

126 458055 8658025 Forest Unburned 651 471675 8663845 Forest BurnSep16 

127 464775 8657995 Forest Unburned 652 466185 8663515 Forest BurnSep16 

128 464625 8657965 Forest Unburned 653 464535 8662915 Forest BurnSep16 

129 467925 8657425 Forest Unburned 654 464655 8662855 Forest BurnSep16 

130 440535 8656615 Forest Unburned 655 432405 8662765 Forest BurnSep16 

131 476595 8654245 Forest Unburned 656 473685 8662465 Forest BurnSep16 

132 442095 8653525 Forest Unburned 657 475905 8662345 Forest BurnSep16 

133 437865 8653075 Forest Unburned 658 472395 8661805 Forest BurnSep16 

134 465555 8653045 Forest Unburned 659 449565 8661145 Forest BurnSep16 

135 458145 8651995 Forest Unburned 660 430545 8659135 Forest BurnSep16 

136 470715 8651125 Forest Unburned 661 472035 8658715 Forest BurnSep16 

137 455745 8691685 Grassland BurnAug15 662 460575 8658445 Forest BurnSep16 

138 464895 8691445 Grassland BurnAug15 663 448215 8658355 Forest BurnSep16 

139 473205 8691115 Grassland BurnAug15 664 442425 8657245 Forest BurnSep16 

140 446265 8690185 Grassland BurnAug15 665 470865 8657095 Forest BurnSep16 

141 460335 8689105 Grassland BurnAug15 666 436995 8656135 Forest BurnSep16 
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142 474735 8689045 Grassland BurnAug15 667 457575 8655955 Forest BurnSep16 

143 475695 8687815 Grassland BurnAug15 668 438435 8655865 Forest BurnSep16 

144 474705 8687815 Grassland BurnAug15 669 461745 8655505 Forest BurnSep16 

145 452505 8686345 Grassland BurnAug15 670 462045 8653465 Forest BurnSep16 

146 455445 8685775 Grassland BurnAug15 671 472755 8693035 Grassland BurnSep16 

147 452205 8685355 Grassland BurnAug15 672 467745 8690035 Grassland BurnSep16 

148 466095 8685175 Grassland BurnAug15 673 455985 8689705 Grassland BurnSep16 

149 454905 8684995 Grassland BurnAug15 674 470265 8689555 Grassland BurnSep16 

150 467835 8684875 Grassland BurnAug15 675 448755 8687935 Grassland BurnSep16 

151 458235 8684395 Grassland BurnAug15 676 469815 8687545 Grassland BurnSep16 

152 466065 8684305 Grassland BurnAug15 677 471705 8687485 Grassland BurnSep16 

153 466575 8684215 Grassland BurnAug15 678 473325 8687185 Grassland BurnSep16 

154 456915 8683645 Grassland BurnAug15 679 465915 8686165 Grassland BurnSep16 

155 457845 8683465 Grassland BurnAug15 680 453555 8686105 Grassland BurnSep16 

156 468615 8683045 Grassland BurnAug15 681 471165 8683465 Grassland BurnSep16 

157 460875 8682025 Grassland BurnAug15 682 453615 8683225 Grassland BurnSep16 

158 469155 8681965 Grassland BurnAug15 683 440385 8683135 Grassland BurnSep16 

159 464835 8680495 Grassland BurnAug15 684 464415 8682565 Grassland BurnSep16 

160 465945 8679505 Grassland BurnAug15 685 473655 8682025 Grassland BurnSep16 

161 472275 8679355 Grassland BurnAug15 686 448125 8681035 Grassland BurnSep16 

162 460215 8677405 Grassland BurnAug15 687 450525 8680795 Grassland BurnSep16 

163 461625 8675185 Grassland BurnAug15 688 449685 8680735 Grassland BurnSep16 

164 464025 8674855 Grassland BurnAug15 689 445185 8679445 Grassland BurnSep16 

165 447705 8672185 Grassland BurnAug15 690 467385 8679295 Grassland BurnSep16 

166 444765 8667835 Grassland BurnAug15 691 467475 8678125 Grassland BurnSep16 

167 441375 8667385 Grassland BurnAug15 692 455175 8678035 Grassland BurnSep16 

168 441855 8666305 Grassland BurnAug15 693 468975 8677975 Grassland BurnSep16 

169 436875 8663005 Grassland BurnAug15 694 442335 8677915 Grassland BurnSep16 

170 436635 8654305 Grassland BurnAug15 695 449325 8677885 Grassland BurnSep16 

171 436725 8654305 Grassland BurnAug15 696 456465 8677825 Grassland BurnSep16 

172 455505 8654275 Grassland BurnAug15 697 450645 8677765 Grassland BurnSep16 

173 436575 8654275 Grassland BurnAug15 698 463995 8677585 Grassland BurnSep16 

174 436695 8654245 Grassland BurnAug15 699 442665 8676865 Grassland BurnSep16 

175 436575 8654215 Grassland BurnAug15 700 443745 8676775 Grassland BurnSep16 

176 436575 8654185 Grassland BurnAug15 701 445845 8676535 Grassland BurnSep16 

177 435825 8653435 Grassland BurnAug15 702 451215 8675695 Grassland BurnSep16 

178 435765 8653405 Grassland BurnAug15 703 454605 8675155 Grassland BurnSep16 

179 442815 8653375 Grassland BurnAug15 704 443415 8674885 Grassland BurnSep16 

180 435825 8653345 Grassland BurnAug15 705 448185 8674075 Grassland BurnSep16 

181 458475 8653015 Grassland BurnAug15 706 452505 8673415 Grassland BurnSep16 
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182 458955 8652985 Grassland BurnAug15 707 460905 8673355 Grassland BurnSep16 

183 447195 8651695 Grassland BurnAug15 708 455445 8673055 Grassland BurnSep16 

184 473775 8691025 Cropland BurnAug15 709 448815 8671105 Grassland BurnSep16 

185 474435 8689015 Cropland BurnAug15 710 473715 8669425 Grassland BurnSep16 

186 449085 8688805 Cropland BurnAug15 711 448005 8669275 Grassland BurnSep16 

187 455865 8687785 Cropland BurnAug15 712 458895 8664595 Grassland BurnSep16 

188 451335 8686495 Cropland BurnAug15 713 445035 8660905 Grassland BurnSep16 

189 468285 8683045 Cropland BurnAug15 714 458985 8659705 Grassland BurnSep16 

190 468915 8681995 Cropland BurnAug15 715 456435 8658115 Grassland BurnSep16 

191 468615 8681065 Cropland BurnAug15 716 441705 8656435 Grassland BurnSep16 

192 469815 8666005 Cropland BurnAug15 717 435825 8655325 Grassland BurnSep16 

193 431385 8663845 Cropland BurnAug15 718 442515 8654275 Grassland BurnSep16 

194 435285 8662255 Cropland BurnAug15 719 442005 8651515 Grassland BurnSep16 

195 444375 8662015 Cropland BurnAug15 720 438945 8651035 Grassland BurnSep16 

196 434565 8661445 Cropland BurnAug15 721 462075 8692795 Cropland BurnSep16 

197 434655 8661415 Cropland BurnAug15 722 472335 8690095 Cropland BurnSep16 

198 439035 8660755 Cropland BurnAug15 723 472635 8690065 Cropland BurnSep16 

199 438975 8660725 Cropland BurnAug15 724 474375 8689795 Cropland BurnSep16 

200 440595 8660545 Cropland BurnAug15 725 474315 8689795 Cropland BurnSep16 

201 440655 8660485 Cropland BurnAug15 726 469725 8689765 Cropland BurnSep16 

202 439305 8659825 Cropland BurnAug15 727 469875 8689525 Cropland BurnSep16 

203 439065 8659825 Cropland BurnAug15 728 469575 8689525 Cropland BurnSep16 

204 439215 8659825 Cropland BurnAug15 729 459885 8689135 Cropland BurnSep16 

205 439245 8659795 Cropland BurnAug15 730 468855 8688745 Cropland BurnSep16 

206 439275 8659765 Cropland BurnAug15 731 468945 8687755 Cropland BurnSep16 

207 445515 8659735 Cropland BurnAug15 732 464805 8687395 Cropland BurnSep16 

208 441885 8659285 Cropland BurnAug15 733 453015 8687305 Cropland BurnSep16 

209 464295 8658925 Cropland BurnAug15 734 472845 8687185 Cropland BurnSep16 

210 444975 8658925 Cropland BurnAug15 735 473655 8687125 Cropland BurnSep16 

211 444825 8658925 Cropland BurnAug15 736 455955 8685865 Cropland BurnSep16 

212 446625 8658685 Cropland BurnAug15 737 470055 8684725 Cropland BurnSep16 

213 446955 8658565 Cropland BurnAug15 738 459615 8682325 Cropland BurnSep16 

214 442005 8658385 Cropland BurnAug15 739 466935 8682235 Cropland BurnSep16 

215 443445 8658145 Cropland BurnAug15 740 459855 8681395 Cropland BurnSep16 

216 441045 8657515 Cropland BurnAug15 741 453435 8676325 Cropland BurnSep16 

217 450825 8657155 Cropland BurnAug15 742 431505 8662885 Cropland BurnSep16 

218 450915 8657095 Cropland BurnAug15 743 436245 8662165 Cropland BurnSep16 

219 451275 8657035 Cropland BurnAug15 744 436425 8662165 Cropland BurnSep16 

220 447405 8656675 Cropland BurnAug15 745 436365 8662105 Cropland BurnSep16 

221 448005 8656525 Cropland BurnAug15 746 446385 8661685 Cropland BurnSep16 
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222 448095 8656375 Cropland BurnAug15 747 434415 8661415 Cropland BurnSep16 

223 443445 8656135 Cropland BurnAug15 748 442155 8661295 Cropland BurnSep16 

224 450795 8655145 Cropland BurnAug15 749 438075 8660965 Cropland BurnSep16 

225 449475 8693545 Forest BurnAug15 750 446565 8660575 Cropland BurnSep16 

226 467565 8692915 Forest BurnAug15 751 439305 8658715 Cropland BurnSep16 

227 459255 8692165 Forest BurnAug15 752 447195 8658655 Cropland BurnSep16 

228 462705 8686675 Forest BurnAug15 753 440685 8658595 Cropland BurnSep16 

229 461475 8685865 Forest BurnAug15 754 440565 8658595 Cropland BurnSep16 

230 458235 8685415 Forest BurnAug15 755 447495 8658475 Cropland BurnSep16 

231 464055 8679775 Forest BurnAug15 756 447945 8658475 Cropland BurnSep16 

232 470325 8678665 Forest BurnAug15 757 449025 8658385 Cropland BurnSep16 

233 459615 8677405 Forest BurnAug15 758 442605 8658355 Cropland BurnSep16 

234 472335 8676415 Forest BurnAug15 759 441885 8657485 Cropland BurnSep16 

235 469515 8675875 Forest BurnAug15 760 443235 8657245 Cropland BurnSep16 

236 468435 8675035 Forest BurnAug15 761 449205 8655385 Cropland BurnSep16 

237 471165 8674705 Forest BurnAug15 762 449295 8655295 Cropland BurnSep16 

238 473445 8674255 Forest BurnAug15 763 451665 8653045 Cropland BurnSep16 

239 466575 8673295 Forest BurnAug15 764 454215 8652535 Cropland BurnSep16 

240 439845 8671465 Forest BurnAug15 765 452475 8694145 Grassland BurnOct02 

241 447345 8671375 Forest BurnAug15 766 459585 8691205 Grassland BurnOct02 

242 447435 8671375 Forest BurnAug15 767 443355 8690545 Grassland BurnOct02 

243 447435 8671285 Forest BurnAug15 768 456675 8689585 Grassland BurnOct02 

244 445935 8669635 Forest BurnAug15 769 442485 8688715 Grassland BurnOct02 

245 433965 8668375 Forest BurnAug15 770 467535 8687875 Grassland BurnOct02 

246 467175 8667445 Forest BurnAug15 771 468345 8687755 Grassland BurnOct02 

247 467895 8667205 Forest BurnAug15 772 443775 8687665 Grassland BurnOct02 

248 436635 8663155 Forest BurnAug15 773 464445 8687575 Grassland BurnOct02 

249 438015 8657965 Forest BurnAug15 774 444525 8687515 Grassland BurnOct02 

250 440955 8657605 Forest BurnAug15 775 440895 8686015 Grassland BurnOct02 

251 467115 8657485 Forest BurnAug15 776 440835 8686015 Grassland BurnOct02 

252 474795 8657455 Forest BurnAug15 777 475575 8685895 Grassland BurnOct02 

253 456615 8656195 Forest BurnAug15 778 475725 8685775 Grassland BurnOct02 

254 473445 8655685 Forest BurnAug15 779 446835 8685265 Grassland BurnOct02 

255 474885 8655505 Forest BurnAug15 780 453585 8685205 Grassland BurnOct02 

256 442755 8654245 Forest BurnAug15 781 447255 8685205 Grassland BurnOct02 

257 472965 8653855 Forest BurnAug15 782 451125 8684545 Grassland BurnOct02 

258 441435 8653465 Forest BurnAug15 783 447465 8684185 Grassland BurnOct02 

259 474255 8653465 Forest BurnAug15 784 467145 8684185 Grassland BurnOct02 

260 447075 8652775 Forest BurnAug15 785 467745 8683915 Grassland BurnOct02 

261 466065 8652715 Forest BurnAug15 786 454605 8681995 Grassland BurnOct02 
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262 469485 8652235 Forest BurnAug15 787 454425 8681995 Grassland BurnOct02 

263 470385 8652235 Forest BurnAug15 788 455085 8681935 Grassland BurnOct02 

264 471465 8652175 Forest BurnAug15 789 456675 8681785 Grassland BurnOct02 

265 431925 8652055 Forest BurnAug15 790 454335 8681095 Grassland BurnOct02 

266 471075 8651995 Forest BurnAug15 791 454575 8680975 Grassland BurnOct02 

267 432435 8651845 Forest BurnAug15 792 456705 8680645 Grassland BurnOct02 

268 467745 8651635 Forest BurnAug15 793 458775 8680555 Grassland BurnOct02 

269 469455 8651245 Forest BurnAug15 794 452025 8680495 Grassland BurnOct02 

270 450675 8651185 Forest BurnAug15 795 459615 8680345 Grassland BurnOct02 

271 449655 8659285 Cropland BurnJun04 796 452355 8679385 Grassland BurnOct02 

272 450735 8654215 Cropland BurnJun04 797 453855 8679175 Grassland BurnOct02 

273 450735 8654185 Cropland BurnJun04 798 451995 8678605 Grassland BurnOct02 

274 450765 8654155 Cropland BurnJun04 799 452355 8678395 Grassland BurnOct02 

275 458685 8691235 Grassland BurnJun04 800 467685 8676235 Grassland BurnOct02 

276 445695 8689345 Grassland BurnJun04 801 468585 8669185 Grassland BurnOct02 

277 448425 8688925 Grassland BurnJun04 802 450105 8668075 Grassland BurnOct02 

278 448545 8688895 Grassland BurnJun04 803 469215 8667955 Grassland BurnOct02 

279 448425 8688895 Grassland BurnJun04 804 450195 8667895 Grassland BurnOct02 

280 448035 8688865 Grassland BurnJun04 805 450435 8666845 Grassland BurnOct02 

281 448575 8688835 Grassland BurnJun04 806 470625 8666755 Grassland BurnOct02 

282 448665 8688805 Grassland BurnJun04 807 453405 8666605 Grassland BurnOct02 

283 447435 8688115 Grassland BurnJun04 808 449445 8666095 Grassland BurnOct02 

284 447405 8688055 Grassland BurnJun04 809 450165 8665975 Grassland BurnOct02 

285 457785 8687575 Grassland BurnJun04 810 447405 8659555 Grassland BurnOct02 

286 450015 8686675 Grassland BurnJun04 811 454875 8659345 Grassland BurnOct02 

287 468045 8669275 Grassland BurnJun04 812 454155 8658445 Grassland BurnOct02 

288 466455 8668435 Grassland BurnJun04 813 456525 8657215 Grassland BurnOct02 

289 437535 8667925 Grassland BurnJun04 814 442815 8652415 Grassland BurnOct02 

290 449235 8667115 Grassland BurnJun04 815 457575 8690455 Cropland BurnOct02 

291 450045 8666995 Grassland BurnJun04 816 457155 8689645 Cropland BurnOct02 

292 448995 8666245 Grassland BurnJun04 817 444465 8689435 Cropland BurnOct02 

293 448875 8666215 Grassland BurnJun04 818 453495 8689165 Cropland BurnOct02 

294 448965 8666185 Grassland BurnJun04 819 453525 8689135 Cropland BurnOct02 

295 448875 8666155 Grassland BurnJun04 820 453585 8689075 Cropland BurnOct02 

296 448425 8665345 Grassland BurnJun04 821 453645 8689015 Cropland BurnOct02 

297 449085 8664205 Grassland BurnJun04 822 453735 8688985 Cropland BurnOct02 

298 448965 8664205 Grassland BurnJun04 823 449655 8687725 Cropland BurnOct02 

299 449025 8664205 Grassland BurnJun04 824 454035 8687155 Cropland BurnOct02 

300 448965 8664175 Grassland BurnJun04 825 476205 8685835 Cropland BurnOct02 

301 449025 8664175 Grassland BurnJun04 826 475425 8685775 Cropland BurnOct02 
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302 444285 8663995 Grassland BurnJun04 827 476205 8685775 Cropland BurnOct02 

303 444255 8663935 Grassland BurnJun04 828 475455 8685745 Cropland BurnOct02 

304 444405 8663845 Grassland BurnJun04 829 475875 8685745 Cropland BurnOct02 

305 444555 8663845 Grassland BurnJun04 830 475305 8685745 Cropland BurnOct02 

306 445095 8662735 Grassland BurnJun04 831 475905 8685745 Cropland BurnOct02 

307 434955 8662405 Grassland BurnJun04 832 475395 8685715 Cropland BurnOct02 

308 435525 8662225 Grassland BurnJun04 833 449655 8685685 Cropland BurnOct02 

309 447735 8661475 Grassland BurnJun04 834 457545 8682715 Cropland BurnOct02 

310 433035 8660695 Grassland BurnJun04 835 457605 8682685 Cropland BurnOct02 

311 448575 8660425 Grassland BurnJun04 836 460275 8682295 Cropland BurnOct02 

312 449445 8660245 Grassland BurnJun04 837 433815 8670415 Cropland BurnOct02 

313 449865 8660185 Grassland BurnJun04 838 444585 8661025 Cropland BurnOct02 

314 449595 8660155 Grassland BurnJun04 839 444555 8660995 Cropland BurnOct02 

315 433335 8659705 Grassland BurnJun04 840 444645 8660965 Cropland BurnOct02 

316 434805 8659405 Grassland BurnJun04 841 444795 8660905 Cropland BurnOct02 

317 449325 8659315 Grassland BurnJun04 842 444555 8660875 Cropland BurnOct02 

318 449385 8659285 Grassland BurnJun04 843 444555 8660845 Cropland BurnOct02 

319 449415 8659225 Grassland BurnJun04 844 434925 8659465 Cropland BurnOct02 

320 448875 8659225 Grassland BurnJun04 845 443565 8659105 Cropland BurnOct02 

321 449415 8659195 Grassland BurnJun04 846 444345 8659045 Cropland BurnOct02 

322 439785 8657635 Grassland BurnJun04 847 439335 8658775 Cropland BurnOct02 

323 451845 8657005 Grassland BurnJun04 848 452925 8658715 Cropland BurnOct02 

324 452235 8656825 Grassland BurnJun04 849 439995 8658715 Cropland BurnOct02 

325 452145 8656795 Grassland BurnJun04 850 452895 8658715 Cropland BurnOct02 

326 452205 8656765 Grassland BurnJun04 851 439905 8658685 Cropland BurnOct02 

327 451305 8654995 Grassland BurnJun04 852 452865 8658685 Cropland BurnOct02 

328 453435 8653645 Grassland BurnJun04 853 440175 8658625 Cropland BurnOct02 

329 460695 8693005 Forest BurnJun04 854 440085 8658625 Cropland BurnOct02 

330 442485 8664265 Forest BurnJun04 855 441225 8658445 Cropland BurnOct02 

331 449115 8664205 Forest BurnJun04 856 443355 8658085 Cropland BurnOct02 

332 442335 8664205 Forest BurnJun04 857 451035 8657995 Cropland BurnOct02 

333 442425 8664175 Forest BurnJun04 858 451035 8654035 Cropland BurnOct02 

334 442515 8664145 Forest BurnJun04 859 464175 8693365 Forest BurnOct02 

335 442215 8664145 Forest BurnJun04 860 469305 8692615 Forest BurnOct02 

336 442305 8664145 Forest BurnJun04 861 467835 8687065 Forest BurnOct02 

337 444375 8663995 Forest BurnJun04 862 468225 8686945 Forest BurnOct02 

338 444315 8663995 Forest BurnJun04 863 456705 8681665 Forest BurnOct02 

339 449085 8661265 Forest BurnJun04 864 454905 8680975 Forest BurnOct02 

340 460905 8660485 Forest BurnJun04 865 456945 8680825 Forest BurnOct02 

341 451305 8658955 Forest BurnJun04 866 457845 8680645 Forest BurnOct02 
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342 452775 8657725 Forest BurnJun04 867 453525 8679175 Forest BurnOct02 

343 452355 8656915 Forest BurnJun04 868 472875 8673445 Forest BurnOct02 

344 454275 8655595 Forest BurnJun04 869 474975 8673265 Forest BurnOct02 

345 448935 8655355 Forest BurnJun04 870 474405 8673145 Forest BurnOct02 

346 445095 8693365 Grassland BurnNov03 871 463215 8671855 Forest BurnOct02 

347 468615 8691715 Grassland BurnNov03 872 471045 8671795 Forest BurnOct02 

348 469635 8690515 Grassland BurnNov03 873 464415 8671735 Forest BurnOct02 

349 466275 8690155 Grassland BurnNov03 874 470235 8671015 Forest BurnOct02 

350 446385 8689225 Grassland BurnNov03 875 437775 8670865 Forest BurnOct02 

351 453765 8689165 Grassland BurnNov03 876 474645 8670385 Forest BurnOct02 

352 442635 8688685 Grassland BurnNov03 877 474405 8670295 Forest BurnOct02 

353 452115 8688415 Grassland BurnNov03 878 475125 8670235 Forest BurnOct02 

354 458895 8687365 Grassland BurnNov03 879 454185 8668375 Forest BurnOct02 

355 476385 8686675 Grassland BurnNov03 880 473685 8668345 Forest BurnOct02 

356 437625 8686585 Grassland BurnNov03 881 450465 8667925 Forest BurnOct02 

357 448455 8685835 Grassland BurnNov03 882 433005 8667595 Forest BurnOct02 

358 470955 8685475 Grassland BurnNov03 883 474525 8667325 Forest BurnOct02 

359 448605 8684935 Grassland BurnNov03 884 456225 8667085 Forest BurnOct02 

360 462645 8684875 Grassland BurnNov03 885 451755 8666785 Forest BurnOct02 

361 469065 8684845 Grassland BurnNov03 886 473205 8666635 Forest BurnOct02 

362 450585 8684575 Grassland BurnNov03 887 453165 8666635 Forest BurnOct02 

363 454815 8683885 Grassland BurnNov03 888 454305 8666275 Forest BurnOct02 

364 456525 8683735 Grassland BurnNov03 889 475065 8666155 Forest BurnOct02 

365 472875 8683255 Grassland BurnNov03 890 451785 8665675 Forest BurnOct02 

366 454845 8682895 Grassland BurnNov03 891 446865 8665555 Forest BurnOct02 

367 469995 8682865 Grassland BurnNov03 892 472365 8665555 Forest BurnOct02 

368 471315 8682595 Grassland BurnNov03 893 474105 8665285 Forest BurnOct02 

369 467955 8681035 Grassland BurnNov03 894 445515 8664685 Forest BurnOct02 

370 468525 8681005 Grassland BurnNov03 895 446805 8664445 Forest BurnOct02 

371 469425 8678965 Grassland BurnNov03 896 474225 8664295 Forest BurnOct02 

372 463455 8673865 Grassland BurnNov03 897 431235 8663935 Forest BurnOct02 

373 471945 8669755 Grassland BurnNov03 898 464895 8657785 Forest BurnOct02 

374 451605 8662885 Grassland BurnNov03 899 432465 8656765 Forest BurnOct02 

375 438525 8662885 Grassland BurnNov03 900 442275 8656345 Forest BurnOct02 

376 451605 8662855 Grassland BurnNov03 901 430575 8656075 Forest BurnOct02 

377 451725 8662825 Grassland BurnNov03 902 475725 8655355 Forest BurnOct02 

378 453345 8662615 Grassland BurnNov03 903 472695 8654875 Forest BurnOct02 

379 453195 8662615 Grassland BurnNov03 904 466935 8654545 Forest BurnOct02 

380 453345 8662555 Grassland BurnNov03 905 475245 8652295 Forest BurnOct02 

381 453165 8662555 Grassland BurnNov03 906 464865 8651905 Forest BurnOct02 
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382 438165 8661925 Grassland BurnNov03 907 451035 8651185 Forest BurnOct02 

383 454185 8661505 Grassland BurnNov03 908 431535 8651005 Forest BurnOct02 

384 453975 8661505 Grassland BurnNov03 909 467985 8693905 Forest BurnJul14 

385 454125 8661475 Grassland BurnNov03 910 462555 8689705 Forest BurnJul14 

386 454215 8661445 Grassland BurnNov03 911 463605 8689675 Forest BurnJul14 

387 460365 8660485 Grassland BurnNov03 912 462975 8689615 Forest BurnJul14 

388 456075 8660125 Grassland BurnNov03 913 463785 8689435 Forest BurnJul14 

389 453855 8659465 Grassland BurnNov03 914 468255 8688835 Forest BurnJul14 

390 447345 8658625 Grassland BurnNov03 915 468495 8687875 Forest BurnJul14 

391 450405 8658085 Grassland BurnNov03 916 455175 8686795 Forest BurnJul14 

392 432375 8655835 Grassland BurnNov03 917 456825 8686585 Forest BurnJul14 

393 464745 8692465 Cropland BurnNov03 918 473175 8675395 Forest BurnJul14 

394 476265 8690635 Cropland BurnNov03 919 465255 8674615 Forest BurnJul14 

395 469545 8690575 Cropland BurnNov03 920 441405 8673205 Forest BurnJul14 

396 469725 8690545 Cropland BurnNov03 921 475725 8673085 Forest BurnJul14 

397 476145 8689795 Cropland BurnNov03 922 464565 8663995 Forest BurnJul14 

398 475965 8689795 Cropland BurnNov03 923 443445 8662165 Forest BurnJul14 

399 476115 8689765 Cropland BurnNov03 924 443115 8662165 Forest BurnJul14 

400 476355 8689735 Cropland BurnNov03 925 443715 8662045 Forest BurnJul14 

401 476145 8689705 Cropland BurnNov03 926 463185 8659225 Forest BurnJul14 

402 475935 8689615 Cropland BurnNov03 927 450885 8659075 Forest BurnJul14 

403 474135 8686945 Cropland BurnNov03 928 435855 8658355 Forest BurnJul14 

404 471645 8686555 Cropland BurnNov03 929 449475 8658205 Forest BurnJul14 

405 472365 8686405 Cropland BurnNov03 930 440565 8657575 Forest BurnJul14 

406 472095 8686285 Cropland BurnNov03 931 456345 8657275 Forest BurnJul14 

407 472125 8686225 Cropland BurnNov03 932 476505 8655295 Forest BurnJul14 

408 471255 8685475 Cropland BurnNov03 933 469245 8655205 Forest BurnJul14 

409 471105 8685445 Cropland BurnNov03 934 443865 8655175 Forest BurnJul14 

410 471195 8685445 Cropland BurnNov03 935 444975 8655055 Forest BurnJul14 

411 471255 8685415 Cropland BurnNov03 936 446865 8654725 Forest BurnJul14 

412 454305 8664415 Cropland BurnNov03 937 470415 8654035 Forest BurnJul14 

413 454425 8664415 Cropland BurnNov03 938 460425 8653735 Forest BurnJul14 

414 454365 8664385 Cropland BurnNov03 939 460755 8653555 Forest BurnJul14 

415 454275 8664355 Cropland BurnNov03 940 468195 8653345 Forest BurnJul14 

416 452835 8662735 Cropland BurnNov03 941 471105 8653105 Forest BurnJul14 

417 452985 8662705 Cropland BurnNov03 942 471255 8652925 Forest BurnJul14 

418 452925 8662705 Cropland BurnNov03 943 459525 8652865 Forest BurnJul14 

419 452895 8662675 Cropland BurnNov03 944 460005 8652835 Forest BurnJul14 

420 439665 8661595 Cropland BurnNov03 945 455175 8652595 Forest BurnJul14 

421 470985 8660965 Cropland BurnNov03 946 474975 8652595 Forest BurnJul14 
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422 471105 8660965 Cropland BurnNov03 947 474765 8652505 Forest BurnJul14 

423 471045 8660935 Cropland BurnNov03 948 454965 8652415 Forest BurnJul14 

424 471105 8660875 Cropland BurnNov03 949 443925 8652115 Forest BurnJul14 

425 437835 8660005 Cropland BurnNov03 950 458055 8652055 Forest BurnJul14 

426 437865 8659915 Cropland BurnNov03 951 473865 8651815 Forest BurnJul14 

427 439125 8659825 Cropland BurnNov03 952 474555 8651725 Forest BurnJul14 

428 439815 8659615 Cropland BurnNov03 953 457755 8651185 Forest BurnJul14 

429 444255 8658985 Cropland BurnNov03 954 459105 8650885 Forest BurnJul14 

430 444885 8658865 Cropland BurnNov03 955 445305 8689405 Cropland BurnJul14 

431 439665 8658745 Cropland BurnNov03 956 456075 8685685 Cropland BurnJul14 

432 439425 8658715 Cropland BurnNov03 957 437805 8683555 Cropland BurnJul14 

433 442275 8658415 Cropland BurnNov03 958 433185 8662645 Cropland BurnJul14 

434 444915 8657875 Cropland BurnNov03 959 436665 8662135 Cropland BurnJul14 

435 452625 8657695 Cropland BurnNov03 960 436725 8662045 Cropland BurnJul14 

436 447345 8657635 Cropland BurnNov03 961 444135 8662015 Cropland BurnJul14 

437 442095 8657395 Cropland BurnNov03 962 443535 8661985 Cropland BurnJul14 

438 452355 8655775 Cropland BurnNov03 963 444225 8661985 Cropland BurnJul14 

439 456525 8653195 Cropland BurnNov03 964 439545 8661655 Cropland BurnJul14 

440 457665 8684665 Forest BurnNov03 965 439365 8661655 Cropland BurnJul14 

441 464355 8681485 Forest BurnNov03 966 433575 8661565 Cropland BurnJul14 

442 463035 8673805 Forest BurnNov03 967 438705 8660845 Cropland BurnJul14 

443 469215 8671975 Forest BurnNov03 968 433245 8660695 Cropland BurnJul14 

444 450675 8671855 Forest BurnNov03 969 441495 8660455 Cropland BurnJul14 

445 451065 8671735 Forest BurnNov03 970 435105 8660425 Cropland BurnJul14 

446 451155 8671705 Forest BurnNov03 971 437295 8660125 Cropland BurnJul14 

447 451185 8671675 Forest BurnNov03 972 443595 8659195 Cropland BurnJul14 

448 453435 8670325 Forest BurnNov03 973 443985 8659105 Cropland BurnJul14 

449 447915 8666335 Forest BurnNov03 974 443715 8659045 Cropland BurnJul14 

450 472515 8664535 Forest BurnNov03 975 450555 8659045 Cropland BurnJul14 

451 444945 8663905 Forest BurnNov03 976 450585 8659015 Cropland BurnJul14 

452 452775 8663755 Forest BurnNov03 977 450555 8658955 Cropland BurnJul14 

453 453675 8663575 Forest BurnNov03 978 450075 8658235 Cropland BurnJul14 

454 453675 8663485 Forest BurnNov03 979 443025 8658235 Cropland BurnJul14 

455 454635 8663395 Forest BurnNov03 980 450045 8658175 Cropland BurnJul14 

456 451455 8662855 Forest BurnNov03 981 450225 8658175 Cropland BurnJul14 

457 451575 8662795 Forest BurnNov03 982 449835 8658145 Cropland BurnJul14 

458 451485 8662765 Forest BurnNov03 983 450195 8658115 Cropland BurnJul14 

459 452625 8662705 Forest BurnNov03 984 450195 8658085 Cropland BurnJul14 

460 452535 8662675 Forest BurnNov03 985 450045 8658055 Cropland BurnJul14 

461 452685 8662645 Forest BurnNov03 986 450225 8658025 Cropland BurnJul14 
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462 453795 8662405 Forest BurnNov03 987 445125 8657995 Cropland BurnJul14 

463 454095 8662405 Forest BurnNov03 988 444315 8657995 Cropland BurnJul14 

464 474915 8662255 Forest BurnNov03 989 445185 8657965 Cropland BurnJul14 

465 453045 8661655 Forest BurnNov03 990 445095 8657965 Cropland BurnJul14 

466 473865 8661475 Forest BurnNov03 991 445155 8657935 Cropland BurnJul14 

467 473835 8661415 Forest BurnNov03 992 445185 8657875 Cropland BurnJul14 

468 473775 8661385 Forest BurnNov03 993 439965 8657695 Cropland BurnJul14 

469 471015 8661025 Forest BurnNov03 994 441465 8657545 Cropland BurnJul14 

470 451215 8660935 Forest BurnNov03 995 441405 8657545 Cropland BurnJul14 

471 473355 8660755 Forest BurnNov03 996 449055 8657425 Cropland BurnJul14 

472 467085 8660605 Forest BurnNov03 997 448995 8657335 Cropland BurnJul14 

473 472695 8660575 Forest BurnNov03 998 449025 8657305 Cropland BurnJul14 

474 475335 8660155 Forest BurnNov03 999 448815 8657305 Cropland BurnJul14 

475 464475 8660065 Forest BurnNov03 1000 451155 8653045 Cropland BurnJul14 

476 453075 8659645 Forest BurnNov03 1001 454065 8693845 Grassland BurnJul14 

477 469725 8658325 Forest BurnNov03 1002 468105 8693845 Grassland BurnJul14 

478 461235 8657455 Forest BurnNov03 1003 454545 8692945 Grassland BurnJul14 

479 459465 8654665 Forest BurnNov03 1004 454995 8692735 Grassland BurnJul14 

480 474945 8654605 Forest BurnNov03 1005 459165 8690155 Grassland BurnJul14 

481 466965 8653765 Forest BurnNov03 1006 461085 8690065 Grassland BurnJul14 

482 452475 8651965 Forest BurnNov03 1007 460935 8690065 Grassland BurnJul14 

483 462795 8651335 Forest BurnNov03 1008 468825 8689795 Grassland BurnJul14 

484 451575 8651155 Forest BurnNov03 1009 461475 8689795 Grassland BurnJul14 

485 459375 8694205 Grassland BurnJul06 1010 461565 8689765 Grassland BurnJul14 

486 452505 8692285 Grassland BurnJul06 1011 463935 8689525 Grassland BurnJul14 

487 453825 8691955 Grassland BurnJul06 1012 452985 8689255 Grassland BurnJul14 

488 449385 8691595 Grassland BurnJul06 1013 468645 8688925 Grassland BurnJul14 

489 445665 8691295 Grassland BurnJul06 1014 463305 8688685 Grassland BurnJul14 

490 452145 8691265 Grassland BurnJul06 1015 449715 8688625 Grassland BurnJul14 

491 454125 8690965 Grassland BurnJul06 1016 453405 8688235 Grassland BurnJul14 

492 445125 8690425 Grassland BurnJul06 1017 443085 8687665 Grassland BurnJul14 

493 452175 8690365 Grassland BurnJul06 1018 455265 8686975 Grassland BurnJul14 

494 445455 8690215 Grassland BurnJul06 1019 455655 8686855 Grassland BurnJul14 

495 442155 8689765 Grassland BurnJul06 1020 456945 8684725 Grassland BurnJul14 

496 454815 8688835 Grassland BurnJul06 1021 456915 8684605 Grassland BurnJul14 

497 455355 8687905 Grassland BurnJul06 1022 457185 8684515 Grassland BurnJul14 

498 441885 8686825 Grassland BurnJul06 1023 457305 8683705 Grassland BurnJul14 

499 454425 8685985 Grassland BurnJul06 1024 473025 8683105 Grassland BurnJul14 

500 449175 8685805 Grassland BurnJul06 1025 468705 8682925 Grassland BurnJul14 

501 463725 8684665 Grassland BurnJul06 1026 472755 8675305 Grassland BurnJul14 
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502 464385 8684605 Grassland BurnJul06 1027 467235 8675275 Grassland BurnJul14 

503 464355 8684545 Grassland BurnJul06 1028 465375 8674585 Grassland BurnJul14 

504 464355 8684515 Grassland BurnJul06 1029 440625 8674315 Grassland BurnJul14 

505 464835 8684485 Grassland BurnJul06 1030 441465 8673265 Grassland BurnJul14 

506 461775 8684005 Grassland BurnJul06 1031 437475 8660935 Grassland BurnJul14 

507 456555 8683795 Grassland BurnJul06 1032 433755 8660575 Grassland BurnJul14 

508 459855 8683225 Grassland BurnJul06 1033 433605 8660575 Grassland BurnJul14 

509 462915 8682775 Grassland BurnJul06 1034 462885 8659225 Grassland BurnJul14 

510 457935 8682655 Grassland BurnJul06 1035 442965 8658265 Grassland BurnJul14 

511 462195 8676925 Grassland BurnJul06 1036 449715 8658205 Grassland BurnJul14 

512 443715 8670955 Grassland BurnJul06 1037 462345 8657425 Grassland BurnJul14 

513 466635 8669545 Grassland BurnJul06 1038 456075 8657185 Grassland BurnJul14 

514 433635 8662585 Grassland BurnJul06 1039 469335 8656225 Grassland BurnJul14 

515 434475 8660395 Grassland BurnJul06 1040 456075 8653225 Grassland BurnJul14 

516 442005 8660395 Grassland BurnJul06 1041 454485 8652685 Grassland BurnJul14 

517 442065 8660365 Grassland BurnJul06 1042 455625 8652535 Grassland BurnJul14 

518 448395 8660335 Grassland BurnJul06 1043 457785 8652145 Grassland BurnJul14 

519 455745 8660305 Grassland BurnJul06 1044 458625 8652055 Grassland BurnJul14 

520 433905 8659525 Grassland BurnJul06 1045 458535 8651935 Grassland BurnJul14 

521 455415 8659345 Grassland BurnJul06 1046 448365 8651455 Grassland BurnJul14 

522 456195 8659105 Grassland BurnJul06 1047 459525 8650765 Grassland BurnJul14 

523 453555 8657635 Grassland BurnJul06 1048 459585 8650735 Grassland BurnJul14 

524 441255 8656435 Grassland BurnJul06 1049 460125 8650705 Grassland BurnJul14 

525 449055 8656285 Grassland BurnJul06      

 

 

Validation points for 2012 used in Chapter 2, with X and Y coordinates (WGS 1984 UTM Zone 

36S), burn class and associated land cover type. The Burn class labels have been shortened due to 

space limitation e.g. BurnOct10 instead of Burn by Oct10 as used in Chapter 2.  

ID X Y Land cover Burn class ID X Y Land cover Burn class 

1 512445 8681695 Forest Unburned 507 519165 8678485 Grassland BurnOct10 

2 521985 8681665 Forest Unburned 508 519735 8678455 Grassland BurnOct10 

3 504225 8681305 Forest Unburned 509 520095 8677795 Grassland BurnOct10 

4 521985 8680795 Forest Unburned 510 521265 8677585 Grassland BurnOct10 

5 512835 8680615 Forest Unburned 511 515685 8677375 Grassland BurnOct10 

6 502215 8680285 Forest Unburned 512 521595 8677225 Grassland BurnOct10 

7 522495 8680195 Forest Unburned 513 521955 8677075 Grassland BurnOct10 

8 488085 8679505 Forest Unburned 514 521745 8677045 Grassland BurnOct10 
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9 510405 8679445 Forest Unburned 515 506235 8676685 Grassland BurnOct10 

10 522525 8679325 Forest Unburned 516 516195 8676265 Grassland BurnOct10 

11 522045 8679235 Forest Unburned 517 516165 8676265 Grassland BurnOct10 

12 522285 8679025 Forest Unburned 518 521145 8675905 Grassland BurnOct10 

13 513285 8678575 Forest Unburned 519 502545 8675665 Grassland BurnOct10 

14 518655 8677885 Forest Unburned 520 521235 8675215 Grassland BurnOct10 

15 501315 8677525 Forest Unburned 521 521295 8675155 Grassland BurnOct10 

16 509025 8677105 Forest Unburned 522 521535 8674615 Grassland BurnOct10 

17 503205 8676595 Forest Unburned 523 521175 8674285 Grassland BurnOct10 

18 521445 8676115 Forest Unburned 524 522495 8674105 Grassland BurnOct10 

19 523125 8676085 Forest Unburned 525 514065 8673955 Grassland BurnOct10 

20 511275 8675965 Forest Unburned 526 522435 8673595 Grassland BurnOct10 

21 520275 8675695 Forest Unburned 527 504285 8673415 Grassland BurnOct10 

22 520485 8675275 Forest Unburned 528 516315 8673385 Grassland BurnOct10 

23 517095 8674945 Forest Unburned 529 518895 8673355 Grassland BurnOct10 

24 513855 8674705 Forest Unburned 530 516795 8673265 Grassland BurnOct10 

25 516045 8674225 Forest Unburned 531 515385 8673205 Grassland BurnOct10 

26 504495 8674105 Forest Unburned 532 522855 8672485 Grassland BurnOct10 

27 520875 8673985 Forest Unburned 533 511665 8672095 Grassland BurnOct10 

28 500025 8672725 Forest Unburned 534 523035 8672035 Grassland BurnOct10 

29 514245 8672395 Forest Unburned 535 500775 8672005 Grassland BurnOct10 

30 521415 8671615 Forest Unburned 536 517875 8669785 Grassland BurnOct10 

31 518625 8671585 Forest Unburned 537 507135 8668795 Grassland BurnOct10 

32 517575 8671525 Forest Unburned 538 501975 8668315 Grassland BurnOct10 

33 517155 8671525 Forest Unburned 539 519975 8667535 Grassland BurnOct10 

34 517485 8671495 Forest Unburned 540 517575 8665795 Grassland BurnOct10 

35 513285 8671135 Forest Unburned 541 517455 8663455 Grassland BurnOct10 

36 514005 8670985 Forest Unburned 542 518925 8662675 Grassland BurnOct10 

37 504915 8670475 Forest Unburned 543 515625 8681305 Grassland BurnAug07 

38 506085 8669905 Forest Unburned 544 514545 8680735 Grassland BurnAug07 

39 505845 8668945 Forest Unburned 545 506355 8680735 Grassland BurnAug07 

40 517785 8668765 Forest Unburned 546 518925 8680375 Grassland BurnAug07 

41 512235 8668345 Forest Unburned 547 507975 8678845 Grassland BurnAug07 

42 519555 8668195 Forest Unburned 548 500175 8677705 Grassland BurnAug07 

43 518265 8668165 Forest Unburned 549 499815 8677075 Grassland BurnAug07 

44 499155 8667925 Forest Unburned 550 499395 8676565 Grassland BurnAug07 

45 518685 8667685 Forest Unburned 551 520485 8676505 Grassland BurnAug07 

46 502755 8667475 Forest Unburned 552 520575 8676295 Grassland BurnAug07 

47 520905 8667355 Forest Unburned 553 520515 8676145 Grassland BurnAug07 

48 521415 8666845 Forest Unburned 554 521025 8676055 Grassland BurnAug07 
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49 523035 8666455 Forest Unburned 555 520875 8676025 Grassland BurnAug07 

50 504975 8666095 Forest Unburned 556 520545 8675995 Grassland BurnAug07 

51 519855 8665855 Forest Unburned 557 516165 8675635 Grassland BurnAug07 

52 511005 8665855 Forest Unburned 558 521025 8674825 Grassland BurnAug07 

53 518865 8665705 Forest Unburned 559 522885 8673985 Grassland BurnAug07 

54 498945 8665075 Forest Unburned 560 515715 8673475 Grassland BurnAug07 

55 504525 8664175 Forest Unburned 561 522915 8673295 Grassland BurnAug07 

56 494685 8663755 Forest Unburned 562 522885 8673295 Grassland BurnAug07 

57 517845 8663755 Forest Unburned 563 504105 8672905 Grassland BurnAug07 

58 522615 8663725 Forest Unburned 564 503445 8672305 Grassland BurnAug07 

59 506505 8663305 Forest Unburned 565 495825 8671765 Grassland BurnAug07 

60 517725 8663275 Forest Unburned 566 509145 8671435 Grassland BurnAug07 

61 513405 8663215 Forest Unburned 567 523395 8671375 Grassland BurnAug07 

62 514875 8663065 Forest Unburned 568 520065 8670655 Grassland BurnAug07 

63 521145 8662975 Forest Unburned 569 509145 8670475 Grassland BurnAug07 

64 521625 8662735 Forest Unburned 570 504525 8670475 Grassland BurnAug07 

65 522255 8662555 Forest Unburned 571 519615 8670085 Grassland BurnAug07 

66 511125 8681005 Forest BurnOct10 572 496185 8669785 Grassland BurnAug07 

67 511455 8680945 Forest BurnOct10 573 500385 8669695 Grassland BurnAug07 

68 506655 8680585 Forest BurnOct10 574 518175 8669215 Grassland BurnAug07 

69 521805 8680315 Forest BurnOct10 575 513735 8669065 Grassland BurnAug07 

70 522975 8680045 Forest BurnOct10 576 495825 8668855 Grassland BurnAug07 

71 522795 8680015 Forest BurnOct10 577 519285 8668735 Grassland BurnAug07 

72 518295 8678215 Forest BurnOct10 578 509265 8667385 Grassland BurnAug07 

73 503505 8677135 Forest BurnOct10 579 494235 8667115 Grassland BurnAug07 

74 519825 8676775 Forest BurnOct10 580 516195 8666935 Grassland BurnAug07 

75 502725 8676685 Forest BurnOct10 581 492915 8666875 Grassland BurnAug07 

76 509715 8676535 Forest BurnOct10 582 520575 8666305 Grassland BurnAug07 

77 498495 8676295 Forest BurnOct10 583 510585 8665585 Grassland BurnAug07 

78 505515 8676235 Forest BurnOct10 584 509655 8665495 Grassland BurnAug07 

79 505425 8675815 Forest BurnOct10 585 513165 8665315 Grassland BurnAug07 

80 504555 8675425 Forest BurnOct10 586 511125 8665255 Grassland BurnAug07 

81 510855 8675155 Forest BurnOct10 587 510735 8665015 Grassland BurnAug07 

82 504315 8675095 Forest BurnOct10 588 517185 8664625 Grassland BurnAug07 

83 514095 8674345 Forest BurnOct10 589 521565 8663905 Grassland BurnAug07 

84 503205 8674225 Forest BurnOct10 590 509085 8663875 Grassland BurnAug07 

85 514875 8673535 Forest BurnOct10 591 493695 8663815 Grassland BurnAug07 

86 518805 8673205 Forest BurnOct10 592 505545 8681815 Grassland BurnJul22 

87 499065 8672935 Forest BurnOct10 593 519345 8681455 Grassland BurnJul22 

88 508215 8672875 Forest BurnOct10 594 516015 8681245 Grassland BurnJul22 
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89 517575 8671915 Forest BurnOct10 595 514365 8681185 Grassland BurnJul22 

90 522915 8671885 Forest BurnOct10 596 515955 8681185 Grassland BurnJul22 

91 522735 8671795 Forest BurnOct10 597 517035 8675905 Grassland BurnJul22 

92 512895 8671735 Forest BurnOct10 598 508365 8675845 Grassland BurnJul22 

93 490005 8671675 Forest BurnOct10 599 517575 8675425 Grassland BurnJul22 

94 512595 8669815 Forest BurnOct10 600 518055 8675365 Grassland BurnJul22 

95 523455 8668165 Forest BurnOct10 601 505785 8675155 Grassland BurnJul22 

96 522495 8667535 Forest BurnOct10 602 521475 8673775 Grassland BurnJul22 

97 518355 8666515 Forest BurnOct10 603 521085 8673685 Grassland BurnJul22 

98 523185 8666305 Forest BurnOct10 604 516465 8672995 Grassland BurnJul22 

99 508215 8665945 Forest BurnOct10 605 519615 8672755 Grassland BurnJul22 

100 514365 8665735 Forest BurnOct10 606 517845 8672425 Grassland BurnJul22 

101 494925 8665045 Forest BurnOct10 607 519135 8672215 Grassland BurnJul22 

102 519765 8664955 Forest BurnOct10 608 519075 8671855 Grassland BurnJul22 

103 520455 8664955 Forest BurnOct10 609 517935 8671855 Grassland BurnJul22 

104 518505 8663935 Forest BurnOct10 610 518475 8671765 Grassland BurnJul22 

105 513795 8663905 Forest BurnOct10 611 518715 8671615 Grassland BurnJul22 

106 506385 8663875 Forest BurnOct10 612 509115 8671495 Grassland BurnJul22 

107 520875 8663515 Forest BurnOct10 613 520815 8671495 Grassland BurnJul22 

108 521265 8663425 Forest BurnOct10 614 517245 8671105 Grassland BurnJul22 

109 497175 8663425 Forest BurnOct10 615 517005 8670955 Grassland BurnJul22 

110 518235 8663305 Forest BurnOct10 616 503655 8670265 Grassland BurnJul22 

111 506955 8663215 Forest BurnOct10 617 517995 8669965 Grassland BurnJul22 

112 520095 8662975 Forest BurnOct10 618 520035 8669785 Grassland BurnJul22 

113 518625 8662705 Forest BurnOct10 619 521355 8669665 Grassland BurnJul22 

114 512835 8681725 Forest BurnAug07 620 519105 8669065 Grassland BurnJul22 

115 515475 8681665 Forest BurnAug07 621 517755 8668885 Grassland BurnJul22 

116 507885 8681215 Forest BurnAug07 622 519465 8668765 Grassland BurnJul22 

117 514155 8680915 Forest BurnAug07 623 518385 8668465 Grassland BurnJul22 

118 518745 8680315 Forest BurnAug07 624 518415 8668435 Grassland BurnJul22 

119 513645 8679895 Forest BurnAug07 625 517665 8668345 Grassland BurnJul22 

120 489255 8679655 Forest BurnAug07 626 515745 8667895 Grassland BurnJul22 

121 511935 8678875 Forest BurnAug07 627 514785 8667655 Grassland BurnJul22 

122 511755 8678845 Forest BurnAug07 628 518835 8667205 Grassland BurnJul22 

123 494025 8677975 Forest BurnAug07 629 516615 8666875 Grassland BurnJul22 

124 494535 8677885 Forest BurnAug07 630 523095 8663125 Grassland BurnJul22 

125 521475 8677615 Forest BurnAug07 631 504945 8663095 Grassland BurnJul22 

126 501195 8677435 Forest BurnAug07 632 523005 8663065 Grassland BurnJul22 

127 505155 8675305 Forest BurnAug07 633 504105 8662375 Grassland BurnJul22 

128 519405 8675215 Forest BurnAug07 634 523455 8678905 Grassland BurnNov11 
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129 523185 8674945 Forest BurnAug07 635 512295 8675245 Grassland BurnNov11 

130 503865 8672935 Forest BurnAug07 636 514785 8674405 Grassland BurnNov11 

131 516285 8672905 Forest BurnAug07 637 519045 8674285 Grassland BurnNov11 

132 516165 8672755 Forest BurnAug07 638 518865 8674285 Grassland BurnNov11 

133 491715 8672365 Forest BurnAug07 639 519015 8674225 Grassland BurnNov11 

134 512445 8672305 Forest BurnAug07 640 521625 8673205 Grassland BurnNov11 

135 505575 8670865 Forest BurnAug07 641 522345 8673175 Grassland BurnNov11 

136 493185 8670865 Forest BurnAug07 642 522435 8673175 Grassland BurnNov11 

137 506595 8670775 Forest BurnAug07 643 522285 8673145 Grassland BurnNov11 

138 507165 8670625 Forest BurnAug07 644 522375 8673085 Grassland BurnNov11 

139 509355 8670325 Forest BurnAug07 645 523215 8672875 Grassland BurnNov11 

140 486255 8670265 Forest BurnAug07 646 502935 8672725 Grassland BurnNov11 

141 504555 8669905 Forest BurnAug07 647 522615 8672575 Grassland BurnNov11 

142 503895 8669605 Forest BurnAug07 648 492615 8671945 Grassland BurnNov11 

143 514005 8669605 Forest BurnAug07 649 492705 8671945 Grassland BurnNov11 

144 501135 8669005 Forest BurnAug07 650 492735 8671915 Grassland BurnNov11 

145 518895 8668795 Forest BurnAug07 651 519855 8670505 Grassland BurnNov11 

146 489945 8668735 Forest BurnAug07 652 498525 8670085 Grassland BurnNov11 

147 522255 8667385 Forest BurnAug07 653 517635 8668585 Grassland BurnNov11 

148 506625 8667235 Forest BurnAug07 654 517845 8668525 Grassland BurnNov11 

149 509745 8666815 Forest BurnAug07 655 517965 8668495 Grassland BurnNov11 

150 521985 8666365 Forest BurnAug07 656 517995 8668465 Grassland BurnNov11 

151 517755 8666335 Forest BurnAug07 657 518055 8665045 Grassland BurnNov11 

152 506385 8666245 Forest BurnAug07 658 488655 8662705 Grassland BurnNov11 

153 506925 8665855 Forest BurnAug07 659 519885 8676385 Grassland BurnJul06 

154 506685 8665825 Forest BurnAug07 660 517185 8672485 Grassland BurnJul06 

155 506295 8665345 Forest BurnAug07 661 517515 8669275 Grassland BurnJul06 

156 491985 8665045 Forest BurnAug07 662 517485 8669215 Grassland BurnJul06 

157 508575 8664985 Forest BurnAug07 663 517515 8669215 Grassland BurnJul06 

158 506505 8664955 Forest BurnAug07 664 517335 8669215 Grassland BurnJul06 

159 487065 8664235 Forest BurnAug07 665 517305 8669185 Grassland BurnJul06 

160 493695 8664205 Forest BurnAug07 666 517455 8669155 Grassland BurnJul06 

161 521505 8663725 Forest BurnAug07 667 517425 8669095 Grassland BurnJul06 

162 516135 8663455 Forest BurnAug07 668 517455 8669095 Grassland BurnJul06 

163 512925 8663275 Forest BurnAug07 669 517485 8669095 Grassland BurnJul06 

164 520875 8662975 Forest BurnAug07 670 517515 8669095 Grassland BurnJul06 

165 517635 8662825 Forest BurnAug07 671 517395 8669095 Grassland BurnJul06 

166 500625 8681845 Forest BurnSep24 672 517455 8669065 Grassland BurnJul06 

167 488715 8681695 Forest BurnSep24 673 522975 8668165 Grassland BurnJul06 

168 503535 8681455 Forest BurnSep24 674 523095 8667145 Grassland BurnJul06 
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169 513555 8681305 Forest BurnSep24 675 523245 8667145 Grassland BurnJul06 

170 503025 8681155 Forest BurnSep24 676 517185 8665015 Grassland BurnJul06 

171 503385 8681065 Forest BurnSep24 677 514695 8662705 Grassland BurnJul06 

172 511245 8680885 Forest BurnSep24 678 514665 8662675 Grassland BurnJul06 

173 505245 8680825 Forest BurnSep24 679 514695 8662645 Grassland BurnJul06 

174 488445 8680735 Forest BurnSep24 680 520905 8680615 Cropland Unburned 

175 509205 8680615 Forest BurnSep24 681 518475 8680555 Cropland Unburned 

176 507225 8680495 Forest BurnSep24 682 506385 8677045 Cropland Unburned 

177 488985 8680345 Forest BurnSep24 683 517185 8676445 Cropland Unburned 

178 513165 8680015 Forest BurnSep24 684 510345 8676205 Cropland Unburned 

179 513855 8679955 Forest BurnSep24 685 500715 8675575 Cropland Unburned 

180 506805 8678995 Forest BurnSep24 686 522315 8674885 Cropland Unburned 

181 499035 8678215 Forest BurnSep24 687 519135 8674825 Cropland Unburned 

182 514485 8677555 Forest BurnSep24 688 518925 8674195 Cropland Unburned 

183 491445 8675395 Forest BurnSep24 689 508365 8673475 Cropland Unburned 

184 497355 8675185 Forest BurnSep24 690 509985 8673295 Cropland Unburned 

185 514545 8674285 Forest BurnSep24 691 519255 8672815 Cropland Unburned 

186 515955 8673715 Forest BurnSep24 692 519915 8672755 Cropland Unburned 

187 506445 8673715 Forest BurnSep24 693 515835 8672455 Cropland Unburned 

188 501585 8672905 Forest BurnSep24 694 514035 8672065 Cropland Unburned 

189 490875 8672515 Forest BurnSep24 695 514935 8670835 Cropland Unburned 

190 509025 8672395 Forest BurnSep24 696 520785 8670685 Cropland Unburned 

191 495135 8670895 Forest BurnSep24 697 518835 8670535 Cropland Unburned 

192 503295 8670625 Forest BurnSep24 698 521685 8670535 Cropland Unburned 

193 513135 8670145 Forest BurnSep24 699 514425 8670355 Cropland Unburned 

194 513555 8669845 Forest BurnSep24 700 498765 8670055 Cropland Unburned 

195 523485 8668435 Forest BurnSep24 701 501705 8669545 Cropland Unburned 

196 513555 8668225 Forest BurnSep24 702 520455 8669095 Cropland Unburned 

197 521235 8667895 Forest BurnSep24 703 521625 8668975 Cropland Unburned 

198 503775 8667625 Forest BurnSep24 704 502155 8668885 Cropland Unburned 

199 523155 8667595 Forest BurnSep24 705 523005 8668765 Cropland Unburned 

200 500085 8667205 Forest BurnSep24 706 498195 8668135 Cropland Unburned 

201 504795 8667115 Forest BurnSep24 707 519735 8667955 Cropland Unburned 

202 497295 8666305 Forest BurnSep24 708 502545 8665855 Cropland Unburned 

203 494385 8666065 Forest BurnSep24 709 522315 8665705 Cropland Unburned 

204 505005 8665885 Forest BurnSep24 710 515715 8665555 Cropland Unburned 

205 505485 8665465 Forest BurnSep24 711 516465 8664985 Cropland Unburned 

206 506115 8664385 Forest BurnSep24 712 517575 8664955 Cropland Unburned 

207 507675 8664145 Forest BurnSep24 713 521925 8664685 Cropland Unburned 

208 510585 8663665 Forest BurnSep24 714 520815 8663695 Cropland Unburned 
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209 522825 8663395 Forest BurnSep24 715 504585 8662585 Cropland Unburned 

210 522645 8662915 Forest BurnSep24 716 513915 8681875 Cropland BurnSep24 

211 520065 8662915 Forest BurnSep24 717 515145 8681755 Cropland BurnSep24 

212 514185 8662765 Forest BurnSep24 718 509115 8681245 Cropland BurnSep24 

213 496545 8681515 Forest BurnAug23 719 498645 8681185 Cropland BurnSep24 

214 522135 8681095 Forest BurnAug23 720 520845 8681185 Cropland BurnSep24 

215 502155 8680705 Forest BurnAug23 721 515265 8679715 Cropland BurnSep24 

216 502875 8680225 Forest BurnAug23 722 508755 8679655 Cropland BurnSep24 

217 510345 8680105 Forest BurnAug23 723 521325 8679145 Cropland BurnSep24 

218 491505 8679985 Forest BurnAug23 724 518625 8679115 Cropland BurnSep24 

219 501615 8679745 Forest BurnAug23 725 500685 8678935 Cropland BurnSep24 

220 522285 8679685 Forest BurnAug23 726 521055 8678605 Cropland BurnSep24 

221 490065 8679505 Forest BurnAug23 727 518655 8678245 Cropland BurnSep24 

222 502005 8679385 Forest BurnAug23 728 517605 8678005 Cropland BurnSep24 

223 499095 8679145 Forest BurnAug23 729 513765 8677945 Cropland BurnSep24 

224 502425 8679055 Forest BurnAug23 730 523125 8677735 Cropland BurnSep24 

225 503835 8679025 Forest BurnAug23 731 522945 8677435 Cropland BurnSep24 

226 523185 8678965 Forest BurnAug23 732 522765 8677405 Cropland BurnSep24 

227 493905 8678965 Forest BurnAug23 733 522375 8677165 Cropland BurnSep24 

228 496665 8677585 Forest BurnAug23 734 522375 8677105 Cropland BurnSep24 

229 505545 8676895 Forest BurnAug23 735 513315 8675665 Cropland BurnSep24 

230 509715 8676295 Forest BurnAug23 736 503865 8675065 Cropland BurnSep24 

231 491955 8675305 Forest BurnAug23 737 508725 8674765 Cropland BurnSep24 

232 517845 8674345 Forest BurnAug23 738 522525 8674645 Cropland BurnSep24 

233 522195 8673475 Forest BurnAug23 739 509505 8674375 Cropland BurnSep24 

234 493815 8673055 Forest BurnAug23 740 510915 8674045 Cropland BurnSep24 

235 522735 8672125 Forest BurnAug23 741 507975 8673955 Cropland BurnSep24 

236 494325 8671675 Forest BurnAug23 742 516615 8673865 Cropland BurnSep24 

237 490425 8671615 Forest BurnAug23 743 506955 8672755 Cropland BurnSep24 

238 513405 8671375 Forest BurnAug23 744 499545 8672245 Cropland BurnSep24 

239 502815 8671135 Forest BurnAug23 745 498885 8672005 Cropland BurnSep24 

240 486885 8671135 Forest BurnAug23 746 507435 8671585 Cropland BurnSep24 

241 486075 8669305 Forest BurnAug23 747 517815 8671405 Cropland BurnSep24 

242 503625 8669245 Forest BurnAug23 748 522225 8670805 Cropland BurnSep24 

243 505305 8669095 Forest BurnAug23 749 521265 8670145 Cropland BurnSep24 

244 491715 8668435 Forest BurnAug23 750 499095 8668975 Cropland BurnSep24 

245 501735 8668345 Forest BurnAug23 751 517425 8668585 Cropland BurnSep24 

246 490755 8668285 Forest BurnAug23 752 517215 8667805 Cropland BurnSep24 

247 505095 8667985 Forest BurnAug23 753 516045 8667325 Cropland BurnSep24 

248 495645 8667895 Forest BurnAug23 754 519585 8666875 Cropland BurnSep24 
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249 505455 8667415 Forest BurnAug23 755 502785 8666515 Cropland BurnSep24 

250 498435 8666515 Forest BurnAug23 756 519165 8665195 Cropland BurnSep24 

251 505635 8665945 Forest BurnAug23 757 521865 8665165 Cropland BurnSep24 

252 518085 8664835 Forest BurnAug23 758 519945 8665135 Cropland BurnSep24 

253 499005 8664055 Forest BurnAug23 759 520725 8664985 Cropland BurnSep24 

254 508605 8664025 Forest BurnAug23 760 518235 8664475 Cropland BurnSep24 

255 502785 8663905 Forest BurnAug23 761 513645 8663845 Cropland BurnSep24 

256 490335 8663425 Forest BurnAug23 762 517065 8663605 Cropland BurnSep24 

257 496395 8663395 Forest BurnAug23 763 517575 8662585 Cropland BurnSep24 

258 506205 8663305 Forest BurnAug23 764 523485 8662465 Cropland BurnSep24 

259 519375 8663095 Forest BurnAug23 765 496395 8681545 Cropland BurnAug23 

260 521895 8662585 Forest BurnAug23 766 514665 8681395 Cropland BurnAug23 

261 497475 8662315 Forest BurnAug23 767 515355 8680705 Cropland BurnAug23 

262 518655 8681725 Forest BurnNov11 768 513795 8680585 Cropland BurnAug23 

263 504075 8681065 Forest BurnNov11 769 519795 8680315 Cropland BurnAug23 

264 512025 8680435 Forest BurnNov11 770 520305 8680165 Cropland BurnAug23 

265 517035 8680405 Forest BurnNov11 771 507285 8679505 Cropland BurnAug23 

266 511305 8680285 Forest BurnNov11 772 521625 8679355 Cropland BurnAug23 

267 522315 8680225 Forest BurnNov11 773 520305 8679055 Cropland BurnAug23 

268 506685 8680015 Forest BurnNov11 774 522525 8678365 Cropland BurnAug23 

269 522405 8679205 Forest BurnNov11 775 522075 8678185 Cropland BurnAug23 

270 516285 8678605 Forest BurnNov11 776 520725 8677765 Cropland BurnAug23 

271 514905 8677765 Forest BurnNov11 777 522315 8677675 Cropland BurnAug23 

272 511395 8676715 Forest BurnNov11 778 521715 8677555 Cropland BurnAug23 

273 522735 8675455 Forest BurnNov11 779 512325 8676775 Cropland BurnAug23 

274 522795 8675425 Forest BurnNov11 780 509925 8675515 Cropland BurnAug23 

275 519345 8674585 Forest BurnNov11 781 518115 8674975 Cropland BurnAug23 

276 517695 8674015 Forest BurnNov11 782 521955 8674345 Cropland BurnAug23 

277 514305 8673985 Forest BurnNov11 783 521175 8672905 Cropland BurnAug23 

278 520245 8673775 Forest BurnNov11 784 520575 8672245 Cropland BurnAug23 

279 494685 8672635 Forest BurnNov11 785 521685 8672065 Cropland BurnAug23 

280 520185 8671915 Forest BurnNov11 786 495885 8670805 Cropland BurnAug23 

281 513855 8671615 Forest BurnNov11 787 513615 8670655 Cropland BurnAug23 

282 520815 8667265 Forest BurnNov11 788 522675 8670475 Cropland BurnAug23 

283 503925 8666665 Forest BurnNov11 789 514005 8670415 Cropland BurnAug23 

284 516195 8665765 Forest BurnNov11 790 513285 8669725 Cropland BurnAug23 

285 518115 8665285 Forest BurnNov11 791 508215 8669635 Cropland BurnAug23 

286 497295 8664325 Forest BurnNov11 792 517665 8669245 Cropland BurnAug23 

287 519075 8664265 Forest BurnNov11 793 507345 8669095 Cropland BurnAug23 

288 522555 8664235 Forest BurnNov11 794 513495 8668705 Cropland BurnAug23 
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289 520755 8664115 Forest BurnNov11 795 504525 8668075 Cropland BurnAug23 

290 519555 8664055 Forest BurnNov11 796 494265 8668075 Cropland BurnAug23 

291 498135 8663545 Forest BurnNov11 797 494835 8668015 Cropland BurnAug23 

292 497175 8662735 Forest BurnNov11 798 502125 8667895 Cropland BurnAug23 

293 503295 8662525 Forest BurnNov11 799 518055 8666995 Cropland BurnAug23 

294 523215 8662315 Forest BurnNov11 800 519255 8666725 Cropland BurnAug23 

295 512955 8681605 Forest BurnJul06 801 500655 8666695 Cropland BurnAug23 

296 513135 8681575 Forest BurnJul06 802 508065 8666605 Cropland BurnAug23 

297 513255 8681545 Forest BurnJul06 803 517785 8665525 Cropland BurnAug23 

298 513345 8681515 Forest BurnJul06 804 517065 8664985 Cropland BurnAug23 

299 517095 8672575 Forest BurnJul06 805 516555 8664445 Cropland BurnAug23 

300 517125 8672515 Forest BurnJul06 806 510945 8664175 Cropland BurnAug23 

301 518085 8671045 Forest BurnJul06 807 517515 8664115 Cropland BurnAug23 

302 518025 8671015 Forest BurnJul06 808 492555 8663395 Cropland BurnAug23 

303 517935 8670985 Forest BurnJul06 809 511395 8663275 Cropland BurnAug23 

304 518205 8670955 Forest BurnJul06 810 493395 8663275 Cropland BurnAug23 

305 518235 8670925 Forest BurnJul06 811 513675 8663185 Cropland BurnAug23 

306 517935 8670865 Forest BurnJul06 812 510495 8662735 Cropland BurnAug23 

307 518205 8670835 Forest BurnJul06 813 511935 8662495 Cropland BurnAug23 

308 517995 8670835 Forest BurnJul06 814 510375 8681785 Cropland BurnAug07 

309 518055 8670805 Forest BurnJul06 815 517605 8680735 Cropland BurnAug07 

310 509565 8665525 Forest BurnJul06 816 507705 8680405 Cropland BurnAug07 

311 511695 8665105 Forest BurnJul06 817 509595 8680255 Cropland BurnAug07 

312 511755 8665075 Forest BurnJul06 818 503145 8680195 Cropland BurnAug07 

313 511995 8665045 Forest BurnJul06 819 516705 8680105 Cropland BurnAug07 

314 511815 8665015 Forest BurnJul06 820 519645 8676835 Cropland BurnAug07 

315 512835 8681635 Forest BurnJul22 821 523005 8676385 Cropland BurnAug07 

316 513045 8681575 Forest BurnJul22 822 518085 8676325 Cropland BurnAug07 

317 519315 8681125 Forest BurnJul22 823 501315 8674885 Cropland BurnAug07 

318 518895 8680495 Forest BurnJul22 824 517575 8674675 Cropland BurnAug07 

319 515625 8680345 Forest BurnJul22 825 519705 8674525 Cropland BurnAug07 

320 486945 8677705 Forest BurnJul22 826 522645 8674135 Cropland BurnAug07 

321 519975 8675815 Forest BurnJul22 827 522615 8673745 Cropland BurnAug07 

322 517785 8675425 Forest BurnJul22 828 522765 8673745 Cropland BurnAug07 

323 518055 8675095 Forest BurnJul22 829 515685 8673445 Cropland BurnAug07 

324 511035 8673835 Forest BurnJul22 830 516045 8673265 Cropland BurnAug07 

325 505035 8673385 Forest BurnJul22 831 518025 8672365 Cropland BurnAug07 

326 518475 8672965 Forest BurnJul22 832 515475 8671735 Cropland BurnAug07 

327 520335 8672635 Forest BurnJul22 833 520725 8670505 Cropland BurnAug07 

328 518055 8672605 Forest BurnJul22 834 521955 8669755 Cropland BurnAug07 
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329 517755 8672365 Forest BurnJul22 835 514125 8669725 Cropland BurnAug07 

330 520635 8672035 Forest BurnJul22 836 496035 8669485 Cropland BurnAug07 

331 516315 8671945 Forest BurnJul22 837 518295 8669305 Cropland BurnAug07 

332 518445 8671585 Forest BurnJul22 838 521085 8668645 Cropland BurnAug07 

333 521085 8671405 Forest BurnJul22 839 517935 8667685 Cropland BurnAug07 

334 517155 8671165 Forest BurnJul22 840 510765 8667205 Cropland BurnAug07 

335 517245 8670955 Forest BurnJul22 841 517545 8667205 Cropland BurnAug07 

336 521235 8670865 Forest BurnJul22 842 517755 8667115 Cropland BurnAug07 

337 517275 8670805 Forest BurnJul22 843 517725 8666305 Cropland BurnAug07 

338 519075 8670625 Forest BurnJul22 844 518295 8666245 Cropland BurnAug07 

339 517905 8670445 Forest BurnJul22 845 510225 8666095 Cropland BurnAug07 

340 519765 8670355 Forest BurnJul22 846 521085 8666065 Cropland BurnAug07 

341 519315 8670265 Forest BurnJul22 847 513105 8665795 Cropland BurnAug07 

342 518895 8670055 Forest BurnJul22 848 511605 8665555 Cropland BurnAug07 

343 515595 8670055 Forest BurnJul22 849 509325 8665255 Cropland BurnAug07 

344 519435 8669485 Forest BurnJul22 850 510795 8665225 Cropland BurnAug07 

345 519075 8669215 Forest BurnJul22 851 510615 8664925 Cropland BurnAug07 

346 505725 8668945 Forest BurnJul22 852 509355 8664895 Cropland BurnAug07 

347 521085 8668825 Forest BurnJul22 853 503445 8664775 Cropland BurnAug07 

348 519315 8668825 Forest BurnJul22 854 513885 8664445 Cropland BurnAug07 

349 522705 8668345 Forest BurnJul22 855 515085 8664235 Cropland BurnAug07 

350 515055 8667355 Forest BurnJul22 856 512835 8663995 Cropland BurnAug07 

351 520605 8664535 Forest BurnJul22 857 513285 8663995 Cropland BurnAug07 

352 518895 8663905 Forest BurnJul22 858 514005 8663425 Cropland BurnAug07 

353 519165 8663905 Forest BurnJul22 859 516195 8663095 Cropland BurnAug07 

354 505035 8663215 Forest BurnJul22 860 512985 8663035 Cropland BurnAug07 

355 515355 8662555 Forest BurnJul22 861 513465 8662795 Cropland BurnAug07 

356 515865 8662315 Forest BurnJul22 862 512805 8662615 Cropland BurnAug07 

357 510285 8681425 Grassland BurnAug23 863 517755 8679385 Cropland BurnJul22 

358 511965 8680585 Grassland BurnAug23 864 517905 8679355 Cropland BurnJul22 

359 521775 8679445 Grassland BurnAug23 865 515595 8678695 Cropland BurnJul22 

360 520485 8679445 Grassland BurnAug23 866 518985 8677435 Cropland BurnJul22 

361 523335 8679325 Grassland BurnAug23 867 517785 8677345 Cropland BurnJul22 

362 521895 8679145 Grassland BurnAug23 868 519405 8677285 Cropland BurnJul22 

363 498375 8678845 Grassland BurnAug23 869 518085 8677255 Cropland BurnJul22 

364 521865 8678425 Grassland BurnAug23 870 517275 8677165 Cropland BurnJul22 

365 519435 8678365 Grassland BurnAug23 871 517995 8677015 Cropland BurnJul22 

366 522735 8678065 Grassland BurnAug23 872 518145 8676745 Cropland BurnJul22 

367 522405 8678035 Grassland BurnAug23 873 518775 8676745 Cropland BurnJul22 

368 522465 8678005 Grassland BurnAug23 874 518745 8676625 Cropland BurnJul22 
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369 521445 8677975 Grassland BurnAug23 875 519315 8676475 Cropland BurnJul22 

370 505935 8677795 Grassland BurnAug23 876 519315 8676385 Cropland BurnJul22 

371 515445 8677735 Grassland BurnAug23 877 517905 8675965 Cropland BurnJul22 

372 521115 8677195 Grassland BurnAug23 878 518055 8675905 Cropland BurnJul22 

373 520695 8677135 Grassland BurnAug23 879 519375 8675755 Cropland BurnJul22 

374 520785 8677105 Grassland BurnAug23 880 519195 8675695 Cropland BurnJul22 

375 491655 8677015 Grassland BurnAug23 881 520635 8674075 Cropland BurnJul22 

376 520185 8676445 Grassland BurnAug23 882 520455 8673895 Cropland BurnJul22 

377 519975 8676415 Grassland BurnAug23 883 520695 8673565 Cropland BurnJul22 

378 520185 8676415 Grassland BurnAug23 884 520995 8673415 Cropland BurnJul22 

379 521355 8674675 Grassland BurnAug23 885 521325 8672725 Cropland BurnJul22 

380 521355 8673715 Grassland BurnAug23 886 503295 8672665 Cropland BurnJul22 

381 518625 8673535 Grassland BurnAug23 887 517635 8672425 Cropland BurnJul22 

382 503745 8673535 Grassland BurnAug23 888 517605 8672395 Cropland BurnJul22 

383 521505 8673415 Grassland BurnAug23 889 519075 8671525 Cropland BurnJul22 

384 511875 8673025 Grassland BurnAug23 890 520785 8671405 Cropland BurnJul22 

385 522135 8671225 Grassland BurnAug23 891 521265 8671015 Cropland BurnJul22 

386 514305 8670715 Grassland BurnAug23 892 517815 8670775 Cropland BurnJul22 

387 513315 8669875 Grassland BurnAug23 893 516645 8670715 Cropland BurnJul22 

388 517605 8669575 Grassland BurnAug23 894 517095 8670565 Cropland BurnJul22 

389 509055 8669395 Grassland BurnAug23 895 517155 8670565 Cropland BurnJul22 

390 502995 8669335 Grassland BurnAug23 896 520875 8670355 Cropland BurnJul22 

391 504195 8669185 Grassland BurnAug23 897 520065 8670025 Cropland BurnJul22 

392 506655 8669155 Grassland BurnAug23 898 519225 8669995 Cropland BurnJul22 

393 504615 8669125 Grassland BurnAug23 899 518265 8669965 Cropland BurnJul22 

394 507615 8669005 Grassland BurnAug23 900 519915 8669935 Cropland BurnJul22 

395 507585 8668765 Grassland BurnAug23 901 519975 8669755 Cropland BurnJul22 

396 507345 8668705 Grassland BurnAug23 902 518865 8669755 Cropland BurnJul22 

397 512295 8668015 Grassland BurnAug23 903 519015 8669665 Cropland BurnJul22 

398 496035 8667385 Grassland BurnAug23 904 521145 8668405 Cropland BurnJul22 

399 518715 8667235 Grassland BurnAug23 905 515025 8667655 Cropland BurnJul22 

400 518955 8667205 Grassland BurnAug23 906 514815 8667625 Cropland BurnJul22 

401 517875 8665675 Grassland BurnAug23 907 514935 8667505 Cropland BurnJul22 

402 508035 8665615 Grassland BurnAug23 908 516285 8667415 Cropland BurnJul22 

403 508005 8665615 Grassland BurnAug23 909 516555 8667085 Cropland BurnJul22 

404 517215 8665225 Grassland BurnAug23 910 516285 8663485 Cropland BurnJul22 

405 504195 8665195 Grassland BurnAug23 911 518475 8662765 Cropland BurnJul22 

406 498495 8665045 Grassland BurnAug23 912 504945 8681905 Cropland BurnOct10 

407 523245 8664625 Grassland BurnAug23 913 521025 8681365 Cropland BurnOct10 

408 498675 8664085 Grassland BurnAug23 914 517245 8680645 Cropland BurnOct10 



 

152 

ID X Y Land cover Burn class ID X Y Land cover Burn class 

409 488745 8663995 Grassland BurnAug23 915 520335 8680465 Cropland BurnOct10 

410 494295 8662855 Grassland BurnAug23 916 521205 8679955 Cropland BurnOct10 

411 513975 8662705 Grassland BurnAug23 917 516465 8679145 Cropland BurnOct10 

412 505845 8681485 Grassland Unburned 918 515085 8678995 Cropland BurnOct10 

413 519975 8681305 Grassland Unburned 919 505725 8678155 Cropland BurnOct10 

414 518895 8681065 Grassland Unburned 920 513645 8675695 Cropland BurnOct10 

415 512925 8681035 Grassland Unburned 921 513645 8675665 Cropland BurnOct10 

416 521355 8680855 Grassland Unburned 922 508485 8675455 Cropland BurnOct10 

417 518985 8680825 Grassland Unburned 923 514035 8675335 Cropland BurnOct10 

418 521235 8680435 Grassland Unburned 924 513795 8675065 Cropland BurnOct10 

419 522105 8680135 Grassland Unburned 925 512595 8674915 Cropland BurnOct10 

420 518445 8679475 Grassland Unburned 926 519465 8674165 Cropland BurnOct10 

421 521385 8679025 Grassland Unburned 927 513105 8673775 Cropland BurnOct10 

422 511425 8678995 Grassland Unburned 928 502005 8672815 Cropland BurnOct10 

423 519225 8678665 Grassland Unburned 929 500715 8672695 Cropland BurnOct10 

424 517035 8678005 Grassland Unburned 930 519975 8672305 Cropland BurnOct10 

425 516615 8677795 Grassland Unburned 931 519945 8672275 Cropland BurnOct10 

426 518445 8677645 Grassland Unburned 932 519945 8672245 Cropland BurnOct10 

427 520635 8677015 Grassland Unburned 933 508695 8671855 Cropland BurnOct10 

428 511425 8676895 Grassland Unburned 934 512265 8671825 Cropland BurnOct10 

429 506085 8675575 Grassland Unburned 935 520875 8671735 Cropland BurnOct10 

430 521355 8675215 Grassland Unburned 936 522165 8670505 Cropland BurnOct10 

431 517455 8675065 Grassland Unburned 937 511635 8668855 Cropland BurnOct10 

432 505905 8674795 Grassland Unburned 938 515955 8668855 Cropland BurnOct10 

433 521445 8674105 Grassland Unburned 939 519975 8668675 Cropland BurnOct10 

434 521355 8673415 Grassland Unburned 940 510975 8668495 Cropland BurnOct10 

435 519375 8673355 Grassland Unburned 941 506595 8667835 Cropland BurnOct10 

436 522105 8672485 Grassland Unburned 942 520995 8667745 Cropland BurnOct10 

437 510885 8671165 Grassland Unburned 943 521415 8667685 Cropland BurnOct10 

438 511965 8671075 Grassland Unburned 944 523455 8667655 Cropland BurnOct10 

439 517965 8669575 Grassland Unburned 945 521565 8667505 Cropland BurnOct10 

440 513645 8666725 Grassland Unburned 946 519795 8667085 Cropland BurnOct10 

441 514845 8666245 Grassland Unburned 947 520215 8666545 Cropland BurnOct10 

442 510045 8665765 Grassland Unburned 948 520425 8666545 Cropland BurnOct10 

443 510345 8664745 Grassland Unburned 949 513105 8666215 Cropland BurnOct10 

444 518715 8663395 Grassland Unburned 950 510105 8666125 Cropland BurnOct10 

445 514335 8681365 Grassland BurnSep24 951 518145 8665735 Cropland BurnOct10 

446 504795 8681275 Grassland BurnSep24 952 518205 8665585 Cropland BurnOct10 

447 515835 8681005 Grassland BurnSep24 953 502785 8665465 Cropland BurnOct10 

448 505605 8680855 Grassland BurnSep24 954 514365 8665015 Cropland BurnOct10 



153 

 

ID X Y Land cover Burn class ID X Y Land cover Burn class 

449 505635 8680765 Grassland BurnSep24 955 515145 8664595 Cropland BurnOct10 

450 514395 8680765 Grassland BurnSep24 956 520395 8664085 Cropland BurnOct10 

451 509745 8680135 Grassland BurnSep24 957 521925 8663815 Cropland BurnOct10 

452 521655 8680045 Grassland BurnSep24 958 520365 8663215 Cropland BurnOct10 

453 521865 8679925 Grassland BurnSep24 959 520275 8663125 Cropland BurnOct10 

454 518355 8679895 Grassland BurnSep24 960 509625 8672665 Cropland BurnJul06 

455 517965 8679895 Grassland BurnSep24 961 509685 8672635 Cropland BurnJul06 

456 521385 8679895 Grassland BurnSep24 962 517185 8672575 Cropland BurnJul06 

457 514815 8679805 Grassland BurnSep24 963 517155 8672515 Cropland BurnJul06 

458 521895 8679655 Grassland BurnSep24 964 512505 8671885 Cropland BurnJul06 

459 521745 8679025 Grassland BurnSep24 965 520065 8671765 Cropland BurnJul06 

460 504495 8679025 Grassland BurnSep24 966 520035 8671705 Cropland BurnJul06 

461 523425 8678935 Grassland BurnSep24 967 519975 8671675 Cropland BurnJul06 

462 521535 8678545 Grassland BurnSep24 968 519945 8671615 Cropland BurnJul06 

463 513105 8678455 Grassland BurnSep24 969 519165 8670985 Cropland BurnJul06 

464 521325 8678395 Grassland BurnSep24 970 517995 8670865 Cropland BurnJul06 

465 508605 8678305 Grassland BurnSep24 971 518025 8670865 Cropland BurnJul06 

466 511125 8677945 Grassland BurnSep24 972 518115 8670835 Cropland BurnJul06 

467 518835 8677885 Grassland BurnSep24 973 518295 8670835 Cropland BurnJul06 

468 499275 8677735 Grassland BurnSep24 974 518325 8670805 Cropland BurnJul06 

469 513705 8677675 Grassland BurnSep24 975 518415 8670775 Cropland BurnJul06 

470 521205 8677675 Grassland BurnSep24 976 521265 8669635 Cropland BurnJul06 

471 521055 8677375 Grassland BurnSep24 977 517185 8669545 Cropland BurnJul06 

472 506055 8676805 Grassland BurnSep24 978 522495 8669095 Cropland BurnJul06 

473 512595 8676775 Grassland BurnSep24 979 522495 8669005 Cropland BurnJul06 

474 506685 8676445 Grassland BurnSep24 980 522285 8668165 Cropland BurnJul06 

475 520275 8676355 Grassland BurnSep24 981 517125 8665675 Cropland BurnJul06 

476 520395 8676115 Grassland BurnSep24 982 517155 8665675 Cropland BurnJul06 

477 510975 8675965 Grassland BurnSep24 983 517125 8665615 Cropland BurnJul06 

478 512955 8674855 Grassland BurnSep24 984 517065 8665615 Cropland BurnJul06 

479 521685 8674195 Grassland BurnSep24 985 500325 8681635 Cropland BurnNov11 

480 521955 8673835 Grassland BurnSep24 986 518175 8677135 Cropland BurnNov11 

481 521115 8673325 Grassland BurnSep24 987 513765 8676955 Cropland BurnNov11 

482 516765 8673175 Grassland BurnSep24 988 519375 8676835 Cropland BurnNov11 

483 522015 8673085 Grassland BurnSep24 989 519375 8676805 Cropland BurnNov11 

484 515505 8672815 Grassland BurnSep24 990 508845 8676445 Cropland BurnNov11 

485 513225 8671105 Grassland BurnSep24 991 510345 8676445 Cropland BurnNov11 

486 514215 8671015 Grassland BurnSep24 992 521625 8676145 Cropland BurnNov11 

487 515505 8670865 Grassland BurnSep24 993 521625 8676115 Cropland BurnNov11 

488 522825 8669365 Grassland BurnSep24 994 521715 8675695 Cropland BurnNov11 



 

154 

ID X Y Land cover Burn class ID X Y Land cover Burn class 

489 519285 8668855 Grassland BurnSep24 995 518475 8675215 Cropland BurnNov11 

490 518205 8668435 Grassland BurnSep24 996 496545 8675185 Cropland BurnNov11 

491 518745 8666875 Grassland BurnSep24 997 508485 8674795 Cropland BurnNov11 

492 515955 8666455 Grassland BurnSep24 998 522615 8674735 Cropland BurnNov11 

493 517815 8665015 Grassland BurnSep24 999 519555 8674255 Cropland BurnNov11 

494 517515 8663245 Grassland BurnSep24 1000 496665 8673595 Cropland BurnNov11 

495 498345 8662945 Grassland BurnSep24 1001 511455 8672935 Cropland BurnNov11 

496 518355 8681845 Grassland BurnOct10 1002 522855 8671675 Cropland BurnNov11 

497 518325 8681815 Grassland BurnOct10 1003 510105 8670355 Cropland BurnNov11 

498 523305 8681665 Grassland BurnOct10 1004 522945 8668585 Cropland BurnNov11 

499 519345 8680645 Grassland BurnOct10 1005 503925 8667325 Cropland BurnNov11 

500 519555 8680615 Grassland BurnOct10 1006 512805 8667235 Cropland BurnNov11 

501 522045 8680405 Grassland BurnOct10 1007 516585 8664325 Cropland BurnNov11 

502 521775 8680225 Grassland BurnOct10 1008 514485 8662765 Cropland BurnNov11 

503 515955 8680225 Grassland BurnOct10 1009 518565 8662435 Cropland BurnNov11 

504 521055 8680015 Grassland BurnOct10 1010 497115 8662405 Cropland BurnNov11 

505 519405 8678785 Grassland BurnOct10 1011 520995 8662375 Cropland BurnNov11 

506 519705 8678635 Grassland BurnOct10      

 

 

 

 

 

 


