
WiSDM: A Platform for Crowd-Sourced Data Acquisition,

Analytics, and Synthetic Data Generation

Ananya Choudhury

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science and Applications

Madhav V. Marathe, Chair
Sandeep Gupta

Keith Bisset

April 29, 2016
Blacksburg, Virginia

Keywords: Human Computation, Crowd Sourcing, Synthetic Dataset, Data Analytics,
Data Visualization, Epidemiology, WiSDM

Copyright 2016, Ananya Choudhury

WiSDM: A Platform for Crowd-Sourced Data Acquisition, Analytics, and

Synthetic Data Generation

Ananya Choudhury

(ABSTRACT)

Human behavior is a key factor influencing the spread of infectious diseases. Individuals
adapt their daily routine and typical behavior during the course of an epidemic – the adap-
tation is based on their perception of risk of contracting the disease and its impact. As a
result, it is desirable to collect behavioral data before and during a disease outbreak. Such
data can help in creating better computer models that can, in turn, be used by epidemiolo-
gists and policy makers to better plan and respond to infectious disease outbreaks. However,
traditional data collection methods are not well suited to support the task of acquiring human
behavior related information; especially as it pertains to epidemic planning and response[37].

Internet-based methods are an attractive complementary mechanism for collecting behav-
ioral information. Systems such as Amazon Mechanical Turk (MTurk) and online survey
tools provide simple ways to collect such information[68]. This thesis explores new meth-
ods for information acquisition, especially behavioral information that leverage this recent
technology.

Here, we present the design and implementation of a crowd-sourced surveillance data acqui-
sition system – WiSDM. WiSDM is a web-based application and can be used by anyone with
access to the Internet and a browser. Furthermore, it is designed to leverage online survey
tools and MTurk; WiSDM can be embedded within MTurk in an iFrame. WiSDM has a
number of novel features, including, (i) ability to support a model-based abductive reason-
ing loop: a flexible and adaptive information acquisition scheme driven by causal models of
epidemic processes, (ii) question routing: an important feature to increase data acquisition
efficacy and reduce survey fatigue and (iii) integrated surveys: interactive surveys to provide
additional information on survey topic and improve user motivation.

We evaluate the framework’s performance using Apache JMeter and present our results.
We also discuss three other extensions of WiSDM: Adapter, Synthetic Data Generator, and
WiSDM Analytics. The API Adapter is an ETL extension of WiSDM which enables extract-
ing data from disparate data sources and loading to WiSDM database. The Synthetic Data
Generator allows epidemiologists to build synthetic survey data using NDSSL’s Synthetic
Population as agents. WiSDM Analytics empowers users to perform analysis on the data
by writing simple python code using Versa APIs. We also propose a data model that is
conducive to survey data analysis.

WiSDM: A Platform for Crowd-Sourced Data Acquisition, Analytics, and

Synthetic Data Generation

Ananya Choudhury

(GENERAL AUDIENCE ABSTRACT)

In this work, we present WiSDM (Widely Internet Sourced Distributed Monitoring), a web-
based framework that facilitates acquisition and analysis of human behavioral information.
The information is acquired through online surveys, designed and hosted in WiSDM’s data
collection framework and is utilized by researchers to predict how disease spreads during an
outbreak. Researchers collect as much relevant information as possible and build computer
models that can predict future epidemics well in advance. WiSDM provides several features
that enable researchers to design intelligent surveys adaptible to users’ behavior and which
only pose questions most relevant to responders. The computer models used for disease
prediction need to be trained before they can accurately predict disease outbreaks. But
training these models require a large set of survey responses and it is not always feasible to
collect responses from such a large number of people. That is why WiSDM provides a mod-
ule called Synthetic Data Generator that synthetically generates near-real survey responses
which can be used to train and test the computer models. WiSDM also has an analytics
module – WiSDM Analytics – through which the generated or collected survey responses
can be analyzed and can also be visualized as graphs and charts. Information from regions
beyond WiSDM’s reach can be collected using external survey tools which are locally popular
and then using WiSDM’s Adapter module, the information can be pulled into the WiSDM
system for further analysis and processing.

Acknowledgements

I would like to express my appreciation to my advisory committee: Dr. Madhav Marathe,
Dr. Sandeep Gupta, and Dr. Keith Bisset. Thanks for giving me the opportunity to be a
part of the NDSSL research group.

I offer my sincerest gratitude to my advisor Dr. Madhav Marathe, who has supported me
thoughout my thesis with his knowledge and patience while giving me the freedom to explore
on my own. He has supported me not only by providing research assistantship for over a
year but also by giving research ideas during various stages of this thesis.

Dr. Sandeep Gupta’s insightful comments and constructive criticisms at different stages of
my research were thought-provoking and they helped me focus my ideas. I am grateful to
him for his prompt support whenever I needed his help.

I acknowledge my gratitude to Dr. Keith Bisset who has always been there to listen and
give advice.

A very special thanks to my mentor Mandy Wilson, for the immense help and encouragement
she provided at all levels of this research project. Without your guidance and assistance, I
would not have finished this thesis.

In conclusion, I owe my gratitude to all those people who have helped me and supported me
and because of whom my graduate experience has been one that I will cherish forever.

iv

Contents

1 Introduction 1

1.1 Background . 5

1.2 Motivation . 9

1.3 Contribution . 10

2 WiSDM: A Crowdsourced Data Acquisition System 13

2.1 Hypotheses . 13

2.2 Related Work . 14

2.3 Features . 17

2.4 WiSDM Workflow . 19

2.4.1 WiSDM Admin Interface: Build Surveys 19

2.4.2 WiSDM Survey Interface: Respond To Surveys 21

2.4.3 WiSDM Download Interface: Download Survey Results And Summaries 23

2.4.4 WiSDM Reporting: Build Survey Reports 23

2.5 Conclusion . 24

3 WiSDM Architecture 25

3.1 Django Framework – An Introduction . 25

3.2 WiSDM Architecture . 27

3.3 How Does WiSDM Work To Fulfill User Requests 30

3.4 Database Design . 32

3.4.1 Older Version . 32

v

3.4.2 New Version . 34

3.5 WiSDM Web Application Features . 36

3.5.1 Preamble: . 36

3.5.2 Branched Logic . 36

3.5.3 Response Download . 37

3.6 WiSDM API Adapter . 38

3.6.1 Challenges . 41

3.6.2 A Proposed Future Extension . 42

3.7 Conclusion . 45

4 WiSDM Application Testing 47

4.1 Load Testing . 47

4.2 Database Testing . 48

4.3 Apache JMeter . 48

4.3.1 Installing And Launching JMeter . 49

4.3.2 Creating Test Plan . 49

4.4 Results And Analysis . 53

4.5 Quality Assurance . 55

4.6 Conclusion . 57

5 WiSDM: Synthetic Data Generator 58

5.1 Objective . 59

5.2 Related Work . 59

5.3 Synthetic Population . 60

5.4 Decision Tree Algorithm . 60

5.4.1 Extra-Trees Classifier . 61

5.4.2 Complexity . 62

5.4.3 Data . 62

5.5 Design And Implementation . 63

vi

5.6 Additional Usages . 66

5.7 Conclusion . 68

6 WiSDM Analytics 69

6.1 Objective . 69

6.2 Data Modeling . 70

6.2.1 Survey Data Format For Analysis . 70

6.2.2 WiSDM Analytics Data Model . 71

6.2.3 Advantages . 72

6.3 Data Visualization . 72

6.3.1 Versa . 73

6.3.1.1 Related Work . 73

6.3.2 WiSDM With Versa . 74

6.3.3 Performance Comparison Of Versa Between Oracle And PostgreSQL 76

6.3.4 Advantages Of Versa . 78

6.4 Conclusion . 78

7 Conclusions And Directions For Future Work 79

Bibliography 82

A Components Of WiSDM And Their Dependencies 92

B Mapping From WiSDM Old Database Version To New Database Version 93

C USA Disease Prevalence Survey Questions 94

D WiSDM Data Visualization Code 96

vii

List of Figures

1.1 Abductive Loop in WiSDM . 4

1.2 Difference between A. an ordinary survey and B. a branched survey 8

1.3 A Branched Survey . 8

1.4 WiSDM Integrated Framework. The inner semi-circle (in a darker shade of blue) represents
frameworks currently integrated with WiSDM and the outer semi-circle (in light blue)
represents extensions of WiSDM. 11

2.1 WiSDM Admin screen . 19

2.2 WiSDM Add Survey Form . 20

2.3 WiSDM Survey Page as presented to a responder 21

2.4 WiSDM Download pages. 1. Admin selects a survey and chooses one of the download
actions. 2. Admin then chooses a download format and clicks ’start download’. 22

2.5 WiSDM Reporting module. 1. Admin selects a report to edit or clicks ’Add Report’ to
build a new report. 2. Reporting interface where admin can build or edit reports. 23

3.1 WiSDM data flow diagram . 27

3.2 A high-level architecture diagram of WiSDM . 28

3.3 A control flow diagram of WiSDM . 31

3.4 WiSDM Database Version - Old . 33

3.5 WiSDM Database Version - New . 34

3.6 WiSDM Question Routing in Survey Admin page 37

3.7 Workflow of the API Adapter . 39

3.8 API Adapter class diagram . 39

3.9 Two different ontologies: Computer Science Department in (a)US and (b)Australia . . . 42

viii

3.10 GLUE Architecture . 43

3.11 Estimating the joint distribution of concepts A and B 44

4.1 Apache JMeter Test Plan . 50

4.2 Number of Active Threads over Time . 54

4.3 Response Time over Percentiles . 54

5.1 Decision Tree . 61

5.2 Synthetic Data Generation Process . 63

5.3 Synthetic Data Generator class diagram . 64

5.4 A sample of Config.json file . 65

5.5 A pictorial representation of the trained tree . 67

5.6 Feature Importance . 67

6.1 Survey Data extracted from Qualtrics: The columns Q3_1 to Q3_5 represent the data
that was gathered from the ’check all that apply’ survey question ’What is your occupation?’. 71

6.2 Example of data storage where multiple-select options are stored in a list. 71

6.3 Example of a key-value format for WiSDM Analytics data model. Responses for question
“When did you fall sick?” is shown in this table. 72

6.4 Age by Population Size Distribution . 76

6.5 Age by Gender Distribution . 77

6.6 Age by Sick Population Size Distribution . 77

ix

Chapter 1

Introduction

Scenario

Consider two theories.

• Theory 1: The CDC has predicted mild flu activity for this season, and

• Theory 2: Flu trends in Blacksburg match CDC flu predictions.

Now given these two theories, researchers in Blacksburg conduct an online study to acquire
information about what strategies people are taking to avoid getting the flu. They analyze
the collected data and find that people incorporated many strategies necessary to avoid the
flu, such as getting vaccinated, washing hands regularly, etc. However, they also notice a
below average trend in the vaccination rates among school-aged children. They hypothesize
that vaccinations for young children are not widely available in Blacksburg or parents of
school-aged children are reluctant to have their children vaccinated. The first hypothesis is
rejected because traditional flu vaccines, approved for most people above 6 months of age,
are widely available throughout Blacksburg and neighboring areas. To evaluate the second
hypothesis, they launch a new study targeting parents of children in that age range, collect
behavioral information, and analyze the data. Based on the results of their new study, they
accept their new hypothesis as a fact since there is no other plausible reason to explain the
event. But if required, the researchers could revise their hypothesis and iterate through the
process again.

This is a realistic portrayal of response during a disease outbreak. Response to such an
emergency is carried out in multiple stages and involves multiple organizations like health
department services, healthcare professionals, etc. It is recognized to be an important process
but never been structured in a circular flow model. We call this the abductive loop. The term
“abductive loop” is derived from abductive reasoning, where one infers a fact as a plausible

1

explanation for observed behavior. Like abductive reasoning wherein one makes a hypothesis
to find the most likely explanation for a cause, researchers usually hypothesize to find the
most plausible reason for an event. But they perform this reasoning in a loop by following
a series of steps shown in Figure 1.1. The first stage usually involves collecting ground data
which is then followed by preparing the data for modeling and simulation. Data preparation,
in essence, assists in hypotheses generation. The next stage, modeling and simulation, is a
deductive process which effectively leads to accepting or refuting those hypotheses. The
stages in the figure are discussed further in the next section. Although we explain abductive
loop and WiSDM in this thesis with respect to epidemiology, the concept, and the framework
are generic enough to be extended to most other domains.

Abductive Loop

Abductive reasoning is a form of logical inference that goes from data describing an event to
a hypothesis that best explains or accounts for that data. Given a background theory and
an observation, abductive reasoning conjectures the best possible explanation for the obser-
vation from the theory provided the explanation is consistent with further observation[77].
It follows below syllogistic form[38].

• Theory: All the beans from this bag are white.

• Observation: These beans are white.

• Explanation: These beans are from this bag.

According to [34], logic-based abduction can be formally represented as follows:

Let

T = a theory that represents all relevant domain knowledge

M = set of manifestations or observations

H = set of plausible hypotheses

Then,

a suitable set S ✓ H is an explanation of M such that

8S, T [S is consistent and logically entails M.

But sometimes no subset of available hypotheses within the current conceptual frame is
consistent with all the observations. In such cases, the explanation involves the creation of
a new concept that provides a new description of the relevant phenomena[3] .

Therefore,

2

if 9S 0 2 S such that T [S is not consistent for manifestation M
0 2 M ,

then

8H 0 ✓ H, H 0 is defeated and a new set S⇤ * H is constructed as an explanation of M

such that 8S⇤, T [S⇤ is consistent and logically entails M.

Abduction logic is common in scientific reasoning on large and small scales. In Artificial
Intelligence, identification of a cause or diagnosis is often described as an abduction problem.
Diagnosis can be viewed as producing an explanation that best accounts for the patient’s
(or device’s) symptoms[86]. The task of a diagnostic reasoner is to come up with the best
explanation for the symptoms, which are typically those findings for the case that show
abnormal values. Taking diagnosis as abduction determines the classes of questions that are
fair to ask to find the best plausible cause. It also suggests that computer-based diagnostic
systems should be designed to make answering such questions straightforward and precise.

Let us elaborate on the flu epidemic example again in terms of the stages in the abductive
loop as represented in Figure 1.1. Given a relevant set of theories that CDC has predicted
a mild flu activity this season and that flu trends in Blacksburg match CDC flu predictions,
researchers want to acquire data about what actions people are taking to prevent falling sick.
There are active or passive data collection methods. Passive data collection involves gather-
ing user data without notifying the user, such as collecting a user’s geolocation information.
Conversely, active data collection requires a user to spend some time entering information
and requires that a user feels comfortable with providing information. This process is ac-
tive learning where the system only asks the most maximally informative questions[70]. In
this thesis, we concentrate on active learning. So our researchers build an intelligent survey
that poses most relevant questions to the people living in Blacksburg. The collected data
is then prepared for simulation and modeling. In this stage, the data is audited for errors
and anomalies, consolidated for analysis, and outputted into a format so that it can be
used in simulation and modeling stage. During data preparation, the researchers observe an
abnormal pattern in the vaccination rates among school children. They generate a set of
hypotheses that are plausible causes for below average vaccination rates among school going
children.

1. Flu vaccines that are approved for children are not widely available in Blacksburg.

2. Parents of school children are reluctant to get their children vaccinated.

In order to find the most plausible explanation, researchers run simulations on their stochastic
models built to establish causes for an effect. The simulation and modeling stage evaluates
the hypotheses. The first hypothesis is refuted because several reports suggest that seasonal
flu vaccines for both children and adults are widely available in various locations across
Blacksburg. The other hypothesis which suggests that a certain section of the population
did not get vaccinated is accepted because there is evidence that supports this explanation.

3

Figure 1.1: Abductive Loop in WiSDM

Now to confirm this new hypothesis, the researchers iterate through the abductive loop again.
They launch another study. But now they change their questionnaire to seek information
only about the transmitter population. They try to find why so many parents did not
get their children vaccinated. After following the stages of data preparation, modeling and
simulation, they analyze the results. A significant number of school children indeed did not
get vaccinated this flu season. This was because many parents who responded to the survey
cited a local news report published recently which said that getting so many vaccinations
will overwhelm a child’s immature immune system.

So to summarize, researchers perform abductive reasoning iteratively to find the best research
conclusion. They can start this cycle without any hypothesis; for example, from active data
collection stage and then eventually building and testing hypotheses as plausible causes of an
observation (as indicated in our flu example above). They can also start the reasoning loop
by first constructing hypotheses from belief or they can start from the modeling and simu-
lation phase where they run simulation models on exogenous data sets to build hypotheses.
Basically, by following the abductive loop, researchers can infer the best explanation for a
phenomenon or reject all previous inferences and create a new concept that is the cause of
the event. The inferred explanations must be consistent with the phenomenon and hold true
even when additional observations are added.

Hypotheses generation is a crucial step but this may be skipped when an abductive loop
is essentially followed to accept or refute a pre-existing hypothesis, as seen in the second
iteration of the above flu example. In the second iteration, the hypotheses generation stage
was skipped because that iteration was conducted primarily to assess a hypothesis approved

4

in the first iteration. However if any new pattern were observed in the collected data during
the second iteration, then the hypotheses generation stage would have been included.

The Modeling sub-stage in the abductive loop requires manual intervention and has not been
implemented as a part of this work.

1.1 Background

Longitudinal Studies

A longitudinal study provides data about the same individual or a cohort of individuals at
different points in time, allowing the researcher to track changes at the individual level. In
this kind of study, subjects are followed over time with continuous or repeated monitoring
of risk factors or health outcomes, or both. Such investigations vary enormously in their size
and complexity. At one extreme, a big population may be studied over decades. For example,
researchers at Harvard followed 268 men who entered college in the late 1930s through war,
career, marriage, divorce, and old age, examining the question “What makes us happy?”[97].
This fascinating study set out to find if there is any formula for a good life. These subjects’
mental states were monitored for 72 years; one of the participants was John F. Kennedy,
who became the president of the United States. These 268 men underwent regular medical
exams and psychological tests, returned questionnaires, and sat for interviews over all these
years.

Longitudinal studies play a key role in epidemiology and clinical research. They examine
associations between knowledge of or exposure to known or suspected causes of disease, along
with subsequent morbidity or mortality rates. In the simplest design, a baseline health status
measurement is obtained, an intervention is administered, and a follow-up measurement is
collected. [109] states that in a longitudinal study, the tests determine whether a change
in outcome variable Y (effect) is associated with a change in predictor variable X(cause),
or whether there is an effect of one or more interventions on the outcome variable Y . The
ultimate research design is to evaluate long-term and short-term effects on certain outcome
variable Y . By comparing the change in measurements, a relative risk can be estimated.
[57] states that the real strength of longitudinal studies is that they give a true description
of the life course of real populations. They permit quantitative analysis of social, economic,
psychological, and biological processes as they occur.

Internet-Based Surveys

The Internet is a popular medium for conducting behavioral research. It allows researchers
to reach to thousands of people in a short time while they work on other tasks[61]. Once an

5

invitation to respond to a survey is posted online, researchers can collect data while working
on other projects[4]. First generation online survey researchers used email surveys where
they had to cut-and-paste responses from emails into databases and data analysis programs.
Now with the advent of online survey creation software packages, data is saved directly to
the backend database and can also be exported to analytics software. Online surveys are
also cost efficient. It eliminates the need for paper, postage, printing and data entry[61].
Moreover paid crowdsourcing services offer a relatively inexpensive pool of responders. In
addition, citizen science projects such as Zooniverse[100] offers a similar pool of responders
who are willing to provide services at no cost.

While Internet-based surveys are cost and time efficient, they still have some limitations.
Certain sections of the population are underrepresented in Internet-based surveys[23]. For
example, people with lower incomes, less education, living in rural areas or aged 65 and
over are underrepresented among Internet users[114]. Among those who have access to the
Internet and respond to the surveys, relatively little may be known about them, aside from
basic demographic information and even that information may be questionable[27]. It is also
observed that responders of such self-administered surveys have a tendency to choose status
quo options[73] which may affect data quality. Traditional data collection methods such as
face-to-face and telephonic surveys provide more coverage and respondents of such surveys
have higher attention level which is a concern in self-administered surveys[19]. However,
social desirability bias may be introduced[33] because of the presence of the interviewer. A
relatively new concept in data collection has emerged lately, mixed mode survey involving the
web, which addresses these problems[20]. This survey methodology offers to the responders
multiple modes of taking a survey. By doing so, researchers attempt to raise participation
appeal and increase population coverage. But ’mode effect’ which refers to the difference in
the way respondents may answer question depending upon the chosen mode can be a crucial
downside[23]. However empirical studies[24, 49] show relatively small differences between
different modes of surveying with the exception of surveys on sensitive topics.

[113] conducted a series of tests to evaluate how Internet surveys compare to traditional
methodologies. [19, 117] provide an exhaustive review of the advantages and disadvantages
of conducting online surveys. Both suggest that several factors are to be taken into consid-
eration before selecting a data acquisition methodology.

CrowdSourcing In Epidemiology

Traditional disease monitoring methods have relied on public health data, such as hospital
or census data. However, such methods have many drawbacks; particularly, they require
individuals to consult a physician when they are ill, and for physicians to diagnose and report
the disease. But an unknown proportion of the population, irrespective of age, sex or social
status, do not seek healthcare when they are ill. This proportion may alter an infection
model, especially if there is a change in the levels of public concern, as was observed in

6

the United Kingdom (UK) during the 2009 H1N1v influenza pandemic[106]. On the other
hand, participatory surveillance via the Internet rapidly assesses the level of infection within
a community. [106] observed that Internet based surveillance captured a wider range of
cases than traditional surveillance systems. While traditional surveillance methods required
individuals to attend physicians when they were ill, Internet-based surveillance was quick
and relatively inexpensive, hence a wider range of people could be polled, even those who
did not seek health care.

Crowdsourcing platforms leverage this concept of participatory knowledge-sharing, paid or
voluntary, which empowers the general public to report incidents. In epidemiological studies,
crowdsourcing is used to collect rapid real-time information as individuals are diagnosed or
even before. It fosters early detection of an emergent outbreak, which is vital in building
infection models and predictions[17]. Amazon Mechanical Turk (also known as MTurk) is
one of the dominant worker-on-demand platforms. Workers (also known as MTurkers or just
Turkers) browse batches of human intelligent tasks (HITs) and complete HITs of interest[76].
They are paid by “requesters” upon successful completion of the accepted tasks. MTurk’s
large user base and simple payment system make it a convenient means of data collection.
Consequently, MTurk has increasingly become a popular way for researchers to conduct
behavioral experiments that involve data collection from the public.

We discuss more work on crowdsourcing in the next chapter.

Branched Surveys

These surveys can be designed to adapt depending upon user’s response, thus avoiding
redundant and irrelevant questions. This feature provides the ability to build “intelligent”
surveys, meaning respondents will be asked only those questions which are most relevant to
them. For example, consider a three question survey which does not have branched logic, as
shown in Figure 1.2A:

Question 1: Did you get vaccinated? Yes or No

Question 2: If yes, when did you get vaccinated?

Question 3: If no, why didn’t you get vaccinated?

Here responders will be asked all three questions irrespective of their response to the first
question. But if one answered ’Yes’ to Question 1, then Question 3 is irrelevant. Similarly,
if one answered ’No’ to Question 1, then Question 2 is not applicable. Consider a longer
survey as shown in Figure 1.3. There is a total of 18 questions to be answered. In a fixed
length survey, responders would have to answer all 18 questions irrespective of their responses
to specific questions. However with branched logic, responders will answer questions only
pertaining to them, which in this survey is at most 7. Having redundant questions in a survey

7

Figure 1.2: Difference between A. an ordinary survey and B. a branched survey

tends to increase survey fatigue. By avoiding such redundancies, the number of questions
posed to a responder can be reduced to O (log n) from n. This significantly enhances survey
efficacy and reduces survey cost.

Figure 1.3: A Branched Survey

Survey branching injects conditional logic in the survey flow which enables responders to
skip questions that are not relevant to them. So with conditional logic, the previous three
question survey can be converted to

Question 1: Did you get vaccinated? Yes or No

Branch logic: If answered ’Yes’ to Question 1, go to Question 2

Question 2: When did you get vaccinated?

8

Branch logic: If answered ’No’ to Question 1, jump to Question 3

Question 3: Why didn’t you get vaccinated?

The survey takes the form of a tree as shown in Figure 1.2B. So now responders will answer
only 2 questions. They will not see the underlying branched logic or the questions that are
not in their branch path.

1.2 Motivation

In recent years, conducting longitudinal studies has become easier with the growth of Internet
and crowdsourcing platforms. Researchers can easily draw respondents for any type of web-
based surveys, and collect data almost instantaneously. There are many tools available that
help facilitate building surveys online, but these survey tools do not support dynamic surveys
because they do not maintain any change history. Making any alterations to existing surveys
may lead to data loss, dangling questions, or responses not associated with an existing survey.

Survey design is a crucial factor in making surveys a more pleasant experience, an important
factor for improving data quality. Survey branching can help improve user experiences by
curtailing dull and lengthy questionnaires, but it is not a straightforward feature in most
tools, and, for some, this feature is available only at an additional cost. Studies[13, 31]
also suggest that gamification of surveys and increased interactivity lead to a better user
experience if not always, better data quality. Not all surveys can be gamified, but they can
easily be made more interactive by providing additional information, like CDC Flu Map,
leading to increased user engagement. But few tools to date support surveys that can be
integrated with external APIs. These survey tools are expensive, and they do not integrate
easily with Amazon Mechanical Turk; they do offer services to recruit responders, but these
services tend to be highly-priced when compared to recruiting workers from MTurk[103, 89].
A price comparison is shown in Table 1.1. MTurk also provides a requester UI to design and
publish HITs, but setting up the UI may be a complicated process.

Table 1.1: Price comparison of various commercial data acquisition frameworks

Frameworks Responders Price
SurveyGizmo 1100 (Brazilians) $5500 - $8800

Qualtrics 1100 $5500
QuestionPro 1100 $2300

Amazon Mechanical Turk 1100 $770

9

The information that is collected helps researchers predict an epidemic, or future trends
for a prevalent outbreak, using inference algorithms. Before these inference models can
accurately predict a situation, they need to be tested extensively, which often requires a
large, non-biased data set. [105] states that much of the data that is collected from crowd
workers are self-reported and that it cannot be verified whether the participant accurately
reported the condition, which may introduce bias to the inference model. An artificially
generated data set can overcome both issues of bias and data-size. Because in artificially
generated data sets researchers have control over what data is being generated. They can
define how virtual responders will behave under certain circumstances, and can also dictate
how much data needs to be generated.

Analysis of collected data presents researchers with a big picture for situation assessment.
But, there is little research on how survey data can be modeled for simpler analytics, or how
existing data structures or analysis frameworks will scale when faced with a much larger data
set. An appropriate data structure is crucial for simpler data analytics and a framework that
can perform analytics across disparate data sources is important.

1.3 Contribution

This thesis describes a web-based system called WiSDM (Widely Internet Sourced Dis-
tributed Monitoring). WiSDM facilitates interactive data acquisition, inspection and fore-
casting of social dynamics in a population, and allows for a crowd-sourced collection of
situational and behavioral data. It is based on an information economy paradigm – wherein
users can provide individualized but anonymous information in return for novel insights pro-
duced by computational models. WiSDM presents users with data customized for them and
gathers individual or collective data of and around the users in return. It can be integrated
with online survey services and also with online labor markets such as Amazon Mechanical
Turk; this provides a cost-effective approach to real-time surveillance of a potentially evolv-
ing disease outbreak. WiSDM is designed to support logic-based abduction combined with
non-Bayesian inferences. It can be used by anyone with access to the Internet and a browser.

A basic version of WiSDM as a data acquisition system was already present from previous
work[2]. Our contributions in WiSDM, which goes beyond implementing above mentioned
attributes, has been built on the earlier version and can be summarized as below.

• Our primary contribution was to redesign and build WiSDM as a data collection sys-
tem that adapts according to user’s background information and behavior. It enables
researchers to conduct surveys personalized for every responder. Surveys can be built
with branched logic so that only relevant questions are posed to responders. We also
redesigned the survey interface to make it more interactive (the responder needs to
click ’Submit’ to navigate to a new page to view next question) to improve responder’s
attention level[87, 107]. Moreover, a survey preamble guiding responders on how to

10

Figure 1.4: WiSDM Integrated Framework. The inner semi-circle (in a darker shade of blue) represents
frameworks currently integrated with WiSDM and the outer semi-circle (in light blue) represents extensions
of WiSDM.

perform a task is displayed at the beginning of the survey. The new survey interface
is also designed to save responses from incomplete surveys. Researchers now have the
ability to download survey data in multiple formats. The backend data model has
also been changed to support more normalized data structure which enabled running
simpler queries on survey questions and corresponding user responses.

• Brazil is a Portuguese-speaking country where crowdsourcing platforms like MTurk are
not popular. Platforms that have reach in Brazil provide their own interface and do
not support third party integration. For maximum outreach, such situations may not
be ignored. Having an ETL extension to a data collection system will equip the tool
to carry out surveys using other applications and then extract data from that external
source and load to its local databases. We introduce an external module of WiSDM,
the Adapter, which can perform Extract-Transform-Load (ETL)[16] operations.

• Building a synthetic data set is a controlled process that enables researchers to build
a data set customized to their requirements by modulating parameters and features
as necessary. The researchers can also control the size of the generated data set. We
provide a parameterized framework, Synthetic Data Generator, that uses the Net-
work Dynamics and Simulation Science Laboratory’s (NDSSL) Synthetic Population
as agents who can be used to generate synthetic survey results.

• We propose a data model that can be used as a backend data structure for analytics
on survey data. We performed analytics on this data model using Versa, a python

11

framework for analytics and visualization. In this work, we show how WiSDM can be
used in conjunction with Versa to build advanced visualizations on the data.

Figure 1.4 is a pictorial representation of WiSDM integrated framework. In the subsequent
chapters, we elaborate on its above-mentioned capabilities.

12

Chapter 2

WiSDM: A Crowdsourced Data
Acquisition System

Epidemic spread depends on a number of network and behavioral parameters. Understanding
the interaction between these various parameters is crucial to perceiving susceptibility and
severity of the situation. For that, we need an adaptive approach to situation assessment and
information acquisition. Internet-based data acquisition is one such approach that is flexible
yet bears a low operational cost. There are several other advantages to Internet-based data
acquisition [91, 92]. Not only do online data acquisition techniques reduce social desirability
biases which are prevalent in traditional survey methods such as in-person surveys or voice-
over surveys[37], but it also allows automation and experimental control over the survey. This
means researchers can customize question sets based on subject demographics or responses
to previous questions; a kind of flexibility that would be impossible without the Internet[68].

WiSDM, an online data acquisition and data analysis system, leverages this idea to create a
framework that allows for abductive studies, where a researcher runs multiple experiments to
infer the most plausible causes of an event based on facts and observations. Abductive studies
are logical studies conducted in loops over longer durations of time. WiSDM integrates
traditional data acquisition with abductive reasoning and captures the abductive reasoning
loop inherent in observational and analytical studies. It facilitates the entire process, from
establishing a hypothesis to behavior sensing to concluding if an inference can be taken as a
fact.

In rest of the chapter, we discuss features of WiSDM in detail.

2.1 Hypotheses

We hypothesize that:

13

• WiSDM can facilitate the ability to pose the most maximally informative questions to
gather most relevant information

• WiSDM can provide seamless plug and play integration with crowdsourcing platforms
to access diverse groups of people.

• WiSDM can be extended to import data collected through external sources such as
commercial survey tools so that analytics can be performed locally.

2.2 Related Work

Crowdsourcing

Many studies have been done on conducting social research and collecting behavioral data
on crowdsourcing platforms like Amazon Mechanical Turk[76]. MTurk provides an exist-
ing and diverse pool of potential subjects that remains relatively stable over time. Such
platforms also maximize the efficiency of abductive loop. For example, one can rapidly go
from generating hypotheses to testing them, analyzing the results, and updating the theory.
There are numerous studies that show correspondence between the behavior of workers on
crowdsourcing platforms and behavior offline or in other online contexts. [104] replicated a
public goods experiment that was conducted in the classroom[36], and, despite the differ-
ence in context and the relatively lower pay on Mechanical Turk, there were no significant
differences between the results of the MTurk study and those from a prior study conducted
in the classroom.

It is also important to create simple and robust interfaces so that certain HITs can be posted
easily on MTurk. [83] built a framework TurkServer that provides an infrastructure to
perform longitudinal and synchronous experiments that require bidirectional and real-time
interaction among workers. However, the framework does not provide any user interface,
which means that the infrastructure only provides skeleton classes which the researchers must
extend to build user interfaces. This is a powerful medium, but, for researchers without a
programming background, this may not be the best option. Moreover, Turkserver is targeted
only towards Amazon Mechanical Turk. It can be a major limitation when we want to
maximize outreach. In WiSDM, we provide a simple framework and user interface to post
HITs on crowdsourcing platforms with iFrame support. [75] is another paper aimed towards
running experiments on MTurk. This framework, Turkit, employs an iterative approach
towards task completion, which, at the onset, looks similar to longitudinal studies; however,
it works best for tasks that improve with repetition. An example given in the paper is of
handwriting recognition. MTurkers were given the task of deciphering a bad handwriting
note while skipping words they were not sure about. The results of the task were then
posted again to another set of workers who tried to fill the remaining gaps and so on. After
six iterations, the complete set was successfully deciphered by the crowd workers. The user

14

responses after the first iteration in the study were built on the outcomes of all the preceding
iterations, unlike longitudinal studies where only the questions conducted in subsequent tests
are built on the outcomes of previous tests.

Ushahidi[46] and GeoChat[1] are two well-known crowdsourcing platforms to map crisis
information from multiple data streams. Both require that participants use their interactive
platforms to input ground information for better situation awareness. GeoChat has been used
for disease reporting and monitoring in countries like Cambodia and Thailand. Ushahidi was
comprehensively used during Haiti earthquake for situational awareness. Sickweather[99] is
another crowdsourced platform for sickness forecasting and mapping.

Sensing

Data Acquisition is an indispensable part of any research. Researchers have employed differ-
ent strategies – automated, semi-automated and manual – to acquire behavioral information.
Much work has been done on collecting data. [42, 41, 43] uses sensors to collect user data
using various in-situ methods. The approach is to use sensors to sense user behavior and
also detect the context against which a relevant question can be asked. [25] collects data
from sensors and processes the data to collect high-level context information. Known as the
Context Toolkit, it is a programming toolkit which provides widgets that can be used by
developers to gather and process context information from sensors. [98] studies that humans
with access to the web act as sensors, sharing their observations and views with web and
mobile devices. WiSDM is a behavioral data acquisition system that uses humans as sensors
to collect background information and pose only relevant questions to the participants. [56]
provides a framework to implement context-aware system. It is based on Entity-Relationship
model and stores context information at runtime. WiSDM also collects context information
from users and stores them at runtime.

[64] is another work that uses sensors to detect seismic events and their influences on the
population. Here they used the cellular phone infrastructure to sense seismic events and
infer opportunities for assessment. The call traffic is used as a major factor to determine
the impact of a disaster. The model assumes that persistent high volume of call activity
several days after a disaster indicates an opportunity for assistance in those regions. The
model is further extended to predict regions where persistent assistance may be required. In
WiSDM we use humans as sensors to detect the impact of anomalous activity in a popula-
tion. [43] discusses how various methods of incentive and how providing information on the
environment both motivate the user to choose appropriate options[42]. Motivating users to
gather genuine information is necessary for WiSDM as well. We have ’integrated surveys’ in
WiSDM that can provide additional information on the topic to the responder to increase
user awareness and interest.

15

Crowdsensing

Mobile crowdsourced sensing[119] is a new paradigm which takes advantage of the pervasive-
ness of mobile phones to efficiently collect data. It extends existing web-based crowdsourcing
applications to a larger contributing crowd[45, 15]. Several studies [11, 112] have evaluated
that mobile phones can be very effective in public health interventions, notably in the col-
lation of data for healthcare research. Smartphones are increasingly used to monitor and
better understand the causes of health problems. [95] compares web apps to native apps
for healthcare across several factors such as user interface, ease of development, capabilities
and cost. While native apps provide inherent signaling mechanism to notify users, web apps
reduce development time and cost[14]. However, responders can be notified via SMS from a
server in case of web apps. WiSDM incorporates bootstrapping in its templates which enable
it to be accessed over the Internet through a smartphone’s micro browser. In case of either
apps, mobile devices can potentially provide two levels of data generation modes: implicit i.e.
user data captured from respective network services and explicit data collected from partici-
patory surveillance[50]. Because they are carried by the user at all times, mobile devices are
potent platforms for conducting in-situ and context based surveys (explicit data generation)
whereby participants can provide real time rather than retrospective information[39]. With
mobile phones and crowdsourcing, crowdsensing can provide near real-time and detailed in-
formation about a crisis situation such as a disease outbreak. Mobile4D[44] requests affected
citizens to submit reports about their local situation. During the 2013 avian flu outbreak
in Laos, emergency services used this application to directly communicate with the citizens
in distress. [52] uses a Bayesian Network to interpret the data collected by Mobile4D for
accurate and faster situation assessment at real time.

Data Quality

One potential issue when crowd becomes the source of data is data quality[22]. Researchers
often struggle to obtain high-quality results from crowd workers, especially on content-
creation task because such tasks cannot be easily verified. [80] suggests that unsupervised
participants often do not read questions or instructions before performing a task. To solve
the problem, they propose a methodological tool: Instructional Manipulational Check (IMC)
which can measure attention level of participants by asking ’test’ questions in the middle
of experiments. [82] found that MTurkers were equally attentive as other participants when
the study was short (~5 minutes) and the attention check question had an easily identifiable
answer. [81] proposes an unsupervised model to assess quantitative data sent by the crowd
about a public space. [72] identifies that the most important feature of truth discovery is
the ability to estimate source reliability. [12, 82] found that the quality of data provided by
MTurk most of the time met the psychometric standards associated with published research.
[48] recommends that researchers using Mechanical Turk (1) include screening questions that
gauge attention and language comprehension, (2) avoid questions with factual answers, and

16

(3) consider how individual differences in financial and social domains may influence results.
When using factual knowledge questions, researchers may consider using simple interventions
that ask participants not to look up answers. In WiSDM, we have a preamble page which
serves as an introduction page where researchers can educate responders on how to perform
the task. [30] proposes a shepherding system that provides peer feedback to workers such
that the data quality can be improved over time. This can only be implemented in a survey
system consisting of many open-ended responses. [87, 107] also suggest that splitting surveys
across multiple pages and displaying fewer questions per survey page increases responder’s
focus and reduces bias[21] which in turn improves survey data quality. For the same reason,
WiSDM surveys are designed to display only one question per page.

Interface Design

The usual design and implementation requirements of an online data acquisition system are
1. support multiple platforms and browsers[118], 2. prevent multiple submissions by same
user [118], 3. present questions in a logical or adaptive manner [88], 4. provide opportunities
for saving the work in long questionnaires [102], 5. collect both predefined-choice question
responses and open-ended question responses [118], and, 6. thank the responder or provide
feedback upon completion of the survey [102]. WiSDM has been designed to meet most of
the above requirements.

2.3 Features

Below is a list of features offered in WiSDM, some of which are novel and some of which are
also offered by other commercially available tools.

• Abductive Loop: WiSDM conceptualizes abductive reasoning within the domains of
disease modeling. This is a novel feature that interprets the actions performed in mod-
eling as abductive reasoning carried out in multiple loops to find the best answers to a
research question. Hence, WiSDM has been expanded to areas beyond data acquisition,
but is still extremely applicable to research which applies abductive reasoning.

• Question Routing (Survey Branching): With WiSDM one can create dynamic surveys.
Survey designers can easily add branching logic to any survey. We support multiple
patterns of branching as defined in [78].

– Linear Pattern: Respondents proceed from Question n to Question n + 1, irre-
spective of how they answer any particular question. The survey is linear.

– Linear Skip Pattern: When a skip pattern is introduced, it means that one may go
from Question n to Question n+m, where m is the number of questions skipped.

17

– Linear Branching Pattern: In previous patterns, a set of questions is either added
or omitted. In this, respondents may take different linear paths through different
sets of questions depending on the conditional responses.

– Looping Pattern: Repeat loops occur when the same set of questions is repeated
for each element of some set; for example, a question set to be administered for
each member of the family or for each visit to a doctor.

• Integration to crowdsourcing platforms: Currently we can seamlessly integrate WiSDM
with MTurk in an iFrame. Most commercially available survey tools do not integrate
with MTurk; some can be integrated, but a user must follow a series of convoluted
steps in order to finish their survey.

• Longitudinal Survey: WiSDM, like other survey tools, support longitudinal studies.

• Standalone data collection system: WiSDM can be used as a standalone data collection
system. The surveys and corresponding responses will be hosted on the WiSDM server.

• Integrated Surveys: This is a novel feature supported only in WiSDM. Integrated
Surveys are surveys with an iFrame window in which external web pages supporting
iFrame integration can be embedded. WiSDM provides an inline frame template that
can embed informative sites such as CDC Flu map. [31] shows that adding interactivity
in online surveys have a potential to improve user engagement. Providing relevant
information within a survey page when the survey is going may not only improve
responders’ interest to take the survey as they will be gaining knowledge in return
but such survey scenarios also elicit a study of biases introduced due to information
injection during the task.

• Reporting module: This module allows an administrator to run queries on the WiSDM
application database directly, and create dynamic reports based on the underlying
models. It can also consolidate and aggregate data, and filter and sort it.

• Response and Summary Download: A survey administrator can download survey re-
sponses or survey summaries through the WiSDM administrator interface.

• Adapter: WiSDM can also function as an ETL[111] system. Developed as a proof-of-
concept, this is a working feature and is configurable with external data sources. None
of the survey tools provide this facility.

We analyzed features of 3 major survey tools, QuestionPro, SurveyGizmo, and Qualtrics.
The above comparison is based on that.

18

2.4 WiSDM Workflow

There are two types of clients on WiSDM, first is the administrator – who has the privilege
to design surveys and build reports on the collected survey data using the Admin interface.
The second type is the responders who take surveys from their Internet browsers. WiSDM
also provides two more interfaces, download – for downloading data and reporting – for
building reports, to the administrator.

2.4.1 WiSDM Admin Interface: Build Surveys

A survey administrator is a user who has valid credentials to access the WiSDM admin
interface. User login is mandatory to use the interface. When a WiSDM instance is launched
for the very first time, a superuser admin is created by running the following command.

$ python manage.py createsuperuser

The command line tool prompts for a username and password to be set, along with the
administrator’s email address. Once the credentials are successfully set, the admin can log
into the WiSDM administrator interface with those credentials.

Figure 2.1: WiSDM Admin screen

The WiSDM administrator interface is a Django built-in feature which has been customized
to suit WiSDM’s requirements. The first page of the WiSDM administration dashboard is
shown in Figure 2.1. The Authentication and Authorization section is where a survey admin

19

can add new users and assign privileges to them. To design/build/alter surveys or edit/add
responses, an admin can go to the Dynamic Forms section. They also can download/delete
survey results and summaries. The Report_Builder module lets an administrator build and
download survey reports with their desired database columns.

Figure 2.2: WiSDM Add Survey Form

A survey administrator can go to the survey builder page by navigating to Dynamic Forms
–> Survey forms –> Add Survey Form. Figure 2.2 shows the Add Survey Form. The first
section of the form is about providing the survey metadata. All fields in this section are
mandatory. The admin must provide a unique name for the survey and a unique survey
URL. Providing a success URL is optional, as by default Django would append a ’/done/’
string to the current survey URL. A separate success URL is necessary because WiSDM
displays a different template for the last page. The template defines how a survey should
look to a responder. WiSDM provides three template options: a default template containing
a plain HTML page with a survey question, a WiSDM template which contains the survey
name, copyright information and better formatting, and an iFrame template similar to the
WiSDM template, but formatted to be displayed in an iFrame.

20

For the survey success page, WiSDM provides one additional template – the Response Sum-
mary template which provides a summary of all the submitted responses to the responder.
The last field in the survey details section is the Preamble. The text entered here is displayed
on the first page of the survey; it can provide additional information about the survey, why
the survey is being conducted, or special instructions for the responder. The survey admin
may save the survey settings at this point by clicking on the ’Save and continue editing’
button or just the ’Save’ button.

The survey administrator may now add Questions in the next section. Each Question is
a subsection in the larger Questions section. The survey administrator enters the question
text in the Question textbox, selects a question type from the Type dropdown list, and enter
1 to the small textbox labeled “Add 1 to indicate start question” if, indeed, this question
should be the first one presented in the survey. The Question ID is an auto-complete field,
filled in by WiSDM. WiSDM supports five question types which are single select questions,
multi-select questions, short text answers, longer text answers, and integer inputs. The
administrator can continue adding more questions before saving the survey again. When all
questions are entered, the admin can click on ’Save and continue editing’. The questions are
saved in the order in which they are entered.

After the questions are saved, the admin is presented with textboxes to enter choices and
other information (help text, min/max range, required, etc) depending on the question
type. The admin now adds branching information for each question in the Question Routing
section. Any questions or routing information can be added or deleted using the controls
in the upper right corner of each section. The admin can then click on ’Save’ to save the
survey.

2.4.2 WiSDM Survey Interface: Respond To Surveys

The survey responder is a person who takes the survey. They can be a crowd worker or
just someone who is interested in taking the survey. They do not need to log in to take the
survey. The responder must remain online during the entire duration of the survey.

Figure 2.3: WiSDM Survey Page as presented to a responder

21

The responder is first presented with a Preamble page that contains instructions about the
survey. Only upon clicking ’Take Survey’ can they start the survey. The WiSDM survey as
presented to the responder is shown in Figure 2.3. The responder must answer each question
and click on ’Submit’ to go on to the next question. The responder may skip non-mandatory
questions. After the last question in the survey is answered, the survey success page is
displayed to the responder.

The previous version of the WiSDM interface provided all of the survey questions presented
on one page. We changed that design to display one question per page so that a responder
can focus on one question at a time, which may lead to better survey results[87, 107].
Studies also suggest that having multiple questions grouped together in one page encourages
responders to derive correlations among them[21], which may introduce bias. The responders
may also manipulate their responses to the current question based on other questions on the
same page. This is one of the reasons why WiSDM surveys navigate only forward – the
responders cannot go back and change their answers. Before moving to the next question
in the survey interface, WiSDM saves the current response to the database. In this way,
WiSDM collects data even for unfinished surveys.

Figure 2.4: WiSDM Download pages. 1. Admin selects a survey and chooses one of the download actions.
2. Admin then chooses a download format and clicks ’start download’.

22

2.4.3 WiSDM Download Interface: Download Survey Results And
Summaries

Survey administrators can download complete survey results, survey responses, and survey
summaries. They can select one or more surveys and choose one of the download actions
at the bottom of the page (survey results download or summary responses download). The
administrators are then navigated to the next page where they can choose one of the down-
load formats CSV, XLSX or JSON. Both the pages are shown in Figure 2.4. This feature is
further elaborated in the next chapter.

2.4.4 WiSDM Reporting: Build Survey Reports

Figure 2.5: WiSDM Reporting module. 1. Admin selects a report to edit or clicks ’Add Report’ to build
a new report. 2. Reporting interface where admin can build or edit reports.

WiSDM allows survey admins to create reports by adding one or more filters on the data
set. It was built using Django-report-builder module. The reporting interface empowers the
admins to join database tables on filter criteria without directly accessing WiSDM backend
database and build reports which can be downloaded as XLS or CSV files. The reporting

23

interface also allows simple aggregations such as sum, count, average, etc. The reporting
interface is shown in Figure 2.5.

2.5 Conclusion

In this chapter, we presented WiSDM, an advanced data collection system that unites abduc-
tive reasoning with data acquisition and analysis and that can be integrated with Amazon
Mechanical Turk or used as a standalone application for behavioral data acquisition. It can
easily support advanced online experiments such as longitudinal studies on MTurk. It offers
features such as branched logic, reporting, and download. With features like question routing
and easy integration to Amazon Mechanical Turk, we prove our first two hypotheses that
WiSDM is an adaptable system that poses the most relevant questions to responders and
that WiSDM can be easily integrated with crowdsourcing platforms such as the MTurk. We
prove our third hypothesis that WiSDM can extract data from external data sources in the
next chapter. The next chapter focusses on WiSDM architecture and a WiSDM extension
called the API Adapter that works as an ETL tool.

24

Chapter 3

WiSDM Architecture

This chapter describes the high-level design of WiSDM. It describes the decomposition of
the software into components. Then, for each component, it describes the relationship to
WiSDM’s external interfaces and the dependencies on other components. WiSDM is a
system designed and developed by the NDSSL group at Virginia Tech. It is designed to help
researchers detect behavioral information to build infection models.

WiSDM is built on Django framework which is briefly discussed in the next section. The
system architecture and its dependencies within the various components are described in
section 2. Section 3 illustrates backend communications when a request is generated and
a response is sent. The staging and new versions of the backend database are discussed in
section 4. Section 5 elaborates on the specific WiSDM features that were implemented by
me. Lastly, an extension of WiSDM, API Adapter is discussed in section 6.

3.1 Django Framework – An Introduction

Django is an open source, high-level python web framework designed to enable rapid web
development. It is a database-driven web application which comes with an object-relational
mapper[65] in which the database layer must be described. It follows the Model-Template-
View (MTV) pattern of software architecture closely.

According to The Django Book [58],

• Model is the data access layer which contains anything and everything about the data:
how to access it, how to validate it, which behaviors it has, and the relationships
between the data.

• Template is the presentation layer which decides how something should be displayed
on a webpage.

25

• View is the business logic layer which acts as the bridge between models and templates.
It accesses the model and defers to the appropriate template.

However there are four primary code divisions in Django applications.

Model

Django models are traditional python classes. An Object-Relational Mapping (ORM) map-
per under the hood allows these models and their instances to interact with the database.
The ORM shields developers from dealing with the database directly using SQL (Standard
Query Language), the standard way to access contents in a database. This not only prevents
the code from quickly becoming unmanageable since developers may not be SQL experts, but
also mitigates malicious attacks, like SQL-Injection, that target data-driven applications.

View

Django views are designed as standard Python functions that are called when a user requests
a specific URL. A view accepts user requests, behaves according to the application’s inter-
action logic, and returns a display that is suitable for accessing the data represented by the
models. Views can access the models, retrieving and updating information as necessary to
accomplish the task requested by the user. Since views are simply called as functions, with-
out requiring any specific structure, they can take the form of any Python callable object,
including classes, instance methods, and curried or decorated functions.

Template

While views are technically responsible for presenting data to the user, the task of how that
data is presented is generally delegated to templates. Templates handle all the presentational
details the user will see. Django provides a simple template language for this purpose,
primarily used for HTML, but can also be used to generate any text-based format. Views
may use HTTP redirects to other URLs, third-party Portable Document Format (PDF)
libraries, or anything else to generate their output.

URL Configuration

This is a separate layer that makes views available to the outside layer. It can accommodate
regular expressions as URL components to allow a view to be configured to more than one
URL. Views that are used for common needs, also called generic views, have configuration
options that allow them to be used in any application, requiring only a URL configuration
to enable them.

26

Design Philosophies

The above code division closely follows Model-View-Controller (MVC) architecture, where
the views and templates in MTV are actually controller and view in MVC framework respec-
tively. One of the key features of the MVC design pattern, and of the slightly modified form
followed by Django, is that sections of code that perform significantly different functions
don’t rely on how the others operate, i.e. sections should be loosely coupled. It is a flexible
design pattern that is useful in developing a dynamic web application[71].

Django also follows the principle of DRY (Don’t Repeat Yourself), which basically means
code should be as reusable as possible. It reduces the risk of accidentally introducing incon-
sistency between two pieces of code that should match. If a block of code needs to know
something about another piece of code, the information can be automatically fetched using
Python, without repeating any of that information.

3.2 WiSDM Architecture

WiSDM is a data acquisition system. It can interact with various information systems on the
Internet and within its environment. Figure 3.1 shows how data flows within that environ-
ment. The WiSDM client, which can be the WiSDM survey interface or the administrator
interface, interacts with the WiSDM application server over the Internet. The WiSDM ap-
plication server communicates with the WiSDM backend database via the Intranet. The
External Web Application Server can be Amazon Mechanical Turk on which the WiSDM
survey interface is displayed in an iFrame, or another third party application which could
be displayed on WiSDM’s survey interface in an iFrame. This display using iFrame involves
the external web application server and both WiSDM client and server.

Figure 3.1: WiSDM data flow diagram

27

Figure 3.2: A high-level architecture diagram of WiSDM

28

WiSDM is built using Python 2.7 and Django Framework 1.8.5. There are many advantages
to choosing Django as our web framework. It has a built-in administrator interface which
has been customized for WiSDM, it has numerous packages and utilities that are ready to be
used immediately on installation, and it has good documentation and an active development
community. Django also has several built-in security features[59] such as CSRF protection,
XSS protection, and protection against SQL injection. It is a time-tested framework that
has been around for more than 10 years and is being used as a web framework for large scale
sites like Pinterest and Instagram, and highly secure websites such as the official website of
NASA.

WiSDM is Cross-Site Request Forgery (CSRF) protected website[8]. WiSDM is also TLS
(Transport Layer Security)[26] compliant for added authentication and encryption. The
production instances of WiSDM run on HTTPS. The production version of WiSDM is hosted
on Apache server, version 2.4.6. The admin interface uses Grappelli (version 2.7.1), a Django
module for better look-and-feel. WiSDM currently interacts with both MySQL (Version 15.1
Distrib 5.5.44-MariaDB, for Linux using readline 5.1) and Oracle (Oracle DB 12c EE Release
12.1.0.2.0 - 64Bit Production) databases.

Figure 3.2 is a high-level representation of the internal server architecture of WiSDM. The
Oracle database is hosted on a separate server as we are using a shared instance of Oracle.
However, the MySQL database runs on the same server as WiSDM. Running RDBMS on
the same server as WiSDM reduces connection overhead and bandwidth bottlenecks, if any,
in the network connecting the RDBMS with the web server. The use of an ORM (object
relational mapper) enables us (developers of WiSDM) to abstract from the relational data
model used by the RDBMS, both for storage and for queries. Even the creation and alteration
of tables is handled by the ORM.

The web application transfers requests and responses between the client and the server using
the HTTPS protocol. The HTTPS request consists of a Uniform Resource Identifier (URI)
and optional GET or POST parameters. The HTTPS response consists of a status code and
a message body. The WiSDM GUI on the web browser consists of a hierarchy of templates,
which consist of HTML code with tags. The views define the structure of the WiSDM
application, dictating what information to be sent to the user. They group units of user
functionality together and define possible interactions with the model and ORM. The data
models (or simply models) describe the logical grouping of data and functionality.

The WiSDM core components include Administrator module, Models that interact with the
underlying database, Views which define how a survey will be presented to a responder, and
the Reporting module for building ad hoc reports on the data. The component dependencies
within the WiSDM Framework are shown in Appendix A. The communication between each
middleware is internal to the Django framework and is not depicted in this document.

29

3.3 How Does WiSDM Work To Fulfill User Requests

Figure 3.3 is control flow diagram of the interactions between various components within
WiSDM application. The numbers represent the sequence in which each module is called
when an HTTP request is generated. Below is a step-by-step explanation of what happens
under the hood.

1. An HTTP request is sent. All HTTP requests and responses go via the Django mid-
dlewares, defined in Middlewares.py.

• Using an Internet browser, the responder enters a survey URL or performs an
action, such as responding to a question on an already loaded page of that survey,
thus sending an HTTP request to the Apache server hosting WiSDM.

• The HTTP request from a responder taking a survey contains information about
the current survey question that they answered, the session id, their response,
and, if applicable, their MTurk HIT id, assignment id, and worker id.

2. The Request Middleware sends the request to the URL dispatcher, which maps the
requested URL to a view function.

• The URL Dispatcher runs through the URL patterns in the Urls.py file, and
chooses the first one that matches the URL requested by the user

• If the URL is successfully mapped, the dispatcher sends the corresponding view
information to the Views Middleware.

3. The Views Middleware invokes a view, in Views.py, associated with the found URL
pattern.

4. The view function performs the requested action, which typically involves reading from
or writing to the database. It may include other tasks, as well.

5. The view class communicates with the models to interact with the database.

• It uses data models to obtain database data.
• The models are actually database tables and the relationships between them, as

defined as python classes in Models.py

6. The data is contained in a relational database such as Oracle, MySQL or PostgreSQL,
though other storage mechanisms are possible as well (XML, Text, LDAP, etc).

• For WiSDM we used Oracle and MySQL.
• The database connection details are specified in Settings.py

30

Figure 3.3: A control flow diagram of WiSDM

31

7. After performing any requested task, the view sends the data along with the template
format to the Template engine.

• The view also passes the context, including the obtained data mapped to template
variable names.

• The Template engine builds an HTML page from the template tags and context
data. The engine can also include CSS templates from the Static folder.

8. Finally, the view returns an HTTP response object populated with the rendered tem-
plate, or an HTTP exception in the event of an error, to the Response Middleware.

9. The Response Middleware then sends the HTTP response to the client.

3.4 Database Design

We have two versions of database tables for WiSDM. The older version is still being used by
the WiSDM core. Newer modules in WiSDM use the newer version of the database tables,
which are normalized. The older version is easy to maintain and was built to simplify data
entry process. However, user responses are stored as lists in the old version, which makes
it unfavorable for querying and reporting. So we introduced the new database architecture.
Data is loaded into the old tables first, and we have triggers running that normalize the data
and populates the tables in the new database version.

3.4.1 Older Version

The first database version had three tables: FormModel, FormFieldModel, FormModelData.
Figure 3.4 is a schematic representation of the old database structure.

FormModel

The FormModel table (dynamic_forms_formmodel) contains details about a survey, such as
its name, submit URL, templates, preamble, etc. Each survey is assigned an auto-generated
unique survey id (field name: id) which is also the primary key. The survey name and submit
URL, which is actually the survey URL, are unique fields; these two fields, along with the
preamble, are mandatory fields.

32

Figure 3.4: WiSDM Database Version - Old

FormFieldModel

The FormFieldModel table (dynamic_forms_formfieldmodel) contains all the questions and
their choices related to a survey. Each question is assigned an auto-generated question id,
which also serves as the primary key. The survey id from FormModel is defined as a foreign
key here. The choices related to a question and its corresponding help text are appended
as a JSON string in the _options field. The survey id and the question name are together
defined as unique. The parent_form_id is defined as a foreign key field, which is the primary
key ’id’ in the FormModel table.

FormModelData

The FormModelData table (dynamic_forms_formmodeldata) contains all the survey re-
sponses and responder details (like session key). Like the previous two tables, each user is
assigned an auto-generated id which is also the primary key. Responses from each user are
appended to a list and stored in the user_resp field. User details like session_key, hit_id and
assignment_id are also entered in this table. The ques_name and session_key are together
defined as unique in this table. The form_id is defined as a foreign key field, which is the
primary key ’id’ in the FormModel table.

Routing

This table (dynamic_forms_routing) was added later in the old schema when we introduced
question routing in WiSDM. This table determines the order in which the questions will
appear when presented to the responder. It has the fields survey_id, choice_text, question
and next question. The survey_id is a foreign key related to the FormModel table, and

33

question_id and next_question_id are foreign keys related to FormFieldModel table. The
question and its choices (field name: choice_text) are together defined as unique in the table.

3.4.2 New Version

We introduced a new version of the tables because the original version had limitations.

1. Since all choices and responses were entered as lists, even simple querying or building
reports proved difficult.

2. Data was not normalized.

3. Maintaining history in the case of the abductive loop would have been difficult.

The schematic representation of the new version is presented in Figure 3.5. The new version
normalizes the data. So data from the initial three tables described in previous sections are
split across five tables: Surveys, Questions, Choices, Responses, and Sessions. These five
tables are being used by the newer modules – Reporting and WiSDM Analytics. We plan to
migrate to the new version completely in near future. The mapping from old tables to new
tables is shown in Appendix B.

Figure 3.5: WiSDM Database Version - New

Surveys

The Surveys table (dynamic_forms_surveys) is similar to the FormModel table with some
additional columns: created_by, date_created, last_modified_date, and last_modified.

34

These fields are added to support survey archiving in a future release. As before, the sur-
vey_id is the primary key, and the name is a unique field.

Questions

Unlike FormFieldModel, this table (dynamic_forms_questions) contains only question infor-
mation. It has a primary key field question_id, foreign key field survey_id, and other fields
like question_text, question_name (auto-generated field), question_type, options (which
does not contain choices), created_by, date_created, last_modified_date and last_modified.

Choices

The Choices table (dynamic_forms_choices) assigns an auto-generated id to all choices
entered in the entire survey questionnaire. The choice_id is the primary key. It also refer-
ences the question_id from Questions table as the foreign key. It has other fields such as
choice_text, text_entry, created_by, date_created, last_modified_date and last_modified.
This table is indexed by question_id and choice_id.

Sessions

This table (dynamic_forms_sessions) contains user-related information. It contains a ses-
sion_identifier field which includes the session key from FormModelData table, date_created,
last_modified_date and a survey status field which is by default ’Incomplete’. It will later
be changed dynamically based on whether a user has completed a survey. When a survey
is responded from Amazon Mechanical Turk, the MTurker’s worker id, HIT id, and assign-
ment id go into user_identifier, hit_id, and assignment_id fields respectively. Each user is
assigned a session_id, which is also defined as the primary key, and the survey_id from the
Survey table is defined as a foreign key.

Responses

This table (dynamic_forms_responses) contains all user responses. It assigns a response
id to each user response. The response id is an auto-generated field and is also acts as
the primary key. The question_id from Questions table and the session_id from Ses-
sions table are defined as foreign keys. Other fields are response_text, date_created and
last_modified_date.

35

Routing_New

This table (dynamic_forms_routing_new) is similar to Routing table in the previous schema
and is designed for the same purpose. However, we replaced choice_text with choice_id, and
we removed the relationship with Survey table. We assigned a routing_id to each branching
information. No data is being inserted into Routing_New table as of now, as we are still
using Routing table.

3.5 WiSDM Web Application Features

WiSDM web framework is a team project. In this section, we discuss only those features
that were implemented by me.

3.5.1 Preamble:

The survey preamble page is the first page in any WiSDM survey. This provides an intro-
duction to the survey and set of rules to be followed by the responder. This is a data-driven
HTML page whose contents can be edited in the WiSDM admin page by the survey admin-
istrator.

3.5.2 Branched Logic

There have been many studies that say branched, dynamic surveys lead to easier tasks for
respondents and better data quality[78, 29]. It is an important step towards improving data
quality as it removes irrelevant questions presented to the responders.

The previous version of WiSDM deployed all the questions for a survey on a single page.
Introducing branched surveys into WiSDM was a major development effort, especially since
implementation was not part of out of the box Django package. It was a major change from
the previous version because the previous versions did not support dynamic survey branching.
We refer to survey branching in WiSDM as Question Routing. Question Routing has been
nested inside the Question section (called ’inline’ in Django) in the survey administration
page. We integrated a module called Super-inlines (version 0.1.4) to nest Routing inside
Question inline.

In the survey admin page, for each question a in the Question section all questions are listed
as ’next question’ dropdown in question routing section as shown in Figure 3.6. The choice
text by default is (any) that signifies that, irrespective of any choice selected by the responder,
the selected question will follow its parent question. The survey administrator can define
a choice option, say x in ’choice text’ text box and select a next question b from the ’next

36

Figure 3.6: WiSDM Question Routing in Survey Admin page

question’ dropdown. On doing this the admin has defined that the survey will route from
question a to question b when a responder chooses x option for question a. The algorithm is
defined as Algorithm 3.1. A survey administrator can also design a non-branched survey by
selecting (any) as the choice text, along with the next question for all the questions in the
survey. For the last question in either type of survey, the administrator must not add any
routing information.

Algorithm 3.1 Routing condition
If respondent chooses ’x’ for question #a, then go to question #b
Else if respondent chooses ’y’ for question #a, then go to question #c
Else if ’(any)’ is found as a routing option for question #a, then go to question #d
Else if no match is found, then end the survey.

3.5.3 Response Download

The survey administrator can download responses along with the survey information. The
download functionality is defined as a WiSDM Administration action, which by design, is
best suited for bulk actions. An administrator can choose a survey and trigger the download
action. All responses for the survey will be downloaded. But what if the administrator
wants to download multiple surveys? In that case, this process becomes tedious. So defining
the download functionality as an action lets someone download one or more sets of survey

37

results in bulk. The data can be downloaded in CSV, XLSX or JSON format. The download
functionality can also download one or more responses in CSV format.

The download function, defined in Actions.py, gets called when the action is triggered from
the admin page, as shown in Figure 2.4 in the previous chapter. First, it performs an inner
join between tables Questions and Responses on the join condition Surveys.survey_id =
Questions.survey_id . The data produced is then joined with Responses with the join con-
dition on question_id. Finally, this data is joined with the Sessions table on the session_id.
The resulting data set contains survey and question information along with user details for
each response.

The equivalent SQL query is given below. The <user_input> is the survey or surveys
selected by the user before triggering the download action in admin interface.

SELECT s.survey_id, s.name, q.question_id, q.question_text, q.question_type,
r.response_text, u.session_identifier, u.user_identifier, u.hit_id,
u.assignment_id, r.date_created, r.last_modified_date

FROM
DYNAMIC_FORMS_SURVEYS s,
DYNAMIC_FORMS_QUESTIONS q,
DYNAMIC_FORMS_RESPONSES r,
DYNAMIC_FORMS_SESSIONS u
WHERE s.survey_id = q.survey_id and q.question_id=r.question_id and

r.session_id=u.session_identifier and s.survey_id =<user_input>;

3.6 WiSDM API Adapter

This is an extension of WiSDM, built to integrate ETL tasks with conventional data collection
methods, such as other surveys. WiSDM is the only framework, to the best of our knowledge,
that integrates data collection with ETL[16]. WiSDM API Adapter can be configured to
pull data from external datasources, including – but not restricted to – commercial survey
tools using REST APIs, transform the data to conform to WiSDM’s database specification,
then load the data into the WiSDM database.

The module has been utilized to pull data from Qualtrics and Survey Monkey, both com-
mercial survey tools, and import that data into WiSDM. Since each data source is unique
and the API support for each data source differs, the API Adapter needs to be configured
to support the source API schema. Most of the configuration details are defined in the Con-
fig.json file. The workflow is shown in Figure 3.7 and the class diagram is given in Figure
3.8.

38

Figure 3.7: Workflow of the API Adapter

Figure 3.8: API Adapter class diagram

39

Config.json

The configuration file, Config.json, contains three main keys specific to each class in the
module, and a common configuration set. The first section in the ’common’ key contains
information about the survey tool, the survey name, survey id, and the name of the user
under whose account the data is stored.

The next section is ’extract’, which is used by Extract.py. It contains information on the
APIs from which the data needs to be downloaded, what format the data can be downloaded
in, the URL of the data set, and the name of the file where the data will be saved locally.
The data will be saved in a subdirectory of the current directory called ext_d.

The ’transform’ section contains information on mapping columns between the tables in
both data sources. For example for Qualtrics, the data set in “Results/SurveyName” in
getSurveyName.xml is to be mapped to the “Name” column in the FormModel table in the
WiSDM data set. Columns in WiSDM that could not be mapped to any fields in the third
party data set are assigned null or default values in the case of non-nullable fields. This
section is used by Transform.py.

The last section, ’load’, contains information on which data from which field will be loaded
into the columns of which table. Although the tables are somewhat mapped once in the
transform section before, a mapping is defined here to maintain modularity among the three
stages. It also contains the WiSDM database credentials. These configuration details are
used in Load.py.

Extract.py

This submodule extracts data from the third party data source using the APIs specified in
Config.json. The API calls also include user information, survey id, and download format,
all specified in the configuration file.

Transform.py

This is the most complicated module. This maps the downloaded data to the WiSDM
database schema based on the mapping information provided. The transformation type
varies for each table and each API. The transformed data is saved as a CSV file. The
current implementation assumes a data set that is in XML/JSON format; this may need to
be extended for APIs that support different download formats.

40

Load.py

This module loads the transformed data into the WiSDM database based on the details
mentioned in Config.json.

3.6.1 Challenges

Since each data source is disparate and unique, retrieving and ingesting such data set into
the WiSDM database has many challenges which need to be addressed prior to a successful
load. Here we mention a few challenges that we faced when running the API Adapter on
the Qualtrics and Survey Monkey data sources.

• Each data source has a unique data structure. The API Adapter needs to be customized
according to each data structure definition.

• The API Adapter also needs to be customized according to the source data format.
We have customized code for XML (Qualtrics) and JSON (Survey Monkey).

• Data needs to be cleaned before being transformed into WiSDM adaptable data format.

– Data contains special characters which can get converted to Unicode when ex-
tracted from external sources using their APIs.

– Strings that contain single or double quotes may throw exceptions during data
ingestion in the Load phase. In the INSERT statement, the Python interpreter
sometimes wraps the value (string with single quotes) with double quotes. This
creates an invalid INSERT statement. In such cases, values need to be inserted
as list elements.

– External data sources which are in XML format may sporadically contain HTML
tags which must be cleaned.

• Datatypes, such as matrix, which are not supported by WiSDM need to be handled
separately by the API Adapter. Each row in the matrix is treated as a separate question
(<original matrix question>_<row string>), and all columns are the choice options
for each question.

• WiSDM prevents the same responder from taking a survey more than once in order
to reduce inconsistencies in the data set. However, most external tools do not have
such constraints. For Survey Monkey, we used ’<user ip address>_<response_id>’
as user_identifier.

• Date-time conversions need to be handled. WiSDM supports date-time in ’%d-%B-%y
%I:%M:%S.%f %p’ format.

41

• The length of attributes in external data sources exceed that of WiSDM. The character
length of ’label’ and ’question_text’ attributes in the WiSDM dynamic_forms_questions
and dynamic_forms_formfieldmodel tables respectively had to be increased to support
Survey Monkey.

• Depending on the external survey tool, multiple APIs may need to be called to fetch
actual data. In the case of Qualtrics, we used 3 API calls to get all of the relevant
data, but for Survey Monkey the response data are sent as IDs, so additional endpoints
(APIs) need to be called to identify the IDs.

• Handling inconsistent data formats across API calls. For example in Qualtrics, the
question id in questions is inconsistent with the question id in the responses data; the
question id is 4 digit code in questions and 2 digit code in responses.

3.6.2 A Proposed Future Extension

Manual mapping of two data sources is a time consuming and highly error prone task which
becomes a key bottleneck in a large-scale information management systems. The fact that
data sets come in various formats further aggravates the problem. [28] studied the problem
of finding a semantic mapping between two given ontologies. They proposed a framework,
GLUE, which employs learning techniques to semi-automatically create semantic mappings.
We believe a similar approach can be taken in the near future to map disparate data sources.
The paper is discussed here to facilitate future enhancement of WiSDM API adapter. This
discussion is completely based on the work of Anhai Doan and his research team and bears
no contribution from our end.

Figure 3.9: Two different ontologies: Computer Science Department in (a)US and (b)Australia

42

GLUE

Given two ontologies and their associated data instances as given in Figure 3.9, for each node
(i.e. concept) in one ontology, we need to find the most similar node in the other ontology,
for a pre-defined similarity measure. Identified challenges with any such similarity measure
are:

• A well-defined similarity measure is needed.

• The similarity measure should correspond to our intuitive notion of similarity.

• Many similarity measures exist, each being appropriate to only certain situations.

To address these challenges, an architecture named GLUE as shown in figure 3.10 has been
developed which applies machine learning techniques to semi-automatically create a semantic
mapping between ontologies. The basic architecture of GLUE has 3 parts.

Figure 3.10: GLUE Architecture

Distribution Estimator

This computes the joint probability distribution between two taxonomies O1 and O2. For any
two concepts A (A 2 O1) and B (B 2 O2), the joint distribution consists of 4 probabilities
P (A,B), P

�
A,B

�
, P

�
A,B

�
, P

�
A,B

�
where a term P

�
A,B

�
is the probability that an

instance in the domain belongs to concept A but not to concept B.

To compute P (A,B), the general assumption made is that the set of instances of each input
taxonomy is a representative sample of the instance universe covered by the taxonomy. So
P (A,B) can be estimated as,

43

P (A,B) =

h
N

⇣
UA,B
1

⌘
+N

⇣
UA,B
2

⌘i
/ [N (U1) +N (U2)] (3.1)

where,

Ui = set of instances given for taxonomy Oi ,

N(Ui) = size of Ui ,

N(UA,B
i) = number of instances in Ui that belong to both A and B.

The joint probability distribution between A and B is estimated as follows (illustrated in
Figure 3.11).

Figure 3.11: Estimating the joint distribution of concepts A and B

1. Partition U1 (U1 2 O1) into UA
1 (set of instances that contain A) and UA

1 (set of in-
stances that does not contain A).

2. Train a classifier L for instances of A, using UA
1 and UA

1 as a set of positive and negative
training examples, respectively.

3. Partition U2 (U2 2 O2) into UB
2 (set of instances that contain B) and UB

2 (set of in-
stances that does not contain B).

4. Apply L to each instance in UB
2 . This partitions UB

2 into UA,B
2 and UA,B

2 . Similarly,
applying L to each instance in UB

2 results in two sets UA,B
2 and UA,B

2 .

5. Repeat steps 1-4, but with roles of O1 and O2 reversed to obtain UA,B
1 , UA,B

1 , UA,B
1 and

UA,B
1 .

44

6. Finally, P (A,B) can be computed using formula 3.1. The remaining three joint prob-
ability distributions can also be computed in a similar manner.

For Step 2, there are a variety of classifiers that we can use since different learners are better
at utilizing different types of information. So GLUE takes a multi-strategy learning approach
where multiple sets of classifiers L1, L2, .., Lk, called base learners, are trained with the same
instances. In Step 4, their predictions are combined using a meta-learner which assigns
weights to each learner (weights indicate how much the meta-learner trusts that learner).
Then it combines the base learner’s predictions via a weighted sum.

In the WiSDM API Adapter, we can use a distribution estimator concept to compute joint
probability between the WiSDM database columns and each element in the third party data
source. In the next step, the similarity estimator, each element in the external data set
can be mapped to the most similar column in the WiSDM tables using a relevant similarity
measure.

Similarity Estimator

The joint probability distribution computed above is the input to this stage, which computes
the similarity between two concepts from their joint distribution using any user-defined
method. By default, it is Jaccard similarity.

Jaccard� sim (A,B) = P (A \ B) /P (A [B) =

P (A,B)

P (A,B) + P
�
A,B

�
+ P

�
A,B

� (3.2)

Relaxation Labeler

In this final stage, GLUE uses hierarchical information in the ontology to improve matching
accuracy. An example of the hierarchical information given in the paper is “if node X matches
Professor and node Y is an ancestor of X in the taxonomy, then it is unlikely that Y matches
Assistant-Professor”. However in our data sources, there exists no hierarchy. So we believe
this step can not be implemented with the current WiSDM data structure.

3.7 Conclusion

WiSDM is a data acquisition system that combines data collection functionality with ETL,
which makes WiSDM a novel initiative. In this chapter, we discussed the architecture of

45

the WiSDM web application and presented its backend database architecture. We also
discussed the WiSDM API Adapter, which can retrieve data from external sources and
ingest them into the WiSDM database, and we discussed a possible future extension to that
feature. Introducing machine learning into disparate data-structure mapping may reduce
manual efforts and inaccuracies to a considerable extent. Successfully implementing WiSDM
Adapter with two different survey interfaces proved our third hypothesis which is building a
framework that can pull data from external data sources and store it locally.

In the next chapter, we discuss how we load-tested the WiSDM application server to simulate
situations when hundreds of responders may participate in online studies hosted on WiSDM.

46

Chapter 4

WiSDM Application Testing

Web Server Testing is an important step towards stabilizing any web application. Not only
do we have to ensure that the application does not crash when subjected to large numbers of
concurrent users, but we also must ensure that data consistency is maintained: that is, that
data is written and retrieved correctly. Web application responsiveness can be evaluated
through performance testing of the server and the database.

Traditional web application testing tools focus mainly on protocol conformance, broken link
detection, and HTML validation[6]. WiSDM, a data-driven application, could receive hun-
dreds of requests per second when hosted on Amazon Mechanical Turk (MTurk), depending
upon worker response. So scalability testing is crucial for stabilizing the application; there-
fore, WiSDM was evaluated using Apache JMeter, version 2.13.

4.1 Load Testing

Performance testing encompasses a range of different tests to conduct analysis of various
aspects of the system. One of the simplest ways to test the performance of a website is
through load testing. Load testing focuses on simulating, and often exceeding, expected
production load, throwing many concurrent requests at the site for an extended period of
time. This provides information about the behavior of the system when handling specific
loads of users, who might be making a number of simultaneous transactions on the system.
Load Testing also draws attention to any potential software bottlenecks so that these can
be fixed before they become problematic. The main reason for carrying out such testing
is to measure and report the behavior of the application under anticipated live load. As
the result of the testing, user response times, system state, and CPU and memory statistics
are recorded. However, these results will vary depending on external factors, such as users’
Internet speed; hence, there could be slight variations in the results between the simulated
environment with virtual users and the actual environment with live users accessing the

47

system.

Because load tests evaluate the server environment, it is best to run them against live
production servers or a replicated instance of the production servers having identical, or
at least similar, configurations. As such, the response times will most accurately reflect
what the user will experience. An acceptable response time depends on the action that is
being performed[7]. A user is more prepared to wait for a complex analytical calculation
that could provide them a wealth of information, say on personal budget, than they are to
wait for the second page of a news article to load. Usually, one should aim to keep response
times to less than a second. However, response time not only depends on the application
server but also hugely on the backend database performance.

4.2 Database Testing

Relational Database Management systems (RDBMS) often contain data which is updated by
potentially thousands, if not millions, of users. The data travels from the user interface (UI)
to the backend database (DB) and vice versa. Furthermore, the DB implements functionality
in the form of database methods (stored procedures, stored functions, and/or triggers) and
database objects (code instances). Whenever a certain action is performed on the front
end, a corresponding Create, Retrieve, Update, Delete (CRUD) action gets invoked on the
backend. With database testing, one needs to verify that the fields/forms in the front end
are mapped consistently with the corresponding DB table.

Response Time is a measure of the time that starts with the initiation of a query request
from the end user and ends with the query response to the end user, including the time spent
at each discrete step in between. Usually, SQL queries are called underneath all requests.
So all CRUD operations are tested first for consistency and data integrity during database
testing.

4.3 Apache JMeter

Apache JMeter[63] is an open source, pure Java application designed to load-test functional
behavior, and measure performance. It can be used as a database performance testing tool
that is mainly used for testing the load on the server, as well as testing client applications[84].
JMeter may look like a browser. However, as far as web-services and remote-services are
concerned, it neither executes JavaScript found in web pages, nor does it render HTML
pages as a browser does. It is a platform-independent tool that performs functional, load
and performance testing on many different server types – web (HTTP, HTTPS), database
(JDBC, LDAP), mail (POP3), etc.

JMeter uses the Java Swing GUI widget to provide a user interface for building a test plan

48

that simulates users’ browsing patterns. The test plan can accommodate a wide variety of
scenarios. JMeter stores its test plans in XML format (.jmx extension), which means one
can generate a test plan using an XML editor. The tester can specify how many threads to
create, and JMeter treats each thread as a user who interacts with the web application, and,
in turn, applies load on the server. The tester can also specify how many times each user
can loop through the test plan. Cookies can also be enabled for applications that maintain
sessions and each user (thread) gets a unique session id which is maintained throughout the
lifetime of the user.

JMeter also has a “record-and-reply” feature which captures browser mouse movements to
generate a test plan. All JMeter Test Plans can be saved for future use.

4.3.1 Installing And Launching JMeter

Installing JMeter is pretty easy. We installed it on Ubuntu 14.04 LTS using apt-get. The
commands to install and fire up JMeter are displayed below.

$ sudo apt-get install jmeter
$ cd /home/ananya/Desktop/apache-jmeter-2.13/bin
$./jmeter

4.3.2 Creating Test Plan

Although we used the JMeter UI to build a test plan[53], as mentioned before, these test
plans are plain XML files and can be built using text editors. This section illustrates how to
build a test plan for WiSDM. The test plan was built for the survey ’USA Disease Prevalence
October Fall 2015’. Figure 4.1 is a screenshot of the JMeter Test Plan. The backend database
for this survey is Oracle Database 12c Enterprise Edition.

The JMeter launches with a default Test Plan and workbench which can be modified as
required. The test plan for this survey was named ’USA Disease Prevalence Survey JMeter
Test Plan’.

• The first step for building a test plan is to add a Thread Group element. The thread
group tells JMeter the number of users the tester wants to generate. A thread group
can be created by right clicking on Test Plan –> Add –>Threads –> Thread Group.
For WiSDM, the thread group properties were:

49

Name: Wisdm users
Comments: [optional]
Number of Threads: 3000
Action to be taken after a Sample error: Continue
Ramp up Period(in seconds): 9000
Loop Count: 1

We simulated up to 3000 threads with a ramp up period of 9000 seconds. Each new
user was spawned in a maximum of 3 seconds. Since in WiSDM we prohibit the same
user from taking a survey more than once, the loop count is set to its default value, 1.

Figure 4.1: Apache JMeter Test Plan

When more than 3000 users were used in the current machine configuration, the JMeter
threw an OutOfMemoryError. In the event of an error, JMeter will continue to run the
test plan as configured in ’Actions to be taken...’. However, the errors will be written
to the log file if any occur. This is so configured because WiSDM is designed to accept
incomplete survey responses.

• The next step is to add Default HTTP Request properties. It can be added by right
clicking on Thread Group –> Add –> Config Element –> HTTP Request Defaults.

50

Here one can specify default settings of their HTTP requests. For WiSDM, the prop-
erties were:

Server Name: epics.vbi.vt.edu/wisdm_analytics
Path: /usaDiseasePrevalenceJmeter/
Protocol: HTTPS

The server name is where all the requests will be sent. The path is the survey path.
If there are multiple paths for the same survey, this field may be left blank. WiSDM
uses HTTPS for its requests. The default for the Protocol parameter is HTTP.

• WiSDM uses cookies to transfer data from one survey page to another. To add cookies
support, one simply needs to add an HTTP Cookie Manager to each thread group.
This will ensure each thread gets its own cookies and is shared across all HTTP Request
objects generated by the thread. To add the cookie manager, right click Thread Group
–> Add –> Config Element –> HTTP Cookie Manager.

• In our Test plan, we made two HTTP Requests (GET and POST) for each survey
page. Each request must be added as an HTTP Request component in the tree. We
noticed that if one request is made for both GET and POST, the HTTP Response
message gets lost and it becomes difficult to debug in case of any error. So segregating
the request from the response keeps the test report clean. To create an HTTP Request,
right click Thread Group –> Add –> Sampler –> HTTP Request. The properties set
for the WiSDM test plan are:

Name: <question_name>_<get/post>
Method: <get/post>
Path:
Follow Redirects: [unchecked]
Redirect Automatically: [unchecked]
Use KeepAlive: checked
Parameters: [As per page requirements]

There are 9 questions in the survey. We added 21 HTTPS requests (2 GET and POST
Requests for the Preamble page, 9 GET and 9 POST Requests for each question, 1
GET Request for the survey success page). The convention followed for naming each
HTTP request was the question name it is associated with and whether it was a GET or
a POST request. Accordingly, the Method parameter also had to be selected. Because
WiSDM surveys are built such that the URL doesn’t change with the change in survey
page/questions, the Path field needs to be left blank for most of the pages. The Test
Plan will pick up the default path mentioned in the HTTP Request Defaults set earlier.
The “Follow Redirects” and “Redirect Automatically” option must be unchecked be-
cause the GET and POST requests are sent separately in the test plan. However ’Use

51

KeepAlive’ must be checked as this keeps the session alive for the next request. Some
of the POST messages have parameters, and, for some, the parameters were to be ran-
domized. The parameters were added in the Parameters section, and random functions
or tester-defined variables were added as child nodes to the Request . The parameters
can be defined as follows:

• To populate fields of any Request, JMeter functions can be used. A function looks like
this

${__functionName(var1,var2,var3)}

• To add a value from a range, such as for questions like “Including you, how many
members are there in your family?”, add the expression below to the corresponding
parameter.

${__Random(1,6,)}

The __Random() function will generate a number between 1 and 6. In WiSDM, the
range is chosen between a minimum and maximum accepted number.

– To randomly select one of the available choices for a single-select option, say for
a question like “What is your yearly household income?”, ’User Defined Variables’
must be added as child nodes to the HTTP Request. It can be added by right-
clicking on HTTP Request –> Add –> Config Element –> User Defined Variables.
The following code snippet under Variables and Parameters must be added for
User Defined Variables and the HTTP Request respectively.

Variables:
Name: income_1, Value: ’0-24,999’
Name: income_2, Value: ’25,000-74,999’
Name: income_3, Value: ’75,000 or more’
Parameters:
Name: household-yearly-income,
Value: ${__V(income_${__Random(1,4,)})}

• The last HTTP Request that we need to add is for rendering the WiSDM survey
success page. This is a GET request where the URL path changes. The Path field
in this Request is set to ’/usaDiseasePrevJmeterSuccess/’. The Path parameter set in
this page will override the Path parameter set before in HTTP Request Defaults. All
other fields can be left as it is.

52

• The final element that needs to be added in the Test Plan is a Listener. This element is
responsible for storing results of all the HTTP Requests and presenting a visual model
of the data. For this survey, three Listeners were added: View Results in Table, View
Results Tree and Graph Results. To add each listener, right click on Thread Group
–> Add –> Listener. The output can also be saved to a file.

• A JMeter plugin Graph Generator Listener was added to generate graphs at the end
of the test. To do that , a “fake” test was created to trigger a listener on existing file.
The Graph Generator listener must be added to the fake test. The Graph Generator
is available in JMeter-Extras package.

4.4 Results And Analysis

We ran our tests on a desktop computer with 7.7 GB memory, Intel Core i7 3.4 Ghz CPU,
and Ubuntu 14.04 LTS 64-bit Operating System.

WiSDM supports a REST API, so all the POST requests generated to load data into the
database were via the Django Application Server. JMeter simulated 13,856 users to generate
89,372 responses for the survey ’USA Disease Prevalence October Fall 2015’. The data was
collected through multiple runs of the survey; a maximum of 3000 users was scheduled to
respond to each run. The questions asked in the survey are given in Appendix C. The plots
show the results at a state when the database was already filled with 80000+ responses.
Figure 4.2 shows more than 1200 threads active at one point in time. However, the latency
of some of the pages increased exponentially as more data was loaded into the server and
the number of hits per second increased.

Figure 4.3 shows a plot of the response time over percentiles, which means at each point (P,
V) P percent of the samples were below V ms. The black line on top represents the success
page (i.e. the last page in the survey). This page was rendered the slowest, with average
latency as high as 22 minutes. With the current database state and manually taking the
survey with just one active thread, we noticed the average latency of the success page to be
above 3 minutes. The other pages were rendered quickly, with overall latency less than a
second. In both manual and JMeter tests, latency is measured from just before sending the
request to just after the first response has been received. The time includes all the processing
needed to assemble the request.

We tried to reproduce this issue again after a month under the exact same test conditions
as before with JMeter. This time, we ran the JMeter test under stricter conditions: 3000
users, ramp up period 8000 seconds. Unfortunately, the issue of high latency in rendering
the success page could not be reproduced. The latency had dropped significantly, with the
entire test finishing in under 2 hours instead of the several hours it took to run the previous
test. We continuously tested the application performance by responding to the same survey

53

Figure 4.2: Number of Active Threads over Time

Figure 4.3: Response Time over Percentiles

54

manually before, during and after the JMeter test. In all of these cases, the WiSDM server
rendered each survey page in less than 1 second. We concluded that the recent tablespace
increase in the database from 1GB to 4GB might have stabilized the server. In the earlier
test conditions, the database tablespace was almost full, which might have triggered higher
latencies.

4.5 Quality Assurance

Testing a web application such as WiSDM is a complex task as there are HTTP-level request
handling, form validation and processing, database interaction, and template handling. As
discussed in this chapter, we used JMeter to test WiSDM server and database. While doing
so we communicated with all components of WiSDM web application using HTTP request
mechanism. This process not only load tested the server and the database but also the entire
communication network within the framework. The test suite communicated with system
end-to-end. The forms in the user interfaces were implicitly tested in the process, as they
are validated by the framework for every HTTPS request.

WiSDM was subjected to both automation and manual tests. The automation test environ-
ment consisted of both deterministic and non-deterministic tests. Deterministic test suites
required that the framework subjected to exact test environment iteratively succeeded every
time. The non-deterministic test environment covered more areas including boundary condi-
tions because non-deterministic inputs were fed into the system which yielded a different test
environment every test run. The non-deterministic inputs are the ones that are not decided
beforehand and are chosen uniformly at random from within the boundary conditions. In
order to diminish sporadicity in test results, seeds were introduced with non-deterministic
inputs. For example in non-deterministic test, response to a question ’What is your age?’ can
be any number within the defined boundary condition which is [1, 99], both inclusive. The
selected response is a non-deterministic input to the system. But in the case of deterministic
test, the system has only one computation path and hence the response input, a hard-coded
number in the test suite, will be same for every test run. The performance reports in Figure
4.2 and Figure 4.3 are results of non-deterministic tests.

Under manual test conditions, WiSDM was tested for functionality validations. Functional
Testing was done both under staging and production environment. Staging site is a replica of
production instance and was used to test and review newer versions before being pushed to
the production instance. For example, we manually tested question routing by mapping the
survey flow in WiSDM survey page with the question routing flow defined in WiSDM admin
page and the routing information stored in WiSDM database. Incidentally, in this example
along with functional testing of question routing, we are also doing a Semantic Testing of
the data displayed across three components of WiSDM. Semantic Testing in WiSDM was
also done in automation testing. In case of any discrepancy in the data that was being
communicated within the framework, error message would be displayed and the test case

55

would fail. In WiSDM, the software instance used by the client is treated like a production
instance.

Invocations in WiSDM application or for that matter most web services are asynchronous
by nature because service providers are capable of accepting requests from clients without
prior notice. But apart from that, WiSDM is a synchronous web application since web
based surveys are by design synchronous[5]. WiSDM uses HTTPS, which is a transport
for synchronous operations, for web service communications. Transports that support asyn-
chronous web message exchanges inherently support the correlation of response messages to
request messages. WiSDM can be integrated with a job queue broker such as Celery to make
the application asynchronous. However the nature of task that WiSDM currently performs,
necessity to build an asynchronous application is trivial.

WiSDM closes databases connections after every request is fulfilled and thus does not retain
any idle connection to database or overload database with numerous open threads. WiSDM
under this configuration has been successfully tested with little more than 1200 concurrent
requests which is the observed load when studies are conducted on MTurk. But if the
WiSDM application server encounters a much larger concurrent request load and becomes
unresponsive, a number of connections will remain open till the database terminates them.
Depending on the number of idle requests, the database performance can be severely affected
and can potentially lead to a race condition if the application server is rebooted while the
database still retained idle connections. This is a non-deterministic situation and hence the
application and the database server must be configured based on the anticipated/observed
load.

Our primary objective of testing WiSDM application has been to ensure that it satisfies the
design and implementation of use cases from the perspective of a survey administrator and
a responder. We tested following key functionalities.

• Admin interface,

• Survey interface,

• Branched logic,

• Download action,

• Reporting,

• Accurate and consistent data flow among web interface, server and backend database,

• Data correctness between old database structure and new normalized database struc-
ture, and

• Ability to handle hundreds of concurrent HTTP requests.

56

Nevertheless there are certain areas of testing that has not been not covered in the current
implementation of WiSDM. For example, white-box testing techniques such as Unit Testing.
WiSDM being a Django application, ’unittest’ module in Python is supported in the frame-
work. This module uses assert functions to verify expected results. To run tests with other
unit test framework Django provides APIs that can be integrated with those frameworks.

4.6 Conclusion

From the results in section 4.4, it is noticeable that the application server performance
deteriorated under some irreproducible condition which we infer was due to low tablespace
in Oracle. We noticed that the server performs significantly better now that the tablespace
has been increased. This test should suffice that WiSDM application server is robust enough
to handle hundreds of concurrent actions, a necessary feature when we use human sensors
for data acquisition and in MTurk, the accept assignment rate can be quite high. So 3000
responders is a reasonable test.

57

Chapter 5

WiSDM: Synthetic Data Generator

Synthetic data sets can be useful in a variety of situations, including providing realistic data
to test inference models. Researchers, engineers, and software developers can test against
a safe data set without affecting or even accessing the original data, insulating them from
privacy and security concerns, as well as letting them generate larger data sets when required.
But to be adequate substitutes for real data, the quality of the synthetic data sets needs to
conform as much as possible to realistic data.

We introduce an agent-based modeling platform, Synthetic Data Generator, that utilizes
the Network Dynamics and Simulation Science Laboratory’s (NDSSL’s) synthetic Global
Population[10] and their various demographic attributes to simulate virtual responders who
can “take” surveys to answer behavioral/non-behavioral questions. We used data from one
of our recently conducted surveys to train the classification model; every question and corre-
sponding choices in the survey are assigned predefined probabilities to direct how the virtual
responders will respond to the survey. We analyzed our training data to determine these
probabilities empirically.

The synthetic population is then classified into multiple behavioral categories based on demo-
graphic information. To classify the synthetic population, we used decision tree algorithm[94].
The global synthetic population was then modeled to “respond” to the same survey based
on their demographics and the pattern recognized by the trained classifier.

In this section, we give an overview of the design and architecture of the Synthetic Data
Generator, which is implemented as an external module of WiSDM that uses the synthetic
population to generate survey responses. The specific goal is to design and develop a system
to explore the feasibility of synthesizing data sets for testing the effectiveness of an inference
model. The data generator can be used not only in the evaluation and testing of inference
models but also in testing the WiSDM application server and the WiSDM Analytics module.

58

5.1 Objective

Our vision is of an experimental platform that can generate data sets containing user-defined
epidemic scenario information as well as background information, and that readily permits
the imposition of additional data structures and conditions on data attributes. Our synthetic
generation design is based on the use of Decision trees to assign behavior to the members of
the synthetic population. Decision trees have long been used in the field of epidemiology to
identify individuals at higher risk of developing certain diseases[66], or to identify the target
population groups for health interventions[108]. For this project, decision trees have been
used as a model for a sequential decision problem under uncertainty.

A key aspect of our objective to synthesize survey data is to provide a scalable design that
can be adapted to improve data quality, assign/remove behaviors, and add other constraints
on the attributes dictated by the epidemiologists.

5.2 Related Work

An important issue in evaluating inference models is the availability of representative data.
When real-life data are hard to obtain, or when their properties are hard to modify for testing
various algorithms, synthetic data becomes an appealing alternative. Due to the dearth of
suitable data, along with privacy and security concerns, [47] discusses a general approach
for building synthetic data. When simulating human agents, they restricted their approach
to behaviors that are measurable; for example, the number of times per day a real user
copies files to a removable drive. A similar approach is taken by [74], who built rules around
behaviors that govern the generation of data elements. These rules in a specific situation are
represented by semantic graphs in XML format. This approach is particularly interesting
to our problem domain because we are trying to generalize a rule-based system towards
behavior definition. [116] closely resembles our work on generating realistic test data. Their
test is done in several phases; the kind of data set to be generated depends on the threat
and the environment. Once the threat data and the environment data is generated, both
are blended to assemble the final data set. Our approach differs from this because we plan
to instill risk attributes into the synthetic population defining their behavior in a threat
situation; their reactions to a certain situation will be used to generate our synthetic data.

Tree-based synthesizers are widely adapted for generating partially synthetic data. [93, 32]
evaluate classification and regression trees to generate partially synthetic data from ob-
served data. Examples of the generation of synthetic data through various means for test-
ing purposes are available in many other areas of research. To test cursive hand-writing
recognition systems, synthetic handwriting data has been generated using random pertur-
bations of actual handwriting[110]. Alternatively, the US Census Bureau utilizes synthetic
data-technics as a means of protecting the confidentiality of the public while maintaining

59

statistical quality[62]. In the literature of software testing, many methods have been stud-
ied on the automation of test data generation[67]. Because of the controlled environment
that synthetic data provides, several research areas are paying more attention to developing
data generation systems aimed at systematically generating synthetic data for numerous
applications.

5.3 Synthetic Population

NDSSL has constructed a Synthetic Population[10] of 800+ million people from 13 countries.
The U.S. data is generated from the 2009 version of the American Community Survey. The
synthetic people predominantly represent the urban populations, detailed at the individual
level, including their activities that last for longer and shorter periods of time, as well as
what other individuals make up their households and what contacts they have throughout
the day.

The data sets are available for academic purposes from NDSSL OpenData and are released
under a Creative Commons Attribution Noncommercial ShareAlike license.

5.4 Decision Tree Algorithm

Decision trees (DTs) are a supervised learning method used for classification and regression.
The goal is to create a model that predicts the value of a target variable by learning simple
decision rules inferred from the data features.

DT is a classification procedure that recursively partitions a data set into smaller subdivisions
on the basis of a set of tests defined at each branch (or node) in the tree (Figure 5.1). The
tree is composed of a root node, a set of internal nodes (splits), and a set of terminal nodes
(leaves). Each node in a decision tree has only one parent node and two or more descendant
nodes. The set of nodes at a given level in the tree, i.e., where all of the “leaves” are at the
same "distance" from the root, is called a layer. Each leaf node is assigned a class label (in
the figure, [A, B, C]).

A DT defines a relationship between the values of input fields (known as predictors) and an
output field (known as the target) where the relationship takes the form of a tree. Internal
nodes of the tree consist of decisions that depend on the value of predictor field(s), and,
based on that, select a particular sub-branch of the node. The leaf nodes of the tree represent
predictions about the target value. For a classification tree model, the target field contains a
fixed set of outcomes (for example, “gender”), and the leaf nodes of the decision tree specify
the most likely outcome from the set of possible outcomes.

In particular, decision trees are strictly non-parametric and do not require assumptions

60

http://ndssl.vbi.vt.edu/opendata/
http://creativecommons.org/licenses/by-sa/2.5/

regarding the distributions of the input data. In addition, they handle non-linear relations
between features and classes, allow for missing values, and are capable of handling both
numeric and categorical inputs in a natural fashion[35, 85]. Finally, decision trees have
significant intuitive appeal because the classification structure is explicit and therefore easily
interpreted.

However, biased trees are created in the case that some classes dominate. It is therefore
recommended that the data set is balanced prior to fitting the decision tree. It also tends to
overfit on data with a large number of features.

Figure 5.1: Decision Tree

5.4.1 Extra-Trees Classifier

The scikit-learn package[85] includes an averaging algorithm based on randomized decision
trees: the extra-trees method. This creates a diverse set of classifiers by introducing random-
ness to the classifier construction. The prediction of the ensemble is given as the average
prediction of the individual classifiers. Each tree in the ensemble is built from a sample
drawn with replacement. A random subset of candidate features is used, and thresholds
are drawn at random from each candidate feature; the best of these randomly-generated
thresholds is picked as the splitting rule. This usually reduces the variance of the model
while slightly increasing the bias. The function to measure the quality of a split is “gini” for
the Gini impurity[90] and “entropy” for the Information Gain[90].

DTs are high variance models. The extra-trees classifier uses bagging to decrease variance
in the model. In bagging, multiple versions of the training data set are created by randomly
selecting data instances with replacement, creating a new data set each time. The DT is
then run on each version of the data set, creating a different tree every time. This is called
bootstrapping. So, if there are 50 versions of the data set, 50 trees are created. The DTs are
then run on the test data set, and the most popular output from all these trees become the

61

output for the classifier. We used this ensemble version of DT as our classification algorithm
to reduce overfitting.

5.4.2 Complexity

The time complexity of a balanced decision tree is O (nsamplesnfeatures log (nsamples)) and
query time O (log (nsamples)). In a more practical case where the subtrees are approximately
balanced, the cost of the tree is O

�
nfeaturesn2

samples log (nsamples)
�
.

Scikit-learn pre-sorts the feature over all relevant samples and retains the running label
count, reducing the complexity at each node to O (nsamplesnfeatures log (nsamples)).

5.4.3 Data

The observed data set used to fit our decision tree model was collected from a survey data
set ’USA Disease Prevalence October Fall 2015’ conducted last year via Amazon Mechan-
ical Turk. The questions asked in the survey contain demographic information, as shown
in Appendix C. To fit our decision tree model, we used the following features: age, gender,
household income, and number of family members. The household income and gender at-
tributes are categorical. For the test data set, we used a synthetic population with same
features as the responders to our live survey. However, household income in the original test
data set was nominal, which we converted to categorical before feeding it to the model.

We collected a sample of 100 respondents for our training data and a sample of 500 synthetic
people for the unseen test data. These 500 people were taken randomly from five states: 100
people each from Alabama, Virginia, California, Washington and Kansas in our synthetic
population database. Only one person per household was chosen i.e. no two people were
allowed to have same household id and all participants are above 18 years of age.

For this data set, the training data was manually categorized into ’high’, ’medium’ or ’low’
risk bins based on the following rules:

• Responders who live in a household where no one is sick: low

• Responders who are or have family members who are sick: high

• Responders who are not sick and in the lowest income bracket with no additional family
member: medium

The income brackets (in USD) used in both data sets are:

• 0-24,999: low income

62

• 25,000 - 74,999: medium income

• 75,000 or more: high income

5.5 Design And Implementation

The Synthetic Data Generator has been designed to classify synthetic people into ’low’,
’medium’ or ’high’ risk bins depending on their background information. The information
used to classify the population is parameterized. Also, the model used by the Data Generator
for classification is plug-and-play, meaning that, if needed, the model can be changed (defined
in DecisionTree.py) without breaking any other part of the code.

The Synthetic Data Generator uses the categorized synthetic people as agents who take
surveys hosted on the WiSDM application server, in turn generating synthetic responses.
The survey details can be configured in the Config.json file. Currently, the data generated
is for the ’USA Disease Prevalence October Fall 2015’ survey.

The process flow diagram is depicted in Figure 5.2 and its implementation is described below.
The class diagram is given in Figure 5.3.

Figure 5.2: Synthetic Data Generation Process

1. Connect to the synthetic population Oracle database and pull the synthetic population
data.

63

Figure 5.3: Synthetic Data Generator class diagram

(a) The synthetic people details are obtained for five states by joining
<state>_PERSON_2009_1, <state>_PERSON_INFO_2009_1
and <state>_HOUSEHOLD_2009_1 tables.

2. The synthetic people collected have demographic information, including agep (age), sex
(gender), hincp (household income), persons (number of family members), home_zipcode,
HID (household id) and PID (person id).

(a) Only the agep, sex, hincp, and persons values are added per synthetic person to
the test data set in the classification model. This is because our test data set had
only these demographic features.

3. Now the classification model, the Decision Tree classifier, is instantiated.

(a) Since the decision tree implementation in scikit-learn uses only numerical features,
the classifier converts categorical inputs into predefined integers. For example in
sex, ’male’ is set to 1 and ’female’ is set to 2.

(b) The missing values are replaced by the mean value to avoid the data set getting
affected by missing values.

(c) The data is also cross-validated before fitting the model.

4. When the test data is loaded, the categorical fields are first converted into integer
labels, and each synthetic person is classified as ’high’, ’low’ or ’medium’ risk.

5. Each bin is assigned some behavior. The behaviors are quantified as probabilities in
the Config.json file. A sample is shown in Figure 5.4.

64

(a) For example in a “high risk” category, a question with choices ’yes’ and ’no’ may
have a probability distribution of 90:10. The same question in the “medium risk”
category could have a distribution of 50:50 and in “low risk” it could be 10:90.

(b) The probability distribution varies depending on the question types. For example,
probabilities assigned to all options in a single choice question add up to 1. But
probabilities assigned to each option in a multi-choices question add up to 1.

Figure 5.4: A sample of Config.json file

6. Now the Simulator fetches one person at a time and answers the demographic questions
in the survey based on the synthetic person’s demographic information.

7. For behavioral questions, the simulator runs a biased randomizer based on the proba-
bilities assigned to the person’s bin for each question.

(a) The randomizer chooses one of all available options in the event of a single-select
question.

65

(b) For multi-select questions, the randomizer runs individually for each given option,
either selecting or rejecting that option.

(c) For questions with a range, the limit of which is determined by the responder’s
demographic information, the randomizer selects any value applicable to the user’s
demographic input as the upper limit.

8. Based on the survey branched logic and the person’s response to the current question,
the next question is chosen.

9. These responses are sent to the WiSDM application server as HTTP Responses via
REST APIs.

(a) The Simulator maintains a session for each responder so that the next request to
be sent is correctly determined by WiSDM.

(b) Each responder is assigned a unique session id.

10. All responses, along with the user’s session id and PID, are saved to the database.

The pictorial representation of the decision tree model is shown in Figure 5.5. It can be
noticed in Figure 5.5 that only two attributes, ’persons’ and ’agep’, are dominant. This is
because, from the training data, the classifier found only those two features to be informative.
The feature importance is calculated by Gini as illustrated below, and the corresponding plot
is shown in Figure 5.6.

1. feature 0 (0.798120) : AGEP

2. feature 3 (0.201880) : PERSONS

3. feature 2 (0.000000) : HINCP

4. feature 1 (0.000000) : SEX

5.6 Additional Usages

The Synthetic Data Generator also has some additional applications:

• It can be used as a functional testing tool that tests the WiSDM application by sending
a variety of accepted responses. These responses can be configured.

• It can be used as a tool for testing WiSDM Analytics. Since the data generated is not
completely random, one can perform near-real analytics testing with huge amounts of
data.

66

Figure 5.5: A pictorial representation of the trained tree

Figure 5.6: Feature Importance

67

5.7 Conclusion

In this chapter, we introduced a synthetic data generation module that simulates human
behavior to answer survey questions related to a threat situation. Their behavior is defined
by a classification model and a degree of uncertainty associated with each question in the
survey. We built this module in order to generate near real data that can be used to
evaluate inference models. We incorporated a flexible design approach keeping most of the
components pluggable and configurable in order to maximize customizations for researchers.
The Synthetic Data Generator is just the first step towards building a data generator. The
Synthetic Population generated at NDSSL is very detailed and contains many features.
Including a bigger subset of those features may overwhelm a decision tree, but a more
sophisticated model like SVM[18] can leverage the available information stored in a bigger
subset of features.

68

Chapter 6

WiSDM Analytics

Analyzing any survey, online or traditional, consists of a number of interrelated processes
that are intended to summarize, arrange, and transform data into information. In order
to get insight into the data collected through surveys, we must transform raw data into
information in such a way that will allow us to draw patterns, build correlations, identify
responders’ behavior, and paint a clear picture for the researchers using our system.

Good visualization, a key component of analytics, means communicating clearly a message
based on the results of the data analysis. But different messages may be most relevant for
different audiences, so it is necessary to 1) think about who the audiences are, 2) work out
how to format the data effectively for analyzing results or messages from the data set most
relevant to that audience, and 3) to design visualizations which best communicate those
particular messages based on the audience’s roles and needs.

Using an example from WiSDM, results from the ’USA Disease Prevalence Fall 2015’ survey
would most likely be relevant to epidemiologists who are interested in flu transmission over
multiple age ranges. This message will be more clearly communicated graphically rather
than viewing the raw data in a tabular view.

6.1 Objective

Literature on survey results analysis is mostly limited to removing biases in the collected
data and drawing correlations among the results using statistical models like ANOVA[69].
While we plan to incorporate such advanced analysis in WiSDM in the future, first we must
build a suitable data model on which those analyses can be done. However, there are few
articles that discuss how to format survey data for analysis.

In this chapter, we propose a data model that we think is best suited for analytics on survey
data, and we also discuss how our survey data can be presented for visualization. This

69

chapter is divided into two sections:

1. How can survey data be prepared so that data analysis is simple while still maximizing
performance efficiency?

2. What visualization tools can make the most sense of our data, and how can visualiza-
tions be created around that output?

6.2 Data Modeling

There is no single state-of-the-art or best practice in analytics around survey-oriented data.
The biggest impediment is converting the source data into a format that is conducive to
analytics. Before we discuss our proposed data model, let’s look at some typical survey data
formats.

6.2.1 Survey Data Format For Analysis

While most survey tools maintain data in a normalized form in their internal databases, they
typically render data in a one-row-per-respondent format for analysis, with columns corre-
sponding to questions in the survey. The complexity in analytics arises when surveys contain
multiple multi-response questions. Multi-response questions can generally be organized into
one of the following three formats for analysis.

1. The most common format is to provide as many columns as there are question-choice
combinations[79], a convention followed by Qualtrics (Figure 6.1) and many other
commercially available survey tools. [115] also conducted a pen-and-paper longitudinal
study for which analysis was performed on the data in the mentioned format.

2. The second method is to group all selected responses as a list. For example, column
Q3 in Figure 6.2.

3. The third format is to maintain a separate table for the multi-response questions[79].
Each row in the table will have the person, question, and corresponding responses. So,
there will be as many rows of data as there are responses, and there are no entries for
the person who gives no response.

It is easier to do analytics when all responses for a question are stored in a single column, as
compared to the format described in method 1, and it will also be more performance efficient.
With the second method, additional computation needs to be performed to extract data from
a list. The third format is better in terms of data organization, but in this approach, one
would be required to know or identify question types (single response or multi-response
types) before querying appropriate tables to answer analytical queries.

70

Figure 6.1: Survey Data extracted from Qualtrics: The columns Q3_1 to Q3_5 represent the data that
was gathered from the ’check all that apply’ survey question ’What is your occupation?’.

Figure 6.2: Example of data storage where multiple-select options are stored in a list.

6.2.2 WiSDM Analytics Data Model

Key-Value (KV) is a data management methodology designed for high read and write access
patterns; this approach has the data stored in key and value format. Every key consist of an
alphanumeric identifier and its associated values are stored in a simple string format. The
values may be simple text or more complex lists and sets. Keys with no values are usually
not stored in this data store; hence, a sparse data set is highly unlikely. As a simple data
model, key-value stores are ideally suited to retrieve information in a very fast, available and
scalable way. Amazon makes extensive use of its own Key-Value system, DynamoDB[101],
in its shopping cart. DynamoDB is used in some of Amazon‘s core services to provide highly
available and scalable distributed data stores.

For WiSDM, our vision was to build a data model that provides a simple and generic approach
to doing analytics, while at the same time eliminating the creation of a sparse data set. The
key-value data management system fits our needs perfectly. To the best of our knowledge,
this model has never been used to structure survey results for analytics.

In this data model, survey data is split into multiple smaller tables. Each table repre-
sents one question and contains only two columns: <session_identifier> as a key and <re-
sponse_text> as value. Session_identifier corresponds to a responder’s session key, and

71

response_text corresponds to responses for that question. So, if a survey is comprised of
eight questions, there will be eight tables. In the case of multi-response questions, each
response will be split into multiple rows in the table. An example of this format is displayed
in Figure 6.3.

Figure 6.3: Example of a key-value format for WiSDM Analytics data model. Responses for question
“When did you fall sick?” is shown in this table.

6.2.3 Advantages

This model has several advantages.

1. Data can be sliced-and-diced easily across any combination of criteria in order to answer
analytical questions.

2. It allows for a survey-independent approach to data management.

3. It is easy to query on response texts, as all question types are organized in the same
format and there is no separate format for multi-response questions.

4. Since each table will contain only a subset of the whole survey data, there is a significant
reduction in the number of reads per transaction, which is essential as analytics is read-
oriented.

6.3 Data Visualization

According to [40], data visualization is necessary to communicate information clearly and
effectively through graphical means. It is a crucial step in data analysis because displaying
data in a variety of visual formats makes it easy to see patterns and identify correlations
among the result sets. In this section, we introduce Versa, a python framework for visual-
ization, to do analytics on data collected through WiSDM.

72

6.3.1 Versa

Versa[51] is a data visualization and data analytics framework designed and developed at
Network Dynamics and Simulation Science Laboratory (NDSSL) at Virginia Tech. It comes
with APIs to perform data manipulation, analytics, and visualization operations. Using
these APIs, users can run analytics as a series of python statements. But, unlike other
python frameworks, Versa offloads computation to the database, and, hence, can scale to a
data set much larger than the available main memory.

Each API call in Versa is converted into Relationally Mapped Objects (RMO), which are
python data structures mapped to tables in the database. Subsequent API calls are merged
into a single RMO. The RMO objects are then handed over to SQLAlchemy, which com-
municates with the underlying database. The RMO objects are lazily executed, implying
that they get executed only when terminal APIs are called. Terminal APIs take an RMO
instance but return non-RMO instances, such as lists.

Versa launches database instances on supercomputing nodes. When a job is launched, Versa
reserves a compute resource and launches a database engine on a port. The compute node is
identified as server IP address and the port as the server port. Computations are offloaded to
the relational data engine, empowering the framework to handle data sets much larger than
the main memory would allow. The details of a data engine connection are encapsulated in
the API ’build_session’, and all later interactions with the database are mediated through
this handle. The Versa framework comprises of super computing nodes, a relational data
engine, and SQLAlchemy, which is an object relational mapper (ORM).

SQLAlchemy[9] is an open source SQL toolkit and ORM for the python programming lan-
guage. It is a high-level python interface which associates user-defined python classes to
database tables. It includes both a database server-independent SQL expression language,
and an Object Relational Mapper which allows the user to persist application objects auto-
matically through SQL. It confines all data manipulation code to a specific database session
that controls the life cycle of every object in that session. The SQLAlchemy Object Rela-
tional Mapper presents a method for associating user-defined python classes with database
tables and instances of these classes with rows in their corresponding tables. It synchronizes
all changes in state between objects and their related rows. It also has a system for express-
ing database queries in terms of these classes, along with their defined relationships between
each other.

6.3.1.1 Related Work

Versa acts as a bridge between the SQLAlchemy ORM that communicates with the database
and a python developer who wants to communicate with the multiple data sources and
perform analytics on the data without writing SQL statements. Atlas[96], a data warehouse
of biological data provides an easy storage and retrieval infrastructure for data from multiple

73

sources using SQL queries. The data is first downloaded as data files from disparate data
sources. Atlas loaders, which build instances of the relational model in the local database,
loads these files into MySQL relational data models. Data can be accessed directly from
the MySQL database, with SQL statements implemented underneath C++, Java and Perl
APIs. Similarly, Versa allows developers to seamlessly interact with different data sources
by calling python APIs, but, unlike Atlas, Versa is also equipped with APIs that enable
analytics and visualizations on the data.

6.3.2 WiSDM With Versa

To analyze the data collected by WiSDM Data Acquisition system and to analyze the data
generated by Synthetic Data Generator, we need an analytical tool that supports advanced
analytical features to build sophisticated visualizations. WiSDM integrates with Versa to
achieve this objective. WiSDM Analytics, an external module of WiSDM, imports Versa
APIs to generate graphs on the data stored in WiSDM database. In this work, we built only
a few basic charts but the approaches shown here can be extended to use more features of
Versa. In near future, we plan to integrate this module with WiSDM Data Acquisition tool
so that users can invoke Versa APIs and build visualizations from WiSDM admin interface.

In the current approach as an external module, we start out by creating a denormalized
table, WISDM_SURVEY_DATA_ALL, with a limited set of columns (e.g. survey_name,
session_identifier, question_name, question_text, response_text) that are most relevant for
analytics; this table is created by combining Survey, Questions, Responses and Session tables
from the WiSDM application database. This table can be populated on a routine basis.

In Versa, we first create an Oracle session to retrieve data from WISDM_SURVEY_DATA_ALL
table. Using Versa APIs, we split the data as per our key-value data model and load it into
a PostgreSQL database. This process, known as Pivoting, converts the single container data
set into multiple, smaller, column-oriented (key-value) tables. The pseudocode for Pivoting
is given in Algorithm 6.1.

The tables created in PostgreSQL persist as long as the life of the session which is created
when a job to run a database instance is launched. This means that, for each survey,
temporary tables are created only for the duration of the analysis being performed.

Versa APIs communicate with PostgreSQL tables and run user-defined standard data ma-
nipulation functions, such as joins, aggregation, filters, sort, etc. It also has APIs to build
plots on the data. If some graphical plots are not supported in Versa, they can be easily
integrated with other python modules to build those charts.

Below are the sets of analysis we did with Versa on two different surveys. The first survey
was a data set of about 3000 responses with a respondent set of 500, and the second survey
contains approximately 90,000 responses from a respondent set of 14,000. The code for these
visualizations are included in Appendix D.

74

Algorithm 6.1 Pivoting
mport versa_api as vapi

import versa_impl as vi

from <source table>_model import *

create a session with the source db

source_db_session = vi.init(<source db session>)

create rmo on all values of the attribute in the source table

q_c = vapi.proj(source_db_session, <source table>, <attribute>)

create rmo on all distinct values in q_c

d_q_c = vapi.distinct(source_db_session, q_c, <attribute>)

retrieve distinct values in d_q_c as a list

d_res = vapi.scan(source_db_session, d_q_c)

create a session with the target db

target_db_session = vi.init(<session name>)

for each item dim in d_res

for dim in d_res:

filter source table when attribute=dim[0]

s1 = vapi.filterEQ(source_db_session, <source table>, <attribute>, dim[0])

attribute value becomes the table name in target db

tbl_name = str(dim[0])

define distinct column names in the target table

target_col_names = []

for each attr in <distinct attributes in target table>:

target_col_names.append(attr)

define table with the table name and column names

[table, cls, rmo] = vapi.create_table_and_rmo(

target_db_session, table = tbl_name,

cls = tbl_name, attrs=target_col_names,

types= [<datatype of each column>],

primary_keys= [<set primary key for columns as True/False>],

indexes = [<set columns to be indexed as True/False>]

)

create target table with name as

tbl_name vapi.write_rmo_def(target_db_session, rmo, tbl_name, tbl_name, tbl_name)

retrieve data from s1 as a list

d_s1 = vapi.scan(source_db_session, s1)

for each data row s in d_s1

for s in d_s1:

instantiate target table class

newTable = cls()

insert respective values from s into newTable’s attributes.

for i in range(target_col_names):

setattr(newTable, target_col_names[i], s[0])

target_db_session.add(newTable)

target_db_session.commit()

75

Figure 6.4 represents the age distribution for a respondent size of 500 and an approximate
population size of 14,000 for the second survey.

(a) Respondent Size 500 (b) Respondent Size 14,000

Figure 6.4: Age by Population Size Distribution

Figure 6.5 represents a grouped bar chart of age distribution by gender.

In addition, Figure 6.6 shows a bar chart of the age distribution by sick population for the
first survey.

6.3.3 Performance Comparison Of Versa Between Oracle And Post-
greSQL

We did a performance comparison between Oracle and PostgreSQL by running Versa on both
the databases. We tested on a data set of 1,171,389 rows in wisdmdev instance in Oracle.
This data set was created by running a script to import random responses for the ’USA
Disease Prevalence Fall 2015’ survey hosted on WiSDM directly into the Oracle database.

1. First, we performed Pivoting, where we split the data set into multiple smaller tables.
Time taken by the two databases:

(a) PostgreSQL: 0:05:41.215573
(b) Oracle: 0:03:53.845529

2. Next, we performed an analysis of gender by age distribution in the data set. Two
tables were joined here – ’age-in-years’ : 112,488 rows, and ’your-gender’ : 112,381
rows. Time taken by the two databases.

76

(a) Respondent Size 500 (b) Respondent Size 14,000

Figure 6.5: Age by Gender Distribution

Figure 6.6: Age by Sick Population Size Distribution

77

(a) PostgreSQL: 0:00:00.583687
(b) Oracle: 0:00:01.864170

6.3.4 Advantages Of Versa

There are many advantages to using Versa.

1. Versa offloads computation to supercomputing data nodes. So it can handle data sets
much larger than the main memory available.

2. Versa allows users to perform database operations like join, filter, aggregation, etc. as
python function calls. This simplifies the database interactions for a developer not
proficient in SQL.

3. Versa can seamlessly interact with multiple databases. We communicated with the
Oracle database and PostgreSQL while doing analytics with the WiSDM data set.

4. The biggest advantage of Versa is that it is an in-house resource and can be enhanced
as needed.

6.4 Conclusion

In this chapter, we introduced a data model based on key-value concepts. This data model
is generic and provides an intuitive structure to run analytical queries. We also discussed
how Versa can be used to build the key-value data model and showed a few examples of
visualizations performed on the data, using Versa APIs.

78

Chapter 7

Conclusions And Directions For Future
Work

Online data acquisition platforms have emerged over the last few years as highly conve-
nient tools for conducting research. These platforms enable researchers to create and deliver
surveys to subjects/participants in a convenient manner, and they produce results rapidly.
Many researchers use them to conduct online studies, analyze results, re-evaluate their hy-
pothesis and sometimes conduct the study again. But most of these tools do not support
seamless integration to crowdsourced platforms that are cost and time effective resources to
acquire research data. These tools also do not provide simple interfaces to build intelligent
surveys. These were the primary motivations behind developing WiSDM. WiSDM is an ad-
vanced data acquisition system that uses human sensors to acquire behavioral information.
It can build intelligent surveys that can adapt according to responders’ behavior and can
be integrated with crowdsourcing platforms like MTurk through iFrames for faster situation
awareness. It can also integrate external applications in iFrames in its web template to
increase interactivity with the responder.

However, we did not limit WiSDM to data acquisition. WiSDM can also operate as an ETL
tool (known as the WiSDM API Adapter), which is a novel way to leverage off of other
systems that may support special features that lie outside of WiSDM’s capabilities. We
also presented the Synthetic Data Generator as an external module of WiSDM that can
generate large-scale synthetic responses by generating survey results by using a synthetic
population in conjunction with a classification model to simulate near-real data for testing
inference algorithms. We also showed how survey results can be formatted so that analytics
on the data is simple. We proposed a (key, value) data management system that can be
used to model survey data. It requires splitting the entire data set into multiple, smaller,
non-sparse tables. Finally, we showed how we could do analytics on WiSDM data using
Versa, a python-based framework for data analytics and visualization.

With all of these extensions, WiSDM comes full circle. However, WiSDM is still under active

79

development, and there are a number of additional features that would further enhance its
value:

• Adding more advanced logic to surveys, such as an ability to add branched logic on
multiple variables and not just the previous question. For example, if responses to
question #1 is X and question #2 is Y , then jump to question #5.

• Adding simple data validation techniques, such as geocode detection, screeners, mini-
mum response duration per user, etc. may partially filter out untruthful data, detect
inattentive respondents, and mitigate survey speeding issues.

• Gamification of surveys to improve data quality[55, 31, 54]. Although gamification
of online surveys does not guarantee significant positive results, it does increase user
engagement. Not all types of surveys can be gamified, but they can definitely have
features like badges and stages that may increase user motivation.

• Building native mobile apps for WiSDM to leverage on mobile crowdsensing. Although
WiSDM in its current implementation can be accessed as a mobile browser app, a native
app provides many additional advantages apart from ease of use such as providing
push notification to remind a participant to input information. Native apps can also
implicitly collect user data such as user’s current location and help detect context
against which a relevant question can be asked[41].

• Tighter integration of the API Adapter to the WiSDM web interface. It would be better
if a user interface could be built around the API Adapter and also provide the ability
to schedule data transfers. A UI wrapper will help users easily specify parameters and
constraints required to extract data from external data sources.

• Development of a more sophisticated classification model for the Synthetic Data Gen-
erator. A sophisticated model such as SVM (Support Vector Machine)[18] can leverage
the information available, provided the training data to support those features. Using
a data processing technique like Principal Component Analysis (PCA) with classifi-
cation may also improve classification accuracy when dealing with high dimensional
data[60].

• Parallelizing Synthetic Data Generator so that multiple virtual agents can take the
survey simultaneously. This will improve the Synthetic Data Generator as a function-
al/load testing tool.

• Integrating WiSDM Analytics into the WiSDM web application. Developing a web
form where users can enter question names, filter conditions, and chart specifications
to represent data in a graphical format would make this system more accessible to
researchers. The web form will internally call Versa APIs to build visualizations. It
would also allow users without any programming background to use WiSDM Analytics.

80

WiSDM, as a data acquisition system that also supports data simulation, data analytics, and
ETL, is a novel idea which is generic enough to support research outside of epidemiology. It
can be integrated with surveillance systems such as Eyes on the Ground to collect ground
information for better situational awareness. WiSDM is designed and developed at NDSSL
and is a result of collaborative efforts of various members of the NDSSL lab.

81

Bibliography

[1] Geochat. Innovative Support to Emergencies Diseases and Disasters (InSTEDD). [On-
line; accessed 20-June-2016].

[2] Vivek Akupatni, Richard J. Beckman, Keith R. Bisset, Jiangzhuo Chen, Bryan L.
Lewis, Achla Marathe, Madhav V. Marathe, Vullikanti S. Anil Kumar, and Amanda
Wilson. Widely internet sourced distributed monitoring. Technical report, NDSSL,
2015.

[3] Atocha Aliseda-Llera. Seeking explanations: Abduction in logic, philosophy of science
and arti cal intelligence. 1997.

[4] Dorine Andrews, Blair Nonnecke, and Jennifer Preece. Electronic survey methodology:
A case study in reaching hard-to-involve internet users. International journal of human-
computer interaction, 16(2):185–210, 2003.

[5] Dorine Andrews, Blair Nonnecke, and Jennifer Preece. Conducting research on the
internet: Online survey design, development and implementation guidelines. 2007.

[6] Anuja Arora and Madhavi Sinha. Web Application Testing: A Review on Techniques,
Tools and State of Art. International Journal of Scientific & Engineering Research,
3(2):1, 2012.

[7] Scott Barber. How fast does a website need to be, 2010.

[8] Adam Barth, Collin Jackson, and John C Mitchell. Robust defenses for cross-site
request forgery. In Proceedings of the 15th ACM conference on Computer and commu-
nications security, pages 75–88. ACM, 2008.

[9] Michael Bayer. Sqlalchemy - the database toolkit for python.
http://www.sqlalchemy.org/, 2012.

[10] Keith R. Bisset, Karla Atkins, Christopher L. Barrett, Richard J. Beckman, Stephen
Eubank, Achla Marathe, Madhav V. Marathe, Henning Mortveit, Paula Stretz, and
Anil Vullikanti. Synthetic Data Products for Societal Infrastructures and Proto-
Populations: Data Set 2.0. Technical report, NDSSL Technical Report, 2006.

82

[11] Joaquin A Blaya, Hamish SF Fraser, and Brian Holt. E-health technologies show
promise in developing countries. Health Affairs, 29(2):244–251, 2010.

[12] Michael Buhrmester, Tracy Kwang, and Samuel D Gosling. Amazon’s Mechanical
Turk a new source of inexpensive, yet high-quality, data? Perspectives on psychological
science, 6(1):3–5, 2011.

[13] Jared Cechanowicz, Carl Gutwin, Briana Brownell, and Larry Goodfellow. Effects of
gamification on participation and data quality in a real-world market research domain.
In Proceedings of the First International Conference on Gameful Design, Research,
and Applications, pages 58–65. ACM, 2013.

[14] Andre Charland and Brian Leroux. Mobile application development: web vs. native.
Communications of the ACM, 54(5):49–53, 2011.

[15] Georgios Chatzimilioudis, Andreas Konstantinidis, Christos Laoudias, and Demetrios
Zeinalipour-Yazti. Crowdsourcing with smartphones. IEEE Internet Computing,
16(5):36–44, 2012.

[16] Timothy Chee, Lee-Kwun Chan, Min-Hooi Chuah, Chee-Sok Tan, Siew-Fan Wong, and
William Yeoh. Business intelligence systems: state-of-the-art review and contemporary
applications. In Symposium on Progress in Information & Communication Technology,
volume 2, pages 16–30, 2009.

[17] Rumi Chunara, Clark C Freifeld, and John S Brownstein. New technologies for report-
ing real-time emergent infections. Parasitology, 139(14):1843–1851, 2012.

[18] Corinna Cortes and Vladimir Vapnik. Support vector machine. Machine learning,
20(3):273–297, 1995.

[19] Mick P Couper. Review: Web surveys: A review of issues and approaches. The Public
Opinion Quarterly, 64(4):464–494, 2000.

[20] Mick P Couper and Peter V Miller. Web survey methods introduction. Public Opinion
Quarterly, 72(5):831–835, 2008.

[21] Mick P Couper, Michael W Traugott, and Mark J Lamias. Web survey design and
administration. Public opinion quarterly, 65(2):230–253, 2001.

[22] Dana Cuff, Mark Hansen, and Jerry Kang. Urban sensing: out of the woods. Com-
munications of the ACM, 51(3):24–33, 2008.

[23] Edith D De Leeuw. To mix or not to mix data collection modes in surveys. Journal
of official statistics, 21(2):233, 2005.

[24] Edith D De Leeuw and Joop J Hox. Internet surveys as part of a mixed-mode design.
Social and Behavioral research and the internet, pages 45–76, 2011.

83

[25] Anind K Dey, Gregory D Abowd, and Daniel Salber. A context-based infrastructure for
smart environments. In Managing Interactions in Smart Environments, pages 114–128.
Springer, 2000.

[26] Tim Dierks. The transport layer security (tls) protocol version 1.2. 2008.

[27] Don A Dillman. Mail and internet surveys: The tailored design method, volume 2.
Wiley New York, 2000.

[28] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. Ontology match-
ing: A machine learning approach. In Handbook on ontologies, pages 385–403. Springer,
2004.

[29] Sara Dolnicar, Bettina Grün, and Venkata Yanamandram. Dynamic, interactive survey
questions can increase survey data quality. Journal of Travel & Tourism Marketing,
30(7):690–699, 2013.

[30] Steven Dow, Anand Kulkarni, Brie Bunge, Truc Nguyen, Scott Klemmer, and Björn
Hartmann. Shepherding the crowd: managing and providing feedback to crowd work-
ers. In CHI’11 Extended Abstracts on Human Factors in Computing Systems, pages
1669–1674. ACM, 2011.

[31] Theo Downes-Le Guin, Reg Baker, Joanne Mechling, and Erica Ruyle. Myths and
realities of respondent engagement in online surveys. International Journal of Market
Research, 54(5):1–21, 2012.

[32] Jörg Drechsler and Jerome P Reiter. An empirical evaluation of easily implemented,
nonparametric methods for generating synthetic datasets. Computational Statistics &
Data Analysis, 55(12):3232–3243, 2011.

[33] Bobby Duffy, Kate Smith, George Terhanian, and John Bremer. Comparing data from
online and face-to-face surveys. International Journal of Market Research, 47(6):615,
2005.

[34] Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction. Journal
of the ACM (JACM), 42(1):3–42, 1995.

[35] Usama M Fayyad and Keki B Irani. On the handling of continuous-valued attributes
in decision tree generation. Machine learning, 8(1):87–102, 1992.

[36] Ernst Fehr and Simon Gächter. Cooperation and punishment in public goods experi-
ments. Institute for Empirical Research in Economics working paper, (10), 1999.

[37] Robert J Fisher. Social desirability bias and the validity of indirect questioning. Journal
of consumer research, pages 303–315, 1993.

84

[38] Harry G Frankfurt. Peirce’s notion of abduction. The Journal of Philosophy,
55(14):593–597, 1958.

[39] Clark C Freifeld, Rumi Chunara, Sumiko R Mekaru, Emily H Chan, Taha Kass-Hout,
Anahi Ayala Iacucci, and John S Brownstein. Participatory epidemiology: use of mobile
phones for community-based health reporting. PLoS Med, 7(12):e1000376, 2010.

[40] Vitaly Friedman. Data Visualization and Infographics in Graphics. Monday inspira-
tion, 2008.

[41] Jon Froehlich. Sensing and Feedback of Everyday Activities to Promote Environmen-
tally Sustainable Behaviors. In Doctoral Colloquium in the Adjunct Proceedings of
UbiComp, Orlando, Florida, USA, 2009.

[42] Jon Froehlich, Mike Y Chen, Sunny Consolvo, Beverly Harrison, and James A Lan-
day. Myexperience: a system for in situ tracing and capturing of user feedback on
mobile phones. In Proceedings of the 5th international conference on Mobile systems,
applications and services, pages 57–70. ACM, 2007.

[43] Jon Froehlich, Joachim Neumann, and Nuria Oliver. Sensing and Predicting the Pulse
of the City through Shared Bicycling. In IJCAI, volume 9, pages 1420–1426, 2009.

[44] Lutz Frommberger and Falko Schmid. Mobile4d: crowdsourced disaster alerting and
reporting. In Proceedings of the Sixth International Conference on Information and
Communications Technologies and Development: Notes-Volume 2, pages 29–32. ACM,
2013.

[45] Raghu K Ganti, Fan Ye, and Hui Lei. Mobile crowdsensing: current state and future
challenges. IEEE Communications Magazine, 49(11):32–39, 2011.

[46] Huiji Gao, Geoffrey Barbier, Rebecca Goolsby, and Daniel Zeng. Harnessing the crowd-
sourcing power of social media for disaster relief. Technical report, DTIC Document,
2011.

[47] Joshua Glasser and Brian Lindauer. Bridging the gap: A pragmatic approach to
generating insider threat data. In Security and Privacy Workshops (SPW), 2013 IEEE,
pages 98–104. IEEE, 2013.

[48] Joseph K Goodman, Cynthia E Cryder, and Amar Cheema. Data collection in a
flat world: The strengths and weaknesses of Mechanical Turk samples. Journal of
Behavioral Decision Making, 26(3):213–224, 2013.

[49] Samuel D Gosling, Simine Vazire, Sanjay Srivastava, and Oliver P John. Should we
trust web-based studies? A comparative analysis of six preconceptions about internet
questionnaires. American Psychologist, 59(2):93, 2004.

85

[50] Bin Guo, Zhiwen Yu, Xingshe Zhou, and Daqing Zhang. From participatory sensing to
mobile crowd sensing. In Pervasive Computing and Communications Workshops (PER-
COM Workshops), 2014 IEEE International Conference on, pages 593–598. IEEE,
2014.

[51] Sandeep Gupta. Dicex User Manual and Cookbook, 2016.

[52] Peter Haddawy, Lutz Frommberger, Tomi Kauppinen, Giorgio De Felice, Prae
Charkratpahu, Sirawaratt Saengpao, and Phanumas Kanchanakitsakul. Situation
awareness in crowdsensing for disease surveillance in crisis situations. In Proceedings of
the Seventh International Conference on Information and Communication Technolo-
gies and Development, page 38. ACM, 2015.

[53] Emily H Halili. Apache JMeter: A practical beginner’s guide to automated testing
and performance measurement for your websites. Packt Publishing Ltd, 2008.

[54] Juho Hamari, Jonna Koivisto, and Harri Sarsa. Does gamification work? – A literature
review of empirical studies on gamification. In System Sciences (HICSS), 2014 47th
Hawaii International Conference on, pages 3025–3034. IEEE, 2014.

[55] Johannes Harms, Stefan Biegler, Christoph Wimmer, Karin Kappel, and Thomas
Grechenig. Gamification of online surveys: Design process, case study, and evalua-
tion. In Human-Computer Interaction–Interact 2015, pages 219–236. Springer, 2015.

[56] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, and Paul Webster. The
anatomy of a context-aware application. Wireless Networks, 8(2/3):187–197, 2002.

[57] Robert M. Hauser. Investments in Longitudinal Surveys, Databases,
Advanced Statistical Research, and Computation Technology.
http://www.ncbi.nlm.nih.gov/books/NBK220826/, 2002.

[58] Adrian Holovaty and Jacob Kaplan-Moss. The django book. http://www.djangobook.
com, 2007.

[59] Adrian Holovaty and Jacob Kaplan-Moss. The definitive guide to Django: Web devel-
opment done right. Apress, 2009.

[60] Tom Howley, Michael G Madden, Marie-Louise O’Connell, and Alan G Ryder.
The effect of principal component analysis on machine learning accuracy with high-
dimensional spectral data. Knowledge-Based Systems, 19(5):363–370, 2006.

[61] Janet Ilieva, Steve Baron, and Nigel M Healey. Online surveys in marketing research:
Pros and cons. International Journal of Market Research, 44(3):361, 2002.

[62] Ron S Jarmin, Thomas A Louis, and Javier Miranda. Expanding the role of synthetic
data at the US Census Bureau. Statistical Journal of the IAOS, 30(2):117–121, 2014.

86

[63] Apache JMeter. Apache software foundation, 2010.

[64] Ashish Kapoor, Nathan Eagle, and Eric Horvitz. People, Quakes, and Communica-
tions: Inferences from Call Dynamics about a Seismic Event and its Influences on a
Population. In AAAI Spring Symposium: Artificial Intelligence for Development, 2010.

[65] Mike Keith and Merrick Schnicariol. Object-relational mapping. In Pro JPA 2, pages
69–106. Springer, 2009.

[66] Trace S Kershaw, Jessica Lewis, Claire Westdahl, Yun F Wang, Sharon Schindler
Rising, Zohar Massey, and Jeannette Ickovics. Using clinical classification trees to
identify individuals at risk of STDs during pregnancy. Perspectives on sexual and
reproductive health, 39(3):141–148, 2007.

[67] Bogdan Korel. Automated software test data generation. Software Engineering, IEEE
Transactions on, 16(8):870–879, 1990.

[68] Robert Kraut, Judith Olson, Mahzarin Banaji, Amy Bruckman, Jeffrey Cohen, and
Mick Couper. Psychological research online: report of Board of Scientific Affairs’
Advisory Group on the Conduct of Research on the Internet. American psychologist,
59(2):105, 2004.

[69] Sameer Kumar and Promma Phrommathed. Research methodology. Springer, 2005.

[70] Florian Laws, Christian Scheible, and Hinrich Schütze. Active learning with amazon
mechanical turk. In Proceedings of the conference on empirical methods in natural
language processing, pages 1546–1556. Association for Computational Linguistics, 2011.

[71] Avraham Leff and James T Rayfield. Web-application development using the mod-
el/view/controller design pattern. In Enterprise Distributed Object Computing Con-
ference, 2001. EDOC’01. Proceedings. Fifth IEEE International, pages 118–127. IEEE,
2001.

[72] Yaliang Li, Jing Gao, Chuishi Meng, Qi Li, Lu Su, Bo Zhao, Wei Fan, and Jiawei Han.
A Survey on Truth Discovery. arXiv preprint arXiv:1505.02463, 2015.

[73] Ulf Liebe, Klaus Glenk, Malte Oehlmann, and Jürgen Meyerhoff. Does the use of
mobile devices (tablets and smartphones) affect survey quality and choice behaviour
in web surveys? Journal of choice modelling, 14:17–31, 2015.

[74] Pengyue J Lin, Behrokh Samadi, Alan Cipolone, Daniel R Jeske, Sean Cox, Carlos
Rendon, Douglas Holt, and Rui Xiao. Development of a synthetic data set generator
for building and testing information discovery systems. In Information Technology:
New Generations, 2006. ITNG 2006. Third International Conference on, pages 707–
712. IEEE, 2006.

87

[75] Greg Little, Lydia B Chilton, Max Goldman, and Robert C Miller. Turkit: tools for
iterative tasks on Mechanical Turk. In Proceedings of the ACM SIGKDD workshop on
human computation, pages 29–30. ACM, 2009.

[76] Winter Mason and Siddharth Suri. Conducting behavioral research on Amazon Me-
chanical Turk. Behavior research methods, 44(1):1–23, 2012.

[77] Sheila A McIlraith. Logic-based abductive inference. Knowledge Systems Laboratory,
Technical Report KSL-98-19, 1998.

[78] Kent L Norman. Implementation of conditional branching in computerized self-
Administered questionnaires. 2003.

[79] The University of Reading Statistical Services Centre. Approaches to the Analysis of
Survey Data. Biometrics Advisory and Support Service to DFID, 2001.

[80] Daniel M Oppenheimer, Tom Meyvis, and Nicolas Davidenko. Instructional manipula-
tion checks: Detecting satisficing to increase statistical power. Journal of Experimental
Social Psychology, 45(4):867–872, 2009.

[81] Robin Wentao Ouyang, Lance Kaplan, Paul Martin, Alice Toniolo, Mani Srivastava,
and Timothy J Norman. Debiasing crowdsourced quantitative characteristics in lo-
cal businesses and services. In Proceedings of the 14th International Conference on
Information Processing in Sensor Networks, pages 190–201. ACM, 2015.

[82] Gabriele Paolacci, Jesse Chandler, and Panagiotis G Ipeirotis. Running experiments
on Amazon Mechanical Turk. Judgment and Decision making, 5(5):411–419, 2010.

[83] David C Parkes, Andrew Mao, Yiling Chen, Krzysztof Z Gajos, Ariel Procaccia, and
Haoqi Zhang. Turkserver: Enabling synchronous and longitudinal online experiments.
In Proceedings of the Fourth Workshop on Human Computation (HCOMP’12). AAAI
Press, 2012.

[84] Bhoomit Patel, Jay Parikh, and Rushabh Shah. A Review Paper on Comparison of
SQL Performance Analyzer Tools: Apache JMeter and HP LoadRunner. 2014.

[85] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in Python. The Journal of Machine
Learning Research, 12:2825–2830, 2011.

[86] Yun Peng and James A. Reggia. Abductive Inference Methods for Diagnostic Problem-
Solving, 1990.

[87] Andy Peytchev, Mick P Couper, Sean Esteban McCabe, and Scott D Crawford. Web
survey design paging versus scrolling. Public opinion quarterly, 70(4):596–607, 2006.

88

[88] James E Pitkow and Colleen M Kehoe. Emerging trends in the WWW user population.
Communications of the ACM, 39(6):106–108, 1996.

[89] Question Pro. Survey Software. online, http://www.questionpro.com, 2005.

[90] Laura Elena Raileanu and Kilian Stoffel. Theoretical comparison between the gini
index and information gain criteria. Annals of Mathematics and Artificial Intelligence,
41(1):77–93, 2004.

[91] Ulf-Dietrich Reips. The Web experiment method: Advantages, disadvantages, and
solutions. Psychological experiments on the Internet, pages 89–117, 2000.

[92] Ulf-Dietrich Reips. Standards for Internet-based experimenting. Experimental psychol-
ogy, 49(4):243, 2002.

[93] Jerome P Reiter. Using CART to generate partially synthetic public use microdata.
Journal of official statistics-stockholm, 21(3):441, 2005.

[94] Lior Rokach and Oded Maimon. Decision trees. In Data mining and knowledge dis-
covery handbook, pages 165–192. Springer, 2005.

[95] Kirusnapillai Selvarajah, Michael P Craven, Adam Massey, John Crowe, Kavita Ved-
hara, and Nicholas Raine-Fenning. Native Apps versus Web Apps: which is best for
healthcare applications? In International Conference on Human-Computer Interac-
tion, pages 189–196. Springer, 2013.

[96] Sohrab P Shah, Yong Huang, Tao Xu, Macaire MS Yuen, John Ling, and BF Francis
Ouellette. Atlas–a data warehouse for integrative bioinformatics. BMC bioinformatics,
6(1):1, 2005.

[97] Joshua Wolf Shenk. What makes us happy? The Atlantic, 2009.

[98] Amit Sheth. Citizen sensing, social signals, and enriching human experience. IEEE
Internet Computing, 13(4):87, 2009.

[99] Sickweather. Sickweather. [Online; accessed 20-June-2016].

[100] Robert Simpson, Kevin R Page, and David De Roure. Zooniverse: observing the
world’s largest citizen science platform. In Proceedings of the 23rd International Con-
ference on World Wide Web, pages 1049–1054. ACM, 2014.

[101] Swaminathan Sivasubramanian. Amazon dynamoDB: a seamlessly scalable non-
relational database service. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 729–730. ACM, 2012.

[102] Christine B Smith. Casting the net: Surveying an Internet population. Journal of
Computer-Mediated Communication, 3(1):0–0, 1997.

89

[103] Jon Snow and Myntillae Nash. Qualtrics survey software: handbook for research
professionals, 2013.

[104] Siddharth Suri and Duncan J Watts. Cooperation and contagion in web-based, net-
worked public goods experiments. PLoS One, 6(3):e16836, 2011.

[105] Melanie Swan. Crowdsourced Health Research Studies: An Important Emerging Com-
plement to Clinical Trials in the Public Health Research Ecosystem. Journal of Medical
Internet Research, 14(2):e46, 2012.

[106] Natasha L Tilston, Ken TD Eames, Daniela Paolotti, Toby Ealden, and John Ed-
munds. Internet-based surveillance of Influenza-like-illness in the UK during the 2009
H1N1 influenza pandemic. BMC Public Health, 10(1):650, 2010.

[107] Vera Toepoel, Marcel Das, and Arthur van Soest. Design of Web questionnaires: A
test for number of items per screen. 2005.

[108] Hana Tomaskova, Hana Slachtova, and Anna Splichalova. Using methods of decision
tree for identification of target population groups for health intervention: ISEE-176.
Epidemiology, 14(5):S37–S38, 2003.

[109] Jos WR Twisk. Applied longitudinal data analysis for epidemiology: A practical guide.
Cambridge University Press, 2013.

[110] Tamás Varga and Horst Bunke. Generation of synthetic training data for an HMM-
based handwriting recognition system. In ICDAR, volume 3, pages 618–622. Citeseer,
2003.

[111] Panos Vassiliadis, Alkis Simitsis, and Spiros Skiadopoulos. Conceptual modeling for
ETL processes. In Proceedings of the 5th ACM international workshop on Data Ware-
housing and OLAP, pages 14–21. ACM, 2002.

[112] Lee Ventola. Mobile devices and apps for health care professionals: uses and benefits.
Pharmacy and Therapeutics, 39(5):356, 2014.

[113] Pew Research Center Washington D.C. A Comparison of Results from Surveys by the
Pew Research Center and Google Consumer Surveys, 2012. [Online; accessed 16-July-
2016].

[114] Pew Research Center Washington D.C. Internet Surveys, 2014. [Online; accessed
16-July-2016].

[115] Victoria M White and Emily Bariola. Australian Secondary School Students’ Use
of Tobacco, Alcohol, and Over-the-counter and Illicit Substances in 2011: Report.
National Drug Strategy, Department of Health and Ageing, 2012.

90

[116] Mark A Whiting, Jereme Haack, and Carrie Varley. Creating realistic, scenario-based
synthetic data for test and evaluation of information analytics software. In Proceedings
of the 2008 Workshop on BEyond time and errors: novel evaLuation methods for
Information Visualization, page 8. ACM, 2008.

[117] Kevin B Wright. Researching internet-based populations: Advantages and disad-
vantages of online survey research, online questionnaire authoring software packages,
and web survey services. Journal of Computer-Mediated Communication, 10(3):00–00,
2005.

[118] Gi Woong Yun and Craig W Trumbo. Comparative response to a survey executed by
post, e-mail, & web form. Journal of Computer-Mediated Communication, 6(1):0–0,
2000.

[119] Arkady Zaslavsky, Prem Prakash Jayaraman, and Shonali Krishnaswamy. Sharelike-
scrowd: Mobile analytics for participatory sensing and crowd-sourcing applications.
In Data Engineering Workshops (ICDEW), 2013 IEEE 29th International Conference
on, pages 128–135. IEEE, 2013.

91

Appendix A

Components Of WiSDM And Their
Dependencies

92

Appendix B

Mapping From WiSDM Old Database
Version To New Database Version

93

Appendix C

USA Disease Prevalence Survey
Questions

Questions asked in USA Disease Prevalence October Fall 2015 Survey.

USA Disease Prevalence October Fall 2015

1. What is your age (in years)?

2. What is your gender?

(a) Male
(b) Female

3. Including yourself, how many people live at your residence/home?

4. What is your household’s yearly income in US dollars?

(a) 0 - 24,999
(b) 25,000 - 74,999
(c) 75,000 or more

5. In the last few weeks did you fall sick with a flu like illness? If yes, which week were
you sick in? Check all that apply.

(a) September - week 1
(b) September - week 2
(c) September - week 3

94

(d) September - week 4
(e) September - week 5 or October - week 1
(f) October - week 2
(g) October - week 3
(h) October - week 4
(i) October - week 5
(j) November - week 1
(k) November - week 2
(l) November - week 3

(m) November - week 4
(n) December - week 1
(o) December - week 2
(p) December - week 3
(q) December - week 4
(r) December - week 5
(s) I did not fall sick

6. How many members of your family (excluding you) fell ill with a flu-like illness in
September 2015? Enter 0 if no one fell ill.

7. How many members of your family (excluding you) fell ill with a flu-like illness in
October 2015? Enter 0 if no one fell ill.

8. How many members of your family (excluding you) fell ill with a flu-like illness in
November 2015? Enter 0 if no one fell ill.

9. How many members of your family (excluding you) fell ill with a flu-like illness in
December 2015? Enter 0 if no one fell ill.

95

Appendix D

WiSDM Data Visualization Code

age by population size distribution
s e s s i o n = v i . i n i t (’wisdm ’)

popsz_by_age = vapi . aggregate (s e s s i on , what_your_age , ’
what_your_age_response_text ’ , ’ pop_sz ’)

popsz_by_age_ordered = vapi . ascending (s e s s i on , popsz_by_age , ’
what_your_age_response_text ’)

popsz_by_age_as_array = vapi . bui ld_array (s e s s i on , popsz_by_age_ordered , [’
what_your_age_response_text ’ , ’ pop_sz ’])

r e s type = { ’ x_attr ’ : ’ array_what_your_age_response_text ’ , ’ y_attr ’ : ’
array_pop_sz ’ }

r e s type [’ p l o t ’] = { ’ t i t l e ’ : ’ age by populat ion s i z e d i s t r i b u t i o n ’ ,
’ x l ab e l ’ : ’ age ’ ,
’ y l ab e l ’ : ’ popu lat ion s i z e ’ ,
’ y log ’ : ’ Fa l se ’

}

l i n e

vapi . plot_XY(s e s s i o n=se s s i on , stmt=popsz_by_age_as_array , p lo t_in fo=re s type)

96

age by sick population size distribution

age_sick = vapi . fuseEQ (s e s s i on , what_your_age , are_you_sick , ’
what_your_age_sess ion_ident i f ier ’ , ’ a r e_you_s ick_ses s ion_ident i f i e r ’)
age_sick_yes = vapi . f i l t e rEQ (s e s s i on , age_sick , ’
are_you_sick_response_text ’ , ’ Yes ’)

popsz_by_age = vapi . aggregate (s e s s i on , age_sick_yes , ’
what_your_age_response_text ’ , ’ pop_sz ’)

popsz_by_age_ordered = vapi . ascending (s e s s i on , popsz_by_age , ’
what_your_age_response_text ’)

popsz_by_age_as_array = vapi . bui ld_array (s e s s i on , popsz_by_age_ordered , [’
what_your_age_response_text ’ , ’ pop_sz ’])

a r r = vapi . scan (s e s s i on , popsz_by_age_as_array)

#histogram

vapip . plot_histogram (age , pop_sz , ’ age ’ , ’ s i c k populat ion s i z e ’ , ’
age_by_sick_populat ion_size_distr ibution_bar ’ , ’ age by s i c k populat ion
s i z e d i s t r i b u t i o n ’)

97

age range by gender distribution
#crea t e a t a b l e / c l a s s /rmo fo r age_bins

b ins_c la s s = vgsa . bui ld_ranges (s e s s i on , ’ age_bins ’ , range_lb=’ bin_begin ’ ,
range_ub=’ bin_end ’ , s t a r t =11, s tep =10, end=100)

bins_rmo = vapi . s e l e c t (s e s s i on , b in s_c la s s)

#jo in f a c t t a b l e wi th bins� i t w i l l group the records by age_bins

age_by_bin = vapi . fuseRange (s e s s i on , what_your_age , bins_rmo , ’
what_your_age_response_text ’ , ’ bin_begin ’ , ’ bin_end ’)

bins_by_gender = vapi . fuseEQ (s e s s i on , age_by_bin , what_your_gender , ’
what_your_age_sess ion_ident i f ier ’ , ’ what_your_gender_sess ion_ident i f ier ’)

#now you can aggrega t e by b in s

popsz_by_bins_gender = vap i l . aggregate (s e s s i on , bins_by_gender , [’ bin_begin ’ ,
’ bin_end ’ , ’ what_your_gender_response_text ’] , aggLabel=’ bin_gender_popsz ’)

popsz_by_bins_gender_ordered = vapi . ascending (s e s s i on , popsz_by_bins_gender , ’
bin_begin ’)

a r r = vapi . scan (s e s s i on , popsz_by_bins_gender_ordered)

p l o t grouped bar char t

import c o l l e c t i o n s
import matp lo t l i b . pyplot as p l t
import numpy as np
dict = c o l l e c t i o n s . OrderedDict ()
for row in ar r :

r = str (row [1]) + ’� ’ + str (row [2])
try :

dict [r] [row [3]] = row [0]
except :

dict [r] ={}
dict [r] [row [3]] = row [0]

#pr in t d i c t

range = [key for key in dict . keys ()]
male = [va l [’Male ’] i f ’Male ’ in va l else 0 for va l in dict . va lue s ()]
female = [va l [’ Female ’] i f ’ Female ’ in va l else 0 for va l in dict . va lue s ()]
N = 9
ind = np . arange (N)

the x l o c a t i o n s f o r the groups

width = 0.35

the width o f the bars

f i g , ax = p l t . subp lo t s ()

men = male r e c t s 1 = ax . bar (ind , men , width , c o l o r =(0 . 2588 , 0 . 4433 , 1 . 0))
women = female r e c t s 2 = ax . bar (ind + width , women , width , c o l o r =(1 . 0 , 0 . 5 , 0 . 6 2)

)

add some t e x t f o r l a b e l s , t i t l e and axes t i c k s

98

ax . s e t_y labe l (’ Populat ion S i z e ’)
ax . s e t_x labe l (’Age range ’)
ax . s e t_ t i t l e (’ D i s t r i bu t i on by Age and Gender ’)
ax . s e t_xt i ck s (ind + width)
ax . s e t_x t i c k l a b e l s (range)
ax . l egend ((r e c t s 1 [0] , r e c t s 2 [0]) , (’Male ’ , ’ Female ’))

def au to l abe l (r e c t s) :
at tach some t e x t l a b e l s

for r e c t in r e c t s :
he ight = r e c t . get_height ()

ax . t ex t (r e c t . get_x () + r e c t . get_width () /2 . , 1 .05⇤ height ,
’%d ’ % int (he ight) ,
ha=’ cente r ’ , va=’ bottom ’)

p l t . s a v e f i g (’ gender_by_age_populat ion_size_distr ibution . pdf ’)

99

	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Contribution

	2 WiSDM: A Crowdsourced Data Acquisition System
	2.1 Hypotheses
	2.2 Related Work
	2.3 Features
	2.4 WiSDM Workflow
	2.4.1 WiSDM Admin Interface: Build Surveys
	2.4.2 WiSDM Survey Interface: Respond To Surveys
	2.4.3 WiSDM Download Interface: Download Survey Results And Summaries
	2.4.4 WiSDM Reporting: Build Survey Reports

	2.5 Conclusion

	3 WiSDM Architecture
	3.1 Django Framework – An Introduction
	3.2 WiSDM Architecture
	3.3 How Does WiSDM Work To Fulfill User Requests
	3.4 Database Design
	3.4.1 Older Version
	3.4.2 New Version

	3.5 WiSDM Web Application Features
	3.5.1 Preamble:
	3.5.2 Branched Logic
	3.5.3 Response Download

	3.6 WiSDM API Adapter
	3.6.1 Challenges
	3.6.2 A Proposed Future Extension

	3.7 Conclusion

	4 WiSDM Application Testing
	4.1 Load Testing
	4.2 Database Testing
	4.3 Apache JMeter
	4.3.1 Installing And Launching JMeter
	4.3.2 Creating Test Plan

	4.4 Results And Analysis
	4.5 Quality Assurance
	4.6 Conclusion

	5 WiSDM: Synthetic Data Generator
	5.1 Objective
	5.2 Related Work
	5.3 Synthetic Population
	5.4 Decision Tree Algorithm
	5.4.1 Extra-Trees Classifier
	5.4.2 Complexity
	5.4.3 Data

	5.5 Design And Implementation
	5.6 Additional Usages
	5.7 Conclusion

	6 WiSDM Analytics
	6.1 Objective
	6.2 Data Modeling
	6.2.1 Survey Data Format For Analysis
	6.2.2 WiSDM Analytics Data Model
	6.2.3 Advantages

	6.3 Data Visualization
	6.3.1 Versa
	6.3.1.1 Related Work

	6.3.2 WiSDM With Versa
	6.3.3 Performance Comparison Of Versa Between Oracle And PostgreSQL
	6.3.4 Advantages Of Versa

	6.4 Conclusion

	7 Conclusions And Directions For Future Work
	Bibliography
	A Components Of WiSDM And Their Dependencies
	B Mapping From WiSDM Old Database Version To New Database Version
	C USA Disease Prevalence Survey Questions
	D WiSDM Data Visualization Code

