The Community Design Assistance Center (CDAC) is an outreach center in the College of Architecture and Urban Studies at Virginia Tech that assists communities, neighborhood groups and non-profit organizations in improving the natural and built environments. Assistance is provided in the areas of landscape architecture, architecture, planning, and interior design. Working with communities, the conceptual planning and design provides communities with a graphic vision of their project that can then be used for grant applications and fundraising for the next steps toward implementation.
Project funding provided by the US Forest Service in cooperation with the Virginia Department of Forestry
ACKNOWLEDGMENTS

Bruce Bytnar
Managing Director, Boxerwood Nature Center & Woodland Garden

Beth Carson
Horticulturalist, Blacksburg Department of Public Works

Dean Crane
Director, Blacksburg Department of Parks and Recreation

Susan Day
Assistant Professor, The Department of Forest Resources & Environmental Conservation
Virginia Tech

Jeff Marion
Research Biologist, U.S. Geological Survey
Adjunct Professor, The Department of Forest Resources & Environmental Conservation
Virginia Tech

Jennifer Wampler
Environmental Program Planner, Department of Conservation and Recreation
Purpose and Goals of the Stewardship Plan

The Community Design Assistance Center (CDAC) recognizes the need to incorporate detailed stewardship plans with conceptual design work. A project cannot achieve long term success without a strategy for proper planting, care, and maintenance. The information in this document describes strategies for CDAC design concepts that have been implemented. Such stewardship includes general landscape maintenance, tree and planting care, controlling nonnative and invasive plant species, pests, disease control, habitats, streetscapes, and parks.

One of the greatest and most satisfying aspects of landscape design is its ever changing and transformative nature over time. CDAC is committed to providing communities with sustainable designs and the continued success of our work over time is ensured through the environmental stewardship practices described in this document. CDAC aims to provide resilient and sustainable design solutions that can grow and evolve for the benefit of future generations. After projects developed by CDAC are implemented and installed, it is our hope that this stewardship plan will help each community we assist be successful stewards of their respective conceptual designs.
TABLE OF CONTENTS

Section 1: Introduction
1.1 General Maintenance
 1.1.1 Levels of Maintenance
 1.1.2 Long-term vs. Short-term Maintenance
 1.1.3 Maintenance Checklist & Schedule
3

Section 2: Stewardship by Project Type
2.1 Tree Planting and Care
 2.1.1 Planting
 2.1.2 Care
 2.2 Controlling Nonnative Invasive Plants
 2.2.1 Effective Treatments
 2.2.2 Selective Herbicide Application Methods
 2.2.3 Selecting an Effective Herbicide
 2.2.4 Other Treatments
 2.2.5 Rehabilitation Phase
2

2.3 Natural Pest and Disease Control
 2.3.1 Prevention
 2.3.2 Beneficial Insects
 2.3.3 Physical Pest Control Solutions
 2.3.4 Organic Insecticides
2

2.4 Habitats
 2.4.1 Rain Gardens
 2.4.2 Orchards

2.5 Streetscapes
 2.5.1 Site Preparation and Street Tree Selection

2.6 Parks

2.7 Community Gardens

Section 3: Appendix
3.1 Appendix - Online Resources
3.2 Appendix - Book Reference Materials
3.3 Appendix - Attached Reference Materials
SECTION 1: INTRODUCTION
1.1 General Maintenance

1.1.1 Levels of Maintenance
Considering the level of maintenance for different projects depends on the project type and use. Frequency of day-to-day maintenance tasks are based on the level of maintenance required for each project to be sustained as designed. Additional considerations, when determining the level of maintenance for projects, are funding and who will be performing the tasks. Each individual community must determine their resources and how those resources will be allocated within their budget.

Sources of funding may be donated by various community groups, and partnerships can help to bolster a community’s capacity. For example, if a town cannot afford to install irrigation systems for their athletic fields, a local interest group could donate that installation money. The town would then assume the management responsibilities of that irrigation system onward.

1.1.2 Long-term vs. Short-term Maintenance
Short-term maintenance refers to the day-to-day tasks involved in managing a project. Some of these tasks would include: watering, mulching, mowing, weeding, tree trimming, litter and trash removal, inspection, and other regularly scheduled activities. Short-term maintenance also includes minor repairs and replacements such as fixing a broken fence post or painting a bridge. These types of repairs should be included in a general maintenance budget.

Long-term maintenance means correcting landscape problems and replacing or restoring major components that have been destroyed, damaged, or have deteriorated. Examples of long-term maintenance could include stabilization of an eroded hillside or the control/eradication of an invasive species on a site. These costs can be unforeseen and typically warrant their own budgets. They can become projects themselves.

1.1.3 Maintenance Checklist and Schedule
A checklist and schedule should be included within a stewardship plan that addresses both short-term and long-term maintenance functions. A checklist allows for regular reporting of the day-to-day tasks and often includes itemized tasks and a section to report problems and their solutions. Reviewing these reports can help identify any trends or problem areas that could point to a less obvious dysfunction or design flaw.
A maintenance schedule should include the following:
1. List of specific maintenance activities
2. Frequency of each activity
3. Cost per application of each activity
4. Annual cost of each activity
5. Who will perform the activity (park crews, different agencies, or volunteers)

A schedule can begin to determine budgets and labor needed for a project. For example, it may be determined that some tasks, such as power washing site amenities annually, may not be able to be covered under the project budget. Those tasks could be performed by volunteer groups.

A successful stewardship program should also promote a public monitoring system which allows for citizens to report maintenance problems and receive feedback. This is especially helpful when there is a limited crew trying to maintain a large area or a number of projects. Every set of eyes can help!

Sources:
SECTION 2: STEWARDSHIP BY PROJECT TYPE
2.1 Tree Planting and Care

2.1.1 Planting

Pre-Installation

Step 1: Check above ground
Do not plant a tree where it will interfere with buildings, overhead utility lines, pavement, or intersection sightlines as it gets bigger. Make sure the planting spot is at least:

- 3 feet from pavement or fencing
- 15 feet minimum from building or other trees
- 25 feet from overhead electric wires if the tree will grow taller than 30 feet

![Diagram showing tree distances](image)

Step 2: Check below ground
At least 72 hours in advance of planting, call the underground utility locating service in your area to be sure that there are no buried utilities where the tree will be planted. Most services will mark utilities (electric, cable, or gas) for free. 1-888-258-0808
Step 3: Check laws
Check with your town or municipality to see if there are any laws regarding planting and pruning.

Installation
* Planting should occur during the dormant season, in late fall after leaf drop or early spring before budbreak.

Step 1: Move the tree to a location near where it will be planted
Do not lift or carry the tree by its trunk.

Step 2: Remove trunk and branch packaging.
Remove trunk wrap, twine, and labels. Leave any root packaging in place during this step.

Step 3: Prune critical branches and no others!
Prune only branches that are broken or dead. Also remove competing leaders, if present. Most trees should have one central leader. If there are two or more leaders, choose which should remain and remove the other(s). Pruning should be minimized at the time of planting to combat transplant shock. Do not prune oaks in the spring or early summer if you live in an area with oak wilt!

Step 4: Find the root flare and remove excess soil
Remove soil from the top of the root ball until the top of the root flare is exposed. There should be several roots at least as big around as a pencil extending in opposite directions from the trunk. Two to four inches of soil may have to be removed before finding the main roots.
Bare root trees: There is no soil or root packaging to remove.

Balled-and-burlapped trees: Remove the top of the root ball packaging. Cut any twine from around the trunk taking care not to nick the bark, then bend the wire basket back off the top of the ball. Remove soil from the top of the root ball until the main root system is found. Some of the wire may have to be cut. Leave the rest of the wire basket in place until the tree is put in the ground.

Container trees: Remove the entire container. Pull or cut the soil off the top of the root ball until the main root system is found.

* Container trees can be pot-bound. Inspect root system for circling roots. Always purchase container trees from a reputable nursery.
Step 5: Remove problem roots
Remove all small roots above the main root system with a hand pruner. Examine the main root system for roots that extend out but then turn to the side or back towards the trunk. Prune these roots at the point where they turn.

Step 6: Determine how deep and wide to dig
Measure the height of the remaining root ball. This is exactly how deep the hole should be dug. Measure the approximate width of the root ball or root system. Multiply this by 2, or if the soil is hard (clay or compacted), by at least 3. This is how wide the hole should be dug.

Step 7: Dig the hole
The dimensions of the hole are very important in determining the survival of the tree. Dig the hole ONLY as deep as the root system (NO deeper!).

Step 8: Put the tree in the hole
If the tree has a heavy root ball, slide it into the hole, and straighten the trunk.

Step 9: For balled-and-burlapped trees, remove root ball packaging
Without loosening the root ball, cut, peel back, and remove as much of the wire basket or burlap as possible (at least the top third).

* A root ball should remain a root ball. If it starts to fall apart while removing the wire and burlap, backfill the hole with enough soil to stabilize it then carefully remove the wire and burlap and backfill. Try to keep the root ball intact.
Step 10: Backfill with the same soil
Make sure the trunk is straight. Put the original soil back in the hole, breaking up large clods, and working it in with hands or a shovel.

Step 11: Water
Water the root ball and entire backfilled area.

Step 12: Mulch
Put a 2 to 4 inch layer of organic mulch over the backfilled area. Pull mulch away from the trunk so that none touches the bark.

* There should never be more than 4 inches of mulch over the roots. Too much can prevent the roots from getting the necessary water.

2.1.2 Care

Watering

The first 3 years of a tree’s life is critical. Smaller caliper trees need less water and can establish faster than larger caliper trees. Generally, the establishment period for trees is at least 1 year for every 1 inch caliper. Check 6 inches below the surface every other day in fast draining soils and weekly in slow draining soils to see if the soil is dry, if so, then water. If the soil is dry, 1.5 gallons/1 inch diameter of trunk is recommended. If irrigation is not present, water trucks can be used.
Watering bags or “gatorbags” are a great way to slowly release water over a long period of time and can be filled weekly. After 3 years, check weekly and water when dry. Soil type and weather conditions can influence the demand for water, watering schedules and amounts can vary.

* Trees may have small root systems for the first year after planting and may dry out sooner than anticipated! Make sure to check regularly for dry soils even after recent rainfall.

Mulching
Mulching helps maintain soil moisture, controls weeds, and insulates the soil. It also reduces the likelihood of tree damage from weed whackers or lawn mowers.

There are 2 types of mulch to consider: inorganic and organic. Inorganic mulch consists of various types of stone, rock, pulverized rubber, geotextile fabrics, or other materials. Some negative aspects to inorganic mulch are that it does not decompose or improve soil structure by providing nutrients. However, since it does not decompose, it does not need to be replenished very often.

Organic mulch includes wood chips, pine needles, hardwood and softwood bark, leaves, compost mixes, and a variety of other products derived from plants. Each material decomposes at a different rate depending on the climate and soil. For example, wood chips can take longer to break down and therefore should not require frequent replenishing. Avoid using fine, non-composted wood chips because soil nitrogen may be taken up by the tree’s roots as the wood chips begin to decompose. Organic mulch can improve soil quality and fertility. It is the preferred material by arborists, horticulturalists, and other landscape professionals for its benefits. Applying newspaper as a layer before mulching in grassed or weedy areas where it is no longer desired kills grass. This can also help prevent weeds from growing through unwanted mulched areas.

When applying mulch, 2 to 4 inches is recommended for well-drained sites, closer to 2 inches is recommended for poorly drained areas. Mulch should be placed to the outer edge of the tree’s crown or beyond. Excessive mulch can cause problems. It can create excessive moisture and cause root rot. Thick layers of fine mulch can prevent penetration of water while piling mulch against a trunk can stress stem tissues which can lead to insect and disease problems.
Trunk Protection
Young deciduous trees have thin bark that can easily be damaged by animals and equipment such as weed whackers or lawn mowers. Mulch around trees can protect trees from these elements, but sometimes rodents such as rabbits and mice will chew on young bark. To prevent damage associated with trunk wounding, plastic tubing or hardware cloth can be installed around the trunk. The tubing should be big enough to allow 1 to 4 inches of space between it and the trunk. It should be 1 to 3 feet tall to accommodate snow and deter small rodents.

Fertilizing
It is not recommended that fertilizers be used in the first year after planting a tree due to the tree’s small root system. Apply additional fertilizers after the tree’s establishment period only if an arborist or soil test indicates that it is necessary. Overdosing with fertilizer can harm the tree. Fertilizer not absorbed by the tree can alter the soil or leach out, potentially polluting groundwater, rivers, ponds, and lakes. Be careful when using “weed and feed” on lawn areas surrounding trees. Some combinations of fertilizers and herbicides will injure trees.

Checking Tree Health
To maintain a tree’s health, yearly inspection is important. Check for size, color, trunk damages, and distribution of leaves. Observe the growth rate of the tree compared to the past year’s growth. Fast growth does not necessarily mean good health, but a dramatic reduction in growth rate could indicate a problem. Trees should also be in inspected after storms for broken, dead, or hanging branches. Cracks, fungi, branch unions, or a weak trunk on a leaning trunk should be treated quickly.
Pruning

Pruning can be dangerous in certain situations. Hire an arborist or contact the appropriate people to prune if the following applies:

- Pruning cannot be done with both feet on the ground
- Trees or branches are located within 10 feet of utility lines
- Pruning requires power equipment

Pruning is important for public safety and tree health. It can encourage trees to develop a strong structure which can reduce the amount of damage during severe weather.

Pruning for public safety involves removing branches that could fall and cause injury or property damage, trimming branches that interfere with sight lines of streets or driveways, and removing branches that could grow into utility lines.

Pruning for tree health would involve removing diseased or insect-infested wood, thinning the crown to increase airflow and reduce pest problems, and removing crossing or rubbing branches.

Pruning Young Trees

Pruning correctly when trees are young will help the tree develop a strong, well-balanced crown. During the first to third years after planting, attention should be paid to pruning a tree. Young trees should have branches that are well attached to the trunk, one central leader, good spacing between branches, enough clearance between the ground and the first branch, and a good crown height. Pruning correctly early in a tree’s life can greatly help to produce a long-lived tree and will be more cost efficient in the long-run. Refer to http://tinyurl.com/trainingyoungtrees for a video on how to prune a young tree.

Three-step method

1. Cut one-third of the way through the branch on the underside.
2. Go 2-4 inches beyond the undercut to remove the branch.
3. Make the final cut just outside the branch bark ridge and trunk collar.

Figure 9: Diagram of proper pruning technique. Image from “Tree Owner’s Manual.” United States Department of Agriculture, Forest Service, and Northeastern Area State and Private Forestry. www.treeownersmanual.info.
Pruning Mature Trees

Beginning 3 years after planting, trees should be pruned lightly every year or every other year. After 10 years, frequency of pruning will vary depending on the species of tree and the conditions in which it is planted. A general rule is not to remove more than 25% of a tree’s living branches. Broken, dead, rubbing branches, or branches sprouting from the base of the trunk can be removed every year.

Winter is the best time of year to prune because branches are easy to see, diseases cannot be spread, and there is minimal stress to the tree. Most trees, however, can be pruned at any time except for trees that are prone to fire blight or oak wilt. Trees susceptible to fire blight include mountain ash, apple, crabapple, hawthorn, pear, flowering quince, and pyracantha. Trees susceptible to oak wilt include most oaks.

Topping

One pruning technique that should be avoided is topping. Topping is the indiscriminate removal of branch ends. Many myths revolve around topping. Some believe topping will make the tree easier to maintain or that it invigorates a tree. Others believe it will add value to their property; however, the opposite is true. Topped trees will require more attention because of the fast growing, loosely attached shoots that form. Topping also immediately injures the tree and exposes it to decay and invasion from insects and disease, which will cause the life span of a tree to be reduced. The property value of a home may also decrease because topped trees lack natural beauty. Topping is not pruning, not recommended for any tree, and not performed by certified arborists. If topping is suggested by someone maintaining your trees, it may reflect a lack of knowledge and another professional should be found.
Section 2: Stewardship by Project Type

Tree Planting and Care

Protecting Trees from Construction Damage

Another consideration to take when caring for trees is the impact construction may have on a tree’s health. When protecting trees from construction damage a defined protected root zone should be identified. To identify the protected root zone, the following should be considered:

- Measure the diameter (width) of the trunk at chest height to the nearest inch.
- Multiply that number by 1.5 feet for every inch for mature or stressed trees or by 1 foot for young, healthy trees. For example, 20 inches of trunk diameter would equal 30 feet of protected root zone.
- Measure that distance from the trunk of the tree. The area within that radius is the protected root zone.
- A minimum of 6 feet must be protected around trees regardless of the trunk diameter.

All construction activities, such as storing materials and moving equipment, changing the grade, excavating, and paving should be kept away from the protected root zone by placing a tree protection fence around the radius of the tree.

When to Hire an Arborist?

At some point during the life span of a tree an arborist may need to be consulted. Certain situations may require an arborist’s expertise such as: when pruning or removing large trees, when pruning around utilities or structures, when pruning involves heights taller than standing capability or the use of powered equipment, or if disease or insect problems occur.

Sources:

2.2 Controlling Nonnative Invasive Plants

The best defense against nonnative invasive plants is constant surveillance of all projects and the use of effective control measures upon discovery of invaders. Early detection can minimize cost and labor compared to eradicating an established infestation. It is possible to eradicate established invasive stands but only with the proper treatment and persistence. The following discusses ways to effectively treat nonnative invasive plants.

2.2.1 Effective Treatments

If a stand of invasive plants already exists, proper and aggressive eradication measures should be taken to avoid spread. Using effective herbicide applications offers the best means of controlling or eradicating because herbicides can kill the roots without leaving the soil bare and susceptible to reinvasion or erosion. However, herbicide use is never a recommended method along rivers because it can cause the destruction of aquatic and animal life. When using herbicides, use only EPA–approved products. To be successful with herbicide treatments, the following should be done:

- Use the most effective herbicide for the species.
- Follow the application methods as prescribed on the label.
- Choose the optimum time of year to apply treatments. For leaves, apply mid-summer to early fall and no later than a month before expected frost. Evergreens and semi-evergreens can be treated effectively in winter.
- Adhere to all label prohibitions, precautions, and best management practices during herbicide transport, storage, mixing, and application.
- After application, be patient; allow herbicides to work for several months before resorting to other treatment options.

2.2.2 Selective Herbicide Application Methods

Some aggressive infestations require a broadcast treatment of herbicide. Broadcast treatment, however, may kill desirable plants, as well as invasive species. In many cases, the best approach can be spot application to target invasive plants while avoiding exposure to desired plant material.
Section 2: Stewardship by Project Type
Controlling Nonnative Invasive Plants

Directed Foliar Sprays
Directed foliar sprays are usually applied with a backpack sprayer and aim to target plant foliage by saturating all leaves to the point of runoff. It is recommended to use low pressure, drift retardants, or spray shields when using this method to avoid unwanted overspray. This method of application is very cost efficient and should be applied from mid-summer to late fall to be most effective.

Stem Injection
Stem Injection is an herbicidal concentrate mixed with water and applied to incision cuts spaced around woody stems created by an ax, hatchet, machete, brush, or tree injector. This application is best for large trees and shrubs with trunks more than 2 inches in diameter. When applying the injection treatment, avoid times when rainfall might occur within 48 hours. The incisions could be washed out into the soil and nearby plants can be damaged. The most effective time of year to use this application is late winter and throughout the summer. Sap production in the spring can wash herbicides from cuts.

Cut-Treat
The cut-treat application method involves an herbicidal concentrate mixed with water and applied to the outer circumference of freshly cut stumps or the entire top surface of cut stumps. A backpack sprayer, spray bottle, wick or paint brush can all be used to apply the herbicide with this method. The most effective time of year to use this application is in the late winter and summer.

Basal Sprays
Basal sprays are herbicidal oil based mixtures sprayed or daubed onto the lower portions of woody stems with a backpack sprayer or wick applicator. This method is effective in controlling invasives with woody stems that are less than 6 inches in diameter. Examples of basal sprays are Pathfinder II and Vine-X which are premixed and ready to use. The most effective time of year to apply this herbicide is late winter and early spring when the leaves do not hinder spraying the stem. Summer sprays can also be effective but are difficult due to the presence of leaves.

Soil Spots
Soil spots are Velpar L herbicide applied in measured amounts to the soil around targeted invasive woody stems or in a grid pattern for treating many stems in one area. This can be applied with a spot gun or a backpack sprayer with a stream nozzle. This application is only effective on specific nonnative invasive species when applied during the spring and early summer.
2.2.3 Selecting an Effective Herbicide
Nonnative invasive plants are usually difficult to control or eradicate. Herbicides that are both applied to the foliage and soil are usually the most effective with the least number of applications. However, when using herbicides on the soil, caution should be taken to limit the damage to surrounding plants when their roots are present in the treatment area or soon after a rainfall. Some herbicides have residues that can be transferred to other plants during temperatures exceeding 80 degrees fahrenheit, therefore it is recommended to only apply those herbicides on cooler days. Also when possible, use herbicides that target specific invasive species and choose the proper time of year to apply. For example, basal sprays should be applied to the bark of invasive plants in the late winter before most other plants emerge and foliar sprays on evergreen/semi evergreen invasives should be applied after surrounding plants have entered a dormant period.

2.2.4 Other Treatments

Overgrazing
Overgrazing can reduce the growth of invasives but it will not eradicate them. Examples of overgrazing can be the use of goat herds in large invasive areas. Charlottesville Virginia has successfully used goats in some of their parks to control invasive plant spread.

Prescribed Burning
Prescribed burning can also eradicate invasives, but it is limited in its effectiveness and requires specific knowledge to be successful.

Cutting or Mowing
Cutting or mowing invasives removes the above ground plant and slows down the growth but doesn’t eradicate them. This method, when used with herbicides, can be extremely effective in eradication.

Hand-Pulling
If discovered early, small infestations can be controlled with hand-pulling of the plants.

An eradication program for infestations of invasive plants usually requires several years of treatment and many more years of surveillance to check for new invasions. To be successful, a planned strategy should be followed with persistence.
2.2.5 Rehabilitation Phase

The rehabilitation phase can be the most important step in the process of eradicating and reclaiming sites. Rehabilitation requires establishment of native plants that can outcompete and outlive any surviving nonnative invasive plants while stabilizing and protecting the soil. In some areas, native plant communities may naturally reinitiate successions after eradicating nonnative plants, but if not, native plants should be seeded or planted. Tree nurseries operated by state forestry agencies are a good source for many species of native trees and shrubs. Native plant seed can also be used, but proper sowing and planting would be required to assure fast germination. To ensure the success of a project, constant surveillance, treatment of new invasives, and rehabilitation following eradication are critical to preventing and controlling invasions of nonnative species.

Sources:
2.3 Natural Pest and Disease Control

Natural pest control has many benefits. It can be more cost effective than buying and applying pesticides and it is safer for the garden, people, wildlife and the environment. Most pests can be controlled by planting a diverse garden that can attract a variety of beneficial insects. To target certain pests, in addition to beneficial insects, physical controls may also need to be put in place. If needed, an organic insecticide can be used. A products list, approved by the US National Organic Program, has been included in section 2.3.4 Organic Insecticides.

2.3.1 Prevention

A healthy garden is the best defense against garden pests. To maintain a healthy garden consider the following:

• Remove any dead or weak plants. Even if the plants aren’t dead they can attract predators. Dispose of plants away from the garden area.
• Naturally composting, mulching, and top-dressing your planting beds can be a great way to develop strong, vigorous plants.
• Use seaweed spray or fertilizer in mulch. Seaweed contains iron, zinc, barium, calcium, sulfur, and magnesium which promotes growth in plants and helps repel slugs.
• Clear garden area of debris and weeds which can be breeding grounds for insects.
• Interplant and rotate crops. When plantings are mixed, pests are less likely to spread. Rotating crops can prevent a reinfestation year after year.
• Keep foliage dry. Water planting beds early in the day so the foliage can dry throughout the day. Wet foliage encourages insects and fungal disease. Drip irrigation can be used to avoid wet foliage.
• Disinfect tools that have been in contact with infested plants. This can reduce the spread of disease.

2.3.2 Beneficial Insects

Beneficial insects are insects which you can attract to a garden or release that will prey on harmful insects and their larvae. There are many different species that target specific problems. For a more extensive list refer to Organic Pest Control Series: Beneficial Insects which can be found in section 3.1 Appendix: Online References.

• **Braconids, Chalcids, and Ichneumon Wasps** destroy leaf eating caterpillars. Plant carrots, celery, parsley, and caraway (members of the Umbelliferae family) to attract these insects to a garden.
• **Ladybugs** are common insects that consume aphids, mites,
whiteflies and scale. Attract ladybugs to a garden by planting members of the daisy family (Compositae) such as yarrow. Ladybugs can be purchased online and released into the garden.

- **Lacewings** are consumers of aphids and their larva. Lacewings are attracted to “composite” flowers such as yarrow, goldenrod, black-eyed susan’s and asters. Lacewings can also be purchased online and released into the garden.

- **Hover-flies** eat aphids, and the larva of hover-flies eat aphids and other pests. They are also attracted to flowers like yarrow, goldenrod, black eyed susan’s and asters.

- **Praying Mantis** are large insects that eat most garden pests. Their eggs are available online.

- **Soldier beetle** larvae feed on the eggs and larvae of beetles, grasshoppers, moths and other insects. Adult soldier beetles feed on aphids and other soft bodied insects. Plant marigolds and goldenrod to attract these beneficial insects.

- **Nematodes** are effective against cutworms, beetles, and root weevil larvae. Nematode eggs are mixed with water and applied to the soil where they hatch and go to work. Wash eggs off foliage onto the ground if needed.

2.3.3 Physical Pest Control Solutions

Often it is necessary to use physical pest control solutions in addition to beneficial insects. Below is a list of physical pest control ideas.

- **Yellow Flypaper** can be effective to trap aphids and whiteflies. Any board painted yellow and coated with a sticky substance, such as tanglefoot, can be effective.

- **Apple Maggot Traps** are sticky red sphere traps. Hang one trap for every 100 apples in a tree. Apple maggots can be extremely destructive pests for apples.

- **Pheromone traps** attract insects and catch them with a sticky substance. Position them around the garden perimeter to avoid attracting unwanted pests into the garden

- **Floating Row Covers** consist of lightweight opaque material which can be draped over planting beds or trees. Sunlight and water can penetrate the cover but insects and birds cannot. The material is light enough to allow plants to continue to grow underneath it. Anchor the cover, with rocks or boards to prevent the wind from lifting it. Row covers are great for protecting seedlings and vegetables such as carrots, beets, broccoli, chard and spinach.

- **Cloche** is a miniature greenhouse for seedbeds and young plants. Unlike the row cover, the cloche needs to be opened to water and during hot days.
2.3.4 Organic Insecticides

If needed, an organic insecticide can be used to combat diseases. Below is a brief list of approved products by the US National Organic Program. Refer to *A Glossary of Natural Garden Pest Control Solutions* for more information in the Appendix: Online References section.

- **Bt (Bacillus thuringiensis)** Apply late in the day to be effective on armyworms, cabbageworms, corn earworms, diamondback moths, grape leaf rollers, melon worms, tomato fruitworms, tomato hornworms, and various webworms and budworms. Do not apply on butterfly host plants.
- **Diatomaceous earth (DE)** is a powder that has sharp edges and cuts into insects’ bodies killing them of dehydration. Lightly sprinkle dry DE on the soil’s surface where Japanese beetles, slugs, or other pests will come into direct contact with the dry particles.
- **Horticultural oils** applied directly to pests interfere with respiration, causing insects to suffocate and die. These oils help control aphids, whiteflies and other pests, but can also kill beneficial mites and injure the leaves of some plants.
- **Insecticidal soaps** have fatty acids that break down the protective cuticles of soft-bodied pests, such as aphids, which will then quickly become dehydrated and die. Soap sprays have no residual effect and only kill insects that are sprayed directly.
- **Iron phosphate slug bait** can be sprinkled throughout your garden beds, and slugs will eat it instead of plants, then crawl off to die. The bait is nontoxic to pets and humans.
- **Neem** is an oil that can slow the growth of many insects. It is best used on young insects and can control aphids and leaf-eating caterpillars.
- **Pyrethrum** is one of the oldest known pesticides. It is fast-acting and the strongest insecticide allowed under U.S. National Organic Standards, so use it only after all other methods have been exhausted. Insects, including beneficial ones, typically become paralyzed as soon as they come into contact with pyrethrum, which is made from the dried flowers of the daisy *Tanacetum cinerariifolium*.
- **Spinosad** is a biological pesticide derived from the bacterium *Saccharopolyspora spinosa*. Spinosad controls all types of caterpillars, Colorado potato beetle larvae and blister beetles, and works best on pests that consume a lot of leaf tissue.
Section 2: Stewardship by Project Type
Natural Pest and Disease Control

Sources:

2.4 Habitats

2.4.1 Rain Gardens

A rain garden is a small, shallow, constructed garden depression that is planted with deep-rooted native plants and grasses. It is usually located in an area that receives runoff from hard surfaces such as a roof, sidewalk, or driveway. Rain gardens slow, capture, and hold water from these surfaces for a short period of time. This allows it to naturally infiltrate into the ground. Rain gardens can be easy to maintain but are not maintenance free. It is important to weed, clean, and re-mulch the garden. The first 2 years require the most care while plants are becoming established. Below is a guide to maintaining a rain garden.

Water
- Water plants weekly during the first 1 to 2 growing seasons.
- A newly planted rain garden needs approximately 1 inch of water per week or roughly 6 gallons per square yard per week. The length of time to water can vary based on the size of the garden and water pressure.
- If your rain garden or pond has a pump, inspect it regularly to maintain working condition. Refer to manufacturer’s guide on the maintenance of your pump. In general, if filters are present, clean weekly. Turn off pumps and filters during the winter months. Unless fish are present, pumps are not generally needed to maintain a healthy water garden with clear water.

Weeding
- During the establishment period, weeding should be done often. Weeding in the spring will help control weeds in the summer. It is best to remove weeds before the seeds mature and spread.
- Pulling weeds reduces competition for space, light, and water. As the garden matures, weeding will need to happen less frequently.

Mulching
- Mulch 2 to 3 inches during the spring to keep soil moist and allow easy infiltration of rain water.
- Use an organic mulch.

Monitoring
- Rain gardens should be inspected monthly.
- Clear any dead vegetation and debris that may have collected.
- Replanting may be necessary over time. If a plant is not thriving in one location of the garden, try relocating it to a wetter or dryer area.
2.4.2 Orchards

A successful orchard begins with choosing the appropriate fruit tree. Select varieties that are disease-resistant and appropriate for your soil and climate. No fruit trees are invincible to all diseases. The following explains how to care and maintain an orchard.

Planting and Pruning

- Fruit trees should be planted where they will receive full sun for 6 or more hours per day during the growing season.
- Proper training of young fruit trees is essential to the development of a strong framework that will support fruit production.
- Regular pruning and training will also maximize light penetration to flower buds and fruit. Air circulation will also minimize pest problems.
- When pruning allow for a strong central leader. Adequate clearance should be left between the start of the branching and the ground to allow for work under the tree.
- The first year after planting, 3 to 4 branches, called the “scaffold whorl” should be spaced uniformly around the trunk (not across from one another.) Above the first scaffold whorl should be an open area of 18 to 24 inches to allow light to reach all the lower leaves and fruit. Maintain alternating scaffold whorls and open areas up the leader to the desired tree height.

![Diagram of a tree whorl and light slot](http://www.ces.ncsu.edu/hil/hil-8301.html)

- Scaffold training spreads larger branches by hanging weights on the branches or tying them down with string wrapped loosely around the limbs. All upright growth from scaffold branches should be either pulled down to a horizontal position or removed when it is 3 to 4 inches long to prevent breakage under a heavy fruit load.

(Refer to Section 2.1 Tree Planting and Care and *Growing Apple Trees In The Home Garden* in the Appendix: Attached Reference Materials section for more information)
Section 2: Stewardship by Project Type

Habitats

Fruit Thinning
- Apple trees often have a heavier fruit production than the limbs can handle. To ensure good fruit size, prevent tree breakage, and encourage next year’s blooms thinning should occur.
- Every apple blossom results in a bloom cluster of 5 to 6 blossoms which when cross-pollinated will result in a fruit. Apples should be thinned when they are the size of a dime. Cut off enough fruit so that the remaining apples are spaced 4 to 6 inches apart and leave only 1 fruit per cluster.

Fertilize
- Test soil prior to planting and every year thereafter at the same time of year. Add nutrients based on the soil test as needed.

Watering
- Refer to Section 2.1 Tree Planting and Care

Mulching
- Refer to Section 2.1 Tree Planting and Care

Natural Insect and Disease Control Prevention
- Refer to Section 2.3 Natural Pest and Disease Control

Sources:

2.5 Streetscapes

A streetscape refers to the natural and built fabric of a street. It is a public place where people are able to engage in various activities and helps define a community’s aesthetic quality, economic activity, health, and sustainability. Streetscapes include the road, adjoining buildings, street furniture, trees and open spaces, that combine to form the street’s character. Street trees provide green infrastructure and vegetation that softens noise, reduces glare, and provides shade, while increasing beauty, reducing stress, and improving livability within a community. A streetscape stewardship plan involves maintaining all the hardscape elements, such as benches, trash receptacles, lighting, and vegetation within the right of way.

Below is a list of maintenance tasks that are included when maintaining streetscapes. Based on the type of project, choose the elements that make sense for your project.

Watering
- Newly planted trees (Refer to Section 2.1 Tree Planting and Care)
- Watering planting beds from a truck should be done with care so that the force from the water does not damage the plants or mulch.
- A watering schedule is necessary.
- Establishment period for shrubs and ground covers is approximately 6 months to 1 year. Flowers establish much more quickly.
- Water planting beds 2 to 3 times per week for the first 8 weeks after planting then water once a week until they are established.

Irrigation System (if present)
- Inspect system monthly and repair system if needed.
- Back flow test annually.

Mulching
- Maintain mulch depth of 2 to 4 inches.
 (Refer to Section 2.1 Tree Planting and Care for more mulching information)

Tree Pruning
- Prune low branches posing hazard to pedestrian walkways or streets.
- Prune to a minimum height of 6 to 7 feet to allow comfortable passage beneath by pedestrians and vehicles.

Shrub and Ornamental Grass Pruning
- Selectively prune shrubs based on species. Maintain sightlines at intersections.
Ornamental grasses have attractive foliage throughout the winter and should not be pruned until the spring. This also helps insulate the crown of the plant. In the spring, before growth resumes, cut back ornamental grasses to approximately 4 to 6 inches.

Pest Management
- Problem areas should be inspected monthly and handled on a case by case basis. Spot-treat, DO NOT over treat.
- Immediately remedy problem in accordance with the Departments of Integrated Pest Management Program (IPM).

Vandalism
- Graffiti should be repaired immediately within 24 hours if possible.

Hardscape
- Remove debris, sand, dirt, and organic material from walks weekly.
- Remove tripping hazards from pedestrian areas as soon as possible.
- Blow grass clippings after mowing away from hard surfaces.
- Remove weeds growing in cracks as needed.

Litter and Trash Removal
- Pick up litter from tree grates and empty trash containers on a regular basis as determined to be needed by your community.

Holiday Banners
- Consider appropriate timing for putting up and removing holiday banners.
- Replace banners as needed.

Seasonal/Annual Plantings in Pots or Hanging Baskets
- Replant seasonally.
- Check daily for moisture content.
- Water every other day during times of drought or when needed.
- Use drip irrigation system if present.

Signage
- Inspect sign lettering, surfaces, and posts at least monthly.
- Repair/replace signs to maintain design and safety standards as needed.
Site Amenities

- Inspect benches, trash containers, bicycle racks, and other site amenities at least monthly. Repair or replace as needed.
- Clean/power wash amenities annually if possible.

Lighting

- Inspect monthly.
- Repair/replace bulbs or posts immediately.

2.5.1 Site Preparation and Street Tree Selection

Many factors can place stress on a street tree, such as air pollution, temperature extremes, lack of sufficient soil for root growth, limited space, overhead obstructions, and improper use (i.e. using a tree as a bike rack.) With proper selection and site preparation, trees can survive and thrive in an urban environment. Available space for proper root growth is one of the most limiting factors and can determine a tree’s health and longevity. When designing tree pits consider the following to provide the best environment for a street tree to thrive:

- Tree pits should be as large as possible to allow tree roots ample growing space. Optimal tree pit size would be 4 feet by 10 feet or 5 feet by 10 feet if available.
- If tree pits already exist within a sidewalk, enlarge the tree well as much as possible while still allowing adequate space for pedestrian traffic.
- Combine tree pits to include several trees in a continuous planting strip.
- Use a porous pavement, such as dry-laid pavers in surrounding sidewalk to allow water to penetrate the soil below.
- Use a structural soil mix, also known as engineered soil, under paved areas. Structural soil consists of gap-graded gravels which are made up of crushed stone, clay loam, and a hydrogel stabilizing agent. (* Source: http://www.hort.cornell.edu/uhi/outreach/csc/article.html) It uses angular stones in the planting mix under hardscaped areas, such as sidewalks and parking lots, which can be compacted to provide the structural support required for hardscape installation but also be open enough to provide adequate drainage and aeration for trees.
- If there is a public park or lawn nearby, let the roots grow into the adjacent area by planting the tree at the back of the sidewalk.
Section 2: Stewardship by Project Type

Streetscapes

Selecting the right tree for the situation is also important to a healthy street tree. For example, a large tree that is thriving in an open park space may not do well in a tree well along a street. The tree that thrives in a park may need much more space to adequately grow roots and obtain the proper amount of water, nutrients, and support to become an healthy specimen. There are many tree species that can survive in challenging spatial situations. For example, if spacing is too tight between street and building or overhead utility lines exist, select a tree that will fit. If a tall tree is desired for a tight space consider selecting a cultivar with a narrow upright growth habit. For further information on which cultivars work best for certain situations refer to Urban Tree Selection Manual in the sources at the end of this section.

Sources:

2.6 Parks

A park stewardship plan consists of day-to-day maintenance tasks as well as long-term maintenance such as controlling invasive species and taking on projects like upgrading park elements. Each park’s level of maintenance depends on the type, usage, and budget. For example, the frequency of mowing would vary if it were a recreational field versus a low-trafficked passive park. Another example would be a volunteer group taking responsibility for a certain maintenance task in a park. Towns sometimes do not have the budget or man power to maintain every park to a certain level of quality and may need to coordinate with volunteer groups for help.

Some parks could have different elements not found in others therefore requiring different tasks. Below is a list of maintenance tasks that are included when maintaining parks. Based on the type of park, choose the elements that make sense for your project.

Athletic Fields
- Mow twice a week if used heavily or once a week if needed to maintain 2 ½ inches height.
- Frequency of mowing depends on rain/watering.
- Fertilize twice a year.
- Apply pre-germinated seed to heavily worn areas.
- Aerate twice a year.
- Over seed annually.

Park Lawns
- Mow once a week if needed to maintain 3-3 ¼ inches height.
- Trim perimeters once per week with string trimmer.

Trees (Refer to Section 2.1 Tree Planting and Care)

Shrub and Ornamental Grass Pruning
- Selectively prune shrubs based on species and desired form.
- Ornamental grasses have attractive foliage throughout the winter and should not be pruned until the spring. This also helps insulate the crown of the plant.
- In the spring, before growth resumes, cut back ornamental grasses to approximately 4 to 6 inches.
Section 2: Stewardship by Project Type

Parks

Weeding
- The goal is to establish a solid cover of desired vegetation that will choke out weed growth.
- Proper plant selection, spacing, and soil conditions should reduce long-term weed growth by providing plants the optimum conditions to grow to their mature size and block the light needed for weeds to grow.
- Identify which plants are a part of the habitat and which should be removed.
- Certain techniques such as using newspaper or weed cloth beneath the mulch in planting beds can lessen the need for weeding.
- Weed in early spring thoroughly before weeds can take root and become a bigger labor intensive problem during the summer.
- Hand-pulling weeds can be effective if they are removed immediately upon discovery.

Storm Cleanup (Usually a town water department’s responsibility)
- Inspect drain covers twice a month. Remove debris and organic material immediately.
- Maintain water inlet height and an undisturbed flow of drainage.

Watering Plants
- Watering from a truck should be done with care so that the force from the water does not damage the plants or mulch.
- A watering schedule is necessary.
- Establishment period for shrubs and ground covers is approximately 6 months to 1 year. Flowers establish much more quickly.
- Water 2 to 3 times per week for the first 8 weeks after planting then water once a week until they are established.

Mulching Plants
- Maintain mulch depth of 2 to 4 inches.
 (Refer to Section 2.1 Tree Planting and Care for more mulching information)

Irrigation System (if present)
- Inspect system monthly and repair system if needed based on park usage
- Back flow test annually.
Section 2: Stewardship by Project Type

Parks

Litter and Trash Removal
- Pick up litter and empty trash containers every day, as needed, or develop a regular litter/trash pick up schedule as determined appropriate for your community (i.e. once a week, twice a week, once a day etc.)
- During the cold season (November – March) this will not need to be as frequent, but a regular schedule should be developed based on your community’s needs.

Vandalism
- Graffiti should be repaired immediately within 24 hours if possible.

Hardscapes (around buildings, pathways, or gathering areas)
- Inspect surfaces at least once a month. Replace or repair any surface that poses a hazard to pedestrians.
- Remove dirt, sand, and organic debris from hard surfaces after storms. The frequency depends on available labor.

Outdoor Courts
- Inspect weekly (when mowing) for damages and repair.
- Replace nets when broken or removed.
- Maintain posts, backboards, rims, and hardware to original design specifications.

Site Amenities
- Inspect benches, trash containers, picnic tables, grills, bicycle racks, drinking fountains, and other site amenities at least monthly. Repair or replace as needed.
- Clean/power wash amenities yearly. This task is an example of what could be done by a volunteer group like the boy scouts. The town could provide supplies while the volunteer group provided the time and labor.

Fences and Gates
- Inspect fences, gates, and bollards when mowing. Repair any damages.

Signage
- Inspect sign lettering, surfaces, and posts when mowing or at least monthly.
- Repair/replace signs to maintain design and safety standards immediately.
- Clean signs yearly. Another task where volunteer groups could provide time and labor while the town could provide supplies.
Section 2: Stewardship by Project Type

Parks

Lighting
- Inspect monthly.
- Repair/bulb replace immediately.

Pest Management
- Problem areas should be inspected monthly and handled on a case by case basis. Spot-treat, DO NOT over treat.
- No pesticides on parks with kid or dog activity.
 (Refer to Section 2.3 Natural Pest and Disease Control)

Open Space (Refer to Section 2.3 Habitats)

Invasive Plants (Refer to Section 2.2 Controlling Nonnative Invasive Plants)

Each park’s future success depends on how well it is maintained for its use. A park improvement team is one example of how that success can continue throughout a park’s lifespan. A park improvement team consists of community volunteers that inspect and review successes and failures of different parks. Each person has a different perspective and can comment on what maintenance or design aspects are working or not working for each park. For example, after inspecting park benches it could be noted that placing pavers under benches can eliminate water ponding and the need to edge.

Long-term maintenance considerations should be included in a stewardship plan. What will a park look like in 5 to 10 years or 15 years? Landscapes have a lifespan and when necessary adjustments should be made to accommodate plants nearing the end of their lifecycle. For example, as mature trees begin to reach their lifespan, younger trees can be planted so that they will be established by the time the older trees need to be removed.
Section 2: Stewardship by Project Type

Playgrounds

Sources:

Landscape Design Guidelines, Section 5 “Installation and Maintenance.” Tennessee Department of Transportation. http://www.tdot.state.tn.us/environment/beautification/landscape/Chapter_5_Installation_Maintenance.pdf

2.7 Community Gardens
A community garden offers citizens of a community places to grow local produce, participate in satisfying labor, build a sense of community, and connects people with the environment. Community gardens can be an educational experience for people as the land around them becomes a functioning landscape. Community gardens can serve as a gathering place, similar in function to a park or landmark. The satisfaction and togetherness that is achieved from the construction and maintenance of a community garden is an unparalleled consequence to that of standard and typical community landscape design. Community gardens not only feed people locally, however, also provide a unique form of social uplifting.

Summer (June-August)
• Pull weeds if needed.
• Mulch planting beds 2 to 4 inches thick with compost or bark mulch to replenish soil, retain moisture, and control weeds.
• Mulch walking areas and tree beds with larger size wood chips to reduce weeds and provide food for worms and bugs. Newspaper or cardboard placed as a layer before mulch in walkways can help prevent weeds from occurring.
• If a summer school program is using the garden, plant vegetables and establish a watering schedule with parents, neighbors, or volunteers.
• New plantings will need summer watering until they become established. (Refer below to “Watering”)

Fall (September-November)
• Pull new weeds in beds when ground is moist before they develop deep roots.
• Clear unwanted growth and compost it for the spring.
• Keep compost pile as moist as a wrung-out sponge. Check compost pile temperature and turn. (Refer to Composting in “Sources” at the end of this section.)
• Mulch planting beds with leaves or compost to minimize winter weeds and replenish the soil. Prepare new annual planting beds by mixing compost and top dress with bark mulch.
• Prepare for spring bulbs. Order or obtain in September and plant in October and early November. Examples of early spring bulbs are crocus and narcissus.

Winter (December-February)
• Rake winter leaf mulch onto annual planting beds.
• Remove any remaining weeds to prevent them from going to seed.
• Remove trash and rake surfaces as needed.
• Selectively prune shrubs based on species when dormant.
Spring (March-May)
• Trim back any meadow plants to 4 to 6 inches before new growth emerges. This also helps insulate the crown of the plant. Compost the cuttings, if possible.
• Watch for and record emerging new plants such as tulips and crocus.
• Identify which plants are a part of the habitat and which are weeds that should be removed. Pull weeds at first discovery while the soil is moist and before weeds can take root and make seeds. If prolonged, weeding can become a labor intensive problem during the summer.
• Plan and prepare student experimental planting beds. Mix in 1 to 3 inches of compost from on site bin.

Watering
Watering is the most important day-to-day task. New plantings will require watering until established (usually the first 2 years). Monitor the rainfall and supplement with watering or irrigation when needed for at least the first 2 years of a garden. Special attention should be paid during hot, dry summer months. Watering could involve installing a drip irrigation, sprinkler system, laying a soaker hose, or rain barrels. Establish a watering schedule based on the plants installed and make sure to provide access to the water source especially during the summer. In general, plantings should be watered 2 to 3 times per week for the first 8 weeks after planting then once per week until they are established. However, you may need to fine-tune the watering based on your specific conditions. For watering newly planted trees refer to Section 2.1 Tree Planting and Care. For more information on installing and maintaining rain barrels refer to How to Install and Maintain a Rain Barrel in the Appendix: Attached Reference Materials section of this document.

Borders
It is important that the maintenance team and volunteers understand where the boundaries are of a schoolyard habitat. This can help avoid mishaps such as an area being accidentally mowed. It can be helpful to designate areas of your habitat to let others know the boundaries. Fencing, edging, or natural materials can be used to indicate boundaries.

Replanting
It is not uncommon to have plants die in the first few months. Replanting due to unexpected events such as extreme weather is normal; however, if plant loss is more than 50 percent, an evaluation of the site should be conducted before replanting to ensure future
habitat success. When choosing plants do not select plants that are toxic, have thorns, or spiney tips. Safety should be considered when selecting plants for child-friendly areas. Refer to *Common Plants and Their Toxicity* and *Poisonous Plants in the Landscape* in the Appendix: Attached Reference Materials section of this document for a list of toxic plants to avoid.

Weeding

Weeds are inevitable and removing weeds is an ongoing process. Before weeding takes place, it is important to identify which plants are a part of the habitat and which are weeds that should be removed. In some instances like a meadow, some plants may look like weeds. In this situation, a knowledgeable group should weed this area. Removing certain weeds can reduce competition and allow desired plants to flourish. It is best to remove weeds before the seeds mature and spread. If weeding is neglected for months at a time, weeds will become permanent invaders of the garden as they disperse their seed and spread their roots. Weeding in early spring thoroughly before weeds can take root and become a bigger labor intensive problem during the summer can be important. Certain techniques such as using newspaper or weed cloth beneath the mulch in planting beds can lessen the need for weeding as well.

Controlling Nonnative Invasive Plants

The most efficient method for controlling nonnative invasive plants is early detection and immediate removal. Common control methods include hand-pulling, mowing, and herbicidal spraying. The method of removal should depend on the specific plant, size of infestation, and the amount of surrounding desired vegetation. For most invasives, hand pulling should be adequate if discovered early enough. Be sure to remove the entire plant including roots before the plant begins to seed. Herbicidal treatment is not recommended in areas where children gather.

Other Features

Check, refill, and clean bird feeders, bird baths, bird houses, and water pumps regularly. During hot months, items such as bird baths may need to be cleaned more often. Site amenities such as benches, fences, arbors, pavilions, and signs should be checked often for vandalism and to ensure they are functioning properly. Any vandalized elements should be repaired immediately within 24 hours if possible. This deters vandalism from happening again. The best way to decrease vandalism is to have activity and support from the staff, students, and the surrounding community.
Section 2: Stewardship by Project Type

Community Gardens

Pathways should be kept free of debris or obstruction. If it is a soft surface material, level, fill, and compact any holes or ruts. Inspect surfaces at least once a month. ADA accessible pathways should be inspected regularly for obstruction or surface repairs/replacement that pose a hazard. Repairs should be done immediately. Trash containers and litter should be removed daily, if needed. Outdoor classroom elements such as tables and seating should be inspected and repaired/replaced if damaged upon discovery.

Sources:

Composting. Eartheasy: Solutions for Sustainable Living. http://eartheasy.com/grow_compost.html

Common Plants and Their Toxicity University of California, Davis, Medical Center, Regional Poison Control Center. http://fcs.sites.mjc.edu/127PlantToxicity.pdf

Poisonous Plants in the Landscape. Robert R. Westerfield and Gary L. Wade, The University of Georgia Cooperative Extension. http://extension.uga.edu/publications/files/pdf/C%20957_2.PDF
SECTION 3: APPENDIX
3.1 Online Resources

Section 2.1 Tree Planting and Care

Section 2.2 Controlling Nonnative Invasive Plants

Section 2.3 Natural Pest and Disease Control

Section 2.4 Habitats

Greater Park Place: Community Gateway and Neighborhood Beautification Stewardship Plan

Section 3: Appendix
Online Resources

Section 2.5 Streetscapes

Section 2.6 Parks

Section 2.7 Community Gardens

Composting. Eartheasy: Solutions for Sustainable Living.
http://eartheasy.com/grow_compost.html

How to Install and Maintain a Rain Barrel. City of Chicago.

Common Plants and Their Toxicity University of California, Davis, Medical Center, Regional Poison Control Center.
http://fcs.sites.mjc.edu/127PlantToxicity.pdf

Poisonous Plants in the Landscape. Robert R. Westerfield and Gary L. Wade, The University of Georgia Cooperative Extension.
http://extension.uga.edu/publications/files/pdf/C%20957_2.PDF
3.2 Book Reference Materials

Section 2.5 Streetscapes

3.3 Attached Reference Materials

Common Plants and Their Toxicity University of California, Davis, Medical Center, Regional Poison Control Center. http://fcs.sites.mjc.edu/127PlantToxicity.pdf

A Glossary of Natural Garden Pest Control Solutions

Facial with a pest problem? Learn a three-tiered approach to natural garden pest control: attract beneficial insects, employ effective physical pest controls such as handpicking and row covers, and use organic pesticides if needed.

By Barbara Pleasant and Shelley Stonebrook

Illustration by Linda Cook

An abundance of buzzing, hopping, fluttering and crawling insects is a trademark of any healthy organic garden. This diversity means insects that might feed on your crops are likely to be kept in check by their enemies. In small numbers, pests simply provide food for birds and beneficial insects, and if your soil and crops are healthy, plants fend off the pressure easily. Only when pest populations become excessive do gardeners need to step in to restore balance to keep their gardens thriving.

A good overarching mantra to guide you in your natural garden pest control efforts can be summed up in two words: Look closely. Examine your plants regularly, noting what kinds of insects you see. Observe whether you see just a few of a particular kind of insect or whether populations are growing, and look up pictures of what you see so you know which are beneficial and which are detrimental. (For pictures of and detailed information about beneficial and pest insects, see our Organic Pest Control Series.)

Refer to this glossary to preemptively ward off pests and, if problems do crop up, to target each complication with the best organic pest control solutions. We’ve separated this glossary into sections that present a three-pronged system of organic pest control. First, attract a diversity of beneficial insects by interplanting flowers and herbs — especially those that produce nectar from numerous small flowers, such as mints and sweet alyssum. Second, put a variety of physical controls in place when pests get out of hand or are known to be troublesome in your area (see the Top 15 Worst Garden Pests chart). Last, if needed, bring in organic insecticide reinforcements. The products listed in this glossary all have been approved by the U.S. National Organic Program.

Pest-Eating Beneficial Insects

The following insects feed on other insects, helping prevent pest species from doing more than minor damage to your crops.

Assassin bug. These 1-inch-long predatory bugs have shield-shaped backs and are active pest hunters. Larvae and adults feed on aphids, caterpillars, Colorado potato beetles, insect eggs and more. Assassin bugs are among the few natural predators that help control Mexican bean beetles.

Braconid wasp. North America is home to nearly 2,000 species of these non-stinging wasps. Adults are less than a half-inch long, and they lay eggs inside or on host insects; the mugwort-like larvae feed on their prey from inside. Braconids lay eggs on numerous pests, such as aphids, caterpillars (including cabbageworms and tomato hornworms), and leaf miners.

Ground beetle. These beneficial insects live in the soil beneath mulches, around compost piles, and in the sheltered areas below perennial plants. Some create vertical tunnels that they use to ambush and trap prey, but most ground beetles wander about aboveground, foraging for food at night. They dine on asparagus beetles, cabbageworms, Colorado potato beetles, corn earworms, cutworms and slugs.

Hover fly (aka syrphid fly). Black-and-yellow-striped hover fly adults resemble yellow jackets but are harmless to humans. Larvae are petite, tapered maggots that crawl over foliage to feed on small insects. They are aphid-eating machines and also devour mealybugs, mites, thrips, scale insects, and small caterpillars, such as cabbageworms.

Lacewing (aka aphid lion). Lacewing larvae prey on aphids, cabbageworms, caterpillar eggs, whiteflies and more. They feed for about a month, in which time each larva consumes about 600 aphids. Remove row covers from plants during evening hours so lacewings can check them for pests. Do not use pesticides when lacewings are active, which happens early in the gardening season compared with most natural insect predators.

Lady beetle (aka ladybug). Lady beetle larvae and adults eat aphids, small caterpillars and insect eggs. A few species specialize in eating mealybugs, mites, scale insects and even powdery mildew. If you see adult lady beetles on a plant, look in the foliage for clusters of yellow-orange eggs, which will often be near an aphid colony. Dark-colored larvae, which resemble miniature alligators, will hatch in about a week and consume several aphids per day.

Minute pirate bug. Less than a quarter-inch long, this compact predator controls corn earworms early in the worms’ life cycle. Minute pirate bugs also feed on aphids, thrips and whiteflies.

Praying mantis. The largest insect you’re likely to see in your garden, this predatory species is always on the prowl, eating any other insect that moves, including crop-munching grasshoppers.

Soldier beetle (aka leatherwing beetle). You’ll spy elongated, half-inch-long soldier beetles among flowers or in thick vegetation. In some areas, the larvae are key predators of grasshopper eggs, so attracting soldier beetles can provide grasshopper control. Soldier beetle larvae eat moths, several insects, and the eggs and larvae of other beetles. Adults feed on aphids, caterpillars and other soft-bodied insects. Goldenrod, single-flowered marigolds and members of the daisy family are soldier-beetle magnets.

Spider. These eight-legged critters are probably the most abundant pest predators on your property. Any garden will likely already host several dozen types of spiders, and the most common garden spiders don’t spin webs. For example, wolf spiders live in shallow underground burrows, wandering the soil’s surface...
by night, or simply waiting by their burrow for unsuspecting prey. Perennial herbs that grow into lush bushes often make top-notch spider conservatories, and biodegradable mulches, such as straw and grass clippings, create an ideal habitat for advantageous wolf spiders. (Note that poisonous spiders don’t generally favor gardens.)

Tachinid fly. Tachinid flies are gruesome parasites that glue their eggs onto an insect so that, when the egg hatches, the maggot can consume its host as food. Some species lay eggs on foliage that’s food for insects, and then the eggs hatch in the insects’ innards. Or, the flies inject eggs into another insect’s body with a sharp ovipositor. Garden pests controlled by tachinid flies include armyworms, cabbage worms, cutworms, grasshoppers, Japanese beetles, leaf rollers and squash bugs. Attract tachinid flies by growing plants that bear umbels of tiny flowers. Buckwheat, carrots, cilantro, dill, Queen Anne’s lace and sweet clover are among the crops that fit this bill.

Trichogramma wasp. These gnat-sized wasps lay their eggs inside the eggs of other insects, where the young trichogramma then develop as internal parasites, breaking the host’s life cycle. Common hosts include eggs of cabbage worms, codling moths and European corn borers. Trichogramma wasps are too tiny to observe in the garden, however, scientists have found that flower nectar from buckwheat and sweet alyssum enhanced wasp reproduction in lab experiments.

Wasp (stinging types). Wasps can be great garden allies because they consume huge numbers of leaf-eating caterpillars and irritating flies, which they feed to their growing larvae. Take caution if yellow jackets or hornets show up, and mark wasp nests so you can avoid disturbing them. Paper wasps are less aggressive than yellow jackets or hornets, and are happy to nest in bottomless birdhouses placed around the garden.

Physical Pest Control Solutions

Cleanup. Practice good garden sanitation for certain crops at season’s end to disrupt the life cycles of pests that feed on those crops. After your cucumber and squash plants are spent, remove plant debris from the garden and chop it into small pieces before composting it. Do the same with asparagus, which can host asparagus beetles, and with broccoli and cabbage stumps, which can harbor cabbage aphids. If you have problems with pests that overwinter as adults, mow down any weedy areas in fall.

Copper strips. Slugs receive an unpleasant electric jolt if they crawl over copper. Garden centers sell copper stripping that you can place around particular crops or even use to encircle entire garden beds to keep slugs out. The strips should be at least a few inches wide so slugs can’t traverse them unscathed.

Cutworm collars. Push cylindrical “collars” — which can be made from small cans, yogurt cups or toilet paper rolls — into the soil around tomato, pepper and other transplants to protect the young plants from cutworm damage.

Handpicking. Ultra-low-tech but effective for organic gardeners, handpicking is just what it sounds like: Spot pests and squash them or brush them into a pile of soapy water (or collect them for your chickens). Keeping a close eye on your crops and knowing how to identify pests are the keys to this method. Pests that haven’t become overwhelming in number are big enough to spot easily, such as slugs, tomato hornworms and other worm-type pests, are prime candidates for handpicking.

Poultry. Insect-munching fowl will devour practically any insect that moves, including ticks, grasshoppers, Colorado potato beetles, slugs and more. Ducks are reportedly sharp slug-spotters, whether you let them work over the garden in spring and fall or enlist a pair as your assistants throughout the season. Chickens work best in winter, because their scratching can damage crops during the growing season. (See Chickens in the Garden: Organic Pest Control for reader reports about how to most effectively control pests with poultry.)

Row covers. A lightweight row cover or tulle netting will keep some crops pest-free. Cover your cabbage patch in this way, along with other cabbage-family crops, to keep cabbage worm moths from laying eggs on your plants. Use hoops or blunt stakes to hold up the cover. Remove covers after crops, such as squash, begin to flower, so that pollinators can reach the flowers.

Vacuum. Some gardeners report success fully controlling squash bugs and other pests by sucking them up with a shop vacuum. Got poultry? Empty the vacuum bag into their pen and everybody wins — except the pests, of course.

Yellow sticky traps. Hang flat, sticky traps near cucumber plants to catch cucumber beetles. To snare flea beetles, place traps near eggplants and other crops suffering from flea beetle pressure. These pests are attracted to the color of the traps and will get caught in the goo.

Organic Insecticides

Bi (Bacillus thuringiensis). This naturally occurring bacterium kills caterpillars when they eat leaves that have been sprayed with it. Armyworms, cabbage worms, corn earworms, diamondback moths, gold leaf miners, melon worms, tomato fruitworms, tomato hornworms, and various webworms and budworms are candidates for Bi treatment. Butterfly larvae may also be killed by Bi, so don’t use it on butterfly host plants, such as penkey. Additional strains of Bi include one that kills mosquito larvae and one that is toxic to Colorado potato beetle larvae. Sunlight degrades Bi after a few hours, so apply it late in the day. Reapply after heavy rain.

Diatomaceous earth (DE). A powder made from fossilized remains of aquatic organisms called “diatoms,” DE has sharp edges that cut into insects’ bodies and cause them to die of dehydration. DE is less effective when wet, yet can still be used in the garden to make it difficult for flea beetles and newly emerged cutworms and Japanese beetles. In dry weather, DE spread beneath plants will repel slugs. Lightly sprinkle dry DE on the soil’s surface where Japanese beetle larvae, slugs, or other pests will come into direct contact with the dry particles. Renew after rain or dew.

Horticultural oils. When applied directly to pests, horticultural oils interfere with respiration, causing insects to suffocate and die. These oils help control aphids, whiteflies and other pests, but can also kill beneficial insects and injure the leaves of some plants. Frequent use can reduce yields even when the pest is under control. Best applied in cool weather, horticultural oils are valuable allies in organic orchards, where they can control pests that overwinter in bark crevices.

Insecticidal soap. Fatty acids in insecticidal soaps break down the protective cuticles of soft-bodied pests, such as aphids, which can then quickly become dehydrated and die. Soap sprays have no residual effect and only kill insects that are sprayed directly. Thoroughly wet both sides of leaves and the inside of all crevices. Repeat applications may be needed every week as new aphids or whiteflies hatch and form colonies. To make soap sprays at home, mix 1 tablespoon of dishwashing liquid per quart of water. Purchased insecticidal soaps are purer, however, and less likely to injure foliage. Frequent soap sprays can reduce the yields of some crops. Use soft or rainwater when diluting soap concentrates.

Iron phosphate slug bait. Sprinkle slug-bait granules evenly throughout your garden beds, and slugs will eat it instead of your plants, then crawl off to die. The bait is non-toxic to pets and humans. Sluggo is a popular brand of this type of bait.
Neem. When applied to insects and the plants they eat, neem oil, which is derived from an Asian tree, causes many insects to feed less, grow more slowly, molt less and stop laying eggs. Neem works best on young insects, particularly those that grow rapidly, such as Colorado potato beetles, Mexican bean beetles and squash bugs. Neem can also control aphids and leaf-eating caterpillars.

Pyrethrum. One of the oldest known pesticides, fast-acting pyrethrum is also the strongest insecticide allowed under U.S. National Organic Standards, so use it only after you’ve exhausted other methods. Insects, including beneficials, typically become paralyzed as soon as they come into contact with pyrethrum, which is made from the dried flowers of the daisy Tanacetum cinerariifolium. Aphids, armyworms, Colorado potato beetles, cucumber beetles, cutworms, leafhoppers, squash bugs and thrips can often be brought under control with pyrethrum.

Spinosad. A biological pesticide, spinosad is derived from the bacterium Saccharopolyspora spinosa, which produces a substance that works as a neurotoxin in many (but not all) insects. Susceptible insect species become excited to the point of exhaustion, stop eating, and die within two days. Spinosad controls all types of caterpillars, Colorado potato beetle larvae and blister beetles, and works best on pests that consume a lot of leaf tissue.

Need to deal with garden pests? Check out the Top 15 Worst Garden Pests chart.

Contributing editor Barbara Pleasant gardens in southwest Virginia, where she grows vegetables, herbs, fruits, flowers and a few lucky chickens. Contact Barbara by visiting her website or finding her on Google.

Shelley Stonebrook is MOTHER EARTH NEWS magazine’s main gardening editor. She’s passionate about growing healthy, sustainable food and taking care of our environment. Follow her on Twitter, Pinterest and Google.
Section 3.3: Appendix - Attached Reference Materials

Composting

<table>
<thead>
<tr>
<th>What to Compost</th>
<th>Carbon</th>
<th>Nitrogen Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>table scraps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vegetable scraps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| ashes & garden
 weeds | | |
| leaves | | |
| great garden
 prunings | | |
| straw or hay | | |
| green compost | | |
| paper | | |
| wooden shavings | | |
| wood ash | | |
| chicken manure | | |
| coffee grounds | | |
| tea leaves | | |
| newspaper | | |
| shredded paper | | |
| cardboard | | |
| corn cobs, stalks | | |

Composting is the single most important supplement you can give your garden soil. Composting is a simple way to add nutrient-rich humus which helps plant growth and beneficial organisms. It is also easy to make and good for the Earth!

Composting Benefits:
-Recycles kitchen and yard waste: Composting introduces beneficial organisms to the soil. Microscopic organisms in compost digest waste, break down organic material, and produce a nutrient rich soil amendment for the garden.
-Keeps harmful waste out of landfills: Organic waste is an abundant source of nitrogen and vital plant nutrients, which makes composting a simple, and effective way to reduce the amount of garbage that ends up in landfills.
-Good for the environment: Composting breaks down household yard waste and return nutrients to the soil, helping create a more productive and less dependency on synthetic fertilizers.
-Reduces landfills waste: Most landfills in North America are quickly filling up, many communities are looking for alternative ways to deal with their waste.

Add composting to Eartheasy.com/greaterpark/eartheasy as the community design assistance center at College of Architecture - Urban Studies, Virginia Polytechnic Institute and State University.
dryer lint Carbon best if from natural fibers
sawdust pellets Carbon high carbon levels; add in layers to avoid clumping
wood chips / pellets Carbon high carbon levels; use sparingly

You can also add garden soil to your compost. A layer of soil will help to mask any odors, and micro-organisms in the soil will accelerate the composting process.

Do not compost meat, bones or fish scraps (they will attract pests), perennial weeds (they can be spread with the compost) or diseased plants. Do not include pel manures in compost that will be used on food crops. Banana peels, peach peels and orange rinds may contain pesticide residue, and should be kept out of the compost. Black walnut leaves should not be composted. Sawdust may be added to the compost, but should be mixed or scattered thinly to avoid clumping. Be sure sawdust is clean, with no machine oil or chain oil residues from cutting equipment.

For kitchen wastes, keep a container with a lid and a handle under the sink. Consider using a stainless steel compost pail with air filter, or the ceramic model. If you don't mind occasional smells, use an old ice-cream pail. Chop up any large chunks before you toss them in. When the container is full, take it out to your composter and toss in the contents.

With yard and garden wastes, different composting materials will decompose at different rates, but they will all break down eventually. If you want to speed up the composting process, chop the larger material into smaller pieces. Leaves and grass clippings are also excellent for compost, but should be sprinkled into the bin with other materials, or dug in to the center of the pile and mixed. Avoid putting them on in thin layers - they will mat together and reduce aeration, which slows the composting process.

How to Compost

1. Start your compost pile on bare earth. This allows worms and other beneficial organisms to aerate the compost and be transported to your garden beds.
2. Lay twigs or straw first, a few inches deep. This aids drainage and helps aerate the pile.
3. Add compost materials in layers, alternating moist and dry. Moist ingredients are food scraps, tea bags, seaweed, etc. Dry materials are straw, leaves, sawdust pellets and wood ashes. If you have wood ashes, sprinkle in thin layers, or they will clump together and be slow to break down.
4. Add manure,
green manure (clover, buckwheat, wheatgrass, grass clippings) or any nitrogen source. This activates the compost pile and speeds the process along.
5. Keep compost moist.
Water occasionally, or let rain do the job.
6. Cover with anything you have - wood, plastic sheeting, carpet scraps. Covering helps retain moisture and heat, two essentials for compost. Covering also prevents the compost from being over-watered by rain. The compost should be moist, but not soaked and sodden.
7. Turn.
Every few weeks give the pile a quick turn with a pitchfork or shovel. This aerates the pile. Oxygen is required for the process to work, and turning "adds" oxygen. You can skip this step if you have a ready supply of coarse material, like straw.

Once your compost pile is established, add new materials by mixing them in, rather than by adding them in layers. Mixing, or turning, the compost pile is key to aerating the composting materials and speeding the process to completion.

Note:
If you want to buy a composter, rather than build your own compost pile, you may consider a buying a rotating compost tumbler which makes it easy to mix the compost regularly.

Carbon/Nitrogen Ratio
All compostable materials are either carbon or nitrogen-based, to varying degrees. The secret to a healthy compost pile is to maintain a working balance between these two elements.

Carbon - carbon-rich matter (like branches, stems, dried leaves, peels, bits of wood, bark dust or sawdust pellets, shredded brown paper bags, corn stalks, coffee filters, corncob noodles, egg shells, straw, peat moss, wood ash) gives compost its light, fluffy body.

Nitrogen - nitrogen or protein-rich matter (manures, food scraps, green lawn clippings and green leaves) provides raw materials for making enzymes.
A healthy compost pile should have much more carbon than nitrogen. A simple rule of thumb is to use one-third green and two-thirds brown materials. The bulkiness of the brown materials allows oxygen to penetrate and nourish the organisms that reside there. Too much nitrogen makes for a dense, smelly, slowly decomposing anaerobic mass. Good composting hygiene means covering fresh nitrogen-rich material, which can release odors if exposed to open air, with carbon-rich material, which often exudes a fresh, wonderful smell. If in doubt, add more carbon!

Simplest Composting Methods

~“No-turn” composting

The biggest chore with composting is turning the pile from time to time. However, with “no-turn composting”, your compost can be aerated without turning.

The secret is to thoroughly mix in enough coarse material, like straw, when building the pile. The compost will develop as fast as if it were turned regularly. And studies show that the nitrogen level may be even higher than with turned compost. With “no-turn composting”, add new materials to the top of the pile, and harvest fresh compost from the bottom of the bin. This can be easily done in an Aerobin Composter, or a WIBO compost bin.

~ Composting leaves

If you have too many leaves to incorporate into the compost bin, you can simply compost the pile of leaves by itself. Locate the pile where drainage is adequate; a shaded area will help keep the pile from drying out.

The leafe pile should be at least 4" in diameter and 3" in height. Include a layer of soil between each foot of leaves. The pile should be damped enough that when a sample taken from the interior is squeezed by hand, a few drops of moisture will appear. The pile should not be packed too tightly.

The pile will compost in 4-5 months, with the material being dark and crumbly. Leaf compost is best used as an organic soil amendment and conditioner; it is not normally used as a fertilizer because it is low in nutrients.

~ Leaf mould tea

You can also use leaves to make a nutritious “tea” for your plants. Simply wrap a small pile of leaves in burlap and immerse in a garbage can or large bucket of water. Leave for three days, then remove the “tea bag” and dump contents into the compost. Scoop out the enriched water with a smaller bucket and use to water your plants and shrubs.

Enclosed Compost Bins

For small-scale outdoor composting, enclosed bins are the most practical. The least expensive method is to build one yourself from a heavy-duty garbage can. Simply drill 1.5-cm aeration holes in rows at roughly 15-cm intervals around the can. Fill the can with a mixture of high-carbon and high-nitrogen materials. Stir the contents occasionally to avoid anaerobic pockets and to speed up the composting process. If the lid is secure, the bin can be laid on its side and rolled; a length of 2” cedar (use a 2x2 or a 2x4) can be bolted to the inside, running top to bottom, to help flip the material. Without this, the contents tend to stay in place while the bin is rolled.

Another option is a compost bin, sometimes called a ‘compost digester’. Compost bins are enclosed on the sides and top, and open on the bottom so they sit directly on the ground. These are common composting units for homes in residential areas where bins tend to be smaller, yet enclosed enough to discourage pests. These bins are inexpensive, but it is difficult to turn the compost, so it can take several months to produce compost. These bins are thin-walled plastic, and may chip along the edges, especially during a freeze.

The most efficient enclosed bin method is the compost tumbler, it’s possible to maintain relatively high temperatures in drum/tumbler systems, both because the container acts as insulation and because the turning keeps the microbes aerated and active. An interior “paddle” aids aeration and prevents clumping of the composting materials. This greatly speeds up the composting process.

An enclosed tumbler system offers the following benefits:

- speeds up the composting process
- can compost year-round, due to higher internal temperature
- cannot be accessed by rodents, raccoons, dogs or other critters
- keeps compost neatly enclosed and odor-free, well-suited for residential areas

To learn more, see Compost Tumblers: Comparing different compost tumbler models

Tips for successful composting

~ Activate your compost.

‘Activators’ can be added to your compost to help kick-start the process and speed up composting. Common compost activator materials are: comfrey leaves, grass clippings, young weeds, well-rotted chicken manure.

~

Flying insects attracted to your compost?
Small fruit flies, especially, are naturally attracted to the compost pile. They can be discouraged by simply covering any exposed fruit or vegetable matter. Keep a small pile of grass clippings next to your...
Composting and lawn care

Compost bin, and when you add new kitchen waste to the pile, cover it with one or two inches of clippings. Adding lime or calcium will also discourage flies.

Unpleasant odors from your compost pile?
This can be a concern in urban and suburban areas with small lots and neighbors living close by. Odors can be reduced, or eliminated, by following two practices: first, remember to not put bones or meat scraps into the compost; second, cover new additions to the compost pile with dry grass clippings or similar mulch. Adding lime or calcium will also neutralize odors. If the compost smells like ammonia, add carbon-rich elements such as straw, peat moss or dried leaves.

Is your compost pile steaming?
No problem. A hot, steamy pile means that you have a large community of microscopic critters working away at making compost.

Is your compost pile soggy?
This is a common problem especially in winter when carbon-based materials are in short supply. You can restore your compost to a healthy nitrogen-carbon balance. To learn how to restore your compost pile, read our article “How to fix a soggy compost pile”.

Matted leaves, grass clippings clumping together?
This is a common problem with materials thrown into the compost. The wet materials stick together and slow the aeration process. There are two simple solutions: either set these materials to the side of the composter and add them gradually with other ingredients, or break them apart with a pitchfork. Grass clippings and leaves should be mixed with rest of the composting materials for best results.

Problems with raccoons?
If there’s a population of raccoons in your area, they will be naturally attracted to your compost pile. The best solution to this problem is to bar their entry to the compost. (Traps and poisons are more trouble than they’re worth.) A wood or metal lid can be easily hinged to the bin described above on this page, or you can buy a commercially-made compost bin with secure fitted lids which are pest-proof, such as the Aerobin, UCT-9 or Jona JK270.

A moveable feast.
The soil beneath a compost bin becomes enriched as nutrients filter down with successive waterings. You can place your bin on a plot of earth which you plan to use for a future vegetable or flower bed, or fruit tree. Each year you can move the bin to a different area; you’ll get a double benefit – the compost from the bin, and a bed of nutrient-rich soil ready for new plantings.

Additive only. Compost should be used as a soil additive, and not exclusively as the growing medium. Compost is a source of rich organic matter which provides nutrients for growing plants, but should be thought of as one component of a healthy garden bed. To learn more about developing healthy soil, read our article:

6 Tips for Building Soil in your Raised Garden Beds and Planters.

Take advantage of autumn’s bounty.
The biggest challenge for small-scale backyard composting is finding enough carbon-rich materials to balance the regular input of nitrogen-rich materials which come from kitchen scraps, fruit and vegetable peelings, coffee grounds, grass clippings and other fresh materials. To learn how to make the most of autumn’s bounty, read Autumn Composting Tips.

Composting and weed seeds

A liability in composting is the unexpected introduction of new weed seeds to your garden. This is caused by slow or incomplete composting which did not generate enough heat to kill any and all weed seeds. Weed seeds in compost are a nuisance because once the compost is transferred to your garden beds, the compost acts to fertilize the weeds and make them even more persistent!

With home compost bins or piles, the way to eliminate weed seeds is twofold:

1. Make sure your compost is hot enough.
 Reach your hand into the center of the pile - it should be almost too hot for comfort. Specifically, the temperature should be 130 - 150 degrees F. It takes about 30 days at 140 degrees to kill all weed seeds.

2. Mix your pile.
 While your compost may be hot in the center of the mass, the outside of the pile is cooler, giving seeds a chance to survive. Mixing brings cooler material to the warmer area and also increases aeration which helps attain the higher heat levels. Compost tumblers are very useful for this.

If you are buying bedding for animals, mulch or carbon-rich material to bulk up your compost pile, be aware of introducing seeds to your garden, via the compost. For example, make sure to get straw, and not hay, since straw is mostly weed-free. Ask the sales staff if there have been any complaints about seeds in these products.

Below are a few samples. To see all the composters in our store, click here.
Jora Insulated Compost Tumbler

- Pest resistant dual chamber system: start a new batch while the first batch ages.
- Insulated: great for colder climates and all-weather composting.
- Ease of use: tumbles easily for maximum aeration.

Click to learn more about the Jora JK270 Composter

Urban Compost Tumbler - 9 cu ft

- Large capacity: heated chamber produces up to 120lbs of compost per month.
- Efficient material: Black 100% recycled plastic heats up quickly for faster composting.
- Convenient design: Easy to position a wheelbarrow underneath. Large top opening.

Click to learn more about the Urban Compost Tumbler 9

Stainless Steel Compost Keeper - Prevent odors:
carbon air filter in lid.
- Attractive & Convenient: keep on your counter for easy access. Click to learn more about the Stainless Steel Compost Keeper

Compost Tumblers: Comparing different compost tumbler models

Visit Eartheasy's online store for compost tumblers, bins, and more!

Share this Article:

Sign up to our newsletters for updates and exclusive Eartheasy content:
Section 3.3.3: Appendix - Attached Reference Materials

Growing Apple Trees in The Home Garden

Table 1: Rootstock Characteristics

<table>
<thead>
<tr>
<th>Rootstock</th>
<th>Size as Percent of Seedling</th>
<th>Anchorage</th>
<th>Years to Fruit Production</th>
<th>Tree Spacing in Row (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM 111</td>
<td>85</td>
<td>Excellent</td>
<td>14-18</td>
<td>15-18</td>
</tr>
<tr>
<td>MM 0.6</td>
<td>80</td>
<td>Excellent</td>
<td>12-16</td>
<td>10-14</td>
</tr>
<tr>
<td>MM 0.4</td>
<td>70</td>
<td>Fair</td>
<td>8-10</td>
<td>7-9</td>
</tr>
</tbody>
</table>

Table 2: Varietal Characteristics

<table>
<thead>
<tr>
<th>Variety</th>
<th>Fruit Color</th>
<th>Flowering Time</th>
<th>Potential Cross-Pollinators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gala</td>
<td>Yellow-orange to red</td>
<td>Early to Mid-spring</td>
<td>Delicious, Empire, Rome, Fuji</td>
</tr>
<tr>
<td>Jonagold</td>
<td>Yellow with red stripes</td>
<td>Early</td>
<td>Delicious, Empire, Rome, Fuji</td>
</tr>
<tr>
<td>Golden Delicious</td>
<td>Yellow green to yellow</td>
<td>Mid-spring</td>
<td>Empire, Rome, Fuji</td>
</tr>
<tr>
<td>Red Delicious</td>
<td>Red</td>
<td>Late</td>
<td>Empire, Rome, Fuji</td>
</tr>
<tr>
<td>Fuji</td>
<td>Green with red stripes</td>
<td>Fresh</td>
<td>Delicious, Empire, Rome, Fuji</td>
</tr>
</tbody>
</table>

Table 3: Varietal Characteristics and Tolerance

- **Fruit Production:** 10-15 feet
- **Soil Tolerance:** Sandy loam to clay loam
- **Light Requirements:** Full sun
- **Pruning:** Prune in late winter to early spring
- **Disease Resistance:** Susceptible to apple scab and mildew
- **Pest Control:** Use integrated pest management

Growing Apple Trees in the Home Garden

- **Suitable Zones:** zones 5-9
- **Planting Time:** spring or fall
- **Site Selection:** full sun, well-drained soil
- **Watering:** 1-2 inches per week
- **Fertilization:** balanced fertilizer
- **Pollination:** Requires a pollinator variety

Appendix:

- **Additional Resources:**
 - [University of California Extension](https://www.ipm.ucanr.edu/)
 - [Extension Family](https://extensionfamily.com/)

References:

- **Books:**
 - *Apple Growing for Everyone* by J. L. Begg
 - *Apples and Other Fruits* by D. M. Macfarlane
- **Online Resources:**
 - [Apple Growth and Development](https://www.ag.arizona.edu/)
 - [Apple Varieties Database](https://www.extensionKSU.edu/)

Notes:

- **Important:** Regular pruning and training are necessary for healthy apple trees.
- **Advice:** Consult local Extension Services for specific advice.
trees of the same apple variety cannot be used for cross-pollination. Since the pollen from apple blossoms is transferred primarily by bees, be careful not to spray insecticides during bloom when honey bees are present.

Site Selection

Soils - Take a soil test prior to planting your apple trees. Your local County Extension Center can instruct you in collecting the soil sample, help you interpret the results, and provide valuable information about the soil in your county. Results from the soil test will determine the soil amendments necessary to correct nutrient deficiencies and adjust soil pH. The amendments should be worked into the soil to a depth of 12 to 18 inches where the tree will root, not just the planting hole. Apple trees will tolerate a wide range of soils as long as water and nutrients are not limiting and soil pH is adequate. Avoid heavy, poorly-drained soils and low spots, since apple trees cannot survive if water remains standing in the root zone.

Air Drainage - It is important to select a site where the tree will not be in a “frost pocket,” where cold air settles in low lying areas. In a frost pocket, low spring temperatures commonly kill the blossoms or developing fruit because cold air settles around the tree. Good air drainage, especially during early spring frosts, is critical. Choose a higher site with a slope if possible so cold air will flow down away from the trees and will not accumulate around the tree. Do not plant the trees closest to a fence row, wooded area, or at the bottom of a hill, as cold air drainage will be impeded.

Other Considerations - Apple trees require full sun and should be planted where the trees will not be shaded from large trees or buildings. Follow tree spacing guidelines that pertain to the rootstock. You must choose from Table 1. Do not plant trees near watered areas or streams to avoid animal damage. Prior to planting, remove weeds either manually or with an approved herbicide that will not harm the young tree. If you are planting the tree in a lawn, remove the grass from the planting area in a 4-foot diameter circle. Grains compete with young trees for available water and nutrients and can significantly reduce tree growth and productivity.

Planting the Tree

Tree Purchase and Preparation - Purchase a healthy 1-year-old nursery tree, 4 to 6 feet tall, with a good root system. A small tree will grow at about a rate of 1 inch per year, while a large tree can grow up to 3 feet per year.

1. Wrap the roots in plastic along with moist sawdust or newspaper, and place the tree in a refrigerator or cooler at 40 F. Never store the tree with fruit or vegetables, as ethylene gas from the latter can kill young trees.

2. “Heel-in” the tree. To heel-in a tree, dig a trench and place the tree roots evenly in it, cover the roots with soil, sawdust or peat, and water the tree thoroughly. The tree can be kept for several weeks using this method before permanently planting.

Planting the Tree - In North Carolina, trees can be set from late fall to early spring. To plant the apple tree, dig a hole approximately twice the diameter of the root system and 2 feet deep. Place some of the loose soil back into the hole and loosen the soil on the walls of the planting hole so the roots can easily penetrate the soil. Spread the tree roots on the loose soil, making sure they are not twisted or crowded in the hole. Continue to replace soil around the roots. As you begin to cover the roots, firm the soil to be sure it surrounds the roots and to remove air pockets. Do not add fertilizer at planting time as the roots can be “burned.” Fill the remainder of the hole with the loose soil, and press the soil down well. Important: The graft union must be at least 2 inches above the soil line so that roots do not emerge from the scion.

If you have finished planting the tree, water well to eliminate air pockets and provide good contact between the roots and the soil.

Training and Pruning Central Leader Trees

Proper training and pruning of fruit trees is essential to the development of a strong tree framework that will support fruit production. Properly shaped trees will yield high-quality fruit much sooner and will live significantly longer. Regular pruning and training will also maximize light penetration to the developing flower buds and fruit. Additionally, a well-shaped tree canopy permits adequate air movement through the tree, which promotes rapid drying to minimize pest problems.

Central Leader Trees - A central leader tree has one main, upright trunk, called the “leader.” Branching should begin on the leader 24 to 36 inches above the soil surface to a low work under the tree. The first year, 3 to 4 branches, collectively called “scaffold limbs,” are selected. The selected branches should be spaced uniformly around the trunk, not directly across from or above one another. The major lateral branches are commonly referred to as scaffold branches on which the central leader tree is “built.” Above the first scaffold limb should be an area of 18 to 24 inches, called a “light slot,” without any branches to allow light to reach all lower leaves and fruit. This light slot is followed by another series of scaffold limbs. Maintain alternating scaffold whorls and light slots up the leader to the desired maximum tree height. The shape of a properly trained central leader tree is like that of a Christmas tree (except with slots for light). See Figure 1.

![Figure 1. Side view of a central leader tree.](image)

Newly Planted Trees - After early winter planting, wait until just before the buds start to grow in the spring to “head it,” or cut, the unbranched central leader to 36 inches above the soil surface to encourage new lateral branching. When new growth is 3 to 4 inches long, identify the most upright shoot that will continue to be the central leader. Leave it and remove all new shoots growing 3 to 4 inches immediately below this new terminal to prevent competition. This will also encourage lateral growth in the area 6 to 14 inches below the cut tip of the young tree. Branches that form 6 to 14 inches below the cut tip of the tree are less vigorous, less upright, and easier to train as productive scaffold limbs. When the lateral branches, or scaffold branches, are 3 to 6 inches long, they should be spaced to a wider croathy angle that will provide a stronger framework for fruit production. Toothpicks or clothespins can be used to prop the young branches out to a 50 to 60 degree angle. This angle will slow vegetative growth, promote lateral branches, and allow the tree to initiate flowers and produce fruit sooner.

Scaffold Training - Improperly trained fruit trees have very upright branch angles, which result in
excessive vigor and serious limb breakage under a heavy fruit load. Larger branches can be spread out using short wooden boards with a notch in each end for the branch to fit into. Hanging weights on the branch or tying it down with string wrapped loosely around the limb are other methods for spreading the branches. All upward growth from scaffold branches should be either pulled down to a horizontal position or removed when it is 3 to 4 inches long.

Dormant Pruning vs. Summer Pruning - Pruning the tree during the winter, while it is dormant, will improve the tree and cause it to grow and branch more the following season. To promote scaffold branch development, cut the central leader to 20 to 28 inches above the highest usable scaffold whorl during the dormant season. It is best to do dormant pruning in late winter or early spring, after the risk of severe freeze is over. Be sure to remove any dead or diseased wood and dried apples at this time as well. After the tree resumes growth in the spring, continue to train the scaffold branches of the tree as you did the previous growing season. Select a new upright shoot to continue the central leader, and remove all new shoots 4 inches below it. Also select the branches to form another whorl of 4 to 5 scaffold branches. Prop all lateral branches out to a 50 to 60 degree angle.

Summer pruning will deplete the tree and cause it to grow less in that growing season. Remove all undersized branches directly from one another on the central leader when they are 3 to 4 inches long. Also, select lateral branches that are spaced uniformly around the leader to prevent crowding as the limbs grow in diameter. Once the tree has filled its allotted space, lateral branches will need to be cut back to their desired length during the summer to deplete the tree and prevent further growth, not during the dormant season. Ask your County Extension Center for information on the best way to prune your apple tree.

Fruit Thinning - Apple trees often set a heavier crop of fruit than the limbs can withstand. To ensure good fruit size, return bloom for the following year, and to prevent tree breakage, it is necessary to thin the fruit. Every apple blossom results in a bloom cluster of 5 to 6 blossoms. Apples should be thinned when they are about the size of a dime. Cut off enough so that the remaining apples are spaced 4 to 6 inches apart and leave only one fruit per cluster. It may seem like very few fruit remain, but you will harvest higher-quality fruit, potentially reduce insect and disease problems, and increase the chances for a full crop for the next season.

Fertility - Adequate tree nutrition is essential for quality apple production. Determine the nutrient status of your soil by taking a soil sample prior to planting and each year thereafter at the same time of year. Follow the fertilization guidelines provided by the soil test. This will prevent over-fertilization, will be cost-efficient, and will maintain healthy and productive trees. A leaf sample taken in July or August will determine the nutrient status of the tree and can be helpful in conjunction with the soil test. In addition to soil analysis and foliar analysis, regular observation of vegetative growth is also a useful indicator of tree fertility. Optimum fertility exists if lateral, outward growth is between 12 and 18 inches per season.

If you are unable to take a soil test, a useful rule is to apply 1 pound of 10-10-10 fertilizer to each tree the first year, 2 pounds the second year, and 3 pounds the third year up to a maximum of 5 to 6 pounds for a mature tree. Always adjust rates of fertilizer application according to annual shoot growth. Apply fertilizer in late winter or early spring before growth begins. Fertilizer should be broadcast on the soil surface around the drip line of the tree. The "drip line" is the circular line at the outer ends of the branches. Avoid getting fertilizer within 6 inches of the trunk as it could burn the tree.

Weed Control - Controlling weeds and grasses around young apple trees minimizes competition for soil nutrients and moisture, encourages vigorous tree growth, and increases fruit size. It will also help to minimize damage from pine and meadow voles, and other rodents. Keep all vegetation controlled out to the drip line of the tree where the outer branches end. Do not use weed whip; these will stir up the tree without any visible signs of injury. Avoid mechanical weed control, such as tilling, as it damages shallow tree roots. Herbicides are effective, but follow the label directions carefully and keep them off the tree. Mulch will also control weeds and conserve soil moisture, however rodents may burrow under the mulch and cause tree breakage and rot. When using mulch, place rodent guards around the base of the tree, and pull mulch back in the fall, leaving a 1-foot circle of bare soil surrounding the trunk.

Disease and Insect Control - Diseases and insects can cause serious damage to apple trees and fruit. Good sanitation practices are necessary to control pest problems. Cut all dead or diseased wood, remove dried apples, and, clean leaves and fallen debris away from trees. Disinfect pruning tools with a 10% solution of a household disinfectant (Lysol) or bleach, before and after use and between trees.

Household disinfectants, such as Lysol, will not corrode tools or ruin clothing. A regular spray program is essential for high fruit quality and healthy trees. Use a multipurpose fungicide and insecticide labeled for apples. These can be obtained from a garden center and will include application instructions. A spray to control fungus problems should be applied when the first sign of green tissue appears. A horticultural oil should also be sprayed on apple trees at the first sign of green growth in the spring to suffocate scale insects and reduce overwintering mite and aphid eggs. For homeowners with only few trees, premixed orchard sprays are available from many garden centers. Begin applications after full bloom is over and spray every 10 to 14 days throughout the summer.

If you think you have an insect or disease problem, contact your County Extension Center immediately. It is important to identify the pest accurately so an effective treatment can be selected.

Harvesting and Fruit Storage

Apples reach maturity at different times, depending on variety and climate. There is not a specific date at which you can expect to harvest your apples. Indeed, you can observe your apples as they grow and inspect the fruit for certain changes which indicate maturity. The "ground" or base skin color of the apples changes from green to yellow as the fruit matures. Flesh color also loses its greenish tint and turns yellow or white. When you are convinced that the apples look mature, take a bite! A mature fruit will be crisp and juicy. A pleasant taste is the final indicator of fruit maturity.

Proper storage conditions help prolong the shelf life of your apples. Store apples at 32°F and maintain high humidity. The crispier drawers of many refrigerators work well, but keep the fruit away from vegetables since ripening fruit gives off gases that may spoil vegetables. Apples can also be stored in plastic bags in the refrigerator to prevent fruit dehydration.

Always remember, "An apple a day..."

Published by
North Carolina Cooperative Extension Service

Distributed in furtherance of the Acts of Congress of May 8 and June 30, 1914. Employment and program opportunities are offered to all people regardless of race, color, national origin, sex, age, or disability. North Carolina State University at Raleigh, North Carolina and T State University, U.S. Department of Agriculture, and local governments cooperating.
Ensuring Continued Success

This section provides strategies for ensuring the long-term sustainability of your Schoolyard Habitats project.

- Creating a Maintenance Plan
- Creating a Field and Care Guide
- Monitoring Projects
- Parent Involvement
- Schoolyard Habitats Certification

CREATING A MAINTENANCE PLAN

Having a Schoolyard Habitats maintenance plan in place before summer break will help to ensure that this new habitat will be thriving when the school community returns to classes in the fall. The most critical time for a Schoolyard Habitats site is during its first year when newly planted trees, shrubs, and plants are becoming established. This means that extra care needs to be taken to ensure that plants receive the proper amount of water, that they are not mowed or accidentally pulled out, and that they are protected from pesticide spraying.

If a school is lucky enough to have a staff member in charge of grounds keeping, they may be able to assist with this task. However, do not assume that they will be willing or able to do this without asking and planning ahead. Arrangements for weekend care may still be needed.

Many schools devise a schedule for student/parent/community volunteers to help with habitat care at different weeks throughout the summer. Some schools promote an "Adopt Our Habitat" campaign within the community to request assistance. This requires someone to coordinate and remind volunteers, but may be an effective way to keep students, parents, and volunteers involved in the project.

Alternatively, if the school has summer classes, maintenance of the site may be a good outdoor project for one or more classes.

However, summer maintenance is provided, those involved must need training to understand what to do and what to observe when monitoring the health of the habitat.

Make sure those responsible for habitat maintenance during the summer:

- Know where to find and access supplies, equipment and water they will need
- Know the boundaries of the planting area so that it will not be mowed
- Can identify which plants are part of the habitat and which are weeds that should be removed
- Can identify insect pests (such as aphids) and know non-toxic methods to remove and deter them
- Can identify beneficial insects such as ladybird beetles (a.k.a. ladybugs), butterflies, and earthworms
- Have the number of a contact person to call if there are problems with the habitat
- Ask those maintaining the site to keep a log of when the habitat was cared for, new wildlife sightings, and to document any observational notes about problems with unhealthy plants or vandalism.

Engaging students in the Creating a Field and Care Guide (p. 64) activity is a great educational opportunity and will keep your maintenance volunteers or staff with an excellent resource to guide their efforts.
CREATING A MAINTENANCE PLAN

Considerations for creating your Schoolyard Habitats Maintenance Plan:

What are the watering needs of the trees, shrubs and plants in your habitat area?
Remember that regular watering is extremely important in the first few summers of your project as young plants struggle to set their roots in their new homes.

How often will the habitat site need to be weeded?
Keep in mind that your “weeding” schedule will help to ensure that invasive exoticspecies do not take over your project and that beneficial native plants have the opportunity to thrive and provide habitat for local and migratory wildlife.

How often will mulch need to be applied to the area?
Maintaining a two-to-three-inch layer of mulch around the plants in your site will help to lessen the number of weeds in the area and will increase moisture retention.

Do feeders need to be filled? Cleaned?
If you decide to leave out feeders for birds, remember to assign the task of keeping them filled and clean. Also keep in mind that any bird baths will need to be cleaned regularly, every couple of days in the summer months. These ideal conditions will attract a variety of birds and other wildlife to your project.

Remember to answer the following additional question in your maintenance plan:
Who? When? How often?
Monitoring Projects

Monitoring the health, behavior, population size, etc. of wildlife in the schoolyard is a meaningful way for students to act as scientists, collecting, recording, and analyzing data, while becoming keenly aware of the behavior of certain schoolyard species on a long-term basis. Over the years, this accumulated data will provide an excellent resource for future classes to assess the impact that schoolyard enhancements have had on local wildlife populations.

Many schools with streams and/or ponds on site also choose to engage students in on-going studies and monitoring of water quality over the years. Again, this provides both an excellent educational opportunity and a clear way to assess the effectiveness of efforts to restore local aquatic habitats.

Below are a number of resources to assist you with on-going schoolyard monitoring.

Butterflies
- Journey North
 www.journynorth.org
 Free on-line program throughout North America. Classrooms can track the spring migrations of various species. Students share information with other students and educators.
- Monarch Watch
 www.monarchwatch.org
 Based in the University of Minnesota, this project supports monarch monitoring and classroom instruction.

Birds
- Project FeederWatch
 www.projectfeederwatch.org
 Non-profit organization provides curriculum and resources for educators.
- North American Bluebird Society
 www.nabluebirdsociety.org
 This non-profit conservation, education and research organization, promotes the recovery of bluebirds and other native cavity-nesting bird species. Through the Transcontinental Bluebird Trail (TBT) program, students and school communities create nest box trails, monitor their boxes, and share information and data collected from their trails.

Monitoring Projects - Appendix - Attached Reference Materials

Section 3.3: Ensuring Continued Success
Greater Park Place: Community Gateway and Neighborhood Beautification
Stewardship Plan

K-8 ACTIVITY

Creating a Field and Care Guide

www.nwf.org

NATIONAL WILDLIFE FEDERATION

MONITORING PROJECTS | 158

Monitoring the health, behavior, population size, etc. of wildlife in the schoolyard is a meaningful way for students to act as scientists, collecting, recording, and analyzing data, while becoming keenly aware of the behavior of certain schoolyard species on a long-term basis. Over the years, this accumulated data will provide an excellent resource for future classes to assess the impact that schoolyard enhancements have had on local wildlife populations.

Many schools with streams and/or ponds on site also choose to engage students in on-going studies and monitoring of water quality over the years. Again, this provides both an excellent educational opportunity and a clear way to assess the effectiveness of efforts to restore local aquatic habitats.

Below are a number of resources to assist you with on-going schoolyard monitoring.

Butterflies
- Journey North
 www.journynorth.org
 Free on-line program throughout North America. Classrooms can track the spring migrations of various species. Students share information with other students and educators.
- Monarch Watch
 www.monarchwatch.org
 Based in the University of Minnesota, this project supports monarch monitoring and classroom instruction.

Birds
- Project FeederWatch
 www.projectfeederwatch.org
 Non-profit organization provides curriculum and resources for educators.
- North American Bluebird Society
 www.nabluebirdsociety.org
 This non-profit conservation, education and research organization, promotes the recovery of bluebirds and other native cavity-nesting bird species. Through the Transcontinental Bluebird Trail (TBT) program, students and school communities create nest box trails, monitor their boxes, and share information and data collected from their trails.

Monitoring Projects - Appendix - Attached Reference Materials

Section 3.3: Ensuring Continued Success
Greater Park Place: Community Gateway and Neighborhood Beautification
Stewardship Plan

K-8 ACTIVITY

Creating a Field and Care Guide

www.nwf.org

NATIONAL WILDLIFE FEDERATION

MONITORING PROJECTS | 158

Monitoring the health, behavior, population size, etc. of wildlife in the schoolyard is a meaningful way for students to act as scientists, collecting, recording, and analyzing data, while becoming keenly aware of the behavior of certain schoolyard species on a long-term basis. Over the years, this accumulated data will provide an excellent resource for future classes to assess the impact that schoolyard enhancements have had on local wildlife populations.

Many schools with streams and/or ponds on site also choose to engage students in on-going studies and monitoring of water quality over the years. Again, this provides both an excellent educational opportunity and a clear way to assess the effectiveness of efforts to restore local aquatic habitats.

Below are a number of resources to assist you with on-going schoolyard monitoring.

Butterflies
- Journey North
 www.journynorth.org
 Free on-line program throughout North America. Classrooms can track the spring migrations of various species. Students share information with other students and educators.
- Monarch Watch
 www.monarchwatch.org
 Based in the University of Minnesota, this project supports monarch monitoring and classroom instruction.

Birds
- Project FeederWatch
 www.projectfeederwatch.org
 Non-profit organization provides curriculum and resources for educators.
- North American Bluebird Society
 www.nabluebirdsociety.org
 This non-profit conservation, education and research organization, promotes the recovery of bluebirds and other native cavity-nesting bird species. Through the Transcontinental Bluebird Trail (TBT) program, students and school communities create nest box trails, monitor their boxes, and share information and data collected from their trails.

Monitoring Projects - Appendix - Attached Reference Materials

Section 3.3: Ensuring Continued Success
Greater Park Place: Community Gateway and Neighborhood Beautification
Stewardship Plan

K-8 ACTIVITY

Creating a Field and Care Guide

www.nwf.org

NATIONAL WILDLIFE FEDERATION

MONITORING PROJECTS | 158

Monitoring the health, behavior, population size, etc. of wildlife in the schoolyard is a meaningful way for students to act as scientists, collecting, recording, and analyzing data, while becoming keenly aware of the behavior of certain schoolyard species on a long-term basis. Over the years, this accumulated data will provide an excellent resource for future classes to assess the impact that schoolyard enhancements have had on local wildlife populations.

Many schools with streams and/or ponds on site also choose to engage students in on-going studies and monitoring of water quality over the years. Again, this provides both an excellent educational opportunity and a clear way to assess the effectiveness of efforts to restore local aquatic habitats.

Below are a number of resources to assist you with on-going schoolyard monitoring.

Butterflies
- Journey North
 www.journynorth.org
 Free on-line program throughout North America. Classrooms can track the spring migrations of various species. Students share information with other students and educators.
- Monarch Watch
 www.monarchwatch.org
 Based in the University of Minnesota, this project supports monarch monitoring and classroom instruction.

Birds
- Project FeederWatch
 www.projectfeederwatch.org
 Non-profit organization provides curriculum and resources for educators.
- North American Bluebird Society
 www.nabluebirdsociety.org
 This non-profit conservation, education and research organization, promotes the recovery of bluebirds and other native cavity-nesting bird species. Through the Transcontinental Bluebird Trail (TBT) program, students and school communities create nest box trails, monitor their boxes, and share information and data collected from their trails.
Amphibian and Reptile Resources

- A Thousand Friends of Frog Hamline University www.gp.hamline.edu/afrog/ Hamline’s Center for Global Environmental Education maintains this site. Contains information on many species related to the study of amphibians.
- Frogwatch USA www.frogwatch.org Contains information on participation in frog surveys.
- North American Amphibian Monitoring Project (NAAMP) www.tim.ubc.ca/amphib.html This site contains information on many amphibian declines, processes for cell surveys, and temporal surveys, as well as a teacher’s toolbox.

Mammal Monitoring Resources

- International Wolf Center www.wolfd.org The International Wolf Center allows you to track radio-collared wolves in Northern Minnesota through their site.

Water Monitoring Resources

- Adopt-a-Watershed www.Adopt-A-Watershed.org Provides resources, training and information for communities interested in both monitoring and monitoring the health of their local watersheds.

The GLOBE Program Manual (see above) includes a useful section on Hydrology, the study of water.

GREEN Global River Environmental Education Network www.earthliness.org/green/ This is a project that involves students in monitoring water quality and evaluating issues in their community.

- Mississippi Headwaters River Watch www.mississippibadwater.org/ This organization assists students and community members in monitoring waterways and shorelines along the Mississippi River and its tributaries.
- Save Our Streams www.carsonremantraes.org/ SOS educates citizen volunteers and community organizations to collect, monitor, and protect Maryland’s waterways. SOS addresses the root causes of water pollution by educating and supporting citizens to perform community projects to solve them. They also help to build bridges between community organizations, government and businesses.

Parent Involvement

In recent survey by the National Parent and Teacher’s Association, parents of public school students answered many questions about their level of involvement in their children’s schools. Their answers provide useful insights into successfully engaging parents in Schoolyard Habitats projects.

Ninety-one percent of parents surveyed agreed that it is “extremely important” for them to be involved in their children’s schools. However, not all parents are able to be as involved as they would like. The survey identified several key barriers to parental involvement, the most frequently noted of which is parents lack of availability during school hours. Several other barriers noted include inadequate communication between the school and parents, lack of transportation or childcare, parents uncertainty as to where in which they can contribute, and language and cultural differences, and parents feeling unwelcome and/or intimidated by their child’s school. The #1 response in answer to the questionnaire was that schools could improve their efforts to get parents involved was “more and better communication between schools and parents.”

What does this tell us in light of planning and carrying out Schoolyard Habitats projects? First, remember that most parents do want to be involved in their child’s education. Remove the barriers that frequently detract interested parents from volunteering and contributing to the life of the school. Regularly update the parent community about the status of the Schoolyard Habitats project. Many important tasks necessary for the success of Schoolyard Habitats projects can be accomplished in the late afternoons and on the weekends, which are more convenient times for parents working during school hours. Identify the skills needed at each stage of the project, and publicize these short- and long-term opportunities for volunteering and contributing. Think creatively when assessing the possibilities for parent contributions: for instance, a parent with bilingual skills who would be willing to translate your Schoolyard Habitats updates for non-English speaking parents? Which parent has the woodworking skills you are seeking to help build nest boxes? A survey of relevant parent skills and interests will help connect parents with appropriate projects.

Be proactive in identifying and removing barriers for parents. Consider: will providing an hour of childcare help more parents attend Habitat team meetings? Will providing bus passes help more parents participate in your upcoming weekend planting day? Parents understand that volunteering matters, let them know they are welcome, that they have valuable skills and knowledge to contribute, and that the school is willing to take extra steps to help them get involved. Keep communication with parents—and the entire school community—clear, accessible and consistent, and everyone will benefit.
We strongly encourage schools to certify their Schoolyard Habitats projects with the National Wildlife Federation. We want to hear about your project and give you the recognition you and your school community deserve. We look forward to receiving your application for certification as an official Schoolyard Habitats site, and to welcoming your school into our dynamic network of certified schools.

How do I know when I'm ready to certify my habitat project?

You are ready to certify after a team has been involved in planning and providing at least a few types of food, water, cover, and places to raise young on your schoolgrounds, and when the site is being used as a teaching tool.

What are the benefits of certifying?

Certifying your site will bring media attention and national recognition for your school community’s hard work. Also, once you are certified, you can enjoy the Schoolyard Habitats listserv and quarterly newsletter, and be eligible to order a Schoolyard Habitats sign for your outdoor classroom. Certification brings your school into a dynamic network of certified schools, and gives you access to special resources and information from the National Wildlife Federation.

How many other people have certified their schoolgrounds?

Over 3,000 schools, representing thousands of students, parents, teachers, administrators, and community members, are currently certified as official Schoolyard Habitats sites, representing 50 states and a few sites abroad.

How do I apply?

Simply fill out the application and mail it in to our office. Be sure to include photos, if available. (Applications can also be downloaded from our website at www.nwf.org/schoolyardhabitats). Within 4-8 weeks, you will hear from us regarding your certification. We look forward to learning about your project, and to welcoming you into the Schoolyard Habitats network.

Can I include photographs?

Yes! Please do. Photos help us learn more about your project; we can also inspire and educate others by posting photos of Schoolyard Habitats projects around the country on our website. We especially enjoy “before” and “after” photos, to get a better sense of your progress. A photo release form must accompany photos which include people’s faces. The form follows the SYH application in this manual (p. 164); feel free to copy as necessary, and submit these forms with your completed application and photographs.
Greater Park Place: Community Gateway and Neighborhood Beautification

Stewardship Plan

Section 3.3: Appendix - Attached Reference Materials

Ensuring Continued Success

Habitat Certification Application

Use this form to certify a wildlife-friendly space in your yard, school, or anywhere in your community. For answers to questions, we recommend reviewing our award-winning National Wildlife Federation® magazine, for questions about certificate deadlines, states, and tips for finding project ideas. If you have a question that isn’t addressed below, please call 1-800-822-9919 or certify online at www.nwf.org/certify.

<table>
<thead>
<tr>
<th>Name of Applicant</th>
<th>Organization (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name _____________</td>
<td>Organization ____________________</td>
</tr>
<tr>
<td>City ___________________</td>
<td>State/Province ______________</td>
</tr>
<tr>
<td>Mailing Address (if different from above) ____________________</td>
<td></td>
</tr>
<tr>
<td>Name(s) to Appear on Certificate (if different from above) __</td>
<td></td>
</tr>
</tbody>
</table>

Who Can Certify?

Any site can be recognized as a certified habitat, regardless of size. Whether it’s your backyard, a community garden, a schoolyard, a rooftop garden or a business, National Wildlife Federation® wants to recognize all efforts to restore habitats for wildlife.

How to Certify

Certifying a site is as simple as providing the four habitat components — food, water, cover, places to raise young — and practicing sustainable gardening techniques such as eliminating pesticides, conserving water and planting native species.

What is the size of your property?

- [] > 10 acres
- [] 5 - 10 acres
- [] > 10 acres
- [] > 1/4 - 1 acre
- [] 1/4 - 1 acre
- [] > 1/8 acre
- [] > 1/8 - 1/4 acre
- [] 1/8 - 1/4 acre
- [] < 1/8 acre

Why Certify?

Aside from offering wildlife a wonderful place to thrive, you’ll be eligible for the following benefits, including:

- A certificate for your wildlife habitat
- A subscription to the Habitats e-newsletter
- An optional press release for your local newspaper
- Inclusion in NWF’s National Registry of Habitats
- A book about how to create a wildlife habitat
- Access to the National Wildlife Federation® magazine
- A special offer from our partner

Resources You Can Use:

- [National Wildlife Federation®](http://www.nwf.org)
- [Habitats](http://www.nwf.org/habitats)
- [Garden for Wildlife](http://www.nwf.org/gardenforwildlife)

Habitat Certification Application

<table>
<thead>
<tr>
<th>Name of Applicant</th>
<th>Organization (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name _____________</td>
<td>Organization ____________________</td>
</tr>
<tr>
<td>City ___________________</td>
<td>State/Province ______________</td>
</tr>
<tr>
<td>Mailing Address (if different from above) ____________________</td>
<td></td>
</tr>
<tr>
<td>Name(s) to Appear on Certificate (if different from above) __</td>
<td></td>
</tr>
</tbody>
</table>

Who Can Certify?

Any site can be recognized as a certified habitat, regardless of size. Whether it’s your backyard, a community garden, a schoolyard, a rooftop garden or a business, National Wildlife Federation® wants to recognize all efforts to restore habitats for wildlife.

How to Certify

Certifying a site is as simple as providing the four habitat components — food, water, cover, places to raise young — and practicing sustainable gardening techniques such as eliminating pesticides, conserving water and planting native species.

What is the size of your property?

- [] > 10 acres
- [] 5 - 10 acres
- [] > 10 acres
- [] > 1/4 - 1 acre
- [] 1/4 - 1 acre
- [] > 1/8 acre
- [] > 1/8 - 1/4 acre
- [] 1/8 - 1/4 acre
- [] < 1/8 acre

Why Certify?

Aside from offering wildlife a wonderful place to thrive, you’ll be eligible for the following benefits, including:

- A certificate for your wildlife habitat
- A subscription to the Habitats e-newsletter
- An optional press release for your local newspaper
- Inclusion in NWF’s National Registry of Habitats
- A book about how to create a wildlife habitat
- Access to the National Wildlife Federation® magazine
- A special offer from our partner

Resources You Can Use:

- [National Wildlife Federation®](http://www.nwf.org)
- [Habitats](http://www.nwf.org/habitats)
- [Garden for Wildlife](http://www.nwf.org/gardenforwildlife)

Habitat Certification Application

<table>
<thead>
<tr>
<th>Name of Applicant</th>
<th>Organization (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name _____________</td>
<td>Organization ____________________</td>
</tr>
<tr>
<td>City ___________________</td>
<td>State/Province ______________</td>
</tr>
<tr>
<td>Mailing Address (if different from above) ____________________</td>
<td></td>
</tr>
<tr>
<td>Name(s) to Appear on Certificate (if different from above) __</td>
<td></td>
</tr>
</tbody>
</table>

Who Can Certify?

Any site can be recognized as a certified habitat, regardless of size. Whether it’s your backyard, a community garden, a schoolyard, a rooftop garden or a business, National Wildlife Federation® wants to recognize all efforts to restore habitats for wildlife.

How to Certify

Certifying a site is as simple as providing the four habitat components — food, water, cover, places to raise young — and practicing sustainable gardening techniques such as eliminating pesticides, conserving water and planting native species.

What is the size of your property?

- [] > 10 acres
- [] 5 - 10 acres
- [] > 10 acres
- [] > 1/4 - 1 acre
- [] 1/4 - 1 acre
- [] > 1/8 acre
- [] > 1/8 - 1/4 acre
- [] 1/8 - 1/4 acre
- [] < 1/8 acre

Why Certify?

Aside from offering wildlife a wonderful place to thrive, you’ll be eligible for the following benefits, including:

- A certificate for your wildlife habitat
- A subscription to the Habitats e-newsletter
- An optional press release for your local newspaper
- Inclusion in NWF’s National Registry of Habitats
- A book about how to create a wildlife habitat
- Access to the National Wildlife Federation® magazine
- A special offer from our partner

Resources You Can Use:

- [National Wildlife Federation®](http://www.nwf.org)
- [Habitats](http://www.nwf.org/habitats)
- [Garden for Wildlife](http://www.nwf.org/gardenforwildlife)
PLACES FOR COVER: Wildlife need places to find shelter from the weather and from predators. How do you provide cover for wildlife? (Minimum requirement: 2)

- Wooded Area
- Dense Shrub/Thicket
- Bramble Patch
- Evergreens
- Ground Cover
- Brush/Log Pile
- Rock Pile/Wall
- Caves
- Meadow/Prairie
- Burrow
- Cave
- Meadow/Prairie
- Roosting Box
- Water Garden/Pond

PLACES TO RAISE YOUNG: In order to provide complete habitat, you must provide places for wildlife to engage in courtship behavior and to mate, and then to bear and raise their young. How do you provide places to raise young for wildlife? (Minimum requirement: 2)

- Mature Trees
- Dead Trees/Snags
- Meadow/Prairie
- Dense Shrub/Thicket
- Nesting Box
- Water Garden/Pond
- Wetland
- Burrow
- Nest Plants for Caterpillars

SUSTAINABLE GARDENING PRACTICES: How you manage your garden or landscape can have an effect on the health of the soil, air, water and habitat for native wildlife as well as the human community. What sustainable gardening techniques do you employ to help conserve resources? (Minimum requirement: 2)

- Soil and Water Conservation:
 - Riparian Buffer
 - Capture Rain Water from Roof
 - Xeriscape (water-wise landscaping)
 - Drip or Soaker Hose for Irrigation
 - Wetland
 - Reduce Erosion (i.e. ground cover, terraces)
 - Use Mulch
 - Rain Garden

- Controlling Exotic Species:
 - Practice Integrated Pest Management
 - Remove Nonnative Plants & Animals
 - Use Native Plants
 - Reduce Lawn Areas
 - Organic Practices:
 - Eliminate Chemical Pesticides
 - Eliminate Chemical Fertilizers
 - Compost

PHOTO RELEASE

I understand that photographs are sometimes taken of Schoolyard Habitats® Program participants by participants, participants’ family members, and NWF staff. I hereby grant permission to National Wildlife Federation to use, copy, publish, and republish, in any form:

1. Any photograph(s) taken of myself or any minor of whom I am the parent or guardian, participating in the Schoolyard Habitats Program held on ____________________________ (day, month and year of the program), or
2. Any photograph(s) taken by myself that I voluntarily submit to the National Wildlife Federation. The submission of any photograph in support of a Schoolyard Habitats Program is not required for processing an application and I have voluntarily chosen to submit this (these) photograph(s).

I understand that such photographs may be used or published by NWF for purposes of advertising and promoting NWF’s Schoolyard Habitats program or for any other purpose that NWF deems appropriate, in any and all media including, but not limited to, printed and electronic media. Neither my name, nor the name of the minor(s), if applicable, shall be published in connection with NWF’s use of any photograph(s). I further understand that no payment will be made for NWF’s use of such photographs and that it is not possible for NWF to return any original photographs that I may send to NWF on my own initiative.

I/we will be participating in the National Wildlife Federation’s Schoolyard Habitats Program at:

__

I/we have read the above terms carefully and acknowledge my/our informed consent to its terms.

Participant __ Date ______________

(And Parent or Guardian, if participant is under 18)

To apply, please send:
- Completed application - REQUIRED
- $15 non-refundable application fee - REQUIRED

TO: NATIONAL WILDLIFE FEDERATION • P.O. Box 1583 • Merrifield, VA 22116-1583

Allow 4-6 weeks for processing. Please keep a copy of this application for your records.

www.nwf.org
How to Install and Maintain a Rain Barrel:
- Placing your rain barrel
- Connecting your downspout to your rain barrel
- Using rain barrel water
- Maintaining your rain barrel
- Preventing mosquitos

Placing your rain barrel

- Choose a downspout on your house or garage that is close to the plants and garden you water most. Your other downspouts can be disconnected and directed into your yard.
- Choose a downspout where your rain barrel’s overflow will soak into your own yard, and not your neighbors’ property.
- Place your rain barrel on a pervious (e.g. landscaped) surface that allows overflow from your rain barrel to soak into the ground. If placed on an impervious (e.g. paved) surface, rain barrel water overflow during heavy rains could pool or seep into your house or garage foundation. Make sure overflow does not go onto your neighbors’ property.
- You may want to place the rain barrel on concrete blocks if you are going to use a hose to direct water to your garden (gravity will help move the water), or if you want to fill up a watering can from the spigot (so the can fits underneath the spigot).

Connecting your downspout to your rain barrel

1. Place your barrel near the downspout you have selected, and plan out how you will direct the downspout.
2. Disconnect your downspout from the line leading to the storm drain or curb drain by sawing the downspout above where the top of the rain barrel will be, leaving room for the elbow to be attached.
3. Attach a downspout elbow to the end of your downspout so that water from your downspout is directed into the rain barrel through the plastic screen vent on top.
4. If you have an aluminum downspout, secure it to the elbow with screws.
5. If you have a PVC downspout, secure it to the elbow with PVC cement.
6. Place your rain barrel under the downspout elbow.
7. Optional: Attach a hose to the spigot, and/or to the overflow hole on the top-side of the barrel. Make sure that the overflow is directed into your own yard.

Using Rain Barrel Water

- Use the water collected in your rain barrel!
- Water your flowers, trees, shrubs, and lawn.
- Wash your car or pets. Rinse hands and feet, tools, or muddy boots.
- Keep your rain barrel lid on tight at all times to prevent children and animals from entering or falling in.
- **DO NOT DRINK WATER** from your rain barrel.
Maintaining your rain barrel

- Keep your rain barrel spigot closed when you are not using the water so that the rain barrel can collect water. Overflow water will spill from the black vent on the top and the overflow hole on the side near the top.
- Regularly check your gutters, downspouts, rain barrel water intake screen, rain barrel mosquito screen and rain barrel spigot for leaks, obstructions or debris.
- Keep your rain barrel lid sealed.
- Drain your rain barrel before temperatures drop below freezing.
- In the winter, keep your rain barrel spigot open so that water does not accumulate in the rain barrel and freeze. You can also turn it upside-down or bring it inside to ensure no water accumulates in the barrel.

Preventing Mosquitoes

Your rain barrel should be equipped with a mosquito-proof screen under the lid and inside the overflow hole to keep mosquitoes and other insects out.

- Place your barrel on a pervious (landscaped) surface, so that overflow water soaks into the ground instead of pooling on paved surfaces.
- Keep your rain barrel lid sealed.
- Keep your barrel free of organic material.
- During the rainy season, every 3-4 days use your hand to splash off any water that may collect on the top of the barrel. Mosquitoes need at least 4 days of standing water to develop as larva.
- If you believe mosquitoes are breeding in your rain barrel, empty your barrel completely. This will kill all mosquito larvae that may be in your barrel. If your mosquito netting is intact and there are no leaks where mosquitoes can enter the barrel, your rain barrel should be mosquito-free.

Controlling barrel overflow:

- Adjust your downspout so it is slightly above the barrel’s mesh screen. We recommend using an elbow and rest the downspout on the mesh. The downspout does not fit into the barrel or have a specific place on the barrel. Adjust it as you wish.
- For increased water pressure, elevate your barrel on a stand or bricks.
- Make sure that all hoses extending from the barrel are directed away from your foundation.
Maintenance and Rules

Playground safety extends far beyond planning and Build Day. Your team is responsible for setting guidelines for the ongoing TLC of your playspace, as well as setting some playground rules.

Playground rules

Creating a set of rules – preferably affirmative ones – is a crucial part of playground safety. Start with these rules and then encourage children to come up with their own! Consider making a sign of these rules.

- Wear proper footwear.
- Respect others.
- Take turns.
- Help children who are younger.
- Sit on the center of the swing and hold on with both hands.
- Go down slides feet first, sitting up, one person at a time.
- Check the bottom of the slide before you go down.
- Always watch out for others while climbing up and down.
- Dry off equipment after a rainstorm.
- When jumping or dropping, keep your knees bent and land on both feet.
- Stay seated on seesaws, and keep a firm hold with both hands.
- If you fall, try to roll.

Tips for supervisors

Use these simple tips to educate parents and guardians about their role in playspace safety.

- Become familiar with the age-appropriateness and proper usage of all playspace components. Don’t let children wear helmets on play equipment! This can cause dangerous head entrapment situations.
- Before playing, always check to see that the equipment and surfacing are free of dangerous debris. Postpone play if the area is wet or frozen.
- Formulate and maintain a consistent discipline strategy; e.g. what to do when a child misbehaves, or when two children fight.
- Keep children in your sight at all times; it’s best if you remain active, roaming around the equipment.
- In case of emergency, memorize the name and address of the playspace. Find out where the nearest phone is located.
- Learn the procedure for reporting injuries, accidents, and maintenance concerns to the playspace owner.

General maintenance guidelines

- **Daily/weekly inspections:** These informal checks can identify immediate damage due to weather, misuse or vandalism. It’s also an opportunity to remove litter and rake loose-fill safety surfacing. Teachers, parents, staff and children are all ideal candidates for these inspections.

- **Periodic bi-monthly inspections:** These comprehensive checks evaluate long-term wear and tear on the equipment. Your playground company should provide specific guidelines. These should be performed and documented by someone specifically responsible for facilities maintenance: a facilities director, staff at the school or park, or members of a volunteer maintenance group.

- **Annual inspections:** These formal audits, which evaluate the overall safety condition of the playspace, are best done by trained professionals. Your local parks and recreation department, insurance carriers, and the National Recreation and Park Association can generally provide a list of certified Playground Safety Inspectors (CPSIs) in your area. Annual inspections by a CPSI are mandatory in some states, so be sure to check your local regulations!

Ways to involve children in maintenance

Greater Park Place: Community Gateway and Neighborhood Beautification
Stewardship Plan

Section 3.3: Appendix - Stewardship Plan
Maintenance and Rules

Appendix - Attached Reference Materials
Section 3.3: Appendix - Attached Reference Materials

Maintenance and Rules

Avoiding damage and vandalism

It’s everyone’s worst nightmare—waking up one morning to find that your new playground has been damaged. Maintaining a beautiful neighborhood playground requires everyone’s participation to keep it clean and enjoyable. Here are some potential for damage—such as installing non- flammable engineered wood fiber, but ultimately it is up to the neighbors to protect it from happening in the first place. Install an engineered wood fiber to be used as a base for your playground. A quick way to become hazardous. Keep the area clean and free of trash. As the neighborhood is cleaned daily, before it becomes hazardous. Keep up the most basic rules. Make maintenance an habit. Have leaders set aside a day of the week to check on high-use areas for checking equipment. Make maintenance an habit. Have leaders set aside a day of the week to check on high-use areas for checking equipment. Make sure that all accessible rules are clear, and that the children are being supervised. Make sure that all accessible rules are clear, and that the children are being supervised. Make sure that all accessible rules are clear, and that the children are being supervised. Make sure that all accessible rules are clear, and that the children are being supervised.

Playground management: Questions to address

- How can we ensure that the playground is clean and safe?
- How can we ensure that the playground is accessible to all children?
- How can we ensure that the playground is well-maintained?
- How can we ensure that the playground is safe for all ages?
- How can we ensure that the playground is secure?

Community Design Assistance Center

College of Architecture + Urban Studies
Virginia Polytechnic Institute and State University
because she believed in something. And she was right.

Final tasks and evaluation

Thanks to your efforts, your community is now a better place for children and their families. Great work! You’ve shown people what can happen when citizens fight for positive change, and you’ve created a working model for future projects. To make sure that these seeds of change grow and blossom in the years ahead, we suggest taking a few simple steps toward maintaining your play space and its network of supporters:

1. Introduce children to their new play space.
 As the concrete sets on your new play space, kids will be eager to pounce on the new equipment. Make sure that the kids stay off the equipment until the concrete has had time to set—up to 72 hours in some cases. Safety fencing and caution tape provide a barrier during this time, but supervision is also essential. Swings, slides and climbers need no introduction, however, children may not understand the limits of their new play space. We’ve encouraged you to give safety and maintenance lessons throughout the project, and this is your last chance to reinforce rules and procedures before unsafe habits get under way. Work with your co-chair(s) and Children’s Team captain to schedule a special play space-orientation session that covers affirmative rules for the space, emergency procedures and simple daily maintenance. Then celebrate your success the right way... by playing.

2. Send thank-you letters.
 Can you think of people who deserve a special thank-you for their hard work and support? Let them know! By taking the time to recognize them and make them feel appreciated, you ensure that they’ll stay involved in your community in the future. For many people, the thrill of participating in a playspace build is the start of a lifelong commitment to service.

3. Evaluate your planning process.
 If you had to do it all over again, what would you do differently? What worked, and what flopped? Your experience will prove invaluable to community organizers down the road, so take the time to record your team’s thoughts. (You’ll find an evaluation form below.)

4. Contribute to a “Friends of the Playspace” group.
 Your co-chair(s) or fellow team captains may be interested in forming an ongoing group to support your new playspace. Safety Team members can contribute by implementing maintenance procedures, maintaining relationships with sponsors and volunteers, and teaching each new generation of playspace users about proper safety.

 The group will also need your safety expertise if and when they make plans to expand the playspace or enhance the site. Whatever future your playspace holds, safety will be an important part of it!

 Congratulations on completing your build! You’ve made a big difference in the lives of your community members.

Team evaluation

Name of Team Captain:

1. List the three most important objectives of your team.

2. Did your team achieve its planned goals and objectives? If not, why?

3. In what circumstances was your team especially effective?

4. In what circumstances was your team not so effective?

5. How much time would you guess an average team member spent on playspace planning per week?

6. Regarding your team, what would you do differently next time, and why?

7. What would you do exactly the same?

8. Additional comments:
STEP SEVEN: Create a Maintenance Plan

Schoolyard Habitat projects are generally lower maintenance landscapes if ecologically sound. Most maintenance involves controlling unwanted plants, maintaining structures, removing trash and preserving aesthetics. Choose how much you want to maintain, based on the availability of your team members’ time and the maintenance requirements of the different features. For example, if you have a two-acre woodland restoration with a trail, you might have a more intensive maintenance plan for the entrance to the trail than you do for the majority of the forest.

There are essentially two levels of care that every project needs. Short-term maintenance includes watering, mulching, borders, weeding and replanting. Long-term maintenance includes invasive non-native species removal, care of structures and other project features. All maintenance provides an opportunity to engage students in learning more about their natural environment.

Consider Short-term Maintenance

The first two years after installation are the most critical and labor-intensive time for maintenance. A maintenance plan for the first two years should include specific tasks and indicate who will be responsible for them. This is a good time to recruit new members to your team. Below are aspects to consider when creating your plan.

Watering

Watering is the most important short-term maintenance task. Plan to monitor the rainfall and augment with watering or irrigation when needed for at least the first two years of your project. This is especially important during hot, dry summer months when staff and students are not at school. Water sufficiently and deeply but not too often. Thorough watering promotes stronger root systems, enabling plants to find water on their own once established.

Your watering plan could involve as much as installing drip irrigation or a sprinkler system, or as little as laying a soaker hose or using a hose with a sprinkler attachment. Establish a watering schedule with advice from the nursery from which you acquired the plants. On average, a newly planted habitat needs one inch of water per week for the first one to two years.

Your school’s maintenance staff should be part of the team to ensure there is access to water, especially for the summer. Many schools require a special water key to operate outdoor spigots; these can be found in the plumbing section of your local hardware store. You may want to install a simple rain gauge at your project site to help monitor watering needs. Trees and shrubs need to be watered through the first two years. Many home and garden stores sell irrigation bags, often called tree gators, specifically for trees and shrubs. They can be filled with a hose once a week and provide a slow drip irrigation to the plant.

Mulching

Once plants are established, the need for mulch becomes obsolete. In many naturalized areas, the annual deadfall will act as natural mulch. If you choose to add mulch for aesthetic reasons, refer to the calculations in Step 4 to find out how much you will need. Keep in mind that too thick a layer of mulch will prevent moisture from reaching the ground.
Borders
One of the most common frustrations for a Schoolyard Habitat project occurs when it is accidently mowed. It is helpful to mark off the area of your project to let the maintenance team and visitors know the boundaries. To indicate the boundaries of your project, you can use fencing, edging or natural materials. Find out if the maintenance personnel changes in the summer so that all staff are aware of the project.

Weeding
To improve the wildlife habitat of your school grounds, it is imperative that you eliminate invasive non-native plants. Weeding your project can sometimes seem daunting, especially when native species are young and hard to recognize. Keep in mind that not every species that springs up into your project is unwanted. Some plants that are native to the area could colonize the project site. As long as the colonizing plants are not invasive, it is fine to leave them alone.

The problem occurs when invasive non-native species are found in your habitat. These species will take over and must be removed as quickly as possible. This website http://www.aphis.usda.gov provides a list of federally prohibited plants. You can cross reference any new plants you find with this list and other local native plant guides. It can also be helpful to have your planting map accessible during weeding.

Replanting
The survival rate of your plants will need to be evaluated in the first few months. Some plant loss can be expected. Replanting makes sense if the plant loss was caused by something unlikely to occur again such as an extreme weather event. If plant loss is more than 50%, evaluate the reason for the loss before replanting to maximize future success. The natural resource professional on your team can evaluate your site and offer suggestions for successful future plantings.

Consider Long-term Maintenance
For as long as the property remains a Schoolyard Habitat, some level of maintenance must be done.

Invasive Non-Native Species Removal
The best method for keeping invasive plants out of your project area is early detection and immediate removal. Common control methods include hand pulling, moving, chemical spraying or solarizing. Your invasive non-native species maintenance plan will depend on the specific invasive plant, the size of the patch and the amount of surrounding native vegetation. Contact your local master gardeners' group or county extension office to find a weed control specialist to help with assessment and treatment options.

Maintenance tips for invasive non-natives:
- Create a “Most Unwanted” species list with identification features of the plants to help know which plants to remove.
- For most weeds, hand pulling is enough. Be sure to remove the entire plant both above and below the ground prior to the plant going to seed.
- Chemical methods for removing invasive non-native plants include a broadcast spray which will kill all plants in a large area or spot treatment which is applied to a specific problem plant only. Most school systems have protocols and licensed personnel for herbicide applications.
- If your project site has become overgrown with unwanted plants, you may want to tag species worth saving and have volunteers weed around the base of these plants to allow room for growth.

Structures and other features
Check feeders, bird baths, water pumps, artificial structures, benches and signs to make sure mechanisms are functioning properly and vandalism has not compromised the integrity of the feature. With vandalism, trash and other issues, constant vigilance keeps an area looking good. The best way to decrease the likelihood that the site will be vandalized is to increase the support and participation of the students and community. Creating a sense of shared ownership and responsibility will provide multiple benefits for the project.
Sample Maintenance Plans

Exact timing and specific tasks will be determined by your project type and location. Below you will find some sample maintenance plans to help figure out your annual maintenance needs and help delineate the roles of each member of the Schoolyard Habitat Team once the project is in the ground.

In this sample, the responsible party is ensuring that the task will be completed, the assisting party will help complete the task and the consulting party would be part of any decision making regarding that task.

<table>
<thead>
<tr>
<th>Category</th>
<th>Tasks</th>
<th>Responsible</th>
<th>Assist</th>
<th>Consult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Monitor weekly rainfall</td>
<td>Mrs. Jones’s 6th grade class and Mrs. Hogan’s Summer Habitat Scouts</td>
<td>PTA members</td>
<td>Maintenance supervisor and Assistant Principal</td>
</tr>
<tr>
<td></td>
<td>Monthly check irrigation equipment including timers and hoses</td>
<td>Maintenance supervisor</td>
<td>Assistant Principal</td>
<td>Schoolyard Habitat Team</td>
</tr>
<tr>
<td>Plants</td>
<td>Monthly monitoring and removal of invasive non-natives</td>
<td>Mrs. Jones’s 6th grade class and Mrs. Hogan’s Summer Habitat Scouts</td>
<td>Schoolyard Habitat Team</td>
<td>Maintenance supervisor and Assistant Principal</td>
</tr>
<tr>
<td></td>
<td>Every spring new trees are planted to replace any mortality from previous year</td>
<td>Mr. Casey’s 8th grade class</td>
<td>Schoolyard Habitat Team</td>
<td>Maintenance supervisor and Assistant Principal</td>
</tr>
<tr>
<td>Structure</td>
<td>Monthly monitoring and reporting of any vandalism in the area</td>
<td>Schoolyard Habitat Team</td>
<td>PTA members</td>
<td>Assistant Principal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Tasks</th>
<th>Responsible</th>
<th>Assist</th>
<th>Consult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants</td>
<td>Monthly monitoring and removal of invasive non-natives</td>
<td>Mrs. Jones’s 6th grade class and Mrs. Hogan’s Summer Habitat Scouts</td>
<td>Schoolyard Habitat Team</td>
<td>Maintenance supervisor and Assistant Principal</td>
</tr>
<tr>
<td>Structure</td>
<td>Renovate, signs and fence are repaired as needed</td>
<td>Maintenance supervisor</td>
<td>Assistant Principal</td>
<td>Schoolyard Habitat Team</td>
</tr>
<tr>
<td>Trailside mulch and trail maps are in stock</td>
<td>Mrs. Hogan’s Summer Habitat Scouts</td>
<td>Schoolyard Habitat Team</td>
<td>Assistant Principal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Tasks</th>
<th>Responsible</th>
<th>Assist</th>
<th>Consult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants</td>
<td>Monthly monitoring and removal of invasive non-natives</td>
<td>Mrs. Jones’s 6th grade class and Mrs. Hogan’s Summer Habitat Scouts</td>
<td>Schoolyard Habitat Team</td>
<td>Maintenance supervisor and Assistant Principal</td>
</tr>
<tr>
<td>Structure</td>
<td>Renovate, signs and fence are repaired as needed</td>
<td>Maintenance supervisor</td>
<td>Assistant Principal</td>
<td>Schoolyard Habitat Team</td>
</tr>
<tr>
<td>Trailside mulch and trail maps are in stock</td>
<td>Mrs. Hogan’s Summer Habitat Scouts</td>
<td>Schoolyard Habitat Team</td>
<td>Assistant Principal</td>
<td></td>
</tr>
</tbody>
</table>

In this sample, maintenance needs are laid out by time of year. Short-term needs should be completed for the first two years, and long-term needs extend through the life of the project.

<table>
<thead>
<tr>
<th>SHORT-TERM</th>
<th>MONTH</th>
<th>LONG-TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water as necessary</td>
<td>January</td>
<td>Clear out nest boxes.</td>
</tr>
<tr>
<td>Water as necessary</td>
<td>February</td>
<td></td>
</tr>
<tr>
<td>Weed, remove invasive species</td>
<td>March</td>
<td>Monitor and remove invasive species.</td>
</tr>
<tr>
<td>Monitor species survival rates</td>
<td>April</td>
<td></td>
</tr>
<tr>
<td>Weed and add mulch if needed</td>
<td>May</td>
<td></td>
</tr>
<tr>
<td>Water as necessary</td>
<td>June</td>
<td></td>
</tr>
<tr>
<td>Water as necessary</td>
<td>July</td>
<td>Monitor for drought.</td>
</tr>
<tr>
<td>Water as necessary</td>
<td>August</td>
<td></td>
</tr>
<tr>
<td>Weed and remove invasive species</td>
<td>September</td>
<td>Monitor and remove invasive species.</td>
</tr>
<tr>
<td>Monitor species survival rates and prepare for additional planting if necessary</td>
<td>October</td>
<td></td>
</tr>
<tr>
<td>Water as necessary</td>
<td>November</td>
<td>Mow half of meadow.</td>
</tr>
<tr>
<td>Water as necessary</td>
<td>December</td>
<td></td>
</tr>
</tbody>
</table>
Watering Issues for Native Plants

Newly planted trees and shrubs will need summer watering until they become established (approx. three years). Wildflowers usually need watering for the first year to develop a good root system. On-going watering after these time periods will depend on the suitability of the vegetation for your site. Consult with your local advisor or tree nursery for recommendations re: how much watering your trees need (i.e. slow trickle for three hours two times per week).

Even established plants may need assistance during periods of extreme drought.

5. Weed control strategy (mulching and hand weeding)—Mulching will also keep weeds to a minimum. However, make sure you have a work schedule to hand pull any weeds before they spread. If you keep on top of it, weeding is quick and easy.

6. Replacing damaged plants—If you can keep your project in good shape, people will tend to show it more respect than if it looks beat-up and damaged. Replace or remove any damaged plant material right away.

7. Maintaining trails—Another way of avoiding possible damage. Keep paths clear and well marked so people will use them - not make new ones! If new paths develop indicating a usage pattern, consider making the path a permanent one.

8. Mulching, trimming and pruning—Scheduling these activities will keep your plants healthy and protected. Mulch in the spring, prune in February and trim when the tree or shrub is not in a transitional period (i.e. transition periods are early spring and late fall).

9. On-going general clean-up—if you want others to show your project respect, lead by example. Provide garbage bins and empty regularly. Keep litter picked up. Maintain signage, seating and fencing.

10. Plan an annual spring cleanup and garden closing in the fall. This makes good use of available student power. In the fall, don’t forget to drain your hoses.

11. Seed collection—Collected native plants and heritage vegetable seeds can be scattered in different areas or packaged and sold as a fundraiser. They can also be shared with the community through the North American Native Plant Society seed exchange program (www.nanps.org) or Seeds of Diversity (www.seedsofdiversity.ca).

12. Ease of maintenance—Trees and shrubs are easier to maintain than wildflowers. Wildflowers will always need more maintenance.

WHAT TO DO DURING THE SUMMER MONTHS

It may seem a little early to be worrying about summer maintenance plans, but figuring out who is available for watering and regular upkeep now, will save you from last minute scrambling later.

- Make sure maintenance teams have access to an outdoor tap, which may require a special key. Arrange for the key to be kept in a central location.
- Organize student volunteers to water and maintain the area for one-week periods during the summer.
summer. Reward their time with a share of fruits, vegetables or flowers at harvest time. Be sure to have this organized by mid May.

During the summer, there are few people to do the work but the demands are greatest in terms of watering and weeding. Here are some creative solutions:

- Have a get-together BBQ in September for those who helped.
- Ask neighbours and community groups i.e. Guides and Scouts for a helping hand.
- Invite a local gardening or conservation organization to donate some time and energy.
- Coordinate with summer school/recreation programs to incorporate use and maintenance into their programs.
- Organize work parties. This is a fun way to share the load.
- Hire a student. Fundraising and matching government grants can assist with hiring a part-time student to weed and water.
- Some schools recognize planting volunteers with a native wildflower to grow at home. This recognizes their contribution and creates a seed bank in the community for natural regeneration and backup should you have a crop failure.
- Enlist the help of school teams or clubs to come out and volunteer their time each year.

A maintenance log will help keep track of what was done and provide suggestions for the next round of maintenance.

Caretakers and office staff may be willing to help with summer watering.

Small areas can be assigned to individuals or small teams who can come at a time that suits them.

All Hands in the Dirt p. 34

has a year round calendar called A Year in the Outdoor Classroom. Use this as a guide for each season to get the most out of your project.
Common Plants and Their Toxicity

The following list covers common plants often encountered and questioned for toxicity. Plants are listed alphabetically by common name, followed by botanical names. Match the number following each plant with the toxicity rating descriptions below. If you have any questions or a plant is not included on this list, please call the Poison Center at 1-800-876-4766 or 1-800-8-POISON.

Note: In general, plants considered poisonous to humans are considered poisonous to animals. However, in some cases animals have been poisoned by plants considered safe for humans. Even if a plant is listed as having major toxicity, a very small amount ingested may not result in symptoms. Call the poison center before initiating any treatment. A plant listed as being non-toxic may still cause problems: if a child bites off a piece of the plant and it sticks to the throat, choking or gagging may result.

1. **Non-toxic**: Either these plants have proven non–poisonous or there is no record of a toxic exposure. Exposure to these plants is not expected to cause any symptoms.
2. **Oxalates**: The juice or sap of these plants contains oxalate crystals. Chewing these plants may cause pain and irritation of the mouth, lips, and tongue. Swelling of the throat may cause breathing difficulties.
3. **Minor toxicity**: Ingestion may cause some minor symptoms such as vomiting or diarrhea. Ingestions of small amounts may not cause any symptoms at all.
4. **Major toxicity**: Ingestion of these plants, especially in large amounts, is expected to cause serious effects to major organs such as the heart, liver or kidneys. If these plants are ingested call the Poison Control Center immediately.
5. **Dermatitis**: Exposure to juice or sap from the plant or a puncture wound from the thorns may produce skin irritation or rash. Skin wounds from some plants can be extremely painful.
6. **Possibly toxic**: Although information about these plants is incomplete, ingestion of small amounts would not be expected to cause serious problems.
7. **Animal toxicity**: These plants are known to have caused problems in animals.
<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Toxicity Level</th>
<th>Toxicity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>African Violet Sintapaula</td>
<td>1</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>Agapanthus</td>
<td>3, 5</td>
<td>Oxalates</td>
</tr>
<tr>
<td>Agapanthus, Pink Nerine bowdeni</td>
<td>3, 7</td>
<td>Minor Toxicity</td>
</tr>
<tr>
<td>Aloe Vera</td>
<td>1</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>Aluminum Plant Pilea cadierei</td>
<td>1</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>Alyssum</td>
<td>1</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>Amaryllis belladonna</td>
<td>3, 7</td>
<td>Major Toxicity</td>
</tr>
<tr>
<td>Apple Tree Malus species</td>
<td>4, 7</td>
<td>Major Toxicity</td>
</tr>
<tr>
<td>Apricot Tree Prunus armeniaca</td>
<td>4, 7</td>
<td>Major Toxicity</td>
</tr>
<tr>
<td>Arrowhead Vine Syngonium podophyllum</td>
<td>2</td>
<td>Oxalates</td>
</tr>
<tr>
<td>Asparagus Fern Asparagus setaeus or sprengeri</td>
<td>1</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>Azalea Rhododendron occidentale</td>
<td>6, 7</td>
<td>Major Toxicity</td>
</tr>
<tr>
<td>Baby Tears Helxine soleirolii</td>
<td>1</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>Baby's Breath Gypsophyta</td>
<td>1</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>Bachelor Buttons Centaurea cyanus</td>
<td>1</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>Begonia Begonia species</td>
<td>2</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>Birch Tree Betula species</td>
<td>3, 5</td>
<td>Oxalates</td>
</tr>
<tr>
<td>Bird of Paradise Stelitzia reginae</td>
<td>6</td>
<td>Poison Oak</td>
</tr>
<tr>
<td>Bird's Nest Fern Asplenium nidus</td>
<td>1</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>Black Acacia Robinia pseudacacia</td>
<td>4, 7</td>
<td>Major Toxicity</td>
</tr>
<tr>
<td>Black Locust Robinia pseudacacia</td>
<td>4, 7</td>
<td>Major Toxicity</td>
</tr>
<tr>
<td>Boston Fern Nephrolepis exaltata</td>
<td>1</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>Bottle Brush Callistemon species</td>
<td>1</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>Bougainvillaea</td>
<td>1</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>Boxwood Buxus sempervirens</td>
<td>3, 5</td>
<td>Oxalates</td>
</tr>
<tr>
<td>Cactus</td>
<td>1, 5</td>
<td>Poison Oak</td>
</tr>
<tr>
<td>Caladium Caladium species</td>
<td>2, 5</td>
<td>Poison Oak</td>
</tr>
<tr>
<td>Calendula officinalis</td>
<td>1</td>
<td>Poison Oak</td>
</tr>
<tr>
<td>California Poppy Eschschodzia californica</td>
<td>6</td>
<td>Poison Oak</td>
</tr>
<tr>
<td>Calla Lily Calla palustris</td>
<td>2</td>
<td>Poison Oak</td>
</tr>
<tr>
<td>Camellia Thea japonica</td>
<td>1</td>
<td>Poison Oak</td>
</tr>
<tr>
<td>Camphor Tree Cinnamomum camphora</td>
<td>4</td>
<td>Poison Oak</td>
</tr>
<tr>
<td>Canna Lily Canna generalis</td>
<td>1</td>
<td>Poison Oak</td>
</tr>
</tbody>
</table>

1=Non-toxic 2=Oxalates 3=Minor Toxicity 4=Major Toxicity 5=Dematitis 6=Possibly Toxic 7=Animal Toxicity
<table>
<thead>
<tr>
<th>Common Plants and Their Toxicity - UC Davis Medical Center Regional Poison Control Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnation Dianthus caryophyllus</td>
</tr>
<tr>
<td>Carolina Jasmine Gelsemium</td>
</tr>
<tr>
<td>Castor Beans Ricinus communis</td>
</tr>
<tr>
<td>Catalpa Speciosa</td>
</tr>
<tr>
<td>Catnip Nepeta catia</td>
</tr>
<tr>
<td>Cedar Thuja species</td>
</tr>
<tr>
<td>Century Plant Agave</td>
</tr>
<tr>
<td>Cherry Tree Prunus</td>
</tr>
<tr>
<td>China Berry Mela azedarach</td>
</tr>
<tr>
<td>China Doll Lea coccinea</td>
</tr>
<tr>
<td>Radarachera pentandra</td>
</tr>
<tr>
<td>Chinese Evergreen Aglaonema modestum</td>
</tr>
<tr>
<td>Christmas Cactus Zygocatus truncates or Schlumbergera bridgesii</td>
</tr>
<tr>
<td>Chrysanthemum Species</td>
</tr>
<tr>
<td>Coffee Tree Plant Polyscia guilfoylei</td>
</tr>
<tr>
<td>Coleus Species</td>
</tr>
<tr>
<td>Coreopsis</td>
</tr>
<tr>
<td>Corn Plant Daceana fragrans massangeanae Cosmos</td>
</tr>
<tr>
<td>Coloreaster</td>
</tr>
<tr>
<td>Grape Myrtle Lagerstroemia indica</td>
</tr>
<tr>
<td>Creeping Charlie Glcacheso hederacea</td>
</tr>
<tr>
<td>Creeping Charlie Lysimachia nummularia</td>
</tr>
<tr>
<td>Creeping Charlie Pennumlaffolia</td>
</tr>
<tr>
<td>Creeping Fig Ficus pumilia</td>
</tr>
<tr>
<td>Crocus Species (Spring blooming only)</td>
</tr>
<tr>
<td>Crown of Thorns Euphoria mill</td>
</tr>
<tr>
<td>Cyclamen</td>
</tr>
<tr>
<td>Daffodil Narcissus</td>
</tr>
<tr>
<td>Dahlia Species</td>
</tr>
<tr>
<td>Daisy Chrysanthemum</td>
</tr>
<tr>
<td>Dandellion Taraxacum officinalis</td>
</tr>
<tr>
<td>Daphne</td>
</tr>
<tr>
<td>Delphinium Species</td>
</tr>
<tr>
<td>Devil's Ivy Epipremennum aureum</td>
</tr>
<tr>
<td>Dieffenbachia Species</td>
</tr>
<tr>
<td>Donkey Tail Sedum morganianum</td>
</tr>
</tbody>
</table>

1=Non-toxic 2=Oxalates 3=Minor Toxicity 4=Major Toxicity 5=Dematitis 6=Possibly Toxic 7=Animal Toxicity

Section 3.3: Appendix - Attached Reference Materials

Common Plants and Their Toxicity

Greater Park Place: Community Gateway and Neighborhood Beautification Stewardship Plan

Community Design Assistance Center

Vining Polychade Culture and the Future

81
Common Plants and Their Toxicity

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Toxicity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dracaena Species</td>
<td>1, 7 Schefflera Brassaia actinophylla 2, 5, 7</td>
</tr>
<tr>
<td>Dumbcane Dieffenbachia amoena</td>
<td>2 Sedum 1</td>
</tr>
<tr>
<td>Elderberry Sambucus</td>
<td>4, 7 Sensitive Plant Mimosa pudica 1</td>
</tr>
<tr>
<td>Elm Tree Ulmus species</td>
<td>5 Silk Tree Albizia 1</td>
</tr>
<tr>
<td>Emerald Ripple Peperomia caperata</td>
<td>1 Snake Plant Sansevieria trifasciata 3</td>
</tr>
<tr>
<td>English Ivy Hedera helix</td>
<td>4, 5 Snap Dragon Antirrhinum species 1</td>
</tr>
<tr>
<td>Escallonia</td>
<td>1 Snowberry Symphoricarpos racemosus 3</td>
</tr>
<tr>
<td>Eucalyptus globulus Species</td>
<td>3 Spathiphyllum 2</td>
</tr>
<tr>
<td>Euonymus</td>
<td>4 Spider Plant Chlorophytum comosum 1</td>
</tr>
<tr>
<td>False Aralia</td>
<td>Split Leaf Philodendron Monstera deliciosa 2, 5</td>
</tr>
<tr>
<td>Dizygotheca elegantissima</td>
<td>1 Spruce Tree Picea species 6, 7</td>
</tr>
<tr>
<td>Ficus Benjamin</td>
<td>5 Star Jasmine Trachelospermum jasminoides 1</td>
</tr>
<tr>
<td>Fiddleleaf Fig Ficus lyrata</td>
<td>5 Stephanotis 1</td>
</tr>
<tr>
<td>Fir Abies or pseudotsuga</td>
<td>1 String of Hearts Crepegia woodii 1</td>
</tr>
<tr>
<td>Forget-me-nots</td>
<td>1 String of Pearls Senecio rowleyanus or herreianus 4</td>
</tr>
<tr>
<td>Four-o'clocks Misablis jalia</td>
<td>4, 5 Swedish Ivy Plectranthus australis 1</td>
</tr>
<tr>
<td>Foxglove Digitalis purpurea</td>
<td>4 Sweet Pea Lathyrus odoratus 3, 7</td>
</tr>
<tr>
<td>Fuchsia Species</td>
<td>1 Sweet William Dianthus barbatus 3</td>
</tr>
<tr>
<td>Gardenia jasminoides</td>
<td>1 Ti Plant Cordyline terminalis 1</td>
</tr>
<tr>
<td>Geranium Pelargonium</td>
<td>5 Toyon Phytolium arbutifolia 4</td>
</tr>
<tr>
<td>Geranium, California Senecio petasitis</td>
<td>4 Tulp Tulipa 5</td>
</tr>
<tr>
<td>Gladiola</td>
<td>3, 5 Umbrella Plant Cyperus alternifolius 3</td>
</tr>
<tr>
<td>Gloxinia Sinningia Speciosa</td>
<td>1 Umbrella Tree Schefflera actinophylla 2, 5</td>
</tr>
<tr>
<td>Grape Ivy Cissus rhombifolia</td>
<td>1 Verbena Species 5</td>
</tr>
<tr>
<td>Grevillea Species</td>
<td>1, 5 Viburnum Species 1</td>
</tr>
<tr>
<td>Heavenly Bamboo Nandina domestics</td>
<td>6, 7 Vinca Species 4</td>
</tr>
<tr>
<td>Hen and Chicks Sempervivum tectorum</td>
<td>1 Violas Species 3</td>
</tr>
<tr>
<td>Hibiscus</td>
<td>1 Virginia Creeper Parthenocissus quinquefolia 2</td>
</tr>
<tr>
<td>Holly lix</td>
<td>3 Walnut Tree Black Juglans nigra 5</td>
</tr>
<tr>
<td>Honeysuckle Lonicera</td>
<td>6 Wandering Jew Tradescantia albiflora 5</td>
</tr>
<tr>
<td>Hoya Wax plant</td>
<td>1 Wandering Jew, Red or White Zebrina pendula 1</td>
</tr>
<tr>
<td>Hyacinth Hyacinthus orientalis</td>
<td>3, 5, 7 Wax Plant Hoya comosa 1</td>
</tr>
<tr>
<td>Hydrangea Species</td>
<td>3 Weeping Fig Ficus benjamina 5</td>
</tr>
<tr>
<td>Ice Plant Agenia cordifolia or Lampranthus</td>
<td>1 Wisteria 4</td>
</tr>
<tr>
<td>Impatiens</td>
<td>1 Xylosma 1</td>
</tr>
<tr>
<td>Indian Hawthorn Raphiolepis Indica</td>
<td>1 Yellow jessamine Gelsemium 4, 5</td>
</tr>
</tbody>
</table>

1=Non-toxic 2=Oxalates 3=Minor Toxicity 4=Major Toxicity 5=Dematitis 6=Possibly Toxic 7=Animal Toxicity
<table>
<thead>
<tr>
<th>Common Plants and Their Toxicity - UC Davis Medical Center Regional Poison Control Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian Laurel Ficus nitida</td>
</tr>
<tr>
<td>Iris</td>
</tr>
<tr>
<td>Ivy Hederacea</td>
</tr>
<tr>
<td>Jack in the Pulpit Arisaema triphyllum</td>
</tr>
</tbody>
</table>

1=Non-toxic 2=Oxalates 3=Minor Toxicity 4=Major Toxicity 5=Dematitis 6=Possibly Toxic 7=Animal Toxicity
Poisonous Plants in the Landscape
Robert R. Westerfield and Gary L. Wade, Extension Horticulturists

While most of us are familiar with common poisonous plants that cause dermatitis (skin irritations) such as Poison Ivy or Poison Oak, we fail to recognize common ornamental plants in the landscape that may cause internal poisoning when ingested. Although most adults would not intentionally eat the leaves or fruit of ornamental plants in the landscape, young children or pets sometimes do.

The purpose of this publication is to familiarize you with some of the common landscape plants known to have poisonous properties when ingested. You may be surprised to learn just how many of our common plants, such as azaleas, hydrangeas, boxwood and English ivy, are known to have poisonous properties.

Please note, however, that the term “POISONOUS” used in this publication does not imply that the plant is fatal. Some plants may be only mildly toxic and may cause stomach ache or mild irritation of the mouth and throat when ingested. There are also a number of variables that determine how severe the poisoning symptoms may be, such as the age, weight and health status of a person in relationship to the quantity of the plant ingested as well as the form that the plant was in at the time of ingestion (i.e. cooked versus raw, ripe fruit versus unripe fruit, etc.).

It is not the intent of this publication to discourage you from planting any of the plants on the list, but to make you aware of their potential hazard when used in landscapes frequented by young children, domestic animals or mentally challenged adults. As the saying goes “an ounce of prevention is worth a pound of cure.” Prevention is the best medicine to prevent toxic plant poisoning.

Internal poisons are a group of chemically different substances that, when ingested:
- Act on the brain causing narcotic reactions and other mental disturbances.
- Affect the spinal cord resulting in paralysis and convulsions.
- Act as heart depressants and stimulants.
- Irritate the digestive tract and nervous system.

To help prevent plant poisonings, follow these safety tips:
- Know the names of all the plants in your landscape. If you need help identifying a plant, take a piece of it to a nursery, florist or your county extension agent.
- Label all of your plants with their names so you can identify a plant that has been eaten.
- Keep plants, seeds, and bulbs out of the reach and sight of children and pets.
- Do not eat wild plants or mushrooms. Cooking poisonous plants does not make them safe to eat.
- Do not consume mushrooms growing in your landscape.
- Keep weed and insect killers in a locked cabinet, out of the reach of children and pets. Never put them in bottles used for drinking.
- Keep children and pets away from lawns newly sprayed with garden chemicals.
- Teach your children to never put any part of a plant into their mouths.
What to Do in a Poison Emergency

In the event of a poison emergency call the Georgia Poison Center. Keep the number near your telephone.

Call 24-Hours a Day, 7 Days a Week:
In Metro Atlanta Call: 404-616-9000
Outside Metro Atlanta Call: 1-800-282-5846
Teletype for the deaf and hearing impaired only: TDD 404-616-2987

If a poisoning occurs and the person is having trouble breathing, experiencing seizures, or will not wake up, CALL 911 (or your local emergency number) immediately.

Be prepared to give:

1. the attending physician the name of plant, if known, or description (save uneaten parts).
2. how long ago it was eaten.
3. how much and which parts were eaten.
4. age of individual.
5. symptoms.

If hospitalization is required, take a portion of the suspect plant with you for positive identification.

The attached table lists common ornamental plants known to be toxic when ingested. While this is not a complete list, it contains many plants commonly found in home landscapes in Georgia.

Ornamental plants reported to be toxic when ingested by humans

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Botanical Name</th>
<th>Toxic Plant Part</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air potato</td>
<td>Dioscorea bulbifera</td>
<td>raw fruit</td>
<td>abdominal pain, nausea</td>
</tr>
<tr>
<td>Algerian Ivy**</td>
<td>Hedera canariensis</td>
<td>all parts</td>
<td>diarrhea, nervousness, labored respiration, convulsions</td>
</tr>
<tr>
<td>Allamanda</td>
<td>Allamanda spp.</td>
<td>all parts</td>
<td>nausea, high temperature, dryness of the mouth</td>
</tr>
<tr>
<td>Amaryllis</td>
<td>Amaryllis spp.</td>
<td>bulbs and seeds</td>
<td>gastrointestinal problems, vomiting, diarrhea</td>
</tr>
<tr>
<td>American Arborvitae**</td>
<td>Thuja occidentalis</td>
<td>leaves</td>
<td>low blood pressure, convulsions</td>
</tr>
<tr>
<td>Angel’s Trumpet**</td>
<td>Datura spp.</td>
<td>all parts</td>
<td>blurring of vision, delirium</td>
</tr>
<tr>
<td>Anise-tree**</td>
<td>Illicium floridanum, Illicium anisatum</td>
<td>leaves</td>
<td>abdominal pain, vomiting, convulsions, death</td>
</tr>
<tr>
<td>Azalea</td>
<td>Rhododendron spp.</td>
<td>all parts</td>
<td>nausea, vomiting, weakness, dizziness, breathing difficulty, coma</td>
</tr>
<tr>
<td>Barberry</td>
<td>Berberis spp.</td>
<td>all parts</td>
<td>depressant action on the heart muscle</td>
</tr>
<tr>
<td>Black Locust</td>
<td>Robinia pseudoacacia</td>
<td>bark, seeds</td>
<td>nausea, weakness, depression</td>
</tr>
<tr>
<td>Boxwood</td>
<td>Buxus sempervirens</td>
<td>leaves</td>
<td>gastric, vomiting</td>
</tr>
<tr>
<td>Buckeye</td>
<td>Aesculus spp.</td>
<td>all parts</td>
<td>digestive irritant, nausea, vomiting</td>
</tr>
<tr>
<td>Calla-lily</td>
<td>Zantedeschia spp.</td>
<td>all parts</td>
<td>burning and inflammation of the mouth and throat</td>
</tr>
<tr>
<td>Castor bean</td>
<td>Ricinus communis</td>
<td>seeds</td>
<td>burning in mouth and throat, gastric and intestinal problems</td>
</tr>
<tr>
<td>Century Plant</td>
<td>Agave americana</td>
<td>leaves</td>
<td>vomiting, diarrhea</td>
</tr>
<tr>
<td>Cherry (all species)</td>
<td>Prunus spp.</td>
<td>leaves, bark, seeds</td>
<td>gasping, nervous disorder</td>
</tr>
<tr>
<td>Clematis</td>
<td>Clematis spp.</td>
<td>all parts</td>
<td>gastrointestinal irritation</td>
</tr>
<tr>
<td>Crinum Lily</td>
<td>Crinum spp.</td>
<td>bulb</td>
<td>vomiting, diarrhea</td>
</tr>
<tr>
<td>Delphinium**</td>
<td>Delphinium spp.</td>
<td>all parts</td>
<td>digestive upset, nervous excitement or depression</td>
</tr>
<tr>
<td>Elderberry</td>
<td>Sambucus canadensis</td>
<td>root, bark, stem, leaves</td>
<td>Has caused nausea and vomiting in children who have used stems as toys. Raw berries may cause nausea. Fruit commonly made into pies, jelly and wine - not harmful when cooked.</td>
</tr>
<tr>
<td>Elephant Ear**</td>
<td>Colocasia esculenta</td>
<td>all parts</td>
<td>intense burning and irritation of the tongue</td>
</tr>
<tr>
<td>English Ivy**</td>
<td>Hedera helix</td>
<td>leaves, stems, fruits</td>
<td>headache, fever, anxiety, breathing difficulty, coma</td>
</tr>
<tr>
<td>Eucalyptus**</td>
<td>Eucalyptus spp.</td>
<td>leaves</td>
<td>nausea, vomiting, diarrhea, weakness, respiratory difficulty</td>
</tr>
<tr>
<td>False Indigo**</td>
<td>Baptisia spp.</td>
<td>all parts</td>
<td>paralysis</td>
</tr>
<tr>
<td>Firethorn</td>
<td>Pyracantha spp.</td>
<td>berries</td>
<td>stomach ache, blistering of tongue, vomiting</td>
</tr>
<tr>
<td>Four-o’clock</td>
<td>Mirabilis jalpa</td>
<td>root, seeds</td>
<td>vomiting, diarrhea, abdominal pain</td>
</tr>
<tr>
<td>Ginkgo (female)</td>
<td>Ginkgo biloba</td>
<td>fruit</td>
<td>violent stomach pain, kidney disorders</td>
</tr>
<tr>
<td>Gloriosa Lily</td>
<td>Gloriosa superba</td>
<td>all parts</td>
<td>numbness of lips, tongue and throat, nervous system paralysis</td>
</tr>
<tr>
<td>Holly</td>
<td>Ilex spp.</td>
<td>Berries</td>
<td>vomiting, diarrhea</td>
</tr>
<tr>
<td>Honeysuckle, Japanese and Trumpet**</td>
<td>Lonicera japonica, Lonicera sempervirens</td>
<td>all parts</td>
<td>diarrhea, pupil dilation, irregular heartbeat, respiratory failure, coma</td>
</tr>
<tr>
<td>Hydrangea, Oakleaf</td>
<td>Hydrangea quercifolia, Hydrangea macrophylla, Hydrangea arborescens</td>
<td>leaves, bark</td>
<td>gastric, intestinal, convulsions</td>
</tr>
<tr>
<td>Impatiens, balsam</td>
<td>Impatiens spp.</td>
<td>stem, leaves, root</td>
<td>vomiting, diarrhea</td>
</tr>
<tr>
<td>Jack-in-the-Pulpit</td>
<td>Arisaema spp.</td>
<td>all parts</td>
<td>mouth and throat irritation, vomiting</td>
</tr>
<tr>
<td>Juniper</td>
<td>Juniperus spp.</td>
<td>berry-like seeds</td>
<td>kidney damage</td>
</tr>
<tr>
<td>Lily-of-the-Valley</td>
<td>Convallaria majalis</td>
<td>all parts</td>
<td>nausea, vomiting, diarrhea, irregular heartbeat and pulse, mental confusion</td>
</tr>
<tr>
<td>Lilies** (Rain Lily, Atamasco Lily, Easter Lily)</td>
<td>Zephyranthus spp.</td>
<td>all parts</td>
<td>dizziness, stomach pain, collapse, fatal to livestock</td>
</tr>
<tr>
<td>Mahonia</td>
<td>Mahonia spp.</td>
<td>all parts</td>
<td>depressant action on the heart muscle</td>
</tr>
<tr>
<td>Mimosa</td>
<td>Albizia spp.</td>
<td>all parts</td>
<td>intestinal irritation</td>
</tr>
<tr>
<td>Morning Glory</td>
<td>Ipomoea spp.</td>
<td>seeds, root</td>
<td>hallucinations, vomiting, diarrhea, muscle tightness</td>
</tr>
<tr>
<td>Mountain Laurel**</td>
<td>Kalmia latifolia</td>
<td>leaves, twigs, flowers</td>
<td>gastric, paralysis, convulsions</td>
</tr>
<tr>
<td>Oleander**</td>
<td>Nerium oleander L.</td>
<td>all parts</td>
<td>dizziness, irregular heart beat, nausea, convulsions, death. This is one of the most toxic ornamental plants in the southeast</td>
</tr>
<tr>
<td>Ornamental Tobacco**</td>
<td>Nicotiana spp.</td>
<td>all parts</td>
<td>weakness, diarrhea, abdominal pain, paralysis</td>
</tr>
<tr>
<td>Periwinkle (vine)</td>
<td>Vinca minor</td>
<td>all parts</td>
<td>intestinal irritation</td>
</tr>
<tr>
<td>Periwinkle (annual)</td>
<td>Catharanthus roseus</td>
<td>all parts</td>
<td>hallucinations, damage to liver, kidney, nervous system</td>
</tr>
<tr>
<td>Plumbago</td>
<td>Plumbago spp.</td>
<td>leaves, stems</td>
<td>stomach pain</td>
</tr>
<tr>
<td>Privet</td>
<td>Ligustrum spp.</td>
<td>fruit</td>
<td>nausea, headache, abdominal pain, vomiting, diarrhea, low blood pressure</td>
</tr>
<tr>
<td>Sago Palm</td>
<td>Cycas revoluta</td>
<td>seeds, roots, trunk pith</td>
<td>headache, vomiting, stomach disorders</td>
</tr>
<tr>
<td>Sweet shrub</td>
<td>Calycanthus floridus</td>
<td>seeds</td>
<td>affects central nervous system, spasms, increased heart rate</td>
</tr>
<tr>
<td>Trumpet Creeper (Chalice Vine)</td>
<td>Campsis radicans</td>
<td>all parts except fruit</td>
<td>gastric irritation, dilated pupils, numbness in hands</td>
</tr>
<tr>
<td>Virginia Creeper [Woodbine]</td>
<td>Parthenocissus quinquefolia</td>
<td>berries, leaves</td>
<td>nausea, bloody vomiting, abdominal pain, kidney damage, headache</td>
</tr>
<tr>
<td>Wisteria</td>
<td>Wisteria spp.</td>
<td>pods, seeds</td>
<td>stomach pain, diarrhea, nausea, vomiting</td>
</tr>
<tr>
<td>Yew**</td>
<td>Taxus spp.</td>
<td>berries, foliage</td>
<td>foliage more toxic than berries, death can be sudden without symptoms</td>
</tr>
</tbody>
</table>

References:

Texas A&M University Web Site, “Poisonous Plants.”
Mississippi State Extension Web Site, “Poisonous Plants.”
Georgia Poison Control Center fact sheet.