ABSTRACT

A high temperature ceramic filter is produced from a composition containing refractory cement, aggregate, pore forming additives, and sintering agents. The pore forming additives are synthetic or organic powders or fibers which sublimate, melt, or otherwise disintegrate to produce in situ pores in the cement during the refractory treatment of a cast filter. The filters produced are permeable to high temperature gases commonly found in a coal furnace and can be used to collect particulate matter present in those gases.
HIGH TEMPERATURE CERAMIC PARTICULATE FILTER

BACKGROUND OF THE INVENTION

1. Field of the Invention

The subject invention is generally related to high temperature ceramic particulate filters and, more particularly, to candle filters used in coal combustion systems and a method for their manufacture.

2. Description of the Prior Art

A number of high temperature filtration systems for coal combustion are currently being developed by a number of companies. The economic viability, efficiency, and durability of these systems are largely dependent on the delivery of particulate-free hot gas to the power turbine. A typical filtration system will operate up to approximately 1 megapascal (MPa), which is equivalent to 10 atmospheres or 150 pounds per square inch (psi), and 1000° C. (1850° F.). The filters are subjected to a wide range of stress-inducing forces including vibrations and thermal shock resulting from pulse cleaning. In addition, the filters are subject to corrosion due to the alkali and steam present in the combustion gases. Low level gas phase contaminants such as sulfur dioxide, hydrogen sulfide, and calcium oxide are also sources of corrosion.

The drawing figure shows the flow of gas in a candle filter module. Hot gas from a coal furnace is directed across a plurality of candle filters which hang from a tube sheet. The candle filters are hollow cylindrical members with closed bottom ends and open top ends and are typically hung from the tube sheet by a flange which protrudes from the top end of the candle filter. A typical candle filter is 2—5 inches in outer diameter, 1—3 inches in inner diameter, and 3—4 feet in length. The candle filters are porous and are designed such that particles present in the raw gas are trapped on the outer surface of the candle filters while the gas is permitted to pass through. The clean gas passes upwards through the hollow section of the candle filter and out to a turbine or other element. Over time, a dust cake builds up on the outer surface of the candle that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time.

Prior art candle filters are typically fabricated by bonding silicon carbide (SiC), alumina-silica, mullite, or cordierite grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency. Some candles incorporate a layer of ceramic fibers or fine grains with a clay binder. Aggregate size (grain) affects the porosity and permeability. It is, of course, the dust cake that builds up on the filtering surface (outside wall) that constitutes the filter most of the time, and is responsible for the filtering efficiency.
80.2° C. and inexpensive polymer fibers such as polyethylene, polypropylene or the like typically melt between 170° C. and 360° C. The pore formers could be selected from suitable organic or synthetic powder or fiber materials. Melting polymers may also help in sintering the filter. As described above, candle filters are hollow cylinders with closed bottom ends. Hence, a mold is required to shape the concrete before curing, drying and heating.

Two candle filters have been prepared from different material compositions containing refractory concrete and pore forming additives. A first composition contained naphthalene and polymer fibers (dacron polyester fibers) as the pore forming additives. The naphthalene is ground to a fine powder of approximately 420μm in diameter, and the polymer fibers are cut into 0.25 to 3 inch pieces. The naphthalene and polymer fibers are combined with calcined kaolin (aggregate), pyrex glass (sintering agent), calcium aluminate (cement), and alumina fibers. The alumina fibers are added to provide the candle filter with extra strength. The first composition had its constituents present in the following weight percentages: 21.0—23.0% cement, 63.0—66.0% aggregate, 8.84—10.0% naphthalene, 2.56—2.82% sintering agent, 0.12—0.67% alumina fibers, and 0.08—0.20% polymer fibers. A second composition contained polymer fibers (dacron polyester fibers) exclusively as the pore forming additive. The polymer fibers were cut into 0.25, 0.5, and 1.0 inch pieces. The second composition had its constituents present in the following weight percentages: 24.0—26.0% cement, 70.0—73.0% aggregate, 2.74—3.51% sintering agent, and 0.20—0.60% polymer fibers. In both compositions, the aggregate had a maximum particle size diameter of 600μm.

The candle filters are formed by mixing the cement, aggregate, sintering agent, and pore forming agent for 3–5 minutes to obtain a homogenous mixture. After combining the constituents, water is added until a placeable consistency for casting is obtained. The wet mixture is cast into a hollow cylindrical mold. The mold may have an appropriate length with an outer diameter of 3 inches and an inner diameter of 1.5 to 1.75 inches. The outer portion of the mold may be made of polyvinylchloride (PVC) tubing and the inner portion of the mold may be a paper tube. The mold can be held together with rubber bands and set in a metal plate to secure its base. After placing the wet mixture of concrete in the mold, the mold is vibrated until the wet mixture attains the shape of the mold. After careful vibration, the mold and its contents are placed in a plastic bag and allowed to cure overnight. Aftercuring, the cured tube (cast) is separated from the mold and allowed to air dry over night. The resulting cast is then heated in a oven according to the following schedule: 24 hours at 100° C.; increase the temperature from 100° C. to 1200° C. at a rate of 1° C. per minute (the slow rate of heating gets rid off combined water); hold the temperature at 1200° C. for 6 hours; increase the temperature from 1200° C. to 1400° C. at a rate of 1° C. per minute; hold the temperature for 24 hours at 1400° C.; then cool to room temperature at a rate of 30° C. per minute. The slow cooling is designed to minimize microcracking within the body of the filter. During the heating process, the naphthalene sublimes and the polymer fibers melt such that a cement candle filter having pores formed in situ is created.

The percent porosity of the candle filters produced has been determined using the Archimedes Principle.

The candle filters made from the first composition containing both naphthalene and polymer fibers had a 20.0—25.0% porosity while the candle filters made from the second composition had a 46.0—50.0% porosity. The porosity ranges for both sets of candle filters are sufficient to allow the candle filters to be useful in separating particulate matter in a gas stream such as that which is produced by a coal furnace. The permeability of the candle filters was tested by measuring the pressure drop across the filter at different air velocities. The candle filters formed from the first composition containing both naphthalene and polymer fibers had permeabilities (pressure drops) ranging from 2.96—7.19 mbars. The candle filters formed from the second composition containing only polymer fibers were less permeable and had pressure differentials ranging between 12.39—20.61 mbars. Nevertheless, the permeabilities of the candle filters formed from both compositions were acceptable for their use in a DCFT or other coal fired application.

The candle filters of the present invention will not corrode as quickly as prior art clay and ceramic filter candle filters. The components of the filter are corrosive resistant at high temperature and contain no glassy phases.

While the invention has been described in terms of its preferred embodiment where polymers and organic constituents have been incorporated in compositions containing refractory concrete, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims.

Having thus described our invention, what we claim as new and desire to secure by letters patent is the following:

1. A method of forming a high temperature ceramic filter, comprising the steps of:
 preparing a mixture of
 (i) refractory calcium aluminate cement,
 (ii) ceramic aggregate granules, and
 (iii) pore forming additives, said pore forming additives being sized so as to enable the creation of continuous pores from a first side to a second side of a high temperature ceramic filter, said pore forming additives constituting a small enough weight percentage of said mixture that gases will pass through said continuous pores of said high temperature ceramic filter but particulate matter in said gases will be stopped, said pore forming additives having a temperature for melting, sublimating, or otherwise disintegrating below a temperature used for firing a case of said high temperature ceramic filter;
 forming a cast of said high temperature ceramic filter from said mixture; and
 firing said case of said high temperature ceramic filter at an elevated temperature, whereby pores are formed in situ in said high temperature ceramic filter by the melting, sublimating, or disintegrating of said pore forming additives.

2. A method as recited in claim 1 wherein said mixture further comprises at least one sintering agent.

3. A method as recited in claim 1 wherein said mixture further comprises a reinforcing material selected from the group consisting of metal fibers and graphite fibers.

4. A method as recited in claim 1 wherein said pore forming additives include polymer fibers.
5. A method as recited in claim 4 wherein said pore forming additives further include naphthalene.

6. A method as recited in claim 1 wherein said step of forming a cast of said high temperature ceramic filter comprises the steps of wetting said mixture, molding said mixture in the form of said high temperature ceramic filter, and during the wet mixture to form said cast.

7. A method as recited in claim 1 wherein said step of firing includes the steps of:
 - heating said cast to an intermediate temperature capable of melting, sublimating or otherwise disintegrating said pore forming additives;
 - holding said cast at said intermediate temperature for a sufficient period of time to melt, sublimate or disintegrate said pore forming additives to form a porous cast;
 - heating said porous cast to an elevated temperature above 1000° C.;
 - holding said porous cast at said elevated temperature for an extended period of time; and
 - cooling said high temperature ceramic filter from said elevated temperature at a rate slow enough to prevent cracking.

8. A high temperature ceramic filter formed by the following process:

 preparing a mixture of
 (i) refractory calcium aluminate cement,
 (ii) ceramic aggregate granules, and
 (iii) pore forming additives, said pore forming additives being sized so as to enable the creation of continuous pores from a first side to a second side of a high temperature ceramic filter, said pore forming additives constituting a small enough weight percentage of said mixture that gases will pass through said continuous pores of said high temperature ceramic filter but particulate matter in said gases will be stopped, said pore forming additives having a temperature for melting, sublimating, or otherwise disintegrating below a temperature used for firing a cast of said high temperature ceramic filter;

 forming a cast of said high temperature ceramic filter from said mixture;

 firing said cast of said high temperature ceramic filter at an elevated temperature, whereby pores are formed in situ in said high temperature ceramic filter by the melting, sublimating, or disintegrating of said pore forming additives.

9. A high temperature ceramic filter as recited in claim 8 formed in the shape of a candle filter.