
Parallel Mining and Analysis of Triangles and Communities in Big
Networks

S M Arifuzzaman

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Applications

Madhav V. Marathe, Chair
Md-Abdul M. Khan, Co-chair

Lenwood S. Heath
Ali Pinar

Anil Kumar S. Vullikanti

July 22, 2016
Blacksburg, Virginia

Keywords: Network Mining, Parallel Algorithm, Triangle Counting, Community Detection, Big
Data

Copyright 2016, S M Arifuzzaman

Parallel Mining and Analysis of Triangles and Communities in Big Networks

S M Arifuzzaman

(ABSTRACT)

A network (graph) is a powerful abstraction for interactions among entities in a system. Examples
include various social, biological, collaboration, citation, and co-purchase networks. Real-world
networks are often characterized by an abundance of triangles and the existence of well-structured
communities. Thus, counting triangles and detecting communities in networks have become im-
portant algorithmic problems in network mining and analysis. In the era of big data, the network
data emerged from numerous scientific disciplines are very large. Online social networks such as
Twitter and Facebook have millions to billions of users. Such massive networks often do not fit
in the main memory of a single machine, and the existing sequential methods might take a pro-
hibitively large runtime. This motivates the need for scalable parallel algorithms for mining and
analysis.

We design MPI-based distributed-memory parallel algorithms for counting triangles and detecting
communities in big networks and present related analysis. The dissertation consists of four parts.
In Part I, we devise parallel algorithms for counting and enumerating triangles. The first algorithm
employs an overlapping partitioning scheme and novel load-balancing schemes leading to a fast
algorithm. We also design a space-efficient algorithm using non-overlapping partitioning and an
efficient communication scheme. This space efficiency allows the algorithm to work on even larger
networks. We then present our third parallel algorithm based on dynamic load balancing. All these
algorithms work on big networks, scale to a large number of processors, and demonstrate very
good speedups. An important property, very related to triangles, of many real-world networks is
high transitivity, which states that two nodes having common neighbors tend to become neighbors
themselves. In Part II, we characterize networks by quantifying the number of common neighbors
and demonstrate its relationship to community structure of networks. In Part III, we design parallel
algorithms for detecting communities in big networks. We propose efficient load balancing and
communication approaches, which lead to fast and scalable algorithms. Finally, in Part IV, we
present scalable parallel algorithms for a useful graph preprocessing problem– converting edge
list to adjacency list. We present non-trivial parallelization with efficient HPC-based techniques
leading to fast and space-efficient algorithms.

Dedication

Dedicated to my parents Abdur Rahman Sheikh and Aleya Begum, for their endless love,
encouragement, and support.

iii

Acknowledgments

I have enjoyed an exciting, humbling, and enriching journey throughout my years as a Ph.D. stu-
dent at Virginia Tech. I am blessed to have had many wonderful individuals in my academic
and personal circles, who have offered me guidance, support, and encouragement, and helped me
complete this dissertation. I would like to sincerely thank them all.

First and foremost, I would like to express my deepest appreciation to my advisors Drs. Madhav
Marathe and Maleq Khan, for their continuous guidance, effective encouragement, and valuable
support throughout my graduate study. I am grateful to Dr. Madhav Marathe for taking time from
his busy schedule to provide me with constructive suggestions about research problems, presen-
tation skill, and dissertation document. I also thank him for his advice regarding my academic
progress and career aspiration. He always made himself available to discuss any problems and
help sort them out. I am also grateful to him for offering me the opportunity to work in his lab
when I joined the Ph.D. program at Virginia Tech.

I would like to specially thank Dr. Maleq Khan for his enthusiastic and active participation in
developing the ideas in this dissertation. He has supported me in every aspect of my Ph.D. study,
from advising for coursework to helping me build an effective research habit. He has always been
accessible whenever I needed his advice. He has spent a substantial amount of time, selflessly,
to guide this dissertation. I also thank him for his invaluable guidance in writing our research
papers, which helped me improve my writing skill. In addition to guiding my research, Dr. Maleq
Khan cared for my personal and professional growth with great thoughtfulness. I have been very
fortunate to have an excellent advisor and mentor like him.

I would like to thank other members of my dissertation committee, Drs. Lenwood Heath, Ali Pinar,
and Anil Vullikanti, for their valuable feedback to improve the dissertation. They have always
been accessible to discuss any problems and offer suggestions. I would like to thank Dr. Lenwood
Heath for carefully reviewing the draft of this dissertation, which helped greatly in improving
the presentation of the dissertation. He has also provided valuable advice regarding the future
directions of my research. I am also indebted to Dr. Ali Pinar for mentoring me during my summer
internship at Sandia National Laboratories and actively guiding me for a part of this dissertation.
I have benefited a lot from his scholarly comments and instructions. I am immensely inspired
by his knowledge and wisdom in the subject area of this research. I am grateful to Dr. Anil
Vullikanti for offering me useful insights about alternate technical approaches for several problems.
He has always provided me encouraging remarks, thoughtful follow-up comments, and valuable
suggestions for future work.

iv

I am specially thankful to Drs. Madhav Marathe, Maleq Khan, and Anil Vullikanti for their advice
and assistance during my job search. I would not have been able to secure an academic position
without the kind support from them. I appreciate their time for writing recommendation letters and
offering me practical guidance. I am specially grateful to Dr. Maleq Khan for his feedback on my
application documents and presentation slides.

I also thank the anonymous referees of the papers [7, 8, 9, 10] containing the results of this disser-
tation published in various conferences. Their suggestions and detailed comments helped greatly
in improving the presentation of the results.

My heartfelt gratitude goes to my wonderful family for their love, blessing, and support throughout
my life, and I cannot thank them enough. I would like to particularly mention my parents, who
will be the happiest persons in the world at the completion of this dissertation. It is my father,
a teacher by profession, who guided me in my early stages of education and has always inspired
me to dream big. It is my mother from whom I have learned to practice patience and resilience in
tough times. Thank you, Abbu and Ammu.

I would like to thank my labmates in the Network Dynamics and Simulation Science Lab. I ben-
efited greatly from the discussions and interactions with my labmates. I am also grateful to the
Bangladeshi community at Virginia Tech for their inspiration and friendship. I am equally thank-
ful to the Virginia Tech (and Blacksburg) community for making my stay here a pleasant one. I
also thank all my friends at home and abroad, who always believe in me and celebrate my success
with a big smile.

v

Contents

Chapter 1 Introduction 1

1.1 Network Mining and Analysis . 1

1.2 Research Problems . 2

1.3 Organization and Contributions . 3

I Counting and Listing Triangles in Big Networks 6
Chapter 2 Introduction to Counting Triangles 7

2.1 Related Work . 7

2.2 Our Contributions . 8

2.3 Preliminaries . 9

Chapter 3 PATRIC: An Efficient Parallel Algorithm for Counting Triangles in Mas-
sive Networks 12

3.1 Introduction . 12

3.2 Sequential Algorithms . 13

3.2.1 Optimal Node Ordering . 16

3.3 The Parallel Algorithm . 20

3.3.1 Overview of the Algorithm . 20

3.3.2 Partitioning the Network . 20

3.3.3 Counting Triangles . 21

3.3.4 Load Balancing in PATRIC . 22

3.3.5 Performance Analysis . 27

3.4 A Sparsification-based Parallel Approximation Algorithm 30

3.5 Conclusion . 33

vi

Chapter 4 A Space-efficient Parallel Algorithm for Counting the Exact Number of
Triangles in Massive Networks 34

4.1 Introduction . 34

4.2 A space-efficient Parallel Algorithm for Counting Triangles 36

4.2.1 Overview of the Algorithm. 36

4.2.2 An Efficient Communication Approach 36

4.2.3 Pseudocode for Counting Triangles. 38

4.2.4 Partitioning and Load Balancing . 38

4.2.5 Correctness of the Algorithm . 41

4.2.6 Analysis of the Number of Messages . 41

4.3 Experimental Evaluation . 42

4.4 Sparsification-based Parallel Approximation Algorithms 45

4.5 Conclusion . 46

Chapter 5 A Fast Parallel Algorithm for Counting Triangles in Networks using Dy-
namic Load Balancing 47

5.1 Introduction . 47

5.2 Comparison with Related Parallel Algorithms . 48

5.3 A Fast Parallel Algorithm with Dynamic Load Balancing 50

5.3.1 Overview of the Algorithm . 50

5.3.2 An Efficient Dynamic Load Balancing Scheme 51

5.3.3 Counting Triangles . 52

5.3.4 Correctness of the Algorithm . 52

5.3.5 Performance . 53

5.4 Conclusion . 58

Chapter 6 Applications of Our Algorithms for Counting Triangles 59

6.1 Listing Triangles in Graphs . 59

6.2 Computing Clustering Coefficient of Nodes . 60

6.3 Other Applications for Counting Triangles . 61

vii

II Characterizing Networks Based on Common Neighbor Statistics 64
Chapter 7 How Much Common Neighbors Can Reveal about Networks 65

7.1 Introduction . 65

7.2 Preliminaries . 67

7.3 Computing Jaccard Index and Transition Plots . 68

7.3.1 Computing Jaccard Index . 68

7.3.2 Transition Plots . 69

7.3.3 Transition Plots for Variety of Networks 70

7.3.4 An Alternative Justification of the Threshold 71

7.4 Other Implications of Threshold Behavior . 71

7.4.1 Contrasting Bi-partitions . 72

7.4.2 Random Network Models and the Threshold Behavior 72

7.5 Common Neighbors and Communities . 77

7.5.1 Common Neighbor Distribution in Networks 77

7.5.2 Clustering Coefficients, Community Size and Degree Distribution 77

7.6 Characterizing Networks Based on Jaccard Statistics 80

7.6.1 Predicting Classes from Jaccard Statistics 80

7.6.2 Regression Analysis on Community Sizes and Jaccard Statistics 82

7.7 Conclusion . 83

III Community Detection in Big Networks 85
Chapter 8 PASCL: Parallel Algorithms for Scalable Community Detection in Large
Networks 86

8.1 Introduction . 86

8.1.1 Background of Community Detection . 87

8.1.2 Challenges with Massive Networks . 88

8.2 Related Work on Parallel Algorithms . 88

8.3 Fast and Scalable Parallel Algorithms for Community Detection 89

8.3.1 Sequential Louvain Algorithm . 89

8.3.2 Overview of Our Parallel Algorithm . 90

viii

8.3.3 Partitioning . 91

8.3.4 Local Computing of Community Labels 91

8.3.5 Renumbering Community Labels . 92

8.3.6 Constructing Supergraph . 93

8.4 Label Propagation Algorithm . 94

8.5 Evaluation of Our Parallel Algorithms . 96

8.5.1 Load Balancing and Scalability . 96

8.5.2 Trading off the Quality and Speed of our Community Detection Algorithms 97

8.5.3 Parallel Sparsification Algorithm . 98

8.5.4 Comparison with Other Algorithms . 99

8.6 Conclusion . 99

IV Converting Edge List to Adjacency List 100
Chapter 9 Fast Parallel Conversion of Edge List to Adjacency List for Large-Scale
Graphs 101

9.1 Introduction . 101

9.2 Preliminaries and Background . 103

9.2.1 Basic Definitions . 103

9.2.2 A Sequential Algorithm . 103

9.3 The Parallel Algorithm . 104

9.3.1 Overview of the Algorithm . 104

9.3.2 (Phase 1) Local Processing . 105

9.3.3 (Phase 2) Merging Local Adjacency Lists 105

9.3.4 Partitioning and Load Balancing . 108

9.4 Performance Analysis . 111

9.4.1 Load Distribution . 112

9.4.2 Strong Scaling . 112

9.4.3 Comparison between Message-based and External-memory Merging . . . 113

9.4.4 Weak Scaling . 113

9.5 Conclusion . 113

ix

Chapter 10 General Conclusion 115

Bibliography 116

x

List of Figures

3.1 Algorithm NodeIterator++, where ≺ is the degree based ordering of the nodes
defined in Equation 3.1. 14

3.2 Algorithm NodeIteratorN, a modification of NodeIterator++. 14

3.3 Comparison of runtime of sequential triangle counting (NodeIteratorN) with four
distinct orderings of nodes. For each network, we compute the percentage of run-
time with respect to the maximum runtime given by any of these orderings. In all
cases, the degree based ordering gives the least runtime. Note that we compute the
average runtime from 25 independent runs for the random ordering. 17

3.4 The main steps of our fast parallel algorithm. 20

3.5 Memory usage with optimized and non-optimized data storing. 21

3.6 Algorithm executed by processor Pi to count triangles in Gi(Vi, Ei). 22

3.7 A network with a skewed degree distribution: dv0 = n− 1, dvi 6=0
= 3. 23

3.8 Speedup with equal number of core nodes in all processors. 23

3.9 Computing load of individual processors (equal number of core nodes). 24

3.10 Load balancing cost for LiveJournal network with different schemes. 24

3.11 Load distribution among processors for LiveJournal, Miami and Twitter networks
by different schemes. 27

3.12 Speedup gained from different load balancing schemes for LiveJournal, Miami and
Twitter networks. 28

3.13 Weak scaling on PA(P/10× 1M, 50) networks. 28

3.14 Improved scalability with increased network size. 30

3.15 Two triangles (v, u, w) and (v′, u, w) with an overlapping edge. 31

3.16 Counting the number of triangles in a network with our parallel sparsification method. 31

4.1 The procedure executed by Pi after receiving message 〈data,X〉 from some Pj . . . 38

xi

4.2 An algorithm for counting triangles using surrogate approach. Each processor
Pi executes Line 1-22. After that, they are synchronized, and the aggregation is
performed (Line 24-25). 39

4.3 Runtime reported by various algorithms for counting triangles in Twitter network. 43

4.4 Speedup factors of our algorithm with both direct and surrogate approaches. 43

4.5 Improved scalability of our algorithm with increasing network size. 44

4.6 Comparison of the cost function f(v) estimated for our algorithm with non-overlapping
partitioning and the best function g(v) in Chapter 3. 44

4.7 Weak scaling of our algorithm, experiment performed on PA(t/10 ∗ 1M, 50) net-
works, t = number of processors used. 45

5.1 A procedure executed by processor Pi to count triangles corresponding to the task
〈v, t〉. 53

5.2 An algorithm for counting triangles with dynamic load balancing. 54

5.3 Speedup factors of our algorithm on Miami, LiveJournal and web-BerkStan net-
works with both f(v) = 1 and f(v) = dv cost functions. 55

5.4 Runtime required by processors (rankwise) with both static tasks and dynamic
adjustment of task granularity. 55

5.5 Our algorithm with dynamic load balancing shows improved scalability with in-
creasing network size. Further, this algorithm achieves higher speedups than PATRIC
(in Chapter 3). 56

5.6 Weak scaling of our algorithm. We perform this experiment on PA(t/10 ∗ 1M, 50)
networks, t = number of processors used. 56

5.7 Comparison of speedup factors of our algorithm with [8] and [9] on Miami and
LiveJournal networks. 57

6.1 Listing triangles after performing the set intersection operation for counting triangles. 59

6.2 Tracking local counts by processor Pi. Each triangle (v, u, w) is detected by the
triangle listing algorithm shown in Figure 6.1. 61

6.3 Aggregating local counts for v ∈ V c
i by Pi. 61

6.4 Strong scaling of clustering coefficient algorithm with both AOP and ANOP on
LiveJournal and Twitter networks. 62

6.5 Weak scaling of the algorithms for computing clustering coefficient (CC) and
counting triangles (TC). 62

7.1 Algorithm for computing all-pair Jaccard indices with wedge enumeration. Pairs
with a Jaccard index of 0 are omitted. 68

xii

7.2 Transition curve for Jaccard indices for Astrophysics collaboration network. . . . 69

7.3 Transition curve for Jaccard indices on social-network-like graphs. 70

7.4 Transition curve for Jaccard indices on non social-network-like graphs. 70

7.5 Change of the prediction performance in terms of F1 scores by varying the thresh-
old of Jaccard indices on networks with social structures. 72

7.6 Degree distribution of two contrasting partitions– partitions with weak and strong
edges, respectively, with strength determined by Jaccard index threshold=0.1. . . . 73

7.7 Degree distribution of two contrasting partitions– partitions with weak and strong
edges, respectively, with strength determined by Jaccard index threshold=0.1. . . . 74

7.8 Jaccard transition curve of AstroPhysics Network. 75

7.9 Jaccard transition curve of the BTER graph constructed from the same degree dis-
tribution and degree-wise CC of AstroPhysics Network. 75

7.10 Jaccard transition curve of ER graph Gnp(1k, 10k). 75

7.11 Edge probability p(k) = 1− (1− c)k with varying c. 75

7.12 Edge probability p(k) = 1/(1 + e−k), a sigmoid function. 75

7.13 Edge probability p(k) = 1/(1 + e−k) for positive k. 75

7.14 Jaccard transition curves for networks with 1000 nodes and 10000 edges generated
with p(k) = 1 − (1 − c)k and varying c, where c is the input average clustering
coefficient (CC-in). 76

7.15 Average CC of the generated networks (CC-out) as compared to the input value
(CC-in) of c in the function 1− (1− c)k. 76

7.16 Average CC-out in the generated network with varying the multiple a in p(k) =
1− (1− c)ak and CC-in=0.5. 76

7.17 Average CC-out with varying number of edges in the generated network with
p(k) = 1 − (1 − c)k and CC-in=0.5. Larger graph with same setting has larger
average CC. 76

7.18 Jaccard transition curve for the network generated with P (k) = 1/(1 + e−4k)
(sigmoid function). 76

7.19 Average CC-out with varying the constant a in the sigmoid function P (k) = 1/(1+
e−ak). 76

7.20 Wedge distribution (equivalently, common neighbors distribution) curves for net-
works with communities. 77

7.21 Wedge distribution curves for a network with partial community structure (in a)
and for networks without communities (in b and c). 78

xiii

7.22 Jaccard transition curve for the CL network generated from the degree distribution
of AstroPhysics network. 80

7.23 Wedge distribution for the CL network generated from the degree distribution of
AstroPhysics network.. 80

7.24 The predicted versus actual plot (left) and the residual by predicted plot (right)
of the regression analysis on a set of LFR networks. These networks have 10000
nodes, an average degree of 40, community sizes varying from 50 to 500, and
mixing parameter 0.2. 83

7.25 Mixing parameter versus the accuracy with our regression model with LFR networks.. 83

7.26 Regression diagnostic plots for our analysis on real-world networks: the predicted
versus actual plot (left) and the residual by predicted plot (right). 84

8.1 Pseudocode of the sequential Louvain algorithm. C[v] is the community label of
node v. The quantity4mod(v, C[v]→ C[u]) denotes the difference in modularity
when node v is moved from C[v] to a neighboring community C[u]. 90

8.2 Pseudocode for our parallel Louvain algorithm. 95

8.3 Laod distribution for Miami network with equal number of nodes and edges per
processors. 96

8.4 Laod distribution for LiveJournal network with equal number of nodes and edges
per processors. 96

8.5 Speedups of our parallel Louvain algorithm on Miami and LiveJournal networks. . 97

8.6 Global sparsification of a network in parallel. 98

8.7 Local sparsification of a network in parallel. 99

9.1 The edge list and adjacency list representations of an example graph with 5 nodes
and 6 edges. 103

9.2 Sequential algorithm for converting edge list to adjacency list. 104

9.3 Algorithm for performing Phase 1 computation. 105

9.4 Parallel merging with the binary tree scheme (P = 7). Numbers in the circle
denote rank of the processors. 106

9.5 Parallel algorithm for merging local adjacency lists to construct final adjacency
lists Nv. A message, denoted by < v,N i

v >, refers to local adjacency lists of v in
processor i. 107

9.6 Load distribution among processors for LiveJournal, Miami and Twitter before
applying the load balancing scheme. 108

9.7 Parallel algorithm executed by each processor i for computing f(v) = dv. 109

xiv

9.8 Load distribution among processors for LiveJournal, Miami and Twitter networks
by different schemes. 111

9.9 Strong scaling of our algorithm on LiveJournal, Miami and Twitter networks with
and without load balancing scheme. Computation of speedup factors includes the
cost for load balancing. 112

9.10 Weak scaling of our parallel algorithm. For this experiment we use networks
PA(x/10× 1M, 20) for x processors. 114

xv

List of Tables

2.1 Datasets used in the experimental evaluation of our algorithms. 10

3.1 Running time for the two sequential algorithms for counting triangles, NodeItera-
tor++ and NodeIteratorN. 16

3.2 Cost functions f(.) for our load balancing schemes. 25

3.3 Runtime performance of PATRIC using 200 processors and the algorithm in [72]. . 29

3.4 Accuracy of our parallel sparsification algorithm and DOULION [76] with q =
0.1. Our parallel algorithm was run with 100 processors. Variance, max error and
average error are calculated from 25 independent runs for each of the algorithms. . 32

3.5 Comparison of our parallel sparsification algorithm and DOULION [76] on Live-
Journal network with 100 processors. 32

4.1 Memory usage of our algorithms (size of the largest partition) with both overlap-
ping and non-overlapping partitioning. Number of partitions used is 100. 35

4.2 Number of messages exchanged in Direct and Surrogate approaches. 42

4.3 Runtime performance of our algorithms AOP and ANOP. We used 200 processors
for this experiment. We showed both direct and surrogate approaches for ANOP. . 43

4.4 Accuracy of our parallel sparsification algorithm and DOULION [76] with q =
0.1. Our parallel algorithm was run with 100 processors. Variance, max error and
average error are calculated from 25 independent runs for each of the algorithms.
The best values for each attribute are marked as bold. 45

4.5 Comparison of accuracy between our parallel sparsification algorithms and DOULION
on one realistic synthetic and three real-world networks with 100 processors. The
best values for each q are marked as bold. 46

5.1 Memory required for storing networks along with their average and maximum de-
gree statistics. 49

5.2 Trade-off between space and runtime efficiency of algorithms in [8, 9] and this
chapter. 50

xvi

5.3 Runtime performance of our algorithm and algorithm [8]. 56

6.1 Comparison of the number of triangles (4) and normalized triangle count (NTC)
in various networks. We used both artificially generated and real-world networks. . 63

7.1 Datasets used in our experiments. 67

7.2 Jaccard indices that achieve the maximum F1 scores for several Facebook networks. 72

7.3 Accuracies for predicting edges based on the optimum Jaccard index Jtr achieved
from the training data in Table 7.2. 73

7.4 Comparison of m, the number of triangles 4, maximum degree dmax, and aver-
age degree davg in the network induced by weak edges G<t=0.1 and the Chung-Lu
network Gcl constructed with the same degree distribution as G<t=0.1. The weak
edges are the edges with Jaccard indices < 0.1. 73

7.5 Comparison of m, the number of triangles4, maximum degree dmax, and average
degree davg in the networkG<t=0.1 induced by weak edges and the networkG>t=0.1

induced by strong edges. The weak and strong edges are determined based on the
Jaccard index < 0.1. 74

7.6 Class assignments according to the largest community in the networks. 81

7.7 Class assignments according to the modularity values obtained for the networks. . . 81

8.1 Comparison of modularity and runtime between parallel LPA and Louvain Algo-
rithm. 97

8.2 Modularity and runtime with various sparsification method on different networks. . 99

9.1 Number of messages received in practice compared to the theoretical bounds. This
results report maxiMi with P = 50. 110

9.2 Comparison of external-memory (EXT) and message-based (MSG) merging (us-
ing 50 processors). 113

xvii

Chapter 1

Introduction

Data from diverse fields are modeled as networks (graphs) nowadays because of their convenience
in representing underlying relations and structures [23]. Some significant examples are the Web
[18], various social networks such as Facebook and Twitter [41], collaboration and co-authorship
networks [50], infrastructure networks such as road networks [69], and many forms of biological
networks [32]. Networks are studied across many fields of science including physics [25], biology
[20, 36], finance [6], economics, and social science [11, 47, 78]. One rich aspect of such study is
network mining and analysis. The goal is to find structures or patterns in networks and reveal prop-
erties that govern the construction and evolution of these networks. Thus, mining and analyzing
networks help researchers and practitioners to understand and improve the corresponding systems.

With the unprecedented advancement of computing and data technology, we are deluged with
massive data from diverse areas such as business and finance [6], computational biology [20], and
social science [11]. In the era of big data, the network data emerged from those areas are very large.
The Web has over 1 trillion web pages. Most social networks, such as Twitter and Facebook, have
millions to billions of users [22]. The emergence of such big data poses non-trivial challenges
for network analysts. These networks often do not fit in the main memory of a single machine.
Further, the existing sequential algorithms might take a prohibitively large runtime to process such
networks. To analyze the large quantities of data represented by massive networks, space-efficient
and scalable parallel algorithms [52, 72] are necessary.

1.1 Network Mining and Analysis

There are several prominent areas of interest pertaining to network mining. First, find structures
and properties associated with real-world networks [15, 25, 33, 39, 47, 49, 65, 75, 77]: these
graphs are often characterized by an abundance of triangles and the existence of well-structured
communities. Second, discover interesting or frequent subgraphs [21, 48]: some research work
along this line is directed to identifying candidate subgraphs in a computationally efficient way.
Third, find general statistics of networks [13, 18, 23, 51]: researchers have been interested in de-
gree distribution, diameter, or eigenvalues with a focus on designing efficient algorithms. Last,

1

mine time-evolving networks [43, 45]: time-evolving networks arise in multiple application areas.
These networks characterize information flow in communication networks [35], phases of pathway
switching in gene interaction networks [74], or a changing collaboration network of a field over
years [50]. One prominent direction is to explore how various properties or metrics of such net-
works change over time [45]. In this dissertation, we focus on the first of the above areas: mining
and analyzing static real-world networks, mostly social networks. We are mainly interested in tri-
angles and communities from an algorithmic and analytic perspective. To deal with the challenges
emerged from big data, we design parallel algorithms and high performance computing techniques,
which are scalable and space-efficient.

1.2 Research Problems

We address the following research problems pertaining to mining and analysis of big real-world
networks. Efficient solutions to these problems are crucial to understanding interesting properties
and revealing useful insights about such networks.

Counting and Listing Triangles in Big Networks. Counting triangles [15, 19, 38, 53] in a net-
work is an important algorithmic problem arising in the study of complex networks. An efficient
solution to the triangle counting problem can also lead to efficient solutions for many other graph
theoretic problems, e.g., computation of clustering coefficient, transitivity, and triangular connec-
tivity [22, 23, 48] in networks. The existence of triangles and the resulting high clustering coeffi-
cient in a social network reflect the common theory of social science that people who have common
friends tend to be friends themselves [47]. Further, triangle counting has important applications in
network science and database. Recently, it has been used to detect spamming activity and assess
content quality in social networks [15], to uncover the thematic structure of the web [30], and query
planning optimization in databases [12]. In this dissertation, we address the problem of counting
triangles and computing clustering coefficients and present efficient parallel algorithms and related
analysis.

Characterizing Networks Based on Common Neighbor Statistics. Characterizing real-world
social and information networks based on graph theoretic metrics or properties has been of growing
interest [39, 43, 44, 49]. Among the most explored metrics are degree distribution, number of
triangles, and clustering coefficients. An important property related to triangles, of many real-
world networks, is high transitivity [49], which states that two nodes (vertices) having common
neighbors tend to become neighbors themselves [47]. However, there is no quantifiable analysis
in this regard. Specifically, we do not know how much the number of common neighbors can
tell about those nodes becoming neighbors. Further, there has been an interest in learning how
common neighbor statistics relate to community structure of networks [33]. In this dissertation,
we characterize a network based on a quantification of common neighbors of pairs of nodes. We
also demonstrate how common neighbor statistics relate to community structures of networks.

Community Detection in Big Networks. Complex systems are organized in clusters or commu-
nities [16, 24, 49], each having a distinct role or function. In the corresponding network represen-
tation, each functional unit appears as a dense set of nodes having higher connection inside the set

2

than outside. Finding communities may reveal the organizational information of a complex system.
For instance, a community is often interpreted as a social clique or group in contact and friendship
networks, a functional unit in biological networks, or a scientific discipline in citation networks
[46]. Thus detecting communities in social and information networks has become an interesting
and fundamental problem in network science [52, 77]. In this dissertation, we deal with the prob-
lem of scalable community detection in big networks and design efficient parallel algorithms and
perform useful analysis pertaining to the speed and quality of such detection.

Network Data Preprocessing Problem– Converting Edge List to Adjacency List. In most
cases, network data are represented as lists of edges (edge list). However, many graph algorithms
work efficiently when information of the adjacent nodes (adjacency list) for each node is readily
available. For example, computing shortest path, breadth-first search, and depth-first search are ex-
ecuted by exploring the neighbors (adjacent nodes) of a node. Although the conversion from edge
list to adjacency list is not complicated for small networks, such conversion becomes challenging
for the emerging large-scale networks consisting of billions of nodes and edges. In this disserta-
tion, we present scalable parallel algorithms for this network preprocessing problem by designing
efficient high performance computing techniques.

1.3 Organization and Contributions

The dissertation is organized into ten chapters. We present an introduction to this dissertation in
Chapter 1 (the ongoing chapter). Our main technical contributions for the aforementioned four
research problems are organized into four parts, each containing one or more chapters.

In Part I, we devise distributed memory parallel algorithms for counting and listing triangles. We
also present pertinent theoretical analysis and demonstrate applications for our parallel algorithms.
Chapter 2 to 6 constitute Part I of this dissertation.

In Chapter 2, we provide an introduction to the research efforts for solving the problem of counting
triangles. We also introduce notations, datasets, computational model, and experimental setup for
Part I.

In Chapter 3, we present our first parallel algorithm for counting triangles in massive networks.
The algorithm employs an overlapping partitioning scheme and does not require any inter-processor
communication, leading to a fast algorithm. We present and analyze several schemes for balancing
load among processors for the triangle counting problem. These schemes achieve very good load
balancing. We also show how our parallel algorithm can adapt an existing edge sparsification tech-
nique to approximate the number of triangles with very high accuracy. Moreover, we show that
a simple modification of a state-of-the-art sequential algorithm for counting triangles improves
both running time and space requirement by significant factors. We use this modified sequential
algorithm as a basis for our parallel algorithm.

In Chapter 4, we present a space-efficient parallel algorithm for counting the exact number of
triangles in massive networks. The algorithm divides the network into non-overlapping partitions.
Our results demonstrate significant space saving over the algorithm with overlapping partitions.

3

This space efficiency allows the algorithm to deal with larger networks. We present a novel ap-
proach that reduces communication cost drastically leading to both a space- and runtime-efficient
algorithm. Our adaptation of a parallel partitioning scheme by computing a novel weight function
adds further to the efficiency of the algorithm.

In Chapter 5, we present another efficient parallel algorithm for counting triangles in large net-
works. We consider the case where the main memory of each compute node is large enough to
contain the entire network. We observe that, for such a case, computation load can be balanced
dynamically and present a dynamic load balancing scheme that improves the performance of the
algorithm significantly. Our algorithm demonstrates very good speedups and scales to a large num-
ber of processors. Our results demonstrate that the algorithm is significantly faster than the related
algorithms with static partitioning.

In Chapter 6, we provide several applications of our algorithms for counting triangles presented in
earlier chapters. Among others, we present how our algorithms can be used to enumerate triangles
and compute clustering coefficients of nodes. In a sequential setting, an algorithm for counting
triangles can be directly used for computing clustering coefficients of the nodes by simply keeping
the counts of triangles for each node individually. However, in a distributed-memory parallel
system, combining the counts from all processors for all nodes poses another level of difficulty.
We show how our algorithm for triangle counting can be used to compute clustering coefficients
in parallel.

In Part II, we characterize networks by quantifying the number of common neighbors and demon-
strate the relationship with other network properties. In Chapter 7, among others, we answer
the following questions: how much does the number of common neighbors tell about forming an
edge between two nodes? How do common neighbor statistics relate to community structure of
networks? Based on the Jaccard indices of edges, we observe that there is an interesting threshold
behavior of two nodes connected by an edge in the social and information networks we examined.
We present various analyses to reveal how common neighbor statistics (represented by Jaccard
indices) relate to global properties or features of networks. Finally, we demonstrate how such
statistics relate to community structure of networks.

In Part III, we devise distributed memory parallel algorithms for detecting communities in big
networks. These algorithms are based on one of the best sequential algorithms in the literature,
namely, the Louvain algorithm. We present our parallel algorithms in Chapter 8. Although
these algorithms are based on an efficient sequential method in literature, its parallelization for
distributed-memory systems poses non-trivial challenges. We propose efficient load balancing and
communication approaches to address those issues. Our parallel algorithms work on large graphs
and scale to a large number of processors. Finally, we also demonstrate how our parallel algorithms
can be adapted to come up with even faster computations by incorporating edge sparsification tech-
niques.

In Part IV, we address the network preprocessing problem of converting edge list to adjacency
list. We present efficient MPI-based distributed memory parallel algorithms for this problem in
Chapter 9. To address the critical load balancing issue, we present a parallel load balancing
scheme that improves both time and space efficiency significantly. Our fast parallel algorithm
works on massive graphs, achieves good speedups, and scales to a large number of processors.

4

We present the concluding remarks of this dissertation in Chapter 10.

5

Part I

Counting and Listing Triangles in Big
Networks

6

Chapter 2

Introduction to Counting Triangles

Counting triangles in a Network is a fundamental and important algorithmic problem in network
analysis, and its solution can be used in solving many other problems such as the computation of
clustering coefficient, transitivity, and triangular connectivity [22, 48]. Existence of triangles and
the resulting high clustering coefficient in a social network reflect some common theories of social
science, e.g., homophily, where people become friends with those similar to themselves, and tri-
adic closure, where people who have common friends tend to be friends themselves [47]. Further,
triangle counting has important applications in network mining such as detecting spamming activ-
ity and assessing content quality in social networks [15], uncovering the thematic structure of the
Web [30], query planning optimization in databases [12], and detecting communities or clusters in
social and information networks [57].

2.1 Related Work

Counting triangles and related problems such as computing clustering coefficients have a rich
history [4, 34, 42, 55, 65, 68, 72, 76]. Despite the fairly large volume of work addressing this prob-
lem, only recently has attention been given to the problems associated with big networks. Several
techniques can be employed to deal with such graphs: streaming algorithms [15, 38, 73], sparsi-
fication based algorithms [67, 76, 80], external-memory algorithms [22], and parallel algorithms
[40, 72, 73]. The streaming and sparsification based algorithms are approximation algorithms.
Note that approximation algorithms provide an overall (global) estimate of the number of trian-
gles in the graph, which might not be used to count triangles incident on individual nodes (local
triangles) with reasonable accuracy. Thus certain local patterns such as local clustering coefficient
distribution can not be computed with approximation algorithms. Exact algorithms are necessary
to discover such local patterns. External memory algorithms can provide exact solutions, how-
ever they can be very I/O intensive leading to a large runtime. Efficient parallel algorithms can
solve the problem of a large runtime by distributing computing tasks to multiple processors. Over
the last couple of years, several parallel algorithms, both shared memory and distributed memory
(MapReduce or MPI) based, have been proposed.

7

A shared memory parallel algorithm is proposed in [73] for counting triangles in a streaming set-
ting. The algorithm provides approximate counts. The paper reports scalability using only 12
cores. Two other shared memory algorithms have been presented recently in [60, 68]: the reported
speedups with the first algorithm vary between 17 and 50 with 64 cores. The second paper reports
speedups using only 32 cores, and the obtained speedups are due to both approximation and par-
allelization. Although these algorithms are useful, shared memory systems with a large number of
processors, and at the same time sufficiently large memory per processor, are not widely available.
Further, the overhead for locking and synchronization mechanism required for concurrent read
and write access to shared data might restrict their scalability. A GPU-based parallel algorithm is
proposed recently in [34], which achieves a speedup of only 32 with 2880 streaming processors.

There exist several algorithms based on the MapReduce framework. In [72], two parallel algo-
rithms for exact triangle counting using the MapReduce framework are presented. The first al-
gorithm generates huge volumes of intermediate data, which are all possible 2-paths centered at
each node. Shuffling and regrouping these 2-paths require a significantly large amount of time and
memory. The second algorithm suffers from redundant counting of triangles. An improvement of
the second algorithm is given in a very recent paper [54]. Although this algorithm reduces the re-
dundant counting to some extent, the redundancy is not entirely eliminated. In fact, for p partitions,
the algorithm over-counts (p-1 times) triangles whose nodes lie in the same partition. In another re-
cent work [55], Park et al. propose a randomized MapReduce algorithm for triangle enumeration,
which gives an approximate count. Another MapReduce based parallelization of a wedge-based
sampling technique [67] is proposed in [40], which is also an approximation algorithm.

The MapReduce framework provides several advantages such as fault tolerance, abstraction of
parallel computing mechanisms, and ease of developing a quick prototype or program. However,
the overhead for doing so results in a larger runtime. On the other hand, MPI-based systems
provide the advantages of defining and controlling parallelism from a granular level, implementing
application specific optimizations such as load balancing, memory, and message optimization.

2.2 Our Contributions

In the next three chapters, we present MPI-based parallel algorithms that count the exact number
of triangles. We also present related analysis and demonstrate the applicability of these algorithms.
We also show how these algorithms can be used for listing all triangles in networks and adapted
for designing parallel approximation algorithms. The contributions of Part I of this dissertation
are summarized below.

i. A fast parallel algorithm with overlapping partitioning (Chapter 3): We propose an MPI
based parallel algorithm that employs an overlapping partitioning scheme and a novel load bal-
ancing scheme. The overlapping partitions eliminate the need for message exchanges leading to
a fast algorithm. The algorithm scales almost linearly with the number of processors, and is able
to process a network with 1 billion nodes and 10 billion edges in 16 minutes. To the best of
our knowledge, this is the first MPI based parallel algorithm in literature for counting triangles in
massive networks.

8

ii. A space efficient parallel algorithm with non-overlapping partitioning (Chapter 4): We
present a space-efficient MPI based parallel algorithm which divides the network into non-overlapping
subgraphs and achieves a significant space efficiency over the first algorithm. This algorithm re-
quires inter-processor communications to count a certain type of triangles. However, we present
a novel approach that reduces communication cost drastically without requiring additional space,
which leads to both a space- and runtime-efficient algorithm. Our adaptation of a parallel par-
titioning scheme by computing a novel cost function offers additional runtime efficiency to the
algorithm.

iii. Sequential algorithm and node ordering (Chapter 3): We show, both theoretically and
experimentally, how a simple modification of a state-of-the-art sequential algorithm for counting
triangles improves its performance. We use this modified algorithm in the development of our
parallel algorithms. We also present a proof of the optimal node ordering that minimizes the
computational cost of this sequential algorithm.

iv. Parallel approximation using sparsification technique (Chapter 3 and 4): Although we
present algorithms for counting the exact number of triangles in massive graphs, our algorithm can
be used for approximate counting in conjunction with an edge sparsification technique [76]. We
show how this technique can be adapted to our parallel algorithms and that our parallel sparsifica-
tion improves the accuracy of the approximation over the sequential sparsification [76].

v. A fast parallel algorithm with dynamic load balancing (Chapter 5): We consider the case
where the main memory of each compute node is large enough to contain the entire graph. We
observe that, for such a case, computation load can be balanced dynamically and present a dy-
namic load balancing scheme that improves the performance of our algorithm significantly. This
algorithm demonstrates good speedups and scales to a large number of processors. Our results
demonstrate that the algorithm is significantly faster than the related algorithms with static parti-
tioning.

vi. Parallel computation of clustering coefficients (Chapter 6): Computing clustering coeffi-
cients of nodes requires the count of triangles incident on each node of a network. In a distributed-
memory parallel system, combining the counts from all processors for all nodes poses another
level of difficulty. We show how our algorithm for triangle counting can be used to compute clus-
tering coefficients in parallel. We also present how our parallel algorithms can be used to list or
enumerate all triangles in a network.

2.3 Preliminaries

Below are the notations, definitions, datasets, and experimental setup used in this part.

Basic definitions. We denote a network (graph) by G(V,E), where V and E are the sets of
nodes (vertices) and edges, respectively, with m = |E| edges and n = |V | nodes labeled as
0, 1, 2, . . . , n − 1. We assume that the network is undirected. If (u, v) ∈ E, we say u and v are
neighbors of each other. The set of all neighbors of v ∈ V is denoted by Nv, i.e., Nv = {u ∈
V |(u, v) ∈ E}. The degree of v is dv = |Nv|.

9

Table 2.1: Datasets used in the experimental evaluation of our algorithms.

Network Nodes Edges Source
Email-Enron 37K 0.36M SNAP [69]
web-Google 0.88M 5.1M SNAP [69]
web-BerkStan 0.69M 6.5M SNAP [69]
Miami 2.1M 50M [14]
LiveJournal 4.8M 43M SNAP [69]
Twitter 42M 2.4B [1]
Gnp(n, d) n 1

2
nd Erdős-Réyni [17]

PA(n, d) n 1
2
nd Pref. Attachment [13]

A triangle in G is a set of three nodes u, v, w ∈ V such that there is an edge between each pair
of these three nodes, i.e., (u, v), (v, w), (w, u) ∈ E. The number of triangles containing node v is
denoted by Tv. Notice that the number of triangles containing node v is the same as the number of
edges among the neighbors of v, i.e.,

Tv = | {(u,w) ∈ E | u,w ∈ Nv} |.

The clustering coefficient (CC) of a node v ∈ V , denoted by Cv, is the ratio of the number of edges
between neighbors of v to the number of all possible edges between neighbors of v. Then, we have

Cv =
Tv(
dv
2

) =
2Tv

dv(dv − 1)
.

Let p be the number of processors used in the computation, which we denote by P0, P1, . . . , Pp−1
where each subscript refers to the rank of a processor.

We use K, M and B to denote thousands, millions and billions, respectively; e.g., 1B stands for one
billion.

Datasets. We use both real world and artificially generated networks for the experimental evalu-
ation of our algorithms. A summary of all the networks is provided in Table 2.1. Miami [14] is a
synthetic, but realistic, social contact network for the city of Miami. Twitter, LiveJournal, Email-
Enron, web-BerkStan, and web-Google are real-world networks. Artificial network PA(n, d) is
generated using the preferential attachment (PA) model [13] with n nodes and average degree d.
Network Gnp(n, d) is generated using the Erdős-Réyni random graph model [17], also known as
G(n, q) model, with n nodes and edge probability q = d

n−1 so that the expected degree of each node
is d. Both real-world and PA(n, d) networks have very skewed degree distributions. Networks hav-
ing such distributions create difficulty in partitioning and balancing loads and thus give us a chance
to measure the performance of our algorithms in some of the worst case scenarios. Note that, in our
experiments, we consider edges of the input graph to be undirected, that is, we ignore the original
directionality of edges for web-Google, web-BerkStan, Email-Enron, and LiveJournal networks.

Computation Model. We develop parallel algorithms for message passing interface (MPI) based
distributed-memory parallel systems, where each processor has its own local memory. The pro-

10

cessors do not have any shared memory, one processor cannot directly access the local memory of
another processor, and the processors communicate via exchanging messages using MPI.

Experimental Setup. We perform our experiments using a high performance computing cluster
with 64 computing nodes (QDR InfiniBand interconnect), 16 processors (Sandy Bridge E5-2670,
2.6GHz) per node, memory 4GB/processor, and operating system CentOS Linux 6.

11

Chapter 3

PATRIC: An Efficient Parallel Algorithm
for Counting Triangles in Massive Networks

In this chapter, we present an efficient MPI-based distributed memory parallel algorithm, called
PATRIC (PArallel TRIangle Counting), for counting triangles in massive networks. PATRIC scales
well to networks with billions of nodes and can compute the exact number of triangles in a network
with one billion nodes and 10 billion edges in 16 minutes. Balancing computational loads among
processors for a graph problem like counting triangles is a challenging issue. We present and
analyze several schemes for balancing load among processors for the triangle counting problem.
These schemes achieve good load balancing. We also show how our parallel algorithm can adapt an
existing edge sparsification technique to approximate the number of triangles with high accuracy.
This modification allows us to count triangles in even larger networks.

3.1 Introduction

We study the problem of counting triangles in massive networks that do not fit in the main memory
of a single computing node. We present MPI-based distributed memory parallel algorithms for
these problems, which scale well to networks with billions of nodes and edges. Although sub-
stantial research has been done on the triangle counting problem, to the best of our knowledge,
very few papers have addressed the problems associated with massive networks that do not fit in
the main memory and provide an exact solution. A recent paper [72] presents a parallel algorithm
for exact triangle counts using the MapReduce framework [27]. Our parallel algorithm improves
the performance, both in time and space, over [72] significantly. A detailed comparison with this
algorithm is given in Section 3.3. Our contributions in this chapter are as follows.

• We present a parallel algorithm for counting triangles in massive networks. The algorithm
scales almost linearly with the number of processors and is able to process a network with 1
billion nodes and 10 billion edges in 16 minutes using 40 processors. We show the perfor-
mance of our algorithm by using both artificial and real-world networks.

12

• We show, both theoretically and experimentally, that a simple modification of a current state
of the art sequential algorithm for counting triangles improves its performance. We use this
modified algorithm in the development of our parallel algorithm.

• We devise and analyze several load balancing schemes to improve the efficiency of our
parallel algorithm. With these schemes, we achieve a very good load balancing, even for
networks with skewed degree distributions.

• We show how the sparsification technique presented in [76] can be adapted in our parallel al-
gorithm to have a parallel approximation algorithm. This sparsification technique allows our
parallel algorithm to work with even larger networks. Moreover, our parallel sparsification
improves the accuracy of the approximation over the sequential sparsification of [76].

The rest of the chapter is organized as follows. We discuss sequential algorithms for counting
triangles in Section 3.2. We present our parallel algorithm for triangle counting and the load
balancing schemes in Section 3.3. The parallelization of the sparsification technique is given in
Section 3.4.

3.2 Sequential Algorithms

In this section, we discuss sequential algorithms for counting triangles using adjacency list repre-
sentation and show that a simple modification to a state-of-the-art algorithm improves both time
and space complexity. Although the modification seems quite simple, and others might have used
it previously, our theoretical and experimental analyses of this modification are new. To the best
of our knowledge, our analysis is the first to show that such simple modification improves the
performance significantly. This modification is also used in our parallel algorithms.

A simple but efficient algorithm [65, 72] for counting triangles is: for each node v ∈ V , find the
number of edges among its neighbors, i.e., the number of pairs of neighbors that complete a triangle
with vertex v. In this method, each triangle (u, v, w) is counted six times – all six permutations of
u, v, and w. Many algorithms exist [22, 42, 65, 66, 72], which provide significant improvement
over the above method. A very comprehensive survey of the sequential algorithms can be found in
[42, 65]. One of the state of the art algorithms, known as NodeIterator++, as identified in two very
recent papers [22, 72], is shown in Figure 3.1. Both [22] and [72] use this algorithm as a basis of
their external-memory algorithm and parallel algorithm, respectively.

This algorithm uses a total ordering ≺ of the nodes to avoid duplicate counts of the same triangle.
Any arbitrary ordering of the nodes, e.g., ordering the nodes based on their IDs, makes sure each
triangle is counted exactly once, that is, it counts only one among the six possible permutations.
However, the algorithm NodeIterator++ incorporates an interesting node ordering based on the
degrees of the nodes, with ties broken by node IDs, as defined below:

u ≺ v ⇐⇒ du < dv or (du = dv and u < v). (3.1)

13

1: T ← 0 {T stores the count of triangles}
2: for v ∈ V do
3: for u ∈ Nv and v ≺ u do
4: for w ∈ Nv and u ≺ w do
5: if (u,w) ∈ E then
6: T ← T + 1

Figure 3.1: Algorithm NodeIterator++, where ≺ is the degree based ordering of the nodes defined
in Equation 3.1.

1: {Preprocessing: Step 2-6}
2: for each edge (u, v) do
3: if u ≺ v, store v in Nu

4: else store u in Nv

5: for v ∈ V do
6: sort Nv in ascending order
7: T ← 0 {T is the count of triangles}
8: for v ∈ V do
9: for u ∈ Nv do

10: S ← Nv ∩Nu

11: T ← T + |S|

Figure 3.2: Algorithm NodeIteratorN, a modification of NodeIterator++.

Definition 1 (effective degree) While Nv is the set of all neighbors of v ∈ V , let Nv = {u ∈
V |(u, v) ∈ E ∧ v ≺ u}, i.e., Nv is the set of neighbors u of v such that v ≺ u. We define d̂v = |Nv|
as the effective degree of v.

This degree based ordering can improve the running time. Let d̂v be the number of neighbors u of
v such that v ≺ u. We call d̂v the effective degree of v. Assuming Nvs, for all v, are sorted and
a binary search is used to check (u,w) ∈ E, a running time O

(∑
v (d̂vdv + d̂2v log dmax)

)
can be

shown, where dmax = maxv dv. This running time is minimized when d̂v values of the nodes are
as close to each other as possible, although, for any ordering of the nodes,

∑
v d̂v = m is invariant.

Notice that in the degree-based ordering, diversity of the d̂v values are reduced significantly.

We also observe that for the same reason, degree-based ordering of the nodes helps keep the loads
among the processors balanced, to some extent, in a parallel algorithm. We use this degree-based
ordering in our parallel algorithm and discuss this issue in detail in Section 3.3.

A simple modification of NodeIterator++ is as follows: perform comparison u ≺ v for each edge
(u, v) ∈ E in a preprocessing step rather than doing it while counting the triangles. This prepro-
cessing step reduces the total number of ≺ comparisons to O(m) from

∑
v d̂vdv and allows us to

use an efficient set intersection operation. For each edge (v, u), u is stored in Nv if and only if

14

v ≺ u. The modified algorithm NodeIteratorN is presented in Figure 3.2. All triangles containing
node v and any u ∈ Nv can be found by set intersection Nu ∩ Nv (Line 10 in Figure 3.2). The
correctness of NodeIteratorN is proven in Theorem 1.

Theorem 1 Algorithm NodeIteratorN counts each triangle in G only once.

Proof : Consider a triangle (x1, x2, x3) in G, and without the loss of generality, assume that x1 ≺
x2 ≺ x3. By the constructions ofNx in the preprocessing step, we have x2, x3 ∈ Nx1 and x3 ∈ Nx2 .
When the loops in Line 8-9 begin with v = x1 and u = x2, node x3 appears in S (Line 10-11), and
the triangle (x1, x2, x3) is counted once. But this triangle cannot be counted for any other values
of v and u (in Line 8-9) because x1 /∈ Nx2 and x1, x2 /∈ Nx3 . 2

In NodeIteratorN, |Nv| = d̂v, the effective degree of v. WhenNv andNu are sorted,Nu∩Nv can be
computed in O(d̂u + d̂v) time. Then we have O

(∑
v∈V dvd̂v

)
time complexity for NodeIteratorN

as shown in Theorem 2, in contrast to O
(∑

v (d̂vdv + d̂2v log dmax)
)

for NodeIterator++.

Theorem 2 The time complexity of algorithm NodeIteratorN is O
(∑

v∈V dvd̂v

)
.

Proof : Time for the construction of Nv for all v is O (
∑

v dv) = O(m), and sorting these Nv

requires O
(∑

v d̂v log d̂v

)
time. Now, computing intersection Nv ∩ Nu takes O(d̂u + d̂v) time.

Thus, the time complexity of NodeIteratorN is

O(m) +O

(∑
v∈V

d̂v log d̂v

)
+O

(∑
v∈V

∑
u∈Nv

(d̂u + d̂v)

)

= O

(∑
v∈V

d̂v log d̂v

)
+O

 ∑
(v,u)∈E

(d̂u + d̂v)


= O

(∑
v∈V

d̂v log d̂v

)
+O

(∑
v∈V

dvd̂v

)
= O

(∑
v∈V

dvd̂v

)
.

The second last step follows from the fact that for each v ∈ V , term d̂v appears dv times in this
expression. 2

Notice that set intersection operation can also be used with NodeIterator++ by replacing Line 4-6
of NodeIterator++ in Figure 3.1 with the following three lines as shown in [22] (Page 674):

1: S ← Nv ∩Nu

2: for w ∈ S and u ≺ w do
3: T ← T + 1

15

Table 3.1: Running time for the two sequential algorithms for counting triangles, NodeIterator++
and NodeIteratorN.

Networks Runtime (sec.) Triangles
NodeIterator++ NodeIteratorN

Email-Enron 0.14 0.07 0.7M
web-BerkStan 3.5 1.4 64.7M
LiveJournal 106 42 285.7M
Miami 46.35 32.3 332M
PA(25M, 50) 690 360 1.3M
Gnp(500K, 20) 1.81 0.6 1308

However, with this set intersection operation, the runtime of NodeIterator++ is O (
∑

v d
2
v) since

|Nv| = dv in NodeIterator++, and computingNv∩Nu takes O(du +dv) time. Further, the memory
requirement for NodeIteratorN is half of that for NodeIterator++. NodeIteratorN stores

∑
v d̂v = m

elements in all Nv and NodeIterator++ stores
∑

v dv = 2m elements. Here we would like to note
that the two algorithms presented in [42, 66] take the same asymptotic time complexity as NodeIt-
eratorN. However, the algorithm in [66] requires three times more memory than NodeIteratorN.
The algorithm in [42] requires more than twice the memory as NodeIteratorN, maintains a list of
indices for all nodes, and the hidden constant in the runtime can be much larger.

We also experimentally compare the performance of NodeIteratorN and NodeIterator++ using both
real-world and artificial networks. NodeIteratorN is significantly faster than NodeIterator++ for
these networks as shown in Table 3.1.

3.2.1 Optimal Node Ordering

A total ordering ≺ of the nodes helps avoid duplicate counts of the same triangle. Any order-
ing of the nodes, e.g., ordering based on node IDs, random ordering, k-coreness based ordering,
make sure each triangle is counted exactly once. By avoiding duplicate counts, these orderings
also improve running time of the algorithm. However, different orderings lead to different run-
times. Figure 3.3 shows the runtime of our sequential algorithm for triangle counting with four
orderings of nodes: ordering based on node IDs, degree, k-coreness, and random ordering. Node
IDs and degrees are readily available with network data and do not require any additional compu-
tation. On the other hand, k-coreness based ordering requires computing coreness of nodes, and
for random ordering, we generate n random numbers. Figure 3.3 (left) shows the comparison of
runtime of counting triangles without considering the cost for computing orderings. Figure 3.3
(right) shows the comparison with total runtime of counting triangles and computing orderings. In
both cases, degree based ordering provides the best runtime efficiency among all orderings. For
networks with relatively even degree distribution such as Miami, all the orderings provide similar
runtimes. However, for networks with skewed degree distribution, degree based ordering provides
the least runtime. In our datasets, nodes with large degrees somehow appear at the beginning (hav-
ing smaller IDs) giving ID based ordering almost the opposite effect of degree based ordering. As
a result, ID based ordering provides the largest runtime for our datasets.

Now that our experimental results show degree based ordering provides the best runtime efficiency,

16

0

20

40

60

80

100

R
u

n
ti
m

e
 P

e
rc

e
n

ta
g

e

M
ia

m
i

P
A

(1
M

,
5

0
)

T
w

it
te

r

W
e

b
-B

e
rk

S
ta

n

Networks

Y

Degree

K-core

Random

ID

0

20

40

60

80

100

R
u

n
ti
m

e
 P

e
rc

e
n

ta
g

e

M
ia

m
i

P
A

(1
M

,
5

0
)

T
w

it
te

r

W
e

b
-B

e
rk

S
ta

n

Networks

Y

Degree

K-core

Random

ID

Figure 3.3: Comparison of runtime of sequential triangle counting (NodeIteratorN) with four dis-
tinct orderings of nodes. For each network, we compute the percentage of runtime with respect
to the maximum runtime given by any of these orderings. In all cases, the degree based ordering
gives the least runtime. Note that we compute the average runtime from 25 independent runs for
the random ordering.

next we show in Theorem 4 that the degree based ordering is, in fact, the optimal ordering that
minimizes the runtime of algorithm NodeIteratorN.

We denote the degree based ordering as ≺D which is defined as follows:

u≺Dv ⇐⇒ du < dv or (du = dv and u < v). (3.2)

Assume there is another total ordering ≺K based on some quantity kv of nodes v:

u≺Kv ⇐⇒ ku < kv or (ku = kv and u < v). (3.3)

We now define a function that quantifies how ordering ≺K agrees with ≺D on the relative order of
x, y ∈ V .

Definition 2 (Agreement function Y) The agreement function Y : V × V → Z is defined as
follows:

Y (x, y) =


−1, if (x, y) ∈ E and x≺Dy and y ≺K x
1, if (x, y) ∈ E and y≺Dx and x≺Ky
0, Otherwise

It is, then, easy to see that Y (x, y) = −Y (y, x).

We now prove an important result in the following lemma, which we subsequently use in Theorem

17

4.

Lemma 3 For any (x, y) ∈ E, Y (x, y)(dx − dy) ≥ 0.

Proof : Let cxy = Y (x, y)(dx− dy). If orderings≺K and ≺D agree on the relative order of x and y,
then Y (x, y) = 0 by definition, and hence, cxy = 0. Otherwise, consider the following three cases.

• dx = dy: This gives dx − dy = 0, and thus, cxy = 0.

• dx < dy: We have x ≺D y and y ≺K x, and thus, Y (x, y) = −1. Since dx−dy < 0, cxy > 0.

• dx > dy: We have y ≺D x and x ≺K y, and thus, Y (x, y) = 1. Since dx − dy > 0, cxy > 0.

Therefore, for any (x, y) ∈ E, cxy = Y (x, y)(dx − dy) ≥ 0. 2

Theorem 4 Degree based ordering ≺D minimizes the runtime for counting triangles using algo-
rithm NodeIteratorN.

Proof : Let d̂v be the effective degree of vertex v with ordering ≺D. Then, the corresponding run-
time for counting triangles is Θ

(∑
i∈V did̂i

)
. We provide a proof by contradiction. Assume that

≺D is not an optimal ordering. Then there exists another ordering≺K that leads to a lower runtime
for counting triangles than that of ≺D. Let ≺K yields an effective degree d̃, the corresponding run-
time for counting triangles is Θ

(∑
i∈V did̃i

)
. Let CD =

∑
i∈V did̂i and CK =

∑
i∈V did̃i. Then,

we have CK < CD.

Now, using Definition 2, the effective degree d̃x of node x obtained by ≺K can be expressed as,

d̃x = d̂x +
∑
y∈Nx

Y (x, y).

Now, we have,

CK =
∑
x∈V

dxd̃x

=
∑
x∈V

dx

(
d̂x +

∑
y∈Nx

Y (x, y)

)

=
∑
x∈V

dxd̂x +
∑
x∈V

(
dx
∑
y∈Nx

Y (x, y)

)
=

∑
x∈V

dxd̂x +
∑

(x,y)∈E

(dxY (x, y) + dyY (y, x))

=
∑
x∈V

dxd̂x +
∑

(x,y)∈E

Y (x, y) (dx − dy) .

18

The second last step follows from rearranging terms of the second summation and distributing
them over edges. The last step follows from the fact that Y (y, x) = −Y (x, y). Now, from Lemma
3 we have, Y (x, y)(dx − dy) ≥ 0 for any (x, y) ∈ E. Thus,

∑
(x,y)∈E Y (x, y) (dx − dy) ≥ 0, and

therefore,

CK ≥
∑
x∈V

dxd̂x = CD.

This contradicts our assumption of CK < CD. Therefore, degree based ordering ≺D is an optimal
ordering which minimizes the runtime for counting triangles of our algorithm. 2

We now prove some additional results based on the theorem we have just proven.

Corollary 5 The following two statements are equivalent.

1. K is an optimal ordering.

2. K follows D for the relative order of any pair of nodes x and y where (x, y) ∈ E and
dx 6= dy.

Proof : At first, we assume that (2) is true. We need to show that K is an optimal ordering.
Following the same derivation of Theorem 4,

CK = CD +
∑

(x,y)∈E

Y (x, y) (dx − dy)

Since K follows D for the relative order of pair of nodes x and y with (x, y) ∈ E and dx 6= dy, by
the definition, Y (x, y) = 0. Further, for dx = dy, dx−dy = 0. This gives

∑
(x,y)∈E Y (x, y) (dx − dy) =

0, since each term of the summation is 0. Hence, CK = CD. Since D is an optimal ordering (by
Theorem 4), so is K.

Second, we need to show if (1) is true, then (2) is also true. We will prove this by contraposition,
that is, assuming (2) is not true, we will show that (1) is not true. Again, following the same
derivation of Theorem 4,

CK = CD +
∑

(x,y)∈E

Y (x, y) (dx − dy)

We assumeK doesn’t followD for the relative order of some pair of nodes x and y with (x, y) ∈ E
and dx 6= dy. Then, by applying the same logic of cases 2b and 2c of Lemma 3, Y (x, y)(dx−dy) >
0. Since all other terms of the summation are ≥ 0 by the same lemma, we have,∑

(x,y)∈E

Y (x, y) (dx − dy) > 0.

19

Hence, CK > CD. Since D is an optimal ordering (by Theorem 4), K is not. This proves the
contraposition.

2

Corollary 5 offers us a useful hint to search for other orderings that incur the same triangle counting
cost as of D and are, therefore, optimal.

We use algorithm NodeIteratorN with degree based ordering in our parallel algorithms for counting
triangles.

3.3 The Parallel Algorithm

In this section, we present our parallel algorithm PATRIC for counting triangles in massive net-
works with overlapping partitioning and novel parallel load balancing schemes.

3.3.1 Overview of the Algorithm

We assume that the network does not fit in the local memory of a single computing node. Only a
part of the entire graph is available to a processor. Let p be the number of processors used in the
computation. The network is partitioned into p subgraphs, and each processor Pi is assigned one
such subgraph Gi(Vi, Ei) (formally defined below). Pi performs computation on its subgraph Gi.
The main steps of our fast parallel algorithm are given in Figure 3.4. In the following subsections,
we describe the details of these steps and several load balancing schemes.

1: Each processor Pi, in parallel, executes the following:(lines 2-4)
2: Gi(Vi, Ei)← COMPUTEPARTITION(G, i)
3: Ti ← COUNTTRIANGLES(Gi, i)
4: BARRIER

5: Find T =
∑

i Ti
6: return T

Figure 3.4: The main steps of our fast parallel algorithm.

3.3.2 Partitioning the Network

The memory restriction poses a difficulty where the graph must be partitioned in such a way that
the memory required to store a subgraph is minimized and at the same time each processor con-
tains sufficient information to minimize communications among processors. For the input graph
G(V,E), processor Pi works on Gi(Vi, Ei), which is a subgraph of G induced by Vi. The sub-
graph Gi is constructed as follows: First, set of nodes V is partitioned into p disjoint subsets

20

V c
0 , V

c
1 , . . . , V

c
p−1, such that, for any j and k, V c

j ∩ V c
k = ∅ and

⋃
k V

c
k = V . Second, set Vi

is constructed containing all nodes in V c
i and

⋃
v∈V c

i
Nv. Edge set Ei ⊂ E is the set of edges

{(u, v) : u ∈ Vi and v ∈ Nu}.
Each processor Pi is responsible for counting triangles incident on the nodes in V c

i . We call any
node v ∈ V c

i a core node of subgraphGi. Each v ∈ V is a core node in exactly one subgraph. How
the nodes in V are distributed among the core sets V c

i for all Pi ffect the load balancing and hence
performance of the algorithm crucially. Later in Section 3.3.4, we present several load balancing
schemes and the details of how sets V c

i are constructed.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 20 30 40 50 60 70 80 90 100M
em

o
ry

 U
sa

g
e

p
er

 P
ro

ce
ss

o
r

(M
B

)

Number of Processors

LiveJournal(opt)
LiveJournal(non-opt)

Miami(opt)
Miami(non-opt)

Figure 3.5: Memory usage with optimized and non-optimized data storing.

Now, Pi stores the set of neighbors Nv of all v ∈ Vi. Notice that for a node w ∈ (Vi − V c
i), Nw

may contain some nodes x /∈ Vi. Such nodes x can be safely removed from Nw and the number of
triangles incident on all v ∈ V c

i can still be computed correctly. But, the presence of these nodes
in Nw does not affect the correctness of the algorithm either. However, as our experimental results
in Figure 3.5 show, we can save about 50% of memory space by not storing such nodes x /∈ Vi in
Nw. Figure 3.5 also demonstrates the memory-scalability of our algorithm: as the more processors
are used, each processor consumes less memory space.

3.3.3 Counting Triangles

Once each processor Pi has its subgraph Gi(Vi, Ei), it uses the modified sequential algorithm
NodeIteratorN presented in Section 3.2 to count triangles in Gi for each core node v ∈ V c

i . Neigh-
bor sets Nw for the nodes w ∈ Vi − V c

i help only in finding the edges among the neighbors of the
core nodes. To be able to use an efficient intersection operation, Nv for all v ∈ Vi are sorted. The
code executed by processor Pi is given in Figure 3.6.

Once all processors complete their counting steps, the counts from all processors are aggregated
into a single count by an MPI reduce function, which takes O(log p) time. Ordering of the nodes,
construction of Nv, and disjoint partitioning of V into V c

i make sure that each triangle in the

21

network appears exactly in one subgraph Gi. Thus, the correctness of the sequential algorithm
NodeIteratorN shown in Section 3.2 ensures that each triangle is counted exactly once.

1: for v ∈ Vi do
2: sort Nv in ascending order
3: T ← 0
4: for v ∈ V c

i do
5: for u ∈ Nv do
6: S ← Nv ∩Nu

7: T ← T + |S|
8: return T

Figure 3.6: Algorithm executed by processor Pi to count triangles in Gi(Vi, Ei).

3.3.4 Load Balancing in PATRIC

A parallel algorithm is completed when all of the processors complete their tasks. Thus, to re-
duce the running time of a parallel algorithm, it is desirable that no processor remains idle and all
processors complete their executions almost at the same time. Furthermore, to deal with a mas-
sive network, it is also desirable that all subgraphs Gi(Vi, Ei) require almost the same amount of
memory space.

In Section 3.2, we discussed how degree based ordering of the nodes can reduce the running time
of the sequential algorithm, and hence it reduces the running time of the local computation in
each processor Pi. We observe that, interestingly, this degree-based ordering also provides load
balancing to some extent, both in terms of running time and space, at no additional cost. Consider
the example network shown in Figure 3.7. With an arbitrary ordering of the nodes, |Nv0| can be as
much as n − 1, and a single processor that contains v0 as a core node is responsible for counting
all triangles incident on v0. Then the running time of the parallel algorithm can essentially be the
same as that of a sequential algorithm. With the degree-based ordering, we have |Nv0 | = 0 and
|Nvi | ≤ 3 for all i. Now if the core nodes are equally distributed among the processors, both space
and computation time are almost balanced.

Although degree-based ordering helps mitigate the effect of skewness in degree distribution and
balance load to some extent, working with more complex networks and highly skewed degree dis-
tribution reveals that distributing core nodes equally among processors does not make the load
well-balanced in many cases. Figure 3.8 shows speedup of the parallel algorithm with an equal
number of core nodes assigned to each processor. The speedup factor due to a parallelization is
defined as ts/tp, where ts and tp are computation time required by a sequential and the paral-
lel algorithm, respectively. As shown in Figure 3.8, LiveJournal networks show poor speedup,
whereas the Miami network shows a relatively better speedup. This poor speedup for LiveJournal
network is a consequence of a highly unbalanced computation load across the processors as shown
in Figure 3.9. Although most of the processors complete their tasks in less than a second, a few

22

…

v0	

v1	

v2	
 v3	

v4	

v5	
 Vn-­‐1	

Figure 3.7: A network with a skewed degree distribution: dv0 = n− 1, dvi 6=0
= 3.

of them take an unusually longer time leading to poor speedup. Unlike the Miami network, the
LiveJournal network has a very skewed degree distribution. (Note that we used 100 processors for
our experiments on load distribution. Although we could use a higher number of processors, using
fewer processors helped demonstrate the pattern of imbalance of loads more clearly. In our subse-
quent experiments on scalability, we use a higher number of processors. In fact, we show that our
algorithm scales to a larger number of processors when networks grow larger.) Next, we present
several load balancing schemes that improve the performance of our algorithm significantly.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

S
p
ee

d
u
p
 F

ac
to

r

Number of Processors

Miami
LiveJournal

Figure 3.8: Speedup with equal number of core nodes in all processors.

Proposed Load Balancing Schemes

The balanced loads are determined before counting triangles. Thus, our parallel algorithm works
in two phases:

23

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
R

eq
u
ir

ed
 (

se
c)

Rank of Processors

Miami
LiveJournal

Figure 3.9: Computing load of individual processors (equal number of core nodes).

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
R

eq
u
ir

ed
 (

x
1
0
 m

s)

Rank of Processors

N
D

DH
DDH
DH2

DPD

Figure 3.10: Load balancing cost for LiveJournal network with different schemes.

1. Computing balanced load: This phase computes V c
i so that the computational loads are

well-balanced.

2. Counting triangles: This phase counts the triangles following the algorithms in Figure 3.4
and 3.6.

Computational cost for phase 1 is referred to as load-balancing cost, for phase 2 as counting cost,
and the total cost for these two phases as total computational cost. In order to be able to distribute
load evenly among the processors, we need an estimation of computation load for computing tri-
angles. For this purpose, we define a cost function f : V → R, such that f(v) is the computational
cost for counting triangle incident on node v (Lines 4-7 in Figure 3.6). Then, the total cost incurred
to processor Pi is given by

∑
v∈V c

i
f(v). To achieve a good load balancing,

∑
v∈V c

i
f(v) should be

almost equal for all i. Thus, the computation of balanced load consists of the following two steps:

24

1. Computing f : Compute f(v) for each v ∈ V

2. Computing partitions: Determine p disjoint subsets V c
i ⊂ V such that∑

v∈V c
i

f(v) ≈ 1

p

∑
v∈V

f(v) (3.4)

The above computation must also be done in parallel. Otherwise, this computation takes at least
Ω(n) time, which can wipe out the benefit gained from balancing load completely or even have a
negative effect on the performance. Parallelizing the above computation, especially Step 2 (com-
puting partitions), is a non-trivial problem. Next, we describe a parallel algorithm to perform the
above computation.

Computing f :
It might not be possible to exactly compute the value of f(v) before the actual execution of count-
ing triangles takes place. Fortunately, Theorem 2 provides a mathematical formulation of counting
cost in terms of the number of vertices, edges, original degree d, and effective degree d̂. Guided by
Theorem 2, we have come up with several approximate cost functions f(v) that are listed in Table
3.2. Each function corresponds to one load balancing scheme. The rightmost column of the table
shows identifying notations of the individual schemes.

Table 3.2: Cost functions f(.) for our load balancing schemes.

Node Function Identifying Notation
f(v) = 1 N
f(v) = dv D
f(v) = d̂v DH
f(v) = dvd̂v DDH
f(v) = d̂v

2
DH2

f(v) =
∑

u∈Nv
(d̂v + d̂u) DPD

The input graph is given as a sequence of adjacency lists: adjacency list of the first node followed
by that of the second node, and so on. The input sequence is considered divided by size (number
of bytes) into p chunks. However, it is made sure that adjacency list of a particular node reside in
only one processor. Initially, processor Pi stores the ith chunk in its memory. Let Ci be the set of
all nodes in the i-th chunk. Next, Pi computes f(v) for all nodes v ∈ Ci as follows.

• Scheme N: Function f(v) = 1 requires no computation. This scheme, essentially, assigns
an equal number of core nodes to each processor.

• Scheme D: Function f(v) = dv requires no computation. This scheme, essentially, assigns
an equal number of edges to each processor.

• Scheme DH: Computing function f(v) = d̂v requires degrees of all u ∈ Nv. Let u ∈ Cj .
Then, Pi sends a request message to Pj , and Pj replies with a message containing du.

25

• Scheme DDH: For f(v) = dvd̂v, d̂v is computed as above.

• Scheme DH2: For f(v) = d̂v
2
, d̂v is computed as above.

• Scheme DPD: Function f(v) =
∑

u∈Nv
(d̂v + d̂u) is computed as follows.

i. Each Pi computes d̂v, v ∈ Ci, as discussed above.

ii. Then Pi finds d̂u for all u ∈ Nv: Let u ∈ Cj . Pi sends a request message to Pj , and Pj

replies with a message containing d̂u.

iii. Now, f(v) =
∑

u∈Nv
(d̂v + d̂u) is computed using d̂v and d̂u obtained in (i) and (ii).

Computing partitions:
Given that each processor Pi knows f(v) for all v ∈ Ci, our goal is to partition V into p disjoint
subsets V c

i such that
∑

v∈V c
i

f(v) ≈ 1
p

∑
v∈V

f(v).

We first compute cumulative sum F (t) =
t∑

v=0

f(v) in parallel by using a parallel prefix sum al-

gorithm [5]. Processor Pi computes and stores F (t) for nodes t ∈ Ci. This computation takes

O
(

n
p

+ log p
)

time. Notice that Pp−1 computes F (n − 1) =
n−1∑
v=0

f(v), cost for counting all tri-

angles in the graph. Pp−1 then computes α = 1
P

∑
v∈V

f(v) = 1
p
F (n − 1) and broadcast α to all

other processors. Now, let V c
i = {xi, xi + 1 . . . , x(i+1) − 1} for some node xi ∈ V . We call

xi the start or boundary node of partition i. Node xj is the jth boundary node if and only if
F (xj − 1) < jα ≤ F (xj) or equivalently, xj = argminv∈V (F (v) ≥ jα). A chunk Ci may con-
tain 0, 1, or multiple boundary nodes in it. Each Pi finds the boundary nodes xj in its chunk: we use
the algorithm presented in [3] to compute boundary nodes of partitions, which takes O(n/p + p)
time in the worst case. At the end of this execution, each processor Pi knows boundary nodes xi
and x(i+1). Now Pi can construct V c

i and compute its subgraph Gi(Vi, Ei) as described in Section
3.3.2.

Since scheme DPD requires two levels of communication for computing f(.), it has the largest
load balancing cost among all schemes. Computing f(.) for DPD requires O(m

p
+ p log p) time.

Computing partitions has a runtime complexity of O(m
p

+p). Therefore, the load balancing cost of
DPD is given by O(m

p
+ p log p). Figure 3.10 shows an experimental result of the load balancing

cost for different schemes on the LiveJournal network. Scheme N has the lowest cost and DPD
the highest. Schemes DH, DH2, and DDH have a quite similar load balancing cost. However,
since scheme DPD gives the best estimation of the counting cost, it provides better load balancing.
Figure 3.11 demonstrates total computation cost (load) incurred in individual processors with dif-
ferent schemes on Miami, LiveJournal, and Twitter networks. Miami is a network with an almost
even degree distribution. Thus, all load balancing schemes, even simpler schemes like N and D,
distribute loads almost equally among processors. However, LiveJournal and Twitter have a very
skewed degree distribution. As a result, partitioning the network based on number of nodes (N)
or degree (D) do not provide good load balancing. The other schemes capture the computational

26

load more precisely and produce a very even load distribution among processors. In fact, for such
networks, scheme DPD provides the best load balancing.

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
R

eq
u

ir
ed

 (
se

c)

Rank of Processors

N
D

DH
DDH
DH

2

DPD

(a) Miami network

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
R

eq
u

ir
ed

 (
se

c)

Rank of Processors

N
D

DH
DDH
DH

2

DPD

(b) LiveJournal network

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
R

eq
u

ir
ed

 (
se

c)

Rank of Processors

N
D

DH
DDH
DH

2

DPD

(c) Twitter network

Figure 3.11: Load distribution among processors for LiveJournal, Miami and Twitter networks by
different schemes.

3.3.5 Performance Analysis

In this section, we present the experimental results evaluating the performance of our algorithm
and the load balancing schemes.

Strong Scaling

Strong scaling of a parallel algorithm shows how much speedup a parallel algorithm gains as the
number of processors increases. Figure 3.12 shows strong scaling of our algorithm on LiveJournal,
Miami and Twitter networks with different load balancing schemes. The speedup factors of these
schemes are almost equal on Miami network. Schemes N and D have a little better speedup than
the others. On the contrary, for LiveJournal and Twitter networks, speedup factors for different
load balancing schemes vary quite significantly. Scheme DPD achieves better speedup than other
schemes. As discussed before, for Miami network, all load balancing schemes distribute loads
equally among processors. This produces an almost same speedup on Miami network with all
schemes. A lower load balancing cost of schemes N and D (Figure 3.10) yields a little higher
speedup. However, for LiveJournal and Twitter networks, scheme DPD gives the best load dis-
tribution (Figure 3.11) and thus provides the best speedups. Although DPD has a higher load
balancing cost than others, the benefit gained from DPD as an even load distribution outweighs
this cost. Thus we recommend for using DPD on real-world big graphs. Our subsequent results
will be based on scheme DPD.

Weak Scaling

Weak scaling of a parallel algorithm shows the ability of the algorithm to maintain constant com-
putation time when the problem size grows proportionally with the increasing number of pro-

27

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500

S
p

ee
d

u
p

 f
ac

to
r

Number of Processors

N
D

DH
DDH
DH

2

DPD

(a) Miami network

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500

S
p

ee
d

u
p

 F
ac

to
r

Number of Processors

N
D

DH
DDH
DH

2

DPD

(b) LiveJournal network

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500

S
p

ee
d

u
p

 F
ac

to
r

Number of Processors

N
D

DH
DDH
DH

2

DPD

(c) Twitter network

Figure 3.12: Speedup gained from different load balancing schemes for LiveJournal, Miami and
Twitter networks.

cessors. We use PA(n,m) networks for this experiment, and for x processors, we use network
PA(x/10 × 1M, 50). The weak scaling of our algorithm is shown in Figure 3.13. Triangle count-
ing cost remains almost constant (blue line). Since the load-balancing step has a communication
overhead of O(p log p), load-balancing cost increases gradually with the increase of processors. It
causes the total computation time to grow slowly with the addition of processors (red line). Since
the growth is very slow and the runtime remains almost constant, the weak scaling of our algorithm
is very good.

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500

T
im

e
R

eq
u
ir

ed
 (

se
c)

Number of Processors

Triangle Counting Time
Total Computation Time

Figure 3.13: Weak scaling on PA(P/10× 1M, 50) networks.

Comparison with Previous Algorithms

The runtime of our algorithm on several real and artificial networks are shown in Table 3.3. We also
compare our algorithm with another distributed-memory parallel algorithm for counting triangles
given in [72]. We select three of the five networks used in [72]. Twitter and LiveJournal are the
two largest among the networks used in [72]. We also use web-BerkStan which has a very skewed

28

degree distribution. No artificial network is used in [72]. For all of these three networks, our
algorithm is more than 45 times faster than the algorithm in [72]. The improvement over [72] is
due to the fact that their algorithm generates a huge volume of intermediate data, which are all
possible 2-paths centered at each node. The amount of such intermediate data can be significantly
larger than the original network. For example, for the Twitter network, 300B 2-paths are generated
while there are only 2.4B edges in the network. The algorithm in [72] shuffles and regroups these
2-paths, which take significantly larger time and also memory.

Table 3.3: Runtime performance of PATRIC using 200 processors and the algorithm in [72].

Networks Runtime (sec.) Triangles
PATRIC [72]

Twitter 9.4m 423m 34.8B
web-BerkStan 0.10s 1.70m 65M
LiveJournal 0.8s 5.33m 286M
Miami 0.6s – 332M
PA(1B, 20) 15.5m – 0.403M

Scaling with Network Size

The load-balancing cost of our algorithm, as shown in Section 3.3.4, is O(m/p + p log p) where
p is the number of processors used in the computation. For the algorithm given in Figure 3.6, the
counting cost is O(

∑
v∈V c

i

∑
u∈Nv

(d̂u + d̂v)). Thus, the total computational cost of our algorithm
is,

F (p) = O(
m

p
+ p log p+ max

i

∑
v∈V c

i

∑
u∈Nv

(d̂u + d̂v))

≈ c1
m

p
+ c2p log p+ c3 max

i

∑
v∈V c

i

∑
u∈Nv

(d̂u + d̂v),

where c1, c2, and c3 are constants. Now, the quantity denoting computation cost is given by,

c1m/p+ c3
∑
v∈V c

i

∑
u∈Nv

(d̂u + d̂v), (3.5)

which decreases with the increase of p, but communication cost p log p increases with p. Thus,
initially when p increases, the overall runtime decreases (hence the speedup increases). But, for
some large value of p, the term p log p becomes dominating, and the overall runtime increases
with the addition of further processors. Notice that communication cost p log p is independent of
network size. Therefore, when networks grow larger, computation cost increases, and hence they
scale to a higher number of processors, as shown in Figure 3.14. This is, in fact, a highly desirable
behavior of our parallel algorithm which is designed for real world massive networks. We need
large number of processors when the network size is large and computation time is high.

29

Consequently, there is an optimal value of p, popt, for which the total time F (p) drops to its min-
imum and the speedup reaches its maximum. To have an estimation of popt, we replace d and
d̂ with average degree d̄ and d̄/2, respectively, and have F (p) ≈ c1nd̄/p + c2p log p + c3nd̄

2/p.
At the minimum point, d

dp

(
F (p)

)
= 0, which gives the following relationship of popt, n and d̄:

p2(1 + log p) = n
c2

(c3d̄
2 + c1d̄). Thus, popt has roughly a linear relationship with

√
n and d̄.

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500

S
p

ee
d

u
p

 F
ac

to
r

Number of Processors

PA(1M,50)
PA(25M,50)
PA(50M,50)

PA(100M,50)

Figure 3.14: Improved scalability with increased network size.

Assume that a network with the number of nodes n′ and average degree d̄′ experimentally shows an
optimal p of p′opt. Then, another network with n nodes and an average degree d̄ has an approximate
optimum number of processors,

popt ≈ p′opt
d̄

d̄′

√
n

n′
. (3.6)

Thus, if we compute p′opt experimentally by trial and error for an available network (let’s call it
the base network), we can estimate popt for all other networks. The base network might be a small
network for which this trial-error should be fairly fast. From the result presented in Figure 3.14,
the network PA(1M, 50) can serve as a base network, and popt for the network PA(25M, 50) can
be estimated as popt ≈ 600 which is approximately 5 times of that of PA(1M, 50) (p′opt ≈ 120).
The relationship is also justified when we vary average degree of the networks.

3.4 A Sparsification-based Parallel Approximation Algorithm

In this section, we integrate a sparsification technique, called DOULION, proposed in [76] with our
parallel algorithm. Our adapted version of DOULION provides more accuracy than DOULION.
Sparsification of a network is a sampling technique where some randomly chosen edges are re-
tained and the rest are deleted, and then computation is performed in the resulting network. Sparsi-
fication of a network saves both computation time and memory space and provides an approximate
result.

30

Let G(V,E) and G′(V,E ′ ⊂ E) be the networks before and after sparsification, respectively. Net-
work G′(V,E ′) is obtained from G(V,E) by retaining each edge, independently, with probability
q and removing it with probability 1− q. Now any algorithm can be used to find the exact number
of triangles in G′. Let T (G′) be the number of triangles in G′. The estimated number of triangles
in G is given by 1

q3
T (G′), which is an unbiased estimation since E

[
1
q3
T (G′)

]
= T (G).

As shown in [76], the variance of the estimated number of triangles is

Var =

(
1

q3
− 1

)
T (G) + 2k

(
1

q
− 1

)
, (3.7)

where k is the number of pairs of triangles in G with an overlapping edge (see Figure 3.15).

u

v
w

v′

Figure 3.15: Two triangles (v, u, w) and (v′, u, w) with an overlapping edge.

In our parallel algorithm, sparsification is done as follows: each processor Pi independently per-
forms sparsification on its partition Gi(Vi, Ei). While loading partition Gi into its local memory,
it retains each edge (u, v) ∈ Ei with probability q and discards it with probability 1− q as shown
Figure 3.16. If T ′ is the number of triangles obtained after sparsification, 1

q3
T ′ is the estimated

number of triangles in G.

1: for v ∈ Vi do
2: for (v, u) ∈ E do
3: if v ≺ u then
4: toss a biased coin with success prob. q
5: if success then
6: store u to Nv

7: Ti ← count of triangles
8: Find Sum T ′ =

∑
i Ti using MPIREDUCE

9: T ← 1
q3
× T ′

Figure 3.16: Counting the number of triangles in a network with our parallel sparsification method.

Notice that the sparsification of our algorithm is not exactly the same as that of DOULION. Con-
sider two triangles (v, u, w) and (v′, u, w) with an overlapping edge (u,w) as shown in Figure
3.15. In DOULION, if edge (u,w) is not retained, none of the two triangles survive, and as a
result, survivals of (v, u, w) and (v′, u, w) are not independent events. Now, in our case, if v and
v′ are core nodes in two different partitions Gi and Gj , processor Pi may retain edge (u,w) while

31

processor Pj discards (u,w), and vice versa. As Pi and Pj perform sparsification independently,
survivals of triangles (v, u, w) and (v′, u, w) are independent events.

However, our estimation is also unbiased, and in fact, this difference (with DOULION) improves
the accuracy of the estimation by our parallel algorithm. Since the probability of survival of any
triangle is still exactly 1

q3
, we have E

[
1
q3
T ′
]

= T . To calculate variance of the estimation, let k′i be
the number of pairs of triangles with an overlapping edge such that both triangles are in partition
Gi, and k′ =

∑
i k
′
i. Let k′′ be the number of pairs of triangles (v, u, w) and (v′, u, w) with an

overlapping edge (u,w) (as shown in Figure 3.15) and v and v′ are core nodes in two different
partitions. Then clearly, k′+ k′′ = k and k′ ≤ k. Now following the same steps as in [76], one can
show that the variance of our estimation is

Var′ =
(

1

q3
− 1

)
T (G) + 2k′

(
1

q
− 1

)
. (3.8)

Comparing Eqn. 3.7 and 3.8, if k′′ > 0, we have k′ < k and reduced variance leading to improved
accuracy. This observation is verified by experimental results on two real-world networks (Table
4.4). It also suggests that accuracy can be improved with a larger number of processors.

Table 3.4: Accuracy of our parallel sparsification algorithm and DOULION [76] with q = 0.1.
Our parallel algorithm was run with 100 processors. Variance, max error and average error are
calculated from 25 independent runs for each of the algorithms.

Networks Variance Avg. error (%) Max error (%)
Our Alg. DOULION Our Alg. DOULION Our Alg. DOULION

web-BerkStan 1.287 2.027 0.389 0.392 1.02 1.08
LiveJournal 1.770 1.958 1.46 1.86 3.88 4.75

Table 3.5: Comparison of our parallel sparsification algorithm and DOULION [76] on LiveJournal
network with 100 processors.

Metrics q 0.1 0.2 0.3 0.4 0.5

Accuracy Our Alg. 99.9914 99.9917 99.9924 99.9936 99.9971
DOULION 99.6310 99.7544 99.8392 99.9121 99.9584

Speedup Our Alg. 57.88 24.36 11.04 6.19 4.0
DOULION 30.96 11.96 6.71 4.31 3.03

In [76], it was shown that due to sparsification with parameter q, the computation can be faster as
much as 1/q2 times. However, in practice the speed up is typically smaller than 1/q2 but larger than
1/q. Table 4.5 shows the accuracy and speedup factor with varying q for the LiveJournal network.
The speedup factor, due to sparsification, of our algorithm is better than that of DOULION. For the
LiveJournal network, DOULION shows a speedup of 31 with q = 0.1, while our algorithm has a
speedup of 58. Sparsification also reduces memory requirement since only a subset of the edges are

32

stored in the main memory. As a result, adaptation of sparsification allows our parallel algorithm
to work with even larger networks. With sampling probability q (the probability of retaining an
edge), the expected number of edges to be stored in the main memory is q|E|. Thus, we can expect
that the use of sparsification with PATRIC will allow us to work with a network 1/q times larger, a
network with few hundreds billion edges.

3.5 Conclusion

We presented a parallel algorithm, called PATRIC, for counting triangles in a massive network.
This parallel algorithm can work with networks that have billions of nodes and edges. Such capa-
bility of PATRIC will enable various types of analysis of massive real-world networks, networks
that otherwise do not fit in the main memory of a single processor. PATRIC shows very good
scalability with both the number of processors and the problem size and performs well on both
real-world and artificial networks. PATRIC has been able to count triangles of a massive net-
work with 1B nodes and 10B edges in 16 minutes using 40 processors. We presented several
load balancing schemes and showed that such schemes provide very good balancing. Further, we
have adopted the sparsification approach of DOULION in our parallel algorithm with improved
accuracy. This adoption will allow us to deal with even larger networks.

33

Chapter 4

A Space-efficient Parallel Algorithm for
Counting the Exact Number of Triangles in
Massive Networks

In this chapter, we present a space-efficient MPI based parallel algorithm for counting the exact
number of triangles in massive networks. Although there exist several MapReduce and only one
MPI (Message Passing Interface) based distributed-memory parallel algorithms for counting tri-
angles, those have limitations regarding space efficiency. MapReduce based algorithms generate
prohibitively large intermediate data. The MPI based algorithm can work on quite large networks,
however, the overlapping partitioning employed by the algorithm limit its capability to deal with
very massive networks. Our space-efficient algorithm partitions the network into non-overlapping
subgraphs. Our results demonstrate up to 25-fold space saving over the algorithm with overlap-
ping partitioning. This space efficiency allows the algorithm to deal with networks that are 25
times larger. We present a novel approach that reduces communication cost drastically (up to 90%)
leading to both a space- and runtime-efficient algorithm. Our adaptation of a parallel partitioning
scheme by computing a novel weight function adds further to the efficiency of the algorithm.

4.1 Introduction

The algorithm presented in Chapter 3 divides the input graph into a set of p overlapping partitions
where some edges (u, v) might be repeated (overlapped) in multiple partitions. Such overlapping
allows the algorithm to count triangles without any communication among processors leading to
faster computation. Further, since each processor works on a part of the entire graph, the algorithm
can work on large graphs. However, for instances where the graph has a high average degree or
a few nodes with high degrees, overlapping partitions can be large. Now, if overlapping of edges
among partitions are avoided, we can further improve the space efficiency of the algorithm. In
this chapter, we present a parallel algorithm which divides the input graph into non-overlapping
partitions. Each edge resides in a single partition, and the sizes of all partitions sum up to the
size of the graph. Non-overlapping partitioning leads to a more space efficient algorithm and thus

34

allows to work on larger graphs. In fact, non-overlapping partitioning offers as much as d̄ (average
degree of the graph) times space saving over the overlapping partitions. Table 4.1 shows the space
requirement of non-overlapping partitions which is up to 25 times smaller than that overlapping
partitions for the networks we experimented on.

Table 4.1: Memory usage of our algorithms (size of the largest partition) with both overlapping
and non-overlapping partitioning. Number of partitions used is 100.

Networks Memory (MB) Ratio d̄ dmaxNon-overlap. Overlap.
web-Google 1.49 11.3 7.85 11.6 6332
LiveJournal 9.41 110.75 11.75 18 20333
Miami 10.63 109.58 10.32 47.6 425
Twitter 265.82 4254.18 16.004 57.1 1001159
PA(10M, 100) 121.11 2120.94 17.5 100 25068
PA(1M, 1000) 138.20 3427.36 24.8 1000 19255

Notice the space requirement of the other distributed-memory parallel algorithms for counting
the exact number of triangles in literature: the first MapReduce based algorithm proposed in [72]
generates a huge amount of intermediate data which is significantly larger than the original network
(e.g., 125 times larger for Twitter network). The second MapReduce based algorithm proposed in
[72], the partition-based algorithm, has a space requirement of O(mp) for the Map phase (when
the network is partitioned into p subgraphs), which is p times larger than the network size. The
algorithm in [54] also requires O(mp) memory space.

Our space-efficient parallel algorithm partitions the input networks into non-overlapping sub-
graphs. The load balancing procedure makes sure that the computational cost is almost equal
for each processor. We also observe experimentally that the largest subgraph has approximately
m
p

edges. This algorithm requires only a total of O(m) space for storing all p subgraphs. This
partitioning offers as much as d̄ times saving over the overlapping partitioning and thus allows to
work on larger networks.

Our Contributions. We present a space-efficient MPI-based parallel algorithm for counting the
exact number of triangles in massive networks. The algorithm employs a non-overlapping par-
titioning leading to a significant space saving. We present a novel approach that reduces com-
munication cost drastically without requiring additional space, which leads to both a space- and
runtime-efficient algorithm. Our adaptation of a parallel partitioning scheme by computing a novel
weight function offers additional runtime efficiency to the algorithm. Our algorithm achieves up to
O(p2)-factor space saving over existing MapReduce based algorithms and up to d̄-factor (approx.)
over the algorithm with overlapping partitioning.

Remarks. Note that unlike approximation algorithms that provide an overall (global) estimate of
the number of triangles in the graph, this paper presents an exact algorithm that can be used to count
triangles incident on individual nodes (local triangles). Such local counts facilitate computing
clustering coefficient of nodes and finding vertex neighborhood and community seeds [33]. To the
best of our knowledge, among all exact algorithms, our algorithm has the lowest space complexity,
without even compromising its runtime efficiency.

35

Although there exist a couple of standard parallel graph partitioning algorithms such as Parmetis
and Zoltan [82], those might not work well for our problem. Those algorithms strive to minimize
cut edges, which help reduce communication overhead, however, we also require the computation
cost to be well-balanced among processors. We need to estimate weights of nodes (based on tri-
angle counting cost) in parallel in the partitioning procedure. This parallel computation of weights
is not readily available in standard algorithms. Hence we adapt the parallel partitioning scheme
presented in Chapter 3, which considers the actual triangle counting cost incurred at nodes and
thus helps in balancing computation loads.

We present our space-efficient parallel algorithm with non-overlapping partitioning in the follow-
ing section.

4.2 A space-efficient Parallel Algorithm for Counting Triangles

First, we present an overview of the algorithm. A detailed description follows thereafter.

4.2.1 Overview of the Algorithm.

This algorithm partitions the input graph G(V,E) into a set of p partitions constructed as follows:
set of nodes V is partitioned into p disjoint subsets V c

i , such that, for 0 ≤ j, k ≤ p− 1 and j 6= k,
V c
j ∩ V c

k = ∅ and
⋃

k V
c
k = V . Edge set Ec

i , constructed as Ec
i = {(u, v) : u ∈ V c

i , v ∈ Nu},
constitutes the i-th partition. Note that this partition is non-overlapping– each edge (u, v) ∈ E
resides in one and only one partition. For 0 ≤ j, k ≤ p − 1 and j 6= k, Ec

j ∩ Ec
k = ∅ and⋃

k E
c
k = E. The sum of space required to store all partitions equals to the space required to store

the whole graph.

Now, to count triangles incident on v ∈ V c
i , processor Pi needs Nu for all u ∈ Nv (Lines 7-10,

Figure 3.2). If u ∈ V c
i , information of both Nv and Nu is available in the i-th partition, and Pi

counts triangles incident on (v, u) by computing Nu ∩Nv. However, if u ∈ V c
j , j 6= i, Nu resides

in partition j. Processor Pi and Pj exchange message(s) to count triangles incident on such (v, u).
This exchanging of messages introduces a communication overhead, which is a crucial factor on
the performance of the algorithm. We devise an efficient approach to reduce the communication
overhead drastically and improve the performance significantly. Once all processors complete the
computation associated with respective partitions, the counts from all processors are aggregated.

4.2.2 An Efficient Communication Approach

Processors Pi and Pj require to exchange messages for counting triangles incident on (v, u) where
v ∈ V c

i and u ∈ Nv∩V c
j . A simple way to count such triangles is as follows: Pi requests Pj forNu.

Pj sends Nu to Pi, and Pi counts triangles incident on the edge (v, u) by computing Nv ∩Nu. For
further reference, we call this approach the direct approach. This approach requires exchanging

36

as much as O(md̄) messages (d̄ is the average degree of the network) which is substantially larger
than the size of the graph.

The above approach has a high communication overhead due to exchanging a large number of re-
dundant messages leading to a large runtime. Assume u ∈ Nv1∩Nv2∩· · ·∩Nvk , for v1, v2, . . . , vk ∈
V c
i . Then Pi sends k separate requests for Nu to Pj while computing triangles incident on v1, v1,
. . . , vk. In response to those requests, Pj sends Nu to Pi for a total of k times.

One seemingly obvious way to eliminate redundant messages is that instead of requesting Nu

multiple times, Pi stores it in memory for subsequent use. However, space requirement for storing
all Nu along with the partition i itself is the same as that of storing an overlapping partition. This
diminishes our original goal of a space-efficient algorithm.

Another way of eliminating message redundancy is as follows. When Nu is fetched, Pi completes
all computations that require Nu: Pi finds all k nodes v ∈ V c

i such that u ∈ Nv. It then performs
all k computations Nv ∩ Nu involving Nu and discards Nu. Now, since u ∈ Nv =⇒ v /∈ Nu,
Pi cannot extract all such nodes v from the message Nu. Instead, Pi requires to scan through its
whole partition to find such nodes v where u ∈ Nv. This scanning is very expensive, namely,
O(
∑

v∈V c
i
dv) in the worst case for each message, which might even be slower than the direct

approach with redundant messages.

All the above techniques to improve the efficiency of Direct approach introduce additional space
or runtime overhead. Below we propose an efficient approach to reduce message exchanges dras-
tically without adding further overhead.

Reduction of messages. To computeNv∩Nu for v ∈ V c
i and u ∈ Nv∩V c

j , Pi requires fetchingNu

from partition j. Instead, Pj can perform the same computation if Pi sends Nv to Pj . Specifically,
we consider the following approach: Pi sends Nv to Pj instead of fetching Nu. Pj counts triangles
incident on edge (u, v) by performing the operation Nv ∩Nu. We call this approach the Surrogate
approach.

On the surface, this approach might seem to be a simple modification from Direct approach. How-
ever, notice the following implication, which is very significant to the algorithm: once Pj receives
Nv, it can extract the information of all nodes u, such that u is in both Nv and V c

j , by scanning Nv

only. For all such nodes u, Pj counts triangles incident on edge (u, v) by performing the operation
Nv ∩ Nu. Pj then discards Nv, since it is no longer needed. Note that extracting all u such that
u ∈ Nv and u ∈ Vj requires O(dv) time (compare this to O(

∑
v∈V c

i
dv) time of direct approach for

the same purpose). In fact, this extraction can be done while computing triangles Nv ∩Nu for first
such u. This avoids any additional overhead.

As we noticed, if delegated, Pj can count triangles on multiple edges (u, v) from a single message
Nv, where v ∈ V c

i and u ∈ Nv ∩ V c
j . Thus Pi does not require to send Nv to Pj multiple times

for each such u. However, to avoid multiple sending, Pi needs to keep track of which processors it
has already sent Nv to. This message tracking needs to be done carefully, otherwise any additional
space or runtime overhead might compromise the efficiency of the overall approach.

It is easy to see that one can perform the above tracking by maintaining p flag variables, one for
each processor. Before sending Nv to a particular processor Pj , Pi checks the j-th flag to see if it
is already sent. This implementation is conceptually simple but the cost for resetting flags for each

37

v ∈ V c
i sums to a significant cost of O(|V c

i |p). Now notice that an overhead of O(|V c
i |p) will lead

to a runtime of at least Ω(n) because maxi |V c
i | ≥ n

p
. An algorithm with Ω(n) will not be scalable

to a large number of processors since with the increase of p, the runtime Ω(n) does not decrease.

Now, observe the following simple yet useful property of Nv: Since V c
j is a set of consecutive

nodes, and all neighbor lists Nv are sorted, all nodes u ∈ Nv ∩ V c
j reside in Nv in consecutive

positions. This property enables each Pi to track messages by only recording the last processor
(say, LastProc) it has sent Nv to. When Pi encounters u ∈ Nv such that u ∈ V c

j , it checks
LastProc. If LastProc 6= Pj , then Pi sends Nv to Pj and set LastProc = Pj . Otherwise, the node u
is ignored, meaning it would be redundant to send Nv. Resetting a single variable LastProc has a
overhead of O(|V c

i |) as opposed to O(|V c
i |.p).

Thus surrogate approach detects and eliminates message redundancy and allows multiple com-
putation from a single message, without even compromising execution or space efficiency. The
efficiency gained from this capability is shown experimentally in Section 4.3.

4.2.3 Pseudocode for Counting Triangles.

We denote a message by 〈t,X〉 where t ∈ {data, control} is the type and X is the actual data
associated with the message. For a data message (t = data),X refers to a neighbor listNx whereas
for a control (t = control), X = ∅. The pesudocode for counting triangles for an incoming data
message 〈data,X〉 is given in Figure 4.1.

1: Procedure SURROGATECOUNT(X, i) :
2: T ← 0 // T is the count of triangles
3: for all u ∈ X such that u ∈ V c

i do
4: S ← Nu ∩X
5: T ← T + |S|
6: return T

Figure 4.1: The procedure executed by Pi after receiving message 〈data,X〉 from some Pj .

Once a processor Pi completes the computation on all v ∈ V c
i , it broadcasts a completion message

〈control, ∅〉. However, it cannot terminate execution until it receives 〈control, ∅〉 from all other
processors since other processors might send data messages for surrogate computation. Finally, P0

sums up counts from all processors using MPI aggregation function. The complete pseudocode of
our algorithm using surrogate approach is presented in Figure 4.2.

4.2.4 Partitioning and Load Balancing

While constructing partitions i, set of nodes V is partitioned into p disjoint subsets V c
i of consecu-

tive nodes. Ideally, the set V should be partitioned in such a way that the cost for counting triangles
is almost equal for all processors. Similar to our fast parallel algorithm presented in Chapter 3, we

38

1: Ti ← 0 //Ti is Pi’s count of triangles
2: for each v ∈ V c

i do
3: for u ∈ Nv do
4: if u ∈ V c

i then
5: S ← Nv ∩Nu

6: Ti ← Ti + |S|
7: else
8: Send 〈data,Nv〉 to Pj , where u ∈ Vj , if not sent already
9:

10: for each incoming message 〈t,X〉 do
11: if t = data then
12: Ti ← Ti+ SURROGATECOUNT(X, i) // See Figure 4.2
13: else
14: Increment completion counter
15:
16: Broadcast 〈control, ∅〉
17: while completion counter < p-1 do
18: for each incoming message 〈t,X〉 do
19: if t = data then
20: Ti ← Ti+ SURROGATECOUNT(X, i) // See Figure 4.2
21: else
22: Increment completion counter
23:
24: MPIBARRIER

25: Find Sum T ←∑
i Ti using MPIREDUCE

Figure 4.2: An algorithm for counting triangles using surrogate approach. Each processor Pi

executes Line 1-22. After that, they are synchronized, and the aggregation is performed (Line
24-25).

need to compute p disjoint partitions of V such that for each partition V c
i ,∑

v∈V c
i

f(v) ≈ 1

p

∑
v∈V

f(v). (4.1)

Several estimations for f(v) were proposed in Chapter 3 among which f(v) =
∑

u∈Nv
(d̂v + d̂u)

was shown experimentally as the best. Since our algorithm employs a different communication
scheme for counting triangles, none of those estimations corresponds to the cost of this algorithm.
Thus, we derive a new cost function f(v) to estimate the computational cost of our algorithm more
precisely.

Deriving An Estimation for Cost Function f(v). We want to find f(v) such that
∑

v∈V c
i
f(v)

gives a good estimation of the computation cost incurred on processor Pi. We derive f(v) as

39

follows.

Recall that Nv = {u : (u, v) ∈ E} and Nv = {u : (u, v) ∈ E, v ≺ u}. Then, it is easy to see that

u ∈ Nv −Nv ⇔ v ∈ Nu. (4.2)

Now, Pi performs two types of computations due to all v ∈ V c
i as follows.

1. Surrogate or delegated computation: Pi compute Nv ∩Nu for all v ∈ Nu and u ∈ V c
j , i 6= j,

i.e., u ∈ (Nv −Nv) ∩ (V − V c
i). The cost incurred on Pi for such u and v is given by

Θ

∑
v∈V c

i

∑
u∈(Nv−Nv)∩(V−V c

i)

(d̂v + d̂u)

 .

2. Local computation: Pi compute Nv ∩ Nu for all u ∈ Nv ∩ V c
i . Let Ec

i be the set of edges
(u, v) where both u and v are in V c

i , i.e., Ec
i = {(u, v) ∈ E|u, v ∈ V c

i }. Now, the cost
incurred on Pi for local computations is given by

Θ

∑
v∈V c

i

∑
u∈Nv∩V c

i

(d̂v + d̂u)


= Θ

 ∑
(u,v)∈Ec

i

(d̂v + d̂u)


= Θ

∑
v∈V c

i

∑
u∈(Nv−Nv)∩V c

i

(d̂v + d̂u)

 .

By adding costs from (1) and (2) above, we get the computation cost,

Θ

∑
v∈V c

i

∑
u∈Nv−Nv

(d̂v + d̂u)

 .

Now, if we assign f(v) =
(∑

u∈Nv−Nv
(d̂v + d̂u)

)
, the computation cost incurred on Pi becomes∑

v∈V c
i
f(v). Thus, we use the following cost function:

f(v) =

(∑
u∈Nv−Nv

(d̂v + d̂u)

)
.

Parallel Computation of the Cost Function f(v). In parallel, each processor Pi computes f(v)
for all v ∈ Ci. Recall that Ci is the set of all nodes in the i-th chunk, as discussed in Section 3.3.4.
Function f(v) =

(∑
u∈Nv−Nv

(d̂v + d̂u)
)

is computed as follows.

40

i. First Pi computes d̂v, v ∈ Ci: computing d̂v requires du for all u ∈ Nv. Let u ∈ Cj . Then,
Pi sends a request message to Pj , and Pj replies with a message containing du.

ii. Then Pi finds d̂u for all u ∈ Nv −Nv: let u ∈ Cj . Pi sends a request message to Pj , and Pj

replies with a message containing d̂u.

iii. Now, f(v) =
∑

u∈Nv−Nv
(d̂v + d̂u) is computed using d̂v and d̂u obtained in step (i) and (ii).

Computing Balanced Partitions. Once f(v) is computed for all v ∈ V , we compute V c
i using the

same algorithm we used for overlapping partitioning as described in Chapter 3.

4.2.5 Correctness of the Algorithm

The correctness of our space efficient parallel algorithm is formally presented in the following
theorem.

Theorem 6 Given a graph G = (V,E), our space efficient parallel algorithm counts every trian-
gle in G exactly once.

Proof. Consider a triangle (x1, x2, x3) in G, and without the loss of generality, assume that x1 ≺
x2 ≺ x3. By the constructions of Nx (Line 2-4 in Figure 3.2), we have x2, x3 ∈ Nx1 and x3 ∈ Nx2 .
Now, there are two cases:

• case 1. x1, x2 ∈ V c
i : Nodes x1 and x2 are in the same partition i. Processor Pi executes the

loop in Line 2-6 (Figure 4.2) with v = x1 and u = x2, and node x3 appears in S = Nx1∩Nx2 ,
and the triangle (x1, x2, x3) is counted once. But this triangle cannot be counted for any other
values of v and u because x1 /∈ Nx2 and x1, x2 /∈ Nx3 .

• case 2. x1 ∈ V c
i , x2 ∈ V c

j , i 6= j: Nodes x1 and x2 are in two different partitions i and j,
respectively. Pi attempts to count the triangle executing the loop in Line 2-6 with v = x1 and
u = x2. However, since x2 /∈ V c

i , Pi sends Nx1 to Pj (Line 8). Pj counts this triangle while
executing the loop in Line 10-12 withX = Nx1 , and node x3 appears in S = Nx2∩Nx1 (Line
4 in Figure 4.1). This triangle can never be counted again in any processor, since x1 /∈ Nx2

and x1, x2 /∈ Nx3 .

Thus, each triangle in G is counted once and only once. �

4.2.6 Analysis of the Number of Messages

For v ∈ V c
i , we call (v, u) ∈ E a cut edge if u ∈ V c

j , j 6= i. Let `vj is the number of cut edges
emanating from node v to all nodes u in partition j with v ≺ u. Now, in Surrogate approach, for
all such cut edges (v, u), processor Pi sends Nv to Pj at most once instead of `vj times. This leads
to a saving of the number of messages by a factor of `vj for each v ∈ V c

i . To get a crude estimate of

41

how the number of messages for direct and surrogate approaches compare, let ` be the number of
cut edges `vj averaged over all v ∈ V c

i and partitions j. Then, the number of messages exchanged
in direct approach is roughly ` larger than surrogate approach.

As shown experimentally in Table 4.2, direct approach exchanges messages that is 4 to 12 times
larger than that of surrogate approach. Thus, surrogate approach reduces approx. 70% to 90% of
messages leading to faster computations as shown in the following section.

Table 4.2: Number of messages exchanged in Direct and Surrogate approaches.

Networks # of Messages
Ratio

Direct Surrogate
Miami 16, 321, 478 3, 987, 871 4.09
web-Google 493, 488 99, 221 4.97
LiveJournal 23, 138, 824 4, 002, 575 5.78
Twitter 247, 821, 246 25, 341, 984 9.78
PA(10M, 100) 99, 436, 823 8, 092, 340 12.29

4.3 Experimental Evaluation

In this section, we present the performance of our parallel algorithm with non-overlapping parti-
tioning and compare it with other related algorithms. We will denote our algorithm with overlap-
ping partitioning presented in Chapter 3 as AOP and the algorithm with non-overlapping partition-
ing as ANOP for the convenience of discussion.

Comparison with Previous Algorithms.

Algorithm AOP does not require message passing for counting triangles leading to a very fast
algorithm (Table 4.3). In the contrary, ANOP achieves huge space saving over AOP (Table 4.1),
although ANOP requires message passing for counting triangles. Our proposed communication
approach (surrogate) reduces number of messages quite significantly leading to an almost similar
runtime efficiency to that of AOP. In fact, ANOP loses only ∼20% runtime efficiency for the gain
of a significant space efficiency of up to 25 times, thus allowing it to work on larger networks.

A runtime comparison among other related algorithms [54, 55, 72] for counting triangles in Twitter
network is given in Figure 4.3. Our algorithm ANOP is 35, 17, and 7 times faster than that of [72],
[54], and [55], respectively. Further, ANOP is almost as fast as AOP.

Strong Scaling.

Figure 4.4 shows strong scaling (speedup) of our algorithm ANOP on Miami, LiveJournal, and
web-BerkStan networks with both direct and surrogate approaches. Speedup factors with the sur-
rogate approach are significantly higher than that of the direct approach due to its capability to
reduce communication cost drastically. Our algorithm demonstrates an almost linear speedup to a
large number of processors.

42

Table 4.3: Runtime performance of our algorithms AOP and ANOP. We used 200 processors for
this experiment. We showed both direct and surrogate approaches for ANOP.

Networks Runtime TrianglesAOP Direct Surrogate
web-BerkStan 0.10s 0.8s 0.14s 65M
Miami 0.6s 3.85s 0.79s 332M
LiveJournal 0.8s 5.12s 1.24s 286M
Twitter 9.4m 35.49m 12.33m 34.8B
PA(1B, 20) 15.5m 78.96m 20.77m 0.403M

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Suri et al. 2011 Park et al. 2013 Park et al. 2014 AOP ANOP

R
u
n
ti

m
e

(m
in

u
te

s)

Algorithms

Runtime Performance on Twitter

Figure 4.3: Runtime reported by various algorithms for counting triangles in Twitter network.

Further, ANOP scales to a higher number of processors when networks grow larger, as shown in
Figure 4.5. This is, in fact, a highly desirable behavior since we need a large number of processors
when the network size is large and computation time is high.

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

S
p
ee

d
u
p
 F

ac
to

r

Number of Processors

Miami (Surrogate)
Miami (Direct)

LiveJournal (Surrogate)
LiveJournal (Direct)
Twitter (Surrogate)

Twitter (Direct)

Figure 4.4: Speedup factors of our algorithm with both direct and surrogate approaches.

Effect of Estimation for f(v). We show the performance of our algorithm ANOP with the new cost

43

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000

S
p
ee

d
u
p
 F

ac
to

r

Number of Processors

PA(25M,100)
PA(20M,100)
PA(10M,100)

Figure 4.5: Improved scalability of our algorithm with increasing network size.

function f(v) =
∑

u∈Nv−Nv
(d̂v + d̂u) and the best function g(v) =

∑
u∈Nv

(d̂v + d̂u) computed
for AOP. As Figure 4.6 shows, ANOP with f(v) provides better speedup than that with g(v).
Function f(v) estimates the computational cost more precisely for ANOP with surrogate approach,
which leads to improved load balancing and better speedup.

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

S
p
ee

d
u
p
 F

ac
to

r

Number of Processors

Miami, f(v)
Miami, g(v)

LiveJournal, f(v)
LiveJournal, g(v)

Twitter, f(v)
Twitter, g(v)

Figure 4.6: Comparison of the cost function f(v) estimated for our algorithm with non-overlapping
partitioning and the best function g(v) in Chapter 3.

Weak Scaling. Weak scaling of a parallel algorithm measures its ability to maintain constant
computation time when the problem size grows proportionally with processors. The weak scaling
of our algorithm is shown in Figure 4.7. Since the addition of processors causes the overhead for
exchanging messages to increase, the runtime of the algorithm increases slowly. However, as the
change in runtime is rather slow (not drastic), our algorithm demonstrates a reasonably good weak
scaling.

44

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

T
im

e
R

eq
u
ir

ed
 (

se
c)

Number of Processors

Total Triangle Couting Time

Figure 4.7: Weak scaling of our algorithm, experiment performed on PA(t/10 ∗ 1M, 50) networks,
t = number of processors used.

Table 4.4: Accuracy of our parallel sparsification algorithm and DOULION [76] with q = 0.1.
Our parallel algorithm was run with 100 processors. Variance, max error and average error are
calculated from 25 independent runs for each of the algorithms. The best values for each attribute
are marked as bold.

Networks Variance Avg. error (%) Max error (%)
AOP ANOP DOULION AOP ANOP DOULION AOP ANOP DOULION

web-BerkStan 1.287 1.991 2.027 0.389 0.391 0.392 1.024 1.082 1.082
LiveJournal 1.770 1.952 1.958 1.463 1.857 1.862 3.881 4.774 4.752
web-Google 1.411 2.003 1.998 1.327 1.564 1.580 2.455 3.923 3.942
Miami 1.675 2.105 2.112 1.55 1.921 1.905 3.45 4.88 4.75

4.4 Sparsification-based Parallel Approximation Algorithms

We discussed in Section 3.4 how our parallel algorithms with overlapping partitioning (AOP) can
be adapted to design a parallel approximation algorithm. For all networks, our parallel sparsifi-
cation algorithm with AOP results in smaller variance and errors than that of DOULION. We can
also adapt our space-efficient algorithm with non-overlapping partitioning (ANOP) to devise an
approximation algorithm based on DOULION.

Although our adapted version of DOULION with AOP provides more accuracy than DOULION,
the adaptation with ANOP provides the same accuracy as original DOULION. That is, the accuracy
does not improve for parallel sparsification with non-overlapping partitioning. This is evident in
our experimental results presented in Table 4.4. Since the partitioning is non-overlapping, the
effect of parallel sparsification is the same as that of the sequential sparsification. Further, we
show in Table 4.5 a comparison of accuracies of parallel sparsification with both AOP and ANOP
with the original DOULION for various sparsification factors q. AOP has better accuracies than
the other two, and the accuracies with ANOP and DOULION are effectively the same.

The use of sparsification with our parallel algorithm ANOP will allow us to work with even larger

45

Table 4.5: Comparison of accuracy between our parallel sparsification algorithms and DOULION
on one realistic synthetic and three real-world networks with 100 processors. The best values for
each q are marked as bold.

Networks Algorithms q = 0.1 q = 0.2 q = 0.3 q = 0.4 q = 0.5

web-BerkStan
AOP 99.9921 99.9927 99.9932 99.9947 99.9979
ANOP 99.6308 99.7490 99.8392 99.9168 99.9565
DOULION 99.6309 99.7484 99.8401 99.9171 99.9566

LiveJournal
AOP 99.9914 99.9917 99.9924 99.9936 99.9971
ANOP 99.6325 99.7488 99.8412 99.9178 99.9575
DOULION 99.6310 99.7544 99.8392 99.9121 99.9584

web-Google
AOP 99.9917 99.9923 99.9929 99.9939 99.9975
ANOP 99.6299 99.7391 99.8435 99.9168 99.9577
DOULION 99.6305 99.7398 99.8428 99.9170 99.9574

Miami
AOP 99.9916 99.9919 99.9926 99.9938 99.9974
ANOP 99.6285 99.7495 99.8384 99.9168 99.9562
DOULION 99.6288 99.7494 99.8381 99.9169 99.9563

networks. Further, sparsification technique also offers additional speedup due to working on a
reduced graph. For applications requiring only an approximate count of the total triangles with a
reasonable accuracy, such parallel sparsification algorithm will be useful.

4.5 Conclusion

We present a space-efficient parallel algorithms for counting the exact number of triangles in mas-
sive networks. The algorithm employs non-overlapping partitions and reduces the space require-
ment significantly leading to the ability to work on larger networks. An efficient communication
approach reduces message passing drastically to provide a fast algorithm. Our computation of a
novel weight function for a parallel partitioning scheme adds further to the efficiency of the al-
gorithm. We also provide a comprehensive theoretical analysis to justify the performance of the
algorithm. We believe that for emerging massive networks, this algorithm will prove very useful.

46

Chapter 5

A Fast Parallel Algorithm for Counting
Triangles in Networks using Dynamic Load
Balancing

In this chapter, we present a fast MPI-based parallel algorithm for counting triangles in large net-
works using dynamic load balancing. Existing distributed memory parallel algorithms for counting
the exact number of triangles are either Map-Reduce or message passing interface (MPI) based.
Map-Reduce based algorithms generate prohibitively large intermediate data and do not demon-
strate reasonably good runtime efficiency. The MPI-based algorithms offer fast computation of
the number of triangles. However, the partitioning and load balancing schemes these algorithms
employ are static in nature; the partitions are precomputed based on some estimations. In this
work, we consider the case where the main memory of each compute node is large enough to
contain the entire network. We observe that for such a case, computation load can be balanced
dynamically and present a dynamic load balancing scheme that improves the performance of the
algorithm significantly. Our algorithm demonstrates very good speedups and scales to a large
number of processors. The algorithm computes the exact number of triangles in a network with 1
billion edges in 2 minutes with only 100 processors. Our results demonstrate that the algorithm is
significantly faster than the related algorithms with static partitioning. In fact, for the real-world
networks we experimented on, our algorithm achieves at least 2 times runtime efficiency over the
fastest algorithm with static load balancing.

5.1 Introduction

We presented an MPI-based parallel algorithm [8] for counting the exact number of triangles in
Chapter 3. The algorithm employs an overlapping partitioning scheme and a novel load balancing
scheme. This algorithm does not require any inter-processor communication and is demonstrated
to be very fast. Another MPI-based parallel algorithm [9] is presented in Chapter 4, which employs
a non-overlapping partitioning and provides a space-efficient algorithm. Both of these algorithms
partition the network such that each processor works on a single part (subgraph) of the network.

47

This allows these algorithm to work on very large networks. Further, both algorithms offer very fast
computation. However, both algorithms are based on static load balancing. Besides, the second
algorithm [9] involves exchanging data messages among processors, which reduces its runtime
efficiency to some extent.

Now, with the overlapping partitioning scheme in [8], if the average degree of the input network
is large (or the network has a few high degree nodes), the largest subgraph contains almost the
entire network. Thus the algorithm requires storing the whole network in the memory of a single
machine (which is assigned the largest subgraph). In such a case, we observe that if the system
being used can accommodate the entire network in the main memory of a single machine, we can
apply a dynamic load balancing scheme to further improve the runtime efficiency.

As reported by Leskovec et al. [56], due to the advancement of hardware technology, big-memory
machines are becoming increasingly available and affordable. Designing efficient algorithms in
such big-memory machine setting has also become an interesting line of work.

Contributions. In this chapter, we present an efficient MPI-based parallel algorithm for finding
the exact number of triangles in a network where the memory of each machine is large enough to
contain the entire network. We present a dynamic load balancing scheme that improves the perfor-
mance of the algorithm significantly. Further, we not only assign computational task dynamically
among processors, but also vary the task granularity on-the-fly. This dynamic re-adjustment of task
granularity offers additional runtime efficiency. Our algorithm achieves very good speedups and
scales well to a large number of processors. The algorithm computes the exact number of triangles
in a network with 1B edges in only 2 minutes using 100 processors. Our results demonstrate that
the algorithm is the fastest among the algorithms for counting the exact number of triangles. In
fact, the algorithm is more than twice as fast as the previous fastest algorithm.

5.2 Comparison with Related Parallel Algorithms

The MapReduce based algorithm proposed in [72] works in two rounds of Map and Reduce phases.
In Map phases, the algorithm generates a huge amount of intermediate data, which are all possible
2-paths w-v-u centered around each node v ∈ V such that u,w ∈ Nv. The algorithm then check
whether such 2-paths are closed by an edge, i.e. if (w, u) ∈ E. Since the number of these 2-paths
is very large, even larger than the network size, shuffling and regrouping these data requires a large
runtime and enormous memory. As instance, for Twitter network, 300B 2-paths are generated
whereas the network has only 2.4B edges. Even for smaller networks, if there are few nodes with
high degrees, say O(n), this algorithm generates O(n2) 2-paths centered at those nodes, which is
quite unmanageable. Many real networks demonstrate power-law degree distributions where some
nodes have very large degrees (see dmax in Table 5.1).

The MPI-based algorithm in [8] divides the input graph into a set of p overlapping subgraphs
Gi(Vi, Ei) as follows. First, V is partitioned into p disjoint subsets V c

i , such that
⋃

0≤k<p V
c
k = V .

Then, a set Vi is constructed as Vi = V c
i ∪

(⋃
v∈V c

i
Nv

)
. Now, set of edges Ei is defined as

Ei = {(u, v)|u, v ∈ Vi, (u, v) ∈ E}. Processor Pi works on Gi. Note that edges in Ec
i =

48

{(u, v)|u ∈ V c
i , v ∈ Nu} constitute the disjoint (non-overlapping) portion of the partition i. Rest

of the edges (u, v) ∈ Ei − Ec
i overlaps with some other partitions.

Now, the overlapping partitioning allows the algorithm to count triangles without any communi-
cation among processors leading to faster computation. However, with overlapping partitioning,
each processor requires a larger memory to store Gi. In fact, this is significantly larger when de-
grees of nodes of the network are large. Even if the average degree is small but the network has
few nodes with high degrees, some subgraphs can be almost equal to the size of the original graph.
Table 5.1 shows that real world networks have high degree nodes. In many cases, average degrees
of networks are also high.

Table 5.1: Memory required for storing networks along with their average and maximum degree
statistics.

Network Memory (GB) Avg. d dmax

web-Google 0.127 11.6 6332
Miami 2.7 47.6 425
LiveJournal 2.4 18 20333
Twitter 23.7 57.1 1001159
PA(10M, 100) 18.3 100 25068

Another MPI-based algorithm presented in [9] divides the input networks into non-overlapping
subgraphs. This partitioning provides the best space efficiency among the related algorithms.
Space required to store individual subgraphs add up to the space required to store the whole net-
work. However, such partitioning requires inter-processor communications for counting triangles.
Although the paper [9] presents an efficient method to reduce the communication cost drastically
making it a reasonably fast algorithm, exchanging messages still reduces its runtime efficiency
to some extent. Note that algorithms in both [8, 9] employ static load balancing schemes based
on some estimates for the cost of counting triangles. Different estimations (as referred to as cost
functions) offer varying degree of performance in load balancing, and none of them are entirely
precise. Thus, some processors might experience idle time.

Now consider the case that each computing machine has enough memory for storing the whole
network. For such a case, we observe, unlike the algorithms in [8, 9], we can apply a dynamic load
balancing scheme to reduce idle time of processors drastically and make the computation even
faster. Further, since all processors store the whole network, we do not require the procedure to
exchange data messages as required in [9].

In this chapter, we present an efficient parallel algorithm with dynamic load balancing, which
is faster than the algorithms with static partitioning. Our algorithm exchanges only small con-
trol messages (request, response, or termination messages). This has very little communication
overhead compared with [9]. To the best of our knowledge, this algorithm is the fastest among
algorithms producing the exact count of triangles in big networks. We present a trade-off between
space and runtime efficiency of three related MPI-based algorithms in Table 5.2.

49

Table 5.2: Trade-off between space and runtime efficiency of algorithms in [8, 9] and this chapter.

Algorithm Space Eff. Runtime Eff.
Non-overlapping part. [9] Most efficient Efficient

Overlapping part. [8] Medium Faster
Alg. in this chapter Least efficient Fastest

5.3 A Fast Parallel Algorithm with Dynamic Load Balancing

We present our parallel algorithm for counting triangles with an efficient dynamic load balancing
scheme. First, we provide an overview of the algorithm, and then a detailed description follows.

5.3.1 Overview of the Algorithm

Let p be the number of processors used in our computation. Our algorithm distributes the compu-
tation of counting triangles on all nodes v ∈ V in the network among these processors. We refer
the computation assigned to and performed by a processor as a task. For the convenience of future
discussion, we present the following definitions related to computing tasks.

Definition 3 Task: Given a graph G = (V,E), a task denoted by 〈v, t〉, refers to counting trian-
gles incident on nodes in {v, v + 1, . . . , v + t − 1} ⊆ V . The task referring to counting triangles
in the whole network is 〈0, n〉.

Definition 4 An atomic task: A task 〈v, 1〉 referring to counting triangles incident on a single
node v is an atomic task. An atomic task cannot be further divided.

Definition 5 Task size: Let, f : V → R be a cost function such that f(v) denotes some measure
of the cost for counting triangles on node v. We define the size S(v, t) of a task 〈v, t〉 as follows.

S(v, t) =
t−1∑
i=0

f(v + i).

A number of estimations for cost function f(v) has been given in Chapter 3. Examples include
f(v) = 1, f(v) = dv, and f(v) =

∑
u∈Nv

(d̂v + d̂u). Some of those provide better estimations than
others but have a larger computational overhead. Since our algorithm balances load dynamically,
using a computationally expensive cost function can increase the runtime of our algorithm. In this
work, we use the cost functions f(v) = 1 and f(v) = dv since those are known for all v ∈ V and
have no computational overhead. The function f(v) = 1 corresponds to the same cost for each
node, whereas f(v) = dv implies that the cost is proportional to the degree of node v.

In a static load balancing scheme, each processor works on a pre-computed partition. Since the
partitioning is based on the estimated computing cost, which might not equal to the actual com-
puting cost, some processors will remain idle after finishing computation ahead of others. Our
algorithm employs a dynamic load balancing scheme to reduce idle time of processors, leading to

50

improved performance. The algorithm divides the total computation into several tasks and assign
them dynamically. Determining how and when to assign a task requires communications among
processors. The schemes for communication and deciding task granularity are crucial to the per-
formance of our algorithm. Next, we describe the details of these schemes.

5.3.2 An Efficient Dynamic Load Balancing Scheme

We design a dynamic load balancing scheme with a dedicated processor for coordinating balancing
decisions. We distinguish this processor as the coordinator and the rest as workers. The coordi-
nator assigns tasks, receives notifications and re-assigns tasks to idle workers, and workers are
responsible for actually performing tasks. At the beginning, each worker is assigned an initial
task. Once any worker i completes its current task, it sends a request to the coordinator for an ad-
ditional task. From the available un-assigned tasks, the coordinator assigns a new task to worker
i. At the end, some processors still compute their respective tasks and some remain idle.

Assume the time required by some worker to compute the last completed task is q. The amount
of time a worker remains idle, denoted by a continuous random variable X , can be assumed to
be uniformly distributed over the interval [0, q], i.e., X ∼ U(0, q). Since E[X] = q/2, a worker
remains idle for q/2 amount of time on average. Now, the coordinator may divide the computation
into tasks of equal size and assign them dynamically. However, the size of tasks is a crucial
determinant of the performance of the algorithm. If the size S(v, t) of tasks 〈v, t〉 is large, time q
required to complete the last task becomes large, and consequently, idle time q/2 also grows large.
In contrast, if the task size is small, the idle time is expected to decrease. However, if task size is
very small, the total number of tasks becomes large, which increases communication overhead for
task requests and re-assignments.

Therefore, instead of keeping the size of tasks S(v, t) constant throughout the execution, our al-
gorithm adjusts S(v, t) dynamically, initially assigning large tasks and then gradually decreasing
them. In particular, initially half of the total computation 〈0, n〉 is assigned among the workers
in tasks of almost equal sizes. Let t′ be an integer such that S(0, t′) ≈ 1

2
S(0, n). Task 〈0, t′〉 is

divided among (P − 1) processors initially. The remaining computations 〈t′, n− t′〉 are assigned
dynamically with the granularity of tasks decreasing gradually, as described below.

Initial Assignment. The set of (p − 1) initial tasks corresponds to counting triangles on nodes
v ∈ {0, 1, . . . , t′− 1} such that S(0, t′) ≈ S(t′, n− t′). Thus we need to find node t′ which divides
the set of nodes V into two disjoint subsets in such a way that

∑t′−1
v=0 f(v) ≈ ∑n−1

v=t′ f(v), given
f(v) for each v ∈ V . Now if we compute sequentially, it takes O(n) time to perform the above
computations. However, we observe that a parallel algorithm for computing balanced partitions of
V proposed in [8] can be used to perform the above computation which takes O(n/p+ log p) time.
Once t′ is determined, the task 〈0, t′〉 is divided into (p − 1) tasks 〈vi, ti〉, one for each worker, in
almost equal sizes, that is,

S(vi, ti) =
S(0, t′)

p− 1
. (5.1)

That is, the set of nodes {0, 1, . . . , t′ − 1} is divided into (p− 1) subsets such that for each subset
{vi, vi + 1, . . . , vi + ti − 1}, ∑ti−1

k=0 f(vi + k) ≈ 1
p−1
∑t′−1

v=0 f(v). This computation can also be

51

done using the parallel algorithm [8] mentioned above. At the end of the algorithm, each worker Pi

knows its initial task 〈vi, ti〉. All workers execute their initial tasks independently without involving
the coordinator.

Dynamic Re-assignment. Once any worker completes its current task and becomes idle, the
coordinator assigns it a new task dynamically.

Let the current task available to the coordinator to be assigned to a requesting worker be
〈
v̂, t̂
〉
.

Our algorithm decreases the size S(v̂, t̂) of each dynamically assigned tasks gradually. This is
done using the following equation.

S(v̂, t̂) =
S(v̂, n− v̂)

p− 1
. (5.2)

Initially, v̂ = t′. After each assignment, v̂ is updated as v̂ ← v̂ + t̂. The coordinator knows the
size of the remaining unassigned task, which is initially S(t′, n − t′), and updates it each time
by subtracting the size S(v̂, t̂) of the newly assigned task. To determine a new task

〈
v̂, t̂
〉
, the

coordinator finds t̂ that satisfies Eqn. 5.2 by using f(v) for v ∈ {v̂, . . . , n− 1}.
By the definition of atomic task (in definition 4), t̂ is at least 1 and thus we have a finite num-
ber of tasks. When the coordinator has no more unassigned tasks, it sends a special termination
message 〈terminate〉 to the requesting workers. Once the coordinator completes sending termina-
tion messages to all workers, it aggregates counts of triangles from all workers, and the algorithm
terminates.

Note that this scheme is quite efficient. However, while the coordinator determines a new task
for dynamic assignment, a requesting worker might need to wait. This waiting can be avoided
by pre-computing tasks

〈
v̂, t̂
〉
. In fact, while workers are performing the initial assignment, the

coordinator proceeds to determine tasks
〈
v̂, t̂
〉

for subsequent assignments and fills a task queue
W . It can also determine tasks when it has no requests to serve. Thus when any worker requests
further tasks, the coordinator can readily respond. Further, responding and receiving task requests
have low communication overhead. Thus, the coordinator does not become a bottleneck in this
algorithm.

5.3.3 Counting Triangles

Once a processor i has an assigned task 〈v, t〉, it uses the algorithm presented in Figure 5.1 to count
the triangles incident on nodes in {v, v + 1, . . . , v + t− 1}.
The complete pseudocode of our algorithm for counting triangles with an efficient dynamic load
balancing scheme is presented in Figure 5.2.

5.3.4 Correctness of the Algorithm

We establish the correctness of our algorithm as follows. Consider a triangle (x1, x2, x3) with
x1 ≺ x2 ≺ x3, without the loss of generality. Now, the triangle is counted only when x1 ∈

52

1: Procedure COUNTTRIANGLES(v, t) :
2: T ← 0 // T is the count of triangles
3: for v ∈ {v, v + 1, . . . , v + t− 1} do
4: for u ∈ Nv do
5: S ← Nv ∩Nu

6: T ← T + |S|
7: return T

Figure 5.1: A procedure executed by processor Pi to count triangles corresponding to the task
〈v, t〉.

{v, v + 1, . . . , v + t− 1} for some task 〈v, t〉. The triangle is never counted again since x1 /∈ Nx2

and x1, x2 /∈ Nx3 by the construction of Nx (Line 1-3 in Figure 3.2).

5.3.5 Performance

We perform our experiments using a high performance computing cluster with 64 computing nodes
(QDR InfiniBand interconnect), 16 processors (Sandy Bridge E5-2670, 2.6GHz) per node, memory
4GB per processor, and operating system CentOS Linux 6. The experimental evaluation of the
performance our parallel algorithm for counting triangles with dynamic load balancing is presented
below.

Strong Scaling. Strong scaling of a parallel algorithm shows how much speedup a parallel al-
gorithm gains as the number of processors increases. We present the strong scaling of our algo-
rithm on Miami, LiveJournal, and web-BerkStan networks with both cost functions f(v) = 1 and
f(v) = dv in Figure 5.3. Our algorithm demonstrates very good speedups and scales almost lin-
early to a large number of processors. Further, speedup factors are significantly higher with the
function f(v) = dv than with f(v) = 1. The function f(v) = 1 refers to equal cost of counting tri-
angles for all nodes whereas the function f(v) = dv relates the cost to the degree of v. Distributing
tasks based on the sum of degrees of nodes (Eqn. 5.1 and 5.2) reduces the effect of skewness of
degrees and makes tasks more balanced leading to higher speedups. Our subsequent experiments
will be based on cost function f(v) = dv.

We also observe that the larger networks Miami and LiveJournal achieve higher speedups than
web-BerkStan. This is, in fact, a desirable advantage when we want to process big graphs. For
small networks, the communication overhead in load balancing becomes relatively significant af-
fecting the speedups to some extent.

Comparison with Previous Algorithms. We compare the runtime of our parallel algorithm with
the algorithms in [8] and [9] on a number of real and artificial networks. Note that both algorithms
in Chapter 3 and 4 are demonstrated to be faster than the MapReduce based algorithms presented
in [54, 55, 72] (Figure 4.3 in Chapter 4). We compare the runtime of our algorithm with these
two state-of-the-art fast parallel algorithms. As shown in Table 5.3, our algorithm is more than 2
times faster than [8] and about 3 times than [9] for all these networks. We also count triangles in

53

1: All processors, in parallel, do the following:
2: Determine t′ s.t. S(0, t′) = 1

2
S(0, n) using parallel alg. in [8]

3:
4: All workers do the following:
5: Determine initial tasks 〈vi, ti〉 using parallel alg. in [8]
6:
7: The coordinator does the following:
8: W ← ∅
9: v̂ ← t′

10: tr ← n− t′
11: while tr > 0 OR W 6= ∅ do
12: if tr > 0 then
13: Compute t̂ s.t. S(v̂, t̂) = S(v̂,tr)

p−1
14: W.ENQUEUE

(〈
v̂, t̂
〉)

15: v̂ ← v̂ + t̂
16: tr ← n− v̂
17: PrevRequest← true
18: while W 6= ∅ AND PrevRequest do
19: if Any task request 〈i〉 received then
20:

〈
v̂, t̂
〉
←W.DEQUEUE()

21: Send message
〈
v̂, t̂
〉

to worker i
22: else
23: PrevRequest← false
24: Send 〈terminate〉 for next (p− 1) task requests 〈i〉
25:
26: Each worker Pi does the following:
27: Ti ← 0
28: Ti ← Ti + COUNTTRIANGLES(vi, ti) //for initial task
29: done← false
30: while not done do
31: Send message 〈i〉 to coordinator
32: Receive message M from coordinator
33: if M is 〈terminate〉 then
34: done← true
35: else if M is a task

〈
v̂, t̂
〉

then
36: Ti ← Ti + COUNTTRIANGLES(v̂, t̂)
37:
38: MPIBARRIER

39: Find Sum T ←∑
i Ti in parallel using MPIREDUCE

40: return T

Figure 5.2: An algorithm for counting triangles with dynamic load balancing.

54

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

S
p
ee

d
u
p
 F

ac
to

r

Number of Processors

Miami, f(v)=dv
Miami, f(v)=1

LiveJournal, f(v)=dv
LiveJournal, f(v)=1

web-BerkStan, f(v)=dv
web-BerkStan, f(v)=1

Figure 5.3: Speedup factors of our algorithm on Miami, LiveJournal and web-BerkStan networks
with both f(v) = 1 and f(v) = dv cost functions.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100

R
u
n
ti

m
e

(s
)

Rank of Processors

LiveJournal (Static)
LiveJournal (Dynamic)

Miami (Static)
Miami (Dynamic)

Figure 5.4: Runtime required by processors (rankwise) with both static tasks and dynamic adjust-
ment of task granularity.

Twitter network (having 2.4B edges), which requires 8 minutes with only 100 processors. This is
significantly faster than [8] and [9] which use even twice as much processors. The algorithm in [8]
and [9] are based on static partitioning whereas our algorithm employs a dynamic load balancing
scheme to reduce idle time of processors leading to improved performance.

We also present a comparison of speedup factors for our algorithm and the algorithms in [8] and
[9] on Miami and LiveJournal networks in Figure 5.7. Our algorithm achieves significantly higher
speedups.

We also notice the reported performance of several shared memory parallel algorithms. The paral-
lel approximation algorithm in [73] demonstrates a speedup of ≈ 11 with 12 cores. However, it is
not clear how the algorithm will scale for a larger number of cores (or processors). As we demon-
strated, our algorithm scales almost linearly to a large number of processors. Another shared
memory based parallel approximation algorithm is proposed in [60]. The paper reports speedups

55

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500

S
p
ee

d
u
p
 F

ac
to

r

Number of Processors

PA(20M,20), This alg.
PA(20M,20), PATRIC

PA(2M,20), This alg.
PA(2M,20), PATRIC

Figure 5.5: Our algorithm with dynamic load balancing shows improved scalability with increasing
network size. Further, this algorithm achieves higher speedups than PATRIC (in Chapter 3).

 0

 5

 10

 15

 20

 25

 100 150 200 250 300 350 400 450 500

T
im

e
R

eq
u
ir

ed
 (

se
c)

Number of Processors

Total Triangle Couting Time

Figure 5.6: Weak scaling of our algorithm. We perform this experiment on PA(t/10 ∗ 1M, 50)
networks, t = number of processors used.

using only 32 cores. Further, these speedups are due to both approximation and parallel threads.
For example, with a sample factor p = 0.01, the paper reports a speedup of 837.74 for Wiki-1 graph
with 32 threads, where the approximation contributes a factor of 33.54 in the speedup. The results

Table 5.3: Runtime performance of our algorithm and algorithm [8].

Networks Runtime Triangles
[9] [8] Our algo.

web-BerkStan 0.14 0.10s 0.041s 65M
LiveJournal 1.24 0.8s 0.384s 286M
Miami 0.79 0.6s 0.301s 332M

56

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

S
p
ee

d
u
p
 F

ac
to

r

Number of Processors

Miami, this algo.
LiveJournal, this algo.

Miami, with [24]
LiveJournal, with [24]

Miami, with [27]
LiveJournal, with [27]

Figure 5.7: Comparison of speedup factors of our algorithm with [8] and [9] on Miami and Live-
Journal networks.

for other networks demonstrate a parallelization speedup between 1.44 and 24 with 32 threads.
Though some networks show good speedups, many of them do not. Further, results for a larger
number of cores are not shown in the paper. Similarly, the shared memory algorithm in [68] is
reported to scale to 64 cores and achieves speedups ranging from 17 to 50 .

Effect of Dynamic Adjustment of Task Granularity. We show how the granularity of tasks
affects the idle time of worker processors for Miami and LiveJournal networks. As Figure 5.4
shows, with tasks of static (equal) size, the distribution of runtime among processors are very
uneven leading to large idle times of some processors. However, dynamic adjustment of task
granularity (gradual decrease of task size) provides an almost even distribution of runtime leading
to very short idle times. This allows balanced computing loads among processors and consequently
improves the runtime performance of the algorithm. Note that we used 100 processors for this
experiment. Although we could use a higher number of processors, using fewer processors helped
demonstrate the differences in idle times more clearly. In our next experiment, we show that our
algorithm scales to higher number of processors when networks grow larger.

Scaling with Processors and Network Size. Our algorithm scales to a higher number of proces-
sors when networks grow larger, as shown in Figure 5.5. This is, in fact, a highly desirable behavior
since we need a large number of processors when the network size is large and computation time
is high. Scaling of our algorithm with number of processors is very comparable to that of [8]. To
our advantage, our algorithm achieves significantly higher speedup factors than [8].

Weak Scaling. Weak scaling of a parallel algorithm shows the ability of the algorithm to maintain
constant computation time when with the increase of the number of processors, the problem size
also grows proportionally. The weak scaling of our algorithm is shown in Figure 5.6. With the
addition of processors, communication overhead increases since idle workers exchange messages
with the coordinator for new tasks. However, since the overhead for requesting and assigning tasks
is very small, the increase of runtime with additional processors is rather slow (not drastic). Thus,
our algorithm demonstrates a reasonably good weak scaling.

57

5.4 Conclusion

We present a fast parallel algorithms for counting triangles in large networks. When the main
memory of each computing machine is large enough to store the whole network, our parallel algo-
rithm with dynamic load balancing can be used for faster analysis of the network. We believe that
for emerging big networks, this algorithm will be proven very useful.

58

Chapter 6

Applications of Our Algorithms for
Counting Triangles

In this chapter, we present how our parallel algorithms for counting triangles can be used for
listing all triangles in networks. Such listing or enumeration has useful applications in finding local
patterns and computing clustering coefficients of nodes in networks. We also present a scalable
parallel algorithm for computing clustering coefficients based on our algorithms for enumerating
triangles. Finally, we discuss some other applications of counting triangles and demonstrate how
the number of triangles can be used to comment on the general structure of networks.

6.1 Listing Triangles in Graphs

Our parallel algorithms for counting triangles in Chapter 3, 4 and 5 can easily be extended to list
all triangles in graphs. Triangle listing has various applications in the analysis of graphs such as
the computation of clustering coefficients, transitivity, triangular connectivity, and trusses [22].
Our parallel algorithms counts the exact number of triangles in the graph. To count the number of
triangles incident on an edge (u, v), the algorithms perform a set intersection operation Nv ∩ Nu.
After each intersection operation, all associated triangles can be listed simply by the code shown
in Figure 6.1.

1: S ← Nv ∩Nu

2: for w ∈ S do
3: Output triangle (u, v, w)

Figure 6.1: Listing triangles after performing the set intersection operation for counting triangles.

59

6.2 Computing Clustering Coefficient of Nodes

Our parallel algorithms can be extended to compute local clustering coefficient without increasing
the cost significantly. In a sequential setting, an algorithm for counting triangles can be directly
used for computing clustering coefficients of the nodes by simply keeping the counts of triangles
for each node individually. However, in a distributed-memory parallel system, combining the
counts from all processors for a node poses another level of difficulty. We present an efficient
aggregation scheme for combining the counts for a node from different processors.

Parallel Computation of Clustering Coefficients. Recall that clustering coefficients of nodes v
is computed as follows:

Cv =
Tv(
dv
2

) =
2Tv

dv(dv − 1)
,

where Tv is the number of triangles containing node v.

Our parallel algorithms for counting triangles count each triangle only once. However, all triangles
containing a node v might not be computed by a single processor. Consider a triangle (u, v, w) with
u ≺D v ≺D w. Further, assume that u ∈ V c

i , v ∈ V c
j , and w ∈ V c

k , where i 6= j 6= k. Now, for our
parallel algorithm AOP (presented in Chapter 3), the triangle (u, v, w) is counted by Pi. Let T i

v be
the number of triangles incident on node v computed by Pi. We also call such counts local counts
of v in processor Pi. For the triangle (u, v, w), Pi tracks local counts of all of u, v, and w. Thus, the
total count of triangles incident on a node v might be distributed among multiple processors. Each
processor Pi needs to aggregate local counts of u ∈ V c

i from other processors. (For our algorithm
ANOP presented in Chapter 4, the above triangle (u, v, w) is counted by Pj , and a similar argument
as above holds.)

To aggregate local counts from other processors, the following approach can be adopted: for each
processor, we can store local counts T i

v in an array of size Θ(n) and then use MPI All-Reduce
function for the aggregation. However, for a large network, the required system buffer to perform
the MPI aggregation on arrays of size Θ(n) might be prohibitive. Another approach for aggregation
might be as follows. Instead of using main memory, local counts can be written to disk files based
on some hash functions of nodes. Each processor Pi then aggregates counts for nodes v ∈ V c

i from
P disk files. Even though this scheme saves the usage of main memory, performing a large number
of disk I/O leads to a large runtime.

Both of the above approach compromises either the runtime or space efficiency. We use the fol-
lowing approach which is both time and space efficient.

Our approach involves two steps. First, for each triangle counted by Pi, it tracks local counts T.i

as shown in Figure 6.2.

Second, processor Pi aggregates local counts of nodes v ∈ V c
i from other processors. Total number

of triangles Tv incident on v is given by Tv =
∑

j 6=i T
j
v . Each processor Pj sends local counts T j

v

of nodes v ∈ V c
i encountered in any triangles counted in partition j. Pi receives those counts

and aggregates to Tv. We present the pseudocode of this aggregation in Figure 6.3. Finally, Pi

computes Cv = 2Tv

dv(dv−1) for each v ∈ V c
i .

60

1: for for each triangle (v, u, w) counted in Gi do
2: T i

v ← T i
v + 1

3: T i
u ← T i

u + 1
4: T i

w ← T i
w + 1

Figure 6.2: Tracking local counts by processor Pi. Each triangle (v, u, w) is detected by the triangle
listing algorithm shown in Figure 6.1.

1: for v ∈ V c
i do

2: Tv ← T i
v

3: for each processor Pj do
4: Construct message 〈Y j

i , T j
i 〉 s.t.:

Y j
i ← {v|v ∈ Nu, u ∈ V c

i } ∩ V c
j , T j

i ← {T i
v|v ∈ Y j

i }.
5: Send message 〈Y j

i , T j
i 〉 to Pj

6: for each processor Pj do
7: Receive message 〈Y i

j , T i
j 〉 from Pj

8: Tv ← Tv + T j
v

Figure 6.3: Aggregating local counts for v ∈ V c
i by Pi.

Our approach tracks local counts for nodes v ∈ V c
i and neighbors of such v which requires, in

practice, significantly smaller than Θ(n) space. Next, we show the performance of our algorithm.

Performance. We show the strong and weak scaling of our algorithm for computing clustering
coefficients of nodes in Figure 6.4 and 6.5, respectively. The algorithm shows good speedups and
scales almost linearly to a large number of processors. Since aggregating local counts introduces
additional inter-processor communication, the speedups are a little smaller than that of the triangle
counting algorithms. For the same reason, the weak scalability of the algorithm is a little smaller
than that of the triangle counting algorithms. However, the increase of runtime with additional
processors is still not drastic, and the algorithm shows a good weak scaling.

6.3 Other Applications for Counting Triangles

The number of triangles in graphs have many important applications in data mining. Becchetti
et al. [15] showed how the number of triangles can be used to detect spamming activity in web
graphs. They used a public web spam dataset and compared it with a non-spam dataset: first, they
computed the number of triangles for each host and plotted the distribution of triangles and cluster-
ing coefficients for both dataset. Using Kolmogorov-Smirnov test, they concluded the distributions
are significantly different for spam and non-spam datasets. Further, the authors also showed how
to comment on the role of individual nodes in a social network based on the number of triangles
they participate. Eckmann et al. [30] used triangle counting in uncovering the thematic structure of

61

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500

S
p
ee

d
u
p
 F

ac
to

r

Number of Processors

LiveJournal, AOP
Twitter, AOP

LiveJournal, ANOP
Twitter, ANOP

Figure 6.4: Strong scaling of clustering coefficient algorithm with both AOP and ANOP on Live-
Journal and Twitter networks.

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500

T
im

e
R

eq
u
ir

ed

Number of Processors

Computing CC
Triangle Counting

Figure 6.5: Weak scaling of the algorithms for computing clustering coefficient (CC) and counting
triangles (TC).

the web. The abundance of triangles also implies community structures in graphs. Nodes forming
a subgraph of high triangular density usually belong to the same community. In fact, the number of
triangles incident on nodes has been used by several methods in the literature of community detec-
tion [57, 70, 81]. The computation of clustering coefficients also requires the number of triangles
incident on nodes. Social networks usually demonstrate high average clustering coefficients. We
show how clustering coefficients can be computed using our parallel algorithms in Section 6.2.

In this section, we discuss how the number of triangles can be used to characterize various types
of networks. There is a multitude of real-world networks including social contact networks, online
social networks, web graphs, and collaboration networks. These networks vary in terms of trian-
gular density and community or social structure in them. As a result, it is possible to characterize
real-world networks based on their triangle based statistics. We define the normalized triangle
count (NTC) as the mean number of triangles per node in the network. We compute NTC for a

62

Table 6.1: Comparison of the number of triangles (4) and normalized triangle count (NTC) in
various networks. We used both artificially generated and real-world networks.

Network n 4 NTC(4/n)
Gnp(500K, 20) 500K 1308 0.0026
PA(25M, 50) 25M 1.3M 0.052

Email-Enron 37K 727044 19.815
web-Google 0.88M 13.39M 15.293

LiveJournal 4.85M 285.7M 58.943
web-BerkStan 0.69M 64.69M 94.408

Miami 2.1M 332M 158.095
com-Orkut 3.07M 628M 204.262
Twitter 42M 34.8B 828.571

variety of networks and show the comparison in Table 6.1. Many random graph models such as
Erdős-Réyni and Preferential Attachment models do not generate many triangles, and the resulting
NTCs are also very low. Some communication and web graphs (e.g., Email-Enron) generate a de-
scent number of triangles because of the nature of the communication and links among web pages
in the host domain. When social or cluster structure exists in the network, we get a larger number
of triangles per node, as shown in Table 6.1 for LiveJournal and web-BerkStan networks. Further,
for networks with a more developed social structure and realistic person-to-person interactions,
NTCs are very large, as evident for Miami, com-Orkut, and Twitter networks. Thus the number of
triangles offers good insights about the underlying social and community structures in networks.

63

Part II

Characterizing Networks Based on
Common Neighbor Statistics

64

Chapter 7

How Much Common Neighbors Can Reveal
about Networks

Characterizing social and information networks based on some properties has been of growing
interest. Degree distribution, the number of triangles, clustering coefficients, and diameter are
among the most explored properties. An important property, related to triangles, of many net-
works, mostly social networks, is high transitivity, which states that two nodes having common
neighbors tend to become neighbors to one another. In this chapter, we present a characterization
of networks by quantifying the number of common neighbors and demonstrate its relationship with
other network properties. Among others, we answer the following questions: how much does the
number of common neighbors tell about forming an edge between two nodes? How do common
neighbor statistics relate to community structure of networks? Based on the Jaccard indices of
edges, we observe that there is an interesting threshold behavior of two nodes connecting by an
edge in the social and information networks we examined. We also demonstrate how common
neighbor statistics relate to community structure of networks.

7.1 Introduction

Since a graph is a powerful abstraction of a complex system, graph analysis helps us to under-
stand the underlying system. This understanding is vital to improving or modifying the system
or rather generally, to making any pertinent decision about the system. Some significant exam-
ples of systems studied through graphs are the Web, various social networks, e.g., Facebook and
Twitter [41], patterns of scientific collaborations [50], infrastructure networks, e.g., transportation
networks, and many forms of biological networks [32]. Though such interaction data is available
for several popular systems, there is still a considerable obstacle in obtaining such data for many
systems due to security and privacy concerns. Thus, generating synthetic but realistic graphs has
received considerable attention [39, 44]. Ideally, these generative models should capture important
features of the networks being modeled. As a consequence, in a related line of work, researchers
have given attention to understand the important features inherent to networks. In particular, efforts
are being made to find the distinguishing characteristics of real-world networks. Among questions

65

asked in this context are as follows: what rules or properties hold for natural graphs? How can we
contrast natural graphs with random graphs? To answer these (and similar) questions, researchers
have focused on finding metric or properties that occur regularly in natural graphs. The prominent
ones found in the literature include power-law degree distribution, small diameter, and community
structures. Now, though the notion of community structure is quite intuitive, there is no consen-
sus of how to define and formalize it. This provides an open avenue for researchers to explain
the implicit communities in natural networks through a computationally efficient explicit measure
(metric) or phenomenon. The work in this chapter aims at understanding real-world social and
information networks through the implicit notion of communities based on common neighbors of
a pair of nodes. The main results of this chapter are outlined as follows.

A threshold phenomenon. A popular sociological belief is that people having common friends
tend to become friends themselves [47]. The more common friends a pair of people have, the
greater chance it creates for those two people becoming friends. However, there is no quantifiable
analysis in this regard. Specifically, we do not know how many common friends suffice to generate
a high likelihood for those two people to become friends. To pose the question in a graph setting,
how much does the number of common neighbors tell about forming edges between two nodes?
Based on the Jaccard indices of edges, we observe that there is an interesting threshold behavior of
two nodes connecting by an edge for the social and information networks we examined. We intro-
duce the Jaccard transition curves that capture this threshold phenomenon. Above this threshold
the chance of two nodes being connected by an edge rises sharply.

Contrasting bi-partitions. We show that based on the threshold of edge strength, a network can
be partitioned into two subgraphs that show contrasting behavior in terms of network model and
construction. One subgraph is induced by the edges with Jaccard indices larger than a threshold,
e.g., 0.1, whereas the other subgraph is induced by the remaining edges. We observe that the
maximum degree in the subgraph with high Jaccard edges are bounded by a small number (≈ 100).
This hints that a dense part of the graph is contained by the edges with high Jaccard indices.

Common neighbor statistics and communities. We demonstrate how common neighbor statistics
represented by Jaccard indices can differentiate real-world social networks from random networks.
We observe that networks with social (community) structure demonstrate a distinguishing pattern
in the Jaccard transition curves. We show how common neighbor statistics relate to community
structure of networks.

Characterizing networks based on Jaccard statistics. Since different networks show different
patterns in Jaccard transition curves, we investigate the following question: can Jaccard transition
curves reveal any global features of networks? Or, can we characterize a network based on Jaccard
transition curves? Based on a popular classification method (C4.5 algorithm) in data mining lit-
erature, we show that we can successfully classify networks into categories such as collaboration,
Facebook, and autonomous system networks. Further, using regression analysis, we also predict
community sizes of networks from Jaccard statistics with reasonable accuracies.

66

Table 7.1: Datasets used in our experiments.

Network Nodes Edges Source
ca-AstroPhysics 18772 198K SNAP [69]
Amazon CP > 200K > 1M SNAP [69]
Oregon AS 10K 22K SNAP [69]
Anonymous FB > 10K > 200K networkrepository.com
Email-Enron 37K 0.36M SNAP [69]
web-BerkStan 0.69M 13M SNAP [69]
LiveJournal 4.8M 86M SNAP [69]
Twitter 42M 2.4B [41]
Gnp(n, d) n 1

2
nd Erdős-Réyni

PA(n, d) n 1
2
nd Pref. Attachment

7.2 Preliminaries

In this section, we describe the notations used throughout the chapter and the datasets we examined.

Notations. We denote a network by G(V,E), where V and E are the sets of nodes (vertices) and
edges, respectively, with m = |E| edges and n = |V | nodes. The adjacency list of node v is
denoted by Nv and the degree of node v, dv = |Nv|.
Jaccard similarity coefficients or Jaccard indices quantify the number of common elements of a
pair of sets normalized by the number of all distinct elements. It is one of the most widely used
similarity metrics. Jaccard index of two sets A and B is defined as,

J(A,B) =
|A ∩B|
|A ∪B| =

|A ∩B|
|A|+ |B| − |A ∩B| (7.1)

For our purpose, sets are adjacency lists of nodes. We define,

Juv = J(N(u), N(v)) =
|N(u) ∩N(v)|
|N(u) ∪N(v)| , (7.2)

whereN(v) is the adjacency list of v. Given a networkG(V,E), we compute the Jaccard similarity
Juv for all pairs (u, v), u, v ∈ V .

Datasets. We have examined a large number of real-world and artificially generated networks.
Table 7.1 provides a subset of networks we used in our experiments.

We experimented on several types of networks: (i) social networks that consist of online social
or contact networks, (ii) co-authorship networks in various disciplines, (iii) web-graphs where
nodes represent web pages and edges represent hyperlinks, (iv) internet networks, (v) infrastructure
networks such as road networks, and (vi) few random or artificially generated networks. Artificial
network PA(n, d) is generated using the preferential attachment (PA) model [13] with n nodes
and average degree d. Network Gnp(n, d) is generated using the Erdős-Réyni random graph model

67

1: {Cuv: Number of common neighbors of u and v}
2: {Juv: Jaccard index of the pair (u, v)}
3: for v ∈ V do
4: for each pair u,w ∈ Nv do
5: Cuv ← Cuv + 1
6: for v ∈ V do
7: for each pair u,w ∈ Nv do
8: Juv ← Cuv

du+dv−Cuv

Figure 7.1: Algorithm for computing all-pair Jaccard indices with wedge enumeration. Pairs with
a Jaccard index of 0 are omitted.

[17], also known asG(n, p) model, with n nodes and edge probability p = d
n−1 so that the expected

degree of each node is d. Note that, we consider all our networks undirected.

Table 7.1 also shows the number of nodes and edges in all networks. The sizes of the networks
we studied range from about 10,000 nodes up to nearly tens of millions of nodes and from about
20,000 edges up to hundreds of millions of edges. The networks are also of varying sparsity: the
average degrees vary from about 10 to several hundreds.

7.3 Computing Jaccard Index and Transition Plots

In this section, we discuss our quantification of the common neighborhood of a pair of nodes in a
network. We then introduce the transition plot to characterize networks based on such quantifica-
tion.

7.3.1 Computing Jaccard Index

A naïve approach to compute all-pair Jaccard index in a graphG(V,E) is to enumerate all possible
pairs (u, v), and find the number of common neighbors of u and v. There are

(
n
2

)
such pairs. If

neighbor lists Nx are sorted, then finding common neighbors of u and v requires Θ(du + dv) time.
Thus this algorithm takes O(

∑
i∈V
∑

j∈V−{i}(di + dv)) ≈ O(n2dmax) time.

Notice that a pair of nodes (u, v) cannot have a non-zero Jaccard coefficient unless they are the end
points of at least one wedge (u,w, v). Thus enumerating all wedges gives us all pairs (u, v) such
that Juv > 0. Based on this observations, we devise the following algorithm (Figure 7.1) based on
wedge enumeration.

68

7.3.2 Transition Plots

We compute Jaccard indices for all pairs of nodes in the network. Our goal is to understand how
Jaccard indices for the edges differ from those of the non-edge pairs.

First, we plot distribution of Jaccard indices Juv of edges (u, v) ∈ E. We divide the range of
Jaccard indices (0 to 1) into a number of bins. If we use k bins, then size of each bin i is 1/k and
it ranges from (i− 1)/k to i/k. For each bin i, we count the number of edges Ei having a Jaccard
index between (i − 1)/k and i/k. We plot a curve with these bins i in x-axis and the number of
edges Ei having Jaccard indices in a particular bin i in y-axis.

Second, we plot another distribution of Jaccard indices of Juv of non-edge pairs (u, v) /∈ E. The
plots are constructed in the same way as above. Let, the number of non-edge pairs having a Jaccard
index between (i− 1)/k and i/k be Ēi .

 1

 10

 100

 1000

 10000

 0.01 0.1 1

F
re

q
u

en
cy

Jaccard Similarity Coeff.

Jaccard Coeff. Distribution

(a) Jaccard index distribution for
edges

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.01 0.1 1

F
re

q
u

en
cy

Jaccard Similarity Coeff.

Jaccard Coeff. Distribution

(b) Jaccard index distribution for
non-edges

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

R
at

io

Jaccard Similarity Coeff.

Ratio of edge pairs over the total

(c) Transition curve

Figure 7.2: Transition curve for Jaccard indices for Astrophysics collaboration network.

Figures 7.2a and 7.2b show the Jaccard distribution curves of edges and non-edge pairs, respec-
tively, for Astrophysics network. Many edges have very high Jaccard indices, whereas only a few
non-edge pairs have high Jaccard indices. We combine these observations by constructing another
plot as follows. For each bin i, we compute the ratio of the number of edges having Jaccard index
between (i− 1)/k and i/k, to the number of all pairs of nodes (both edges and non-edges) having
Jaccard index in the same range. We plot a curve with the ratio in y-axis and the bins of Jaccard
indices in x-axis and refer it to as the Jaccard transition curve. For a given bin i, the value along
y-axis is defined by,

yi =
Ei

Ei + Ēi

. (7.3)

Figure 7.2c shows Jaccard transition curve for Astrophysics network. We observe an interesting
transition pattern in the curve. Specifically, the curve shows a sharp rise for the Jaccard indices
roughly between 0.1 and 0.2. We will further investigate this pattern in our next subsection for a
variety of networks.

Note the following alternative interpretation of the transition curves: let, (x, y) be a point in the
transition curve and the Jaccard index Juv of a pair of nodes u, v is x. Then, the probability that

69

these nodes u, v are connected by an edge is y. Thus, the curve quantifies how much common
neighbors contribute to the existence of an edge between a pair of nodes. It would also be interest-
ing to see if different kinds of graphs demonstrate different trends or patterns in transition curves,
which we investigate next.

7.3.3 Transition Plots for Variety of Networks

We compute transition plots for different kinds of networks. Figure 7.3 shows the transition curves
for social networks (and similar) graphs. Transition plots for some other kinds of graphs (internet,
infrastructure and wiki) are shown in Figure 7.4.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

R
at

io

Jaccard Similarity Coeff.

Ratio of edge pairs over the total

(a) Carnegie Mellon FB Network

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

R
at

io

Jaccard Similarity Coeff.

Ratio of edge pairs over the total

(b) Emory FB Network

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

R
at

io

Jaccard Similarity Coeff.

Ratio of edge pairs over the total

(c) AstroPhysics Co-authorship
Network

Figure 7.3: Transition curve for Jaccard indices on social-network-like graphs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.01 0.1 1

R
at

io

Jaccard Similarity Coeff.

Ratio of edge pairs over the total

(a) AS Network (Oregon)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

R
at

io

Jaccard Similarity Coeff.

Ratio of edge pairs over the total

(b) CA Road Network

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.01 0.1 1

R
at

io

Jaccard Similarity Coeff.

Ratio of edge pairs over the total

(c) Wiki Vote Network

Figure 7.4: Transition curve for Jaccard indices on non social-network-like graphs.

We observe, for social networks (and likes), the transition curves demonstrate an interesting pat-
tern. Non-edge pairs are abundant when bins have Jaccard indices smaller than 0.1. Thus the
y-value of the transition curve is very low. However, from Jaccard indices 0.1 to 0.2, there is a
very sharp transition to a higher ratio indicating a larger number of edges compared to non-edges.
We find this threshold behavior interesting as other non-social networks do not demonstrate similar
trends.

70

An interesting interpretation of this threshold is as follows. When the Jaccard index of a pair
of nodes (u, v) crosses the threshold 0.1, they will be connected by an edge with a very high
probability. Taking social networks into consideration, when two people have as many common
friends as to generate a Jaccard threshold higher than the threshold 0.1, they will more likely be
friends themselves.

7.3.4 An Alternative Justification of the Threshold

We experiment on the prediction of edges in a network based on Jaccard index of associated pair
of nodes. We set a threshold and predict an edge if a pair has a Jaccard index above the threshold.
We define the following quantities to assess the performance of prediction based on Jaccard index
threshold t ranging from 0 to 1.

• True Positive: Number of edges (u, v) with Juv ≥ t.

• False Negative: Number of edges (u, v) with Juv < t.

• True Negative: Number of non-edges (u, v) with Juv < t.

• False Positives: Number of non-edges (u, v) with Juv ≥ t.

• True Positive Rate (TPR): Number of true positive over number of edges.

• True Negative Rate (TNR): Number of true negative over number of non-edges.

• Precision: Number of true positive over sum of number of true and false positive.

• F1 Score: Harmonic mean of precision and recall (TPR).

We experiment on a group of networks to see how prediction performance changes by varying the
threshold values. We pick the optimum threshold based on the maximum F1 score. We determine
the optimum threshold value based on how it contributes to the accuracy for predicting edges.
Figure 7.5 shows the F1 score for different threshold values. F1 score is maximum at Jaccard
threshold value 0.1. Further, as Tables 7.2 and 7.3 show, we can predict edges with maximum
accuracy when we set the Jaccard threshold to 0.1. These experiments provide another justification
of our previous observation of a sharp rise of Jaccard transition curve at Jaccard index of 0.1.

7.4 Other Implications of Threshold Behavior

We describe some useful implications of the threshold behavior of transition curves.

71

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

P
re

d
ic

ti
v

e
E

ff
ic

ie
n

cy

Jaccard Index Threshold

Carnegie49

TPR
TNR

Precision
F1

(a) Carnegie Mellon FB Network

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

P
re

d
ic

ti
v

e
E

ff
ic

ie
n

cy

Jaccard Index Threshold

Emory27

TPR
TNR

Precision
F1

(b) Emory FB Network

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

P
re

d
ic

ti
v

e
E

ff
ic

ie
n

cy

Jaccard Index Threshold

ca-AstroPh

TPR
TNR

Precision
F1

(c) AstroPhysics Co-authorship
Network

Figure 7.5: Change of the prediction performance in terms of F1 scores by varying the threshold
of Jaccard indices on networks with social structures.

Table 7.2: Jaccard indices that achieve the maximum F1 scores for several Facebook networks.

Networks argmaxj{F1} Max F1

Brown 0.072 0.4756
Caltech 0.138 0.5562
Carnegie 0.082 0.5157
Emory 0.082 0.4838
Michigan 0.084 0.4909
AVG, Jtr= 0.0916

7.4.1 Contrasting Bi-partitions

Based on the threshold of edge strength, a network can be partitioned into two partitions consisting
of strong edges and weak edges, respectively. We observe degree distribution, number of triangles,
among others, in each partition. As shown in Figure 7.7, a subgraph induced by strong edges has
a smaller maximum degree (∼ 100). This hints that strong edges might form dense subgraphs.
We will further explore this hypothesis while exploring the relationship of Jaccard threshold and
community structure.

7.4.2 Random Network Models and the Threshold Behavior

We experimented with Erdos-Reyni, Chung-Lu, and BTER [39] graphs. Clearly, Erdos-Reyni and
Chung-Lu graphs do not demonstrate Jaccard threshold behavior. On the other hand, BTER graphs
show the threshold to some extent (even though not in a clear pattern). Figures 7.8, 7.9, and 7.10
show related plots.

We next try to generate some random networks (with n nodes and m edges) where information
about common neighbors are taken into consideration while generating new edges. This is done as
follows:

72

Table 7.3: Accuracies for predicting edges based on the optimum Jaccard index Jtr achieved from
the training data in Table 7.2.

Networks argmaxj{F1} Max F1 F1(Jtr) Accuracy
Reed 0.112 0.475115 0.449163 0.945377435
Rice 0.092 0.527669 0.527669 1

Table 7.4: Comparison of m, the number of triangles 4, maximum degree dmax, and average
degree davg in the network induced by weak edges G<t=0.1 and the Chung-Lu network Gcl con-
structed with the same degree distribution as G<t=0.1. The weak edges are the edges with Jaccard
indices < 0.1.

Networks m 4 dmax davg
G<t Gcl G<t Gcl G<t Gcl G<t Gcl

amazon0312 979707 978819 147193 11585 2747 2763 5.71 6.39
amazon0505 1011268 1011160 170718 11857 2760 2744 5.75 6.43
amazon0601 1003649 1003538 167652 11835 2752 2737 5.83 6.49
cit-Patents 14929679 14926796 1595110 1281 793 835 7.94 8.73
roadNet-CA 2417605 2419392 0 3 10 18 2.50 2.90
soc-Epinions1 364544 364729 852009 763233 3036 2700 9.75 12.39
web-BerkStan 4428553 4083915 2489940 32569300 84224 52673 13.81 13.9
web-Google 2056738 2050946 585260 1586210 6325 5898 5.25 6.26
web-NotreDame 657631 649799 120876 850256 10706 8679 4.10 5.23
web-Stanford 1277475 1175510 319074 5647400 38622 24294 9.64 9.87
wiki-Talk 4648277 4461047 8806200 82114200 100029 55546 3.88 5.28
wiki-Vote 82184 82155 98771 187537 942 832 23.10 26.76

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000

F
ra

c
ti
o

n
 o

f
N

o
d

e
s

Degree

cit-Patents.0.1000.S.gph

(a) cit-Patents network with weak edges

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000

F
ra

c
ti
o

n
 o

f
N

o
d

e
s

Degree

cit-Patents.0.1000.L.gph

(b) cit-Patents network with strong edges

Figure 7.6: Degree distribution of two contrasting partitions– partitions with weak and strong
edges, respectively, with strength determined by Jaccard index threshold=0.1.

73

Table 7.5: Comparison of m, the number of triangles 4, maximum degree dmax, and average
degree davg in the network G<t=0.1 induced by weak edges and the network G>t=0.1 induced by
strong edges. The weak and strong edges are determined based on the Jaccard index < 0.1.

Networks m 4 dmax davg
G<t G>t G<t G>t G<t G>t G<t G>t

amazon0312 979707 1370162 147193 2557090 2747 56 5.71 7.9
amazon0505 1011268 1428169 170718 2717710 2760 56 5.75 8.07
amazon0601 1003649 1439759 167652 2744450 2752 55 5.83 8.09
cit-Patents 14929679 1589268 1595110 1250540 793 127 7.94 3.08
roadNet-CA 2417605 349002 0 120535 10 7 2.50 2.19
soc-Epinions1 364544 41196 852009 206864 3036 184 9.75 6.23
web-BerkStan 4428553 2220917 2489940 15148900 84224 444 13.81 9.00
web-Google 2056738 2265313 585260 7.8888e+06 6325 158 5.25 8.54
web-NotreDame 657631 432477 120876 7.12771e+06 10706 154 4.10 9.24
web-Stanford 1277475 715161 319074 2.73476e+06 38622 418 9.64 6.81
wiki-Talk 4648277 11288 8806200 7677 100029 95 3.88 1.68
wiki-Vote 82184 18578 98771 104701 942 173 23.10 20.62

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

F
ra

c
ti
o

n
 o

f
N

o
d

e
s

Degree

soc-Epinions1.0.1000.S.gph

(a) soc-Epinions network with weak edges

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000

F
ra

c
ti
o

n
 o

f
N

o
d

e
s

Degree

soc-Epinions1.0.1000.L.gph

(b) soc-Epinions network with strong edges

Figure 7.7: Degree distribution of two contrasting partitions– partitions with weak and strong
edges, respectively, with strength determined by Jaccard index threshold=0.1.

1. Pick two nodes u and v, randomly.

2. If there is no edge between u and v, compute the number of common neighbors (k) between
them.

– If k = 0, add an edge (u, v) with a small predefined probability p0.

– Else if k > 0, add an edge (u, v) with a probability p(k).

Repeat until all m edges are added.

74

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

R
at

io

Jaccard Similarity Coeff.

Ratio of edge pairs over the total

Figure 7.8: Jaccard transi-
tion curve of AstroPhysics Net-
work.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

R
at

io

Jaccard Similarity Coeff.

Ratio of edge pairs over the total

Figure 7.9: Jaccard transition
curve of the BTER graph con-
structed from the same de-
gree distribution and degree-
wise CC of AstroPhysics Net-
work.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.01 0.1 1

R
at

io

Jaccard Similarity Coeff.

Ratio of edge pairs over the total

Figure 7.10: Jaccard transi-
tion curve of ER graph Gnp(1k,
10k).

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

1
−

(1
−

c
)k

c=0.1

c=0.3

c=0.7

Figure 7.11: Edge probability
p(k) = 1− (1− c)k with vary-
ing c.

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

1
/(

1
+

e
−
k
)

Figure 7.12: Edge probability
p(k) = 1/(1 + e−k), a sigmoid
function.

0 2 4 6 8 10 12 14 16 18
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

k

1
/(

1
+

e
−
k
)

Figure 7.13: Edge probability
p(k) = 1/(1+e−k) for positive
k.

We considered several functions for p(k) (Figures 7.11, 7.12). First, taking p(k) = 1 − (1 − c)k
with varying c (average clustering coefficient of the network), we generate some random graphs
and compute Jaccard transition curves (Figure 7.14). These curves look similar (to a large extent)
to what we observed with social networks. However, the transition at 0.1 is not as sharp as with the
social networks. Further, the degree distribution of the generated networks is, of course, poisson,
and the clustering coefficients (CC) are somewhat low. However, the CC values increase with the
size of the network (see Figure 7.15, 7.16, 7.17).

We next consider another function for p(k), namely a sigmoid function, in the form p(k) =
1/(1 + e−k). Transition curves of the generated networks demonstrate a transition starting from
0.1 but in a gradual manner (Figure 7.18). The CC of generated networks is low as well, similar to
the previous random networks (Figure 7.19). Thus, models using common neighbor information
somewhat shows the transition without any sharp threshold. This leads us to the hypothesis that the
community structures in real social networks may be contributing to such a threshold. We examine
this hypothesis in the following section.

75

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.01 0.1 1

R
at

io

Jaccard Similarity Coeff.

Ratio of edge pairs over the total

(a) Transition curve for c = 0.1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

R
at

io

Jaccard Similarity Coeff.

Ratio of edge pairs over the total

(b) Transition curve for c = 0.5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

R
at

io

Jaccard Similarity Coeff.

Ratio of edge pairs over the total

(c) Transition curve for c = 0.9.

Figure 7.14: Jaccard transition curves for networks with 1000 nodes and 10000 edges generated
with p(k) = 1− (1− c)k and varying c, where c is the input average clustering coefficient (CC-in).

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
C

-o
u

t

CC-in

Clustering-Coeff.

Figure 7.15: Average CC of
the generated networks (CC-
out) as compared to the input
value (CC-in) of c in the func-
tion 1− (1− c)k.

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0 2 4 6 8 10 12 14 16

C
C

-o
u

t

multiple of k

Clustering-Coeff.

Figure 7.16: Average CC-
out in the generated network
with varying the multiple a in
p(k) = 1 − (1 − c)ak and CC-
in=0.5.

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 1 1.5 2 2.5 3 3.5 4 4.5 5

C
C

-o
u

t

Edges (x10k)

Clustering-Coeff.

Figure 7.17: Average CC-out
with varying number of edges
in the generated network with
p(k) = 1 − (1 − c)k and CC-
in=0.5. Larger graph with same
setting has larger average CC.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

R
at

io

Jaccard Similarity Coeff.

Ratio of edge pairs over the total

Figure 7.18: Jaccard transition curve for the
network generated with P (k) = 1/(1 +
e−4k) (sigmoid function).

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0 2 4 6 8 10 12 14 16

C
C

-o
u

t

multiple of k

Clustering-Coeff.

Figure 7.19: Average CC-out with vary-
ing the constant a in the sigmoid function
P (k) = 1/(1 + e−ak).

76

7.5 Common Neighbors and Communities

In this section, we explore the relation between common neighbor statistics (represented with
Jaccard transition curves) and community structure in networks.

7.5.1 Common Neighbor Distribution in Networks

We first plot common neighbor distribution (wedge distribution for edges) for both types of net-
works: networks with and without known community structures. Figure 7.20 and 7.21 show these
distributions for such networks. Networks with a community structure show a distinct pattern in
their wedge distributions (Figure 7.20). It seems to be a power-law distribution. A network with
a partial community structure (Figure 7.21, a) shows hints of such pattern, even though there exist
many scattered outlier points. On the other hand, Gnp and road networks do not have a community
structure, and wedge distributions for them do not show any pattern (Figure 7.21, b and c). In fact,
these two networks do not have a high number of common neighbors for a pair of nodes.

Now, the above plots demonstrate the difference in wedge distributions while there is a differ-
ence in community structure among networks. We are further interested in the opposite direction:
whether the difference in wedge distribution (or common neighbor statistics) can tell anything
about community structure.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000

F
re

q
u

en
cy

Number of Common Neighbors

Common Neighbors Distribution

(a) Amazon Copurchase Network.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000

F
re

q
u

en
cy

Number of Common Neighbors

Common Neighbors Distribution

(b) AstroPhysics Coauthorship
Network.

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

F
re

q
u

en
cy

Number of Common Neighbors

Common Neighbors Distribution

(c) Facebook Network (Caltech).

Figure 7.20: Wedge distribution (equivalently, common neighbors distribution) curves for net-
works with communities.

We start with deriving a simple relationship of community size, global CC (transitivity), and degree
of the networks. Thereon, we attempt to find a relationship of community and common neighbor
statistics.

7.5.2 Clustering Coefficients, Community Size and Degree Distribution

First we make a simplifying assumption based on the work of Rishi et al. [37] as follows.

77

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 10 100 1000 10000

F
re

q
u

en
cy

Number of Common Neighbors

Common Neighbors Distribution

(a) NotreDame Web Graph.

 1000

 10000

 100000

 1e+06

 1e+07

 1 10

F
re

q
u

en
cy

Number of Common Neighbors

Common Neighbors Distribution

(b) California Road Network.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
re

q
u

en
cy

Number of Common Neighbors

Common Neighbors Distribution

(c) Gnp Random Network.

Figure 7.21: Wedge distribution curves for a network with partial community structure (in a) and
for networks without communities (in b and c).

Assumption. In triangle-dense graphs (as are social networks), a significant portion of the network
is contained in unions of cliques. If we take the edges with Jaccard index above the threshold,
we can still retain a significant number of strong edges and triangles. Thus we will be able to
extract communities from the network. Relaxing a little from the original notion of clique in the
paper [37], let us assume the networks of interest consist of overlapping cliques, which we call
communities. It is easy to see that we can convert such networks to bipartite networks such that
in one set there are nodes denoting communities and in the other set, nodes are the constituents
nodes of the original network. There are links between two sets based on community membership.
Obviously, in the single-mode projection, nodes belonging to the same community form a clique
based on our assumption.

An analysis based on generating functions. To perform our intended analysis, we adopt the
strategy of the work by Newman et al. [51] using generating functions [79].

Let, C be the number of communities, N number of nodes, µ average number of communities a
node belongs to, and ν average number of nodes per community.

Now, let pj be the probability that a node belongs to j communities. Alternatively, it is the degree
distribution of nodes in the second set in the bipartite graph. Also, assume qk is the probability that
a community has size k.

The above distributions can be generated using the following generating functions, respectively.

f0(x) =
∑
j

pjx
j (7.4)

g0(x) =
∑
k

qkx
k (7.5)

By using the analysis of bipartite graphs by Newman et al. [51], we get,

f0(1) = g0(1) = 1 (7.6)
f ′0(1) = µ (7.7)
g′0(1) = ν (7.8)

78

Further, if we choose a random edge on the bipartite graph, then the distributions of the number of
edges leaving two end nodes are generated by the following equations, respectively.

f1(x) =
1

µ
f ′0(x) (7.9)

g1(x) =
1

ν
g′0(x) (7.10)

Then, the distribution of the numbers of co-inhabitants (in the same community) of a randomly
chosen node in the second set is generated by,

G0(x) = f0(g1(x)) (7.11)

Denoting the transitivity (also known as average clustering coefficient or global CC) of the original
network, i.e., one-mode projection of the bipartite network, by T , we get the following equation
(similar to eqn. 81 in [51]),

T =
C

N
.
g′′′0 (1)

G′′0(1)
. (7.12)

This establishes a relation among transitivity (global CC), community size distribution, and degree
distribution of triangle-dense networks. We understand this equation is rather generic and any
particular distribution for pj and qk can be plugged in. Further, note that, transitivity is a global
measure rather than being local to nodes or edges. Our original interest was to see the relationship
between common neighbor statistics and community size distribution. The above equation (eqn.
7.12) considers the average effect of wedges expressed within the measure transitivity (which is
the ratio of 3 times the number of total triangles to the number of total wedges). However, by a
careful observation we find the following implication.

Implication of Eqn. 7.12. In the equation, the denominator of the right hand side is related to
the degree distribution of the original network, and N is the number of nodes. These can be fixed
for a variety of networks (real, Chung Lu, etc.). Now the numerator C and g′′′0 (1) are related to
the community structure of the network. For a network with well-structured communities, the
numerator yields a higher value and transitivity is proportional to this community structure. By
‘well-structured communities’, we mean the presence of many large cliques. The third derivative
g′′′0 (1) nullifies the effect of any cliques of size 1 or 2 (isolated nodes and edges), considers at least
triangles, and favors large cliques. This is consistent with our notion of communities described by
cliques.

Now, notice the implicit relationship between transitivity and the Jaccard transition phenomenon.
Since the ratio in the y-axis of the transition curve is the number of edge pairs to the number of
all pairs having a particular Jaccard index, it gives a sense of wedge closure. A sharp transition
indicates the number of wedge closure increases rapidly (sharply), which corresponds to a high
transitivity. The transition, beginning at an early stage (at 0.1), even favors the argument for a
higher number of wedge closures. Thus, in conjunction with Eqn. 7.12, we conclude that, networks
demonstrating sharp Jaccard transition hints at well-structured communities in the networks.

79

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.01 0.1 1

R
at

io

Jaccard Similarity Coeff.

Ratio of edge pairs over the total

Figure 7.22: Jaccard transition curve for the
CL network generated from the degree dis-
tribution of AstroPhysics network.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

F
re

q
u

en
cy

Number of Common Neighbors

Common Neighbors Distribution

Figure 7.23: Wedge distribution for the CL
network generated from the degree distribu-
tion of AstroPhysics network..

7.6 Characterizing Networks Based on Jaccard Statistics

We use Jaccard transition curves to characterize networks. Since we observe different patterns of
Jaccard transition curves for different networks, we ask the following question: can we predict
any global features of networks from the Jaccard statistics? To answer this question, first, we
investigate if we can predict the class of a network, where classes are constructed from the thematic
areas these networks emerged or statistics related to the community structure in the networks.
Further, we perform regression analysis to predict the community sizes in a network.

7.6.1 Predicting Classes from Jaccard Statistics

Using Jaccard statistics, we classify networks into descriptive categories based on the area of emer-
gence of these networks. We also perform classification based on community statistics in networks.
The specifications of our experiments are outlined below.

• Datasets: We use 40 networks drawn from different categories such as web graphs, social,
collaboration, co-purchase, citation, facebook, road, autonomous sytem, and p2p networks.

• Training and Test data: We split the whole dataset into half making sure to split among
categories.

• Classification/Characterization: We use Weka data mining software. For classification,
we use the decision tree algorithm C4.5.

• Attributes: Attributes are the y-values ri on Jaccard transition curves for various x-values i
as defined below:

ri =
Ei

Ei + Ēi

, (7.13)

80

where i is the value of a bin, Ei is the number of edges with Jaccard indices in bin i, and Ēi

is the number of non-edge pairs of nodes with Jaccard indices in bin i.

• Classes: We classify networks based on descriptive categories or community sizes.

Characterizing networks into descriptive categories. We experimented with 10 classes such
as Facebook, co-purchase, citation, road, and autonomous system networks. A random classifier
would have an accuracy of 10%. We observe a classification accuracy of 60% to 85%. Jaccard
transition curves for a particular category show a good degree of resemblance. Thus, such curves
can predict the category with a good accuracy.

Characterizing networks into categories created by the largest community. We assign classes
according to the largest community each network forms as shown in Table 7.6. We use the CNM
algorithm for community detection. We found the accuracy of predicting classes is not satisfactory
(below 40%).

Table 7.6: Class assignments according to the largest community in the networks.

Class Largest Community Size
A 0-2000
B 2000-3000
C 3000-4000
D 4000-5000
E 5000-

We also performed the above experiment with the average community size of networks. We
assigned a similar classification as given in Table 7.6. The accuracy is again not satisfactory
(35%− 55%).

Table 7.7: Class assignments according to the modularity values obtained for the networks.

Class Modularity
A 0-0.2
B 0.2-0.35
C 0.35-0.50
D 0.50-0.65
E 0.65-

Characterizing networks into categories created by modularity value. We assign classes ac-
cording to the modularity values achieved by the community detection algorithm on a network.
The classification is shown in Table 7.7. We use the CNM algorithm for community detection. We
found the accuracy is quite good (60%− 90%).

We want to predict community sizes of networks from Jaccard transition curves. The classification
method has not proven effective for this purpose. One reason might be community size does not
have any natural range with which we can separate categories. Instead of discretize such values,
we can treat them as continuous values and apply regression analysis. Next we perform regression
analysis on community sizes and Jaccard statistics.

81

7.6.2 Regression Analysis on Community Sizes and Jaccard Statistics

To predict community size of networks from Jaccard transition curve, we perform multiple linear
regression. The independent variables are the y-values on Jaccard transition curves for various
x-values. The dependent variable in the community size of networks.

For this analysis, we start with networks generated with the Lancichinetti-Fortunato-Radicchi
(LFR) benchmark, which gives us networks with controllable community sizes. The LFR bench-
mark is an algorithm that generates artificial networks that resemble real-world networks. They
have a priori known communities and are usually used to compare different community detection
methods. One particular advantage of this benchmark is that it accounts for the heterogeneity in
the distributions of node degrees and of community sizes. A satisfactory regression model with
LFR networks hints the same for real-world networks.

Experiment with LFR networks. We generate sets of networks using LFR benchmark graph
generator with various community sizes, average degrees, and numbers of nodes. We then compute
Jaccard transition curves for those networks. The transition curve is specified using a number of
values on the curve (equal to the number of bins used for the curve). We use multiple linear
regression model in the following form:

y = b0 + b1x1 + b2x2 + b3x3 + · · ·+ bnxn, (7.14)

where y is the variable denoting community size and the variables xi denote values on the Jaccard
transition curve. We fit the regression model using standard least square fit from our data. The
summary of results is as follows.

• Only the first few values of Jaccard bins can successfully construct the model. These values
correspond the y-values on Jaccard transition curve for Jaccard values roughly between 0.05
and 0.25 (the sharp transition region).

• The regression diagnostic plots in Figure 7.24 fairly validate the fits. The ‘predicted vs ac-
tual’ plots demonstrate that the predictions are very close to the actual values. The ‘residual
by predicted’ plot justifies the assumptions of multiple linear regression: no non-linear pat-
tern is evident, values are nicely (evenly) spaced around the zero line, and no significant
outliers are observed.

• We experimented for average and maximum community sizes. In both cases, the above
observations hold.

• Mixing parameter versus accuracy: With LFR networks, the regression accuracy varies with
mixing parameter. Our regression model demonstrates robustness to a wide range of values
for mixing parameters. As shown in Figure 7.25, the accuracies are good (> 0.87) up to
mixing parameter 0.6, and then it breaks down to lower accuracies.

Experiments with Real Networks. We perform the similar experiment as above with ∼ 50 real-
world networks. The summary of results of regression analysis on those networks is presented
below.

82

	
 	

Figure 7.24: The predicted versus actual plot (left) and the residual by predicted plot (right) of
the regression analysis on a set of LFR networks. These networks have 10000 nodes, an average
degree of 40, community sizes varying from 50 to 500, and mixing parameter 0.2.

mu# accuracy#
0.1# 0.983126#
0.2# 0.974425#
0.3# 0.981137#
0.4# 0.930435#
0.5# 0.937#
0.6# 0.87682#
0.7# 0.539336#
0.8# 0.558716#
0.9# 0.564505#

!!
!

!

0!
0.2!
0.4!
0.6!
0.8!
1!

1.2!

0! 0.2! 0.4! 0.6! 0.8! 1!

ac
cu
ra
cy
&

mixing¶meter,&mu&&

mu&vs&accuracy&of&prediction&

Figure 7.25: Mixing parameter versus the accuracy with our regression model with LFR networks..

• Since in real-world networks, there might be many community of small sizes, the average or
minimum size of community might not be significant. Instead, we use percentile measures
of community sizes for this experiment. We order the vertices according to sizes of the
communities they belong to, and then tried to predict the size of the community of the pn-th
ranked vertex (for p ∗ 100 percentile and n nodes).

• We compute the accuracy (fitness of model) of regression model for various percentile of
community sizes with the networks. For 10, 30, 50, 70, and 90-th percentile, and the max-
imum, the accuracies are 0.59, 0.73, 0.699, 0.65, 0.62, and 0.71, respectively. These values
along with the randomness (absence of any non-linear pattern) of residual plots hint a good
model. Figure 7.26 shows the regression plots for the regression analysis with 90-th per-
centile of community sizes.

7.7 Conclusion

We present a characterization of networks by quantifying the number of common neighbors and
demonstrate its relationship with other network properties. We show how much the number of com-
mon neighbors contributes to the existence of an edge between two nodes. Based on the Jaccard

83

	
 	

Figure 7.26: Regression diagnostic plots for our analysis on real-world networks: the predicted
versus actual plot (left) and the residual by predicted plot (right).

indices of edges, we observe that there is an interesting threshold behavior of two nodes connecting
by an edge in the social and information networks. We also demonstrate how common neighbor
statistics relate to community structure of networks. We predict the class of a network from Jac-
card statistics, where classes are formed from the thematic areas of emergence of networks. With
regression analysis, we predict the community sizes of networks from Jaccard statistics with good
accuracies.

84

Part III

Community Detection in Big Networks

85

Chapter 8

PASCL: Parallel Algorithms for Scalable
Community Detection in Large Networks

Unraveling the clusters or communities in large networks (graphs) is an important problem in
many scientific areas. Many algorithms have been proposed so far with varying computational
complexity and efficiency. With the emergence of big data, the scale of real-world networks, often
with millions of nodes and billions of edges and even beyond, poses challenges to their efficient
analysis. Existing algorithms might require a large runtime, and a single main memory may fail to
fit the network data. To address these issues, distributed network processing has become popular in
recent years. In this chapter, we design MPI-based parallel algorithms for detecting communities
in large networks. Although these algorithms are based on efficient sequential methods in the
literature, parallelization of them for distributed-memory systems poses non-trivial challenges.
We propose efficient load balancing and communication approaches to address those issues. Our
parallel algorithms work on large networks and scale to a large number of processors. Further, we
also combine variations of several known methods by an hybrid approach to compare speed and
quality of the detection. Finally, we also demonstrate how our parallel algorithms can be adapted
to come up with even faster computations by incorporating edge sparsification techniques.

8.1 Introduction

A network is a powerful abstraction for representing a complex system where the elementary parts
of the system and their interactions are represented as nodes and links (edges), respectively. Com-
plex systems are organized in clusters or communities, each having a distinct role or function. In
the corresponding network representation, each functional unit (community) appears as a dense set
of nodes having higher connection inside the set than outside. Finding communities may reveal the
organization of complex systems and their function. For instance, a community is often interpreted
as an organizational unit in social networks, a functional unit in biological networks, or a scientific
discipline in citation networks [46]. Thus, detecting communities (clusters) in massive networks
such as emerging social and information networks has become an interesting and fundamental
problem in network science.

86

8.1.1 Background of Community Detection

The problem of community detection has a rich history and numerous methods exist for solving
this problem [25, 32, 36, 58, 59].

Girvan et al. [32] proposed a hierarchical divisive algorithm that removes edges iteratively based
on the betweenness centrality of edges. The authors proposed a measure, modularity, for assessing
the quality of detected communities, which compares between the graph at hand and a null model,
which is a class of random graphs with the same expected degree sequence of the original graph.
The algorithm has a computational complexity O(n3) (n and m are the number of nodes and edges
in the network, respectively). Since then, several other methods have been proposed to improve the
complexity and quality of the detected communities. Clauset et al. [25] provides an O(n log2 n)
algorithm that starts from isolated nodes as the initial communities and then iteratively adds nodes
to produce higher modularity.

A group of other works aims at exhaustive optimization of modularity. For example, [36] does so
by applying the technique of simulated annealing. Blondel et al. [16] proposes a multi-step local
optimization of modularity in the neighborhood of each node. This method provides an approxi-
mate optimization of modularity. Each identified partition is assimilated into a supernode yielding
a smaller network and the process is iterated until modularity does not increase any more. This
method offers a trade off between the quality of communities and the computational complexity
which is essentially linear in the number of edges of the network. The method proposed by Radic-
chi et al. [58] computes edge clustering coefficients instead of betweenness values as given in [32]
but still has a high complexity of O(n2).

An algorithm using a random walk on a network is proposed in [63] by Rosvall et al. Their method
converts the problem of finding the best communities into a problem of optimally compressing
the information of a dynamic process (random walk) taking place on the network. The optimal
compression is obtained by optimizing a quality function (minimum description length of the ran-
dom walk) that implicitly finds communities of good quality. Another fast method for community
detection is proposed in [62] by Ronhovde et al. They use a Potts model to evaluate the hierarchi-
cal or multiresolution structure of a graph. The algorithm calculates correlations among multiple
copies (replicas) of the same graph over a range of resolutions. Strongly correlated replicas iden-
tify significant multiresolution structures. In short, the method is based on the minimization of the
Hamiltonian of a Potts-like spin model, where the spin state represents the membership of the node
in a given community.

Raghavan et al. [59] presents a near linear time algorithm for community detection based on label
propagation. A node takes the community label that is the label of the majority of its neighbors.
The algorithm is quite fast but the detected community might be of lower quality (based on some
quality measure such as modularity). Further, results can be unstable as different runs of the
algorithm might produce different results based on the choice of synchronous or sequential update
of labels.

Some other works using adjacency matrix representation of networks and computation of eigen-
vectors of the Laplacian matrix are given in [29] (Markov Cluster Algorithm) and [28] (spectral
algorithm). The algorithms described above vary in terms of quality of detected communities and

87

the computational complexity of the algorithms. Adjacency matrix based and spectral algorithms
cannot work on networks having more than a few hundred thousand of nodes. Some algorithms
[32, 58] have a very high computational complexity and cannot work on large networks, whereas
a few others [59] are faster at the cost of the quality of the detected communities. You can find two
comprehensive surveys of some community detection methods in [31, 46].

8.1.2 Challenges with Massive Networks

In the present world of technological advancement, we are deluged with network data from a wide
range of areas such as Web, business and finance, computational biology, and social science. Many
social networks have millions to billions of users. The size of emerging networks motivates us to
find novel algorithms that are both space and computationally efficient.

In many cases, these massive network do not fit into the main memory of a single computing node.
Further, an algorithm for community detection having a high computational complexity might fail
to work on networks with a few millions of nodes or edges. In addition to the classic problem
of finding communities with ‘good’ quality, the emergence of massive networks poses additional
complicacy.

8.2 Related Work on Parallel Algorithms

Despite the fairly large volume of work addressing this problem, only recently has attention been
given to the problems associated with large graphs. In recent years, several parallel algorithms
for shared-memory systems and only a few for distributed-memory parallel systems have been
proposed [52, 61, 71, 81]. The distributed-memory algorithms were designed for the Bulk Syn-
chronous Parallel (BSP) and MapReduce frameworks.

In [81], Zhang et al. proposed a parallel algorithm that adopts a Bulk Synchronous Parallel (BSP)
model of computation. The overall computation proceeds in consecutive supersteps. There is
a barrier between two successive supersteps. The communities detected by the algorithm are the
connected components of the graph after iterations of adding and removing edges based on propin-
quity measures. The computational complexity of the algorithm is O(k.(m + n)(m/n)2), where
k is the number of iteration the algorithm takes to converge to an acceptable result. The paper
provides a clever technique to update propinquity value incrementally. However, the authors did
not provide any analytical proof that the algorithm will eventually converge in a small number of
steps. Further, there are a number of synchronization steps where processors need to exchange
messages to keep their states consistent. The overall messages sent in a single superstep can easily
exceed the memory quota. The largest network they processed has ∼2.5M nodes (∼100M edges).

Another parallel algorithm for a multi-core and GPU architecture is proposed in [70]. They design
a variant of the label propagation technique with a computational complexity of O(m(k + d)),
where k is the number of iterations and d is the average degree. The largest network processed by
the algorithm has 100M edges. The whole input network needs to be in memory to execute this

88

algorithm. Further, a mathematical model to predict the number of iterations of the algorithm and a
tight bound on the quality of the algorithm are not provided in the paper. Another shared-memory
parallel algorithm is given in [61]. The algorithm adopts an agglomerative approach merging
pairs of connected intermediate subgraphs to optimize different graph properties. The algorithm
achieves a moderate parallel scalability.

A MapReduce based distributed preprocessing algorithm for community detection is proposed in
[52]. The algorithm identifies nucleuses (core groups) of communities and coarsens the original
graph to the graph induced by the core groups’ partition. An arbitrary community detection algo-
rithm can be used to identify communities of the coarsened graph. The preprocessing step uses an
ensemble of partitions, each created by a label propagation algorithm, and then finds the maximal
overlap to get core groups. The algorithm generates multiple intermediate disk files consisting of
node-to-node links and core-group-to-core-group links. A network with 3.3B edges is processed
in a few hours.

Another shared memory parallel algorithm is given in [71]. They implement parallel variation
of some known sequential algorithms and combine them by an ensemble approach to accumulate
advantages from all of them. Similar to [52], the largest networks processed by this paper has 3.3B
edges.

8.3 Fast and Scalable Parallel Algorithms for Community De-
tection

We design fast parallel algorithms for detecting community in large networks. We identify that the
Louvain algorithm [16] is a well-recognized and efficient sequential method mentioned in several
other work [31]. We design our MPI-based parallel algorithm for community detection based on
the Louvain algorithm. Parallelizing the Louvain algorithm for distributed-memory systems poses
non-trivial challenges. We present explicit load balancing schemes and HPC-based optimization
techniques to improve the performance of our parallel algorithm. We also design an MPI-based
parallel algorithm for the Label Propagation algorithm and demonstrate how we can combine the
benefits from both algorithms by an ensemble technique.

8.3.1 Sequential Louvain Algorithm

The Louvain method for community detection was first presented by Blondel et al. [16]. It can be
classified as a locally greedy, bottom-up multilevel algorithm and uses modularity as the objective
function. Figure 8.1 shows pseudocode for the sequential Louvain algorithm. We call the inner
repeat-until loop (Line 5-14) phase 1, execution of Line 15-17 phase 2 of computation, and the
outer repeat-until (Line 3-18) loop a pass of the algorithm. In each pass, nodes are repeatedly
moved to neighboring communities so that the locally maximal increase in modularity is achieved,
until the communities are stable (phase 1). Then, the graph is coarsened according to the solution
(phase 2) and the procedure continues recursively, forming communities of communities (another

89

1: for each v ∈ V do
2: C[v]← v // singleton community
3: repeat
4: anychange← false
5: repeat
6: done← true
7: for each v ∈ V do
8: t← max

u∈Nv

4mod(v, C[v]→ C[u])

9: c← C[argmax
u∈Nv

4mod(v, C[v]→ C[u])]

10: if t > 0 then
11: C[v]← c
12: done← false
13: anychange← true
14: until done
15: if anychange then
16: G′ ← Contract(G,C)
17: G← G′

18: until not anychange

Figure 8.1: Pseudocode of the sequential Louvain algorithm. C[v] is the community label of node
v. The quantity 4mod(v, C[v] → C[u]) denotes the difference in modularity when node v is
moved from C[v] to a neighboring community C[u].

pass). Finally, the communities in the coarsest graph determine those in the input graph by direct
prolongation.

Next, we describe the overview of our parallel Louvain algorithm followed by a detailed descrip-
tion of different steps.

8.3.2 Overview of Our Parallel Algorithm

Let p be the number of processors used in our computation. Our algorithm partitions the input
graph G(V,E) as follows: the set of nodes V is partitioned into p disjoint subsets V c

i , such that,
for 0 ≤ j, k ≤ p− 1 and j 6= k, V c

j ∩ V c
k = ∅ and

⋃
k V

c
k = V . Edge set Ec

i , constructed as Ec
i =

{(u, v) : u ∈ V c
i , v ∈ Nu}, constitutes the i-th partition. Processor Pi works on the i-th partition

and is responsible for detecting community labels C[v] of all nodes v ∈ V c
i . Now, to detect C[v] of

all v ∈ V c
i , processor Pi needs C[u] of all u ∈ Nu (Lines 8-9, Figure 8.1). If u ∈ V c

i , information
of both C[v] and C[u] is available in the i-th partition. However, if u ∈ V c

j , j 6= i, C[u] resides in
partition j. Processors Pi and Pj exchange message(s) for communicating C[u]. This exchanging
of messages introduces a communication overhead, which is a crucial factor on the performance of
the algorithm. Each processor locally executes one iteration of the sequential Louvain algorithm
(Lines 7–9, Figure 8.1). Then the processor communicates with other processors for community

90

labels as discussed above. For parallelizing the phase 2 computation, we require to renumber the
community labels obtained from phase 1 into new consecutive labels. This allows consistency
in community labeling in different passes and enables the algorithm to reconstruct hierarchical
communities of the original input network. However, in a distributed setting, parallelizing this
renumbering operation should be done in an efficient way. We will describe this parallelization
in Section 8.3.5. The remaining part of phase 2 deals with constructing a supergraph, computing
a coarsened graph by merging nodes of the same communities into a supernode. Constructing a
supergraph is also nontrivial, which we will describe in detail in Section 8.3.6.

8.3.3 Partitioning

For partitioning the input network G(V,E), the set of nodes V is partitioned into p disjoint subsets
V c
i of consecutive nodes. Ideally, the set V should be partitioned in such a way that the cost

for detecting communities of nodes in V c
i is almost equal for all processors. Let, f(v) be a cost

function referring to the cost of detecting communities for each node v ∈ V . Similar to our fast
parallel algorithm for counting triangles presented in Section 3.3.4, we need to compute p disjoint
partitions of V such that for each partition V c

i ,∑
v∈V c

i

f(v) ≈ 1

p

∑
v∈V

f(v). (8.1)

We consider the following two load balancing schemes based on two different cost functions.

• Scheme N : This scheme estimates cost function as f(v) = 1.

• Scheme D: This scheme estimates cost function as f(v) = dv.

The first scheme assumes equal cost for every node whereas the second scheme assumes that the
cost depends on the degree of the node.

Given f(v) for all v ∈ V , we compute V c
i using the same parallel algorithm we used for computing

balanced partition as described in Section 3.3.4.

8.3.4 Local Computing of Community Labels

Processor Pi is responsible for detecting community labels C[v] of all nodes v ∈ V c
i . Each pro-

cessor locally executes one iteration of the sequential Louvain algorithm (Lines 7–9, Figure 8.1).
However, as discussed in the overview of our algorithm, to detect C[v] of all v ∈ V c

i , processor Pi

needs C[u] of all u ∈ Nv (Lines 8-9, Figure 8.1). If u ∈ V c
j , j 6= i, C[u] resides in partition j.

Processors Pi and Pj exchange message(s) for communicating C[u].

One straightforward way to communicate all such labels is each processor broadcasting all labels.
This approach is conceptually simple; however, such broadcasting is computationally expensive. A

91

better way for Pi is to request other processors for labelsC[u] of nodes u ∈ Nv∩V c
j . This approach

has a communication complexity of O(2`), where ` is the number of cut edges. However, we
observe that we can improve this approach further by eliminating the request messages altogether.
Each processor can directly send community labels of nodes to other processors that might need
them. Each processor can easily construct such messages by scanning neighbor lists Nv of nodes
v ∈ V c

i . In fact, Pi does not require any additional scanning; it can construct these message while
executing phase 1 computation. Since no request messages are required for this approach, it saves
50% of message cost. Additionally, we bundle all messages sent to a particular processor to further
reduce communication overhead.

8.3.5 Renumbering Community Labels

Renumbering is an operation that converts a set of community labels to another set of consecutive
labels. Renumbering ensures consistency of graph representation and allows using the same data
structure throughout passes. The operation also enables the retrieval of hierarchical community
labels of the nodes of the input graph, when several passes of the algorithms are made.

In a sequential setting, an array with O(n) size can be used to perform the renumbering: construct
an arrayA[.] of size n. Initial the array with zero values. If a node has community label i, increment
the value of A[i]; do the same for all nodes. Now, scan the array, start community labels from zero,
incrementally assign new labels to the labels i with nonzero values A[i].

However, in a distributed setting, one way to construct the above array is to use MPI All_gather and
reduce operation. This is conceptually simple but has a runtime complexity of Ω(n lg p), which
is worse than the sequential algorithm. Next, we devise a parallel algorithm for performing the
renumbering operation in O(n/p + lg p) time in the worst case. The main steps of the algorithm
are as follows.

• Assume Si be the set of labels in processor Pi. Pi divides Si into p (at most) disjoint subsets
Sj
i and sends to processor j.

• We use a simple hash-based distribution of Si into Sj
i .

Sj
i = {x ∈ Si : x mod p = j}. (8.2)

• Processor Pj constructs Sj from all Sj
i received from other processors i.

Sj =
⋃
i

Sj
i (8.3)

• Each processor Pi renumbers locally for each labels in Si in consecutive numbers 0, . . . , ni−
1, where ni be the number of distinct labels in Pi.

• We compute parallel prefix sum using the algorithm by Aluru et al. (2011).

• Each processor adjusts its sequence of new labels by adding
∑t=i−1

t=0 nt to each labels.

92

8.3.6 Constructing Supergraph

The overview of constructing a supergraph from community labels is as follows.

• Contract nodes (member) of a particular community into a supernode.

• Compute edges between community supernodes based on their member nodes’ connectivity.

• Compute weights between supernodes based on weights of all cutting edges between mem-
ber nodes.

• Compute further iteration of Louvain algorithm on the supergraph.

In a sequential setting, a supergraph is computed by straightforward iteration over nodes of all
communities. However, in a parallel setting, we distribute tasks with the following consideration:

• Reduction of communication cost

• Reusage of local data

• Load balancing in the current computation

• Possibly, providing a convenient initial partition for the next phase.

We devise a parallel scheme to compute the supergraph as follows. Processor Pi constructs a
part G′i of the super graph G′ from the local information it has: Vi, community assignments, and
neighbor information of all nodes v ∈ V c

i . G′ is computed by the equation G′ =
⊕

iG
′
i, where⊕

is a merging operation that we describe shortly. We perform the operation
⊕

in parallel (with
balanced load).

The overview of the merging operation
⊕

is given below.

• For a supernode v, let N̄v be the set of neighbors of v and W̄v be the set of weights of edges
between v and u ∈ N̄v.

• Processor Pi constructs a partG′i of the super graphG′ from the local information it contains.
That is, Pi construct partial (local) sets W i

v and N i
v of node v. We define Si and Ti be the set

of all partial sets N i
v and W i

v, respectively, constructed by Pi.

• Each processor Pi is responsible for performing the operation
⊕

for a subset V ′i of super
nodes.

• V ′i is computed using our parallel load balancing scheme described in Chapter 3.

• Processor Pi divides Si and Ti into p (the number of processors) disjoint subsets Sj
i and T j

i ,
0 ≤ j ≤ p− 1, as defined below.

Sj
i = {N i

v : v ∈ V ′j }, (8.4)

T j
i = {W i

v : v ∈ V ′j }. (8.5)

93

• Processor Pi sends Sj
i and T j

i to all other processors Pj .

• Once processor Pi gets T i
j and Si

j from all processors Pj , it constructs N̄v and W̄v for all
v ∈ V ′i by the following equations.

N̄v =
⋃

k:Nk
v∈Si

k

Nk
v (8.6)

W̄v =
⋃

k:Wk
v ∈T i

k

W k
v (8.7)

While performing the union operations as shown above, if duplicate items exist, the corre-
sponding weights are summed together in W̄ , and only a single item is kept in N̄ .

The pseudocode for parallel Louvain algorithm is given in Figure 8.2.

8.4 Label Propagation Algorithm

Raghavan et al. [59] proposed the label propagation algorithm (LPA) for community detection. The
advantage of a LPA is its simplicity and ease of parallelization. The high level overview of LPA
is as follows: initially each node in the network is assigned a unique label. In each iteration every
node updates its label to the label that is the most frequent in its neighborhood; ties are broken
randomly. Densely connected set of nodes thus agree on a common community label. Usually
after a small number of iteration, a global stable consensus of community labels is reached. Thus
LPA has a near linear runtime complexity. At each iteration it requires O(m) time. Further, it has
been shown empirically that the algorithm reaches a stable solution in a small number of iteration.
This algorithm does not require the computation of an objective function such as modularity. It
maximizes any such functions only implicitly. Since the algorithm heavily involves the local update
of community labels, it is well suited for parallel implementation. One obtains variants of LPA by
varying how the initial label assignment is made, how ties are broken, and whether a node includes
itself in computing the most frequent label in its neighborhood.

In this work, we parallelize a specific variation of LPA in which nodes are assigned initial labels
the same as the node ID. Further, if there is a tie, it is broken in favor of the larger label. Finally,
a node includes its own label in determining the most frequent label in its neighborhood. We also
update labels in a synchronous fashion.

Our MPI-based parallel algorithm for label propagation is very similar to the phase 1 computation
of the parallel Louvain algorithm. Instead of modularity, each update of community label considers
only the labels of the neighbors of a node. We employ a similar partitioning, load balancing, and
communication strategy, and therefore these are not repeated here.

94

1: // Each processor Pi executes the following:
2: Vi ←ComputeBalancedPartition(G, i)
3: ReadGraph(G, Vi)
4: CreateSingletonCommunity(Vi)
5:
6: // Computation of Phase 1
7: repeat
8: anychange← false
9: repeat

10: done← true
11: for each v ∈ Vi do
12: t← max

u∈Nv

4mod(v, C[v]→ C[u])

13: c← C[argmax
u∈Nv

4mod(v, C[v]→ C[u])]

14: if t > 0 then
15: C[v]← c
16: done← false
17: anychange← true
18: BroadcastAssignments(C, i)
19: until done
20:
21: // Community assignment at current iteration
22: ParallelRenumbering(C, i, Vi)
23: PrintCommunity(Vi, C)
24: ComputeModularity(C, i,Gi)
25: if anychange then
26: ComputeSuperGraph(G,C)
27: until not anychange

Figure 8.2: Pseudocode for our parallel Louvain algorithm.

95

8.5 Evaluation of Our Parallel Algorithms

In this section, we present an experimental evaluation of the performance of our algorithms. We
show the scalability and analyze various trade-offs. We use the same datasets and experimental
setup as discussed in Chapter 2.

8.5.1 Load Balancing and Scalability

A parallel algorithm is completed when all of the processors complete their tasks. Thus, to reduce
the running time of a parallel algorithm, it is desirable that no processor remains idle and all
processors complete their executions almost at the same time.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
R

eq
u
ir

ed
 (

se
c)

Rank of Processors

N
D

Figure 8.3: Laod distribution for Miami network with equal number of nodes and edges per pro-
cessors.

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
R

eq
u
ir

ed
 (

se
c)

Rank of Processors

N
D

Figure 8.4: Laod distribution for LiveJournal network with equal number of nodes and edges per
processors.

Figure 8.3 and 8.4 show load distribution of our parallel Louvain algorithm with Miami and Live-
Journal networks. As described before, Miami is a graph with an almost even degree distribution,

96

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100

S
p
ee

d
u
p
 F

ac
to

r

Number of Processors

LiveJournal, D
Miami, D

LiveJournal, N
Miami, N

Figure 8.5: Speedups of our parallel Louvain algorithm on Miami and LiveJournal networks.

whereas LiveJournal has skewed degree distribution. Scheme D has better load distribution with
both networks. Since the computational cost of our algorithm due to each node is proportional to
its degree, scheme D provides more precise estimation of computing cost of our algorithm.

Figure 8.5 shows strong scaling (speedup) of our algorithm on Miami and LiveJournal networks
with both load balancing schemes. Our algorithm demonstrates good speedups and scales almost
linearly. Scheme D achieves better speedup than N for the reason discussed above.

8.5.2 Trading off the Quality and Speed of our Community Detection Algo-
rithms

Louvain algorithm is one of the best sequential algorithm in the literature [31]. It has been used in
the shared-memory parallel algorithm given in [71]. We presented the first MPI-based parallel al-
gorithm for community detection based on the Louvain algorithm. We also implemented the Label
Propagation Algorithm (LPA) with MPI. LPA has a near linear runtime complexity. However, the
quality of detected communities depends on the number of iterations. It usually compromises the
quality in favor of the speed of execution. Thus the Louvain algorithm and LPA provide a good
trade-off between runtime and modularity value.

Table 8.1: Comparison of modularity and runtime between parallel LPA and Louvain Algorithm.

Networks LP Louvain Hybrid
Mod. Runtime Mod. Runtime Mod. Runtime

Miami 0.354 15.86 0.46 21.51 0.41 18.22
web-BerkStan 0.38 2.02 0.42 2.39 0.39 2.25
LiveJournal 0.42 18.95 0.445 23.76 0.43 21.52

Table 8.1 shows a comparison between our parallel LPA and Louvain algorithm in terms of execu-
tion time and modularity. The Louvain algorithm generates communities that are of better quality

97

than that of LPA. However, for the same number of iterations, the Louvain algorithm takes a larger
time. We also design a hybrid algorithm (also referred to as ensemble algorithm) combining both
parallel LPA and Louvain algorithm: in the first pass of the parallel Louvain algorithm, we up-
date community labels using the update rule of LPA. Instead of each node updating its community
labels based on modularity increase, it just takes the most frequent neighboring community. The
last 2 columns of Table 8.1 show the modularity and runtime with this hybrid algorithm. This
algorithm improves the runtime of the Louvain algorithm and the modularity of LPA and can be
useful as a convenient tradeoff between runtime and modularity.

8.5.3 Parallel Sparsification Algorithm

We integrate sparsification techniques with our parallel algorithm. Sparsification of a network is a
sampling technique where some randomly chosen edges are retained and the rest are deleted, and
then computation is performed in the sparsified network. Sparsification of a network saves both
computation time and memory space and provides an approximate result. There might be various
criteria for selecting edges to retain. In this experiment, we consider the following three criteria
inspired from the work in [64].

• Global sparsification: Each edge is preserved with a probability q. The pseudocode is shown
in Figure 8.6.

• Local sparsification: Similar to global sparsification but it made sure each node has at least
one edge incident on it. The pseudocode is shown in Figure 8.7.

• Jaccard-based sparsification: All edges with Jaccard index < 0.1 is discarded.

1: for v ∈ Vi do
2: for (v, u) ∈ E do
3: toss a biased coin with success prob. q
4: if success then
5: store u to Nv

Figure 8.6: Global sparsification of a network in parallel.

We show the performance of the above sparsification method in Table 8.2. Let ∆Q be the differ-
ence in modularity with the original and the sparsified graph. For this experiment, q = 0.5 for local
and global sparsification. For Jaccard-based sparsification, we discard all edges having Jaccard in-
dex < 0.1. Global sparsification loses some quality (in terms of modularity) due to the prospect of
disconnecting less dense communities or even isolating nodes with small degrees. Local sparsifica-
tion performs better than global since no nodes are isolated. Jaccard based sparsification provides
the best solution among them since this method discard edges that are less important in terms of
community formation.

98

1: for v ∈ Vi do
2: for (v, u) ∈ E do
3: toss a biased coin with success prob. q
4: if success then
5: store u to Nv

6: if Nv = ∅ then
7: pick one u from {(v, u) ∈ E} and store to Nv

Figure 8.7: Local sparsification of a network in parallel.

Table 8.2: Modularity and runtime with various sparsification method on different networks.

Networks Local Global Jaccard
∆Q Runtime ∆Q Runtime ∆Q Runtime

Miami 0.03 13.54 0.12 13.43 0.03 15.12
web-BerkStan 0.07 1.50 0.14 1.47 0.05 1.61
LiveJournal 0.11 15.87 0.18 15.52 0.02 16.37

8.5.4 Comparison with Other Algorithms

Previous parallel algorithms [52, 61, 70, 71] are based on MapReduce, shared-memory, and BSP
framework. Our algorithms are MPI-based distributed memory algorithm. To the best of our
knowledge, this is the first MPI-based parallelization of community detection methods. Previous
algorithms have limited scalability. Largest networks processed by most of them are less than
100M edges, which take 10 minutes to an hour. A couple of algorithms [52, 71] can process some
3B edges in hours. Our algorithm can process 100M edges in 40 seconds. We can process 3B
edges in minutes. Our algorithm scales almost linearly to a good number of processors. We also
provide several analyses regarding quality and runtime trade-off and HPC-based optimization.

8.6 Conclusion

We design MPI-based parallel algorithms for detecting communities in large graphs. Our parallel
algorithms are based on the sequential Louvain method. Parallelizing this method for distributed-
memory systems poses non-trivial challenges. We propose efficient load balancing and communi-
cation approaches to address those issues. Our parallel algorithms work on large graphs and scale
to a large number of processors. Further, we also combine variations of several known methods by
a hybrid approach to compare speed and quality of the detection. We also adapt edge sparsification
techniques with our parallel algorithms for providing even faster computation.

99

Part IV

Converting Edge List to Adjacency List

100

Chapter 9

Fast Parallel Conversion of Edge List to
Adjacency List for Large-Scale Graphs

In the era of big data, we are deluged with large graph data emerging from numerous social and
scientific applications. In most cases, graph data are generated as lists of edges (edge list), where
an edge denotes a link between a pair of entities. However, most of the graph algorithms work
efficiently when information of the adjacent nodes (adjacency list) for each node is readily avail-
able. Although the conversion from edge list to adjacency list can be trivially done on the fly for
small graphs, such conversion becomes challenging for the emerging large-scale graphs consisting
of billions of nodes and edges. These graphs do not fit into the main memory of a single computing
machine and thus require distributed-memory parallel or external-memory algorithms.

In this chapter, we present efficient MPI-based distributed memory parallel algorithms for con-
verting edge lists to adjacency lists. To the best of our knowledge, this is the first work on this
problem. To address the critical load balancing issue, we present a parallel load balancing scheme
that improves both time and space efficiency significantly. Our fast parallel algorithm works on
massive graphs, achieves very good speedups, and scales to a large number of processors. The
algorithm can convert an edge list of a graph with 20 billion edges to the adjacency list in less
than 2 minutes using 1024 processors. Denoting the number of nodes, edges, and processors by n,
m, and P , respectively, the time complexity of our algorithm is O(m

P
+ n + P), which provides

a speedup factor of at least Ω(min{P, davg}), where davg is the average degree of the nodes. The
algorithm has a space complexity of O(m

P
), which is optimal.

9.1 Introduction

We denote a graph by G(V,E), where V and E are the set of vertices (nodes) and edges, respec-
tively, with m = |E| edges and n = |V | vertices. In many cases, a graph is specified by simply
listing the edges (u, v), (v, w), · · · ∈ E, in an arbitrary order, which is called an edge list. A graph
can also be specified by a collection of adjacency lists of the nodes, where the adjacency list of
a node v is the list of nodes that are adjacent to v. Many important graph algorithms, such as

101

computing shortest path, breadth-first search, and depth-first search are executed by exploring the
neighbors (adjacent nodes) of the nodes in the graph. As a result, these algorithms work efficiently
when the input graph is given as adjacency lists. Although both edge list and adjacency list have a
space requirement of O(m), scanning all neighbors of node v in an edge list can take as much as
O(m) time compared to O(dv) time in an adjacency list, where dv is the degree of node v.

An adjacency matrix is another data structure used for graphs. Much of the earlier work [4, 26]
use an adjacency matrix A[., .] of order n × n for a graph with n nodes. Element A[i, j] denotes
whether node j is adjacent to node i. All adjacent nodes of i can be determined by scanning the
i-th row, which takes O(n) time compared to O(di) time for adjacency list. Further, an adjacency
matrix has a prohibitive space requirement of O(n2) compared to O(m) for an adjacency list. In
a real-world network, m can be much smaller than n2 as the average degree of a node can be
significantly smaller than n. Thus an adjacency matrix is not suitable for the analysis of emerging
large-scale networks in the age of big data.

In most cases, a graph is generated as a list of edges, since it is easier to capture pairwise interac-
tions among entities in a system in arbitrary order than to capture all interactions of a single entity
at the same time. Examples include capturing person-person connection in social networks and
protein-protein links in protein interaction networks. This is true even for generating large random
graphs [2, 23], which is useful for modeling very large systems. As discussed by Leskovec et. al
[43], some patterns only exist in large datasets and they are fundamentally different from those in
smaller datasets. While generating such large random graphs, algorithms usually output edges one
by one. Edges incident on a node v are not necessarily generated consecutively. Thus a conversion
of edge list to adjacency list is necessary for analyzing these graphs efficiently.

Emerging large networks have millions to billions of nodes and edges [22]. These networks hardly
fit in the memory of a single machine and thus require external memory or distributed memory
parallel algorithms. Now external memory algorithms can be very I/O intensive leading to a large
runtime. Efficient distributed memory parallel algorithms can solve both problems (runtime and
space) by distributing computing tasks and data to multiple processors.

In a sequential setting, with the graphs being small enough to be stored in main memory, the prob-
lem of converting an edge list to an adjacency list representation is trivial as described in the next
section. However, the problem in a distributed-memory setting with massive graphs poses many
non-trivial challenges. The neighbors of a particular node v might reside in multiple processors,
which need to be combined efficiently. Further, computation loads must be well-balanced among
the processors to achieve a good performance of the parallel algorithm. Like many others, this
problem demonstrates how a simple trivial problem can turn into a challenging problem when we
are dealing with big data.

Contributions. In this chapter, we study the problem of converting an edge list to an adjacency
list representation for large-scale graphs. We present MPI-based distributed-memory parallel al-
gorithms which work for both directed and undirected graphs. We devise a parallel load balancing
scheme that balances the computational load very well and improves the efficiency of the algo-
rithms significantly, both in terms of runtime and space requirement. Furthermore, we present two
efficient merging schemes for combining neighbors of a node from different processors, message-
based and external-memory merging, which offer a convenient trade-off between space and run-

102

time. Our algorithms work on large graphs, demonstrate very good speedups on both real and
artificial graphs, and scale to a large number of processors. The edge list of a graph with 20B
edges can be converted to adjacency list in two minutes using 1024 processors. We also provide
rigorous theoretical analysis of the time and space complexity of our algorithms. The time and
space complexity of our algorithms are O(m

P
+ n + P) and O(m

P
), respectively, where n, m, and

P are the number of the nodes, edges, and processors, respectively. The speedup factor is at least
Ω(min{P, davg}), where davg is the average degree of the nodes.

9.2 Preliminaries and Background

In this section, we describe the basic definitions used in this chapter and then present a sequential
algorithm for converting an edge list to an adjacency list representation.

9.2.1 Basic Definitions

We assume n nodes of the graph G(V,E) are labeled as 0, 1, 2, . . . , n− 1. If (u, v) ∈ E, we say u
and v are neighbors of each other. The set of all adjacent nodes (neighbors) of v ∈ V is denoted
by Nv, i.e., Nv = {u ∈ V |(u, v) ∈ E}. The degree of v is dv = |Nv|.
In an edge list representation, edges (u, v) ∈ E are listed one after another without any particular
order. Edges incident to a particular node v are not necessarily listed together. On the other hand, in
an adjacency list representation, for all v, adjacent nodes of v, Nv, are listed together. An example
of these representations is shown in Figure 9.1.

0

1 2

34

a) Example Graph

(0, 1)
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(3, 4)

N0 = {1}
N1 = {0, 2, 3, 4}
N2 = {1, 3}
N3 = {1, 2, 4}
N4 = {1, 3}

c) Adjacency Listb) Edge List

Figure 9.1: The edge list and adjacency list representations of an example graph with 5 nodes and
6 edges.

9.2.2 A Sequential Algorithm

The sequential algorithm for converting edge list to adjacency list works as follows. Create an
empty list Nv for each node v, and then, for each edge (u, v) ∈ E, include u in Nv and v in Nu.
The pseudocode of the sequential algorithm is given in Figure 3.1. For a directed graph, line 5 of
the algorithm should be omitted since a directed edge (u, v) does not imply that there is also an

103

1: for each v ∈ V do
2: Nv ← ∅
3: for each (u, v) ∈ E do
4: Nu ← Nu ∪ {v}
5: Nv ← Nv ∪ {u}

Figure 9.2: Sequential algorithm for converting edge list to adjacency list.

edge (v, u). In our subsequent discussion, we assume that the graph is undirected. However, the
algorithm also works for the directed graph with the mentioned modification.

This sequential algorithm is optimal since it takes O(m) time to process O(m) edges and thus
cannot be further improved. The algorithm has a space complexity of O(m).

For small graphs that can be stored entirely in main memory, the conversion in a sequential setting
is trivial. However, emerging large graphs pose many non-trivial challenges in terms of memory
and execution efficiency. Such graphs might not fit in the local memory of a single computing
node. Even if some of them fit in the main memory, the runtime might be prohibitively large.
Efficient parallel algorithms can solve this problem by distributing computation and data among
computing nodes. We present our parallel algorithm in the next section.

9.3 The Parallel Algorithm

First we present an overview of our parallel algorithm. A detailed description follows thereafter.

9.3.1 Overview of the Algorithm

Let P be the number of processor used in the computation andE be the list of edges given as input.
Our algorithm has two phases of computation. In Phase 1, the edgesE are partitioned into P initial
partitions Ei, and each processor is assigned one such partition. Each processor then constructs
neighbor lists from the edges of its own partition. However, edges incident to a particular node
might reside in multiple processors, which creates multiple partial adjacency lists for the same
node. In Phase 2 of our algorithms, such adjacency lists are merged together. Now, performing
Phase 2 of the algorithm in a cost-effective way is very challenging. Further, computing loads
among processors in both phases need to be balanced to achieve a significant runtime efficiency.
The load balancing scheme should also make sure that the space requirement among processors
is also balanced so that large graphs can be processed. We describe the phases of our parallel
algorithm in detail as follows.

104

9.3.2 (Phase 1) Local Processing

The algorithm partitions the set of edges E into P partitions Ei such that Ei ⊆ E,
⋃

k Ek = E
for 0 ≤ k ≤ P − 1. Each partition Ei has almost m

P
edges– to be exact, dm

P
e edges, except for

the last partition which has slightly fewer (m− (p− 1)dm
P
e). Processor i is assigned partition Ei.

Processor i then constructs adjacency lists N i
v for all nodes v such that (., v) ∈ Ei or (v, .) ∈ Ei.

Note that adjacency list N i
v is only a partial adjacency list since other partitions Ej might have

edges incident on v. We call N i
v local adjacency list of v in partition i. The pseudocode for Phase

1 computation is presented in Figure 9.3.

1: Each processor i, in parallel, executes the following.
2: for (u, v) ∈ Ei do
3: N i

v ← N i
v ∪ {u}

4: N i
u ← N i

u ∪ {v}

Figure 9.3: Algorithm for performing Phase 1 computation.

This phase of computation has both the runtime and space complexity ofO(m
P

) as shown in Lemma
7 .

Lemma 7 Phase 1 of our parallel algorithm has both the runtime and space complexity of O(m
P

).

Proof: Each initial partition i has |Ei| = O(m
P

) edges. Executing Line 3-4 in Figure 9.3 for O(m
P

)
edges requires O(m

P
) time. Now the total space required for storing local adjacency lists N i

v in
partition i is 2|Ei| = O(m

P
). �

Thus the computing loads and space requirements in Phase 1 are well-balanced. The second phase
of our algorithm constructs the final adjacency list Nv from local adjacency lists N i

v from all pro-
cessors i. Note that balancing load for Phase 1 does not make load well balanced for Phase 2 which
requires a more involved load balancing scheme as described later in the following sections.

9.3.3 (Phase 2) Merging Local Adjacency Lists

Once all processors complete constructing local adjacency lists N i
v, final adjacency lists Nv are

created by merging N i
v from all processors i as follows.

Nv =
P−1⋃
i=0

N i
v (9.1)

The scheme used for merging local adjacency lists has significant impact on the performance of
the algorithm. One might think of using a dedicated merger processor. For each node v ∈ Vi, the
merger collects N i

v from all other processors and merges them into Nv. This requires O(dv) time

105

for node v. Thus the runtime complexity for merging adjacency lists of all v ∈ V isO(
∑

v∈V dv) =
O(m) , which is at most as good as the sequential algorithm.

To achieve parallelism in merging, multiple mergers can be employed instead of a single merger.
Every merger can merge local adjacency list of two processors, in a binary tree style (Figure 9.4).
For each node v ∈ V , the parallel merging with P processors with the binary tree scheme works
as below.

Step=0

Step=1

Step=2

Step=3

0 4 1 5 2 6 3

0 1 2 3

4 5

6

Figure 9.4: Parallel merging with the binary tree scheme (P = 7). Numbers in the circle denote
rank of the processors.

i. Step 0 corresponds to the construction of local adjacency lists. In step 1, lower ranked
⌈
P
2

⌉
processors k merges Nk

v and N
k+dP2 e
v . The rank of mergers k starts from 0 to

⌈
P
2

⌉
− 1. For

P being an odd number, processor k =
⌈
P
2

⌉
− 1 simply passes its list Nk

v to the next step.

ii. In step i > 1, there are
⌈
P
2i

⌉
mergers working in parallel. The ranks k of merging processors

range from
⌈

P
2i−1

⌉
to (
⌈

P
2i−1

⌉
+
⌈
P
2i

⌉
-1). The j − th merger of step i merges the output of

2j-th and (2j + 1)-th mergers of step (i− 1).

It is easy to see that, the merger acting as the root of the tree constructs the final adjacency list
Nv =

⋃P−1
i=0 N

i
v. This scheme allows further improvement in efficiency by allowing pipelining:

when a merger is done merging local lists for v, it sends it to the merger of the next step and start
merging the next node v+1. Thus the scheme achieves a good parallelism in early steps. However,
the cost for merging in the last step is O(dv) for node v, yielding a total cost of O(

∑
v∈V dv) =

O(m) for all v ∈ V . This effectively diminishes the parallelism gained in previous steps. Next we
present our efficient parallel merging scheme.

An Efficient Parallel Merging Scheme

To parallelize Phase 2 efficiently, our algorithm distributes the corresponding computation dis-
jointly among processors. Each processor i is responsible for merging adjacency lists Nv for nodes
v in Vi ⊂ V such that for any i and j, Vi ∩ Vj = ∅ and

⋃
i Vi = V . Note that this partitioning of

nodes is different from the initial partitioning of edges. How the nodes in V are distributed among
processors crucially affects the load balancing and performance of the algorithm. Further, this par-
titioning and load balancing scheme should be parallel to ensure the efficiency of the algorithm.
Later in this section, we discuss a parallel algorithm to partition set of nodes V which makes both
space requirement and runtime well-balanced. Once the partitions Vi are given, the scheme for
parallel merging works as follows.

106

• Step 1: Let Si be the set of all local adjacency lists in partition i. Processor i divides Si into
P disjoint subsets Sj

i , 0 ≤ j ≤ P − 1, as defined below.

Sj
i = {N i

v : v ∈ Vj}. (9.2)

• Step 2: Processor i sends Sj
i to all other processors j. This step introduces non-trivial

efficiency issues which we shall discuss shortly.

• Step 3: Once processor i gets Si
j from all processors j, it constructs Nv for all v ∈ Vi by the

following equation.
Nv =

⋃
k:Nk

v∈Si
k

Nk
v (9.3)

We present two methods for performing Step 2 of the above scheme. The first method explicitly
exchanges messages among processors to send and receive Sj

i by using message buffers (main
memory). The other method uses disk space (external memory) to exchange Sj

i . We call the first
method message-based merging and the second external-memory merging.

(1) Message-based Merging: Each processor i sends Sj
i directly to processor j via messages.

Specifically, processor i sends N i
v (with a message < v,N i

v >) to processor j where v ∈ Vj . A
processor might send multiple lists to another processor. In such cases, messages to a particular
processor are bundled together to reduce communication overhead. Once a processor i receives
messages < v,N j

v > from other processors, for v ∈ Vi, it computes Nv = ∪P−1j=0 N
j
v . The pseu-

docode of this algorithm is given in Figure 9.5.

1: for each v s.t. (., v) ∈ Ei ∨ (v, .) ∈ Ei do
2: Send < v,N i

v > to proc. j where v ∈ Vj
3: for each v ∈ Vi do
4: Nv ← ∅
5: for each < v,N j

v > received from any proc. j do
6: Nv ← Nv ∪N j

v

Figure 9.5: Parallel algorithm for merging local adjacency lists to construct final adjacency lists
Nv. A message, denoted by < v,N i

v >, refers to local adjacency lists of v in processor i.

(2) External-memory Merging: Each processor i writes Sj
i in intermediate disk files F j

i , one for
each processor j. Processor i reads all files F i

j for partial adjacency lists N j
v for each v ∈ Vi and

merges them to final adjacency lists using step 3 of the above scheme. However, processor i does
not read in the whole file into its main memory. It only stores local adjacency lists N j

v of a node
v at a time, merges it to Nv, releases memory and then proceeds to merge the next node v + 1.
This works correctly since while writing Sj

i in F j
i , local adjacency lists N i

v are listed in the sorted
order of v. External-memory merging thus has a space requirement of O(maxv dv). However, the
I/O operation leads to a higher runtime with this method than message-based merging, although
the asymptotic runtime complexity remains the same. We demonstrate this space-runtime tradeoff
between these two methods in our performance analysis section.

107

The runtime and space complexity of parallel merging depends on the partitioning of V . Next, we
discuss the partitioning and load balancing scheme followed by the complexity analyses.

9.3.4 Partitioning and Load Balancing

The performance of the algorithm depends on how loads are distributed. In Phase 1, distributing
the edges of the input graph evenly among processors provides an even load balancing both in
terms of runtime and space leading to both space and runtime complexity of O(m

P
). However,

Phase 2 is computationally different than Phase 1 and requires a different partitioning and load
balancing scheme.

In Phase 2 of our algorithm, the set of nodes V is divided into P subsets Vi where processor i
merges adjacency lists Nv for all v ∈ Vi. The time for merging Nv of a node v (referred to as
merging cost henceforth) is proportional to the degree dv = |Nv| of node v. Total cost for merging
incurred on a processor i is Θ(

∑
v∈Vi

dv). Distributing equal number of nodes among processors
may not make the computing load well-balanced in many cases. Some nodes may have large de-
grees and some very small. As shown in Figure 9.6, distribution of merging cost (

∑
v∈Vi

dv) across
processors is very uneven with an equal number of nodes assigned to each processor. Thus the set
V should be partitioned in such a way that the cost of merging is almost equal in all processors.

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30 35 40 45 50

L
oa

d

Rank of Processors

Miami
LiveJournal

Twitter

Figure 9.6: Load distribution among processors for LiveJournal, Miami and Twitter before apply-
ing the load balancing scheme.

Let, f(v) be the cost associated with constructing Nv by receiving and merging local adjacency
lists for a node v ∈ V . We need to compute P disjoint partitions of node set V such that for each
partition Vi, ∑

v∈Vi

f(v) ≈ 1

P

∑
v∈V

f(v).

Now, note that, for each node v, total size of the local adjacency lists received (in Line 5 in Figure
9.5) equals the number of adjacent nodes of v, i.e., |Nv| = dv. Merging local adjacency lists
N j

v via set union operation (Line 6) also requires dv time. Thus, f(v) = dv. Now, since the

108

adjacent nodes of a node v can reside in multiple processors, computing f(v) = |Nv| = dv requires
communication among multiple processors. For all v, computing f(v) sequentially requiresO(m+
n) time which diminishes the advantages gained by the parallel algorithm. Thus, we compute
f(v) = dv for all v in parallel, in O(n+m

P
+ c) time, where c is the communication cost. We will

discuss the complexity shortly. This algorithm works as follows: for determining dv for v ∈ V in
parallel, each processor i computes dv for n

P
nodes v, where v starts from in

P
to (i+1)n

P
− 1. Such

nodes v satisfy the equation,
⌊

v
n/P

⌋
= i. Now, for each local adjacency listN i

v constructed in Phase

1, processor i sends div = |N i
v| to processor j = v

n/P
with a message < v, div >. Once processor

i receives messages < v, djv > from other processors, it computes f(v) = dv =
∑P−1

j=0 d
j
v for all

nodes v such that
⌊

v
n/P

⌋
= i. The pseudocode of the parallel algorithm for computing f(v) = dv

is given in Figure 9.7.

1: for each v s.t. (., v) ∈ Ei ∨ (v, .) ∈ Ei do
2: div ← |N i

v|
3: j ← v

n/P

4: Send < v, div > to processor j
5: for each v s.t.

⌊
v

n/P

⌋
= i do

6: dv ← 0
7: for each < v, djv > received from any proc. j do
8: dv ← dv + djv

Figure 9.7: Parallel algorithm executed by each processor i for computing f(v) = dv.

Once f(v) is computed for all v ∈ V , we compute cumulative sum F (t) =
∑t

v=0 f(v) in parallel
by using a parallel prefix sum algorithm [5]. Each processor i computes and stores F (t) for nodes
t, where t starts from in

P
to (i+1)n

P
− 1. This computation takes O(n

P
+ P) time. Then, we need

to compute Vi such that computation loads are well-balanced among processors. Partitions Vi are
disjoint subset of consecutive nodes, i.e., Vi = {ni, ni + 1 . . . , n(i+1) − 1} for some node ni. We
call ni start node or boundary node of partition i. Now, Vi is computed in such a way that the sum∑

v∈Vi
f(v) becomes almost equal (1

P

∑
v∈V f(v)) for all partitions i. At the end of this execution,

each processor i knows ni and n(i+1). Algorithm presented in [8] compute Vi for the problem of
triangle counting. The algorithm can also be applied for our problem to compute Vi using cost
function f(v) = dv. In summary, computing load balancing for Phase 2 has the following main
steps.

• Step 1: Compute cost f(v) = dv for all v in parallel by the algorithm shown in Figure 9.7.

• Step 2: Compute cumulative sum F (v) by a parallel prefix sum algorithm [5].

• Step 3: Compute boundary nodes ni for every subset Vi = {ni, . . . , n(i+1) − 1} using the
algorithms [3, 8].

109

Lemma 8 The algorithm for balancing loads for Phase 2 has a runtime complexity of O(n+m
P

+
P + maxiMi) and a space requirement of O(n

P
), where Mi is the number of messages received by

processor i in Step 1.

Proof: For Step 1 of the above load balancing scheme, executing Line 1-4 (Figure 9.7) requires
O(|Ei|)=O(m

P
) time. The cost for executing Line 5-6 is O(n

P
) since there are n

P
nodes v such that⌊

v
n/P

⌋
= i. Each processor i sends a total of O(m

P
) messages since |Ei| = m

P
. If the number

of messages received by processor i is Mi, then Line 7-8 of the algorithm has a complexity of
O(Mi) (we compute bounds for Mi in Lemma 9). Computing Step 2 has a computational cost
of O(n

P
+ P) [5]. Step 3 of the load balancing scheme requires O(n

P
+ P) time [3, 8]. Thus the

runtime complexity of the load balancing scheme is O(n+m
P

+ P + maxiMi). Storing f(v) for n
P

nodes has a space requirement of O(n
P

). �

Lemma 9 Number of messages Mi received by processor i in Step 1 of load balancing scheme is
bounded by O(min{n,∑(i+1)n/P−1

in/P dv}).

Proof: Referring to Figure 9.7, each processor i computes dv for n
P

nodes v, where v starts from in
P

to (i+1)n
P
− 1. For each v, processor i may receive messages from at most (P − 1) other processors.

Thus, the number of received messages is at most n
P
× (p − 1) = O(n). Now, notice that, when

all neighbors u ∈ Nv of v reside in different partitions Ej , processor i might receive as much as
|Nv| = dv messages for node v. This gives another upper bound, Mi = O(

∑(i+1)n/P−1
in/P dv). Thus

we have Mi = O(min{n,∑(i+1)n/P−1
in/P dv}). �

In most of the practical cases, each processor receives a much smaller number of messages than
that specified by the theoretical upper bound. Now, for each node v, processor i receives messages
actually from fewer than P − 1 processors. Let, for node v, processor i receives messages from
O(P.lv) processors, where lv is a real number (0 ≤ lv ≤ 1). Thus total number of message
received, Mi = O(

∑(i+1)n/P−1
in/P Plv). To get a crude estimate of Mi, let lv = l for all v. The term l

can be thought of as the average over all lv. Then Mi = O(n
P
Pl) = O(nl). As shown in Table 9.1,

the actual number of messages received Mi is up to 7× smaller than the theoretical bound.

Table 9.1: Number of messages received in practice compared to the theoretical bounds. This
results report maxiMi with P = 50.

Network n
∑ (i+1)n

P
−1

in
P

dv Mi l(avg.)
Miami 2.1M 2.17M 600K 0.27
LiveJournal 4.8M 2.4M 560K 0.14
PA(5M, 20) 5M 2.48M 1.4M 0.28

Lemma 10 Using the load balancing scheme discussed in this section, Phase 2 of our parallel
algorithm has a runtime complexity of O(m

P
). Further, the space required to construct all final

adjacency lists Nv in a partition is O(m
P

).

110

Proof: Line 1-2 in the algorithm shown in Figure 9.5 requires O(|Ei|)=O(m
P

) time for sending at
most |Ei| edges to other processors. Now, with load balancing, each processor receives and merges
at most O(

∑
v∈V dv/P) = O(m

P
) edges (Line 5-6). Thus the cost for merging local lists N j

v into
final list Nv has a runtime of O(m

P
). Since the total size of the local and final adjacent lists in a

partition is O(m
P

), the space requirement is O(m
P

). �

The runtime and space complexity of our complete parallel algorithm are formally presented in
Theorem 11.

Theorem 11 The runtime and space complexity of our parallel algorithm is O(m
P

+ P + n) and
O(m

P
), respectively.

Proof: The proof follows directly from Lemmas 1, 2, 3, and 4.�

The total space required by all processors to process m edges is O(m). Thus the space complexity
O(m

P
) of our parallel algorithm is optimal.

Performance gain with load balancing: Cost for merging incurred on each processor i (pseu-
docode shown in Figure 9.5) is Θ(

∑
v∈Vi

dv). Without load balancing, this cost Θ(
∑

v∈Vi
dv) can

be as much as Θ(m) (it is easy to construct such skewed graphs) leading the runtime complex-
ity of the algorithm Θ(m). With load balancing scheme our algorithm achieves a runtime of
O(m

P
+ P + n) = O(m

P
+ m

davg
), for usual case n > P . Thus, by simple algebraic manipulation, it

is easy to see, the algorithm with load balancing scheme achieves a Ω(min{P, davg})-factor gain
in runtime efficiency over the algorithm without load balancing scheme. In other words, the algo-
rithm gains a Ω(P)-fold improvement in speedup when davg ≥ P and Ω(davg)-fold otherwise. We
demonstrate this gain in speedup with experimental results in our performance analysis section.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

L
oa

ds

Rank of Processors

With Load Balancing
Without Load Balancing

(a) Miami network

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

L
oa

ds

Rank of Processors

With Load Balancing
Without Load Balancing

(b) LiveJournal network

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

L
oa

ds

Rank of Processors

With Load Balancing
Without Load Balancing

(c) Twitter network

Figure 9.8: Load distribution among processors for LiveJournal, Miami and Twitter networks by
different schemes.

9.4 Performance Analysis

In this section, we present the experimental results evaluating the performance of our algorithm.

111

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700 800 900 1000 1100

Sp
ee

du
p

Fa
ct

or

Number of Processors

Without Load Balancing
With Load Balancing

(a) Miami network

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900 1000 1100

Sp
ee

du
p

Fa
ct

or

Number of Processors

Without Load Balancing
With Load Balancing

(b) LiveJournal network

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700 800 900 1000 1100

Sp
ee

du
p

Fa
ct

or

Number of Processors

Without Load Balancing
With Load Balancing

(c) Twitter network

Figure 9.9: Strong scaling of our algorithm on LiveJournal, Miami and Twitter networks with
and without load balancing scheme. Computation of speedup factors includes the cost for load
balancing.

9.4.1 Load Distribution

Load distribution among processors can be very uneven without applying our load balancing
scheme, as discussed in the partitioning and load balancing section. We show a comparison of
load distribution on various networks with and without load balancing scheme in Figure 9.8. Our
scheme provides an almost equal load among the processors, even for graphs with very skewed de-
gree distributions such as LiveJournal and Twitter. Loads are significantly uneven for such skewed
networks without the load balancing scheme.

9.4.2 Strong Scaling

Figure 9.9 shows strong scaling (speedup) of our algorithm on the LiveJournal, Miami and Twit-
ter networks with and without the load balancing scheme. Our algorithm demonstrates very good
speedups, e.g., it achieves a speedup factor of ≈ 300 with 1024 processors for the Twitter net-
work. Speedup factors increase almost linearly for all networks, and the algorithm scales to a large
number of processors. Figure 9.9 also shows the speedup factors the algorithm achieves without
the load balancing scheme. Speedup factors with load balancing scheme are significantly higher
than those without load balancing scheme. For the Miami network, the differences in speedup
factors are not very large since Miami has a relatively even degree distribution and loads are al-
ready fairly balanced without load balancing scheme. However, for real-world skewed networks,
our load balancing scheme always improves the speedup quite significantly; for example, with
1024 processors, the algorithm achieves a speedup factor of 297 with the load balancing scheme
compared to 60 without load balancing scheme for the LiveJournal network.

This experiment also demonstrates that our algorithm scales to a large number of processors. The
speedup factors continue to grow almost linearly up to 1024 processors.

112

9.4.3 Comparison between Message-based and External-memory Merging

We compare the runtime and memory usage of our algorithm with both message-based and external-
memory merging. Message-based merging is very fast and uses message buffers in main memory
for communication. On the other hand, external-memory merging saves main memory by using
disk space even though it requires large runtime for I/O operations. Thus these two methods pro-
vide desirable alternatives to a trade-off between space and runtime. However, as shown in Table
9.2, message-based merging is significantly faster (up to 20 times) than external-memory merging
albeit taking a little larger space. Thus, message-based merging is the preferable method in our
fast parallel algorithm.

Table 9.2: Comparison of external-memory (EXT) and message-based (MSG) merging (using 50
processors).

Network Memory (MB) Runtime (s)
EXT MSG EXT MSG

Email-Enron 1.8 2.4 3.371 0.078
web-BerkStan 7.6 10.3 10.893 1.578

Miami 26.5 43.34 33.678 6.015
LiveJournal 28.7 42.4 31.075 5.112

Twitter 685.93 1062.7 1800.984 90.894
Gnp(500K, 20) 6.1 9.8 6.946 1.001

PA(5M, 20) 68.2 100.1 35.837 7.132
PA(1B, 20) 9830.5 12896.6 14401.5 1198.30

9.4.4 Weak Scaling

Weak scaling of a parallel algorithm shows the ability of the algorithm to maintain constant compu-
tation time when the problem size grows proportionally with the increasing number of processors.
As shown in Figure 9.10, total computation time of our algorithm (including load balancing time)
grows slowly with the addition of processors. This is expected since the communication overhead
increases with additional processors. However, the growth of runtime of our algorithm is rather
slow and remains almost constant, the weak scaling of the algorithm is very good.

9.5 Conclusion

We present a parallel algorithm for converting an edge-list of a graph to an adjacency-list represen-
tation. The algorithm scales well to a large number of processors and works on massive graphs. We
devise a load balancing scheme that improves both space efficiency and runtime of the algorithm,
even for networks with very skewed degree distributions. To the best of our knowledge, it is the
first parallel algorithm to convert edge list to adjacency list for large-scale graphs. It also allows

113

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700 800 900 1000 1100

T
im

e
R

eq
ui

re
d

(s
)

Number of Processors

Weak Scaling

Figure 9.10: Weak scaling of our parallel algorithm. For this experiment we use networks
PA(x/10× 1M, 20) for x processors.

other graph algorithms to work on large graphs that emerge naturally as edge lists. Furthermore,
this work demonstrates how a seemingly trivial problem becomes challenging when we are dealing
with big data.

114

Chapter 10

General Conclusion

We present algorithms and analysis for mining large real-world networks. These networks are of-
ten characterized by an abundance of triangles and the existence of well-structured communities.
Counting triangles is a very important problem in network mining and analysis. Many other graph
problems, such as computation of clustering coefficients and transitivity, can be solved using an
efficient enumeration of triangles. We devise fast and scalable parallel algorithms for counting and
listing triangles in big networks. We provide parallel partitioning and load balancing schemes to
design runtime efficient algorithms. Our algorithms are also space-efficient and thus allow us to
work on big networks using widely available commodity machines. We also present how we can
characterize networks by quantifying the number of common neighbors and demonstrate its rela-
tionship with other network properties. Such characterization will be proven useful in understand-
ing interesting properties and structures of real-world networks. Another very important problem
in network analysis and mining is community detection. Communities reveal useful organizational
information of complex systems represented by networks. We devise distributed-memory paral-
lel algorithms for detecting communities, which scale to big networks and achieve good parallel
speedups. We also combine sparsification methods with our parallel algorithms to provide even
faster detection of reasonable communities. Finally, we present fast parallel algorithms for con-
verting edge list to adjacency list of big networks. Although such conversion is simple for small
networks, the emerging networks with billions of nodes and edges pose non-trivial challenges. We
present efficient high performance computing based techniques leading to fast and space-efficient
algorithms. All the parallel algorithms presented in this dissertation scale to a large number of
processors, can work on big networks, and demonstrate good speedups. We believe that these
algorithms and HPC-based techniques will be proven useful in mining big data represented by net-
works. The novel analysis and characterization based on triangular statistics and communities will
reveal important insights about big real-world networks.

115

Bibliography

[1] Twitter Data. http://an.kaist.ac.kr/~haewoon/release/twitter_socia
l_graph, 2010. [Online].

[2] M Alam, M Khan, and M Marathe. Distributed-memory Parallel Algorithms for Generating
Massive Scale-free Networks Using Preferential Attachment Model. In International Con-
ference on High Performance Computing, Networking, Storage and Analysis, 2013.

[3] M Alam, M Khan, and M Marathe. Parallel algorithms for generating random networks with
given degree sequences. In 12th IFIP International Conference on Network and Parallel
Computing (NPC), 2015.

[4] N Alon, R Yuster, and U Zwick. Finding and Counting Given length Cycles. Algorithmica,
17:209–223, 1997.

[5] S Aluru. Teaching Parallel Computing Through Parallel Prefix. In International Conference
on High Performance Computing, Networking, Storage and Analysis, 2012.

[6] C Apte, B Liu, E Pednault, and P Smyth. Business applications of data mining. Commun.
ACM, 45(8):49–53, 2002.

[7] S Arifuzzaman and M Khan. Fast parallel conversion of edge list to adjacency list for large-
scale graphs. In 23rd High Performance Computing Symposium, 2015.

[8] S Arifuzzaman, M Khan, and M Marathe. PATRIC: A parallel algorithm for counting tri-
angles in massive networks. In 22nd ACM International Conference on Information and
Knowledge Management, 2013.

[9] S Arifuzzaman, M Khan, and M Marathe. A Space-efficient Parallel Algorithm for Count-
ing Exact Triangles in Massive Networks. In 17th IEEE International Conference on High
Performance Computing and Communications, 2015.

[10] S Arifuzzaman, M Khan, and M Marathe. A fast parallel algorithm for counting triangles in
graphs using dynamic load balancing. In 2015 IEEE BigData Conference, 2015.

[11] P Attewell and D Monaghan. Data Mining for the Social Sciences: An Introduction. Univer-
sity of California Press, 2015.

116

[12] Z Bar-Yosseff, R Kumar, and D Sivakumar. Reductions in streaming algorithms, with an ap-
plication to counting triangles in graphs. In ACM-SIAM Symposium on Discrete Algorithms,
2002.

[13] A Barabasi and R Albert. Emergence of scaling in random networks. Science, 286:509–512,
1999.

[14] C Barrett, R Beckman, M Khan, VS Anil Kumar, M Marathe, P Stretz, T Dutta, and B Lewis.
Generation and analysis of large synthetic social contact networks. In Winter Simulation
Conference, 2009.

[15] L Becchetti, P Boldi, C Castillo, and A Gionis. Efficient Semi-streaming Algorithms for
Local Triangle Counting in Massive Graphs. In 4th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2008.

[16] V Blondel, J Guillaume, R Lambiotte, and E Lefebvre. Fast unfolding of communities in
large networks. Journal of Statistical Mechanics: Theory and Experiment, 10:10008, 2008.

[17] B Bollobas. Random Graphs. Cambridge Univ. Press, 2001.

[18] A Broder, R Kumar, F Maghoul, P Raghavan, S Rajagopalan, R Stata, A Tomkins, and
J Wiener. Graph structure in the Web. Computer Networks, 33(1–6):309–320, 2000.

[19] L Buriol, G Frahling, S Leonardi, A Marchetti-Spaccamela, and C Sohler. Counting triangles
in data streams. In 25th ACM Symposium on Principles of Database Systems, 2006.

[20] J Chen and S Lonardi. Biological Data Mining. Chapman & Hall/CRC, 2009.

[21] N Chiba and T Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal on
Computing, 14(1):210–223, 1985.

[22] S Chu and J Cheng. Triangle Listing in Massive Networks and Its Applications. In 17th ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining, 2011.

[23] F Chung and L Lu. Complex Graphs and Networks. American Mathematical Society, 2006.

[24] M Ciglan, M Laclavik, and K Nørvåg. On Community Detection in Real-world Networks
and the Importance of Degree Assortativity. In 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2013.

[25] A Clauset, M Newman, and C Moore. Finding community structure in very large networks.
Physical Review E, 70(6):66111, 2004.

[26] D Coppersmith and S Winograd. Matrix Multiplication via Arithmetic Progressions. In 19th
Annual ACM Symposium on Theory of Computing, 1987.

[27] J Dean and S Ghemawat. MapReduce: Simplified data processing on large clusters. In 6th
Symposium on Operating Systems Design and Implementation, 2004.

117

[28] L Donetti and M Munoz. Detecting network communities: a new systematic and efficient al-
gorithm. Journal of Statistical Mechanics: Theory and Experiment, 2004(10):P10012, 2004.

[29] S Dongen. Graph Clustering by Flow Simulation. PhD Thesis, University of Utrecht, The
Netherlands, 2000.

[30] J Eckmann and E Moses. Curvature of co-links uncovers hidden thematic layers in the World
Wide Web. Proceedings of the National Academy of Sciences, 99(9):5825–5829, 2002.

[31] S Fortunato and A Lancichinetti. Community detection algorithms: a comparative analysis.
In 4th International ICST Conference on Performance Evaluation Methodologies and Tools,
2009.

[32] M Girvan and M Newman. Community structure in social and biological networks. Proceed-
ings of the National Academy of Sciences, 99(12):7821–7826, 2002.

[33] D Gleich and C Seshadri. Vertex Neighborhoods, Low Conductance Cuts, and Good Seeds
for Local Community Methods. In 18th ACM SIGKDD International Conference on Knowl-
edge Discovery in Data Mining, 2012.

[34] O Green, P Yalamanchili, and L Munguía. Fast Triangle Counting on the GPU. In 4th
Workshop on Irregular Applications: Architectures and Algorithms, 2014.

[35] D Gruhl, R Guha, D Liben-Nowell, and A Tomkins. Information Diffusion Through
Blogspace. In 13th International Conference on World Wide Web, 2004.

[36] R Guimera and L Amaral. Functional cartography of complex metabolic networks. Nature,
2005.

[37] R Gupta, T Roughgarden, and C Seshadhri. Decompositions of Triangle-Dense Graphs. In
5th Conference on Innovations in Theoretical Computer Science, 2014.

[38] M Jha, C. Seshadhri, and A Pinar. A Space Efficient Streaming Algorithm for Triangle
Counting Using the Birthday Paradox. In 19th ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining, 2013.

[39] T Kolda, A Pinar, T Plantenga, and C Seshadhri. A scalable generative graph model with
community structure. SIAM Journal on Scientific Computing, 36(5), 2014.

[40] T Kolda, A Pinar, T Plantenga, C. Seshadhri, and C Task. Counting Triangles in Massive
Graphs with MapReduce. SIAM Journal on Scientific Computing, 36(5):S48–S77, 2014.

[41] H Kwak, C Lee, and Others. What is Twitter, a social network or a news media? In 19th
International Conference on World Wide Web, pages 591–600, 2010.

[42] M Latapy. Main-memory triangle computations for very large (sparse (power-law)) graphs.
Theor. Comput. Sci., 407:458–473, 2008.

[43] J Leskovec. Dynamics of Large Networks. In Ph.D. Thesis, Pittsburgh, PA, USA., 2008.

118

[44] J Leskovec, D Chakrabarti, J Kleinberg, C Faloutsos, and Z Ghahramani. Kronecker Graphs:
An Approach to Modeling Networks. eprint arXiv:0812.4905, 0812.4905, 2008.

[45] J Leskovec, J Kleinberg, and C Faloutsos. Graphs over Time: Densification Laws, Shrinking
Diameters and Possible Explanations. In 11th ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining, 2005.

[46] J Leskovec, K Lang, and M Mahoney. Empirical comparison of algorithms for network
community detection. In 19th International Conference on World Wide Web, 2010.

[47] M McPherson, L Smith-Lovin, and J Cook. Birds of a Feather: Homophily in Social Net-
works. Annual Rev. of Soc., 27(1):415–444, 2001.

[48] R Milo, S Shen-Orr, N Kashtan, D Chklovskii, and U Alon. Network motifs: simple building
blocks of complex networks. Science, 298(5594):824–827, 2002.

[49] M Newman. The structure and function of complex networks. SIAM Review, 45:167–256,
2003.

[50] M Newman. Coauthorship networks and patterns of scientific collaboration. Proceedings of
the National Academy of Sciences, 101(1):5200–5205, 2004.

[51] M Newman, S Strogatz, and D Watts. Random graphs with arbitrary degree distributions and
their applications. Physical Review E, 64, 2001.

[52] M Ovelgönne. Distributed Community Detection in Web-scale Networks. In 2013
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining,
2013.

[53] R Pagh and C Tsourakakis. Colorful triangle counting and a MapReduce implementation.
Information Processing Letters, 112(7):277–281, 2012.

[54] H Park and C Chung. An Efficient MapReduce Algorithm for Counting Triangles in a Very
Large Graph. In 22nd ACM International Conference on Information & Knowledge Manage-
ment, 2013.

[55] H Park, F Silvestri, U Kang, and R Pagh. MapReduce Triangle Enumeration With Guar-
antees. In 23rd ACM International Conference on Information & Knowledge Management,
2014.

[56] Y Perez, R Sosič, A Banerjee, R Puttagunta, M Raison, P Shah, and J Leskovec. Ringo:
Interactive Graph Analytics on Big-Memory Machines. In 2015 ACM SIGMOD International
Conference on Management of Data, 2015.

[57] A Prat-Pérez, D Dominguez-Sal, J. Brunat, and J Larriba-Pey. Put Three and Three Together:
Triangle-Driven Community Detection. ACM Trans. Knowl. Discov. Data, 10(3):22:1—-
22:42, 2016.

119

[58] F Radicchi, C Castellano, F Cecconi, V Loreto, and D Parisi. Defining and identifying
communities in networks. Proceedings of the National Academy of Sciences, 101(9):2658–
2663, 2004.

[59] U Raghavan, R Albert, and S Kumara. Near linear time algorithm to detect community
structures in large-scale networks. CoRR, abs/0709.2938, 2007.

[60] M Rahman and M Hasan. Approximate triangle counting algorithms on multi-cores. In 2013
IEEE International Conference on Big Data, 2013.

[61] E Riedy, H Meyerhenke, D Ediger, and D Bader. Parallel community detection for massive
graphs. In 9th international conference on Parallel Processing and Applied Mathematics,
2012.

[62] P Ronhovde and Z Nussinov. Multiresolution community detection for megascale networks
by information-based replica correlations. In Physical Review E, 2009.

[63] M Rosvall and C Bergstrom. Maps of random walks on complex networks reveal community
structure. Proceedings of the National Academy of Sciences, 105(4):1118–1123, 2008.

[64] V Satuluri, S Parthasarathy, and Y Ruan. Local Graph Sparsification for Scalable Clustering.
In 2011 ACM SIGMOD International Conference on Management of Data, 2011.

[65] T Schank. Algorithmic Aspects of Triangle-Based Network Analysis. PhD thesis, University
of Karlsruhe, 2007.

[66] T Schank and D Wagner. Finding, counting and listing all triangles in large graphs, an
experimental study. In Experimental and Efficient Algorithms, 2005.

[67] C Seshadhri, A Pinar, and T Kolda. Triadic measures on graphs: the power of wedge sam-
pling. In SIAM International Conference on Data Mining, 2013.

[68] J Shun and K Tangwongsan. Multicore triangle computations without tuning. In 2015 IEEE
31st International Conference on Data Engineering, 2015.

[69] SNAP. Stanford Network Analysis Project. http://snap.stanford.edu, 2012.

[70] J Soman and A Narang. Fast Community Detection Algorithm with GPUs and Multicore
Architectures. In International Parallel and Distributed Processing Symposium, 2011.

[71] C Staudt and H Meyerhenke. Engineering High-Performance Community Detection Heuris-
tics for Massive Graphs. In International Conference on Parallel Processing, 2013.

[72] S Suri and S Vassilvitskii. Counting triangles and the curse of the last reducer. In 20th
international conference on World Wide Web, 2011.

[73] K Tangwongsan, A Pavan, and S Tirthapura. Parallel Triangle Counting in Massive Streaming
Graphs. In 22nd ACM International Conference on Information & Knowledge Management,
2013.

120

[74] T Tian and K Burrage. Stochastic models for regulatory networks of the genetic toggle switch.
Proceedings of the National Academy of Sciences, 103(22):8372–8377, 2006.

[75] C Tsourakakis. Fast counting of triangles in large real networks without counting: Algorithms
and laws. In IEEE International Conference on Data Mining, 2008.

[76] C Tsourakakis, U Kang, G Miller, and C Faloutsos. DOULION: Counting Triangles in Mas-
sive Graphs with a Coin. In 15th International Conference on Knowledge Discovery and
Data Mining, 2009.

[77] L Wang, T Lou, J Tang, and J Hopcroft. Detecting Community Kernels in Large Social
Networks. In 2011 IEEE 11th International Conference on Data Mining, 2011.

[78] S Wasserman and K Faust. Social Network Analysis. Methods and Applications. Cambridge
University Press, 1994.

[79] H. Wilf. Generatingfunctionology. https://www.math.upenn.edu/~wilf/gfology
2.pdf, 1994.

[80] B Wu, K Yi, and Z Li. Counting Triangles in Large Graphs by Random Sampling. IEEE
Transactions on Knowledge and Data Engineering, PP(99), 2016.

[81] Y Zhang, J Wang, Y Wang, and L Zhou. Parallel Community Detection on Large Networks
with Propinquity Dynamics. In 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2009.

[82] Zoltan. Sandia National Laboratories. http://www.cs.sandia.gov/zoltan/.

121

