Public Housing: Examining the Impact of Banishment and Community Policing

Jose Alexis Torres

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
In
Sociology

Dr. James Hawdon, Committee Chair
Dr. Anthony Peguero
Dr. Jacob Apkarian
Dr. Donald Shoemaker
Dr. John Worrall

April 27, 2016
Blacksburg, VA

Keywords: Banishment, Policing, Crime, Public Housing, Race and Ethnicity

Copyright © 2016 by Jose Torres
Public housing authorities (PHAs) have enforced banishment since the late 1980s by granting police the authority to ban non-residents from public housing neighborhoods and arresting them for trespassing upon violating the ban. PHAs justify banishment by stating that issuing bans and arrests for trespassing aid in crime prevention by removing non-residents who may commit criminal acts if left unguarded. Nonetheless, there has been no scientific evidence to suggest that banishment works to reduce crime. Similarly, the role community policing can play in enforcing banishment is unclear and scarce research has considered the effects of banishment on racial and ethnic minorities at neighborhood and individual levels. To address these issues this three-part study examined the enforcement of banishment on Kings Housing Authority (KHA; Southeast, US) public housing property from 2004-2012. Collectively these studies address the following overarching research questions: Does banishment reduce crime in public housing neighborhoods? Does banishment disproportionately target racial and ethnic public housing neighborhoods? Does banishment prevent banned individuals from re-offending in public housing? Does banishment disproportionately ban racial and ethnic individuals? What are the residential perceptions of banishment and its effectiveness? How does race and ethnicity affect perceptions of banishment and its effectiveness? Results suggest that banishment is better at reducing property crime than violent crime, though the reductions are modest at best. Increases in bans predicted decreases in drug arrests the following year and predicted that drug offenders can be deterred. Despite these crime control benefits results also suggested that the enforcement of banishment comes at a cost. First, a significant amount of banned individuals are not deterred. Second, while trespass enforcement is used in communities other than public housing, the issuing of bans is concentrated only within public housing communities and bans are predominantly issued to African-American males. Finally, results found that residents are not likely to find them effective if they think they are policing too much or policing too little. Future directions and implications are discussed given the dynamic between the crime control benefits of banishment and its social consequences.
ACKNOWLEDGEMENTS

First I would like to thank the members of my committee. To my chair, Dr. James Hawdon, this project would not have happened without your shared interest and enthusiasm in banishment studies. Thanks for supporting my research interests but more importantly thanks for your friendship and mentorship. To Dr. Anthony Peguero, thanks for pushing me to consider my presence within academia, for guiding me through the job market, and for inviting me into your networks. Thanks to Dr. Donald Shoemaker for your interest in my work and for our lively discussions about baseball. A huge debt of gratitude goes to Dr. John Worrall who stepped onto my committee as an external member. Finally, Dr. Jacob Apkarian you were a big help in helping me statistically, so thanks for the academic support it has helped me tremendously.

I want to also thank the police department, police officers, and public housing authority involved in this dissertation. Special thanks to the chiefs who allowed me to have the data necessary to complete this project. I commend you all for inviting scientific research into your department and hope it is the start of more research partnerships. This milestone is not even possible without the time spent with the “160” family, you know who you are. Without you all this project would not have even been thought of. While I was sad to have left you, I want you to know that I hold you all close to my heart as an academic.

To the faculty in the Sociology Department at Norfolk State University, thank you. You all taught me that it is not where you start it is where you end up. I am so proud to tell everyone that I am a Spartan. Thanks for always believing that I could get a Ph.D. Special thanks to Dr. Dr. Bernadette Holmes. From my first class with you as an undergrad you molded me into the academic I am today. Not only that, you showed me that the baseball field was not the only place
I needed to compete. I competed in the classroom and from that I learned to challenge myself to pursue all kinds of goals. I owe much of my success as an adult to you because of that.

None of this was possible without my parents, brother and best friends. My parents were the first to show me what sacrifice and hard work was. Thanks for always supporting me, every one of my accomplishments is owed to how well you both raised me. I am proud to be your son and proud to share this with you both and our homeland, Puerto Rico! To my brother Miguel, you have always been a great brother to me. I am thankful our brotherhood has remained strong, thanks for always supporting me. To “The Crew”, you would not know it but thanks for bringing me back down to earth. Every time we talked or got together during the past four years it has helped me take my mind off of school. It is an honor to be surrounded by such great and loyal friends.

Special thanks to my fiancée Shay. Fate brought us together and I am so happy to spend the rest of my life with you. Thanks for going on this journey with me, for sticking by me, and for understanding what I was going through when most would not. I am so thankful to have had you by my side during the hard times and so thankful for our love.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>viii</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Literature Review</td>
<td>6</td>
</tr>
<tr>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>Banishment</td>
<td>6</td>
</tr>
<tr>
<td>Community Policing In Public Housing</td>
<td>10</td>
</tr>
<tr>
<td>KHA: Banishment and Community Policing</td>
<td>12</td>
</tr>
<tr>
<td>III. Banishment, Broken Windows, and Crime Reduction</td>
<td>15</td>
</tr>
<tr>
<td>Abstract</td>
<td>15</td>
</tr>
<tr>
<td>Introduction</td>
<td>16</td>
</tr>
<tr>
<td>Broken Windows</td>
<td>16</td>
</tr>
<tr>
<td>Banishment and Broken Windows</td>
<td>17</td>
</tr>
<tr>
<td>Banishment, Broken Windows, and Racial/Ethnic Minorities</td>
<td>18</td>
</tr>
<tr>
<td>Methods</td>
<td>21</td>
</tr>
<tr>
<td>Sampling</td>
<td>21</td>
</tr>
<tr>
<td>Data Collection</td>
<td>21</td>
</tr>
<tr>
<td>Measures</td>
<td>21</td>
</tr>
<tr>
<td>Analytic Strategy</td>
<td>27</td>
</tr>
<tr>
<td>Results</td>
<td>28</td>
</tr>
<tr>
<td>Hypothesis 1.0</td>
<td>28</td>
</tr>
<tr>
<td>Hypothesis 1.1</td>
<td>33</td>
</tr>
<tr>
<td>Hypothesis 1.2</td>
<td>36</td>
</tr>
<tr>
<td>Hypothesis 1.3</td>
<td>39</td>
</tr>
<tr>
<td>Discussion</td>
<td>41</td>
</tr>
<tr>
<td>Conclusion</td>
<td>46</td>
</tr>
<tr>
<td>IV. Banishment, Deterrence, and Crime Prevention</td>
<td>48</td>
</tr>
<tr>
<td>Abstract</td>
<td>48</td>
</tr>
<tr>
<td>Introduction</td>
<td>49</td>
</tr>
<tr>
<td>Deterrence</td>
<td>49</td>
</tr>
<tr>
<td>Banishment and Deterrence</td>
<td>50</td>
</tr>
<tr>
<td>Banishment, Deterrence, and Race</td>
<td>51</td>
</tr>
</tbody>
</table>
V. Banishment, Community Policing, and Predicting Perceived Police Effectiveness 81
 Abstract ... 81
 Introduction .. 82
 Police Contact .. 82
 Police Trust .. 84
 Police Responsiveness ... 85
 Methods .. 89
 Sampling and Data Collection ... 89
 Measures ... 94
 Analytic Strategy .. 99
Results .. 100
 Hypothesis 3.0, 3.1, and 3.2 .. 100
 Discussion .. 102
 Conclusion ... 110

VI. Conclusion ... 111

References .. 121
List of Tables

Tables

Table 1: Total Bans in Public Housing by Year .. 22
Table 2 Neighborhood Bans by Year ... 23
Table 3 Chapter 3 Descriptive Statistics .. 27
Table 4 Chapter 3 Bivariate Correlations: Property Crime 32
Table 5 Multilevel Mixed Effects Linear Regression with 1-Year Lag: Property Crime 33
Table 6 Chapter 3 Bivariate Correlations: Violent Crime 34
Table 7 Multilevel Mixed Effects Linear Regression with 1-Year Lag: Violent Crime 35
Table 8 Chapter 3 Bivariate Correlations: Drug Arrests 37
Table 9 Multilevel Mixed Effects Linear Regression with 1-Year Lag: Drug Arrests 39
Table 10 Chapter 3 Bivariate Correlations: Banishment by Public Housing 40
Table 11 Chapter 4 Descriptive Statistics ... 62
Table 12 Cross Tabs: Pre and Post Ban PH Offender 65
Table 13 Chapter 4 Bivariate Correlations .. 69
Table 14 Binary Logistic Regression Predicting Deterred 71
Table 15 Comparison of Demographic Characteristics: Respondent Sample and Population Estimates ... 91
Table 16 One-Sample T-Test ... 92
Table 17 Chapter 5 Descriptive Statistics .. 99
Table 18 Chapter 5 Bivariate Correlations ... 100
Table 19 Linear Regression: Perceived Police Effectiveness on Police Contact, Police Trust, Police Responsiveness, and Control Variables 102
List of Figures

Figures

Figure 1 Bans by Public Housing ... 29
Figure 2 Trespass Arrests by Public Housing .. 30
Figure 3 Overall Crime by Public Housing ... 30
Figure 4 Property Crime by Public Housing .. 31
Figure 5 Violent Crime by Public Housing .. 34
Figure 6 Drug Arrests by Public Housing .. 37
Figure 7 Banishment by Public Housing .. 40
Figure 8 Trespass Rate by Public Housing ... 41
Figure 9 Percent Committed Any Offense ... 64
Figure 10 Percent No Difference, Increased, or Reduced Offending in Public Housing after Being Banned ... 65
Figure 11 Pre and Post Ban Totals by Public Housing 66
Figure 12 Pre and Post Ban Trespass Offenses by Public Housing 67
Figure 13 Pre and Post Ban Trespass Offenders in Public Housing 68
Figure 14 Pre and Post Ban Committed Any Offense w/o Trespass Offenses 68
Figure 15 Pre and Post Ban Drug and Violent/Property Offenders in Public Housing 69
Figure 16 Percent African-American by Public Housing 73
CHAPTER 1. INTRODUCTION

Public housing authorities (PHAs) have exercised banishment since the late 1980s through “no-trespass policies” to combat the flow of drugs into and violence in public housing (Goldstein 2003; Hunter and Frist-Riutort 1989; O'Leary 1996). These policies give police the authority to ban non-residents from public housing neighborhoods and arrest them for trespassing upon violating the ban. The understanding of PHAs is that arrests for trespassing aid in crime prevention by removing non-residents who may commit criminal acts if left unguarded. Critics and scholars argue that banishment unjustly expands police powers because authorities need little reason to ban non-residents, are beyond judicial review (Beck 2004), and can result in racially disparate treatment (Fagan, Davies, and Carlis 2012).

Despite criticism, an empirical evaluation of banishment in public housing that considers banishment’s effectiveness has not been conducted. Similarly, the role community policing can play in enforcing banishment is unclear. By itself, banishment is unlikely to be perceived as effective in public housing if residents do not trust the police. However, police trust is an outcome of community policing (Gill et al. 2014; Hawdon, Ryan, and Griffin 2003). Even if perceived as effective by residents, banishment may not actually reduce crime and produce deterrent effects. In this case, PHAs and police departments remain open to scrutiny in much the same way stop-and-frisk has drawn critical attention to police departments. Police departments that aggressively enforce no-trespass policies in public housing in a manner that resembles more zero-tolerance than community policing and cannot empirically demonstrate that banishment has reduced crime and deterred criminals may also find legal action taken against them.

Furthermore, banishment evaluations have scarcely considered the effects of banishment on racial and ethnic minorities at neighborhood and individual levels. It is unlikely to be
perceived as effective among majority-minority public housing communities since these communities already experience increased level of enforcement across all crime categories in comparison to other communities (see Fagan et al. 2012). Even if banishment enforcement matches the racial or ethnic makeup of the community, this does not limit the ability of banishment to keep banned individuals from seeing their friends and family and fulfilling family obligations. Such disruptions to familial roles would add to the social consequences already experienced by racial and ethnic minorities at the hands of the criminal justice system (see Alexander 2010). Still, racial and ethnic minorities may be receptive to banishment, which may be explained through “urban frustration” in which residents “welcome…disparate enforcement policies even at the expense of certain civil liberties” (Brooks 2000). Community policing efforts may also play a role in whether residents are receptive to banishment, as the literature suggests racial and ethnic minorities welcome community policing efforts (Wehrman and De Angelis 2011), and this style of policing has been shown to have more benefits in disadvantaged communities compared to more affluent communities (Reisig and Parks 2004; Skogan and Hartnett 1997). Therefore, any use of banishment in public housing must carefully consider race and ethnicity in evaluations of effectiveness and impacts.

This three-part study examined the enforcement of banishment on Kings Housing Authority (KHA; Southeast, US) public housing property from 2004-2012. KHA provides for a unique opportunity to study banishment, considering it also maintains a community policing strategy, thus permitting examination of the role of community policing in enforcing banishment. Furthermore, African Americans comprise 97.2 percent of KHA’s population (U.S. Census Bureau 2014a), allowing for a critical discussion of how banishment has affected a highly

1 KHA is a pseudonym for the actual PHA used.
concentrated racial majority. While this dissertation utilized three independent studies on banishment, they collectively address very important questions pertaining to banishment’s efficacy. Overall, the goal of the dissertation is to serve as a policy evaluation of banishment that can be beneficial to PHAs, police departments, police practitioners, scholars, and the communities in which these policing tactics are widely used. This dissertation addressed the following overarching research questions:

1) Part I: Does banishment reduce crime in public housing neighborhoods? Does banishment disproportionately target racial and ethnic public housing neighborhoods?

2) Part II: Does banishment prevent banned individuals from re-offending in public housing? Does banishment disproportionately ban racial and ethnic individuals?

3) Part III: What are the residential perceptions of banishment and its effectiveness? How does race and ethnicity affect perceptions of banishment and its effectiveness?

Part I used a pooled cross-sectional time-series design with random intercepts to accommodate within neighborhood dependence to assess if bans reduce property, violent, and overall crime in public housing since banishment began in 2004. Results suggest that banishment is better at reducing property crime than violent crime, though the reductions are modest at best.

As a test of broken windows policing (see Kelling and Cole 1996; Wilson and Kelling 1982), this particular finding shows support of broken windows policing, but, similar to prior research evidence, such policing strategies may not produce significant reductions in crime (see Braga, Welsh, and Schnell 2015). Furthermore, bans predicted decreases in drug arrests the following
year. This analysis also tested if banishment is a policing staple among majority-minority public housing communities, in comparison with other majority-minority communities with less subsidized housing. It found that while trespass enforcement is used in communities other than public housing, the issuing of bans is concentrated only within public housing communities.

For Part II, pre- and post-ban offenses in public housing of a random sample of individuals who had been banned from KHA property were analyzed to determine if bans deter individuals from re-offending in public housing, and binary logistic regression is used to determine who is more likely to be deterred as a result of being banned. Results find that being banned does not deter individuals from offending in public housing after they have been banned, but that drug offenders can be deterred. It also tested to see if the majority of those banned are African-American, in comparison with the population of KHA residents. The findings show that African-Americans are not disproportionately banned, but nearly all of those banned are African-American males.

Finally, Part III utilized a 2013 survey of KHA public housing residents and regression analysis to test the influence of police contact (crime victimization and banishment exposure), police trust, and police responsiveness (under- or over-policing) on perceptions of police effectiveness and banishment effectiveness. This study found that within a predominantly African-American public housing community, residents are likely to find the police effective if they trusted them, but that residents are not likely to find them effective if they think they are over-policed or under-policed. While no measures of community policing were used in the hypothesis testing, an effort is made to explain the role community policing could have in gaining trust from communities in order for banishment and the police to be perceived as effective.
While this study found support for using banishment policies, it also raises questions that leave relevant stakeholders to question whether such policies should continue. Only through a careful examination of the data can we address this issue and move forward. As such, Chapter 1, *Banishment, Community Policing, and Public Housing*, begins with a broad review of the literature on banishment and community policing, along with an overview of how these strategies have been implemented on KHA property. This will serve as a foundation for contextualizing the three studies used for this dissertation. Chapters 2-4 present the analyses designed to answer my three primary research questions. Finally, Chapter 5 summarizes and synthesizes the results and presents the implications of this research.
CHAPTER 2: LITERATURE REVIEW

INTRODUCTION

BANISHMENT

Banishment is legally-imposed spatial exclusion (Beckett and Herbert 2010). Since the 1980s banishment has been employed by Public Housing Authorities (PHAs) to combat drugs and violence (Goldstein 2003; Hunter and Frist-Riutort 1989; O'Leary 1996). These policies grant police the authority to ban non-residents from entering public housing neighborhoods and to arrest them for trespassing upon violating the ban. Banishment policies may differ in delineating who can be banned or how long they can be banned, but enforcement follows the same model. Goldstein (2003:216), explains:

Typically, a PHA…will ask its local police department to warn nonresidents who enter the development that they are trespassing. Persons issued a warning are placed on a no-trespass list, maintained by the housing development manager or, in some cases, by the police themselves; if they return to the development, they are arrested [for violating the ban which constitutes trespassing].

Banishment’s re-emergence grew as cities took measures to combat social disorder through civility codes. During the 1960s and 1970s, vagrancy statutes were invalidated by the Supreme Court due to their racially charged enforcement, and vague interpretation leading to wide discretion in vagrancy enforcement (Papachristou v. City of Jacksonville 1972; Shuttlesworth v. City of Birmingham 1965). In the 1980s, with police departments desperately
needing a law enforcement response to social disorder, courts responded in support of the police through civility codes. Instead of the vague loitering and vagrancy statutes that were invalidated in the 1960s and 1970s, newly established civility codes required localities to specify the exact behaviors that can result in banishment (Beckett and Herbert 2010). Through civility codes, police can now target the socially undesirable, like vagrants and drunks, by enforcing behaviors synonymous with them. For example, to deal with homelessness, officers can enforce things synonymous with the homeless such as public urination, sleeping on a park bench, and panhandling.

Banishment in public housing is based on the enforcement of such civility codes by codifying into PHA policy behaviors that, when observed by PHA officials and law enforcement, can result in banishment and potentially an arrest for trespassing. In other words, because of civility codes, PHAs could not simply banish non-residents; the behaviors that would qualify a non-resident for being banned would need to be specifically outlined. While many initial banishment policies in public housing failed to delineate the behaviors that could qualify for banishment, the courts did not abolish banishment altogether—they simply pushed PHAs to specify banishment criteria (Commonwealth v. Hicks 2002). The current criteria for banning in PHAs is based on civil and criminal behaviors, past or present, leaving it completely possible for any non-resident to get banned (Goldstein 2003). For example, the following have been cited as reasons for banning non-residents from a few publicly available PHA banishment policies: having no legal right or legitimate purpose to be on the property; not being an invited guest of a resident; having a prior criminal history; engaging in activities that interfere with the quiet and peaceful enjoyment of residents; and involvement in drug activity or violence on public housing
property (Allen Park Housing Commission 2014; Charlotte Housing Authority 2014; Portsmouth Housing Authority 2014; Winder Housing Authority 2014).

With banishment policies in place, substantial benefits are provided to law enforcement. First, in the event that officers do not observe crimes other than trespassing on public housing property, banishment literally creates reasonable suspicion that the crime of trespassing is, has, or is about to occur. Therefore, police are allowed to stop and approach anyone on public housing property to inquire about their residency, under the guise of a trespass investigation (Fagan et al. 2012). Second, should someone who is stopped not be a resident of public housing and not be previously banned, they are subject to the broad banishment criteria (Goldstein 2003). Third, should someone who is stopped be identified as someone who was previously banned, the person can be subject to an arrest for trespassing. Finally, providing a steadfast approach to gaining trespass arrests provides an easy way to search for guns and drugs that bypasses traditional approaches to combating drugs and guns, such as undercover buy-busts (Beckett and Herbert 2010; Fagan et al. 2012). This expansion of police tactics is important considering that the reduction of drugs and violence is one of the primary justifications PHAs provide for banishment. In sum, banishment allows the police to “stop more people with less evidence” and operate banishment on a “wholesale” level (Fagan et al. 2012).

The resulting police empowerment has led to numerous public housing bans and subsequent ban violation arrests, under the premise of trespassing, across the country. For example, during the 1990s, the Dayton Municipal Housing Authority banned 2,320 individuals (Brown v. Dayton Metropolitan Housing Authority 1993). Publicly-available numbers show the current variability in the use of banishment: 1,593 in the Johnson City Housing Authority (Tennessee; Johnson City Housing Authority 2014); 1,229 in the Kingsport Housing Authority
(Tennessee; Kingsport Housing Authority 2014); 1,101 in the Topeka Housing Authority (Kansas; Topeka Housing Authority 2014); and 980 in the Peoria Housing Authority (Illinois; Peoria Housing Authority 2014). KHA has banned 3,776 individuals and made 553 trespass arrests from 2004 to 2013². By comparison, from 2005 to 2011, the New York City Housing Authority (NYCHA) banned 2,804 individuals (Zimmerman 2012), and there have been 35,000 trespass arrests since 2006 due to banishment in public housing (Fagan et al. 2012).³

Banishment’s toll on public housing goes beyond an efficiency critique, and extends to a social justice critique because of the larger negative impact on racial and ethnic minorities. Inner-city public housing communities, comprised of poor majority-minority citizens, are already vulnerable to heightened levels of policing due to the association of these areas as crime ridden (Fagan et al. 2012; Krivo and Peterson 1996; Massey and Denton 1993; Sampson and Raudenbush 1999, 2004; Thompson 1999). Banishment, which creates another avenue with which to grant reasonable suspicion for police to stop citizens in public housing, is already compounded by the fact that officers are more likely to view racial and ethnic minorities with suspicion (Alpert, MacDonald and Dunham 2005). Since banishment creates new opportunities for police to stop racial and ethnic minorities, it is likely to contribute to the already dehumanizing experiences with police within their communities, and normalizes police confrontations. Further, numerous racial and ethnic minorities are banned or arrested for trespassing who otherwise may simply be visiting family or fulfilling family obligations (City of Bremerton v. Widell 2002; Hicks v. Commonwealth 2002; Jason Allen D. 1999; L.D.L. v. State

² Based on KHA Trespass statistics, and a KHA ban list; both given by the Norfolk Police Department and KHA.
³ New York’s banishment policy is based only on banning persons for felony drug crimes that occur on NYCHA property. It is likely this figure would be higher if the NYCHA used banishment criteria that mirrored other PHAs.
1990), and ultimately contributes to a breakdown of the family. Likewise, police are able to make readily known to racial and ethnic minorities who is in control simply by what the policy is capable of doing to families.

Though legal judgments have occasionally found in favor of citizens who have been banished (Davis v. City of New York 2013; Jason Allen D 1999), the decisions brought forth under various cases have defended states; interests in maintaining social control in public housing through banishment policies (City of Bremerton v. Widell 2002, Commonwealth v. Hicks 2002). The likelihood of these policies going away is low, despite evidence suggesting public housing communities are not the hot beds of crime they are depicted to be (Haberman, Groff and Taylor 2013; Ireland, Thornberry and Loeber 2003), and despite racially disparate enforcement (Fagan et al. 2012). Still, PHAs justify no-trespass policies by concluding that the majority of crime that occurs in its communities is caused by non-residents (see Goldstein 2003)—a finding only meagerly supported empirically (Griffiths and Tita 2009; Walsh et al. 2000).

2.1 COMMUNITY POLICING IN PUBLIC HOUSING

Community policing is a proactive policing philosophy that, when implemented, involves community partnerships, decentralized organizational structure, and problem solving (COPS 2009). Community partnerships entail having shared responsibility over community problems that do not focus strictly on a law enforcement response (COPS 2009). Decentralized power focuses on the ability of community police officers to have discretion in their enforcement, to be assigned to specific areas, and despecialization in favor of team approaches, with a goal of engaging the community with frontline police officers (Trojanowicz et al. 1998). Problem
solving involves the ways in which community police officers take a proactive role in addressing problems, creatively find solutions other than arrest, and utilize community and outside input in their decision-making, which may include utilization of SARA (Scanning, Analysis, Response, and Assessment) (COPS 2009; Trojanowicz et al. 1998). Finally, community policing does not rely solely on crime fighting as a role; instead, it emphasizes other police roles, such as establishing legitimacy of the police through positive relationships with residents, reducing fear, and promoting citizen satisfaction (Gill et al. 2014; Mastrofski, Worden and Snipes 1995).

While community policing has been widely adopted, it remains unclear how beneficial community policing is. In regard to crime reduction, there has not been strong support that community policing has reduced overall crime and disorder; however, there is stronger support for community policing efforts reducing violent crime (Gill et al. 2014). Community policing has shown more promise in increasing outcomes unrelated to crime, such as increased citizen satisfaction and trust in the police (Gill et al. 2014; Hawdon et al. 2003). These community policing outcomes may actually aid in crime control since citizens are more likely to obey the law if they trust and accept the authority of the police (Hough et al. 2010; Sunshine and Tyler 2003; Tyler 1990).

Literature on community policing in public housing is scarce. Kane (1998) tested the objective consequences of assigning police to a permanent beat, a principle of community policing, in Philadelphia public housing neighborhoods. Using calls for service, he was able to find that officers assigned to a permanent beat increased the amount of police initiated investigations. These results lent more significance to community policing’s idea that this policing strategy fosters more area-specific responsibility (COPS 2009). Finally, Walsh and his colleagues (2000) examined one public housing authority and found that residents living in high
crime properties initially rated the frequency of patrol, the overall effectiveness of the police, police respect for citizens, and satisfaction with police service significantly lower than residents of low crime properties. The community policing initiative that resulted led to a 15 percent decrease in reported crime; 14 percent reduction in calls for service; 37 percent perception of safety; and 46 percent satisfaction with the effort (Walsh et al. 2000).

KHA: BANISHMENT AND COMMUNITY POLICING

Enforcement of banishment and use of community policing in KHA was a process dating to the early 1990s. According to the former head of community policing in KHA, “[KHA] had some of the worst crime statistics in the city” (personal communication, July 17, 2013). By 1995, the police department adopted its own community policing initiative in KHA. After a department-wide request for officers to participate, eight volunteers were chosen and each was given a permanent beat assignment to one of the eight neighborhoods.

During the early years of the community policing program in KHA, public housing officers (PHOs) concluded that the majority of the problems plaguing their neighborhoods involved non-residents (personal communication, July 17, 2013)—a similar reaction found in the literature (Goldstein 2003). With the guidance of a local judge, PHOs were able to establish the initial criteria to begin enforcement of no-trespassing rules, which included posting visible “no trespass” signs, requiring probable cause or reasonable suspicion to approach those who were “just hanging out,” giving a warning to a non-resident on their first encounter, having prior knowledge a non-resident has been given warning before arresting them for trespassing, and warning residents that the KHA PHOs would begin enforcing banishment (personal
communication, July 17, 2013). It was not until suspects began to contest trespassing charges, stating they were never issued a warning to stay off the property, that the local courts mandated the police department and KHA to begin utilizing a formal ban notice. The formal use of banishment began in 2004.

The procedure for issuing, maintaining, and enforcing ban notices on public housing property is similar to what has been detailed in the literature (Beck 2004; Carlis 2009; Goldstein 2003; Mitchell 2005). First, “non-residents who are discovered on any KHA property and who engage in [activities punishable by banishment] will be determined to be trespassers and will receive a written trespass notice banning them from the premises” (KHA 2010). Under KHA “Housing Managers, Security Officers, [the police department], or any sworn law enforcement officer of the [State] may personally serve ban notices” (KHA 2010). After an individual has been issued a ban notice, a copy is given to him or her, to the housing management, to the PHOs, and to any resident the individual was visiting. The person is then entered into a no-trespass list maintained by the police department and updated bimonthly. If the person is caught back on the property, they can then be arrested for trespassing.

Like other cities, the criteria for banning are broad (Beckett and Herbert 2010; Goldstein 2003). Any non-resident involved in any crime on public housing property can be banned. In addition, non-criminal activity on the property that qualifies for banishment includes grouping for the purpose of threatening or intimidating, “prior involvement of narcotic activity/violations,” not demonstrating a legitimate business or social purpose for being on the premises, and “engaging in any conduct which interferes with the enjoyment of the premises by adversely affecting the health safety, or welfare of residents, guests, employees, communities, and/or
properties of the housing authority” (KHA 2010). Once a ban notice is served to a non-resident, it is effective at that time and “remains in effect indefinitely” (KHA 2010).
CHAPTER 3: BANISHMENT, BROKEN WINDOWS, AND CRIME REDUCTION

Abstract

Theoretically, banishment policies are “broken windows” strategies that allow officers to combat social disorder by removing the socially undesirable from public or private spaces. Despite the empirical research that suggests broken windows policing strategies only modestly reduce crime, there is no research that evaluates the effectiveness of these policies in public housing. If enforcing banishment is an effective means of dealing with drugs and violence, issues of social justice become paramount and should be discussed to weigh the costs they place on communities of color with the public safety benefits they provide these communities. However, if the public-safety benefits of these policies are minimal, these strategies should no longer be considered legitimate crime-fighting tools. This study speaks to this debate by investigating if an increase in bans is correlated with a decrease in violent crime and property crime, and an increase in drug arrests. This analysis also tests if banishment is a policing staple among majority-minority public housing communities, in comparison with surrounding communities. It analyzes data from a public housing authority in a southeastern city that is over ninety-seven percent African-American. This allows for a critical discussion of how banishment has impacted a community of color. Specifically, we analyze data from six public housing communities and 12 non-public housing communities spanning the years 2001-2012. This period includes years both before and after the formal use of banishment was implemented. Analysis relies on a pooled cross-sectional time-series design with random intercepts to accommodate within-community dependence. Results suggest that banishment is better at reducing property crime than violent crime, though the reductions are modest at best. Furthermore, bans predicted decreases in drug arrests the following year. Finally, it found that while trespass enforcement is used in communities other than public housing, the issuing of bans is concentrated only within public housing communities. Implications are discussed in the context of broken windows policing and the policing of public housing specifically.
INTRODUCTION

BROKEN WINDOWS

In 1982, James Q. Wilson and George Kelling published an Atlantic Monthly article introducing the concept of broken windows. The broken windows theory of crime posits that quality-of-life crimes, such as vandalism, may not only change the physical character of an area but may result in social disorder and more serious crime (Wilson and Kelling 1982). It firmly rests upon a premise that physical decay, such as broken windows, welcomes criminal behavior since it conveys to criminals that informal social control is weak as local residents become more fearful and withdraw from the community (Kelling and Coles 1996; Skogan 1990; Wilson and Kelling 1982). The timing of broken windows could not have been better for those needing a law enforcement response to address social disorder, namely the issue of drugs. With “get-tough” crime measures focused mainly on sentencing regimes, broken windows offered the opportunity to supplement harsher sentences with a tougher policing initiative, namely broken windows policing (Alexander 2010).

While the major theoretical foundation of broken windows relied on the link between physical disorder and crime, the idea that social disorder could manifest into more serious crime became the ideology behind broken windows policing (Kelling and Coles 1996). Here, the law enforcement focus concentrates on the second aspect of broken windows: social disorder. If social disorder leads to more serious crime, then arrests should be targeted at low-level offenses that visibly convey social disorder, such as loitering, drinking in public, public urination, panhandling, and prostitution (Geller and Fagan 2010; Levy 2008). This style of policing would later...
take center stage in New York City during the 1990s under Mayor Giuliani and police commissioner William Bratton. Together they introduced an aggressive form of broken windows policing that targeted low-level misdemeanor offenses, one coined “quality-of-life policing” (Bratton and Knobbler 1998; Kelling and Coles 1996).

BANISHMENT AND BROKEN WINDOWS

In the wake of the War on Drugs, Public Housing Authorities (PHAs) took considerable measures to stem drugs and violence within their communities. Under the framework of broken windows, one logical strategy was banishment. If combating drugs on the street brought drug use and sales indoors, then dealing with those within the buildings could break the indoor retail trade (Boland 1998; Hunter and Frist Riotort 1989). As mentioned in Chapter 1, the use of banishment provided additional tactics for law enforcement to penetrate the drug trade within public housing (Beckett and Herbert 2010; Carlis 2009; Fagan et al. 2012; Stuntz 1995). By allowing officers the ability to arrest for trespassing, they could circumvent the need for undercover drug operations, and with search-incident-to-arrest for trespassing, they could get into the pockets of potential drug offenders more quickly and efficiently. The implications were wide ranging, as Fagan et al. (2012:701) stated:

> Trespass enforcement was something new: a larger-scale effort that was “wholesale” both in its scope and in the fact that it was implemented as a preemptive engagement with would-be offenders. Anyone in public housing, whether associated with the drug trade or not, is now subject to being stopped, frisked, and possibly arrested in the name of public order.
While law enforcement could simply enforce low-level offenses more harshly within public housing, this still allows for quality-of-life offenses to occur within public housing. PHAs have instead decided to combat social disorder by completely removing the ability of quality-of-life offenses and the opportunity for serious crime to occur in public housing through spatial exclusion. Of course, this tactic can only be implemented against non-residents since residents cannot be banned from their own homes, and, with banishment, law enforcement can implement broken windows policing in public housing by simply targeting non-residents. Considering how banishment is written into policy, it creates the potential for law enforcement to approach anyone on public housing property to investigate trespassing. Given that, even if one decides not to commit a crime or create physical disorder in public housing, a non-resident’s mere presence within the boundaries of public housing conveys a “broken window” that must be addressed to prevent crime. In sum, banishment, as a logical extension of broken windows, is based on the hypothesis that if police ban and arrest trespassers in public housing, they can reduce crime. Not only do banishment policies cleverly provide means for reducing the evidence of probable cause required by the Fourth Amendment to search individuals, they broaden what can be considered a “broken window” that needs to be fixed.

BANISHMENT, BROKEN WINDOWS, AND RACIAL/ETHNIC MINORITIES

After broken windows policing came into prominence, it became evident that racial and ethnic minorities were receiving the brunt of this tactic—both in stops and arrests. For pedestrian stops, the evidence largely finds that African-Americans and Latinos are significantly more likely to be stopped than Whites, and more than their proportion of the population (see Fagan
2010, 2012; Spitzer 1999). They are also more likely to be stopped than whites after controlling for crime, the concentration of police, and local social conditions—both at the neighborhood and individual level (Fagan 2010, 2012; Geller and Fagan 2010; Gelman, Fagan and Kiss 2007). Rosenfeld and colleagues (2007:370) also found that “growth in arrest rates for misdemeanors and violations of city ordinances was greater than elsewhere in more disadvantaged areas and those with larger proportions of African-Americans, even with initial violent crime rates, growth in disorder, and growth in drug markets controlled.” The consequence is that forms of broken windows policing have opened this style of policing to the criticism that it is not actually an effort to reduce crime (Brown 2013; Fagan and Davies 2000; Fagan et al. 2009; Harcourt 2001; Rosenfeld et al. 2007).

Since banishment has roots in broken windows policing, if instituted in public housing where racial and ethnic minorities are the majority of residents (National Low Income Housing Coalition 2012), it should be felt mostly by racial and ethnic minorities at the neighborhood level4. The explicit geographic character of banishment naturally lends itself to spatial profiling, or the differential law enforcement practices used by police in particular geographical areas where two seemingly different standards of law enforcement appear to be in effect for persons of different racial groups, whether intentional or unintentional (Dunn and Reed 2011). This visibility is given to racial minorities by law enforcement not only in areas where they are deemed “out of place,” or are a numerical minority, but also in communities where they are the majority (Dunn and Reed 2011). With public housing, spatial profiling and banishment occurs where racial minorities are the majority. Spatial profiling is evidenced in Fagan et al.’s (2012) study which found trespass stops and arrests in New York are two times greater in public

4 See Chapter 4 for a discussion of banishment and race at the individual level.
housing than other areas and result in racially disparate treatment of those in public housing even after controlling for crime, disadvantage, and patrol strength.

Despite the logic of broken windows, an empirical evaluation of banishment’s effectiveness to reduce crime has not been performed. This study is the first to explore how effective bans are at reducing crime in public housing. Under broken windows, banishment is allegedly capable of reducing crime by targeting social disorder through bans. Furthermore, regardless of effectiveness it is worth noting whether bans and trespass arrests are relegated strictly to public housing communities made up of predominantly racial and ethnic minorities.

Thus, my research agenda leads to three substantive and testable questions for Part I:

1.0) Do bans reduce crime in public housing communities?
1.1) Which crimes are more likely to be reduced in public housing as a result of bans?
1.2) Is banishment more likely to be used in public housing neighborhoods?

These questions and the review of previous research generate the following testable hypotheses:

Hypothesis 1.0: Bans significantly reduce property crime in public housing, as compared to non-public housing sites, after banishment enforcement has begun.\(^5\)

Hypothesis 1.1: Bans significantly reduce violent crime in public housing, as compared to non-public housing sites, after banishment enforcement has begun.

Hypothesis 1.2: Bans significantly increase drug arrests in public housing, as compared to non-public housing sites, after banishment enforcement has begun.

Hypothesis 1.3: Banishment is more likely to be used in public housing neighborhoods

\(^5\) A focus on bans instead of trespass arrests allows us to focus on the strength of bans alone which is the foundation of banishment.
METHODS

Sampling

The analysis is based on a sample of 18 neighborhoods located within a Southeastern US city. These neighborhoods include six public housing neighborhoods and 12 non-public housing neighborhoods. The non-public housing neighborhoods were selected based on their proximity to the public housing communities; within a half mile radius of the public housing community.

Data Collection

This study relies on data comprised of bans (2004-2012), trespass arrests, drug arrests, FBI Part I property and violent crimes, and measures of concentrated disadvantage and neighborhood instability (2001-2012). All relevant crime data was provided by the police department overseeing KHA by neighborhood by year.

Measures

Bans

Bans capture the rate of bans issued in public housing neighborhoods by year. To collect the data for bans it was first necessary to determine how many people were banned by neighborhood. Furthermore, since the formal use of banishment began in 2004, ban data was collected for the
years 2004 through 2012. Ban data came from the ban list provided by the police department. The ban list in question is a Microsoft Access Database file (.mdb) capable of adding and storing information on those who have been banned including: name, date of birth, home address, ban location, ban date, banned from (i.e. all public housing or specific public housing properties), banning officer, arrested during the ban (yes or no), and a narrative explanation as to why the person is banned.

The number of bans per year was first recorded using the following procedure. The ban list has a report of those that have been banned which only includes name, date of birth, ban date, banned from (public housing neighborhoods the person is banned from; all public housing property or specific communities), and banning officer (name of the officer that banned the individual). This report cannot sort the information by any of these characteristics but can be exported to a .pdf reader. Once exported to a .pdf reader it was then exported as an excel file which could sort the bans by ban date. Once the bans were sorted by ban date, they were placed into separate excel files by year of the ban date (i.e. 2004 bans in one file, 2005 bans in one file, etc.). I was then able to record the number of bans per year, which is reported in Table 1.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Housing All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>204</td>
<td>173</td>
<td>147</td>
<td>258</td>
<td>391</td>
<td>584</td>
<td>737</td>
<td>463</td>
<td>354</td>
</tr>
</tbody>
</table>

It was then necessary to sort the bans by neighborhood in which the person was banned from and then by the year the ban was issued. To do this, each ban was then individually analyzed to record where the ban was issued. Only bans issued within one of the six PH neighborhoods were recorded. This city has various public housing, assisted living developments
for the elderly. Bans issued to these properties were excluded from the study, as were bans issued to a now demolished public housing property. Two of the public housing communities were combined due to the inability to obtain separate socio-demographic variables for each within the 2000 Census and 2008-2012 American Community Survey 5 Year Estimates (ACS) since each survey places both communities under the same block group. This is explained by the fact that the two public housing communities are physically adjacent. Based on this, the two neighborhoods were combined for the rest of the study. Bans by neighborhood per year are found in Table 2.

Table 2 Neighborhood Bans by Year

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Housing All</td>
<td>204</td>
<td>173</td>
<td>147</td>
<td>258</td>
<td>391</td>
<td>584</td>
<td>737</td>
<td>463</td>
<td>354</td>
</tr>
<tr>
<td>Public Housing Study</td>
<td>179</td>
<td>156</td>
<td>134</td>
<td>240</td>
<td>339</td>
<td>528</td>
<td>709</td>
<td>450</td>
<td>352</td>
</tr>
<tr>
<td>% of Total</td>
<td>88%</td>
<td>90%</td>
<td>91%</td>
<td>93%</td>
<td>87%</td>
<td>90%</td>
<td>96%</td>
<td>97%</td>
<td>99%</td>
</tr>
<tr>
<td>Public Housing 1</td>
<td>57</td>
<td>20</td>
<td>43</td>
<td>88</td>
<td>79</td>
<td>140</td>
<td>178</td>
<td>101</td>
<td>91</td>
</tr>
<tr>
<td>% of Study</td>
<td>32%</td>
<td>13%</td>
<td>32%</td>
<td>37%</td>
<td>23%</td>
<td>27%</td>
<td>25%</td>
<td>22%</td>
<td>26%</td>
</tr>
<tr>
<td>Public Housing 2</td>
<td>31</td>
<td>41</td>
<td>37</td>
<td>48</td>
<td>78</td>
<td>130</td>
<td>190</td>
<td>149</td>
<td>91</td>
</tr>
<tr>
<td>% of Study</td>
<td>17%</td>
<td>26%</td>
<td>28%</td>
<td>20%</td>
<td>23%</td>
<td>25%</td>
<td>27%</td>
<td>33%</td>
<td>26%</td>
</tr>
<tr>
<td>Public Housing 3</td>
<td>13</td>
<td>17</td>
<td>14</td>
<td>34</td>
<td>88</td>
<td>82</td>
<td>91</td>
<td>51</td>
<td>77</td>
</tr>
<tr>
<td>% of Study</td>
<td>7%</td>
<td>11%</td>
<td>10%</td>
<td>14%</td>
<td>26%</td>
<td>16%</td>
<td>13%</td>
<td>11%</td>
<td>22%</td>
</tr>
<tr>
<td>Public Housing 4*</td>
<td>60</td>
<td>52</td>
<td>31</td>
<td>53</td>
<td>62</td>
<td>126</td>
<td>200</td>
<td>89</td>
<td>62</td>
</tr>
<tr>
<td>% of Study</td>
<td>34%</td>
<td>33%</td>
<td>23%</td>
<td>22%</td>
<td>18%</td>
<td>24%</td>
<td>28%</td>
<td>2%</td>
<td>18%</td>
</tr>
<tr>
<td>Public Housing 5</td>
<td>18</td>
<td>26</td>
<td>9</td>
<td>17</td>
<td>32</td>
<td>50</td>
<td>50</td>
<td>60</td>
<td>31</td>
</tr>
<tr>
<td>% of Study</td>
<td>10%</td>
<td>17%</td>
<td>7%</td>
<td>7%</td>
<td>9%</td>
<td>9%</td>
<td>7%</td>
<td>13%</td>
<td>9%</td>
</tr>
</tbody>
</table>

* Two public housing neighborhoods combined

Bans were converted to rates per 1,000 residents using annual neighborhood population estimates. Population estimates came from the 2000 and 2010 U.S. Census at the block group level. Neighborhood population data from the 2010 U.S. Census was used for 2012 estimates.
Since annual population data could not be obtained, linear interpolation procedures were used using the following formula:

\[
\frac{(2010 \text{ data} - 2001 \text{ data})}{11}
\]

If the result was a positive value, this number was added to the 2001 data up through 2012. If the result was a negative value, this number was subtracted from the 2001 data up through 2012.

Trespass Arrests

Trespass arrests capture the rate of trespass arrests per 1,000 residents by neighborhood by year. Trespass arrests from 2001-2012 were obtained from the police department overseeing KHA. Trespass arrests were converted to rates per 1,000 residents using annual neighborhood population estimates (see Bans).

Property Crime

Property crime was used as a measure of the property crime rate. *Property crime* is operationalized as the rate of Part I property crime per 500 households by neighborhood and year. Part I property crime by neighborhood and year were converted to rates using 2000 and 2010 U.S. Census number of households estimates. Household estimates by neighborhood and year were annualized using the technique cited in “Banishment” (see above). A log transformation was conducted to obtain a normal distribution.
Violent Crime

Violent crime was used as a measure of the violent crime rate. *Violent crime* is operationalized as the rate of Part I violent crime per 1,000 residents by neighborhood and year. Part I violent crime by neighborhood and year were converted to rates using population estimates. A log transformation was conducted to obtain a normal distribution.

Drug Arrests

Drug arrests were used as a measure of the drug arrest rate. *Drug arrests* are operationalized as the rate of drug arrest per 1,000 residents by neighborhood by year. Drug arrests by neighborhood and year were converted to rates using population estimates. A log transformation was conducted to obtain a normal distribution.

Concentrated Disadvantage

Concentrated disadvantage refers to the geographic concentration of poverty and associated social conditions. Using a measure of concentrated disadvantage was necessary since it has been found to influence crime in low income communities (see Parker, Stults and Rice 2005; Rosenfeld and Fornango 2012; Rosenfeld, Fornango and Rengifo 2010; Sampson and Bartusch 1998; Sampson, Raudenbush and Earls 1997). The following neighborhood-level socio-demographic variables were used for concentrated disadvantage: *median family income, percent
families with income below poverty, percent African-American, percent population with less than high school education, percent households on public assistance, unemployment rate, percent female single parent households, percent households with income below $30,000. These statistics come from the 2000 and 2010 U.S. Census and the 2008-2012 American Community Survey (ACS) 5-year Estimates. Since annual data for these variables could not be obtained, linear interpolation was used.

A single component score for concentrated disadvantage was generated using principal component analysis. Before the analysis was conducted all of the variables were transformed for normal distributions. Percent African-American was dropped from inclusion into the factor analysis because there was not enough variation across the sites and was highly skewed. The following variables were included in the final principal component analysis capturing concentrated disadvantage (α = .917): percent households on public assistance, percent female single parent households, percent less than high school education, percent families with income below poverty median family income, percent households with income below $30,000, and unemployment rate.

Divorce

Ideally, a measure of neighborhood instability would be included. Neighborhood instability is thought to lead to a neighborhood’s inability to police itself because of high residential turnover. Neighborhoods with more stability therefore should have lower crime rates while neighborhoods with a more transitory population—more neighborhood change—should have greater crime and disorder because the higher rates of residential turnover disrupt social networks. There is some
evidence for the association between neighborhood instability and crime (for example, see Stark 1987; Morenoff and Sampson 1997). Similar to \textit{concentrated disadvantage}, a principal component factor analysis was conducted to operationalize neighborhood instability. After careful assessment of the variables used as a scale of neighborhood instability a decision was made to isolate \textit{divorce rate per 1,000 residents} and have it serve as a proxy for neighborhood instability. The neighborhood data for divorce came from the 2000 U.S. Census and 2012 ACS 5 Year-Estimates and was also annualized. \textit{Divorce} was then logged transformed.

\textit{Table 3 Chapter 3 Descriptive Statistics}

<table>
<thead>
<tr>
<th>Lags1</th>
<th>Property Crime</th>
<th>Violent Crime</th>
<th>Bans</th>
<th>Trespass Arrests</th>
<th>Drug Arrests</th>
<th>Valid N (listwise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>198</td>
<td>198</td>
<td>198</td>
<td>198</td>
<td>198</td>
<td>198</td>
</tr>
<tr>
<td>Minimum</td>
<td>1.40</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>Maximum</td>
<td>2.62</td>
<td>1.576</td>
<td>2.01</td>
<td>1.99</td>
<td>1.97</td>
<td>1.97</td>
</tr>
<tr>
<td>Mean</td>
<td>1.84</td>
<td>1.03</td>
<td>0.31</td>
<td>0.67</td>
<td>1.01</td>
<td>1.01</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.26</td>
<td>0.28</td>
<td>0.64</td>
<td>0.42</td>
<td>0.39</td>
<td></td>
</tr>
</tbody>
</table>

1. Since within-year variables are treated as endogenous they are omitted.
2. Observations were obtained by taking the amount of years, eleven, multiplied by the amount of neighborhoods, eighteen.

\textbf{Analytic strategy}

\textit{Hypothesis 1.0, 1.1}

To test whether bans and trespass arrests predict reductions in the property crime rate (Hypothesis 1.0) and violent crime rate (Hypothesis 1.1) I use a pooled cross-sectional time-series design with random intercepts to accommodate within neighborhood dependence. Model 1
looks exclusively at the effect of *bans* and its lag on the dependent variable, and Model 2 includes control variables.

Hypothesis 1.2

To test whether bans and trespass arrests predict reductions in the drug arrest rate (*Hypothesis 1.2*) I again use a pooled cross-sectional time-series design with random intercepts to accommodate within neighborhood dependence. Model 1 looks exclusively at the effect of *bans* and its lag on the dependent variable, Model 2 adds *trespass arrests* and its lag, and Model 3 includes control variables. The second model was included given the idea that trespass arrests in public housing may also have a positive relationship with drug arrests albeit by being banned first.

Hypothesis 1.3

In order to test whether banishment is more likely to be used in public housing compared to non-public housing communities, a bivariate correlation is used.

RESULTS

Hypothesis 1.0
Beginning with Figures 1, 2, and 3 we can first look at how bans, trespass arrests, and overall crime has varied over time across public housing. Figures 1 and 2 clearly show that bans and trespass arrests increased in public housing after its formal use began in 2004. While Figure 3 shows that overall crime remained relatively stable over time within non-public housing communities and decreased in public housing. Of note as well is that overall crime in public housing is generally lower than the non-public housing communities used in the study.

Figure 1 Bans by Public Housing

6 These figures represent boxplots. In the boxplots: points represent outliers; the range is noted by looking at the horizontal lines, or whiskers, that extend from the box; the box represents the interquartile range; and the line within the box represents the median.
Figure 2 Trespass Arrests by Public Housing

Figure 3 Overall Crime by Public Housing
Given the overall crime rate is a measure of violent crime and property crime combined, banishment could be predicting reductions in one of these, or both of these. If we look at Figure 4, we see that since the start of banishment, property crime has consistently gone down in public housing and remained stable since 2009. The charts suggest that if banishment predicts reductions in overall crime, it may largely be explained by reductions in property crime only.

Figure 4 Property Crime by Public Housing

Based on this, a set of analyses was first conducted predicting property crime. Beginning first with the bivariate correlations (Table 4), we see that bans do have a negative relationship with property crime in the future.\(^7\) I now turn to the hypothesis testing (Table 5).\(^8\)

\(^7\) Since bans are the main focus the other variables are not discussed.
Table 4 Chapter 3 Bivariate Correlations: Property Crime

<table>
<thead>
<tr>
<th></th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property Crime</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ban***</td>
<td>-.328**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trespass***</td>
<td>.146*</td>
<td>.221**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug Arrest***</td>
<td>.251**</td>
<td>.016</td>
<td>.144*</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentrated Disadvantage</td>
<td>-.174*</td>
<td>.577**</td>
<td>-.087</td>
<td>.342**</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>-.106</td>
<td>.284**</td>
<td>.279**</td>
<td>-.038</td>
<td>-.134*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Public Housing</td>
<td>-.319**</td>
<td>.794**</td>
<td>.025</td>
<td>-.004</td>
<td>.739**</td>
<td>.000</td>
<td>-</td>
</tr>
</tbody>
</table>

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

***. Lagged variables. Unlagged variables not shown since they are treated as endogenous.

In Model 1 (p < .10) predicting property crime, we see that bans negatively predicts overall crime (β = -.061, p < .05). In other words a ten percent increase in the ban rate would decrease the property crime rate by 0.6 percent the following year. In Model 2 (p < .01) this effect remains (β = -.064, p < .10) and is suggestive of a deterrent effect. A ten percent increase in the ban rate would decrease the property crime rate by .6 percent the following year. Finally drug arrests negatively predicted reductions in property crime the following year (β = -.097, p < .01). A ten percent increase in the drug arrest rate would decrease the property crime rate by .9 percent the following year. Finally the intraclass correlation is greater than zero (rho1 = .848). In other words, eighty-four percent of the variation in property crime is explained by neighborhoods.

8 First it should be noted that since the unlagged variables in the models are treated as endogenous, unless appropriate only the lagged variables will be discussed throughout the remainder of the results. Also divorce was removed as a control variable because it failed to predict any variable and to give more power to the models.
Table 5 Multilevel Mixed Effects Linear Regression with 1-Year Lag: Property Crime

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bans</td>
<td>-0.018</td>
<td>-0.027</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>Bans-Lag</td>
<td>-0.061**</td>
<td>-0.064*</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>Trespass Arrests</td>
<td>0.084***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td></td>
</tr>
<tr>
<td>Trespass Arrests-Lag</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td></td>
</tr>
<tr>
<td>Drug Arrests</td>
<td>-0.060</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.054)</td>
<td></td>
</tr>
<tr>
<td>Drug Arrests-Lag</td>
<td>-0.098***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td></td>
</tr>
<tr>
<td>Concentrated Disadvantage</td>
<td>-0.077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.080)</td>
<td></td>
</tr>
<tr>
<td>Public Housing</td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.152)</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>-0.009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.850***</td>
<td>1.976***</td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(0.119)</td>
</tr>
<tr>
<td>Observations</td>
<td>198</td>
<td>198</td>
</tr>
<tr>
<td>Number of groups</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>chi2</td>
<td>5.865</td>
<td>25.62</td>
</tr>
<tr>
<td>p</td>
<td>< 0.10</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Hypothesis 1.1

While bans predicted decreases in property crime it is unclear what relationship bans have with violent crime. If we look at Figures 5, we see that the rate of violent crime in public housing has gone up and down since the start of banishment. According to the bivariate correlations (Table 6), bans also have a positive relationship with future violent crime.
Turning to the hypothesis testing (Table 7), Model 1 ($p < .10$) shows that bans positively predict violent crime in the same year ($\beta = .079, p < .05$) and negatively predicts violent crime.
the following year ($\beta = -.057 p < .10$). Based on this model, a ten percent increase in the banishment rate would increase the drug arrest rate by .8 percent within the same year and decrease the drug arrest rate by .5 percent the following year. In Model 2 ($p < .01$) the within year effect of bans remains significant ($\beta = -.071 p < .10$); a ten percent increase in bans would increase the violent crime rate by .6 percent the same year. Drug arrests also predicted increases in violent crime the following year ($\beta = .117 p < .01$). Finally the intraclass correlation was greater than zero ($\rho_1 = .460$). In other words, forty-six percent of the variation in violent crime can be explained by neighborhoods.

Bans predicting increases in violent crime should be qualified. While it is possible that bans could lead to increased violent crime as those who get banned become more frustrated, it is more likely that the opposite effect is occurring. In other words if violent crime in public housing increases in a year it should follow that police presence in public housing also increases which would mean that more people get stopped and banned as cops become more proactive to deal with violent crime.
Table 7 Multilevel Mixed Effects Linear Regression with 1-Year Lag: Violent Crime

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ban</td>
<td>0.079** (0.037)</td>
<td>0.071* (0.041)</td>
</tr>
<tr>
<td>Ban-Lag</td>
<td>-0.057* (0.034)</td>
<td>-0.052 (0.037)</td>
</tr>
<tr>
<td>Trespass Arrests</td>
<td>0.014 (0.053)</td>
<td></td>
</tr>
<tr>
<td>Trespass Arrests-Lag</td>
<td>-0.009 (0.047)</td>
<td></td>
</tr>
<tr>
<td>Drug Arrests</td>
<td>0.073 (0.078)</td>
<td></td>
</tr>
<tr>
<td>Drug Arrests-Lag</td>
<td>0.117*** (0.040)</td>
<td></td>
</tr>
<tr>
<td>Concentrated Disadvantage</td>
<td>0.101 (0.077)</td>
<td></td>
</tr>
<tr>
<td>Public Housing</td>
<td>-0.165 (0.116)</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>0.002 (0.008)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.012*** (0.060)</td>
<td>0.849*** (0.083)</td>
</tr>
</tbody>
</table>

Observations: 198, 198 Number of groups: 18, 18 chi2: 5.036, 63.75 p: p < .10, p < .01

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Hypothesis 1.2

In our examination of whether or not banishment predicts reductions in drug arrests, let’s first chart any observed differences in drug arrests between public and non-public housing neighborhoods. Figure 6 shows us that public housing neighborhoods have less drug arrests than the non-public housing neighborhoods. It also shows that there was an increase in drug arrests in public housing right after 2004, when banishment began, and a drop in drug arrests after 2007.
For the bivariate correlations (Table 9), bans, while negatively correlated ($r = -0.024$) was not significant.

Figure 6 Drug Arrests by Public Housing

Table 8 Chapter 3 Bivariate Correlations: Drug Arrests

<table>
<thead>
<tr>
<th></th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug Arrest</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ban***</td>
<td>-.024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trespass Arrest***</td>
<td>.161*</td>
<td>.221**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentrated Disadvantage</td>
<td>.334**</td>
<td>.577**</td>
<td>-.087</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>-.041</td>
<td>.284**</td>
<td>.279**</td>
<td>-.134*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Public Housing</td>
<td>-.016</td>
<td>.794**</td>
<td>.025</td>
<td>.739**</td>
<td>.000</td>
<td></td>
</tr>
</tbody>
</table>

*. Correlation is significant at the 0.05 level (2-tailed).
**. Correlation is significant at the 0.01 level (2-tailed).
***. Lagged variables. Unlagged variables not shown since they are treated as endogenous
Turning to the hypothesis test (Table 10), Model 1 (p < .01) shows that bans positively predicted drug arrests ($\beta = .059, p < .01$). Based on this model, a ten percent increase in the ban rate would increase the drug arrest rate by .6 percent within the same year. Since this is treated as endogenous we should be careful in interpreting the time-order of bans to drug arrests. It is conceivable that those arrested for drugs in public housing are being banned because they were caught committing drug related offenses in public housing. Furthermore it is possible that once banned you could be arrested for trespassing in the same year and subsequently charged with a drug arrest should drugs be found on you. Thus this increase could be driven by the proactivity of police as they stop more people in public housing in a given year. The lag of bans positively predicted drug arrests ($\beta = -.062, p < .10$). A ten percent increase in the drug arrest rate would decrease the drug arrest rate by .6 percent the following year. In Model 2 (p < .10), the within year effects of bans are gone while the lag remains significant ($\beta = -.079, p < .10$). A ten percent increase in the drug arrest rate would decrease the drug arrest rate by .8 percent the following year. It is likely that since trespass arrests can also lead to drug arrests that this is why the within year effects were whipped out. Nonetheless, the previous year effects remain and are suggestive of some deterrent effect. In Model 3 (p < .01), bans are no longer significant but they remain trending in the predicted direction. Finally, the intraclass correlation was greater than zero ($\rho_{1} = 0.419$); thus, 42 percent of the variation in drug arrests can be explained by neighborhoods.
Table 9 Multilevel Mixed Effects Linear Regression with 1-Year Lag: Drug Arrests

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ban</td>
<td>0.059***</td>
<td>0.050</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.033)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>Ban-Lag</td>
<td>-0.062*</td>
<td>-0.079*</td>
<td>-0.059</td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.044)</td>
<td>(0.056)</td>
</tr>
<tr>
<td>Trespass Arrests</td>
<td>0.007</td>
<td>0.076</td>
<td>0.085</td>
</tr>
<tr>
<td></td>
<td>(0.101)</td>
<td>(0.085)</td>
<td></td>
</tr>
<tr>
<td>Trespass Arrests-Lag</td>
<td>0.071</td>
<td>0.122</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.073)</td>
<td>(0.083)</td>
<td></td>
</tr>
<tr>
<td>Concentrated Disadvantage</td>
<td>0.257***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.095)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>-0.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Housing</td>
<td>-0.446**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.181)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.012***</td>
<td>0.968***</td>
<td>1.063***</td>
</tr>
<tr>
<td></td>
<td>(0.074)</td>
<td>(0.082)</td>
<td>(0.114)</td>
</tr>
<tr>
<td>Observations</td>
<td>198</td>
<td>198</td>
<td>198</td>
</tr>
<tr>
<td>Number of groups</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>chi2</td>
<td>10.47</td>
<td>8.417</td>
<td>24.70</td>
</tr>
<tr>
<td>p</td>
<td>< 0.01</td>
<td>< 0.10</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Hypothesis 1.3

Looking at the bivariate correlations (Table 11), we see that banishment, bans and trespass arrests are correlated with public housing in the expected direction. Banishment is more likely to be used in public housing in comparison to non-public housing as evidenced by Figure 7. Further evidence of this is found in Figure 1 which shows that since the start of banishment in 2004, the rate of bans has gone up considerably. While we might expect that to be the case simply from the fact that non-public housing neighborhoods in this study do not issue bans, non-public housing neighborhoods are fully capable of arresting people for trespassing as evidence by Figure 8. Still
despite non-public housing neighborhoods using trespass arrests, Figure 2 showed that trespass arrests generally increased in public housing since the start of banishment. The use of trespass arrests outside of public-housing is likely explained by a few neighborhoods with businesses in them (i.e. a downtown neighborhood) where people can be arrested for trespassing after shoplifting or for homeless populations being in certain areas with posted no-trespassing signs.

Table 10 Chapter 3 Bivariate Correlations: Banishment by Public Housing

<table>
<thead>
<tr>
<th></th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Housing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banishment</td>
<td>.500**</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bans</td>
<td>.811**</td>
<td>.735**</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>Trespass Arrests</td>
<td>.060</td>
<td>.826**</td>
<td>.251**</td>
<td>.</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).

Figure 7 Banishment by Public Housing
Figure 8 Trespass Rate by Public Housing

DISCUSSION

Did bans predict reductions in crime? Results showed that bans negatively predicted property and violent crime. In the context of other broken windows policing strategies, such a finding adds to the research showing that policing disorder can reduce crime (Braga et al. 2015). Moreover, drug arrests negatively predicted property crime and positively predicted violent crime which gives partial support to studies that drug arrests predict increases in either violent and property crime or both (Benson et al. 1992; Corman and Mocan 2005; Resignato 2000; Shepard and Blackley 2005; Werb et al. 2011). Despite support for bans predicting reductions in property and violent crime the magnitude of such reductions are small at best. However, we
should have expected this considering there were more non-public housing neighborhoods in the study which would take away some of the power that bans would have in reducing crime in public housing. Still, this finding corroborates other research findings. Indeed, Braga and colleagues’ (2015) meta-analysis of thirty broken windows strategies found that such strategies have modest returns.

Under deterrence and opportunity theories, reductions in property crime would not be surprising given the argument concerning how property offenders take into account the threat of sanctions (Decker, Wright and Logie 1993; Matsueda, Kreager and Huizinga 2006; Piquero and Rengert 1999). If property offenders wish to offend in public housing, being banned would limit the opportunity to commit such offenses should offenders feel as though there is an increased likelihood of being caught on the property and arrested for trespassing. Still, reductions in property crime could be a function of the incarceration of a handful of offenders who committed the disproportionate share of property offenses in public housing. This would be supported by research that suggests that a small fraction of the population accounts for a very high percentage of crime (Farrington and West 1990; Farrington, Piquero and Jennings 2013; Wolfgang, Figlio and Sellin 1972). Beyond incarceration, should a property offender be a resident of public housing, there would be grounds for an immediate eviction, which would remove the offender from public housing in the same manner as incarceration would.

In addition, the evidence suggested bans reduce violent crime in the future, albeit modestly, and that bans and violent crime share a positive relationship within the same year. While it is possible that bans could predict increases in violent crime in the same year, given the yearly data used its entirely likely the opposite effect was driving this finding. That is, it is possible that increases in violent crime lead to increases in bans within the same year. These
findings also suggest that in comparison to what bans can do to property crime, violent crime is not affected by bans in the long term and instead we see fluctuations in violent crime that bans play a minor role in keeping stable. Given the inability of violent crime to be consistently reduced in public housings, public housing agencies should look into additional methods to deal with violent crime.

Given the ability of bans to produce drug arrests, this study also asked whether bans lead to increases in drug arrests. The evidence suggests that increases in bans predict increases in drug arrests in the same year and decreases in drug arrests the following year. It is well documented how profitable to police banishment can be for finding drugs (see Beckett and Herbert 2010; Fagan et al. 2012), so it is not too surprising that bans could in fact predict increases in drug arrests. However, we should not conclude that drug arrests do not decrease at all due to bans since there was evidence in the models that bans predict reductions in drug arrests the following year which is suggestive of a deterrent effect. Given the fluctuation in drug arrests in public housing, drug arrests may increase again as new individuals get banned for drugs or get charged with a drug offense because they were trespassing which could be because they were banned. This relationship is explored further in Chapter 3.

From a policy perspective, PHAs could view an increase in drug arrests as a victory and not a defeat. After all, one of the justifications made by PHAs is to use banishment to combat drugs. This implies that banishment is to be used to arrest people for drugs that otherwise would not have been found. However, more testing will need to be done to measure how effective banishment is at securing drug arrests. Similar to testing how effective stop-and-frisk in New York City is at finding weapons or drugs, or hit rate analyses (see Fagan 2010; Ferrandino 2013; Gelman et al. 2007), the same can be done for banishment. If bans are predicting increases in
drug arrests, how many people have to be stopped in public housing for a drug arrest to occur, and more specifically how many trespass arrests lead to drug arrests? Still, PHAs are likely to dismiss any hit rate analyses of banishment on the grounds that they are more concerned with keeping people out; producing drug arrests is an added benefit.

The final question addressed by this study was whether banishment is more likely to be used in public housing. Results also showed that banishment is more likely to be used in public housing in comparison to other neighborhoods in the study. Yet this appears to be more in relation to banning people alone. As far as trespass enforcement is concerned, there is evidence that such arrests are more likely to occur in majority racial and ethnic public housing communities (Fagan et al. 2012). However, the following study evidence that trespass arrests can occur just as much if not more in other communities, even those that are not made up of majority minority households. The use of trespass arrests in other areas was likely due to communities, like downtown, where businesses and parks are located that enforce trespassing. For trespass arrests, these results reflect that trespass arrests are simply more achievable in certain areas than others like traditional residential neighborhoods with individually owned homes.

Nonetheless, PHAs have decided to invest in a policy that sounds promising from a crime control perspective, but may ultimately subject entire racial and ethnic communities to a policy which arguably does not provide substantial crime control benefits. This study found that bans predict reductions in property and violent crime, but the predicted reduction is minimal at best. While other areas may use trespass arrests, the exposure to bans was concentrated in the majority minority public housing communities. This adds to the debate as to whether such policies are more racially discriminatory than effective crime-control mechanisms. Furthermore, even the evidence that points to bans increasing drug arrests may need to be carefully weighed. While
PHAs, police, and residents might back a policy that finds drugs, the racial disparity that exists in drug enforcement and sentencing (see Beckett, Nyrop and Pfingst 2006; Geller and Fagan 2010; Mitchell and Caudy 2015; Mustard 2001; National Research Council 2014) calls attention to the consequences of banishment. In other words, policies like banishment that operate in communities disproportionately comprise of racial and ethnic minorities may actually contribute to the persistent racial disparities in drug enforcement and sentencing. Ultimately, PHAs, police departments and residents will have to decide whether the small returns are worth these social costs.

The current study is not without its limitations. First, I did not control for spatial lag, or the idea that contiguous areas influence each other’s rates of crime or arrests which could also be used to determine if bans displace crime (see Baller et al. 2001; Cohen and Tita 1999; Messner et al. 1999; Rosenfeld and Fornango 2014; Rosenfeld, Fornango and Rengifo 2007; Sampson and Raudenbush 2001; Weisburd et al. 2004). Under the context of public housing, this may not be important; the goal of banishment is to keep crime out of public housing, so if crime rates increase in non-public housing communities as a result of banishment, it is of no concern to PHAs. However, while public housing officials may not care if banishment displaces crime, police departments would benefit from knowing such information to develop mechanisms for dealing with displacement. Likewise, PHAs and police departments should be interested in whether other communities push crime to public housing.

Second, this study did not utilize calls-for-service, police-initiated or citizen-initiated, which could help determine both the proactivity of police officers and their visibility in the community. In a study of the consequences of assigned beats, Kane (1998) found that officers on a permanent beat increase police-initiated calls-for-service. Since community policing calls for
accountability on the part of the officer to their assigned beat, one would expect this public housing community to have more proactive officers via more police-initiated calls for service. Citizen-initiated calls-for-service may also be higher in public housing if residents know community police officers are likely to respond, therefore increasing police presence in public housing communities only. Finally, while PHAs may be more concerned with long term reductions in crime that comes from banishment, building models with monthly data would help solve the endogeneity issues from aggregate, within-year models and determine short term effects of banishment.

Of importance for the sake of this test of broken windows theory is that it utilized variables capturing the context of local conditions. In the case of banishment, it calls forth a civil punishment, bans, which are unique to the policy and to the site. Attempts to address crime reduction strategies where public housing communities are included must account for differences in how public housing communities are policed versus non-public housing communities. The use of bans in this study is something exclusive to public housing, and this can only be explained by banishment.

CONCLUSION

Broken windows policing has garnered national attention since its rise in New York City in the 1990s. In a post-Ferguson society, broken windows policing has reignited debates surrounding its efficacy and constitutionality. PHAs have instituted their own style of broken windows policing, banishment, which targets non-residents by banning them and arresting them for trespassing if they violate their bans. In the first study to measure the efficacy of banishment, it
was evidenced that this brand of broken windows policing does work to reduce crime, albeit very small reductions. While PHAs, police, and residents may view any reductions as a victory, the social costs must be weighed to determine if such reductions are worth it. Yet, it is still unclear how banishment is operating at the individual level. Thus, one question still remains: does it deter people from coming back into public housing?
CHAPTER 4: BANISHMENT, DETERRENCE, AND CRIME PREVENTION

Abstract

While researchers have empirically studied deterrent effects, they have failed to address banishment’s deterrent effects. Crime reduction studies, while important to banishments efficacy in public housing, would largely ignore a crucial element justifying banishment among numerous PHAs, deterrence. This study is the first to explore how effective banishment policies have been at deterring criminals. It specifically looks at what effect banning an individual has on that individual’s criminality. This study also explores whether the enforcement of banishment falls more on racial and ethnic minorities. While banishment may produce a deterrent effect, it may be at the expense of persons of color and would warrant a critical discussion of racially selective enforcement and its impacts. For the analysis: descriptive statistics of pre- and post-ban offenses in public housing of a random sample of individuals who had been banned from KHA property were analyzed to determine if bans deter individuals from re-offending in public housing; binary logistic regression is used to determine who is more likely to be deterred as a result of being banned; and descriptive statistics are used again to determine if police disproportionately ban African-Americans. Results find that being banned does not deter banned individuals from offending in public housing after they have been banned, but that drug offenders can be deterred. Findings also showed that African-Americans are not disproportionately banned, but nearly all of those banned are African-American males. Implications are discussed that highlight the dynamic between banishment providing crime control benefits and having social consequences on those who are banned.
INTRODUCTION

DETERRENCE

Nagin (2013:204) defines deterrence as the behavioral response to the perception of sanction threats. Deterrence has been a popularized logic of crime control since the workings of Bentham (1789) and Beccaria (1764). Under deterrence, punishment should not serve an egalitarian model of retribution, but should serve as a utilitarian model that seeks to prevent future criminality. The notion of punishment being capable of preventing future criminality is further based on a rational choice perspective of crime. Thus, people will not commit crime to the extent that the costs of committing such crime (i.e. punishments) outweigh the benefits (i.e. rewards). Finally, in order for the costs of punishment to have any bearing on the individual, punishment should be certain, swift, and severe (Beccaria 1764; Bentham 1789).

We can further differentiate deterrence as either general or specific. General deterrence refers to the omission of crime as a result of the threat of punishment, while specific deterrence refers to in the “failure of general deterrence—the effect on re offending, if any, that results from the experience of actually being punished” (Nagin 2013:200). In a review of the research on general deterrence, Nagin (2013) arrives at two conclusions: (1) There is little evidence that increased sentence lengths produces general deterrent effects; and (2) increasing the risk of apprehension through policing efforts that increases visibility can deter crimes. For specific deterrence, Nagin and colleagues (2009) find that imprisonment provides little added specific deterrent effect in comparison to noncustodial sanctions. Overall, “evidence in support of the
deterrent effect of various measures of the certainty of punishment is far more convincing and consistent than for the severity of punishment” (Nagin 2013:201).

BANISHMENT AND DETERRENCE

Since the conception of deterrence as a crime control perspective, attention has been given to the ability of *police officers*, not punishment, to prevent crime. A deterrence perspective that takes police into account acknowledges that potential offenders weigh the likelihood of being apprehended when deciding to offend or not. Thus, if potential offenders perceive the likelihood of being arrested as high, then the likelihood of committing an offense is low, and vice versa. Indeed, Nagin (2013), when arriving at the conclusion that certainty of punishment produces the most deterrent effect, acknowledges evidence that demonstrates that the certainty of apprehension largely drives this effect. The inherent policy implications of such a finding emphasizes higher police visibility that would trigger higher perceptions of arrest likelihood (Cohen and Ludwig 2003; Durlauf and Nagin 2011; Levitt 200; Shi 2009).

For banishment to have a deterrent effect, it relies on the ability of the policy and police to keep would-be offenders off public housing property through bans and trespass arrests so that they are prevented from committing crime(s) *within* public housing. In other words, being banned and the accompanying perceptual likelihood of apprehension for trespassing may prevent future crime in public housing. To begin this process, the threat of arrests for trespassing comes in the form of a formal civil sanction, banishment. When someone is banned in KHA, they are issued a ban notice detailing the reason why they are being banned and also informing them that a violation of the ban notice will result in an arrest for trespassing. Per the KHA ban notice, “If
any law enforcement official sees or apprehends you on [KHA properties you are banned from] you may be subject to arrest for trespassing and found guilty of a Class 1 misdemeanor…”

Should a banned individual reduce or completely eradicate criminal behavior in public housing after they have been banned, we can infer that bans could have created a general deterrent effect through the certainty of apprehension. Conversely, should a banned individual continue to commit criminal behavior in public housing after being banned, it is clear that the ban failed to create a general deterrent effect. Given KHA adopts a community policing strategy which promises high police visibility; it is likely that bans have produced a general deterrent effect mediated by the certainty of apprehension.

BANISHMENT, DETERRENCE, AND RACE

Notwithstanding the ability of banishment to produce a deterrent effect, such efforts may dramatically affect racial and ethnic minorities at the individual level. Through banishment, law enforcement is afforded an additional avenue with which to act on their non-behavioral suspicions of racial and ethnic minorities (Alpert et al. 2005), reasonable suspicion of trespassing. The ease with which racial and ethnic minorities can be reasonably suspected of committing trespass occurs in two ways. Firstly, law enforcement have been privileged by the majority of courts in using categorical judgments, specifically “high crime area” designations, to justify stops (Bacigal 2011; Fagan and Geller 2015; Ferguson and Bernache 2008; Hanink 2013; Harris 2012; Kinports 2010). Since lower income areas, such as inner city public housing, are perceptually and statistically associated with higher levels of crime and made up of predominantly racial and ethnic minorities (Krivo and Peterson 1996; Massey and Denton 1993;
Sampson and Raudenbush 1999, 2004; Thompson 1999), the use of “high crime area” will naturally lead to both justifying trespass stops and targeting of racial and ethnic minorities in public housing (see Fagan 2010, 2012; Fagan and Geller 2015)." Secondly, the policy can be enforced without the need of a “high crime area” to justify the stop, since the policy needs nothing more than one’s presence on the property to create reasonable suspicion. If law enforcement does not know whether you live in public housing, they can *always* assume you are a nonresident, stop you to begin a trespass investigation, and decide whether or not they will ban you or arrest you for trespassing. These loopholes significantly elevate the probability that a highly likely that racial or ethnic minority will be questioned by police in public housing.

Community policing used in conjunction with banishment may aid in deterrence, but these policies may also complicate matters of race and ethnicity. First, community policing promises high police visibility, which would likely increase the exposure of law enforcement to racial and ethnic residents and nonresidents of public housing. Since officers are more likely to view racial and ethnic minorities with suspicion (Alpert et al. 2005), community policing efforts that increase visibility would also increase the opportunities for police officers to view more racial and ethnic residents and nonresidents as suspicious. We could likely expect *more* banishment enforcement due to community policing that may be well intentioned, but nevertheless allows for more racial and ethnic residents and nonresidents to be exposed to banishment than would be if community policing were not in place.

9 While page 11 notes that research on crime in public housing has shown that these communities may not be the hot beds of crime they are depicted to be (Haberman, Groff and Taylor 2013; Ireland, Thornberry and Loeber 2003), public housing communities may in many cases still have high crime rates relative to other neighborhoods but still have lower crime rates than other low-income, high-crime areas.
Community policing complicates matters of race and ethnicity for another reason—permanent beat assignments lead to knowledge of who is and who is not a resident (Cordner 1999). Kane's (2000) finding that a permanent beat assignment leads to increased police-initiated investigations supports the notion that officers would likely initiate more banishment investigations on nonresidents and not interfere with residents as they gradually establish responsibility for their assigned beat. While such knowledge may help in creating deterrence since potential trespassers would potentially become keen to the fact that officers know they are not residents and potentially that they are banned, it may also contribute to selective enforcement of racial and ethnic nonresidents. Given the research that people are racially tied to their social networks at the neighborhood level (see McPherson, Smith-Lovin and Cook 2001), we should expect that the overwhelming majority of those banned and arrested for trespassing in public housing areas with large populations of racial and ethnic minorities are racial and ethnic minorities. Of course, while public housing neighborhoods exposed to banishment may very well be made up of predominately racial and ethnic minorities, a justification of racially and ethnically selective banishment enforcement that rests on this fact still has to confront the impact of banishment on racial and ethnic minorities as a whole since this practice is not likely to be enforced equally across all public housing neighborhoods (see Fagan et al. 2012, and Chapter 2).

Another issue with banishment that harms racial and ethnic minorities is that it assumes all those banned from public housing may commit crime in public housing if left unguarded. That is, it neglects to reason that those who are banned may be returning to public housing simply to visit their friends and family. A few cases brought to the courts have at least expressed this very issue. In Commonwealth v. Hicks (2002), Hicks was arrested for trespassing, after being banned twice, for delivering diapers to his child’s mother. In Jason Allen D. (1999), Jason Allen
D. was banned, and then later arrested for trespassing after standing with his cousin on public housing property. Considering banishment in public housing is likely used in public housing communities of color, the policy may create a situation that deprives racial and ethnic minorities from being with their family. Policies that deny access to one’s family and from possibly raising their children creates dehumanizing experiences with police and normalizes police confrontations with minorities all in the name of deterrence.

While researchers have empirically studied deterrent effects (Heaton 2010; Johnson and Raphael 2012; Levitt 1996; Loftin and McDowall 1984; Ross 1973; Spelman 2000; Webster, Doob and Zimring 2006), they have failed to address banishment’s deterrent effects. Crime reduction studies, while important to banishments efficacy in public housing, would largely ignore a crucial element justifying banishment among numerous PHAs, deterrence. This study is the first to explore how effective banishment policies have been at deterring criminals. It specifically looks at what effect banning an individual has on that individual’s criminality. This study also explores whether the enforcement of banishment falls more on racial and ethnic minorities. While banishment may produce a deterrent effect, it may be at the expense of persons of color and would warrant a critical discussion of racially selective enforcement and its impacts.

My research agenda generates four substantive and testable questions for Part II:

2.0) Does banishment deter the banished from committing crime in public housing communities?

2.1) Are banned individuals more likely to be deterred from offending in public housing if they were banned by a community police officer?

2.2) Are drug offenders more likely to be deterred from offending in public housing after being banned?
2.3) Are African-Americans disproportionately targeted for banishment?

These questions and the review of previous research on banishment and deterrence generate the following hypotheses:

Hypothesis 2.0: Banishment acts as a deterrent in public housing.

Hypothesis 2.1: Banned individuals are more likely to be deterred if they were banned by a community resource officer.

Hypothesis 2.2: Pre-ban drug offenders are more likely to be deterred in public housing after they are banned.

Hypothesis 2.3: Relative to the percentage of KHA that is African-American, African-Americans are more likely to be banned and arrested for trespassing.

METHODS

Sampling

This study relies on a stratified random sample of individuals who were banned between 2004 and 2012. To generate the sample it was necessary to gather all those who were banned during this period. The electronic ban list has an electronic report of those that have been banned that includes name, date of birth, ban date (the date the individual was banned), banned from (all KHA communities or specific communities), and banning officer (name of the officer that banned the individual). This report cannot sort the information by any of these characteristics but can be exported to a .pdf reader. Once exported to a .pdf reader, it was exported as an excel file and cleaned to eliminate bans that presented problems for the study. Bans that were eliminated
from the population included: (1) Bans that had bad “ban dates” (e.g. put the birth date instead of a ban date); (2) Had no birth date or banning officer;10 and (3) all 2013 and 2014 bans. The final ban population was set at 3,258. A stratified random sample of 346 (95 percent C.I.) was selected to be used.

To generate the stratified random sample, bans were sorted by the ban date and placed into separate excel files by year of the ban date (i.e. 2004 bans in one file, 2005 bans in one file, etc.). Then a sample size for each ban year was accomplished using proportionate stratification with the equation:

$$n_h = (\frac{N_h}{N}) \cdot n$$

With a target sample of 346 individuals and a total ban population of 3258 the following sample sizes are generated: 2004, n = 21; 2005, n = 18; 2006, n = 15; 2007, n = 27; 2008, n = 41; 2009, n = 61; 2010, n = 77; 2011, n = 48; 2012, n = 37. Next, each ban year file was randomly sorted using excel function “=RAND()”. This procedure randomly sorted banned individuals within each year. Members were then selected based on the sample size needed for that ban year. For example, for 2004, the first 41 banned individuals were chosen for the sample. This method was then repeated for each year. During data collection, it was determined that other bans needed to be eliminated from the sample. Bans that were eliminated from the final sample included: (1) those who were incarcerated up to 3 years or more after their ban for an arrest incurred during the ban;11 (2) any person who was not 21 when they were banned;12 and (3) any person who was banned multiple times in which case only their first ban was kept and any later bans were

10 Birth date and banning officer were used for control variables.
11 Since the analysis looks at offenses up to three years after being banned if someone was incarcerated for at least three years as a result of something they did to get banned they were omitted. To determine if someone met this criteria their sentencing information was located via they city public court case website which denotes whether an offense resulted in a jail or prison sentence and the length of the sentence. If they met this criterion they were replaced with a person not in the sample whose ban date began on or the day after the person they replaced.
12 Since the analysis looks at offenses occurring three years before being banned, it was necessary to ensure the youngest someone could have been was 21 so they would have adult-only offenses recorded.
replaced with a person not in the sample whose ban date began on or the day after the person they replaced.

Data collection

Data comes from the ban list and the police department’s arrest program Intergraph Law Enforcement Automated Data Systems (ILEADS). Information needed from the ban list included the name of the banned individual, date of birth, ban date, banning officer, and the number of times banned. This information was uploaded into an excel spreadsheet during the sampling process.

A person’s name and date of birth were used to search their offense history in ILEADs. Once the person was found, I recorded information for all offenses committed three years prior to being banned and three years after being banned. This three year pre- and post-ban period was used based on the three year window that defines recidivism used by the National Institute of Justice (see NIJ.gov). If an offense fell within this window I recorded the type of crime it was, the date of the offense, and the location of the offense. The following 16 crimes were coded: assault on law enforcement officer, resisting arrest, possession of drugs, sale of drugs, simple assault, aggravated assault, robbery, burglary, murder, sex crimes (i.e. rape, sodomy, carnal knowledge), domestic assault, larceny, stolen vehicle, arson, trespassing, gun offenses. To help ensure enough offenses were generated for analysis, all offenses one committed during any incident event were recorded. While common to report only the most serious criminal offense during a criminal event, as the police do when reporting for the FBI’s Uniform Crime Reports, this would leave out offenses that are important to the logic of banishment. For example,
banishment allows the ability for police to arrest banned individuals for trespass offenses in public housing. If someone was arrested for both drug and trespass offenses, it is entirely possible—and, perhaps, likely—that such drug arrest was executed because they were arrested for trespassing first. The same is true for gun related charges incurred as a result of trespass arrests. In such cases, trespassing offenses would be omitted since they would be considered less serious. Therefore, any Part I offenses, drug offenses, gun offenses, and trespass offenses committed during any criminal event were recorded to help capture how banishment operates and to reflect the various types of offenders. Offense location was coded 0 and 1 for nonpublic-housing arrests and public housing arrests, respectively. Addresses of public housing neighborhoods came from a KHA official. Offense dates were used to ensure only offenses within a person’s six year window were recorded and to determine whether offenses were a pre-ban offense or post-ban offense for key variables.

Measures

Deterrence

Deterrence measures whether someone committed no offenses in public housing in the three years after being banned. Since the goal of the policy is to keep banned individuals from entering public housing property, it follows that once you are banned, PHAs expect that you should not commit any more offenses in public housing, including trespassing. Deterrence is operationalized as a dichotomous variable. It is coded (0) if an individual committed any offense in public housing after being banned and coded as (1) if the individual was not arrested for
committing an offense in public housing after being banned. Sixty-three percent of the sample was deterred.

Community Police Officer

Community police officer is a dichotomous variable capturing whether one was banned by a non-community police officer or a community police officer. KHA provided list of officers who worked in the neighborhood from 2004-2012. If the banning officer matched one of these names the case was coded a 1 for banned by a community police officer; if the officer was not on the officer list, the case was coded as a 0 for banned by a non-community police officer. Seventy-five percent of the sample was banned by a community police officer.

Pre-Ban Drug Offender

Pre-ban drug offender is conceptualized as whether the banned individual was a drug offender in the three years prior to being banned. It is operationalized as a dichotomous variable with committed no drug offense in the three years prior to being banned coded (0), and committed a drug offense in the three years prior to being banned coded (1). Nearly 25 percent of the sample was a pre-ban drug offender.

Pre-Ban Public-Housing Offender and Pre-Ban Nonpublic-Housing Offender
Pre-ban public-housing offender is conceptualized as whether the banned individual committed the *majority* of offenses in public housing in the three years prior to being banned. It is operationalized as a dichotomous variable for other (0), and pre-ban public-housing offender (1). Pre-ban nonpublic housing offender is conceptualized as whether the banned individual committed the *majority* of offenses outside of public housing in the three years prior to being banned. It is operationalized as a dichotomous variable for other (0) and nonpublic-housing offender (1). These variables were calculated by subtracting the total pre-ban public housing offenses from the total pre-ban nonpublic-housing offenses. A negative score reflects someone who committed the majority of his or her offenses in public housing. A positive score was reflective of someone who committed the majority of their offenses outside of public housing. Nearly 23 percent of the sample was a pre-ban public-housing offender, and nearly 30 percent of the sample was a pre-ban nonpublic-housing offender.

Pre-Ban Non-Offender

Pre-ban non-offender is someone who did not commit any offenses in the three years prior to being banned. This variable was generated by recording the total offenses committed up to three years prior to being banned. It was dichotomized as 0 for committed one or more offenses and 1 for committed no offenses. It should be noted that while this variable captures those who did not offend during the three year period prior to being banned, it does not necessarily suggest that the person did not offend at all in their life. A little over 43 percent of the sample was a pre-ban non-offender.
Control Variables

A series of control variables were used that included: total pre-ban public-housing offenses, total pre-ban nonpublic-housing offenses, post-ban trespass offender, wave, age, gender, and race. Total pre-ban public housing offenses refers to the total number of offenses committed in public housing in the three years prior to being banned. This continuous variable was generated by recording the offenses committed in public housing in the three years prior to being banned. Total pre-ban nonpublic-housing offenses refer to the total offenses committed outside of public housing in the three years prior to being banned.

Post-ban trespass offender is a dichotomous variable noting whether someone committed a trespass offense in public housing in the three years after being banned. It is coded 0 for not a post-ban trespass offender and 1 for a post-ban trespass offender. While any arrest in public housing incurred after being banned is suggestive of not being deterred, controlling for this will help determine what is driving banned individuals to not be deterred. Since banning people easily allows for trespass arrests to occur, it is possible that what is explaining why banned individuals have not been deterred is that they are simply being arrested for trespassing. A little over 28 percent of the sample was a post-ban trespass offender.

Wave is the time period in which the person was banned to capture whether someone was banned during the early, middle, or later stages of the banishment policy’s life span. It was operationalized as either: being banned in 2004-2006 (wave 1); 2007-2009 (wave 2); or 2010-2012 (wave 3). Nearly 16 percent of the sample was banned between 2004 and 2006, 37 percent between 2007 and 2009, and 47 percent between 2010 and 2012.
Finally, some demographic characteristics of the banned individuals were included. Age is a continuous variable noting the age at which the person was banned. It was calculated by using the date of birth and the date they were banned. Gender was a dichotomous variable recorded using ILEADS and coded female (0) and male (1). Over 82 percent of the sample was male. Race was also recorded using ILEADS and coded other (0) and African-American (1). A little over 99 percent of the study was African-American.

<table>
<thead>
<tr>
<th>Table 11 Chapter 4 Descriptive Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Deterred</td>
</tr>
<tr>
<td>Officer</td>
</tr>
<tr>
<td>Pre Ban Drug Offender</td>
</tr>
<tr>
<td>Pre Ban PH Offender</td>
</tr>
<tr>
<td>Pre Ban Non PH Offender</td>
</tr>
<tr>
<td>Pre Non Offender</td>
</tr>
<tr>
<td>Pre Ban PH Total</td>
</tr>
<tr>
<td>Pre Ban Non PH Total</td>
</tr>
<tr>
<td>Wave</td>
</tr>
<tr>
<td>Post Ban Public Housing</td>
</tr>
<tr>
<td>Trespass Offender</td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>Age</td>
</tr>
</tbody>
</table>

Analytic strategy

To test if being banned deters banned individuals (Hypothesis 3.0), the amount of public housing offenders before being banned is compared with the amount of public housing offenders after being banned. To test whether those banned by a community police officer or whether pre-ban drug offenders are more likely to be deterred (Hypotheses 3.1, and 3.2), a binomial logistic...
regression was used. The dependent variable is deterred and the independent variables are community police officer, pre-ban drug offender, pre-ban public housing offender, pre-ban nonpublic-housing offender, pre-ban non-offender, total pre-ban public housing offenses, total pre-ban nonpublic-housing offenses, and control variables. Finally, Hypothesis 3.3 will compare the percent of the KHA population that is African-American between 2004 and 2012 with the percent of African-Americans banned between 2004 and 2012.

RESULTS

Hypothesis 2.0

In comparing the percent of those who committed any offense in public housing before they were banned with the percent of those who committed any offense in public housing after they were banned (Figure 9) we see that the number of those who committed any offense in public housing increased after being banned, from 31.5 percent (n = 109) to 36.7 percent (n= 127); or a 16.5 percent increase. This suggests that being banned did not deter criminals. Given the way deterrence is defined in this study (committing no offenses in public housing after being banned), a looser definition can take into account whether there were at least banned individuals with reductions in offenses committed in public housing after being banned. Looking only at those who decreased the number of offenses committed in public housing after being banned (Figure 10), we see that 21 percent (n = 72) of the sample did at least reduce the amount of offending in public housing after being banned; however, 29 percent (n = 100) of the sample increased their
offending after being banned. Going further, 18.8 percent (n = 65) of the sample reduced their offenses in public housing after being banned to zero (Table 13).

Figure 9 Percent Committed Any Offense
Figure 10 Percent No Difference, Increased, or Reduced Offending in Public Housing after Being Banned

Table 12 Cross Tabs: Pre and Post Ban PH Offender

<table>
<thead>
<tr>
<th></th>
<th>Not a Post-Ban PH Offender</th>
<th>Post-Ban PH Offender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not a Pre-Ban PH Offender</td>
<td>154</td>
<td>83</td>
</tr>
<tr>
<td>Percent of Total</td>
<td>45%</td>
<td>24%</td>
</tr>
<tr>
<td>Pre-Ban PH Offender</td>
<td>65</td>
<td>44</td>
</tr>
<tr>
<td>Percent of Total</td>
<td>19%</td>
<td>13%</td>
</tr>
<tr>
<td>n = 346</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limiting the analysis to strictly changes in offenders neglects to consider changes in offenses committed in public housing after being banned. While the amount of offenders could increase, the amount of offenses could still decrease. Looking at the change in number of offenses (Figure 11) we see that within public housing, banned individuals committed 157 offenses in public housing prior to being banned and 257 offenses in public housing after being
banned; a 63 percent increase. By comparison, offenses committed outside of public housing increased as well, from 219 before being banned to 241; a 10 percent increase.

Figure 11 Pre and Post Ban Totals by Public Housing

Naturally, it’s worth questioning whether a certain offense is driving such dramatic increases in both offenders and offenses in public housing after being banned. Since banishment allows for a specific offense to manifest, trespassing, it is possible that trespassing is driving these increases. First, the amount of trespass offenses in public housing prior to being banned to after being banned increased from 44 to 179 (Figure 12); a 307 percent increase. Of the 257 offenses committed in public housing after being banned, 179 (70 percent) were trespass offenses and 125 (49 percent) were trespass offenses committed by a chronic trespasser (2 or more trespass offenses). Furthermore, the number of trespass offenders increased from 40 prior

13 Officers may charge someone with a trespass offense in public housing before they are banned, but this far harder to do and requires them to be willing to risk charging them without them being banned first.
to being banned to 98 after being banned; a 140 percent increase (Figure 13). Consider also that there were 127 individuals who offended in public housing after being banned, which means 77 percent (n = 98) of those who offended after being banned were trespass offenders. If we were to take out trespass offenses committed in public housing, the number of those who committed an offense in public housing decreased after one was banned from 25.1 percent to 16.5 percent, a 34 percent decrease (Figure 14). A closer look at two types of offenders (Figure 15) shows that this decrease is driven by both decreases in drug offenders and property or violent offenders. Therefore, while post-ban trespass offenders went up, drug offenders and property or violent offenders went down. Hypothesis two and three will look further at the role of trespassing in determining who was deterred.

Figure 12 Pre and Post Ban Trespass Offenses by Public Housing
Figure 13 Pre and Post Ban Trespass Offenders in Public Housing

Figure 14 Pre and Post Ban Committed Any Offense w/o Trespass Offenses
Hypothesis 2.1 and 2.2

Looking at the bivariate correlations (Table 14), we see that community police officer is not significantly correlated with deterred, and negatively related ($r = -.040$). Pre-ban drug offender is also not significant but positively related to being deterred ($r = .022$). Only post ban trespass offender ($r = -.812, p. < .01$) and gender ($r = -.116, p. < .05$) were significantly correlated with being deterred, and both were negatively related to deterrence These correlations indicate that, as discussed above, trespass offenders are not likely deterred and males are less likely to be deterred than are females.
Turning to the binary logistic regression (Table 15), we see that pre-ban drug offender does positively predict being deterred ($\beta = 1.38$, $p < .05$). For a pre-ban drug offender, the odds of being deterred are 4.0 times larger than the odds of a pre-ban nondrug offender being deterred. Pre-ban nonpublic-housing offender ($\beta = 2.22$, $p < .10$) and pre-ban non-offender ($\beta = 2.11$, $p < .10$) both positively predict being deterred. The odds of being deterred for someone who committed the majority of their offenses before being banned outside public housing was 9.19 times larger than the odds of someone who was a pre-ban public housing offender, pre-ban non-offender, or someone who committed equal amounts of crime in public housing and nonpublic-housing being deterred. Similarly, the odds of being deterred for someone who was not an offender before being banned was 8.23 times larger than the odds of someone who offended before being banned. Being banned by a community police officer does not significantly predict being deterred. Finally, being a post-ban public housing trespass offender negatively predicted being deterred ($\beta = -6.68$, $p < .001$). This is not surprising given that any offense committed in
public housing after being banned means you were not deterred. However, it signals why there were not more deterred offenders after being banned. Apparently, a segment of banned individuals could not stay away from public housing, whether to offend or not. By noting trespass offenses, results capture that a large segment of banned individuals come back and receive a trespass charge.

Table 14 Binary Logistic Regression Predicting Deterred

<table>
<thead>
<tr>
<th></th>
<th>(1) Logit coeff</th>
<th>(2) Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.Community Police Officer</td>
<td>-0.819</td>
<td>0.441</td>
</tr>
<tr>
<td></td>
<td>(0.551)</td>
<td>(0.243)</td>
</tr>
<tr>
<td>1.Pre Ban Drug Offender</td>
<td>1.380**</td>
<td>3.974**</td>
</tr>
<tr>
<td></td>
<td>(0.687)</td>
<td>(2.732)</td>
</tr>
<tr>
<td>1.Pre Ban PH Offender</td>
<td>0.632</td>
<td>1.880</td>
</tr>
<tr>
<td></td>
<td>(1.110)</td>
<td>(2.087)</td>
</tr>
<tr>
<td>1.Pre Ban Non PH Offender</td>
<td>2.218*</td>
<td>9.185*</td>
</tr>
<tr>
<td></td>
<td>(1.281)</td>
<td>(11.77)</td>
</tr>
<tr>
<td>1.Pre Ban Non Offender</td>
<td>2.108*</td>
<td>8.232*</td>
</tr>
<tr>
<td></td>
<td>(1.189)</td>
<td>(9.784)</td>
</tr>
<tr>
<td>Total Pre Ban PH Offenses</td>
<td>0.736</td>
<td>2.088</td>
</tr>
<tr>
<td></td>
<td>(0.675)</td>
<td>(1.409)</td>
</tr>
<tr>
<td>Total Pre Ban Non PH Offenses</td>
<td>-0.276</td>
<td>0.759</td>
</tr>
<tr>
<td></td>
<td>(0.431)</td>
<td>(0.327)</td>
</tr>
<tr>
<td>2.Wave</td>
<td>-0.638</td>
<td>0.529</td>
</tr>
<tr>
<td></td>
<td>(0.682)</td>
<td>(0.361)</td>
</tr>
<tr>
<td>3.Wave</td>
<td>-0.569</td>
<td>0.566</td>
</tr>
<tr>
<td></td>
<td>(0.669)</td>
<td>(0.378)</td>
</tr>
<tr>
<td>1.Post Ban Trespass Offender</td>
<td>-6.979***</td>
<td>0.001***</td>
</tr>
<tr>
<td></td>
<td>(1.078)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>1.Gender</td>
<td>-0.388</td>
<td>0.679</td>
</tr>
<tr>
<td></td>
<td>(0.525)</td>
<td>(0.356)</td>
</tr>
<tr>
<td>Age</td>
<td>0.0255</td>
<td>1.026</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.559</td>
<td>1.749</td>
</tr>
<tr>
<td></td>
<td>(1.536)</td>
<td>(2.688)</td>
</tr>
<tr>
<td>Observations</td>
<td>346</td>
<td>346</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.600</td>
<td>0.600</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
Hypothesis 2.3

For hypothesis four, 99.1 percent (n= 343) of those banned between 2004 and 2012 were African-American. Likewise, in the same time span 96.8 percent of the KHA population was African-American. Based on the homogeneity of the KHA population it is not surprising that nearly 100 percent of those banned in the sample are African-American. However, since banishment is imposed on nonresidents, it may be necessary to not compare those who are banned with residents of KHA. Using data from Chapter 2 (Figure 16), we know that for communities within a 0.5 mile radius of the KHA communities, the percent African-American is nearly as high cumulatively for nonpublic-housing communities than it is in public-housing, its lowest at 86 percent. While these figures are based on residents as well, it does let us know that overall, these contiguous communities are predominately African-American.

Without having any other data as to who is going in and out of public housing; results are inconclusive as to whether African-Americans are disproportionately banned in KHA. At best, the available evidence suggests African-Americans are not disproportionately banned. Still, a more definitive conclusion is that African-Americans in KHA are indeed overwhelmingly banned.
Do bans deter banned individuals from offending in public housing after being banned? Results suggest that the overall percent of banned individuals who committed any offense in public housing after being banned did not decline; in fact, it increased. Beyond suggestions that bans do not deter crime, it implies that certain offenses may be driving increases in those who offend in public housing after being banned. After careful assessment of the data, a large share of banned individuals who were not deterred were people who committed trespass offenses in public housing after being banned. The significant number of trespass offenses that turn more people
into post-ban public housing offenders suggests that a large amount of banned individuals cannot stay out of public housing, even after being formally sanctioned not to return.

Despite banishment increasing the amount of post-ban offenders via trespassing, it was also necessary to find out if there were in fact certain types of offenders who were deterred. This study finds support that banishment deters drug offenders. Drug offenders were nearly 4 times more likely to be deterred compared to other offenders. Considering the risk involved in possessing drugs in public housing after you are banned, this suggests that drug offenders are knowledgeable of that risk, which gives some merit to the link between criminal activity and sanction threat perceptions (see Horney and Marshall 1992; Pogarsky, Piquero and Paternoster 2004). Thus, while banishment does make it easier for police to make drug arrests (Beckett and Herbert 2010; Fagan et al. 2012), it meets its stated goal of acting as a deterrent.

Contrary to predictions, being banned by a community police officer does not predict deterrence. It was suspected that community police officers could possibly play a role in deterring banned individuals from offending in public housing due to their strong presence in the community that might suggest to banned individuals that returning to public housing is risky. However, the evidence suggests that community police officers may play a role in offenders not being deterred. This would not be a surprise considering community police officers would likely also play a larger role in arresting people for trespass. If they are the ones doing the majority of banning, it follows that they would have more knowledge of who is banned and would act based on that knowledge to arrest for trespass violations.

Those who were not offenders prior to being banned and those who were nonpublic-housing offenders prior to being banned were also more likely to be deterred. Different reasons suggest why each would be deterred. For the non-offenders, being banned would only heighten
ones propensity not to offend. Again, being someone who did not offend prior to being banned in this study does not necessarily mean the person never offended. Instead, being a non-offender in this study simply means one did not commit any Part I offenses, drug offenses, or trespass offenses during the three years prior to being banned. Thus, we cannot come to the conclusion that pre-ban non-offenders are not truly deterred. For example, a number of non-offenders may have been banned due to charges they incurred before three years prior to being banned and out of fear of violating probation have decided that violating the ban is not worth it. Of course, it is possible these people never offended in their lives. In this case, being banned may be the only legal entanglement the individual will ever face. Unfortunately, these data cannot speak to that distinction. Finally, for nonpublic-housing offenders, if public housing was never the place where you committed most of your offenses, then there is no appeal to offend in public housing once you are banned.

Given previous evidence to suggest that banishment is enforced in a racially selective manner (Fagan et al. 2012), it was also necessary to see if, under the context of this study, African-Americans were disproportionately banned. Not surprisingly, the racial makeup of those who are banned, like the area they are being banned from, is almost entirely African-American. This finding supports research that suggests that offenders are racially tied to their social networks at the neighborhood level (see McPherson et al. 2001). While we could not conclude that African-Americans are disproportionately targeted for trespass offenses, such a finding is still not without its consequences. Of importance, the majority of those in the sample were African-American males, 82 percent, which implies its own unique set of consequences. Without knowing the particular circumstances that would lead African-American males to enter public housing, there appears to be no place in KHA for adult African-American male non-residents,
whether he is an offender or not. There may not even be a place for him if he is a resident.

Sadly, this might be more of a consequence of where banishment is enforced than the policy itself. First, in the case of KHA, the U.S. Census (2010) shows that 74 percent of its adult residents are female, which is likely a conservative estimate if we consider that there were likely residents who reported males in the household who were not on the lease. Police officers, especially CROs, who have knowledge of KHA may come to realize that chances are high that any adult African-American male on the property is not a resident, which would likely lend itself to officers stopping them and questioning them more as to why they are on KHA property.

Again, officers can ban someone for having “no legitimate business or social purpose for being on the premises” (KHA 2010). Someone who does not live in public housing would have to articulate such reasons. Even if African-American males pass this test, the likelihood of them being banned is still high if you take into account one in three African-American men are likely to be incarcerated (Bonczar 2003). Being incarcerated alone provides grounds for being banned. Since lower income areas, such as inner city public housing, are perceptually and statistically associated with higher levels of crime and made up of predominantly racial and ethnic minorities (Krivo and Peterson 1996; Massey and Denton 1993; Sampson and Raudenbush 1999, 2004; Thompson 1999) it follows that we should also expect to see African-American males banned for crimes committed in public housing as well. Thus, banishment in public housing may create a space meant exclusively for females. This is a tremendous burden for African-American males wishing to maintain familial relationships and obligations in public housing. Future studies will need to address the issues banishment imposes on African-American males more directly.

Policy implications suggest that a more effective utilization of banishment will have to deal with those returning to public housing for familial reasons. While there was no definitive
data to support a claim that many banned individuals return to public housing for familial reasons, there is some evidence of this relationship. In KHA, 40 percent of residents know at least one friend or family member that has been arrested for trespassing (see Chapter 4). While this is no indication that the intent of those arrested for trespassing was to visit family, it is an indication that banned individuals do have family in public housing. As such, it is conceivable that someone could enter public housing simply to see family. Other evidence outside of KHA establishes this link as well. Many court cases dealing with banishment in public housing involve disputing the legality of banishment where it is used on those with intent to see family (see Beck 2004; Goldstein 2003). For example: *L.D.L. v State* (1990) and *Thompson v. Ashe* (2001) each challenged banishment on the grounds that it prevented plaintiffs from seeing siblings; *Brown v. Dayton Metropolitan Housing Authority* (1993) and *Carey v. Edgewood Mgmt. Corp* (2000) each involved cases where parents were prevented from seeing their children; *Jason Allen D.* (1999) and *State v. Holiday* (1998) prohibited cousins from seeing each other; and *City of Bremerton v. Widell* (2002) challenged a banishment stop that prevented individuals from seeing their fiancée’s. The scant evidence of familial burdens outside of legal cases also corroborates these issues in newspaper articles and online videos (Williams 2002, American Civil Liberties Union 2009).

While families can stay intact for life, so can banishment. What keeps banishment policies in tact is the fact that the ban itself is not a criminal punishment, the acts by which you can be banned are civil acts making them nearly impossible to eradicate (Beckett and Herbert 2010). More to that, banishment, and policies like it, was implemented to replace the broad vagrancy statutes that were ruled unconstitutional in the 1960s. To remedy the broad reach of vagrancy statutes, newfound civility codes like banishment specify the exact behaviors that are
criminally punishable. They are extensions of other civil remedies used to combat crime such as civil commitment laws (Scheingold, Olson, and Pershing 1994), civil gang injunctions (Maxson, Hennigan, and Sloane 2005; Stewart 1998), no-contact orders (Suk 2006), and off-limits orders (Beckett and Herbert 2008). Because these are civil and lifelong bans, those banned in KHA are prohibited from entering the property for life, and they are potentially locked out of their family’s life forever.

Despite these barriers, PHAs are still fully capable of altering their policies in ways that would not completely block maintaining familial relationships forever while also maintaining its principle crime fighting agenda. For example, PHAs should consider more conditional visitations, visitations to specific residences only, so that those returning to KHA to fulfill familial obligations do not accrue trespass charges that could ultimately lead to actual jail time. Another option is to consider doing away with lifetime bans and to adopt the Charlottesville Housing Authority (Charlottesville, VA) model that sets time limits on how long one can be banned based on the reason they were banned. This would allow those who were banned for less serious reasons to return to the property after a certain amount of time has passed.

Findings also suggest that KHA may benefit from using more focused deterrence strategies for dealing with violent and property offenders (see Braga 2008; Braga & Weisburd 2012; Kennedy, 1998, 2008). These strategies locate chronic offenders and maximize the risks of offending by providing them with incentives and disincentives (Kennedy 1998, 2008). The violent crime-reduction benefits have been well established (see Braga and Weisburd 2012, Brunson 2015; Corsaro and Engel 2015; Papachristos, Meares and Fagan 2007). Notwithstanding the possible crime control benefits that could accrue from this strategy, it could also strengthen police legitimacy (Braga 2012).
One limitation of the study is that it did not include all offenses committed, simply major Part 1 crimes and trespass, drug, and gun offenses. While KHA claims that “banishment procedures are an effective means of deterring both criminal activities and those activities that disrupt the quality of life in public housing, the focus of the study concentrates on major offenses. Including all offenses committed by a banned individual could tease out whether disorder-related offenses beyond trespassing, like open container of alcohol and disorderly conduct, are reduced at the individual level. Nonetheless, under the logic of broken windows, analyzing trespass arrests captures the most important quality of life crime being enforced by the policy; the mere presence of a banned individual being on the property is “social disorder.”

This study was also unable to capture other individual-level variables that could help explain why someone was deterred or not. These variables, such as having children, partners, and parents in public housing, could help explain why people were not deterred. In other words, such variables could help explain why banned individuals come back to public housing property beyond assumptions that they are returning for criminal activity. While finding enough banned individuals to address this issue for future studies seems the logical solution, finding them would be harder than it seems. Instead, researchers should survey residents and ask if they know anyone who is banned and what their relationship is with them. Furthermore, violent and property offenders will need to be analyzed separately to see if either has an effect on deterrence. While this study found a reduction in the amount of property or violent offenders, we are unable to conclude that both types of offenders were deterred. Chapter 2 found evidence that banishment reduces property offenses, so it is possible that this effect holds as well in predicting deterrence. Controlling for legal factors that could contribute to deterrence (i.e. arrest disposition, length of sentences, amount of fines imposed, etc.) is also critical since the majority of deterrence studies
find legal factors are relevant in predicting deterrence (Bushway and Reuter 2008; Grasmick and Green 1980; Matsueda et al. 2006; Stafford et al. 1986; Waldo and Chiricos 1972). Based on the number of repeated trespass offenders in this study, it is possible some banned individuals continue to return because the likelihood of serving actual jail time for a first time trespass offense is slim, and this is also possibly true even for a second offense trespass charge. Finally, future studies should consider whether banishment displaces crime at the individual level (see Braga 2001; Weisburd et al. 2006). Many banned individuals returned to public housing, which implies that issuing bans do not displace crime. Nonetheless, more reliable evidence is needed to draw definitive conclusions.

CONCLUSION

“The use of trespass warnings and banishment procedures are an effective means for deterring both criminal activities and those activities which disrupt the quality of life in public housing communities and properties owned and/or managed by [KHA].” This study was the first to consider such bold claims of deterrence. While deterring drug offenders as a whole, the policy actually increases the amount of offenders in public housing because of trespassing. For a policy intended to keep those it banishes away in order to keep crime out of public housing, a good portion of the banished have made it clear that they could not stay away. Moreover, for a policy largely imposed on African-American males, KHA, its police, and residents will have to consider whether the benefits outweigh the social costs.
CHAPTER 5: BANISHMENT, COMMUNITY POLICING, AND PREDICTING PERCEIVED POLICE EFFECTIVENESS

Abstract

Scholars argue that banishment expands police powers because authorities need little reason to ban non-residents, are beyond judicial review, and can lead to racially disparate enforcement. However, it is unclear whether community policing may be able to mediate the negative effects of banishment, by building police trust, and still allow residents to perceive the police and banishment as effective. This study presents survey data from 221 public housing households in a Southeastern U.S. city policed under banishment and community policing strategies. Regression analysis is used to test whether police contact, police trust, or police responsiveness can predict whether residents view the police as effective even in neighborhoods where banishment is a commonly used policing tactic. Results indicate police trust and police responsiveness, under-policing or over-policing, to be the most significant predictors of perceived police effectiveness in public housing after controlling for police contact and demographic variables. Based on the findings, police officers in public housing should concentrate on gaining the trust of the community, which, in turn, can increase perceived effectiveness. However, banishment enforced in public housing can negatively affect perceived police effectiveness when residents perceive police to be over-policing or under-policing. Nonetheless, banishment can be a promising tool for public safety if used under the guidance of community policing.
INTRODUCTION

Having a firm understanding of banishment and community policing in public housing (see Chapter 1) allows us to theorize about the possible ways in which these two strategies, used together, could predict police effectiveness. This section focuses on three concepts used in this study to predict police effectiveness: police contact, police trust, and police responsiveness. Given the high concentration of African-Americans within KHA, racial and ethnic ties to police contact, police trust, and police responsiveness will also be discussed throughout. This is also important considering racial and ethnic minorities are more likely to hold negative views of the police (Peck 2015).

POLICE CONTACT

Regardless of the neighborhood, direct or indirect experiences with the police shape our perceptions of the police (Rosenbaum et al. 2005). Direct police experiences involve voluntary (i.e. reporting a crime) or involuntary contact (i.e. traffic stop and Terry Stop) with the police and can be citizen- or police-initiated. Indirect police experiences are those we learn about through others such as friends, family, or the media. In regard to police perceptions, positive police experiences have been shown to coincide with positive evaluations (Hinds 2009; Rosenbaum et al. 2005). Likewise, negative evaluations of the police have been shown to coincide with negative direct experiences (Reisig and Giacomazzi 1998; Skogan 2006; Yuksel and Tepe 2013), and negative indirect experiences (Rosenbaum et al. 2005; Schafer, Huebner and Bynum 2003). It is also argued that negative experiences have more of an influence on police perception than
positive experiences (Skogan 2006) and negative citizen-initiated contacts have a stronger influence than negative police initiated contacts (Rosenbaum et al. 2005).

In public housing, crime victimization and banishment exposure provide two types of police contact that can shape resident perceptions of the police. Crime victimization is a traditional example of direct police contact whereby residents report to police that they have been a victim of a crime. The literature on victimization as a determinant of police satisfaction finds that victimization leads to negative evaluations of the police (Brown and Benedict 2002; Lai and Zhao 2010; Ren et al. 2005; Yuksel and Tepe 2013). In KHA, there have been 838 violent crimes, 2292 property crimes, and 715 drug crimes from 2004 to 2012. While we lack the data to firmly establish if residents suffer the brunt of these crimes, we can assume that public housing residents are disproportionately victimized by these crimes since most crime is geographically clustered. Based on the data and the literature, it is predicted that crime victimization influences perceived police effectiveness negatively.

Banishment exposure, a form of indirect police contact, can also lead to negative evaluations of police effectiveness. To be clear, residents are not the ones who are banned. However, the enforcement of banishment occurs within their neighborhood and can be enforced on their friends and family. Research suggests that secondhand accounts of police-citizen interactions can reinforce negative attitudes toward police, especially among racial and ethnic minorities (Rosenbaum et al. 2005; Weitzer and Tuch 2005). Therefore, the use of banishment on friends and family may create secondhand accounts of banishment encounters that negatively influence attitudes towards local police. Banishment therefore allows us to predict that indirect

14 Crime data made available to author by city police department.
police contact resulting from banishment results in negatively perceived police effectiveness from public housing residents.

POLICE TRUST

Tyler and Huo (2002:78-79) define police trust as “people’s beliefs that legal authorities are fair, are honest, and uphold people’s rights.” In public housing communities that are policed via community policing, the consequences of banishment can be undermined by police trust, which in effect can predict effectiveness. First, research suggests that community policing can influence citizen satisfaction with police and police trust (Gill et al. 2014; Hawdon et al. 2003). Following this finding, prior studies have found evidence suggesting that public trust can then influence police effectiveness and legitimacy (Gau 2011; Goldsmith 2005; Hough et al. 2010; Sunshine and Tyler 2003). The ability of police trust to influence police effectiveness is largely due to the positive relation between trust and obligation to comply with the law, a component of legitimacy (Gau 2011).

Community policing, and its police trust outcome, can be especially promising in disadvantaged majority-minority neighborhoods where negative attitudes towards police are reported more than in advantaged areas (Schuck, Rosenbaum and Hawkins 2008). Likewise, in disadvantaged majority-minority neighborhoods communities, mistrust of police has been associated with lower reporting rates, lack of involvement in crime reduction measures, and higher levels of crime and disorder (Krivo and Peterson 1996; Reisig and Parks 2000; Sampson and Bartusch 1998). However, police-community collaboration has been shown to mediate the adverse effects of concentrated disadvantage (Reisig and Parks 2004; Hawdon and Ryan 2011;
Hawdon et al. 2003). Similarly, Skogan and Hartnett (1997) in their comparison study of disadvantaged and affluent communities found more positive community policing outcomes in disadvantaged communities than affluent communities to include perceptions that community policing is beneficial (Skogan and Hartnett 1997). Community policing has also shown to enhance citizen’s crime prevention efforts and increase satisfaction with police which overtime reduces fear of crime (Scheider, Rowell and Bezdikian 2003). In majority-minority public housing communities, community policing tactics may lead residents to view the police as trustworthy as they work on behalf of residents. This heightened trust can then in turn lead to perceived police effectiveness.

With the current study’s focus on trespassing, a crime requiring knowledge that a person is allowed on a property or not, community policing tactics such as a permanent beat assignment should help with such knowledge and create trust (Cordner 1999). This prevents officers from approaching all individuals on the property (i.e. including residents) to inquire their residency since PHOs would have a working knowledge of who is a resident. Kane's (2000) finding that a permanent beat assignment leads to increased police-initiated investigations supports the notion that officers would likely initiate more banishment investigations on non-residents and not interfere with residents as they establish responsibility for their assigned beat. Thus, PHOs should give an added opportunity to gain some police trust with residents as they see them enforcing trespassing efficiently and effectively.

POLICE RESPONSIVENESS
If the police and the policies they enforce in public housing are to be perceived as effective, then police must deal with the effects their police response may have on perceived police effectiveness. In this situation, police responsiveness is conceptualized as the perceived negative patrol frequency, under-policing or over-policing, thereby compromising perceived police effectiveness. Over-policing is shown to coincide with more intrusive, aggressive styles of policing, such as order-maintenance and zero-tolerance policing, requiring frequent stops of vehicles and persons for relatively minor offenses (Carr et al. 2007; Gau and Brunson 2010). These proactive policing efforts: frequently target disadvantaged communities and racial and ethnic minorities (Carr et al. 2007; Fagan et al. 2009); target known offenders regardless if they are committing a crime (Brunson and Miller 2006); increase fear of crime (Hinkle and Weisburd 2008); and lead to distrust of the police (Brunson 2007; Gau and Brunson 2010). Finally, Kane (2005) found that over-policing can predict violent crime in structurally disadvantaged majority-minority communities.

Banishment specifically may fuel over-policing for a few reasons. First, the benefits afforded to law enforcement for using banishment could draw more officers to public housing who want to find guns and drugs (Beckett and Herbert 2010). Second, from a social control perspective banishment provides another policing strategy that can target racial and ethnic due to the high crime association. Beyond the law enforcement push to use banishment aggressively, the literature suggests that even in poor majority-minority neighborhoods, residents are likely to opt for increased formal social control to reduce crime, even if distrust of the police exists (Brooks 2000; Carr et al. 2007; Shaw 1995). This theoretically coincides with an urban frustration argument where ‘…the majority of law-abiding residents in these communities welcome…disparate enforcement policies even at the expense of certain civil liberties…’
(Brooks 2000). However, in public housing where nonresidents are perceived to be the source of the crime problem, we can expect urban frustration that demands banishment and increasing police presence to result in a feeling of over-policing. Thus, it is predicted that perceptions of over-policing result in negative perceptions of police effectiveness in public housing.

Under-policing can produce negative effects as well, especially among racial and ethnic communities of disadvantage. Under-policing suggests the police neglect disadvantaged communities of color by being unresponsive to crime, thereby leaving communities open to violence and a lower quality of life (Anderson 1999; Walker 1992; Walker and Katz 2007). Further, feelings of apathy accompanying under-policing leave disadvantaged residents of color unwilling to call police (Carr et al. 2007), and they may turn to private vengeance to police themselves (Anderson 1999; Kubrin and Weitzer 2003; Wolfgang and Ferracuti 1967). In public housing, there has been evidence of broken police-community relationships and that residents do not feel they are receiving adequate police patrol (Walsh et al. 2000). Based on the literature on under-policing we could expect perceived police effectiveness to be effected negatively by feelings of under-policing.

In sum, within KHA, perceived police effectiveness may be tied to police contact, police trust, and police responsiveness, and should be explained in the context of the banishment and community policing strategies deployed in KHA. Since KHA PHOs increase their visibility in KHA neighborhoods through work scheduling, proactivity, patrol methods, KHA calls-for-service responsibility, permanent beats, follow-up investigations, and use of crime statistics, the chances that crime victims come into contact with PHOs would likely increase. The same reasons for such visibility would also mean more residents get exposed to banishment, and that residents would feel the police were over-policing. Nonetheless, simply because the police in
KHA are likely to be visible does not mean they are responsive to crime, thus creating perceived under-policing. Again, in KHA there have been 838 violent crimes, 2292 property crimes, and 715 drug crimes from 2004 to 2012. There are likely to be those who feel police are ineffective and under-policing their community despite community policing and banishment efforts. However, simply because KHA adopts community policing, it is possible that negatively perceived police effectiveness from police contact and police responsiveness might be mediated, and that enough police trust could be generated to positively influence perceptions of police effectiveness.

Despite efforts to examine policing in public housing, there has yet to be a scientific study examining resident perceptions of police effectiveness within public housing. This article is the first to question whether police contact, police trust, or police responsiveness influences perceived police effectiveness. It extends research on policing socially disadvantaged communities, specifically public housing, by utilizing the context in which these communities are policed to understand perceptions of police effectiveness. The understanding of perceived effectiveness of the police in public housing from the perspective of the residents can be influential in determining how public housing officials, police practitioners, and police scholars approach our contemporary understanding of policing public housing. My research agenda generates four substantive and testable questions within Part III:

3.0) What predicts perceived police and banishment effectiveness?
3.1) How can perceived police and banishment effectiveness be influenced by race and ethnicity?

It is hypothesized that police contact, police trust, and police responsiveness produce different types of perceived police effectiveness:
Hypothesis 3.0: Those who have police or banishment contact will perceive the police to be ineffective.

Hypothesis 3.1: Those who view the police as trustworthy will perceive the police to be effective.

Hypothesis 3.2: Those who feel the police are either under-policing or over-policing will perceive the police to be ineffective.

METHODS

Sampling and Data Collection

The analysis is based on a sample of households from five of six KHA public housing neighborhoods located within a Southeastern US city. Data were collected through interview surveys conducted by the author between June and September 2013. A sampling frame of households was used by having the resident lease list provided by KHA. The same KHA lease list was used to ensure respondents were 18 years of age and a resident of KHA. At the time of the study, the five KHA sites had 6278 residents and 2320 households within the five public housing neighborhoods.\(^{15}\) With the sampling units set as households, 1201 households were sampled. Purposive sampling procedures were used to obtain sampled households.\(^{16}\) In each of

\(^{15}\) Number of residents and households taken from the KHA lease list.
\(^{16}\) Due to the survey hours (12 pm–5 pm) random selection of households was not done since these hours would have placed myself in jeopardy of acquiring an increase in no responses to door knocks for those who were working. It was concluded that purposive sampling procedures would allow for more responses from residents who were home during times of the survey. Interview survey was also preferred over mailed survey or web survey since an interview
the five neighborhoods, doors were knocked on at random to invite participants. A different neighborhood was surveyed once neighborhoods were completely canvassed. Based on calculations, over 51% of households in the KHA sites were targeted for selection. These procedures yielded 221 completed responses and an 18.4% response rate.

Given the low response rate it was necessary to compare the sample with the population for representativeness. Table 16 compares the respondent and population percentages. In addition, Table 17 displays eight, one sample t-tests which were conducted to compare means. Demographic variables used for comparison include: family household, household size, educational attainment, employment status, age, gender, marital status, and race. Six out of the eight tests were not statistically significant. While marital status was statistically significant (p < .001), the sample captures a majority of single households, which is similar to the population. Nonetheless, ‘single’ respondents were over represented in this study. Likewise, non-working households (p < .01) were over sampled, but again this demographic represents the majority in the population. Based on findings, the sample is considered to be adequately representative of the neighborhood population.

survey would allow more residents to complete the survey who were incapable (i.e. illiterate and physically handicapped), and ensured actual leaseholders were taking the survey.
<table>
<thead>
<tr>
<th>Demographic Characteristics</th>
<th>Sample percent</th>
<th>Population percent<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Household type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-family</td>
<td>23.1</td>
<td>25.7</td>
</tr>
<tr>
<td>Family</td>
<td>76.9</td>
<td>74.3</td>
</tr>
<tr>
<td>Household Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 person</td>
<td>19.9</td>
<td>24.8</td>
</tr>
<tr>
<td>2 or more person</td>
<td>80.1</td>
<td>75.2</td>
</tr>
<tr>
<td>Education 25 years and over<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less Than High School</td>
<td>40.6</td>
<td>38.4</td>
</tr>
<tr>
<td>Finished High School</td>
<td>59.4</td>
<td>61.6</td>
</tr>
<tr>
<td>Work Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed<sup>c</sup></td>
<td>62.4</td>
<td>54</td>
</tr>
<tr>
<td>Employed</td>
<td>37.6</td>
<td>46</td>
</tr>
<tr>
<td>Age<sup>d</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>25.3</td>
<td>23.3</td>
</tr>
<tr>
<td>25-34</td>
<td>27.6</td>
<td>29.0</td>
</tr>
<tr>
<td>35-44</td>
<td>10.9</td>
<td>13.1</td>
</tr>
<tr>
<td>45-54</td>
<td>14.9</td>
<td>14.3</td>
</tr>
<tr>
<td>55-64</td>
<td>15.8</td>
<td>11.0</td>
</tr>
<tr>
<td>65-74</td>
<td>4.5</td>
<td>5.2</td>
</tr>
<tr>
<td>75-84</td>
<td>.9</td>
<td>4.0</td>
</tr>
<tr>
<td>Gender 18 and over</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>19.5</td>
<td>20.8</td>
</tr>
<tr>
<td>Female</td>
<td>80.5</td>
<td>79.2</td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>77.8</td>
<td>72.6</td>
</tr>
<tr>
<td>Married</td>
<td>12.7</td>
<td>10.3</td>
</tr>
<tr>
<td>Widowed</td>
<td>5.9</td>
<td>7.9</td>
</tr>
<tr>
<td>Divorced</td>
<td>3.6</td>
<td>9.2</td>
</tr>
<tr>
<td>Race<sup>e</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African-American</td>
<td>97.3</td>
<td>97.2</td>
</tr>
<tr>
<td>Other</td>
<td>2.7</td>
<td>2.8</td>
</tr>
</tbody>
</table>

^a Sources: 2008-2012 American Community Survey 5-year Estimates.
^b ACS could not report education 18 and over at the block group level.
^c Includes not in labor force and unemployed labor force.
^d Sample age categories differ from population age categories. Sample age categories included 18-25, 26-35, 36-45, 46-55, 56-65, 66-75, 76-85.
^e ACS could not report race by age for households. The population estimates were used.
Survey data on banishment and community policing also show the awareness of these policing strategies among households. For community policing, we can test this by using three items. The first item asked ‘Do the same police officer’s patrol the neighborhood?’ Responses were coded 0-2 for the following responses: ‘Don’t know’, ‘No’, ‘Yes’. The second item asked ‘Do the police in your neighborhood walk, ride a bicycle, drive a car, use a motorcycle, or use more than one way to patrol?’ Responses were coded 0-4 for the following responses: ‘Walk’, ‘Ride a bicycle’, ‘Drive a car’, ‘Drive a motorcycle’, and ‘More than one way’. The third item asked ‘Do you know your [PHO]?’. This was measured dichotomously (no = 0, yes = 1). In this study, 65 percent felt the same officers patrol their neighborhood, 90.5 percent felt they used

<table>
<thead>
<tr>
<th>Variable</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
<th>Mean Difference</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Family Household</td>
<td>.940</td>
<td>220</td>
<td>.348</td>
<td>.02671</td>
<td>-.0293</td>
<td>.0827</td>
</tr>
<tr>
<td>Pop. Test Value = .74252</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 1 Person Household</td>
<td>-1.804</td>
<td>220</td>
<td>.073</td>
<td>-.04855</td>
<td>-.1016</td>
<td>.0045</td>
</tr>
<tr>
<td>Pop. Test Value = .24765</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Education</td>
<td>.586</td>
<td>164</td>
<td>.559</td>
<td>.02246</td>
<td>-.0533</td>
<td>.0982</td>
</tr>
<tr>
<td>Pop. Test Value = .3836</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Employed</td>
<td>-2.589</td>
<td>220</td>
<td>.010</td>
<td>-.08451</td>
<td>-.1489</td>
<td>-.0202</td>
</tr>
<tr>
<td>Pop. Test Value = .46008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Age</td>
<td>-.639</td>
<td>220</td>
<td>.523</td>
<td>-.06957</td>
<td>-.2840</td>
<td>.1448</td>
</tr>
<tr>
<td>Pop. Test Value = 2.92477</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Gender</td>
<td>.837</td>
<td>220</td>
<td>.404</td>
<td>.02233</td>
<td>-.0303</td>
<td>.0749</td>
</tr>
<tr>
<td>Pop. Test Value = .7831</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Marital Status</td>
<td>-3.357</td>
<td>220</td>
<td>.001</td>
<td>-.16985</td>
<td>-.2696</td>
<td>-.0701</td>
</tr>
<tr>
<td>Pop. Test Value = 1.52279</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Race</td>
<td>.096</td>
<td>220</td>
<td>.924</td>
<td>.00105</td>
<td>-.0205</td>
<td>.0226</td>
</tr>
<tr>
<td>Pop. Test Value = .9718</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Survey data on banishment and community policing also show the awareness of these policing strategies among households. For community policing, we can test this by using three items. The first item asked ‘Do the same police officer’s patrol the neighborhood?’ Responses were coded 0-2 for the following responses: ‘Don’t know’, ‘No’, ‘Yes’. The second item asked ‘Do the police in your neighborhood walk, ride a bicycle, drive a car, use a motorcycle, or use more than one way to patrol?’ Responses were coded 0-4 for the following responses: ‘Walk,’ ‘Ride a bicycle’, ‘Drive a car’, ‘Drive a motorcycle’, and ‘More than one way’. The third item asked ‘Do you know your [PHO]?’. This was measured dichotomously (no = 0, yes = 1). In this study, 65 percent felt the same officers patrol their neighborhood, 90.5 percent felt they used
more than one patrol technique, and 42.5 percent stated they knew their PHO. These are accurate responses given how the neighborhood is policed.

We can also test use of banishment with four measures. The first item asks ‘Can a person be arrested for trespassing in your neighborhood?’ A second item asks ‘Can [KHA] ban someone from being in the neighborhood?’ Both items were measured dichotomously with responses ‘No’ or ‘Yes’. Over 92 percent correctly knew that someone could be arrested for trespassing in KHA neighborhoods, and over 91 percent correctly knew that KHA could ban someone. The other two measures deal with the indirect police contact caused by banishment exposure and are further explained in the Measures section since they are used in the analysis. Additionally KHA has banned 3776 individuals and made 553 trespass arrests from 2004 to 2013. Police in KHA also give a copy of the ban notice to the resident they are visiting (KHA 2010), so it is further evidence of the ability of residents to see the police enforcing banishment in public housing and have police personally contact them and tell them they cannot have a certain friend or family member visit them. Therefore, we can safely conclude residents are aware of community policing and banishment in KHA.

This section concludes with a current residential profile of KHA based on the 2012 American Community Survey (ACS) 5-year Estimates (U.S. Census Bureau 2014a), and KHA crime data. According to the 2012 ACS, the residents in KHA are: predominantly African-American (97.2 percent; national average 12.6 percent); have a family in poverty level percentage of 65.8 percent (10.9 percent national average); an average median household income of $13,580 ($53,046 national average); 78.7 percent of residents pay less than $500 a month in rent (13.3 percent national average); 62.7 percent have no vehicle available (4.4 percent national average); 39.48 percent did not complete high school (14.2 percent national average); 19.2
percent receive public assistance income (2.7 percent public assistance national average); and 17.3 percent are unemployed (9.3 percent national average). Finally, from 2004 to 2012 there have been 838 violent crimes, 2292 property crimes, and 715 drug crimes. Using 2010 Census (U.S. Census Bureau 2014b) population estimates and 2010 KHA reported crime data, KHA would have had an overall crime rate of 688 per 10,000 residents in 2010.

Measures

Police effectiveness

One dependent variable conceptualized as perceived police effectiveness was used for the analysis. A scale of police and policy effectiveness was constructed by combining three Likert-scale items (α = .706). The first item is conceptualized as banishment enforcement effectiveness. This item taps a dimension of outcome justice and was measured by asking residents ‘Which of the following statements best represents your opinion of how the police department is doing enforcing the No-Trespassing Policy?’ Originally a six-item Likert-type scale, it was recoded as a five-item Likert-type scale. In the recoded variable, a response for ‘other’ was removed from the analysis. Recoded scores ranged from 1 to 5 for the following responses respectively: they are wasting their time trying to stop the trespassers in this area; they need lots of help; they are not doing well at it; they are doing a fair job at it; they are doing a wonderful job at it. Higher

17 KHA neighborhood level data were examined at the block group level.
18 Crime rate based on all FBI Part I crimes, and KHA reported drug and trespass crimes. According to the Census, the population in 2010 was 7767 and there were 688 total crimes according to KHA reported crime figures.
scores reflect the belief that police are effective in their enforcement of trespassing. A little over 40 percent felt they were either doing a ‘fair’ or ‘wonderful’ job.

The second item in the effectiveness scale, *banishment efficacy*, was measured with a single five-point Likert-scale item. Respondents were asked to state their level of agreement with the statement, ‘In general, enforcing trespassing helps stop crime.’ Scores ranged from 0 to 4 for the responses strongly disagree, disagree, feel neutral, agree, and strongly agree, respectively. Slightly more than 45 percent of respondents ‘agreed’ or ‘strongly agreed’ with the statement.

The third item is a measure of *overall police effectiveness* and was also measured using one five-point Likert-scale item. Residents were asked to state their level of agreement with the statement ‘In general, the police do a good job of controlling crime.’ Scores ranged from 0 to 4 for the responses strongly disagree, disagree, feel neutral, agree, and strongly agree, respectively. Close to 40 percent of the respondents ‘agreed’ or ‘strongly agreed’ with this statement.

Police contact

To assess the influence of police contact on perceived police effectiveness, four items were used. The first item encompasses a measure of police contact operationalized as *neighborhood crime victimization*. First, one item asked, ‘Have you or anyone in your family been a victim of a crime in the last year.’ This item was measured dichotomously with responses ‘No’ or ‘Yes’ and scored 0 and 1, respectively. More than 15 percent of the respondents had been victims. A follow-up question ensured victims were victimized in the neighborhood. This item asked ‘Did this crime occur in your neighborhood?’ and was measured dichotomously with responses ‘No’ (0) or ‘Yes’ (1). Residents who were not victimized and who were victimized outside of the neighborhood
were recorded as ‘No’ responses. Over 11 percent of the sample was victimized within the neighborhood.

The second and third items deal with indirect police contact operationalized via banishment exposure. The first item asked ‘Have any of your friends or family been banned from the property?’; the second item asked ‘Have any of your friends or family been charged with trespassing in your neighborhood?’ Both items were measured dichotomously with responses ‘No’ (0) or ‘Yes’ (1). Over 40 percent of the sample had friends or family banned, and 40 percent of respondents had friends or family arrested for trespassing in public housing. While residents are not the ones being banned or arrested, it is assumed that their knowledge of having friends or family banned from the property serves as indirect police contact and direct exposure to the policy.

Police trust

The second independent variable is a measure of police trust measured using one 5-point Likert-scale item. Residents were asked to state their level of agreement with the statement ‘In general, the police can be trusted.’ Scores ranged from 0 to 4 for the responses strongly disagree, disagree, feel neutral, agree, and strongly agree, respectively. Close to 36 percent of the sample ‘agreed’ and ‘strongly agreed’ and close to 40 percent ‘disagreed’ and ‘strongly disagreed.’
Police responsiveness

The final independent variable is a measure of *police responsiveness* dealing with the frequency of police patrol to capture compromised legitimacy and was measured using one item. Residents were asked, ‘In general the police patrol the neighborhood?’ Scores ranged 0 to 2 for the responses ‘too little’, ‘just about right’, and ‘too much’, respectively. This measure was recoded into two separate dichotomized variables capturing whether residents felt the police patrolled too little or too much. Each variable was dichotomized as 0 and 1, where 1 represented too little or too much. Over 29 percent of the sample felt the police patrolled too little; while over 21 percent felt the police patrolled too much.

Control variables

Key demographic variables, including gender, age, education, work status, marital status, and length of stay in the community were included in the model. Gender was measured by asking ‘What is your gender’ and measured dichotomously (male = 0, female = 1). Education was measured by asking ‘How many years of education have you received?’ with responses ranging from ‘8 years or less’ to ‘Post college degree.’ This measure was recoded dichotomously capturing whether respondents had less than high school education (0) or 12 years of education or more (1). Work status was measure by asking ‘Do you currently work?’ and measured dichotomously (no = 0, yes = 1). Marital status was measured by asking ‘What is your marital status?’ and included responses ‘Single’ ‘Married’ ‘Widowed’ ‘Divorced’. For the analysis, this

19 Race and income were not included since the overwhelming majority of respondents were African-American (97.3%) and residents of KHA are considered at or below the poverty line.
measure was recoded into a dichotomous variable (married, widowed, divorced = 0, and single = 1). Age was measured by asking ‘In which of the following age ranges do you fall?’ and included responses ‘18-25’ (1), ‘26-35’ (2), ‘36-45’ (3), ‘46-55’ (4), ‘56-65’ (5), ‘66-75’ (6), and ‘76-85’ (7). Length of stay in the community was measured by asking ‘How many years have you lived in this community?’ and was measured as a continuous variable. Descriptive statistics can be found in Table 18.

These variables were included due to the literature explaining police evaluations. For example, females have been found to hold more favorable views of the police (Reisig and Giacomazzi 1998, MacDonald and Stokes 2006); but, Brown and Reed Benedict (2002) find contrary results in some studies, concluding that the relationship between gender and police evaluations is not definitive. Other demographic variables, including marital status, homeownership, income, education, and years of residence in the community have been considered (Marschall and Shah 2007), but again the results are somewhat mixed (Brown and Reed Benedict 2002:543). They are included here ensuring their influence is considered and to protect against potential spurious relationships between the variable of theoretic interest and the dependent variable.
Table 17 Chapter 4 Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friends or Family Banned For</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trespassing</td>
<td>203</td>
<td>.00</td>
<td>1.00</td>
<td>.4089</td>
<td>.49284</td>
</tr>
<tr>
<td>Friends or Family Arrested For</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trespassing</td>
<td>205</td>
<td>.00</td>
<td>1.00</td>
<td>.4049</td>
<td>.49207</td>
</tr>
<tr>
<td>Victim of a Crime in Neighborhood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>.00</td>
<td>1.00</td>
<td>.1176</td>
<td>.32292</td>
</tr>
<tr>
<td>Police Can Be Trusted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>.00</td>
<td>4.00</td>
<td>1.8462</td>
<td>1.09289</td>
</tr>
<tr>
<td>Too Little Patrol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>.00</td>
<td>1.00</td>
<td>.2896</td>
<td>.45460</td>
</tr>
<tr>
<td>Too Much Patrol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>.00</td>
<td>1.00</td>
<td>.2172</td>
<td>.41327</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>1.00</td>
<td>7.00</td>
<td>2.8552</td>
<td>1.61719</td>
</tr>
<tr>
<td>Work Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>.00</td>
<td>1.00</td>
<td>.3756</td>
<td>.48537</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>.00</td>
<td>1.00</td>
<td>.8054</td>
<td>.39677</td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>.00</td>
<td>1.00</td>
<td>.7783</td>
<td>.41635</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>.00</td>
<td>1.00</td>
<td>.5882</td>
<td>.49327</td>
</tr>
<tr>
<td>Length of Stay in Community</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>1.00</td>
<td>54.00</td>
<td>10.3710</td>
<td>10.57475</td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>197</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analytic strategy

To test whether police contact, police trust, or police responsiveness predicts perceived police effectiveness, simple linear regression is used. Model 1 includes all police contact variables and will show whether differences exist, are significant, and are in the predicted direction. Model 2 adds police trust, and police responsiveness to the base model. Results will show whether police contact effects are changed by the inclusion of police trust and police responsiveness. Finally, Model 3 adds to the base linear regression the control variables to show if the effects of police contact, police trust, and police responsiveness on perceptions of police effectiveness are changed by the inclusion of these control variables.
RESULTS

Beginning with the bivariate correlations among the central variables found in Table 19, we see that all variables are significantly correlated in predicted directions except for crime victimization, which failed to achieve statistical significance. The two policy exposure variables, having friends or family banned (r = -0.306; p < .01) and having friends of family arrested for trespassing (r = -0.307; p < .01), were inversely related to perceived police effectiveness. Police trust was positively related (r = 0.567; p < .01), while under-policing (r = -0.167, p < .01) and over-policing (r = -0.372; p < .01) were negatively related to perceived police effectiveness.

Table 18 Chapter 5 Bivariate Correlations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Perceived Police Effectiveness</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Friends or Family Banned For Trespassing</td>
<td>-0.306**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Friends or Family Arrested For Trespassing</td>
<td>-0.307**</td>
<td>0.645**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Victim of a Crime in Neighborhood</td>
<td>-0.104</td>
<td>-0.044</td>
<td>-0.049</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Police Can Be Trusted</td>
<td>0.567**</td>
<td>-0.165**</td>
<td>-0.178**</td>
<td>-0.167**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Too Little Patrol</td>
<td>-0.167**</td>
<td>-0.086</td>
<td>-0.041</td>
<td>-0.016</td>
<td>-0.065</td>
<td></td>
</tr>
<tr>
<td>7. Too Much Patrol</td>
<td>-0.372**</td>
<td>0.174**</td>
<td>0.224**</td>
<td>0.114</td>
<td>-0.348**</td>
<td>-0.336**</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Hypothesis 3.0, 3.1., and 3.2

Model 1, regressed perceived police effectiveness on police contact using the police contact variables discussed previously and crime victimization (Table 20). Not surprisingly, having friends or family banned (β = -0.186, p< .05) and having friends or family arrested for trespassing...
negatively predicted police effectiveness ($\beta = -0.194, p< .05$). Unlike some findings in the literature, crime victimization did not significantly predict police effectiveness. This first model was significant ($F = 9.173; p< .001$) and explained 13.1 percent of the variance in perceived police effectiveness.

Model 2 regressed perceived police effectiveness on the police contact variables, police trust, and police responsiveness. Police trust and police responsiveness nearly rendered police contact as inconsequential and significantly predicted police effectiveness in the predicted direction. Having a friend or family member banned from public housing was slightly significant ($\beta = -0.167, p < .05$). Overall, police trust was the strongest predictor of police effectiveness and was positively related to it ($\beta = .429, p < .001$). Police responsiveness, both under- and over-policing, was the next strongest predictor of police effectiveness, and both were negatively related to perceptions of effectiveness (beta= -.242, $p < .05$; $\beta = -.265, p < .001$, respectively). Model 2 was significant ($F = 24.759; p < .001$) and accounted for 45.2 percent of the variation in perceived police effectiveness.

Model 3 regressed perceived police effectiveness on the police contact variables, police trust, police responsiveness, and the control variables. Again, police trust and police responsiveness predicted police effectiveness better than police contact, which failed to reach statistical significance. Police trust positively predicted perceived police effectiveness ($\beta = .423; p < .001$), while under-policing and over-policing negatively predicted perceived police effectiveness ($\beta = -.231, p < .001; \beta = -.240, p < .001$, respectively). Age ($\beta = .172; p < .05$) and length of stay in the community ($\beta = -.128; p < .05$) predicted perceived police effectiveness modestly. Model 3 was significant ($F = 13.123; p < .001$) accounted for 47.5 percent of the variance in perceived police effectiveness.
Table 19 Linear Regression: Perceived Police Effectiveness on Police Contact, Police Trust, Police Responsiveness, and Control Variables

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th></th>
<th>Model 2</th>
<th></th>
<th>Model 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SE</td>
<td>Beta</td>
<td>B</td>
<td>SE</td>
<td>Beta</td>
</tr>
<tr>
<td>(Constant)</td>
<td>7.518</td>
<td>.298</td>
<td>5.820</td>
<td>.492</td>
<td>4.670</td>
<td>.829</td>
</tr>
<tr>
<td>Friends or Family Banned</td>
<td>-.287*</td>
<td>.139</td>
<td>-.186</td>
<td>-.258*</td>
<td>.112</td>
<td>-.167</td>
</tr>
<tr>
<td>Friends or Family Arrested For Trespassing</td>
<td>-.301*</td>
<td>.141</td>
<td>-.194</td>
<td>-.109</td>
<td>.115</td>
<td>-.071</td>
</tr>
<tr>
<td>Victim of Crime in Neighborhood</td>
<td>-.324</td>
<td>.174</td>
<td>-.128</td>
<td>.038</td>
<td>.144</td>
<td>.015</td>
</tr>
<tr>
<td>Police Can Be Trusted</td>
<td></td>
<td></td>
<td>.297***</td>
<td>.043</td>
<td>.429</td>
<td>.293***</td>
</tr>
<tr>
<td>Too Little Patrol</td>
<td></td>
<td></td>
<td>-.409***</td>
<td>.102</td>
<td>-.242</td>
<td>-.391***</td>
</tr>
<tr>
<td>Too Much Patrol</td>
<td></td>
<td></td>
<td>-.469***</td>
<td>.117</td>
<td>-.265</td>
<td>-.424***</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td>.084*</td>
<td>.035</td>
<td>.172</td>
<td></td>
</tr>
<tr>
<td>Work Status</td>
<td></td>
<td></td>
<td>.068</td>
<td>.091</td>
<td>.043</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td>-.051</td>
<td>.110</td>
<td>.026</td>
<td></td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
<td>.134</td>
<td>.116</td>
<td>.071</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td>.065</td>
<td>.090</td>
<td>.042</td>
<td></td>
</tr>
<tr>
<td>Length of Stay in Community</td>
<td>.010*</td>
<td>.005</td>
<td>-.128</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Dependent Variable = Perceived Police Effectiveness. Model 1 $R^2=0.131$, Model 2 $R^2=0.452$, Model 3 $R^2=0.475$.

*p < .05. **p < .01. ***p < .001

DISCUSSION

As predicted, under-policing negatively predicts police effectiveness. In theory, this can be easily explained since perceptions of policing the neighborhood too little signify that police are not in the community enough to control crime or, in this case, enforce banishment as well. This effect has other consequences on the community. Specifically, perceptions of safety and quality of life are diminished (Walker 1992; Walker and Katz 2007) since residents may feel like they are more easily exposed to crime. Also, residents may not be willing to cooperate with the police (Carr et
and may resort to private vengeance (Kubrin and Weitzer 2003). Given the consequences, evidence of under-policing should be taken seriously.

The logical response to counter the perceptions of under-policing would be to increase police patrol (Brooks 2000; Carr et al. 2007; Shaw 1995). This theoretically coincides with an urban frustration argument where ‘…the majority of law-abiding residents in these communities welcome…disparate enforcement policies even at the expense of certain civil liberties…’ (Brooks 2000). One example of the urban frustration argument relating to public housing is the support for the Chicago Housing Authority’s (CHA) former building search policy (Pratt v. Chicago Housing Authority 1994). In this incident, residents were in favor of a search policy allowing police to search homes without probable cause—enough support to oppose the American Civil Liberties Union’s effort to stop the practice. Urban frustration is also evidenced in Philadelphia where youth in high crime neighborhoods chose increased and tougher law enforcement to reduce crime (Carr et al. 2007), and in Kansas City where residents supported proactive policing efforts against guns (Shaw 1995).

However, solely increasing police patrol should not be the recommended solution. Our study finds that over-policing negatively predicts police effectiveness. While we would expect that an increased police response would safely alleviate negative perceptions of police effectiveness due to under-policing, this attempt may not be viewed as an attempt to be effective in controlling crime. Instead residents are likely to feel that over-policing is more of an intrusion on their daily routines. Furthermore, over-policing coincides with an increased fear of crime (Hinkle and Weisburd 2008), and distrust of the police (Brunson 2007; Gau and Brunson 2010). With respect to public housing there is evidence that over-policing has been ineffective at controlling crime. Fagan et al.'s (2012) found that there were more arrests outside of public
housing relative to rates of violent, drug, and weapons offenses but more stops in public housing relative to these crimes suggesting patterns of unproductive stops in public housing.

These results could simply be a consequence of the community policing effort in KHA. For over-policing, the philosophical level, program level, and activity level of community policing (see Rohe et al. 2001) may actually produce heightened visibility, and thus perceptions of over-policing. In KHA, these elements are manifested through flexible work schedules, proactivity, varying patrol methods, KHA calls-for-service responsibility, follow-up investigations, and permanent beats. While in theory such high visibility produced by community policing would likely be beneficial (Hawdon and Ryan 2003; Hawdon et al. 2003), it may be negatively received as an intrusion and compromise perceived police effectiveness in majority-minority public housing communities.

For those implementing community policing in public housing, it may be necessary to communicate with residents frequently about any crime-fighting presence in the community. In this study, over 74 percent of residents felt the police patrol several times a day. Officers should thus be willing to reinforce to the community why they are out there and keep them informed about the results of their efforts. This might also explain the effect of under-policing on perceived effectiveness. There could be many residents who are unaware of PHOs’ crime-fighting efforts. Since community policing entails promoting citizen satisfaction (Gill et al. 2014), and community partnerships and input (COPS 2014; Cordner 2014; Rohe et al. 2001), opening up more lines of communication with the community while engaged in crime-fighting roles could possibly alleviate issues with over-and under-policing as community police officers use more transparency in their crime-fighting presence. Transparency is integral to the organizational transformation of community policing, as COPS (2014, p. 6) state, “If the
community is to be a full partner, the department needs mechanisms for readily sharing relevant information on crime and social disorder problems and police operations with the community.”

This study also found that indirect police contact due to banishment did not negatively predict police effectiveness. While prior research has found that indirect police contact can reinforce negative police evaluations through secondhand accounts (Rosenbaum et al. 2005; Weitzer and Tuch 2005), this does not appear to be a factor in predicting the effects of having friends or family banished and arrested for violating bans. If police are doing a good job in utilizing banishment and controlling crime, then residents seem to dismiss whether they have been personally affected by banishment, especially if they trust the police. Community policing’s call for problem solving and shared responsibility over community problems (COPS 2014; Cordner 2014; Rohe et al. 2001; Trojanowicz et al. 1998) may help explain the inability of banishment exposure to predict police effectiveness. Forty-eight percent of residents in KHA felt the biggest problem in their neighborhood dealt with issues of crime and drugs. There may be residents who accept that their friends and family may contribute to the issues of crime and drugs in KHA, and thus buy into the problem-solving need for banishment. Further, if a guest of a resident is banned, that resident is advised that said person was banned, they are not to return to KHA, and that if found at their residence in the future it could result in a lease cancellation. This aids in establishing shared responsibility over those who are banned by holding residents accountable for banishment alongside police and KHA officials. While we should expect some residents with banishment exposure to doubt police effectiveness, the problem-solving need for banishment, the community policing effort of KHA that produces transparency in the banishment process, and the shared responsibility of enforcing banishment could neutralize negative police perceptions.
Similarly, crime victimization negatively predicting police effectiveness (Reisig and Giacomazzi 1998; Yuksel and Tepe 2013) was not supported in this study. Residents may not find themselves personally affected to the point of perceiving the police as ineffective. The predicted negative effects of crime victimization may actually be linked to police responsiveness, specifically under-policing. Here, the expected reaction of residents towards being victimized may be tied to how they perceive the police response following their victimization. The expectation for police to act swiftly on a report of being victimized may trigger feelings of under-policing should crimes go unsolved.

Community policing may also be explaining why crime victimization did not result in negatively perceived police effectiveness. The heightened visibility of KHA PHOs due to their work schedules, proactivity, patrol methods, KHA calls-for-service responsibility, follow-up investigations, and permanent beats likely expose them to more KHA crime victims than non-PHOs. This should provide officers a chance for PHOs to communicate with crime victims, and establish a positive relationship that reassures victims that PHOs will attempt to protect them by making sure suspects do not return to the property through banishment. It would also be another opportunity to give victims their contact information so they can call them personally if they have any more problems; allowing PHOs to utilize technology to their advantage (see COPS 2014). Furthermore, PHOs conducting follow-up investigations with victims may reinforce to victims that PHOs are keeping them updated on the status of investigations, and gathering new information from victims which enables the citizen input component of community policing. Thus, the exposure of crime victims to the community policing effort of KHA may mediate the negative effects of crime victimization.
As predicted, police trust was positively associated with perceived police effectiveness. One way to interpret this finding is that the impacts of banishment have not compromised trust or the ability to be perceived as effective. While nonResidents have been found to be the source of most crime in public housing neighborhoods (Goldstein, 2003; Walsh et al. 2000), we should explore ways to enforce banishment carefully. Although non-residents may contribute negatively to the quality of life and banishment may need to be used, police run the risk of being viewed negatively and police effectiveness is compromised unless the manner in which they enforce banishment is done in a way that can gain the trust of the community and not be seen as intrusive.

Much like police contact and police responsiveness, the police trust outcome in this study may also be tied to community policing. Shared responsibility and transparency in enforcing banishment may be promoting police trust, since the enforcement of banishment is shared among KHA PHOs, KHA security, KHA property managers, and residents. Shared responsibility in crime fighting is also accounted for by allowing residents to contact PHOs via cell phone. In this study, fourteen households called about a trespasser in the past six months, and seven of those directly called a PHO. In disadvantaged communities where residents fear openly talking to police, use of technology through community policing may be an effective way to share responsibility, gain citizen input, and thus build trust (see COPS 2014). For crime victims, they may seek comfort in knowing that suspects could be prevented from harming them again by being banned, that they can communicate personally with PHOs, and that PHOs should follow up with them on cases. This provides the possibility for PHOs to make a positive impression on crime victims; thus, banishment policies may elevate trust of police among crime victims when used under the guise of community policing. The ability of shared responsibility, transparency,
and technology to establish trust would be essential since trust and legitimacy increase the willingness of residents to cooperate with police and comply with the law (Hough et al. 2010, Jackson and Bradford 2010; Sunshine and Tyler 2003; Tyler 1990, 2005; Tyler and Huo 2002).

Still, KHA PHOs’ ability to garner trust through community policing may be the result of a combination of community policing components. An organizational structure that produces heightened visibility of KHA PHOs due to work schedules, proactivity, patrol methods, KHA calls-for-service responsibility, permanent beats, and use of crime statistics, while likely contributing factors to perceptions of over-policing, may be triggering trust in police since residents would feel they are given their appropriate attention (see Hawdon et al. 2003) and share crime-fighting priorities with police (see Stoutland 2001). KHA work schedules and use of crime statistics ensures PHOs are in KHA communities during times when crime is at its highest. This may ensure responsibility and accountability but may also reassure to residents that PHOs are out during appropriate times. KHA calls-for-service responsibility, bicycle and foot patrols, and permanent beats also helps ensure that residents will see PHOs whether or not they call the police, and that PHOs are getting to know the community, and conducting their own investigation (Kane 2000). While engaging with any officer may prove beneficial, engaging with a PHO may ensure residents that they are dealing with someone they can trust as community policing has shown to improve relations between residents and police (Gill et al. 2014; Greene et al. 1999; Skogan 1994; Skogan and Hartnett 1997).

Taken together, police in public housing using banishment should find ways to enhance police trust and minimize perceptions of under-policing and over-policing. This study’s findings give initial promise to community policing’s utility in public housing communities to produce these outcomes. Police-community collaboration has been shown to mediate the adverse effects
of concentrated disadvantage (Hawdon and Ryan 2011; Reisig and Parks 2004). Similarly, Skogan and Hartnett (1997) in their comparison study of disadvantaged and affluent communities found more positive community policing outcomes in disadvantaged communities than affluent communities. Thus, in public housing feelings of under-policing and over-policing are likely to diminish if residents feel as though the community policing presence in the community is working with them rather than against them, which also increases trust (Goodman-Delahunty 2010).

The current study is not without its limitations and findings should therefore be interpreted carefully. First, the generated sample was not completely representative of KHA and should not be considered representative of public housing overall. Lack of total KHA representativeness is largely due to the oversampling of single and non-working households. Still, the sample was considerably representative of KHA. Second, this study did not utilize a random sample. The purposive sample used was done in an effort to maximize response rates. A random sample may be warranted, but efforts to do so should be crafted in ways that can generate responses from those who are working. Finally, this study did not include other independent variables that would predict police effectiveness such as police-community collaboration, distributive justice, and procedural justice. In regard to banishment, residents were not directly asked whether they believed the outcome of having their friend or family member banned or arrested was fair. Since residents themselves are not the ones being banned or arrested for violating bans, we could only infer a sense of distributive justice predicting police effectiveness negatively based on the oppressive nature of banishment. While we found statistical significance with our variables, inclusion of others may form a more complete picture that can aid practitioners.
CONCLUSION

While objective crime control benefits of banishment in KHA were found in previous chapters, these benefits did not matter for many residents. The perceptions of banishment from residents made it clear that if banishment is to continue, police will need to be trusted and they will have to strike the perfect balance in their patrol frequency. Given the state of police-minority relations, police will have to be vigilant in being transparent and taking perceptions seriously or their efforts to reduce crime will be meaningless. For the many police departments utilizing community policing in disadvantage minority neighborhoods, making use of residential perceptions can help ensure they do not get complacent in their roles.
CHAPTER VI: CONCLUSION

In the summer of 2014 I would begin Chapter 2 of this dissertation, which evaluated the effectiveness of banishment in public housing as a test of the broken windows theory. Seeing as though banishment allows police to ban people in an attempt to reduce crime, I wanted to know do bans reduce crime? I was surprised to find out bans did predict reductions in violent and property crime (Chapter 2). However, reductions due to bans were more pronounced for property crime but still modest at best. In the context of broken windows, such findings were not entirely new (Braga, Welsh and Schnell 2015). Chapter 2 also considered whether bans predicted increases in drug arrests. I found support that bans increased drug arrests within the same year and decreased drug arrests the following year, though modestly as well. This suggests that it is possible that bans may produce a deterrent effect with respect to drugs. Finally Chapter 2 found that while the use of trespass arrests may be widely used by communities outside of public housing, the use of bans remain concentrated within public housing.

The next logical question was whether bans deterred banned individuals from offending in public housing? Here we are only concerned with how being banned affects future criminality in public housing, not the role of trespass arrests. Considering KHA is confident enough to claim that banishment deters criminal activity without any empirical evidence to support this claim, it was necessary to do this study. Depending how you view it, the results evidence that being banned does not deter crime. This was largely due to large increases in trespass offenses after being banned. Including trespass offenses as a part of the determination of deterrence was necessary given that arguably trespassing is the most serious offense one could commit because of banishment. The goal of being banned is to keep you away; if you are banned, not staying
away from public housing should be viewed as a serious offense. It is, after all, a direct violation of a legal order. However, if you take away trespass offenses, results suggest that banishment does deter drug offenders. For violent or property offenders, the results suggest the number of offenders reduced after being banned but these results are inconclusive since they were not isolated. Other types of banned individuals were also more likely to be deterred: nonpublic-housing offenders, and those who did not offend in the three years prior to being banned. Finally, and not surprisingly, the study found that those who are banned are predominantly African-American males. KHA and other PHAs that experience such dramatic increases in trespass offenses will have to consider whether such collateral damage to strictly trespass offenders and to African-American males in general is justified by the crime control benefits.

Still, an evaluation of banishment would not be complete without understanding how it, along with the police that enforce it, is received by residents. Chapter 4 sought to address what predicted perceived police effectiveness among KHA residents. It is one thing to objectively be effective at reducing crime; it is another to perceptually be effective. As the current state of police-minority relations have shown, perceptions of police and how they enforce the law matter, especially in minority communities. The survey that was carried out showed that in a predominantly African-American public housing community, and one that is policed under banishment, that approximately 40 percent of residents report they find the police to be effective: in their ability to control crime; in banishments ability to reduce crime; and in their ability to enforce banishment. While not the majority, this is noteworthy given the negative consequences of banishment, the demographic makeup of KHA, and the history of police-minority relations. In predicting effectiveness, it was found that KHA residents were more likely to find the police effective if they trusted them. However, they were less likely to find them
effective if they felt that police were patrolling too little or too much. Surprisingly, having a friend or family member banned did not matter once police trust and police responsiveness were accounted for.

What exactly does this research mean? In many ways, banishment does have crime control benefits, at least in KHA. From the neighborhood perspective, the evidence suggests that the individual efforts of enforcing banishment can reduce property crime and lead to drug arrests. From the banned individuals’ perspective, being banned can deter certain types of offenders. Most importantly for PHAs, it can deter drug offenders and those who have no offending ties to public housing. KHA, police, and residents can find some solace in a policy that finds drugs, keeps drug offenders at bay, and protects from crime.

Of course, the crime control benefit comes at a price. Within these low-income minority neighborhoods, only KHA is subjected to the full enforcement of banishment—trespass arrests and bans. Also, roughly 8 in 10 banned individuals is an African-American male and, combined with the already high adult female population in KHA, banishment makes KHA almost an exclusively female space. Being banned also increases the amount of offenders in public housing because of trespass arrests. It is suggestive that a considerable amount of banned individuals will come back to the property despite a policy forcing people to stay away. Moreover, violent crime does not seem to be affected by banishment. Finally, even if effective, many residents are not satisfied with the police response in the community.

While these consequences likely raise red flags about the racially oppressive nature of banishment in KHA, we should caution at suggesting it is an explicit mechanism by the police for the oppression of racial and ethnic public housing residents given many of the other communities used in this study were also predominantly African-American and other
communities also issued trespass arrests, albeit likely communities with parks and businesses that enforce trespassing. If anything the majority minority public housing communities in this study were exposed exclusively to bans.

The racial consequences at the hands of banishment may be more indirect as a function of the police having more ability to carry out the full enforcement of the law within entire public housing spaces where minorities may reside because of banishment. Banishment allows police to police areas like they would public spaces, having unrestrained access to that area to enforce the law. Stated differently, the police maintain control in the public sphere while they need to be granted access by either the property owner or the courts to police the private sphere (Hunter 1985). In public spaces, banishment grants this access. Public housing is almost exclusively government owned and PHAs have granted police the authority to enforce banishment for all of the physical space within its communities, including housing units. Such a “wholesale” approach to enforcing banishment, to borrow from Fagan and colleagues (2013), for an entire neighborhood is difficult for non-public housing communities where neighborhoods have houses that are individually owned and require homeowners to individually apply to have trespassing enforced on their property. Stated differently, because of banishment in public housing, cops are given permission to enforce the law in every square inch of public housing without recourse, but within nonpublic housing, residential communities where homeowners have not granted police permission to enforce trespassing on their property, or where there is no reasonable suspicion or probable cause to allow police onto the property, they are only free to roam in the sidewalks and streets to enforce the law. The larger the area banishment is used, the more enforcement we should see. Such an acknowledgment about differences in policing entire communities through banishment versus policing individually owned houses through banishment should help advance
social control theories attempting to understand policing of minority neighborhoods given that all the communities in the study were predominantly African-American.

The question now is how can banishments efficacy remain intact while also minimizing the consequences? This study’s findings give initial promise to community policing’s utility in public housing communities to increase police trust and minimize the consequences of banishment through more communication with the community about the efforts of public housing police to reduce or control crime. Given that between 2004 and 2012, the enforcement of banishment predicted reductions in property crime, contributed to drug arrests and deterring drug offenders such information may not have been received, or perceived, by the residents of public housing, or police for that matter. This is especially true considering the survey results found evidence that the longer someone has lived on KHA property, the more likely they were to feel the police were not being effective. Moreover, forty-eight percent of residents in KHA felt the biggest problem in their neighborhood dealt with issues of crime and drugs. Being transparent is not only key to community policing (COPS 2014), but being transparent about the crime control benefits of banishment could possibly minimize perceptions over-and under-policing and build trust at the same time.

Since community policing entails promoting citizen satisfaction (Gill et al. 2014), and community partnerships and input (COPS 2014; Cordner 2014; Rohe et al. 2001), opening up more lines of communication with the community while engaging in crime fighting roles could also help deal with the other issues posed by banishment. First, stakeholders need to address how to maintain banishment’s crime control benefits without having to dramatically increase the amount of people that take on trespass charges. As mentioned in Chapter 3, adopting a model of banishment that can allow for more banned individuals to return to the property warrants
consideration. Many PHAs enforce banishment policies that allow those who are banned to be able to return to the property after a certain amount of time.20 Since KHA adopts a banishment policy that bans people for life, modifying the ban length should help reduce the amount of people who take on trespass charges. KHA and other PHAs with predominantly minority populations should also take into consideration the exceptional likelihood that any minority male that steps foot into public housing stands a high chance of being eligible for being banned. Given that the majority of adult public housing resident are female (National Low Income Housing Coalition 2012), simply being an adult male in public housing would be suspicious enough for police to question why you were on the property. On top of that, minority males stand a much higher likelihood than whites of having a criminal record (Bonczar 2003), which is grounds for banishment in many PHAs. Ex-offenders with ties to public housing are already at a disadvantage since many are not allowed to apply for public housing and lose many other benefits (see Alexander 2010). For places always considered home, this likely contributes to many males living illegally in public housing, which is also grounds for being banned and having the leaseholder evicted.

While KHA does grant conditional visitation (i.e. allowing banned individuals to visit specific residences only), its procedure may need to be changed to allow more banned individuals to see those they have legitimate reasons to visit. One of the issues with appealing bans, to lift bans completely or for conditional visitation, is a lengthy process which might not help someone who needs immediate access to the community. If one is awaiting trial when they

20 See for example Housing Authority of the City of Winder (http://www.winderhousing.com/policies/Trespass-and-Ban-policy-of-WHA.pdf), St. Louis Housing Authority (http://www.slha.org/wp-content/uploads/2015/03/TrespassPolicy-Amended2012-REVISED.pdf), and Charlottesville Redevelopment and Housing Authority (http://www.charlottesville.org/home/showdocument?id=31188)
are banned, KHA officials do not consider appeals until after the trial is over (KHA 2010). Considering arrests take time to prosecute, some banned individuals may not be able to wait to have their appeals heard, and enter the property again willing to take on more trespass charges. Discussing reforms to the appeal process with residents and banned individuals can help inform needed changes in this area. Ultimately, the percentage of minority males banned may not reduce given the demographic context in which banishment is used, but the amount of minority males banned can.

KHA, its police, and residents should explore other means of reducing the violent crime as the statistical evidence in this report finds that public housing was unable to consistently yield reductions in violent crime during the twelve year period. One logical step is to move towards more focused deterrence strategies to deal with violent offenders. Focused deterrence strategies attempt to locate chronic violent offenders and maximize the risks of offending by providing them with incentives and disincentives (Kennedy 1998, 2008). The violent crime-reduction benefits have been well established (see Braga and Weisburd 2012, Brunson 2015; Corsaro and Engel 2015; Papachristos, Meares and Fagan 2007). This would require tracking repeat violent offenders in public housing, which could easily be done. Not only is it possible to reduce violent crime under this approach, but trust in the police from the offender and the community may strengthen as well as police make use of procedural justice in focused deterrence strategies (Braga 2012). In the end, the remaining challenges faced by KHA in enforcing banishment can be addressed by taking advantage of the community policing already in place. As KHA, police, and residents sort out how to address these issues, residents may feel as though the community policing presence in the community is working with them rather than against them, which also
increases trust in police (Goodman-Delahunty 2010) and can mediate the adverse effects of concentrated disadvantage (Hawdon and Ryan 2011; Reisig and Parks 2004).

The research on banishment is not over; even within KHA there are still many unanswered questions. Given the amount of neighborhoods, measuring the effect of banishment on individual crimes was not possible. Such an analysis would require more data. This can be accomplished by including more neighborhoods in the analysis, by including more data through 2015, or both. Ideally, increasing the number of neighborhoods involved in the study and extending the time frame to 2014 would make individual crime analyses possible. Furthermore, it is possible that other policing-related variables have an influence on reduced crime rates and deterrence, such as patrol intensity. Patrol intensity would be a variable meant to capture officer proactivity measured through the amount of officer initiated radio runs. Given KHA CROs are expected to take a proactive role in policing their communities, it is possible this could have contributed to declines in property crime and increases in drug arrests. Ban notices should also be empirically analyzed to: (1) evaluate whether KHA police are conforming to the banishment criteria set forth in their policies; and (2) evaluate trends as to why people are being banned to note whether there is evidence of scripting.

Due to the very local context used for this project, future research should also address the crime-control impacts of banishment in other public housing communities in order to draw comparisons across urban PHAs. As it stands, the scientific research on banishment in public housing is scarce, limited to one study analyzing banishment in New York City public housing (Fagan et al. 2010) and my survey study (Torres 2015). Adding a qualitative component to this work by interviewing police officers, public housing residents, and banned individuals about their perceptions of banishment would also give voice to stakeholders and provide depth to this
line of work. Considering much was unknown about banned individuals themselves, it is important that banishment research include them as a central focus of studies. After all, why are banned individuals drawn toward public housing? Without addressing this, banishment reforms run the risk of extended trial and error. Finally, more work needs to specifically address the consequences of banishment to shed light on the short and long term effects of banishment on banned individuals and their networks within public housing. Thus, future research should address questions like what effects does banishment have on social capital, or how does banishment influence masculinity?

Public housing communities are plagued by neighborhood disadvantage and hostile police-community interactions. Since safety is a federal requirement of public housing communities and banishment is a central tactic used in these communities, understanding the effectiveness of banishment policies in public housing communities is a matter of national security. Banishment enforced without the guidance of community policing runs the risk of having residents being constantly asked about their residency, and possibly even banned or arrested. This issue was central to the trespass enforcement among the NYPD in *Davis v. City of New York* (2013), where actual residents of New York City public housing were being arrested for trespassing. Residents will likely continue to push for social justice unless the police can affectively change the way in which they enforce the policy. Police departments who enforce no-trespass policies in public housing guided by community policing rather than aggressive zero-tolerance policing is critical for the policy to be perceived positively by the residents it most affects.

Coincidentally, my research came to life as the riots of Ferguson and Baltimore, and the deaths of Michael Brown, Freddie Gray, Tamir Rice, Eric Garner, and Scott Walker made
national headlines. These events have renewed questions about the utility of broken windows strategies and renewed public calls for police reform to improve police-minority relations. Given the racial and ethnic makeup of inner city public housing communities, researching the policing of public housing should be at the epicenter of understanding the policing of minorities in disadvantaged communities. Overall, it is my goal to be a scholar who will impact the discipline by exploring the effects banishment policies have on crime, police legitimacy, police-minority relations, race and social control, urban social control, and the efficacy of broken windows and deterrence theory. I now know a lot more about the questions I wanted answered, but there is still much we do not fully understand about banishment. As such, I am not quite done.
REFERENCES

Thompson v. Ashe, 250 F.3d 399, 409 (6th Cir. 2001)

