Stecoah Valley Center Conceptual Site Master Plan

Prepared for the Stecoah Valley Center
Stecoah, NC

June 2015
The work upon which this publication is based was funded in whole or in part through a grant awarded by the Southern Region, State and Private Forestry, U.S. Forest Service.

In accordance with Federal Law and US Department of Agriculture policy, this institution is prohibited from discriminating on the basis of race, color, national origin, sex, age, or disability.

To file a complaint of discrimination, write USDA Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Ave., SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity employer.
The Community Design Assistance Center (CDAC) is an outreach center in the College of Architecture and Urban Studies at Virginia Tech that assists communities, neighborhood groups and non-profit organizations in improving the natural and built environments. Assistance is provided in the areas of landscape architecture, architecture, planning, and interior design. Working with communities, the conceptual planning and design provides communities with a graphic vision of their project that can then be used for grant applications and fundraising for the next steps toward implementation.
The Graham Revitalization Economic Action Team (GREAT)

Stecoah Valley Cultural Arts Center

All Participants in the Design Process
TABLE OF CONTENTS

PART 1

DESIGN PROCESS 10

FINAL DESIGNS

- Conceptual Site Master Plan 11
- Final Conceptual Master Plan Drawing 13
- Deck Courtyard Perspective 14
- Reading Area Perspective 15
- Interpretive Stations 16
- Active Recreation Area Detail 18
- Active Recreation Area Detail Design and Perspective 19
- Wind Garden Detail 20
- Wind Garden Detail Design 21
- Wind Garden Perspective 22
- Panoramic Photograph Interpretive Station Detail 23
- Panoramic Photograph Interpretive Station Detail Design 24
- Panoramic Photograph Interpretive Station Perspective 25
- Planting Design 26
- Planting Plan and Schedule 27
- Planting Palette 28

CONCLUSION 29

PART 2

SITE INVENTORY & ANALYSIS 31

- Site Inventory Map 33
- Site Analysis Map 34

CASE STUDIES

- Contemplative Gardens 35
- Appalachian Art and Culture 36
- Story Circles 37
- Quilt Squares and Quilt Gardens 38

PRELIMINARY CONCEPTS

- Concept A 39
- Preliminary Concept A Drawing 40
- Concept B 41
- Preliminary Concept B Drawing 42
- Concept C 43
- Preliminary Concept C Drawing 44
TABLE OF CONTENTS

PART 3

APPENDIX

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Samples/Results</td>
<td>46</td>
</tr>
<tr>
<td>Soil Results Location Map</td>
<td>47</td>
</tr>
<tr>
<td>Explanation of Soil Tests</td>
<td>48</td>
</tr>
<tr>
<td>Cabinettes</td>
<td>49</td>
</tr>
<tr>
<td>Cherokee Art and Culture</td>
<td>52</td>
</tr>
<tr>
<td>Bubbler Fountain</td>
<td>53</td>
</tr>
<tr>
<td>Outdoor Lighting</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>55</td>
</tr>
</tbody>
</table>
The Stecoah Valley Center is located in Stecoah, NC within Graham County. The Center was built in 1926 and served the community as the Stecoah Union School until it was closed in 1994 and converted into a cultural center. The Center now serves the community as a place for after school arts programs, a performance space, an art gallery, a museum for Cherokee history, and an event space to celebrate local arts and agriculture. The Center sits on 10 acres of land currently comprised of a fitness trail that surrounds the extent of the property, a playground, an azalea garden, a pavilion, a separate gymnasium building, and a creek. The majority of the grounds consists of open space to provide ample room for the many cultural events the Center hosts in the summer and fall seasons.

The Community Design Assistance Center (CDAC) was tasked with developing a conceptual master plan to enhance the cultural and environmental quality of the grounds. The proposed master plan includes a half-basketball court that also serves as an outdoor performance space, outdoor restrooms, a wind garden, a story circle, a creek-side reading area, an interpretive walking trail with a variety of stations, and stormwater management all of which are Americans with Disabilities Act (ADA) accessible. In addition, open space was preserved to support the many events that the Center hosts every year.
The Stecoah Valley Center also wanted CDAC to enhance the fitness trail and convert it to an interpretive walking trail, so 5 interpretive stations were proposed. These stations reflect the history, culture, art, and geology of the region.
PART 1
The design process began with an initial site visit to Stecoah on January 27th, 2015. The CDAC team walked the site with Rick Davis, Executive Director for Graham Revitalization Economic Action Team (GREAT), and Beth Fields, Executive Director of Stecoah Valley Center, photographed the site, collected on-site data, documented existing conditions, and took soil samples. Also, the team met with the Stakeholders Committee and members of the community and discussed the history of the existing building, which was formerly a school built in 1926, the history of the grounds, and the community’s needs, desires, and vision for the site. By gathering this information, the team was able to understand the opportunities and constraints of the site. This analysis would later influence the design concepts.

As requested, the CDAC team then researched the history of the area, Appalachian culture, and wind sculptures for ideas to incorporate in the design.

After careful consideration of all the factors, three preliminary conceptual design alternatives were developed. These designs were presented at a community meeting on March 10th, 2015 where they were reviewed and commented on by stakeholders and community members. The design alternatives were then revised and combined into a final conceptual master plan for the project site based on the comments made at the meeting.

The final master plan and designs for the recreation area, wind garden and the panoramic interpretive station were presented on April 20th, 2015 at the final community meeting. These designs can be found on the following pages.
The Stecoah Valley Center’s grounds create a place where one can experience the arts, music, and traditions of Appalachia and Cherokee culture alike. The final conceptual design allows for users of all ages to experience these cultures in a multitude of ways; through different spaces, seasons, and events that the Stecoah Valley Center hosts throughout the year. In short, the grounds of the Stecoah Valley Center embody and emulate the work and passion that happens within the walls of the center.

The existing conditions of the site that have been maintained are all the buildings, the main entrance parking lot, the playground, the azalea garden, the community garden boxes, and all utilities. The fitness trail that follows the perimeter of the site has also been maintained and transformed into an interpretive trail, which consists of a variety of ‘step-off’ interpretive stations.

The interpretive trail splits from the main path in 3 places throughout the design. The first offshoot leads to the three cabinettes, located southeast of the Stecoah Valley Center building. This path leads to a parking lot with 5 spaces, one of which is a handicap space, for the residents of the cabinettes and those using the gymnasium. The dumpster is also located in the parking lot, which has been designed to support the maneuvering of a garbage truck. The other two offshoot trails stray to the north and west of the Stecoah Valley Center. Both of these routes lead to the active recreation area. This area consists of a basketball court with amphitheater-style seating, a shuffle board court, outdoor restrooms, a pavilion, the existing playground, and a plaza with seating. The active recreation area will be more thoroughly detailed later in the report.

The courtyard, located between the two wings of the Stecoah Valley Center building, has been converted into a deck that is ADA accessible via a ramp. The deck provides an area for outdoor table seating with umbrellas and bench seating with bubbler pots at the center. Both an ADA ramp and stairs lead down to a small circular plaza with benches along the edges and a piece of Cherokee art at the center. This plaza can be used for seating during an outdoor movie night, outdoor classroom space, or just simply a place to sit and enjoy the beauty of the grounds and the surrounding mountains. Directly adjacent to the deck and plaza is a maintenance path that leads to the north side of the building. The material of this path is changed from gray gravel to decorative gravel; this maintains the functionality of the path but makes it aesthetically cohesive with the surrounding landscape.
The front entrance lawn, to the south of the Stecoah Valley Center, has been maintained as open space with the exception of an ADA accessible path and the relocation of the flagpole. The path leads from the south entrance of the building to the pump house and connects into the interpretive trail. The flagpole is now located between the pump house and the small pavilion, where the old playground structure used to stand. At the base of the flagpole is a concrete pad with bench seating and low plantings that help establish it as a place amongst the empty lawn.

Additions that have been made to the grounds are the wind garden, the creek-side reading area, and the story circle. The wind garden is in the northeast corner of the grounds, just off of the interpretive trail. The garden is ADA accessible and consists of seating and local-made wind sculptures. The wind garden will be described in more detail later in this report. The story circle is located in the opposite corner from the wind garden, northwest of the Stecoah Valley Center. The story circle is a place where the oral history of both the Appalachian and Cherokee cultures is exemplified. The story circle has an ADA accessible path with a fire pit/stage at the center. The fire pit is an elevated structure that can be covered (when its not being used for a fire) and converted into a stage. The fire pit/stage is surrounded by a combination of natural boulder seating and bench seating. The last addition is the creek-side reading area, nestled in between the north end of the creek and the story circle. The reading area is a simple space with two benches that face towards the creek and a free library. A free library is a small wooden box filled with books where people can borrow a book to read and replace it with a different book.

Many of the plantings added to the site are native to this area and some of them are significant in Cherokee culture. The wide variety of proposed trees and shrubs buffer the site from surrounding properties, provide shade for visitors, add seasonal interest to the landscape, connect culturally to the area, and serve a riparian and/or environmental purpose. The following pages include the master plan and perspectives of the deck courtyard and reading areas.
Stecoah Valley Center Conceptual Site Master Plan

Final Designs

Final Conceptual Master Plan

Interpretive Station #4: Geology and Flora/Fauna
Half Basketball Court
Restroom
Flower Boxes
Bench
Shuffleboard

Property Line
Picnic Shelter
Story Circle

Reading Area
Circular Bench
Riparian Plantings

Bench
Existing Playground

Azalea Garden
Amphitheater Seating

Water Feature Surrounded by Decorative Gravel and Bright Planting
Dry Creek

School House Road
Interpretive Walking Trail
Bench

Interpretive Station #1: Panoramic Photograph
Stormwater Management

Interpretive Station #2: Art
Existing Pavilion

Interpretive Station #3: Quilt Garden

Existing Gas Tank
Existing Gas Tanks

Decorative Gravel Access Road
Existing Electrical Box with Utility Screening

Art Center Building
Existing Electrical Box

Deck with ADA Accessible Ramp

Courtyard Entrance with Sculpture Relating to Cherokee Heritage

Interpretive Station #3: Quilt Garden

Existing Gas Tank

Utility Screening

Gulf Square

Cabinettes

Cabinetette Parking

Stormwater Management

Dumpsite
Existing Gas Tank

Gymnasium

Community Design Assistance Center

College of Architecture & Urban Studies
Virginia Polytechnic Institute and State University
discclaimer: This drawing is conceptual and was prepared to show approximate location and arrangement of site features. It is subject to change and is not intended to replace the use of construction documents. The client should consult appropriate professionals before any construction or site work is undertaken. The Community Design Assistance Center is not responsible for the inappropriate use of this drawing.
Stecoah Valley Center Conceptual Site Master Plan
FINAL DESIGNS
Reading Area Perspective

Disclaimer: This drawing is conceptual and was prepared to show approximate location and arrangement of site features. It is subject to change and is not intended to replace the use of construction documents. The client should consult appropriate professionals before any construction or site work is undertaken. The Community Design Assistance Center is not responsible for the inappropriate use of this drawing.
Along the interpretive trail (see master plan on page 11 for the interpretive station locations) there are a variety of interpretive stations located just off the trail that showcase different aspects of the Appalachian and Cherokee cultures and the geology of the region.

The first interpretive station is at the pump house in the entrance lawn. The pump house is a direct link to the past and how water was manipulated by people in order to serve the school’s various needs.

The second interpretive station is located where the interpretive trail meets the path that leads to the deck courtyard. This station is focused on local art that highlights the heritage and culture of this unique region of the country.

The third station is located along the interpretive trail, directly across from the south wall of the gymnasium. This station is unique in that it merges an Appalachian tradition with strong symbols of the Cherokee nation. On the south wall of the gymnasium is a barn quilt, which can be found on barns all throughout this region. Mirrored on the ground just below the quilt square is a quilt garden that contains the pattern of the Cherokee nation’s seven-pointed star.

The fourth interpretive station is located in the northern part of the grounds and focuses on the area’s flora/fauna and its geology. In the foreground there is a wildflower meadow comprised of wildflowers that are important in Cherokee culture and in the background is a magnificent mountain with a unique geological feature. The Cheoah bald is an unforested spot amongst the forested mountain, and it was a place of ritual for the Cherokee tribe in this area.

The fifth and final interpretive station is located southwest of the Stecoah Valley Center and focuses on the history of the school. When the school was opened in 1926 a panoramic photo was taken of the students and faculty at the front entrance of the building. This station talks about the history of the school and is located where the original panoramic photograph was taken. This provides a direct link between the past and the present and it provides people with the opportunity to see how the school and the landscape have grown and changed over the nearly 90 years since its inception. The following page depicts possibilities and ideas of what could occur at each of the physical stations.
1. Pump House Station
This interpretive station is a view into the history of the Stecoah Valley school. The structure was used to pump water from a well to the school and gymnasium. Wells and pump houses are just one of the ways that humans manipulate and regulate the environment to receive fresh water.

2. Art Station
This interpretive station features a piece of art that acts as a point of discussion and also reflects the region and its rich cultural heritage.

3. Quilt Station
This interpretive station speaks to the prominent cultures in Stecoah Valley: the Cherokee and Appalachia. Framed on the south wall of the gymnasium is a quilt that alludes to the barn quilts found throughout the Appalachian region. Mirrored on the ground in front of the gymnasium is a quilt garden with a seven pointed star. This star is a symbol of the Cherokee nation and is symbolically used to depict the nation’s 7 tribes.

4. Geology & Flora/Fauna Station
This interpretive station highlights different natural conditions of Stecoah Valley. In the foreground is a meadow with native wildflowers and grasses. As one’s eyes move across the meadow, the magnificent mountains in the background begin to dominate the view. Also the mountain directly in view is a large area with no vegetation known as the Cheoah Bald. A bald is a large clearing on top of a forested mountain. The Cheoah bald is one of the largest in this area and is a great place for camping and scenic views.

5. Panoramic Photograph
The interpretive photo station speaks to the history of the school. In the 1920’s when the school was built, a large panoramic photo of the first class was taken at the front entrance. This station frames the same view from the photo allowing everyone to see how the school, the grounds and the surrounding landscape has changed.
The recreation and active area includes a half basketball court with amphitheater seating, shuffleboard with a shared seating wall with the basketball court, outdoor restrooms, and a pavilion with picnic tables. The 50’x48’ half basketball court is designed to serve as a multi-functional venue for the fall festival and other seasonal events. ADA access is available to this area through an ADA accessible ramp which also connects to the playground. Restrooms are also designed for ADA use. The pavilion is placed on the north side of the playground, which includes picnic tables for outdoor dining and group gatherings.

Following is the detail design and perspective for the active recreation area.
Stecoah Valley Center Conceptual Site Master Plan

FINAL DESIGNS

Active Recreation Area Detail Design and Perspective

Amphitheater Seating

Seating Walls

Pavilion with Picnic Tables

Active Recreation Area
The wind garden is a place of retreat amongst the activity that is happening on the rest of the grounds. It is a circular garden surrounded by low vegetation to provide privacy without any threat to safety; the specific plantings are detailed in the planting plan later in the report. In addition to the shrubs, the wind garden is bordered with a variety of wind sculptures and a wind sculpture in the center of the garden as well. Along the edges are a variety of gliding benches and chairs that create a relaxing and soothing sensation as one experiences the garden. The ground plane is made up of decorative pavers which are both aesthetic and functional in that they allow the garden to be ADA accessible.

The following pages include the wind garden detail, material examples, and a supporting perspective.
Stecoah Valley Center Conceptual Site Master Plan

FINAL DESIGNS

Wind Garden Detail Design

Disclaimer: This drawing is conceptual and was prepared to show approximate location and arrangement of site features. It is subject to change and is not intended to replace the use of construction documents. The client should consult appropriate professionals before any construction or site work is undertaken. The Community Design Assistance Center is not responsible for the inappropriate use of this drawing.

An Outreach Center of the College of Architecture + Urban Studies Virginia Polytechnic Institute and State University

Interpretive Walking Trail

Wind Sculpture

Glider Bench

Decorative Pavers

Glider Chair

Property Fence

1" = 5' Scale

Wind Garden Detail

Wind Garden Perspective
The panoramic photograph station is one of the most special places in the master plan because it speaks directly to the history of the school and all the work that the staff of the Stecoah Valley Center have done to make it the place it is today. The station frames the same angle that the 1926 class photo was taken at, creating a conversation between the past and present.

In addition to the interpretive signage, which contains the panoramic photo taken in 1926, this station is also accompanied with a step-off seating area that is comprised of two benches and a variety of low shrubbery that increases the privacy of the seating area without threatening safety. Overall, it is a very simple station but a very meaningful place on the Stecoah Valley Center grounds.

The following pages depict the panoramic photograph interpretive station detail, materiality, and a perspective of the station.
Stecoah Valley Center Conceptual Site Master Plan
FINAL DESIGNS
Panoramic Photograph Interpretive Station Detail Design

Panoramic Photograph Station Detail Perspective

Bench
Interpretive Walking Trail
Interpretive Station
Seating Area

1" = 5' Scale

Disclaimer: This drawing is conceptual and was prepared to show approximate location and arrangement of site features. It is subject to change and is not intended to replace the use of construction documents. The client should consult appropriate professionals before any construction or site work is undertaken. The Community Design Assistance Center is not responsible for the inappropriate use of this drawing.

An Outreach Center of the
College of Architecture + Urban Studies
Virginia Polytechnic Institute and State University

24
Panoramic Photograph Interpretive Station Perspective

Disclaimer: This drawing is conceptual and was prepared to show approximate location and arrangement of site features. It is subject to change and is not intended to replace the use of construction documents. The client should consult appropriate professionals before any construction or site work is undertaken. The Community Design Assistance Center is not responsible for the inappropriate use of this drawing.
The plantings for Stecoah Valley Center were carefully chosen to fit the needs of the grounds and to mesh with the surrounding landscape. The planting plan, schedule, and palette outline the specifics of each plant. The planting plan details where each plant goes and the schedule serves as the legend for the plan. The schedule contains both the botanical and common names, the size, and the quantity of each plant. The schedule is organized by type (trees, shrubs, perennials, etc.) and arranged alphabetically by botanical name. The palette is a grid of images of all the plants that are in the plan and schedule and is also organized by type and common name.

As stated earlier, many of the plantings chosen are native to the region, meaning they will grow well and thrive in a specific region’s soil and climate. Many of the plants are also significant in Cherokee culture for a variety of reasons. When looking at the diversity of shrubbery, seasonal interest, and density played a large role both to make the space beautiful year round.

The following pages include the planting plan and schedule and the palette for the master plan design.
Stecoah Valley Center Conceptual Site Master Plan

FINAL DESIGNS

Planting Plan and Schedule

May 14, 2015

Disclaimer: This drawing is conceptual and was prepared to show approximate location and arrangement of site features. It is subject to change and is not intended to replace the use of construction documents. The client should consult appropriate professionals before any construction or site work is undertaken. The Community Design Assistance Center is not responsible for the inappropriate use of this drawing.

<table>
<thead>
<tr>
<th>CODE</th>
<th>BOTANICAL NAME / COMMON NAME</th>
<th>SIZE</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG</td>
<td>Amelanchier x grandiflora 'Autumn Brilliance' / Serviceberry</td>
<td>1” cal.</td>
<td>3</td>
</tr>
<tr>
<td>AP</td>
<td>Aesculus parviflora / Bottlebrush Buckeye</td>
<td>2” cal.</td>
<td>7</td>
</tr>
<tr>
<td>BN</td>
<td>Betula nigra 'Duval Heat' / River Birch</td>
<td>2” cal.</td>
<td>3</td>
</tr>
<tr>
<td>CA, CA</td>
<td>Carpinus caroliniana / Ironwood</td>
<td>2” cal.</td>
<td>4</td>
</tr>
<tr>
<td>CC</td>
<td>Cercis canadensis / Eastern Redbud</td>
<td>1” cal.</td>
<td>14</td>
</tr>
<tr>
<td>CF</td>
<td>Cornus florida 'Cherokee Chief' / Flowering Dogwood</td>
<td>2” cal.</td>
<td>15</td>
</tr>
<tr>
<td>CK</td>
<td>Closplatik kentukea / Yellowwood</td>
<td>2” cal.</td>
<td>2</td>
</tr>
<tr>
<td>CV</td>
<td>Chimonanthus virginicus / Fringe Tree</td>
<td>2” cal.</td>
<td>18</td>
</tr>
<tr>
<td>GB</td>
<td>Ginkgo biloba 'President Grant' / Ginkgo</td>
<td>2” cal.</td>
<td>3</td>
</tr>
<tr>
<td>HC</td>
<td>Halesia carolina / Carolina Silverbell</td>
<td>2” cal.</td>
<td>4</td>
</tr>
<tr>
<td>IO</td>
<td>Ilex opaca 'Jersey Princess' / American Holly</td>
<td>8” Hei.</td>
<td>3</td>
</tr>
<tr>
<td>IO, JK</td>
<td>Ilex opaca 'Jersey Knight' / American Holly Pollinator</td>
<td>8” Hei.</td>
<td>1</td>
</tr>
<tr>
<td>MV</td>
<td>Magnolia virginiana 'Monoglow' / Sweet Bay Magnolia</td>
<td>1” cal.</td>
<td>4</td>
</tr>
<tr>
<td>NS</td>
<td>Nyssa sylvatica 'Red Rage' / Black Gum</td>
<td>2” cal.</td>
<td>3</td>
</tr>
<tr>
<td>QA</td>
<td>Quercus alba / White oak</td>
<td>2” cal.</td>
<td>2</td>
</tr>
<tr>
<td>TD</td>
<td>Taxodium distichum / Bald Cypress</td>
<td>8” Hei.</td>
<td>7</td>
</tr>
<tr>
<td>SHRUBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM</td>
<td>Fothergilla major 'Mt. Airy' / Fothergilla</td>
<td>3-5 gal.</td>
<td>24</td>
</tr>
<tr>
<td>HQ, PE</td>
<td>Hydrangea quercifolia ‘Peewee’ / Oakleaf Hydrangea</td>
<td>3-5 gal.</td>
<td>13</td>
</tr>
<tr>
<td>HQ, RS</td>
<td>Hydrangea quercifolia ‘Ruby Slippers’ / Oakleaf Hydrangea</td>
<td>3-5 gal.</td>
<td>23</td>
</tr>
<tr>
<td>IV</td>
<td>Ilex virginica ‘Henry’s Garnet’ / Virginia Sweetspire</td>
<td>3-5 gal.</td>
<td>4</td>
</tr>
<tr>
<td>IV SG</td>
<td>Ilex verticillata 'Southern Gentlemen' / Winterberry Pollinator</td>
<td>3-5 gal.</td>
<td>4</td>
</tr>
<tr>
<td>IV WR</td>
<td>Ilex verticillata ‘Winter Red’ / Winterberry</td>
<td>3-5 gal.</td>
<td>14</td>
</tr>
<tr>
<td>PERENNIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HL</td>
<td>Hemerocallis sp. / Yellow Daylily</td>
<td>1 gal.</td>
<td>22</td>
</tr>
<tr>
<td>RR</td>
<td>Rosa radrazz / Knockout Rose</td>
<td>3-5 gal.</td>
<td>13</td>
</tr>
<tr>
<td>POTENTIAL CHEROKEE WILDFLOWER PLANTINGS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Ageratina altissima ‘Chocolate’ / White Snakeroot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>Asclepias tuberosa / Butterfly Milkweed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Baptisia australis / Blue Wild Indigo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF</td>
<td>Eupatorium fistulosum / Joe Pye Weed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td>Echinacea purpurea / Purple Coneflower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO</td>
<td>Monarda didyma ‘Jacob Cline’ / Wild Bergamot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>Phlox paniculata ‘Foll Phlox’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>Rudbeckia fulgida / Orange Coneflower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RL</td>
<td>Rudbeckia tachistata / Cutleaf Coneflower</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stecoah Valley Center Conceptual Site Master Plan

FINAL DESIGNS
Planting Palette

TREES
- American Holly
 Ilex opaca ‘Jersey Princess’
- Carolina Silverbell
 Halesia carolina
- Yellowwood
 Cladrastis kentuckea
- Sweetbay Magnolia
 Magnolia virginiana ‘Moonglow’
- Serviceberry
 Amelanchier x grandiflora ‘Autumn Brilliance’
- Wild Bergamot
 Monarda didyma ‘Jacob Cline’

SHRUBS
- Black Gum
 Nyssa sylvatica ‘Red Rage’
- Dwarf Fothergilla
 Fothergilla gardenii ‘Mt. Airy’
- Dwarf Oakleaf Hydrangea
 Hydrangea quercifolia ‘Pee Wee’
- Carolina Silverbell
 Halesia carolina
- Fringe Tree
 Chionanthus virginicus
- Winterberry (Pollinizer)
 Ilex verticillata ‘Southern Gentleman’
- Butterfly Milkweed
 Asclepias tuberosa

PERENNIALS FOR CHEROKEE WILDFLOWER PLANTING
- Purple Coneflower
 Echinacea purpurea
- Fall Phlox
 Phlox paniculata
- Joe Pye Weed
 Eupatorium purpureum
- White Snakeroot
 Ageratina altissima ‘Chocolate’
- Black Gum
 Nyssa sylvatica ‘Red Rage’
- Oakleaf Hydrangea
 Hydrangea quercifolia ‘Ruby Slippers’
- Winterberry
 Ilex verticillata ‘Red Sprite’
- Blue Wild Indigo
 Baptisia australis

PLANTING PALATE

DISCLAIMER: This drawing is conceptual and was prepared to show approximate location and arrangement of site features. It is subject to change and is not intended to replace the use of construction documents. The client should consult appropriate professionals before any construction or site work is undertaken. The Community Design Assistance Center is not responsible for the inappropriate use of this drawing.
The Stecoah Valley Center has worked hard to create a place that celebrates the region’s cultures, traditions, and history. The Community Design Assistance Center has worked closely with the members of the Stecoah Valley Center to create a master plan for the grounds that surround the center. It is our hope that these improvements respect and exemplify the cultures and traditions of the Stecoah Valley Center. In addition, we hope that the new design creates an enjoyable place for visitors and locals of all ages to enjoy the natural beauty of the area. The new design will hopefully support old traditions, like the many festivals the Center hosts, and also create avenues for new traditions to be made.
SITE INVENTORY & ANALYSIS

After the site visit and gathering of data, documenting the existing conditions, and collecting soil samples, the CDAC team created site inventory and analysis maps. This allowed the team to better understand the opportunities and constraints of the site that would later influence the design concepts.

The site inventory consisted of documenting circulation, views, slopes, existing buildings, and natural elements. The site analysis analyzed the data and highlights the design opportunities and constraints.

The following are brief descriptions of the inventory and analysis.

Inventory:
The site of the Stecoah Valley Center contains a few locations of steep topography but is largely flat. The site is bordered by an existing fitness trail, Dry Creek, and adjacent properties. The bank of Dry Creek that is on the property is eroded and in need of remediation. The trail is largely in good shape and is an asset to the property. Views from within the property are mostly attractive thanks to the surrounding mountains, the interesting architecture of the main building and gymnasium, and the presence of Dry Creek. However, the facade of the gymnasium is in poor shape and screening is necessary to a few adjacent properties.

The only major environmental factor that needs to be considered is the fact that stormwater collection is a problem in a few areas throughout the site. In one location, the water runs over the fitness trail causing it to crumble.

The inventory map shows current circulation conditions within the property boundaries which includes vehicular access and the fitness trail. Good views, indicated with green arrows, can provide great opportunities for gathering spots/seating areas. Less desirable views, shown in red, have the least potential for attractive backgrounds. Different slope conditions are shown and labeled as moderate or steep, to indicate zones with different opportunities. Areas with stormwater conditions are also shown.
Analysis:
The analysis shows that there are several site conditions that need to be taken into consideration while developing the design.

Screening around the property is necessary, but must not block views of the front of the building so that cars approaching on Old School House Road can have a view to the center. The gas tanks on the north and east sides of the main building need to be screened.

Emphasis needs to be returned to the true front of the main building. Enhancing the gymnasium facade should be considered. The interior courtyard of the main building provides an opportunity for a unique focus area.

The existing fitness trail and Dry Creek provide ample opportunities for resting/reflection areas throughout the property.

Following are the site inventory and analysis maps.
Contemplative gardens are unlike a typical garden in that there are many psychological aspects to factor into the design. Contemplative gardens are meant to create a relaxing environment that serves as an escape from the activity that may surround it. From a variety of case studies the design team learned what makes a contemplative garden successful. It is important to have a focal point because it gives the users something to focus on. A contemplative garden needs to have some kind of seating; preferably seating that is comfortable and natural looking. And lastly, the garden should be submerged in or surrounded by nature.
The region of North Carolina, where the Stecoah Valley Center is located, is filled with a rich art and culture. These traditions date back to the settlement of the area and they are a part of the resident’s daily lives. The art varies from sculpture and pottery to quilting and paintings. The cultural aspect involves types of dance and performance pieces that have been taught from generation to generation.
The story circle case studies that the design team explored help the team understand the form and materiality of these spaces. For example, the stage on which the speaker presents must be at the center of the story circle and that stage can either be elevated or level with the ground plane. Materiality should be rustic and natural for both the seating and the ground plane. The edges of the story circles are lined with plantings to help create a more private setting for the oral stories to be heard.

![Natural Seating and Center Stage](image1)
![Natural Wood Seating](image2)
![More formal story circle that maintains rustic/natural character](image3)
![Story circle in a more open landscape](image4)
Quilt squares are one of Appalachia’s oldest traditions. Consequently it was important to the design team to understand the history, patterns, and color palette of the quilt squares. In addition to the squares, ideas for quilt gardens were explored. Quilt gardens imitate the patterns and colors of the quilt squares, but they are on the ground plane and comprised of perennials instead of fabric.
This concept for the development of the Stecoah Valley Center property is guided by a few main ideas:

1. The fitness trail is a wonderful opportunity to create interpretive stations throughout the property. These stations cover topics of nature/landscape, culture/art, and the specific history of the site.

2. As one moves around the site they are constantly afforded specific views in toward the building or out toward the surrounding landscape. These views are defined by plant material and focal sculptures that direct the eye and bring art into the landscape.

3. Active use areas are centralized around the northwest corner of the building. These include the playground, a relocated pavilion, a basketball court, shuffleboard and outdoor restrooms. The existing topography is used to create a small amphitheater that turns the basketball court into a multi-functional venue. This entire portion of the property is meant to be ADA accessible.

4. A veteran’s memorial around the existing flag pole, as well as a new sidewalk that connects to the active use area, bring the emphasis back to the true front of the building.

5. Storm water issues are dealt with by the introduction of a number of rain gardens/retention areas. These depressions can be aesthetically pleasing, work with the existing land form and require little maintenance.

6. Finally, all of these features leave room for considerable open lawn space that can be used for free play and vehicle parking during special events.

Preliminary Concept A can be found on the following page.
This concept offers several zones based on different activities:

1. The contemplative garden is carefully designed to provide the best possible views to the Appalachian Mountains. Wind sculptures are placed around this area. The reading area is adjacent to the contemplative garden and are both considered quiet zones.

2. The recreation area is tied into the existing playground and the amphitheater seating for the basketball court is created on the existing topography. Shuffleboard, outdoor restrooms, sound circle and free play spaces are located around this area. Also, this area is designed to be ADA accessible.

3. The added entrance path offers the community to get involved in the site design. This will be done by having members of the community place their own designed tile on the path to create an art work as a whole. Other additional paths are to serve accessibility throughout the site.

4. Gathering zones for outdoor dining and vendors are located on the southeast side of the building.

Preliminary Concept B can be found on the following page.
This final concept focuses on introducing the cabinets into the grounds and finding ways to preserve the open space necessary for the Stecoah Valley Center’s large festivals, but also using some of that open space to create a safe place for children to play. In addition, the front entrance lawn is seen as a structured performance space with a stage at the center. Surrounding the stage is an experiential quilt garden that people can sit amongst during performances and watch the show that is happening on the stage. When there are no performances, it acts as an interactive landscape that is fun for children to run through and one that alludes to the heritage and traditions of the Appalachian region.

Preliminary Concept C can be found on the following page.
Stecoah Valley Center Conceptual Site Master Plan
PRELIMINARY CONCEPTS
Concept C

DESIGN ELEMENTS

1. Experiential quilt garden
2. Pick-up and drop-off area
3. Performance stage
4. Stormwater management areas
5. Central colonnade
6. Dog area
7. Children's garden
8. Wind turbine(s)
9. Open Meadow/bikeway-parking
10. Rivendell
11. Memorial
12. Playscape
13. Restrooms
14. Crafts/artisan workshops
15. Cafe/conference center
16. Native play areas
17. Artist garden
18. Parking and vehicle removal
19. Educational high
20. Master plan
21. Rock
22. Pitching area for gymnasium and tiny house
23. Creek access point
PART 3
APPENDIX: Table of Contents

A. Soil Samples/Results
B. Soil Results Location Map
C. Explanation of Soil Tests
D. Cabinettes
E. Cherokee Art and Culture
F. Bubbler Fountain
G. Outdoor Lighting
<table>
<thead>
<tr>
<th>Name</th>
<th>Sample ID</th>
<th>pH</th>
<th>BpH</th>
<th>Pppm</th>
<th>Kppm</th>
<th>Cappm</th>
<th>Mgppm</th>
<th>Zn ppm</th>
<th>Mn ppm</th>
<th>Cu ppm</th>
<th>Fe ppm</th>
<th>% OM</th>
<th>SS ppm</th>
<th>CEC meq/100g</th>
<th>% Acidity</th>
<th>% Base Sat</th>
<th>% Ca Sat</th>
<th>% Mg Sat</th>
<th>% K Sat</th>
<th>P Rating</th>
<th>K Rating</th>
<th>Ca Rating</th>
<th>Mg Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDAC</td>
<td>STE01</td>
<td>5.71</td>
<td>6.07</td>
<td>4</td>
<td>112</td>
<td>536</td>
<td>122</td>
<td>1.1</td>
<td>11.8</td>
<td>0.6</td>
<td>13.1</td>
<td>0.3</td>
<td>5.9</td>
<td>33.1</td>
<td>SS Rating</td>
<td>OM Rating</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>H</td>
<td>M</td>
<td>VH</td>
</tr>
<tr>
<td>CDAC</td>
<td>STE02</td>
<td>6.12</td>
<td>6.16</td>
<td>4</td>
<td>131</td>
<td>985</td>
<td>195</td>
<td>2</td>
<td>13.2</td>
<td>0.4</td>
<td>7.9</td>
<td>0.5</td>
<td>8.3</td>
<td>17.2</td>
<td>L-</td>
<td>H-</td>
<td>H-</td>
<td>VH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDAC</td>
<td>STE03</td>
<td>5.77</td>
<td>6.18</td>
<td>2</td>
<td>50</td>
<td>763</td>
<td>85</td>
<td>0.8</td>
<td>10.6</td>
<td>0.5</td>
<td>14</td>
<td>0.2</td>
<td>5.9</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDAC</td>
<td>STE04</td>
<td>5.54</td>
<td>6.03</td>
<td>2</td>
<td>128</td>
<td>389</td>
<td>117</td>
<td>0.8</td>
<td>8.3</td>
<td>0.4</td>
<td>12.8</td>
<td>0.2</td>
<td>5.4</td>
<td>40.5</td>
<td>L-</td>
<td>H-</td>
<td>H-</td>
<td>VH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDAC</td>
<td>STE05</td>
<td>5.84</td>
<td>6</td>
<td>3</td>
<td>155</td>
<td>686</td>
<td>153</td>
<td>1.8</td>
<td>15.4</td>
<td>0.4</td>
<td>10.2</td>
<td>0.3</td>
<td>7.4</td>
<td>31.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDAC</td>
<td>STE06</td>
<td>6.31</td>
<td>6.23</td>
<td>8</td>
<td>124</td>
<td>1016</td>
<td>148</td>
<td>3.3</td>
<td>22.7</td>
<td>0.6</td>
<td>17.5</td>
<td>0.3</td>
<td>7.6</td>
<td>13.3</td>
<td>L-</td>
<td>M-</td>
<td>H-</td>
<td>H-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDAC</td>
<td>STE07</td>
<td>7.55</td>
<td>6</td>
<td>1</td>
<td>80</td>
<td>4651</td>
<td>199</td>
<td>4.2</td>
<td>26</td>
<td>0.1</td>
<td>1.8</td>
<td>0.5</td>
<td>25</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDAC</td>
<td>STE3B</td>
<td>6.33</td>
<td>6.31</td>
<td>2</td>
<td>121</td>
<td>1124</td>
<td>85</td>
<td>1</td>
<td>11.4</td>
<td>0.3</td>
<td>9.3</td>
<td>0.4</td>
<td>7.2</td>
<td>7.5</td>
<td>59.5</td>
<td>35.7</td>
<td>17.8</td>
<td>6</td>
<td>L</td>
<td>H</td>
<td>M-</td>
<td>VH</td>
<td></td>
</tr>
<tr>
<td>CDAC</td>
<td>STE26</td>
<td>6.33</td>
<td>6.31</td>
<td>2</td>
<td>121</td>
<td>1124</td>
<td>85</td>
<td>1</td>
<td>11.4</td>
<td>0.3</td>
<td>9.3</td>
<td>0.4</td>
<td>7.2</td>
<td>7.5</td>
<td>59.5</td>
<td>35.7</td>
<td>17.8</td>
<td>6</td>
<td>L</td>
<td>H</td>
<td>M-</td>
<td>VH</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX: Soil Results Location Map

- STE01 5.71 pH
- STE02 6.12 pH
- STE03 5.77 pH
- STE04 5.54 pH
- STE05 5.84 pH
- STE06 6.31 pH
- STE07 7.55 pH
- STE08 6.33 pH
- STE09 5.77 pH
- STE10 5.54 pH
The accompanying Soil Test Report (and supplemental Soil Test Notes, when provided) will help you assess your plant’s need for fertilizer and lime.

The “History of Sampled Area” section restates the information you filled in on the Soil Sample Information Sheet you submitted with the soil sample.

The “Lab Test Results” section shows the relative availability of nutrients numerically and if appropriate, as a rating. The rating may be interpreted as follows: L=Low, M=Medium, H=High, VH=Very High, EH=Excessively High (soluble salt test only), DEF=Deficient, or SUFF=Sufficient, and sometimes a “+” or “−.” When soils test Low, plants almost always respond to fertilizer. When soils test Medium, plants sometimes respond to fertilizer and a moderate amount of fertilizer is typically recommended to maintain fertility. When soils test High to Very High, plants usually do not respond to fertilizer. If there is no rating for a nutrient, the adequacy of that nutrient in the soil for the plant you specified has not been determined.

The following is an explanation of the symbols and abbreviation used in the report:

Report Symbols and Abbreviations

- **P** = phosphorus
- **K** = potassium
- **Ca** = calcium
- **Mg** = magnesium
- **Zn** = zinc
- **Mn** = manganese
- **Cu** = copper
- **Fe** = iron
- **B** = boron
- **SS** = soluble salts
- **lb/A** = pounds per acre
- **ppm** = parts per million
- **meq** = milliequivalent
- **g** = gram
- **pH** = acidity
- **Sat.** = saturation
- **N** = nitrogen
- **P₂O₅** = phosphate
- **K₂O** = potash
- **%** = percent
- **Est-CEC** = estimated cation exchange capacity
- **AG** = agricultural limestone (dolomitic or calcitic)

Fertilizer Recommendation

The fertilizer recommendations may be used for the same crop for two to three years. After this time, it is advisable to retest the soil to determine if significant changes have occurred in nutrient levels. When the soil tests Very High for phosphorus or potassium and no fertilizer for these nutrients is recommended, you should retest the following year to determine if fertilizer will be needed. Due to the variability associated with sampling, fertilizer application rates may be varied by a plus or minus 10 percent.

No soil test is performed for nitrogen because this element is too mobile in the soil for laboratory results to be useful. Nitrogen fertilizer recommendations are based on the crop/plant to be grown, the previous crop, and when applicable, the soil’s yield potential. Comments on the report and other enclosed Notes, if any, will have further information regarding nitrogen.

Lime Recommendation

If needed, a lime recommendation is given to neutralize soil acidity and should last two to three years. After that time, you should have the soil retested. The measured soil test levels of calcium and magnesium are used to determine the appropriate type of limestone to apply. If neither dolomitic nor calcitic lime is mentioned, or “Ag” type or “agricultural” limestone is stated on the report, then it does not matter which type is used. When no information on the Soil Sample Information Sheet was provided regarding the last lime application, the lab assumed you have not applied lime in the past 18 months. If this is not correct, contact your Extension agent for advice on adjusting the lime recommendation to take into consideration recent lime applications. Do not over lime! Too much lime can be as harmful as too little. For best results, apply lime, when possible, several months ahead of the crop/plant to be planted to allow time for more complete soil reaction.
Soil pH (or soil reaction) measures the “active” acidity in the soil’s water (or hydrogen ion activity in the soil solution), which affects the availability of nutrients to plants. It is determined on a mixed suspension of 1:1, volume to volume ratio of soil material to distilled water.

Virginia soils naturally become acidic, and limestone periodically needs to be applied to neutralize some of this acidity. A slightly acid soil is where the majority of nutrients become the most available to plants, and where soil organisms that decompose organic matter and contribute to the “overall health” of soils are the most active. When a soil is strongly acidic (< 5.0-5.5), many herbicides lose effectiveness and plant growth is limited by aluminum toxicity. When soils are over-limed and become alkaline (> 7.0), micronutrients, such as manganese and zinc, become less available to plants.

For most agronomic crops and landscaping plants, lime recommendations are provided to raise the soil pH to a slightly acid level of between 5.8 and 6.8. Blueberries and acid-loving ornamentals generally prefer a 4.5 to 5.5 pH, and an application of liming material is suggested when the soil pH drops below 5.0. For the majority of other plants, lime may be suggested before the pH gets below 6.0. This is to keep the soil pH from dropping below the ideal range, since lime is slow to react and affects only a fraction of an inch of soil per year when the lime is not incorporated into the soil. If the soil pH is above the plant’s target pH, then lime is recommended. If the pH is well above the ideal range, then sometimes an application of sulfur is recommended to help lower the pH faster; however, most of the time, one can just let the soil pH drop on its own.

A Mehlich buffer solution is used to determine the Buffer Index to provide an indication of the soil’s total (active + reserve) acidity and ability to resist a change in pH. This buffer measurement is the major factor in determining the amount of lime to apply. The Buffer Index starts at 6.60 and goes lower as the soil’s total acidity increases and more lime is needed to raise the soil pH. A sandy soil and a clayey soil can have the same soil pH; however, the clayey soil will have greater reserve acidity (and a lower Buffer Index) as compared to the sandy soil, and the clayey soil will require a greater quantity of lime to be applied in order to raise the soil pH the same amount as the sandy soil. A reported Buffer Index of “N/A” means that it was not measured since the soil (water) pH was either neutral or alkaline and not acidic (soil pH ≥ 7.0) and therefore requires no lime.

Nutrients that are available for plant uptake are extracted from the soil with a Mehlich 1 solution using a 1:5 vol:vol soil to extractant ratio, and are then analyzed on an ICP-AES instrument. An extractable Mehlich 1 level of phosphorus from 12 to 35 pounds per acre (lb/A) is rated as medium or optimum. A medium level of potassium is from 76 to 175 lb/A. Medium levels of calcium and magnesium are 721 to 1440 and 73 to 144 lb/A, respectively. Calcium and magnesium are normally added to the soil through the application of limestone. It is rare for very high fertility levels of P, K, Ca and Mg to cause a reduction in crop yield or plant growth.

Buffer Index starts at 6.60 and goes lower as the soil’s total acidity increases and more lime is needed to raise the soil pH. A sandy soil and a clayey soil can have the same soil pH; however, the clayey soil will have greater reserve acidity (and a lower Buffer Index) as compared to the sandy soil, and the clayey soil will require a greater quantity of lime to be applied in order to raise the soil pH the same amount as the sandy soil. A reported Buffer Index of “N/A” means that it was not measured since the soil (water) pH was either neutral or alkaline and not acidic (soil pH ≥ 7.0) and therefore requires no lime.

Nutrients that are available for plant uptake are extracted from the soil with a Mehlich 1 solution using a 1:5 vol:vol soil to extractant ratio, and are then analyzed on an ICP-AES instrument. An extractable Mehlich 1 level of phosphorus from 12 to 35 pounds per acre (lb/A) is rated as medium or optimum. A medium level of potassium is from 76 to 175 lb/A. Medium levels of calcium and magnesium are 721 to 1440 and 73 to 144 lb/A, respectively. Calcium and magnesium are normally added to the soil through the application of limestone. It is rare for very high fertility levels of P, K, Ca and Mg to cause a reduction in crop yield or plant growth.

Buffer Index of “N/A” means that it was not measured since the soil (water) pH was either neutral or alkaline and not acidic (soil pH ≥ 7.0) and therefore requires no lime.

Nutrients that are available for plant uptake are extracted from the soil with a Mehlich 1 solution using a 1:5 vol:vol soil to extractant ratio, and are then analyzed on an ICP-AES instrument. An extractable Mehlich 1 level of phosphorus from 12 to 35 pounds per acre (lb/A) is rated as medium or optimum. A medium level of potassium is from 76 to 175 lb/A. Medium levels of calcium and magnesium are 721 to 1440 and 73 to 144 lb/A, respectively. Calcium and magnesium are normally added to the soil through the application of limestone. It is rare for very high fertility levels of P, K, Ca and Mg to cause a reduction in crop yield or plant growth.

Levels of micronutrients (Zn, Mn, Cu, Fe and B) are typically present in the soil at adequate levels for plants if the soil pH is in its proper range. See Soil Test Note 4, at www.soiltest.vt.edu/stnotes, for documented micronutrient deficiencies in Virginia.

Soluble Salts (S.Salts) or fertilizer salts are estimated by measuring the electrical conductivity of a 1:2, vol:vol ratio of soil material to distilled water. Injury to plants may start at a soluble salts level above 844 ppm when grown in natural soil, especially under dry conditions and to germinating seeds and seedlings. Established plants will begin to look wilted and show signs related to drought. This test is used primarily for greenhouse, nursery and home garden soils where very high application rates of fertilizer may have led to an excessive build up of soluble salts.

Soil Organic Matter (SOM) is the percentage by weight of the soil that consist of decomposed plant and animal residues, and is estimated by using either the weight Loss-On-Ignition (LOI method) from 150° to 360°C, or a modified Walkley-Black method. Generally, the greater the organic matter level, the better the overall soil tilth or soil quality, as nutrient and water holding capacities are greater, and improved aeration and soil structure enhance root growth. The percent of organic matter in a soil can affect the application rate of some herbicides. Soil organic matter levels from 0.5% to 2.5% are ordinary for natural, well-drained Virginia soils. A soil organic matter greater than 3% would be considered very high for a cultivated field on a farm, but can be beneficial. Due to relatively large amounts of organic materials being commonly added to gardens, the soil organic matter in garden soils can be raised into the range of 5% to 10%.
The remaining values that are reported under the "Lab Test Results" section are calculated from the previous measured values and are of little use to most growers.

Estimated Cation Exchange Capacity (Est-CEC) gives an indication of a soil’s ability to hold some nutrients against leaching. Natural soils in Virginia usually range in CEC from 1 to 12 meq/100g. A very sandy soil will normally have a CEC of 1 to 3 meq/100g. The CEC value will increase as the amount of clay and organic matter in the soil increases. This reported CEC is an estimation because it is calculated by summing the Mehlich 1 extractable cations (Ca + Mg + K), and the acidity estimated from the Buffer Index and converting to units commonly used for CEC. This is also an Effective CEC since it is the CEC at the current soil pH. This value can be erroneously high when the soil pH or soluble salts level is high.

The percent Acidity is a ratio of the amount of acid-generating cations (as measured by the Buffer Index) that occupy soil cation exchange sites to the total CEC sites. The higher this percentage, the higher the amount of reserve acidity in the soil, and the higher the amount of acidity there will be in the soil solution and the lower the soil pH will be. A reported Acidity% of "N/A" means that a buffer index was not determined, and the acidity is probably less than 1 meq/100g and/or 5%, and the soil pH is alkaline (greater than 7.0).

The percent Base Saturation is the ratio of the quantity of non-acid generating cations (i.e., the exchangeable bases, Ca, Mg, and K) that occupy the cation exchange (CEC) sites.

The percent Ca, Mg, or K Saturation refers to the relative number of CEC sites that are occupied by that particular nutrient and is a way of evaluating for any gross nutrient imbalance.

Additional Information

For questions and more information, contact your local Virginia Cooperative Extension (VCE) office or go to www.ext.vt.edu. Contact information for your local Extension office appears on the upper left of your soil test report.

Conversion Factors

(Some Values are Approximate)

1 acre = 43,560 square feet
1 pound of 5-10-5, 5-10-10 or 10-10-10 fertilizer = 2 cups
1 pound of ground limestone or ground dolomitic limestone = 1.5 cups
1 pound of aluminum sulfate or magnesium sulfate = 2.5 cups
1 pound of sulfur = 3.3 cups
1 quart = 2 pints = 4 cups
1 pint = 2 cups = 32 tablespoons
1 tablespoon = 3 teaspoons
1 bushel = 35.24 liters = 1.25 cubic feet
Pounds per 100 square feet x 0.54 = lbs per cubic yard
100 square feet = 5 feet x 20 feet, 10 feet x 10 feet, or 2 feet x 50 feet
1,000 square feet = 50 feet x 20 feet, 10 feet x 100 feet, or 25 feet x 40 feet
Pounds per 100 square feet x 436 = pounds per acre
Pounds per 1,000 square feet x 43.6 = pounds per acre
Pounds per acre x 0.0023 = pounds per 100 square feet
Pounds per acre x 0.023 = pounds per 1,000 square feet
One of the things that the Stecoah Valley Center community members requested on the grounds were cabinettes, tiny cabins, to house any guests who visit during one of the many events that the center hosts each year. After much research on size, style, and functionality the design team has concluded that the following plans and styles best depict what the Stecoah Valley members and their future guests would like on the center’s grounds. Dimensions are provided on the floor plans at the bottom of the page.
As part of the design process, the design team did a great deal of research on Cherokee art and culture. Some of what we found was put in the master plan design, but here all of it is outlined in case the members of the Stecoah Valley Center decide they would like to research what we have found.

In the earlier meetings with the community there was talk about a sound circle. Although it was decided that there would be no structured space for the sound circle it is still a nice idea and there are ways to incorporate Cherokee culture if the members of the Stecoah Valley Center decide they would like to incorporate these ideas. There was talk of very simple instruments and after doing some research, the Cherokee instruments are just that. Kids can come outside with their drums, maraccas and flutes and learn traditional Cherokee songs and chants.

The above images are examples of Cherokee weaving patterns. They are bright, bold, and beautiful and though they were not incorporated in the masterplan design, if the members of the Stecoah Valley Center every find a time where they need something bright and beautiful, these patterns are a nice way to bring in Cherokee art and culture.

The image to the left shows what can be both an art piece and an interactive element. The pole in the image is a Cherokee game where the teams have to run around and try to hit the fish at the top of the pole with a ball. This can either serve as a symbol of Cherokee culture on the grounds, or it has the opportunity to be implemented as part of the active recreation area so that the children who go to the center can partake in this game as well.
Throughout the report the design team has mentioned ‘bubblers’ as part of the design for the deck. These bubblers are simply closed-circuit fountains that create a peaceful atmosphere wherever they are located. The images below is just two kinds of bubbler fountains but there are many different makes and models that the members of the Stecoah Valley Center can choose from.
At our last meeting with the Stecoah Valley Center members, there was talk about concern for lighting. Though it is not included in our master plan, we have outlined a variety of outdoor lighting for many of the spaces that make up the master plan.

The image above are all examples of lighting along a path. They are all different forms of bollards and the top image shows how these light fixtures distribute light. There are also a variety of materials and sizes that they come in, so much like the bubblers, if the members of the Stecoah Valley Center decide they would like to implement a similar light fixture there are many different models available to suit the center’s needs.

The above images show how to light the amphitheater seating that is located along the basketball court. Though the lights are small they are extremely effective in providing ample light to this area.