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Mandar D. Kulkarni

ACADEMIC ABSTRACT

The method of Continuum Sensitivity Analysis (CSA) with Spatial Gradient Recon-
struction (SGR) is presented for calculating the sensitivity of fluid, structural, and coupled
fluid-structure (aeroelastic) response with respect to shape design parameters. One of the
novelties of this work is the derivation of local CSA with SGR for obtaining flow derivatives
using finite volume formulation and its nonintrusive implementation (i.e. without accessing
the analysis source code). Examples of a NACA0012 airfoil and a lid-driven cavity highlight
the effect of the accuracy of the sensitivity boundary conditions on the flow derivatives. It
is shown that the spatial gradients of flow velocities, calculated using SGR, contribute sig-
nificantly to the sensitivity transpiration boundary condition and affect the accuracy of flow
derivatives. The effect of using an inconsistent flow solution and Jacobian matrix during the
nonintrusive sensitivity analysis is also studied.

Another novel contribution is derivation of a hybrid adjoint formulation of CSA, which
enables efficient calculation of design derivatives of a few performance functions with respect
to many design variables. This method is demonstrated with applications to 1-D, 2-D and 3-
D structural problems. The hybrid adjoint CSA method computes the same values for shape
derivatives as direct CSA. Therefore accuracy and convergence properties are the same as
for the direct local CSA.

Finally, we demonstrate implementation of CSA for computing aeroelastic response shape
derivatives. We derive the sensitivity equations for the structural and fluid systems, identify
the sources of the coupling between the structural and fluid derivatives, and implement CSA
nonintrusively to obtain the aeroelastic response derivatives. Particularly for the example
of a flexible airfoil, the interface that separates the fluid and structural domains is chosen
to be flexible. This leads to coupling terms in the sensitivity analysis which are highlighted.
The integration of the geometric sensitivity with the aeroelastic response for obtaining shape
derivatives using CSA is demonstrated.
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GENERAL AUDIENCE ABSTRACT

Many natural and man-made systems exhibit behavior which is a combination of the
structural elastic response, such as bending or twisting, and aerodynamic or fluid response,
such as pressure; for example, flow of blood in arteries, flapping of a bird’s wings, fluttering
of a flag, and flight of a hot-air balloon. Such a coupled fluid-structure response is defined
as aeroelastic response. Flight of an aircraft through turbulent weather is another example
of an aeroelastic response. In this work, a novel method is proposed for calculating the
sensitivity of an aircraft’s aeroelastic response to changes in the shape of the aircraft. These
sensitivities are numbers that indicate how sensitive the aircraft’s responses are to changes
in the shape of the aircraft. Such sensitivities are essential for aircraft design.

The method presented in this work is called Continuum Sensitivity Analysis (CSA).
The main goal is to accurately and efficiently calculate the sensitivities which are used by
optimization tools to compute the best aircraft shape that suits the customers needs. The
key advantages of CSA, as compared to the other methods, are that it is more efficient
and it can be used effectively with commercially available (nonintrusive) tools. A unique
contribution is that the proposed method can be used to calculate sensitivities with respect
to a few or many shape design variables, without much effort.

Integration of structural and fluid sensitivities is carried out first by applying CSA indi-
vidually for structural and fluid systems, followed by connecting these together to obtain the
coupled aeroelastic sensitivity. We present the first application of local formulation of CSA
for nonintrusive implementation of high-fidelity aeroelastic sensitivities. The following chal-
lenging tasks are tackled in this research: (a) deriving the sensitivity equations and boundary
conditions, (b) developing and linking computer codes written in different languages (C++,
MATLAB, FORTRAN) for solving these equations, and (c) implementing CSA using com-
mercially available tools such as NASTRAN, FLUENT, and SU2. CSA can improve the
design process of complex aircraft and spacecraft. Owing to its modularity, CSA is also ap-
plicable to multidisciplinary areas such as biomedical, automotive, ocean engineering, space
science, etc.
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Chapter 1

Introduction

Aircraft are used for a variety of applications such as for transport, military, experimentation,

advertisement, agriculture, and so on. In general, aircraft may be propelled by human power,

gas, battery or solar power; aircraft sizes may range from a few milimeters to a couple of

hundred feet; and they can have fixed, rotary or flapping wings. With so many parameters,

design of an aircraft is one of the most challenging engineering tasks. Aircraft may cost

from a couple of hundred dollars, for a model aircraft, to billions of dollars for a commercial

aircraft. As a reference, the cost of a Boeing 747-8 aircraft in 2016 was approximately $360

million (The-Boeing-Company, 2016). Most of commercial aircraft design are naturally

geared towards making a safe and efficient aircraft at the lowest cost. Military aircraft have

design requirements such as high speed, high maneuverability and long endurance. New

configurations such as sensorcraft, joined-wing and blended wing body are being designed

to meet these ever-growing requirements. However, this gives rise to the need for tools and

computational models that can simulate the response of such new configurations. Good

design tools and models should be able to predict the performance as well as the different

failure modes of the novel aircraft within sufficient accuracy.

Consider the NASA Helios prototype, which was flown in 2003 to test the newly designed

High Altitude Long-Endurance (HALE) type aircraft. The Helios prototype took off well
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but encountered turbulence about 30 minutes later which resulted in its crash. The acci-

dent investigation report published by NASA in 2004 (Noll et al., 2004) highlights that a

root cause for this failure was “Lack of adequate analysis methods [which] led to an inac-

curate risk assessment of the effects of configuration changes leading to an inappropriate

decision to fly an aircraft configuration highly sensitive to disturbances.” It is also stated

that “the board determined that the mishap resulted from the inability to predict, using

available analysis methods, the aircraft’s increased sensitivity to atmospheric disturbances

such as turbulence, following vehicle configuration changes required for the long-duration

flight demonstration.” From this it is clear that tools are required for not only predicting

the behavior, i.e. response of the configuration, but also for predicting the sensitivity of the

response to different configurational changes. The latter is a key motivation for research

presented in this dissertation.

Design derivatives, also sometimes referred to as sensitivities, describe how a particular

response would change with respect to a design variable. Aircraft design variables can be

broadly classified as sizing (also known as value), shape, and topology variables. Sizing

variables change the size of a member, such as thickness of ribs or spars, cross sectional

areas of components, while shape variables change the shape of the physical domain of the

aircraft, such as airfoil shape, wing span, wing sweep angle, fuselage cross section, empennage

configuration and so on. Topology variables determine the optimal layout of material and

connectivity inside a design domain. Topology optimization is a separate topic in itself and

is not considered in the current work. Realistically, there can be hundreds and thousands

of such design variables, which finally define and can possibly alter the characteristics of

an aircraft. To understand the complete problem and conduct design optimization over the

complete design space requires the calculation of sensitivity of all performance and constraint

metrics with respect to all the design variables. This gives an idea of the complexity of aircraft

design sensitivity analysis.

The main feature of a sizing optimization problem is that the domain of the design
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model is known a priori and fixed throughout the optimization process, with the goal of

obtaining optimum size of specific members in the model. On the other hand, in shape

optimization, the boundary and the interior points in the domain move due to a shape

design variable, which offers higher design freedom than that in sizing optimization. This

movement of the material points with respect to the shape variables, defined as geometric

sensitivity or design velocity, is an important factor in shape optimization. Consequently,

it is more computationally challenging to estimate the sensitivity of a response to a shape

design variable than to a sizing design variable. Complexity of calculations increases when

the said response is a coupled response such as the fluid-structure interaction, also called

as aeroelastic response. This introduces the topic of the current dissertation: “Integration

of Aeroelastic and Geometric Sensitivity for Shape Optimization.” Although the examples

presented here are primarily related to aircraft shape derivatives, the methods can be applied

to any system that exhibits a response which is sensitive to the shape of its physical domain.

1.1 Motivation

Sensitivity analysis plays an important role in gradient-based optimization techniques. In

fact, convergence of a gradient-based shape optimization depends on the accuracy of gradi-

ents of the performance and constraint functions with respect to the design variables. Apart

from its application in optimization, sensitivity analysis is useful in areas such as error-

based grid adaptation, gradient-enhanced kriging, characterization of complex flows, fast

evaluation of nearby-flows (Duvigneau and Pelletier, 2006), and uncertainty analysis. Sens-

itivity analysis methods can be broadly categorized as numeric methods (finite difference,

complex step), analytic methods (discrete, continuum) or automatic differentiation methods,

as shown in the taxonomy in Figure 1.1. With the exception of complex step method, ana-

lytic methods are generally favored over numeric methods because of their higher accuracy.

Furthermore, analytic methods have the following advantages: (a) there is no need of con-
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Figure 1.1: Sensitivity Analysis taxonomy

vergence study for choosing the correct step size (required for the finite difference method),

and (b) there is no requirement of the analysis code to handle complex number operations

(required for the complex step method). Among the analytic methods, the discrete analytic

method involves discretizing the governing equations, followed by differentiation. Since dif-

ferentiation occurs after discretization, calculation of the change in the mesh with respect

to a shape design variable, also known as mesh sensitivity or mesh Jacobian, is required as

a part of the sensitivity analysis procedure. Evaluation of mesh sensitivity often requires

computationally expensive calculations. Additionally, intimate knowledge of the analysis

procedure is required for implementation of the discrete analytic method because it is based

on “discretize then differentiate” approach. Automatic differentiation method requires the

actual source code for its implementation. Compared to these, Continuum Sensitivity Ana-

lysis (CSA) may offer a better alternative. This has motivated researchers to investigate the

use of CSA for various systems.

Aircraft response calculation is an interdisciplinary process and it usually involves use of

multiple tools and software programs for getting the effects of aircraft’s structural, aerody-
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namic, propulsion and control characteristics. Typically, these programs are run numerous

times during design iterations with data being transferred back and forth. This is better

explained by the N2 diagram as shown in Figure 1.2. The data that is transferred involves

not only the response values, but also the response derivatives from each software program.

Commercial programs such as NASTRAN, FLUENT, ABAQUS rely mostly on numeric or

discrete methods of obtaining design derivatives, which are often computationally expensive

and may also be inaccurate in certain cases. However, since commercial codes can only

be used as black-boxes, it is not always possible to implement analytic sensitivity calcula-

tion, if not already present, in such software for obtaining accurate derivatives. Due to this

reason, an analytic sensitivity analysis procedure that can be implemented with black-box

tools can be of great value in aircraft design. This motivates the nonintrusive, or black-box,

implementation of CSA.

CSA has been successfully used to compute shape derivatives of structural response

(Dems and Haftka, 1988; Haug et al., 1986; Arora, 1993; Choi and Kim, 2005) and fluid

response (Borggaard and Burns, 1994, 1997; Stanley and Stewart, 2002; Turgeon et al.,

2005; Duvigneau and Pelletier, 2006), as well as more recently, aeroelastic response (Etienne

and Pelletier, 2005; Liu and Canfield, 2016; Cross and Canfield, 2015). The motivation for

using CSA for shape sensitivity of aeroelastic response is twofold: (a) gradients are analytic

(accurate and more efficient than finite difference) and (b) mesh sensitivity calculation is

avoided (a drawback of the discrete analytic and semi-analytic shape sensitivity approaches).

In the boundary velocity formulation of the CSA method, the solution of the sensitivity

equations is driven by three terms on the boundaries and on the interfaces that change shape:

(1) the geometric sensitivity, (2) the spatial gradients of the response, and if applicable, (3)

material derivative of the function prescribed on the boundary. The geometric sensitivity

or design velocity is defined as the rate of movement of material points with respect to

the shape design variable, and is either supplied by the designer, or can be obtained once

the shape design variables are defined (Kulkarni et al., 2014b). The spatial gradients of
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the response, may be calculated using a technique called Spatial Gradient Reconstruction

(SGR). The third term is present if a value is prescribed on the boundary or interface

through a shape parameter dependent function. In that case, the material derivative of the

prescribed function is required on the boundary or interface. Cross and Canfield (Cross

and Canfield, 2014, 2016) demonstrated that using SGR, analytic shape sensitivity can be

computed without any information about the finite element formulation, element shape

functions, or how the element shapes change with changes to the mesh, when the shape

of the domain changes. In other words, for the finite element method, the presented CSA

method is element-agnostic and does not require the knowledge of how the mesh changes

with shape design variables.

Borggaard and Burns, Duvigneau and Pelletier, and others (Borggaard and Burns, 1994,

1997; Stanley and Stewart, 2002; Turgeon et al., 2005; Duvigneau and Pelletier, 2006) have

applied boundary velocity CSA for obtaining shape sensitivities of compressible, inviscid

and viscous flows. They also highlight the computational advantage of boundary velocity

CSA, as it involves solving a linear system of equations with the same system matrix as the

primary flow analysis. As a result, computational effort is mostly in forming the new right

side. Although they have stated the possibility of making use of this property for black-

box sensitivity analysis, the specific steps and algorithm are missing. In the current work,

boundary velocity formulation of CSA together with SGR has been used for nonintrusive

implementation of CSA for flows computed using Euler and Navier-Stokes equations.

CSA has also been applied for solving aeroelastic shape derivatives (Liu and Canfield,

2011, 2016; Cross and Canfield, 2014). Liu and Canfield (Liu and Canfield, 2013a) have

explained how the choice of boundary velocity against domain velocity CSA can be justified

for aeroelastic sensitivity calculations. However, those studies involved flow computation

based on typical section aerodynamics or potential flow theory. This involves lower-fidelity

results than for cases involving viscous and compressible flow. This motivates the work on

obtaining aeroelastic sensitivities using CSA, which incorporates Euler and Navier-Stokes

7



flow computation.

As introduced earlier, aircraft design involves hundreds of sizing and shape design vari-

ables. This means that derivatives of a few objective functions (such as lift or drag) may

be required with respect to each of these design variables. In current practice, an adjoint

formulation of sensitivity analysis is used for such a case. It has been shown in literature

(Lozano and Ponsin, 2012; Duivesteijn et al., 2005) that the boundary conditions associated

with continuous adjoint method are often difficult to formulate. This motivates the need

of an adjoint formulation in which the boundary conditions are simplified. Thus, the hy-

brid adjoint formulation of CSA, which addresses this issue, thus introduced. The specific

research objectives that are addressed in this dissertation are stated next.

1.2 Research Objectives

The main objective of the current research is to aid accurate, computationally efficient, non-

intrusive (or black-box) sensitivity calculations. This will be a stepping stone towards the

larger goal of “bringing multi-physics based analysis forward, into the conceptual design pro-

cess,” as mentioned by Alyanak and Kolonay (Alyanak, 2012; Alyanak and Kolonay, 2012).

They also mention that this is important because “decisions made during [the] relatively

short period of time [spent during conceptual design] have a very large impact on the life-

cycle cost and performance of an aircraft.” A detailed literature survey was done based on

the motivation and gaps in literature presented in the previous section. This has led to the

following research objectives.

1. Formulate nonintrusive CSA with SGR for computation of high-fidelity flow derivatives,

and demonstrate its application using Computational Fluid Dynamics (CFD) tools that

are based on finite volume discretizations.

2. Develop hybrid adjoint formulation of CSA.
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3. Formulate and demonstrate nonintrusive CSA with SGR for aeroelastic response de-

rivatives involving high-fidelity flow and structural computation.

Each of these objectives is addressed as a separate journal paper and presented as three

chapters in this dissertation.

1.3 Dissertation Organization

The organization of this dissertation is as follows. Chapter 2 presents the nonintrusive

formulation of CSA for computing CFD flow derivatives. Examples of flow in a quasi-one-

dimensional nozzle, two-dimensional flow over an airfoil, and flow in a lid-driven cavity are

used to demonstrate this approach. Chapter 3 illustrates the hybrid adjoint formulation of

CSA for efficiently and nonintrusively computing design derivatives of a few performance

functions with respect to many design variables. This is demonstrated with the example of

an one-dimensional axial bar, a two-dimensional plate, and a three-dimensional cantilever

beam. Chapter 4 extends the nonintrusive CSA formulation to compute aeroelastic shape

sensitivities. This is demonstrated with the example of an airfoil supported by beam, and a

flexible airfoil in uniform flow. Finally, in Chapter 5, conclusions and technical contribution

of the current research are highlighted and recommendations are made for future work.

9



Chapter 2

Nonintrusive Continuum Sensitivity

Analysis for Fluid Applications

ABSTRACT

Continuum Sensitivity Analysis (CSA) provides an analytic method of computing deriv-
atives for structures, fluids and fluid-structure-interaction problems with respect to shape or
value parameters. Its advantage of bypassing the calculation of mesh sensitivities is evident in
shape optimization problems. Moreover, the Spatial Gradient Reconstruction (SGR) method
makes it amenable to nonintrusive implementation. In this paper we explain the nonintrus-
ive CSA procedure for calculating the material derivatives of one- and two-dimensional flow
variables with respect to shape design parameters. The examples demonstrate application
of nonintrusive CSA to flow problems involving Euler (compressible inviscid) and Navier-
Stokes (incompressible viscous) equations, structured and unstructured grids, finite volume
and finite difference spatial discretizations, and implicit and explicit temporal discretiza-
tions. Factors such as the accuracy of the sensitivity transpiration boundary condition,
weak implementation of the boundary conditions in the finite volume framework, and use
of approximate flux Jacobian matrix, all of which affect the accuracy of the total derivat-
ives, are discussed. The sensitivity analysis is done nonintrusively using codes such as SU2,
FLUENT, and an in-house code. This work establishes the use of such black-box codes, for
obtaining flow sensitivities using the CSA approach.
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2.1 Introduction

Sensitivity analysis plays an important role in gradient-based optimization techniques. Con-

vergence of a shape optimization problem depends on the accuracy of gradients of the per-

formance functions. Sensitivity analysis methods can be broadly categorized as numeric

methods (finite difference, complex step), analytic methods (discrete analytic, continuum)

or automatic differentiation methods. In general, analytic methods are favored over numeric

methods because of their higher accuracy and lower computational cost. Furthermore, ana-

lytic methods have the following advantages: (a) there is no need of convergence study for

choosing the correct step size (required for the finite difference method), and (b) there is

no requirement of the analysis code to handle complex number operations (required for the

complex step method). Among the analytic methods, the discrete analytic method involves

discretizing the governing equations followed by differentiation. Hence, for shape design vari-

ables it suffers from the disadvantage of calculating mesh sensitivity. Additionally, intimate

knowledge of the analysis procedure is required for implementation of the discrete analytic

method. Automatic differentiation requires the actual source code for its implementation.

Continuum Sensitivity Analysis (CSA) offers a better alternative.

The motivation for using CSA for shape sensitivity is twofold: (a) gradients are analytic

(accurate and more efficient than finite difference) and (b) mesh sensitivity calculation is

avoided (a drawback of the discrete analytic shape sensitivity approach). CSA can be de-

rived in two forms (Liu and Canfield, 2016), the local form, also known as the boundary

velocity sensitivity equation method (Choi and Kim, 2005) or Eulerian sensitivity equation

method (Pelletier et al., 2008), and the total form, also known as the domain velocity sens-

itivity equation method (Choi and Kim, 2005) or Lagrangian sensitivity equation method

(Charlot et al., 2012). The local form was known to give poor flow shape derivative results

as compared to total form CSA, due to challenges arising from accurate evaluation of spatial

gradients on the boundaries that change shape (Duvigneau and Pelletier, 2006). Charlot

et al. (2012) mention that although these gradients can be calculated using reconstruction

11



techniques (Duvigneau and Pelletier, 2006), the local CSA method becomes expensive in 2-D

and impractical in 3-D. While this may be true if the spatial gradients are to be calculated

at all points in the domain, typically local CSA requires spatial gradients to be calculated

only on the interfaces or boundaries that change shape. Cross and Canfield (2014) demon-

strated that using the Spatial Gradient Reconstruction (SGR) technique, which was inspired

from the work of Duvigneau and Pelletier (2006), accurate and efficient spatial gradients can

be evaluated, thus resolving one of the challenges that was preventing researchers to use

local CSA. In the current work, the same SGR technique has been used to evaluate spatial

gradients of flow variables on shape variable dependent boundaries.

Most the previous work in the area of Computational Fluid Dynamics (CFD) flow sensit-

ivity that used local CSA, was done with the finite element (Duvigneau and Pelletier, 2006)

or finite difference discretizations (Borggaard and Burns, 1997, 1994). The focus of current

work is to apply CSA with SGR to solve for fluid flow derivatives calculated using Euler and

Navier-Stokes equations with finite volume discretization, for which a very limited number

of studies are available. Gobal et al. (2015) used CSA with an immersed boundary finite

volume scheme to solve for the derivatives of solution to the linear thermal diffusion equation.

They used the finite difference method and the Heaviside functions to compute the spatial

derivatives terms that appear in the sensitivity equations. However, since the boundary

conditions for their problems do not depend on the design variables, the advantage of using

their approach for computing flow derivatives on shape dependent boundaries is unclear.

Challenges arise when finite volume discretization is used because boundary conditions are

typically imposed with a weak or integral approach (Hirsch, 1990; Palacios et al., 2013).

Villa et al. (2012) mention that the weak approach is used by finite volume-based CFD solv-

ers because it allows imposition of a suitable boundary flux, rather than a boundary state

as in the strong approach, which is preferable for setting up the boundary fluxes for the

finite volume method. Specifically, Villa (2009) studied the drawbacks of weak imposition

of the no-penetration boundary condition on 1D hyperbolic equation solutions using the
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finite volume approach and stated that the difference between the computed physical values

and the actual values of velocity could be significant. This can be particularly detrimental

for solution of sensitivity equations, because it adds a source of error in the imposition of

boundary conditions, apart from the error in the spatial gradients and the discretization

error. We discuss this issue in detail and highlight areas where improvement in using SGR

can be made.

Finally, we discuss another contribution of the current work, namely the nonintrusive, or

black-box, implementation of CSA. The discrete analytic method, the complex step method

and the automatic differentiation method all need modification to the source code for cal-

culating design derivatives. The operator-overloading approach to performing automatic

differentiation is the most convenient but its implementation is typically 10-35 times slower

than the original algorithm (Gay, 2005). Newer advancements on operator-overloading have

made the automatic differentiation process faster, still the computational cost is typically 4

times, or more depending on the application, of the original algorithm (Hogan, 2014; Albring

et al., 2016). On the other hand, although the finite difference method can be used with

black-box codes, it is not preferred because of dependence on the finite difference step-size.

There can be a considerable savings in computational efforts and programming time if shape

derivatives are computed with the same code that was used for flow analysis. This would also

be useful in a collaborative environment that requires the use of the same code by multiple

groups for calculating derivatives with respect to different shape design variables.

The work that most closely resembles a nonintrusive formulation of local CSA for finite

volume discretization is by Godfrey and Cliff (2001). Their approach was to obtain the flow

solution from a CFD solver and use it to solve the sensitivity equations separately while

constructing exact Jacobians. This idea of solving for the shape derivatives separately (ex-

ternal to the flow solver) was a key inspiration of the current work. However, the current

work differs from the work by Godfrey and Cliff (2001) in several ways. First, Godfrey and

Cliff (2001) use the finite difference method to calculate the spatial derivatives in the sens-
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itivity equations. While this may be possible for the case of a structured mesh, which they

have used, the finite difference method cannot be used for unstructured meshes (Becker and

Ashcroft, 2014; Duvigneau and Pelletier, 2006). Second, Godfrey and Cliff (2001) studied

inconsistent turbulent modeling for flow and sensitivity equations. Specifically, they studied

the interdependence of the flow and sensitivity solutions when the sensitivity equation was

derived from a turbulence model different from the one that provides the discrete flow data.

Out of the three cases studied, they report that their sensitivity analysis method provides

best results when the turbulent modeling is consistent in the flow solver and sensitivity

solver, with the exception of the case when the Baldwin-Lomax flow solution and eddy vis-

cosity are incorporated into the Spalart-Allmaras sensitivity formulation. Thirdly, Godfrey

and Cliff (2001) solve the linear sensitivity equations using an iterative approximate linear

solver. Finally, Godfrey and Cliff (2001) report results for a single mesh and compared the

CSA results with finite difference derivatives. In another closely related work, Borggaard and

Burns (1994, 1997) discuss how the continuum sensitivity equations (CSEs) can be solved

by minimum modifications to a flow analysis code and state that the same grid and compu-

tational scheme can be used to approximate the sensitivities. However, the implementation

details for a finite volume based CFD solver are not addressed.

In the current work we demonstrate a nonintrusive implementation (without modifying

the “black-box” analysis source code) of CSA for analyzing fluid systems with a focus on the

use of commonly used CFD codes that use finite volume discretization for solving the flow

variables and their shape derivatives nonintrusively. Particularly, we are interested in finding

out how the use of a Jacobian matrix that is inconsistent with the Jacobian matrix used

for the flow solution, affects the sensitivity results. Owing to the large size of the Jacobian

matrix, the capability of exporting or storing the Jacobain matrix is not available with many

flow solvers. For our nonintrusive approach, the Jacobian has to be either exported from

the CFD solver (if this capability is available) or constructed outside of the solver. The

exact Jacobian for Euler equations is known (Hirsch, 1990) and hence it can be constructed
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Table 2.1: Details of 2-D flow examples
Flow Example Eqs. Time dis-

cretization
Space dis-
cretization

Software Code
verification

Incompressible
viscous

Flow in a
lid-driven

cavity

Navier-
Stokes

Explicit Finite
difference

In-
house
(Mat-
lab)

Grid con-
vergence
(MMS)

Compressible
inviscid

Flow
through

convergent-
divergent

nozzle

Euler Euler
implicit

Finite
volume

In-
house
(Mat-
lab)

Exact
solution
available

Compressible
inviscid

Flow over
NACA0012

airfoil

Euler Euler
implicit

Finite
volume

SU2

(C++)
Grid con-
vergence

outside of the flow solver, however it may not be consistent with the matrix used for the

flow solution. We studied this aspect of the nonintrusive CSA approach. Once the Jacobain

matrix was obtained, the linear sensitivity equations were solved using LU factorization with

partial pivoting.

Details of the proposed nonintrusive CSA approach are given in Section 2.2. CSA was

applied to two types of steady flows: (a) incompressible viscous flow illustrated with the ex-

ample of a lid-driven cavity, and (b) compressible inviscid flow, illustrated with the examples

of 1-D flow through a convergent divergent nozzle and 2-D flow over NACA0012 airfoil. The

details about the flow analysis for these examples is given in Table 2.1. A manufactured

solution was used to verify the CSA code for the lid-driven cavity example as described in

Section 2.3. The NACA0012 example is described in Section 2.4. The convergent diver-

gent nozzle example was used to demonstrate CSA for value parameters and is described in

Appendix A.
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2.2 Local Continuum Shape Sensitivity Formulation

2.2.1 Governing Equations

The partial differential equations governing fluid flow can be written compactly as

R (u, t; b) = A (u, L (u)) − f (x, t; b) = 0 on Ω, (2.1)

with the corresponding boundary conditions (BCs)

B (u, L (u)) = g (x, t; b) on Γ, (2.2)

where the vector of dependent (state) variables u(x, t; b) are functions of the spatial and

temporal independent coordinates, x and t, respectively, and depend implicitly on design

variable b. The domain and boundary in Cartesian space are shown in Figure 2.1. The

linear differential operator L has terms such as
{
∂
∂t
, ∂
∂x
, ∂
∂y
, ∂2

∂x2 ,
∂2

∂y2 , . . .
}

that appear in the

governing equations or boundary conditions. A and B are algebraic or integral operators

acting on u and L (u). In general the differential operators in the Equations (2.1) and (2.2)

can be nonlinear. The distributed body force applied on the system is given by f in (2.1).

The general BCs in (2.2) can be either Dirichlet (essential or geometric) such as a prescribed

value Be (u) ≡ u|Γe
= ge ≡ ū on the boundary Γe, or may involve a differential operator

for Neumann (nonessential or natural) BCs such that Bn (L (u)) = gn on the boundary Γn.

Since the current work involves steady-state flow and sensitivity analysis, the time term t in

these equations represents pseudo-time.
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Figure 2.1: Domain, Ω, with boundary Γ.

2.2.2 Differentiation of Continuous Equations

The focus of the current work is to obtain design derivatives of flow variables at points in

the domain with respect to a limited number of design variables. Hence, we use the direct

formulation of CSA as explained next. However, an adjoint formulation of CSA (Kulkarni

et al., 2016) is also available, which allows one to calculate derivatives of a limited number of

performance measures with respect to many design variables using the same CSA boundary

conditions presented here. Consider the problem of obtaining the derivative of the steady-

state response u(x; b) with respect to design parameter b at all points in the domain. The

response depends on the spatial variable x and it may have an explicit or implicit dependence

on the shape variable b, as indicated by the semicolon. Since steady response derivatives are

of interest, the time variable t is suppressed in the further discussion. The boundary velocity

(local) formulation of CSA produces CSEs that are posed in terms of the local derivatives

of the response, u′ = ∂u/∂b. Hence, solution of the CSEs yields the local derivative. The

total or material derivative u̇ = Du/Db is then obtained by adding the convective term to

the local derivative.

Du

Db
= ∂u

∂b
+

3∑
i=1

∂u

∂xi

∂xi
∂b

⇐⇒ u̇ = u′ + ∇x (u) · V (2.3)
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The convective term consists of the spatial gradients of the response ∇xu = ∂u/∂x, and the

geometric sensitivity or design velocity V (x) = ∂x/∂b, which depends on the parametriz-

ation of the computational domain. For value design parameters, the convective term goes

to zero, since the design velocity is zero, and so the material derivative is same as the local

derivative. However, for shape design variables, the design velocity is not zero and hence

there is a need to calculate the convective term wherever necessary.

CSA is based on the philosophy of “differentiate and then discretize” and involves differ-

entiating Equations (2.1) and (2.2) with respect to b, followed by discretization and solution

of the resulting discretized system. Based on the type of differentiation, CSA is categorized

as either local form CSA or total form CSA (Liu and Canfield, 2016). The local form CSA

involves partial differentiation of Equation (2.1), while the total form CSA involves total

differentiation. Due to the advantages of the local form CSA over the total form CSA (Cross

and Canfield, 2014), the current work focuses on the local form CSA. The CSEs are obtained

by partial differentiation of Equation (2.1) as

∂R

∂b
= ∂A (u, L (u))

∂u
u′ + ∂A (u, L (u))

∂L
L (u′) − ∂f (x, t; b)

∂b
= 0. (2.4)

Since the material boundary changes due to a change in the shape design parameter, the

boundary conditions for the CSEs are obtained by total or material differentiation of the

original boundary conditions and then moving the convective terms to the right side

∂B
∂u

u′ + ∂B
∂L

L (u′) = ġ (x, t; b) − V (x) ·
(
∂B
∂u

∇xu + ∇x (B (L (u)))
)
, (2.5)

where ġ (x, t; b) is the material derivative of the prescribed boundary condition, typically zero

for Dirichlet boundary conditions. Nevertheless, even when the the boundary condition (2.2)

is homogeneous
(

u|Γe
= 0

)
, the CSE boundary condition (2.5) is in general non-homogeneous

due to the convective term: u′|Γe
= ġe − ∇xu · V (x), even for ġe = 0. The commutation

of derivatives on the left side of Eq. (2.5) is possible when the derivatives are local. The
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CSEs (2.4) with the boundary conditions (2.5) form a linear system of equations in terms of

sensitivity variable u′, which can be solved by the same or different numerical method used

for solving the analysis problem.

Eqs. (2.4) and (2.5) may be restated as

∂R

∂b
= Ab (u, L (u′)) − f ′ (x, t; b) = 0 on Ω, (2.6)

with the corresponding sensitivity BCs

Bb (u, L (u′)) = gb (x, t; b) on Γ, (2.7)

where gb is the right side of Eq. (2.5). The similarity of Eqs. (2.6) and (2.7) to Eqs.

(2.1) and (2.2) motivates the same solution method for each set of equations with the same

mesh for the discretized form. For linear governing Eqs. (2.1), Ab = A and Bb = B. For

nonlinear governing equations, the solution u is obtained from the analysis solution of Eq.

(2.1) for use in Eqs. (2.6) and (2.7). Similar to the flow analysis, equations the time term

t, suppressed in these equations, represents pseudo-time, since the current work involves

steady-state sensitivity analysis.

In the direct formulation of CSA, Eqs. (2.6) and (2.7) are solved to obtain the local

derivatives u′ in the domain Ω. This may be followed by adding the convective term, as

shown in (2.3), at the locations of interest in the domain, to obtain the total derivative

of the response variable u̇ at those locations. In typical aerodynamic shape optimization

applications, it is of interest to obtain the derivative of a performance metric such as

ψ =
ˆ

Γ̄

σu dΓ̄ (2.8)

which is based on weighted surface integral of the response u. Here σ are the weights and

Γ̄ ∈ Γ. Assuming that the weights do not depend on the shape design variable, the total
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derivative of the performance measure is obtained using the values of u̇ as

ψ̇ = Dψ

Db
=
ˆ

Γ̄

σu̇ dΓ̄ +
ˆ

Γ̄

σu ḋΓ̄, (2.9)

where ḋΓ̄ denotes the infinitesimal change in the boundary Γ̄ due to the shape design variable.

2.2.3 Discretization of the Flow and Sensitivity Equations

Until this point, the continuous governing equations were differentiated to obtain the CSEs.

Thus, there is no approximation involved in deriving the CSE system (2.6–2.7). Next,

consider a discretization at mesh level h of the flow equations (2.1) and a Newton-Raphson

implicit scheme that results in a coupled linear system of equations

[T ({u}nh)] {∆u}nh = {R}nh , (2.10)

which has to be solved at each iteration n for the updates to the flow variables {∆u}nh.

This update is used to get the values of flow variables at the next iteration {u}n+1
h =

{u}nh + {∆u}nh. Here [T ({u}nh)] is the tangent matrix and {R}nhis the residual of the flow

equations at time step n and discretization h. Similarly, the CSEs can be discretized to get

a coupled linear system of equations

[TCSE ({u}h)] {∆u′}h = {RCSE}h . (2.11)

As a consequence of the CSEs being linear in the sensitivity variables, the tangent matrix

[TCSE ({u}h)] in the discretized CSEs (2.11) is independent of the sensitivity variables u′

and only depends on the flow variables u. Borggaard and Burns (Borggaard and Burns,

1994, 1997), Wickert (Wickert et al., 2010) and Liu and Canfield (Liu and Canfield, 2013b)

showed that if the same discretization used for the analysis is used to discretize the CSEs,
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then

[TCSE ({u}h)] =
[
T
(
{u}Nh

)]
,

where N is the last iteration step of the flow solver once steady-state convergence is achieved.

Also, since the CSEs are linear in the sensitivity variables, the local shape derivatives are

obtained by just a single (one-shot) solution of the linear system (2.11) for {u′}h, assuming

{u′}h = {∆u′}h with zero initial guess
(
{u′}0

h = 0
)

without the loss of generality. Once the

local derivatives are computed by solving (2.11), the total derivatives can be obtained by

adding the convective term according to the discrete form of (2.3) and the derivative of the

performance measure can be obtained by the discrete form of (2.9).

2.2.4 On Accurate Boundary Conditions for CSA

Although the boundary conditions (2.5) do not appear explicitly in the discretized equations

(2.11), they are included in the residual vector {RCSE}h. In fact, the solution of the local

shape design derivatives {u′} are mainly driven by CSE boundary conditions. Hence, it

is important to accurately evaluate these while forming the CSE residual vector {RCSE}h.

Duvigneau and Pelletier (2006) have emphasized on the effect of CSE boundary conditions

on the accuracy of the local shape design derivatives. Taking a close look at Eq. (2.5), it

can be seen that once the design variables are defined, all terms on the right side are known

except for ∇xu in the convective term, which involves spatial gradients of the flow variables.

Improvising on the l-patch method by Duvigneau and Pelletier, which itself was based on the

super-convergent patch recovery method by Zienkiewicz and Zhu (1992), Cross and Canfield

(2014) proposed the Spatial Gradient Reconstruction (SGR) method to approximate the

spatial gradient term appearing in the CSE boundary condition (2.5) for structures. SGR is

used in the current research to approximate the spatial gradients ∇xu appearing in the CSE

boundary conditions. Since SGR does not require information of the discretization method

used, such as finite element or finite volume or finite difference, it can be used as a post-
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processing step, following the analysis solution, to calculate the required spatial gradients.

This makes CSA amenable for nonintrusive implementation.

An SGR patch constitutes a collection of points which are used to get the spatial gradients

at an expansion point. Examples of SGR patches are illustrated in Figure 2.2. A Taylor

series approximation is used to approximate the spatial gradients of the quantity of interest,

such as velocity, with a least-squares approach. As an example, for a 4-layer, third-order

SGR, the following third-order Taylor series expansion is used to solve the least-squares

problem.

ϕ(x+ ∆x, y + ∆y) = ϕ(x, y, z) + ϕ,x∆x+ ϕ,y∆y

+ 1
2
ϕ,xx (∆x)2 + 1

2
ϕ,yy (∆y)2 (2.12)

+ ϕ,xy∆x∆y + ϕ,yz∆y∆z,

where ϕ could be a scalar such as a component of velocity or flux and ϕ,x, ϕ,y, ϕ,z are the

spatial gradients that are computed. Accuracy of the spatial gradients obtained from SGR

can be improved by modifying parameters such as the patch-size and the order of Taylor

series. Cross and Canfield (2016) discuss the numerical behavior, accuracy, and convergence

of design derivatives when SGR is used to approximate the CSE boundary conditions and

they also give guidelines in selecting SGR parameters to achieve better results.

2.2.5 Nonintrusive Implementation

The procedure for nonintrusive implementation of the direct formulation of CSA is illustrated

by the flowchart given in Figure 2.3 and is explained next.
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Figure 2.2: Illustration of SGR patches.

Figure 2.3: Flowchart for direct formulation of Continuum Sensitivity Analysis
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First, the flow analysis solution u is obtained by running the analysis code (for example

SU2 or Fluent). Then, the SGR method is employed to approximate the spatial gradients

∇xu that appear in the sensitivity essential BCs. This is shown in the left branch of the

flowchart. Another term required for assembling the CSE boundary conditions (2.5) is the

design velocity V (x). This term can be obtained nonintrusively by using either the analytic

equations of the parametric geometry, or by using finite difference approximation. Altern-

atively, the design velocity could also be calculated using a complex step approximation

(Kulkarni et al., 2014b). This is shown in the right branch of the flowchart. With this, the

CSEs boundary conditions (2.5) are defined. Next, the linear CSEs (2.11) have to be solved.

This can be done using either of the following two approaches:

1. Solve the CSEs using the same code that solves the flow equations. In this case the

flow code should be able to accommodate non-homogeneous boundary conditions such

as (2.5). Also, the flow code should use the steady-state tangent matrix
[
T
(
{u}Nh

)]
to

solve the CSEs. Since the CSEs are linear, there is no need to iterate. The flow solver

can be stopped after the first iteration, when it is used to solve the CSEs. Although

not necessary, pseudo-time step iterations can also be used to achieve steady-state

convergence.

2. Solve the CSEs externally. In this case, the tangent matrix
[
T
(
{u}Nh

)]
has to be

exported or regenerated and the right side of the CSEs used to solve the CSEs external

to the flow solver.

Solution of CSEs results in the local derivatives u′. In the final step, the convective term

is added to these local derivatives to obtain total or material derivatives u̇. The next

sub-section explains the requirements of a flow analysis code so that it can be used for

nonintrusive implementation of CSA, based on the procedure mentioned above.
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2.2.6 Requirements of a Flow Analysis Code for Nonintrusive

CSA

The advantages of CSA over other design sensitivity analysis methods, such as finite differ-

ence, complex step approximation, discrete analytic method, and semi-analytic method, are

that it can yield more accurate derivatives, it does not suffer from requirement to choose a

step size, and that it does not require calculation of mesh sensitivity. The latter advantage

is mentioned particularly by Borggaard and Burns (1997). Cross and Canfield (2012) have

stated the requirements of an analysis code for it to be used as a “black-box” or nonintrusive

tool for CSA of a structural system. Extending these, the following can be stated as the

requirements of a flow solver so that it can be used for nonintrusive application of CSA.

1. Output response u: The solver should output the state variables such as fluid pressure,

velocities and temperature. This corresponds to the step of obtaining “Analysis Solu-

tion” in the flowchart of Figure 2.3. Although this seems like a trivial requirement, it

is stated here because some solvers may have option of only plotting the flow variables

and not accessing them, which may not be enough, since the flow variables have to

be post-processed to obtain the spatial gradients ∇xu. As explained in the previous

sub-section, these spatial gradients are required on the boundary with nonzero design

velocity to form the CSE boundary conditions, and in the final step to calculate the

convective term (∇xu · V) at the locations where the total derivative u̇ are needed.

2. For solving CSEs internally (using the same flow analysis code) there are the following

two requirements. First, since the boundary conditions for CSEs are typically non-

homogeneous unlike the homogeneous boundary conditions for the original analysis,

to solve the CSEs using the same analysis code, it is required that the code be able to

handle the non-homogeneous boundary conditions (2.5). Second, the flow solver should

be able to regenerate the tangent matrix
[
T
(
{u}Nh

)]
from the steady-state solution

and further use it to solve the CSEs.
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3. For solving the CSEs externally, the flow solver should be able to output the tangent

matrix
[
T
(
{u}Nh

)]
. For CFD, the tangent matrix is the full flow Jacobian matrix. In

implicit CFD solvers, for steady-state solutions, a psedo-time term may be added to

the elements on the diagonal of the Jacobian matrix for making it diagonally dominant.

This time term should be removed before using the Jacobian matrix for solving CSEs.

If all these requirements are satisfied, a nonintrusive implementation of CSA is possible using

the flow solver as a “black-box” tool. The results of a survey of some flow solvers in context

of nonintrusive CSA application is shown in Table 2.2. Columns list the different flow solvers

while rows list the requirements that they should satisfy for their use as non-intrusive CSA

solvers. A check mark ’X’ indicates that the capability exists, a cross ’×’ indicates that the

capability does not exist while the sign ’(?)’ indicates that enough literature is not available

to find out the about that specific requirement. Based on this survey, it was decided to use

SU2 for nonintrusive implementation of compressible viscous (Euler equation) flow whereas

the in-house code to be used for nonintrusive implementation of incompressible viscous flow.

2.3 Sensitivity of Flow in a Lid-driven Cavity

2.3.1 Flow Analysis

The benchmark lid-driven cavity problem (Roy and Hopkins, 2003) consists of obtaining the

fluid velocities and pressure in a rectangular cavity filled with fluid, which is Lx units wide

and Ly units high, when the lid of the cavity is pulled with constant velocity uLid. The steady-

state flow in the cavity when the lid is pulled with the constant velocity uLid = 1m/s, is

shown in Figures 2.4–2.6. Origin of the Cartesian coordinate system for the cavity is assumed

to be at the left bottom corner.
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Figure 2.4: Streamlines and horizontal velocities in the lid-driven cavity
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Figure 2.5: Vertical velocities in the lid-driven cavity
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Figure 2.6: Pressure in the lid-driven cavity

This problem was solved using the following incompressible Navier-Stokes equations,

1
β2
∂p

∂t
+ ρ

∂u

∂x
+ ρ

∂v

∂y
= S + fm, (2.13)

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
+ ∂p

∂x
− µ

(
∂2u

∂x2 + ∂2u

∂y2

)
= fx, (2.14)

ρ
∂v

∂t
+ ρu

∂v

∂x
+ ρv

∂v

∂y
+ ∂p

∂y
− µ

(
∂2v

∂x2 + ∂2v

∂y2

)
= f y, (2.15)

where p is the pressure, ρ is the density, u and v are the velocities in the horizontal and vertical

directions, S represents the artificial viscosity, µ is the dynamic viscosity, and the source

terms fm, fx, and fy are zero. Since the steady-state flow solution is of interest, the variable

t represents pseudo-time and the associated time derivative terms with a preconditioning

factor β are used to march the solution to the steady-state. The boundary conditions for

this problem are the no-slip Dirichlet boundary conditions as follows.
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• Velocities at the left, right and bottom wall are zero.

u (0, y) = 0, v (0, y) = 0 (2.16)

u (Lx, y) = 0, v (Lx, y) = 0 (2.17)

u (x, 0) = 0, v (x, 0) = 0 (2.18)

• Vertical velocity on the top wall is zero, horizontal velocity at the top wall is the

lid-driving velocity,

u (x, Ly) = uLid, v (x, Ly) = 0. (2.19)

The boundary conditions are thus homogeneous. No conditions are imposed on the pressure

at the domain boundary. Hence pressure at the four walls is extrapolated based on interior

values. The time derivative preconditioning factor (1/β2) is used to improve the condition

number of the system of equations. The artificial viscosity S is necessary to avoid odd-

even coupling when central difference scheme is used for spatial discretization. Eqs. (2.13–

2.15) were spatially discretized using a second-order accurate finite difference scheme. The

equations were solved with a Symmetric Gauss Seidel (SGS) iterative scheme to obtain a

steady-state solution using MATLAB.

Since the exact solution for the lid-driven cavity problem is not available, the following

manufactured solution with sinusoidal functions was used for verification of the CSA ap-

proach, and is plotted in Figures 2.7–2.9. The source terms for the manufactured solution

are calculated by substituting the manufactured solution in the Navier-Stokes equations.

pmms (x, y) = 0.25 + 0.50 cos
(1

2
πx

Lx

)
+ 0.40 sin

(
1
5
πy

Ly

)
+ 0.33 sin

(
2
7
πxy

LxLy

)
(2.20)

umms (x, y) = 0.30 + 0.15 sin
(1

3
πx

Lx

)
+ 0.20 cos

(
1
4
πy

Ly

)
+ 0.25 sin

(
2
5
πxy

LxLy

)
(2.21)

vmms (x, y) = 0.20 + 0.17 cos
( 7

17
πx

Lx

)
+ 0.25 cos

(
1
6
πy

Ly

)
+ 0.10 cos

(
1
3
πxy

LxLy

)
(2.22)
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By substituting appropriate boundary values of x and y in Eqs. (2.20–2.22), the following

Dirichlet boundary conditions for the manufactured solution are derived.

u (0, y) = umms(0, y), v (0, y) = vmms (0, y) , (2.23)

u (Lx, y) = umms (Lx, y) , v (Lx, y) = vmms (Lx, y) , (2.24)

u (x, 0) = umms (x, 0) , v (x, 0) = vmms (x, 0) , (2.25)

u (x, Ly) = umms (x, Ly) , v (x, Ly) = vmms (x, Ly) . (2.26)
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Figure 2.7: Manufactured solution for horizontal velocity.
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Figure 2.8: Manufactured solution for vertical velocity.
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Figure 2.9: Manufactured solution for pressure.

2.3.2 Sensitivity Analysis

In context of sensitivity analysis, the problem is to obtain the derivatives of flow velocities

and pressures at all locations inside the cavity, with respect to width of the cavity Lx, which

is a shape variable. The CSEs are derived by differentiating the Eqs. (2.13–2.15) with respect
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to the shape design variable Lx.

1
β2
∂p′

∂t
+ ρ

∂u′

∂x
+ ρ

∂v′

∂y
− S = f ′

m (2.27)

ρ
∂u′

∂t
+ ρu′∂u

∂x
+ ρu

∂u′

∂x
+ ρv′∂u

∂y
+ ρv

∂u′

∂y
+ ∂p′

∂x
− µ

(
∂2u′

∂x2 + ∂2u′

∂y2

)
= f ′

x (2.28)

ρ
∂v′

∂t
+ ρu′ ∂v

∂x
+ ρu

∂v′

∂x
+ ρv′∂v

∂y
+ ρv

∂v′

∂y
+ ∂p′

∂y
− µ

(
∂2v′

∂x2 + ∂2v′

∂y2

)
= f ′

y (2.29)

Although the governing equations are nonlinear with respect to response variable p, u, v, the

CSEs (2.27–2.29) are linear with respect to sensitivity variables p′, u′, v′. The CSE boundary

conditions are obtained by material differentiation of the flow boundary conditions.

u′ (0, y) = 0 −
[
Vx
∂u

∂x
+ Vy

∂v

∂y

]∣∣∣∣∣
(0,y)

, v′ (0, y) = 0 −
[
Vx
∂u

∂x
+ Vy

∂v

∂y

]∣∣∣∣∣
(0,y)

, (2.30)

u′ (Lx, y) = 0 −
[
Vx
∂u

∂x
+ Vy

∂v

∂y

]∣∣∣∣∣
(Lx,y)

, v′ (Lx, y) = 0 −
[
Vx
∂u

∂x
+ Vy

∂v

∂y

]∣∣∣∣∣
(Lx,y)

,(2.31)

u′ (x, 0) = 0 −
[
Vx
∂u

∂x
+ Vy

∂v

∂y

]∣∣∣∣∣
(x,0)

, v′ (x, 0) = 0 −
[
Vx
∂u

∂x
+ Vy

∂v

∂y

]∣∣∣∣∣
(x,0)

, (2.32)

u′ (x, Ly) = 0 −
[
Vx
∂u

∂x
+ Vy

∂v

∂y

]∣∣∣∣∣
(x,Ly)

, v′ (x, Ly) = 0 −
[
Vx
∂u

∂x
+ Vy

∂v

∂y

]∣∣∣∣∣
(x,Ly)

,(2.33)

where V (x, y) = {Vx (x, y) ,Vy (x, y)}T is the design velocity. Since the design variable is

Lx, the design velocity can be derived as

Vx (x, y) = x

Lx
, Vy (x, y) = 0. (2.34)
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There are two significant issues worth noting.

1. The sensitivity boundary conditions (2.30–2.33) are non-homogeneous.

2. To compute the the boundary conditions spatial gradients and design velocities are

required to be calculated at the boundaries.

As explained in Section 2.2.4, the spatial gradients of velocities appearing in Eqs. (2.30–

2.33) are calculated using SGR. The advantage of using a manufactured solution is that the

exact spatial gradients and derivatives are available. Thus, the true errors in the derivatives

obtained from CSA can be computed to assess accuracy and rate of convergence. In theory,

if the spatial gradients are accurately known and the linear CSEs are accurately solved,

the resulting local derivatives will be accurate. However, this is seldom realized in practice

because discretization error is introduced during solution of the differential equations. Since

the exact spatial derivatives are known when using a manufactured solution, the best case

scenario for CSA would be when the CSE boundary conditions are calculated using the exact

spatial gradients. This is used as a limiting test case as shown in the following section.

2.3.3 Flow Derivatives

For the particular choice of manufactured solution (2.20–2.22), the total derivatives u̇ =

{u̇, v̇, ṗ} are zero; however, the local derivatives and the spatial derivatives are nonzero.

The manufactured solution for the local derivatives is shown in Figures 2.10–2.12. The CSA

local flow derivatives were compared to the exact local derivative solutions to calculate the

true discretization error

ϵϕ = ϕh − ϕ̄,

where ϕ is a local derivatives such as u′, v′, p′ and ϕ̄ is the corresponding exact MMS local

derivative. The discretization errors in the flow local derivatives are shown in Figures 2.13–

2.15. Notice that the discretization errors are at least four orders of magnitude smaller than

the corresponding local derivative values.
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Figure 2.10: Manufactured solution for local derivative of horizontal velocity with respect to
width of the cavity.

x(m)

y(
m

)

0 0.01 0.02 0.03 0.04 0.05
0

0.01

0.02

0.03

0.04

0.05

v’

5.5
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5

Figure 2.11: Manufactured solution for local derivative of vertical velocity with respect to
width of the cavity.

35



x(m)

y(
m

)

0 0.01 0.02 0.03 0.04 0.05
0

0.01

0.02

0.03

0.04

0.05

p’

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Figure 2.12: Manufactured solution for local derivative of pressure with respect to width of
the cavity.
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Figure 2.13: Discretization error (DE) in the local derivative of horizontal velocity, ϵu′ , for
the case of 9 layer SGR with fifth-order Taylor series, plotted for the finest mesh with 65×65
grid points.
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Figure 2.14: Discretization error (DE) in the local derivative of vertical velocity, ϵv′ , for the
case of 9 layer SGR with fifth-order Taylor series, plotted for the finest mesh with 65 × 65
grid points.
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Figure 2.15: Discretization error (DE) in the local derivative of vertical velocity, ϵp′ , for the
case of 9 layer SGR with fifth-order Taylor series, plotted for the finest mesh with 65 × 65
grid points.

The effect of using different number of SGR patches and order of Taylor series on the

CSA derivatives was studied. A grid convergence study was done for code verification using

the manufactured solution which is explained next.
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2.3.4 Grid Convergence Study

Four mesh sizes were used for the grid convergence study, from a size of 17×17 nodes (mesh

refinement parameter h = 4) to 65 × 65 nodes (mesh refinement parameter h = 1). The

discretization error L∞ norm of the discretization error in the local derivative of pressure,

||ϵp′||∞, are shown in the left part of Figure 2.16. The corresponding rate of convergence

is shown in the right part of Figure 2.16. A second-order accurate finite difference scheme

was used in the flow analysis. It can be seen that the second-order rate of convergence

is achieved for the local derivatives as well. Typically the rate of convergence of shape

derivatives obtained using a finite difference scheme would be expected to be one order less

than that of the analysis variables. Hence, the finding that CSA derivative results are of the

same rate of convergence as the flow variables, is a key contribution in this work.

The number of patch layers and order of Taylor series used in SGR, for approximating the

CSE boundary conditions are labelled by the letters L and O in Figure 2.16, respectively. The

line which is labelled “Analytic Gradients” corresponds to the limiting case when analytic

spatial gradients (known from MMS) are used to construct the sensitivity BCs. Firstly,

the discretization error in the local derivatives found using SGR is almost the same as the

discretization error in the limiting case, which uses analytic spatial gradients. Next, the

results with one layer, first-order Taylor series SGR are achieved to be first-order accurate.

However, looking at the results with other layer and order combinations, we concluded that

even a two-layer, second-order Taylor series SGR is enough to recover the maximum possible

second-order rate of convergence. This highlights the advantages of the CSA formulation

with SGR to construct the spatial gradients. The lines corresponding to the label “1+O” in

in Figure 2.16 indicate that the Taylor series order may be higher than 1 at some locations

in the domain. Similarly, “2+” indicates that the Taylor series order may be higher than 2

at some locations for those cases.
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Figure 2.16: Grid convergence study for the local derivatives of lid-driven cavity flow using
a manufactured solution: Discretization error norms and rate of convergence are plotted
against mesh refinement parameter h; Finest mesh is 65 X 65 nodes (h = 1) and coarsest
mesh is 17 X 17 nodes (h = 4).

2.4 Sensitivity of Flow Over NACA0012 Airfoil

2.4.1 Flow Analysis

The Euler flow equations in conservation form are

∂u

∂t
+ ∂F

∂x
+ ∂G

∂y
− H = 0 (2.35)

or
∂u

∂t
+ ∂F

∂u

∂u

∂x
+ ∂G

∂u

∂u

∂y
− H = 0 (2.36)

subject to farfield boundary condition

u|SF
= u∞, (2.37)
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and flow tangency (or wall) boundary condition

(uı̂+ vȷ̂) · n̂|SW
= 0, (2.38)

where u (x, y, t) is the vector of conserved variables, F (x, y, t) and G (x, y, t) are the flux

vectors in the X and Y coordinate directions, ∂F
∂u

and ∂G
∂u

are the respective flux Jacobian

matrices, and H is the source term, which is zero. The state vector and flux vectors are

u =



ρ

ρu

ρv

ρet


, F =



ρu

p+ ρu2

ρuv

ρuht


, G =



ρv

ρuv

p+ ρv2

ρvht


. (2.39)

Variables ρ, p, u, v, et =
(

1
γ−1

p
ρ

+ (uı̂+vȷ̂)2

2

)
, and ht = et+ p

ρ
denote density, pressure, horizontal

velocity, vertical velocity, total energy, and total enthalpy in the domain, respectively. The

pressure and density can be related to the temperature T by the equation of state p = ρRT ,

where R is the specific gas constant. The farfield boundary condition implies that u∞ is the

prescribed state at the farfield boundary SF . The flow tangency boundary condition implies

that the velocity vector (uı̂+ vȷ̂) has no component along the unit normal n̂ on the wall

boundary SW . The farfield and wall boundaries for flow over an airfoil are shown in Figure

2.17.

When a vertex-centered finite volume discretization is used, the system of nonlinear

coupled partial differential equations (2.35) is approximated by the following semi-discrete

system

Ωi
∂ {u (t)}i

∂t
− {R}i = 0, (2.40)
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Figure 2.17: Domain, boundaries and unstructured mesh for flow over an airfoil. The inset
figure shows the entire flow field with airfoil at the center.

where {R}i is the residual at node i, given by

{R}i ≡ −
∑

j∈N (i)

{
F̃
}
ij

∆Sij. (2.41)

The grid and associated control volume, also sometimes called a dual cell, is shown in

Figure 2.18.
{
F̃
}
ij

is the projected flux for the face of the control volume connecting nodes i

and j, ∆Sij is the area of that face, Ωi is the volume of the control volume surrounding node

i, and N (i) consists of all the nodes neighboring node i. The dual cells are constructed by

joining the centroids of the triangles in the primary grid. Although these equations can be

used for time-accurate solutions, the variable t in the present context represents pseudo-time

and is used for the purpose of time marching to reach the steady-state.

Roe’s upwind scheme can be used to approximate the projected flux as

{
F̃
}
ij

=

({
F⃗
}
i
+
{
F⃗
}
j

)
2

· n̂ij − 1
2

[P ] |[Λ]|
[
P−1

] (
{u}i − {u}j

)
. (2.42)
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Figure 2.18: Grid and control volume for vertex-centered finite volume scheme (Palacios
et al., 2013).

Here
{
F⃗
}
i

= {F }i ı̂+ {G}i ȷ̂ is the flux tensor evaluated at node i, [P ] is the matrix of right

eigenvectors of the flux Jacobian matrix evaluated at the i − j interface constructed using

the Roe-averaged variables ρ̄, ū, v̄, h̄t, ā and projected in the n̂ij direction, and |[Λ]| is the

matrix of modified Roe-averaged eigenvalues.

Using an implicit method to discretize time in Equation (2.40), the residual {R}i is

evaluated at the pseudo-time step tn+1. With the Euler implicit scheme the semi-discretized

system equations are written as

ˆ
∂u

∂t
dΩ − {R}i ≈ |Ωi|

du

dt
− {R}i = 0

which leads to the update equation

I
|Ωn

i |
∆tni

{∆u}ni = {R}n+1
i

where ∆Qn
i = Qn+1

i −Qn
i is the update of the state variables to be calculated at each pseudo-

time step iteration until steady-state is reached. The residuals at time tn+1 are linearized

about time tn.

{R}n+1
i = {R}ni +

∑
j∈N (i)

∂ {R}ni
∂ {u}j

{∆u}ni + O
(
t2
)
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With this, the following linear system is solved to get the update {∆u}ni :

I
|Ωn

i |
∆tni

δij −
∑

j∈N (i)

∂ {R}ni
∂ {u}j︸ ︷︷ ︸

[T({u}n
h)]

 {∆u}ni = {R}ni (2.43)

where I stands for an identity matrix. Compare Eq. (2.43) with the general form of discret-

ized Eq. (2.10). The only addition in Eq. (2.43) is the time term on the diagonal elements,

which is a consequence of the pseudo-time stepping approach. In practice, these terms can

be eliminated to obtain the Newton-Raphson method for iterating the nonlinear equations

to a steady-state.

2.4.2 Sensitivity Analysis

Differentiating the continuous Euler equations (2.35) with respect to the shape design vari-

able b, we get the local continuum sensitivity equations (CSEs), which have to be solved to

obtain the local shape derivative of the state vector u′ = ∂u
∂b

. The CSEs are given by

∂u′

∂t
+ ∂F ′

∂x
+ ∂G′

∂y
= 0, (2.44)

where the state vector Q′ (x, y, t) and flux vectors F ′ (x, y, t) and G′ (x, y, t) are

u′ =



ρ′

(ρu)′

(ρv)′

(ρet)′


, F ′ =



ρ′u+ ρu′

p′ + (ρu)′ u+ (ρu)u′

(ρu)′ v + (ρu) v′

(ρht)′ u+ (ρht)u′


, G′ =



ρ′v + ρv′

(ρu)′ v + (ρu) v′

p′ + (ρv)′ v + (ρv) v′

(ρht)′ v + (ρht) v′


.

(2.45)

Note that the CSEs are linear in the sensitivity variables.

In the following example of flow over an airfoil, the design variable is chosen to be

43



0 0.2 0.4 0.6 0.8 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

x

y

 

 

yold, NACA0012

ynew, x
h
=0.5,b=0.01

Figure 2.19: Change in shape of NACA 0012 airfoil with design variable b. Note that the
axes are scaled to magnify the shape perturbation.

magnitude of the Hicks-Henne bump function (Hicks and Henne, 1978) that perturbs the

top surface of the airfoil. Hence the modified top surface of the airfoil for a perturbation ∆b

is given by

ytop,new = ytop,old + ∆b sin3
(
π
(
x

c

)e)
, e = log (0.5)

log (xH/c)
, (2.46)

where c is the reference chord length of the airfoil and xH is the location at which the bump

is chosen to be located. For the current example xH = 0.5 for the top surface of the airfoil.

The old and new airfoil shapes for ∆b = 0.01 are shown in Figure 2.19.

The farfield CSE boundary condition is

u′|SF
= 0 − ∂u

∂x
Vx
∣∣∣∣∣
SF

− ∂u

∂y
Vy
∣∣∣∣∣
SF

= 0. (2.47)

The design velocity is zero on the farfield boundary SF because the design variable only

changes shape of the airfoil boundary. The CSE boundary condition at the airfoil boundary

SW

(u′ı̂+ v′ȷ̂) · n̂|SW
= −

({
∂u

∂x
Vx + ∂u

∂y
Vy
}
ı̂+

{
∂v

∂x
Vx + ∂v

∂y
Vy
}
ȷ̂

)
· n̂

∣∣∣∣∣
SW

(2.48)
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− (uı̂+ vȷ̂) · ˙̂n
∣∣∣
SW

,

where V (x, y) = {Vx (x, y) ,Vy (x, y)}T is the design velocity and ˙̂n= Dn̂
Db

is the material

derivative of the unit normal. This boundary condition is a version of the equation (2.5),

obtained by using it for the flow tangency boundary condition (2.38). The CSE boundary

condition (2.48) is called as transpiration boundary condition because the dependent flow

variable (i.e. local derivatives of the velocity) has a nonzero component along normal dir-

ection of the wall boundary SW . More details of this boundary condition are discussed in

Section 2.4.3.

Until this point, no discretization is involved. Thus, the CSEs (2.44) with the corres-

ponding boundary conditions (2.47–2.48) represent continuous equations that govern the

local derivatives u′ of the flow variables. Derivation of the CSEs completes the “differenti-

ate” part of the CSA approach: “first differentiate, then discretize.” The CSEs can be solved

numerically using any discretization scheme. However, in the current work we emphasize

using the same discretization that was used for the flow analysis. Moreover, this procedure

can also be done nonintrusively, if the conditions given in Section 2.2.6 are met. Using the

same spatial discretization scheme (vertex based finite volume) and temporal discretization

scheme (Euler implicit) as given in Section 2.4.1, we get the following linear system, which

is solved to get the update {∆u′}ni :

I
|Ωn

i |
∆tni

δij −
∑

j∈N (i)

∂ {RCSE}ni
∂ {u′}j︸ ︷︷ ︸

[TCSE({u}h)]

 {∆u′}ni = {RCSE}ni , (2.49)
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where

{RCSE}i =
∑

j∈N (i)

{
F̃ ′
}
ij

∆Sij, (2.50)

{
F̃ ′
}
ij

=

({
F⃗ ′
}
i
+
{
F⃗ ′
}
j

)
2

· n̂ij − 1
2

[P ] |[Λ]|
[
P−1

] (
{u′}i − {u′}j

)
, (2.51){

F⃗ ′
}
i

= {F ′}i ı̂+ {G′}i ȷ̂. (2.52)

Note that the matrices [P ] and |[Λ]| in Equation (2.51) are the same as for flow analysis

(2.42). This is because for Roe’s flux difference splitting scheme, matrices [P ] and |[Λ]| are

assumed to be constants for the interface at which they are calculated. Furthermore, since

the CSEs are linear, the time term I
|Ωn

i |
∆tni

δij and the superscript n in (2.49) can be dropped

and the right side terms in equations (2.50)–(2.52) are calculated based on an initial guess

{u′}0
i . Thus, u′ can be obtained by solving the following linear system (only once) for each

design variable.

[TCSE ({u}h)] {∆u′}i = {RCSE}0
i , (2.53)

where {RCSE}0
i is calculated using the state values for the initial guess {u′}0

i . Borggaard

and Burns (Borggaard and Burns, 1994, 1997), Wickert (Wickert et al., 2010) and Liu and

Canfield (Liu and Canfield, 2013b) showed that, if the same discretization used for the

analysis is used to discretize the CSEs, then

[TCSE ({u}h)] =
[
T
(
{u}Nh

)]
, (2.54)

where N is the last iteration step of the flow solver once steady-state convergence is achieved.

Substituting (2.54) in (2.53), we get

[
T
(
{u}Nh

)]
{∆u′}i = {RCSE}0

i . (2.55)

Comparing Equation (2.55) with Equation (2.43), we observe the following.
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• The Jacobian matrix
[
T
(
{u}Nh

)]
appearing on the left side of the discrete CSEs (2.55)

is same as that for the (converged) steady-state primary flow, i.e., the Jacobian at the

last pseudo-time step of the primary implicit flow solver.

• Taking advantage of the linearity of the CSEs, after discretization the local sensitivities

can be obtained by just a single (one-shot) solution of Equation (2.55). Hence the time

term appearing in the pseudo-time stepping procedure of Equation (2.43) has been

omitted in Equation (2.55).

• The right side of Equation (2.55) is the only term that has to be calculated for solving

the linear system, if the Jacobian matrix
[
T
(
{u}Nh

)]
at the steady-state flow solution

can be output (or stored and reused).

The proposed nonintrusive process can be followed in the two cases, as shown in Figures 2.20

and 2.21, (a) when the Jacobian matrix can be output from the flow solver such as SU2, or (b)

when the Jacobian matrix cannot be output from the flow solver such as Fluent. In case (b),

SU2 is used as a tool to output the Jacobian matrix. Hence in this case, the Jacobian matrix

used for CSA is not consistent with the primary analysis (which is done in Fluent), but is

an approximation to the consistent Jacobian matrix. Also, since SU2 is a vertex centered

code and Fluent is a cell centered code, Fluent cell centered data has to be approximated at

the vertices so that it can be used in SU2 to output the Jacobian. This approximation was

done using Fluent. An alternative can be to use SGR for this approximation.

The sensitivity analysis starts by assuming an initial guess for the local derivatives as

{u′}0
i = 0 at all nodes i. This is followed by calculating the right side {RCSE}0

i according

to Eq. (2.50–2.52) and solving the linear system (2.55) to obtain the local derivatives as

{u′}i = {u′}0
i + {∆u′}i = {∆u′}i at nodes i. Since the initial guess is zero and the

sensitivity equations are linear, {RCSE}0
i will be zero at all nodes i which are not on the

domain boundary. Clearly the local derivatives are driven by the boundary conditions (2.47–

2.48). The following subsection explains how these boundary conditions can be implemented
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Figure 2.20: Nonintrusive process when Jacobian matrix can be output from flow solver such
as SU2.
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Figure 2.21: Nonintrusive process when Jacobian matrix cannot be output from flow solver
such as Fluent.
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in the context of nonintrusive sensitivity analysis.

2.4.3 Discretizing CSE Boundary Conditions

The CSE boundary conditions (2.47–2.48) have been written for the continuous domain.

These have to discretized and implemented for the discrete system (2.55). An important

contribution of the current work is the way in which these discrete boundary conditions are

implemented in the finite volume formulation. Although CSE boundary conditions previ-

ously were implemented in finite difference (Borggaard and Burns, 1997) and finite element

(Duvigneau and Pelletier, 2006) formulation, in this work the spatial gradients appearing

in the boundary conditions are calculated using SGR and the sensitivity analysis is done

nonintrusively.

The CSE farfield boundary condition (2.47) can be recognized as a form of the primary

farfield boundary (2.37) where the value of the sensitivity state variables at the boundary

SF are u′|∞ = 0. Hence this boundary condition can be treated as was the primary farfield

boundary condition, but with a new boundary value. The CSE transpiration boundary con-

dition (2.48) however is non-homogeneous, unlike the homogeneous flow tangency boundary

condition (2.38) in the primary analysis. Such boundary conditions are encountered in sim-

ulations involving store ejections or prescribed motion (Zhang et al., 2006; Chen and Zhang,

2013). Discretizing this boundary condition at node k on boundary SW , we get

{u′ı̂+ v′ȷ̂}k · {n̂}k|SW
= −

((
∂uk
∂x

Vxk
+ ∂uk

∂y
Vyk

)
ı̂+

(
∂vk
∂x

Vxk
+ ∂vk

∂y
Vyk

)
ȷ̂

)
· {n̂}k

∣∣∣∣∣
SW

(2.56)

− {uı̂+ vȷ̂}k ·
{

˙̂n
}
k

∣∣∣
SW

.

Define gbk
as the right side of the above equation (2.56),

gbk
≡ −

((
∂uk
∂x

Vxk
+ ∂uk

∂y
Vyk

)
ı̂+

(
∂vk
∂x

Vxk
+ ∂vk

∂y
Vyk

)
ȷ̂

)
· {n̂}k

∣∣∣∣∣
SW

(2.57)
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− {uı̂+ vȷ̂}k ·
{

˙̂n
}
k

∣∣∣
SW

so that the discretized boundary condition at node k can be written compactly as

{u′ı̂+ v′ȷ̂}k · {n̂}k|SW
= (u′

knxk
+ v′

knyk
)|SW

= gbk
. (2.58)

Equation (2.56) is used to substitute gbk
for the expression (u′

knxk
+ v′

knyk
) appearing during

calculation of the flux at the nodes on the boundary SW , as shown next. Following the weak

boundary condition implementation approach (Hirsch, 1990), the projected sensitivity flux

at node k on boundary SW is

{
F̃ ′
}
k

= ({F ′}k ı̂+ {G′}k ȷ̂) · {n̂}k , (2.59)

where {n̂}k = (nxk
ı̂+ nyk

ȷ̂). After substituting Equation (2.45) in (2.59) and regrouping,

{
F̃ ′
}
k

=



ρ′u+ ρu′

p′ + (ρu)′ u+ (ρu)u′

(ρu)′ v + (ρu) v′

(ρht)′ u+ (ρht)u′


k

nxk
+



ρ′v + ρv′

(ρu)′ v + (ρu) v′

p′ + (ρv)′ v + (ρv) v′

(ρht)′ v + (ρht) v′


k

nyk

=



ρ′ (unx + vny)

p′nx + (ρu)′ (unx + vny)

p′ny + (ρv)′ (unx + vny)

(ρht)′ (unx + vny)


k

+



ρ (u′nx + v′ny)

(ρu) (u′nx + v′ny)

(ρv) (u′nx + v′ny)

(ρht) (u′nx + v′ny)


k

=



ρ (gbk
)

p′nx + (ρu) (gbk
)

p′ny + (ρv) (gbk
)

(ρht) (gbk
)


k

. (2.60)

The subscript k in Eq. (2.60) represents the discrete values of the respective terms evaluated
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at the location of node k on the boundary SW . The term (unx + vny) is the component of

flow velocity along the normal n̂. Hence, according to the flow tangency condition (2.38), at

node k, (unx + vny)k = 0. Similarly, according to the CSE transpiration boundary condition

(2.58), at node k, (u′nx + v′ny)k = gbk
. Further more, since the initial guess is {u′}0

k = 0,

p′
k = 0. Thus Eq. (2.60) simplifies to

{
F̃ ′
}
k

= gbk



ρ

ρu

ρv

ρht


k

. (2.61)

The value of the boundary residual at node k is then calculated as

{RCSE}k =
{
F̃ ′
}
k

∆Sk, (2.62)

where ∆Sk is the elemental segment length on the boundary SW at node k.

We have considered the initial condition {u′}0
i = 0 at all nodes i in the domain. Also, in

this particular example, the value of design velocity is zero on the farfield boundary SF of the

domain, which results in homogeneous farfield CSE boundary condition (2.47). So, the only

nonzero contribution to {RCSE}0
i on the right side of equation (2.55) is from {RCSE}k, which

correspond to the nodes k on the boundary SW . It is thus clear that the CSE transpiration

boundary condition (2.58) significantly affects the CSE solutions. Given this, we can list

the following terms that contribute significantly to the local derivative solutions obtained by

solving the CSEs.

• Spatial gradients of the velocity components on the boundary SW contribute to gbk

in equation (2.58), calculated nonintrusively from the steady-state flow solution using

SGR.

• Design velocity V (x, y) = {Vx (x, y) ,Vy (x, y)}T on the boundary SW contributes to gbk
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in Eq. (2.58), obtained from the definition of the design variable (2.46), independent

of the flow solution or mesh movement.

• Material derivative of the normal direction vector
{

˙̂n
}
k

= D{n̂}k

Db
contributes to gbk

in

equation (2.58), obtained from the definition of the design variable (2.46), independent

of the flow solution.

• Flow velocities u and v on the boundary SW contributes to gbk
in equation (2.58),

obtained from the analysis solution.

• Flow density ρ and total enthalpy ht contributes to
{
F̃ ′
}
k

in equation (2.61), obtained

from the analysis solution.

• Element lengths ∆Sk at nodes k on the boundary SW contributes to {RCSE}k in

equation (2.62), obtained from the geometry preprocessor used by the flow solver.

2.4.4 Results

2.4.4.1 Geometry and Grids

NACA0012 airfoil has been studied widely (Vassberg and Jameson, 2010; Anderson and

Bonhaus, 1994; Jameson, 1983). In the current study we use the NACA geometry and grids

used by Vassberg and Jameson (Vassberg and Jameson, 2010). The airfoil geometry is based

on the NACA0012 equation

y (x) = ±0.12
0.2

(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1015x4

)
, (2.63)

∂y

∂x
(x) = ±0.12

0.2

(
0.14845√

x
− 0.1260 − 0.7032x+ 0.8529x2 − 0.4060x3

)
. (2.64)

However, it is extended in chord such that the resulting sharp trailing-edge location is

xTE = 1.0089304115.
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Figure 2.22: Design velocity, unit normal and derivative of unit normal on the airfoil surface.

The components of unit normal along the airfoil boundary are plotted in Figure 2.22. The

airfoil geometry and the design variable defined by the Hicks-Henne bump function (2.46) are

used to derive the design velocity and derivative of the unit normal, which are also plotted

in Figure 2.22.

The grids used for the current study are high-quality grids prepared by Vassberg and

Jameson specifically to perform a grid convergence study, based on the outcome of the 4th

AIAA Drag Prediction Workshop (AIAA, 2009). The airfoil mesh is shown in shown in

Figure 2.23. The grids were developed using the Karman-Treffetz transformation and are

based on the standard O-mesh topology. Each quadrilateral cell of the mesh has an aspect

ratio of one, and the intersecting grid lines are essentially orthogonal at each vertex within

the mesh. The farfield boundary is approximately 150 chord lengths away from the airfoil.

The seven meshes used in the current study have cells ranging from 32×32 cells for the

coarsest mesh to 2048×2048 cells (i.e., 4 million cells) for the finest mesh. The refinement

of grids is uniform such that with each refinement the edge length halves and the number of

cells quadruples.
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Figure 2.23: Close-up of airfoil 512×512 O-mesh and details near the trailing edge (Vassberg
and Jameson, 2010).

Table 2.3: Details of the flow analysis
Parameter Value

Mach number, M 0.5
Angle of attack,α 1.25◦

Reference chord length, Cref 1.0
Reference moment center, Xref 0.25

Free stream pressure, p∞ 101325 N/m2

Free stream temperature, T∞ 288.15 K
Flux scheme Roe’s II order upwind

Convergence criteria log10 of L2 norm of continuity residual less than −10

2.4.4.2 Flow Analysis

The reference values and other details used for flow analysis are shown in Table 2.3. The

subcritical lifting case of Mach number M = 0.5 and angle of attack α = 1.25◦ was chosen

for the current study. The flow analysis was done using SU2 and Fluent.

Results for the flow analysis are shown in Figures 2.24 and 2.25. The Mach number

contours and Cp plots match closely to the results presented by Vassberg and Jameson

(Vassberg and Jameson, 2010) for the same test case. The flow results from Fluent are almost

indistinguishable from the SU2 results. Results such as these are output at each mesh level.

Since the true or exact solution for the coefficients of lift and drag, CL and CD are not known

for Euler flow analysis of NACA0012 airfoil, the best approximation of the continuum values
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Figure 2.24: Flow solution over NACA0012 airfoil with 1024×1024 O-mesh obtained using
SU2 and Fluent.
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Figure 2.25: Mach line contours for flow over NACA0012 airfoil with 1024×1024 O-mesh
obtained using SU2, Mmin = 0.0061794, Mmax = 0.674184, ∆M = 0.02.
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Figure 2.26: Lift convergence obtained with different solvers.

for these coefficient C∗
L and C∗

D are calculate using Richardson extrapolation and the value

of the rate of convergence p based on results on the set of fine, medium and coarse grids,

exactly as outlined by Vassberg and Jameson (Vassberg and Jameson, 2010). The results

are plotted on the log-log scale in Figures 2.26–2.27.

Since a spatially second-order flux scheme is used for generating the results, the expected

rate of convergence is 2. It is seen that the rate of convergence for Fluent results is much

better compared to SU2 and FLO82 (Vassberg and Jameson, 2010) codes. The continuum

values of C∗
L obtained from all three solvers are quite close. The continuum values of C∗

D

obtained from SU2 and Fluent are close, but much different than the value reported for

FLO82. For the SU2 and Fluent solver, the rate of convergence of CD is better than that

for CL.
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Figure 2.27: Drag convergence obtained with different solvers.
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Based on the metric followed by Vassberg and Jameson (Vassberg and Jameson, 2010),

the impact of functional errors on the rate of convergence can be judged by a non-dimensional

error parameter β. Assume that the numerical solution of Euler equations with the use of

a discrete solver gives inaccurates value of a function F , such as coefficient of lift or drag,

with an error ϵ. Then the approximate value of the function obtained from the solver would

be

F̂ = F ± ϵ. (2.65)

Then the parameter β is defined as

β = ϵ

|Ff − Fm|
, (2.66)

where, Ff and Fm are values of the function calculated on the fine and medium meshes

respectively. The effect of β on the rate of convergence p is illustrated in Figure 2.28 with

upper and lower bounds on p. For example, if β = 1/8, a code which is supposed to be

second-order accurate, can exhibit a rate as low as 1.58 or as high as 2.50.

To find out approximate values of β for the three codes, SU2, Fluent and FLO82, it was

assumed that the values of p have errors. The expected rate of convergence is 2. This data is

plotted with markers in Figure 2.28. We can deduce from the plot βSU2 ≈ 1/8, βFLO82 ≈ 1/16

and βFluent ≈ 1/3 or higher. These values will be used later to get an idea about the error

in rate of convergence of the flow derivatives. The flow analysis results are used to set BCs

for the CSEs as explained next.

2.4.4.3 Spatial Gradient of Velocity and the CSE Transpiration Boundary Con-

dition

As explained in the flowchart, Figure 2.3, results of the flow analysis and design velocity

are used to set CSE BCs. Specifically, for the NACA0012 problem considered here, the

CSE farfield BC (2.47) is homogeneous whereas the CSE transpiration BC (2.58) is non-
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Figure 2.28: Effect of functional error on rate of convergence. Here, (L) represents data
for CL, (D) represents data for CD, “w/ err” represents erroneous values and “w/ O(2)”
represents expected values with second-order rate of convergence.
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Figure 2.29: Horizontal velocity contours of flow over NACA0012 airfoil for 1024×1024 O-
mesh obtained using SU2.

homogeneous. The right side of this BC, defined by gb in Eq. (2.57), requires spatial

gradients of velocities on the airfoil boundary. These spatial gradients are calculated using

SGR. An SGR patch constitutes a collection of points which are used to get the spatial

gradients at an expansion point. Examples of SGR patches are illustrated in Figure 2.2.

To visualize variation of velocity on the airfoil surface, the horizontal velocities are plotted

in Figures 2.29–2.30. For the subcritical Mach number 0.5 considered in the present study,

most of the velocity variation occurs near the airfoil leading edge, as seen in Figures 2.31–

2.32. It is clear that the spatial gradients ∂u/∂x, ∂u/∂y, ∂v/∂y, ∂v/∂y will have higher

values near the leading edge than at other locations on the airfoil boundary.

Since the Hicks-Henne bump function (2.46) leads to changes only in the y coordinates

of the airfoil, the design velocity component Vx is zero as evident in Figure 2.22. Therefore,

only the y spatial gradients ∂u/∂y and ∂v/∂y are relevant. These spatial gradients obtained
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Figure 2.30: Vertical velocity contours of flow over NACA0012 airfoil for 1024×1024 O-mesh
obtained using SU2.
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Figure 2.31: Horizontal velocity contours, near leading edge, of flow over NACA0012 airfoil
for 1024×1024 O-mesh obtained using SU2.
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Figure 2.32: Vertical velocity contours, near leading edge, of flow over NACA0012 airfoil for
1024×1024 O-mesh obtained using SU2.

using 2-layer (L = 2) patches for SGR are shown in Figure 2.33. The inset in this figure

shows the variation of u and v near the leading edge. Due to the difficulty of setting up the

patch correctly near the trailing edge, numerical errors arise which lead to unrealistically

high values of the spatial gradients near the trailing edge as seen in Figure 2.33.

Although the spatial gradients peak near the leading edge, the locations where they

contribute significantly to the CSE BCs and thus to the local and total design derivatives

are different from the locations near the leading edge. In the grid convergence study of shape

derivative calculated using CSA with SGR, Cross and Canfield (Cross and Canfield, 2016)

state that contribution of the spatial gradients, appearing in the CSE BCs, at a particular

location to the design derivative solution can be quantified by the relative magnitude of the

convective term at that location. Hence, to get the locations which are important from the

point of view of obtaining accurate spatial gradients, the convective terms

Cuk
=

(
∂uk
∂x

Vxk
+ ∂uk

∂y
Vyk

)
= ∂uk

∂y
Vyk

, (2.67)

Cvk
=

(
∂vk
∂x

Vxk
+ ∂vk

∂y
Vyk

)
= ∂vk

∂y
Vyk

, (2.68)
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Figure 2.33: Spatial gradients of velocity on the airfoil obtained using 2-layer (L = 2) SGR
for 1024×1024 O-mesh.
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which appear in the CSE BC (2.56) are plotted at nodes xk on the airfoil as shown in

Figure 2.34. Note that the simplification in Eqs. (2.67–2.68) is possible because Vx = 0 at

all locations on the airfoil. Since the shape design variable considered in the present study

perturbs only the shape of the upper surface of the airfoil, as shown in Figure 2.19, the design

velocity on the lower surface is zero which results in zero Cu and Cv on the lower surface.

This is seen as the horizontal lines in Figure 2.34. At all other locations, the convective

terms are nonzero. Based on the relative magnitude of these convective terms, we can judge

that the locations where ∂u/∂y is the most influential are near x = 0.6256 the locations

where ∂v/∂y is the most influential are near x = 0.4805. Note that the numerical errors

in calculation of ∂u/∂y and ∂v/∂y at the trailing edge results in small amounts of noise in

the convective terms near the trailing edge; however, it does not significantly affect the CSE

transpiration BC (2.56).

The convergence of the spatial derivatives at different locations with one, two and three

layers used for SGR is shown in Figures (2.35–2.36). One and two layer SGR uses first-

order Taylor series where as three layer SGR uses second-order Taylor series. It is seen

that the convergence of the spatial gradients is much better near the leading edge, where the

derivatives peak, than at the locations x = 0.6606, 0.4805 where they influence the boundary

condition the most. One reason for this discrepancy may be that the up to 3 SGR layers

may be enough to capture the local gradient accurately, which is the case at locations near

the leading edge, whereas more layers may be required to capture the lower value derivatives

at x = 0.6606, 0.4805. Another reason for the poor spatial gradients could be that the SU2

flow analysis solution, on which SGR is applied, is sub-second-order accurate. Inaccuracies

in rate of convergence of the spatial gradients may also arise due to functional errors in the

flow solution for which we predicted the value of β = 1/8. Based on the conclusions of Cross

and Canfield (Cross and Canfield, 2016), who have done a similar study, a weighted least-

squares computation might improve the SGR calculations. There is a slight improvement in

the rate of convergence with 2-layer SGR, over 1 and 3-layer SGR. The next task is to find
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Figure 2.34: Convective terms Cu and Cv appearing in the CSE transpiration BC, calculated
using using 2-layer (L = 2) SGR, for the 1024×1024 O-mesh.
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Figure 2.35: Convergence of spatial gradient ∂u/∂y at two locations using one, two and three
layers for SGR; one near leading edge (left) and one near mid-chord (right).

out the effect of the accuracy of spatial gradients on the transpiration BC.

The convective terms Cu and Cy are multiplied with the components of the unit normal

respectively, and further added to the ˙̂nterm to get the value of the transpiration velocity

gb for the CSE BC (2.56) at each node on the airfoil. This boundary condition is imposed

weakly (Hirsch, 1990) as explained in Section 2.4.3. As a result, the CSE transpiration BC

u′nx + v′ny = gb is applied exactly only in the continuum limit, i.e. as the accuracy with

which this BC is imposed increases with increase in the number of cells. The value of gb that

is used to impose the BC and the value of the term (u′nx + v′ny) after solution of the CSEs

is shown in Figure 2.37. It is clear that the transpiration BC is not accurately satisfied on

the airfoil owing to the weak implementation strategy. The grid convergence of the L2 norm
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Figure 2.36: Convergence of spatial gradient ∂v/∂y at two locations using one, two and three
layers for SGR; one near leading edge (left) and one near mid-chord (right).
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Figure 2.37: Transpiration velocity on the airfoil calculated using using 2-layer (L = 2) SGR
with first-order Taylor series, for the 1024×1024 O-mesh.

of the transpiration velocity, defined by

ḡb =

√√√√ 1
N

N∑
k=1

g2
bk

(2.69)

where N is the number of nodes on the airfoil, is plotted in Figure 2.38. The number of

layers does not have a significant effect on the norm of the transpiration velocity, and thus

a similar trend could be expected for the local and total derivatives.

2.4.4.4 Total Derivatives

The total derivatives of the primary flow variables obtained using CSA and SGR with 2-

layers are plotted in Figure 2.39 for two cases, (a) “CSA (SU2)” when primary analysis

was done SU2, and Jacobian matrix could be output from the flow solver, according to the

process outlines in Figure 2.20, and (b) “CSA (FLUENT)” when primary analysis was done

using FLUENT, and Jacobian matrix could not be output from the flow solver, as outlined in

Figure 2.21. In case (b) the Jacobian used for CSA is inconsistent with the primary analysis.

The CSA results compare well with the finite difference derivatives obtained from SU2,
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Figure 2.38: Convergence of norm of the transpiration velocity, for 1, 2, and 3 layer SGR.
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labelled as “FD (SU2)” and Fluent, labelled as “FD (Fluent).” These direct derivatives are

used further to obtain the derivatives of the lift and drag coefficients. The grid convergence of

the lift and drag coefficients is shown in Figures (2.40–2.41). The results are compared with

the derivatives obtained using the Algorithmic Differentiation (AD) method implemented in

SU2. The AD results for the last couple of fine meshes are not converged and are shown with

black square markers. The number of layers used in SGR does not significantly affect the

CSA results. Based on the values of the absolute error, we can see that CSA yields accurate

values of the lift and drag coefficient derivatives.

2.5 Conclusion

The method of CSA with SGR was used for calculating the material derivatives of 1-D

and 2-D flows with respect to shape design parameters. Our focus is on the flow solutions

of compressible Euler equations and incompressible Navier-Stokes equations. Most of the

previous work in this area has been done using finite difference and finite element discretiz-

ations. However, challenges arise when a finite volume discretization is used due the specific

way in which boundary conditions are applied. To illustrate this, an example of flow over a

NACA0012 airfoil was presented that highlights the effect of the accuracy of the sensitivity

boundary conditions on the derivatives of integrated flow quantities such as lift and drag.

The spatial gradients of flow velocities, calculated using SGR, contribute significantly to the

transpiration sensitivity boundary condition and thus affect the accuracy of total derivatives

of the flow variables. Also, the weak imposition of boundary conditions, which is typical in

finite volume formulations, leads to errors in the solution to the sensitivity equations. It is

believed that this may be one of the reasons negatively affecting convergence of flow deriv-

atives obtained using CSA. Nevertheless, the CSA results match well with the derivatives

calculated using the automatic differentiation method and the finite difference method.

Another contribution of the current work is the nonintrusive implementation (without
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Figure 2.40: Convergence of lift derivative for 1, 2 and 3 layer SGR.
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Figure 2.41: Convergence of drag derivative for 1, 2 and 3 layer SGR.
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modifying the “black-box” analysis source code) of CSA for analyzing fluid systems. Par-

ticularly, we focus on the use of commonly used CFD codes, which use finite volume dis-

cretization, for solving the flow variables and their shape sensitivities. The effect of using

inconsistent flow solution and tangent, or Jacobian, matrix was studied. For the NACA0012

airfoil, CSA derivatives were calculated using flow solution from the Fluent solver, and a

tangent matrix exported from the SU2 solver. This establishes the use of black-box codes,

such as Fluent, for obtaining flow sensitivities using the CSA approach.

A variety of examples were used to illustrate the nonintrusive application of CSA. We

presented cavity flow solved using Navier-Stokes (incompressible and viscous) equations with

a structured grid, finite difference spatial discretization, and an explicit temporal discret-

ization. Flow over a NACA0012 airfoil example was solved using Euler equations with a

unstructured grid, finite volume spatial discretization, and an implicit temporal discretiza-

tion. A value parameter sensitivity example was also presented (Appendix A) which involves

quasi-1-D flow in a convergent-divergent nozzle.

76



Chapter 3

Nonintrusive Continuum Sensitivity

Analysis for Structural Applications:

Direct and Adjoint Formulations

ABSTRACT

Continuum Sensitivity Analysis (CSA) is an approach for calculating analytic design
derivatives. A direct CSA formulation is advantageous for computing derivatives of many
state variables or performance functions with respect to a few shape design variables. An
adjoint formulation of CSA is beneficial for computing derivatives with respect to many
design variables, although continuous adjoint CSA boundary conditions can be problematic.
For the continuum-discrete hybrid adjoint approach presented here, the adjoint variable
is introduced after discretization, which simplifies boundary conditions. Thus, the hybrid
adjoint formulation of CSA computes the same design derivatives as those obtained from
direct CSA, but makes the analysis efficient for the case of a large number of design variables.
Another contribution of the current work is the nonintrusive, or black-box, implementation of
CSA using codes such as NASTRAN. We demonstrate that the presented method is element
agnostic and can be applied with minimal modification to different element types. One-,
two- and three-dimensional test cases are used to demonstrate the application of the current
method.
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3.1 Introduction

Continuum Sensitivity Analysis (CSA) has been developed to compute gradients for optim-

ization of structural response (Dems and Mroz, 1984; Dems and Haftka, 1988; Arora, 1993;

Choi and Kim, 2005) and fluid response (Borggaard and Burns, 1997; Stanley and Stewart,

2002; Duvigneau and Pelletier, 2006; Kulkarni et al., 2014a). Recently, it has also been used

successfully to compute aeroelastic response sensitivity with respect to shape variations for

coupled fluid-structure interaction problems using the boundary velocity (local) formulation

for both linear and nonlinear structural analysis (Liu and Canfield, 2013a; Cross and Can-

field, 2014). The motivation for using CSA for shape sensitivity of aeroelastic response is

twofold: (a) gradients are computed from analytic expressions and are therefore more ac-

curate and efficient than finite difference, and (b) mesh sensitivity is avoided, which is a

drawback of the discrete analytic shape sensitivity approach.

Although the derivatives of a large number of state variables or performance measures can

be calculated efficiently using the direct formulation of CSA, it requires that a linear system

of equations be solved for each design variable. This makes direct CSA inefficient for a large

number of design variables. On the other hand, adjoint methods require solution to only one

linear system (at each time step) for each performance measure even for a large number of

design variables. However, the boundary conditions associated with the continuous adjoint

method are often difficult to formulate (Lozano and Ponsin, 2012; Duivesteijn et al., 2005).

In earlier work (Kulkarni et al., 2016) we introduced a hybrid adjoint formulation of

CSA, based on appending discretized continuum sensitivity equations (CSEs) to the discrete

performance sensitivity, weighted by an algebraic adjoint vector. A unique advantage of this

method is that it allows us to derive the sensitivity boundary conditions directly for the state

variables, without consideration of adjoint boundary conditions. The hybrid formulation

requires a linear system of equations to be solved only once for obtaining the gradient of a

performance measure with respect to many design variables. This makes CSA efficient for

many design variables.
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The hybrid adjoint is derived in Section 3.3 for the boundary velocity (local) formulation

of CSA, so that it inherits the accuracy benefits of CSA with SGR (Cross and Canfield,

2014) used for the CSA boundary conditions. In fact, the hybrid adjoint method yields

exactly the same results as by the direct local CSA method. The results computed using

hybrid adjoint CSA will differ from results computed using a conventional discrete adjoint or

continuous adjoint. How hybrid adjoint CSA results compare with results for the continuous

adjoint formulation depends upon the manner in which the latter equations are discretized.

However, unlike discrete adjoint or (discretized) continuous adjoint, hybrid adjoint CSA

avoids calculation of the mesh sensitivity needed for the design derivative of the global

stiffness matrix. Hybrid adjoint CSA results are potentially more accurate than the discrete

adjoint results, compared to the true shape derivatives of the continuous problem, depending

upon the SGR and discretization.

The local continuum sensitivity equations are derived in Section 3.2, followed by the

direct and hybrid adjoint formulation in Section 3.3. An example of a 1-D axial bar is

presented in Section 3.4. A 3D cantilever beam example is presented in Section 3.5.

3.2 Local Continuum Sensitivity Analysis

3.2.1 Continuous Domain Equations and Boundary Conditions

The partial differential equation governing structural response can be written compactly as

R (u, t; b) = A (u, L (u)) − f (x, t; b) = 0 on Ω, (3.1)

with the corresponding boundary conditions (BCs)

B (u, L (u)) = g (x, t; b) on Γ, (3.2)

where the vector of dependent (state) variables u(x, t; b) are functions of the spatial and

temporal independent coordinates, x and t, respectively and depend implicitly on design
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variable b. The domain and boundary in Cartesian space are shown in Figure 3.1. The

linear differential operator L has terms such as
{
∂
∂t
, ∂
∂x
, ∂
∂y
, ∂2

∂x2 ,
∂2

∂y2 , . . .
}

that appear in the

governing equations or boundary conditions. A and B are algebraic or integral operators

acting on u and L (u) in general possibly in nonlinear fashion. The distributed body force

applied on the system is given by f in (3.1), and the general BCs in (3.2) can be either

Dirichlet (essential or geometric) such as a prescribed value

Be (u) ≡ u|Γe
= ge ≡ ū (3.3)

on the boundary Γe, or they may involve a differential operator for Neumann (nonessential

or natural) BCs such that

Bn (L (u))|Γn
= gn (3.4)

on the boundary Γn. Since the current work involves steady-state analysis, the time term t

in these equations is suppressed hereafter.

Figure 3.1: Domain, Ω, with boundary Γ.

3.2.2 Differentiation of the Continuous Equations

Consider the problem of obtaining the derivative of the steady-state response u(x; b) with

respect to design parameter b at all points in the domain. The response depends on the
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spatial variable x and it may have an explicit or implicit dependence on the shape variable

b, as indicated by the semicolon. The boundary velocity (local) formulation of CSA results

in CSEs that are posed in terms of the local derivatives of the response, u′ = ∂u/∂b. Hence,

solution of the CSEs yields the local derivative. The total or material derivative u̇ = Du/Db

is then obtained by adding the convective term to the local derivative.

Du

Db
= ∂u

∂b
+

3∑
i=1

∂u

∂xi

∂xi
∂b

⇐⇒ u̇ = u′ + ∇x (u) · V (3.5)

The convective term consists of the spatial gradients of the response ∇xu = ∂u/∂x, and

the geometric sensitivity or design velocity V (x) = ∂x/∂b, which depends on the geometric

parametrization of the domain. For value design parameters independent of shape, the con-

vective term goes to zero, because the design velocity is zero, and so the material derivative

is same as the local derivative. However, for shape design variables, the design velocity is not

zero and hence there is a need to calculate the convective term for CSE boundary conditions

and transformation to material derivative wherever necessary.

CSA is based on the philosophy of “differentiate and then discretize” and involves differ-

entiating Eqs. (3.1) and (3.2) with respect to b, followed by discretization and solution of

the resulting discretized system. Based on the type of differentiation, CSA is categorized as

either local form CSA or total form CSA (Liu and Canfield, 2016) in accordance with Eq.

(3.5). The local form CSA involves partial differentiation of Eq. (3.1), while the total form

CSA involves total (material or substantial) differentiation. Due to the advantages of the

local form CSA over the total form CSA, the current work focuses on the local form CSA.

The CSEs are obtained by partial differentiation of Eq. (3.1) as

∂R

∂b
= ∂A (u, L (u))

∂u
u′ + ∂A (u, L (u))

∂L
L (u′) − ∂f (x, t; b)

∂b
= 0. (3.6)

Since the material boundary changes due to a change in the shape design parameter, the

boundary conditions for the CSEs are obtained by total or material differentiation of the
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original boundary conditions (3.2) and moving the convective terms to the right side

∂B
∂u

u′ + ∂B
∂L

L (u′) = ġ (x, t; b) − V (x) ·
(
∂B
∂u

∇xu + ∇x (B (L (u)))
)
, (3.7)

where ġ (x, t; b) is the material derivative of the prescribed boundary condition, typically zero

for Dirichlet boundary conditions. Nevertheless, even when the the boundary condition (3.2)

is homogeneous
(

u|Γe
= 0

)
, the CSE boundary condition (3.7) is in general non-homogeneous

due to the convective term: u′|Γe
= ġe − ∇xu · V (x), even for ġe = 0. The commutation

of derivatives on the left side of Eq. (3.7) is possible when the derivatives are local. The

CSEs (3.6) with the boundary conditions (3.7) form a linear system of equations in terms of

sensitivity variable u′, which can be solved by the same or different numerical method used

for solving the analysis problem.

Eqs. (3.6) and (3.7) may be restated as

∂R

∂b
= Ab (u, L (u′)) − f ′ (x, t; b) = 0 on Ω, (3.8)

with the corresponding sensitivity BCs

Bb (u, L (u′)) = gb (x, t; b) on Γ, (3.9)

where gb is the right side of Eq. (3.7). The similarity of Eqs. (3.8) and (3.9) to Eqs. (3.1)

and (3.2) motivates the same solution method for each set of equations with the same mesh

for the discretized form. For linear governing Eqs. (3.1), Ab = A and Bb = B. For nonlinear

governing equations, the solution u can be obtained from the analysis solution of Eq. (3.1)

for use in Eqs. (3.8) and (3.9). The load or forcing terms for the CSEs appear at two places:

• Body loads f ′: These loads can be calculated as

f ′ = ∂f

∂b
= Df

Db
− ∇x (f) · V (3.10)
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and are typically zero for a shape variable, unless the body loads f explicitly or impli-

citly depend on the shape variable b.

• Boundary loads gb: These loads arise due to the non-homogeneous CSE boundary

conditions (3.9) and are typically the main forcing terms that drive the local derivatives

u′. As shown in Eq. (3.7), gb includes spatial derivatives ∇xu of the response. Thus,

the accuracy of the spatial gradients ∇xu directly affects the accuracy of the local

derivatives u′.

Eqs. (3.8) and (3.9) which govern local derivatives are derived on the continuous domain Ω

bounded by Γ; hence, the name of the method (local) Continuum Sensitivity Analysis. The

next step involves discretization of the domain and numerical solution of the CSEs on the

discretized domain.

3.3 Direct and Hybrid Adjoint Formulations

The local CSEs are obtained by partial differentiation of the continuum domain equation,

whereas for shape design variables the corresponding sensitivity boundary conditions are

obtained by material (or total) differentiation of the continuum boundary conditions. Once

the sensitivity equations and boundary conditions are set, they can be discretized and solved

using the available method. The discretized CSEs are a system of linear equations. The

solution procedure of this linear system of equations can be changed to get either the direct

or the adjoint formulation, as shown next.

3.3.1 Direct Formulation of Continuum Sensitivity Analysis

The present work is restricted to static analysis, or analysis at a particular instance of time

during a dynamic analysis. Therefore, the variable for time t is omitted. Dynamic equations

are recommended for future work. Similarly to the discrete system [K] {u} = {F } for Eqs.

(2.1), after discretization, CSEs (2.4) can be represented by
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[K] {u′}i = {F ′}i . (3.11)

Here [K] is the system, or stiffness, matrix of the discretized primary system, {u′}i =

∂ {u} /∂bi denotes the solution for local derivatives and bi is one of the nb design variables

from the set {b} = [b1, b2, ..., bnb
]T . The vectors {u}, {F }, {u′}i, and {F ′}i are of size

N × 1 while the matrix [K] is of size N ×N , where N is the number of degrees of freedom

in the finite element model. For nonlinear analysis [K] in Eq. (3.11) would be the converged

tangent stiffness matrix (Borggaard and Burns, 1994, 1997; Cross and Canfield, 2014) of the

discretized primary system. As stated earlier, although the original system may be nonlinear

with respect to the state variables, the CSEs are always linear with respect to the sensitivity

variables. Also, the CSEs may be solved with the same discretization used to solve the

primary analysis.

The solution vector {u}, obtained from the solution of the primary analysis, can be

partitioned as

{u} =


u1

u2

 .
Here, the notation {u} stands for a discretized version of the continuous solution u on the

domain Ω. The vector {u1} = {ue} corresponds to the degrees of freedom {ue} which

are constrained by essential (or geometric) boundary conditions on the boundary Γe. The

vector {u2} = {un, uΩ}T consists of the degrees of freedom un constrained by the natural

boundary conditions on the boundary Γn, and the unconstrained degrees of freedom uΩ in

the interior of the domain Ω. Thus, Eq. (3.11) can be partitioned as

 K11 K12

K21 K22




u′
1

u′
2


i

=


F ′

1

F ′
2


i

. (3.12)

In this equation
{
u′

1

}
i

represents the known local derivatives of the constrained degrees of

freedom and
{
u′

2

}
i

represents the unknown local derivatives. Subscript i represents derivat-
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ives with respect to design variable bi for i = 1, 2, ..., nb. The values of
{
u′

1

}
i

are obtained

from the CSE essential boundary conditions. Specifically, the values of
{
u′

1

}
i

are obtained

by discretizing a particular case of Eq. (2.5) on Γe,

u′|Γe
= ġe − ∇xu · V (x) . (3.13)

The effect of perturbing a boundary is incorporated through design velocity V (x) in the

last term. To account for the CSE essential boundary conditions, which are typically non-

homogeneous, Eq. (3.12) is reduced as

[K22]
{
u′

2

}
i

=
{
F ′

local

}
i

(3.14)

where

{
F ′

local

}
i

≡
{
F ′

2

}
i
− [K21]

{
u′

1

}
i
, (3.15)

{
F ′

2

}
i

=


F ′

n

F ′
Ω


i

. (3.16)

The term
{
F ′

n

}
i

represents the CSE boundary loads which would arise due to a natural BC

(3.4) for the primary analysis. The corresponding CSE BC can be stated as

Bb (L (u′))|Γn
= ġn (x, t; b) − V (x) · ∇x (Bn (L (u))) . (3.17)

Cross and Canfield (Cross and Canfield, 2014) showed that the loads
{
F ′

n

}
i
can be calculated

based on the first-order spatial gradients of the secondary variables, such as forces and

stresses, which are usually output from the structural solver, rather than calculating the

loads from higher-order derivatives of the primary variables such as displacements. The
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term
{
F ′

Ω

}
i

is known from the prescribed body force on the domain. In other words,
{
F ′

Ω

}
i

is the discretization of the load f ′ given in Eq. (3.10). The force term
{
F ′

Ω

}
i

is typically

zero, unless the prescribed body force changes due to the shape variable.

The direct CSA formulation involves solving the discrete sensitivity equations (3.11), or

after applying the boundary conditions, solving the reduced system (3.14). The advantages

of the direct formulation are:

• The derivatives of response u are obtained at all locations in the domain.

• One linear system of equations is solved per design variable to obtain the local design

derivatives at all locations.

• Analysis BCs (2.2) are differentiated directly to obtain CSE BCs (3.13) and (3.17).

3.3.2 Adjoint Formulation of Continuum Sensitivity Analysis

Let a performance measure for the discretized system be given by

ψj = {z}Tj {u} (3.18)

where j = 1, 2, ..., nψ for nψ number of performance measures and {z}j is assumed constant

here to simplify the presentation. The so-called virtual load vector {z}j, as defined by Haug

and Arora (Arora and Haug, 1979), may be an index to the response at a point of interest or

result from numerical quadrature of an integral. The definition of the performance measure

indicates that it is based on discretized solution {u} instead of the continuous solution u.

The hybrid adjoint approach is based on appending the discretized CSE (3.14) to the

local derivative of the performance measure (3.18). The local derivative of ψj with respect

to a shape design variable bi is given by

ψ′
j,i = ∂ψj

∂uk

∂uk
∂bi

= {z}Tj {u′}i =
[

z1
T z2

T

]
j


u′

1

u′
2


i

(3.19)
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where j = 1, 2, ..., nψ for nψ number of performance measures and i = 1, 2, ..., nb for

nb number of design variables. Without loss of generality, we can assume that {z} =

∂ψj/∂u does not depend on the design variable bi. Here {z1} and {z2} are partitions

of {z} corresponding to {u1} and {u2}, respectively. We then append CSE (3.14) to Eq.

(3.19) using the adjoint variable vector {λ}.

ψ′
ji = {z}Tj {u′}i + {λ}Tj

(
[K22]

{
u′

2

}
i
−
{
F ′

local

}
i

)

=
[

z1
T z2

T

]
j


u′

1

u′
2


i

+ {λ}Tj
(
[K22]

{
u′

2

}
i
−
{
F ′

local

}
i

)

= {z1}Tj
{
u′

1

}
i
+ {z2}Tj

{
u′

2

}
i
+ {λ}Tj

(
[K22]

{
u′

2

}
i
−
{
F ′

local

}
i

)
= {z1}Tj

{
u′

1

}
i
− {λ}Tj

{
F ′

local

}
i
+
(
{z2}Tj + {λ}Tj [K22]

) {
u′

2

}
i

(3.20)

Further, we let {z2}Tj + {λ}Tj [K22] = 0 to yield solution to the discrete adjoint variable

vector.

{λ}j = − [K22]−T {z2}j (3.21)

This expression for the adjoint vector is the same as for the conventional discrete adjoint

vector (Arora and Haug, 1979). Indeed it is the same as Eqs. (10) and (23) found in (Arora

and Haug, 1979). However, the manner in which it is used differs in the following equation for

the performance derivative. Substitution of Eq. (3.21) into the first part of (3.20), reduces

the performance measure local derivative to

ψ′
ji = {z1}Tj

{
u′

1

}
i
− {λ}Tj

{
F ′

local

}
i
. (3.22)

The term
{
F ′

local

}
i

multiplying the adjoint vector {λ}j in Eq. (3.22), according to Eq.

(3.15), involves the derivative of the response on the boundary, known from Eq. (3.13). It

differs from the term multiplying the adjoint vector in the discrete adjoint method, which

contains instead the product of the response vector with the global stiffness matrix design
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derivative, as given by Eq. (13) in (Arora and Haug, 1979). This highlights the benefit of the

current approach in avoiding mesh sensitivity needed for the global stiffness matrix design

derivative. Both the hybrid and discrete methods include, as well, the derivative of externally

applied load
{
F ′

2

}
i

with respect to the design variable, if it is nonzero. Yang and Botkin

derived a similar expression in their discretization of the continuous adjoint method (Yang

and Botkin, 1986), except that they limited the discretization to a layer of elements adjacent

to the boundary and implicitly relied upon element shape function spatial derivatives in their

derivation. They related their discrete approximation to a finite difference approximation

of the stiffness matrix, assuming an unperturbed finite element mesh aside from elements

on the boundary that undergo a shape change. They thereby established a relationship of

variational design sensitivity analysis to discrete semi-analytic sensitivity analysis.

The total or material derivative of ψj can be obtained by addition of the convective term

as follows.

ψ̇ji = {z}Tj {u̇}i = {z}Tj
{
{u′}i + diag

(
[∇xu]T [V ]i

)}
= ψ′

ji + {z}Tj
{
diag

(
[∇xu]T [V ]i

)}
(3.23)

The last, convective term in Eq. (3.23) is comprised of the spatial gradient matrix [∇xu]

of size 3 × N and the design velocity matrix [V ]i of size 3 × N . The spatial gradient

matrix is computed by spatial gradient reconstruction (SGR) (Cross and Canfield, 2014)

and the design velocity matrix is either prescribed or can be computed using an intrusive

or nonintrusive procedure (Kulkarni et al., 2014b). The procedure for implementation of

hybrid adjoint CSA formulation is illustrated in Figure 3.2.

3.3.3 Approximation of Spatial Gradients

The forcing terms for the CSEs consist of the body loads f ′, as given in Eq. (3.10), and the

loads arising from the CSE boundary conditions gb. Typically the loads f ′ can be derived
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Figure 3.2: Flowchart for implementation of the hybrid adjoint Continuum Sensitivity Ana-
lysis
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analytically, since the analysis body loads f are known. However, gb requires calculation

of the spatial gradient ∇xu or ∇x (Bn (L (u))) as shown in Eqs. (3.13) and (3.17). After

discretization, this leads to the load terms
{
F ′

n

}
i
and

{
u′

1

}
i
. Essentially, spatial gradients of

analysis primary responses such as displacements, or of secondary responses such as forced

or stresses, at the boundary Γ are required to be approximated from the analysis solution

to obtain loads for the sensitivity analysis. Finally, after the solution to local derivatives

is obtained, spatial gradients of the responses are required to calculate the convective term

∇xu · V which is added to get the total derivatives according to Eq. (2.3). In summary,

accuracy of the total derivatives obtained using CSA is significantly affected by the accuracy

of the boundary spatial gradients (Duvigneau and Pelletier, 2006). Elsewhere we have shown

that reliance upon low-order element shape functions limits the accuracy of these spatial

gradients thus limiting the accuracy of the local and effectively total derivatives (Liu and

Canfield, 2013a). As a remedy, Cross and Canfield (2014; 2015; 2016) proposed the spatial

gradient reconstruction (SGR), which is based on the least-squares patch-recovery approach

used by Duvigneau and Pelletier (2006). The difference between the latter two approaches

is that SGR is used to reconstruct first-order gradients of the natural boundary conditions

directly, instead of reconstructing the higher-order gradients that appear in them. In the

current work, SGR was applied to get 2D and 3D spatial gradients of displacements and

stresses. As an example, for a 4-layer, third-order SGR, the following third-order Taylor
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series expansion is used to solve the least-squares problem.

ϕ(x+ ∆x, y + ∆y, z + ∆z) = ϕ(x, y, z) + ϕ,x∆x+ ϕ,y∆y + ϕ,z∆z

+ 1
2
ϕ,xx (∆x)2 + 1

2
ϕ,yy (∆y)2 + 1

2
ϕ,zz (∆z)2

+ ϕ,xy∆x∆y + ϕ,yz∆y∆z + ϕ,zx∆z∆x

+ 1
6
ϕ,xxx (∆x)3 + 1

6
ϕ,yyy (∆y)3 + 1

6
ϕ,zzz (∆z)3

+ 1
2
ϕ,xxy (∆x)2 ∆y + 1

2
ϕ,xxz (∆x)2 ∆z + 1

2
ϕ,yyz (∆y)2 ∆z

+ 1
2
ϕ,yyx (∆y)2 ∆x+ 1

2
ϕ,zzx (∆z)2 ∆x+ 1

2
ϕ,zzy (∆z)2 ∆y

+ ϕ,xyz∆x∆y∆z, (3.24)

where ϕ could be a scalar such as a component of displacement or stress and ϕ,x, ϕ,y, ϕ,z are

the spatial gradients that are computed.

The advantages of SGR are as follows:

• Spatial gradients ∇xu can be approximated without the need of element formulation.

• Accuracy of the spatial gradients can be increased by choosing the correct number of

layers and order of Taylor series for SGR.

• SGR can be done as a post processing step, following the structural analysis using any

black-box tool, and this makes CSA amenable to nonintrusive implementation.

In our current work, SGR is used to approximate the spatial gradients required for CSA.

3.3.4 Application of Continuum Sensitivity Analysis to Two- and

Three-Dimensional Structures

The hybrid adjoint method presented here is formulated irrespective of the dimensionality

of the problem, because the performance measure local derivative ψ′
j is based on appending

the discretized CSEs after the spatial dimension is accounted for in the CSA boundary
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conditions, whether the domain is 1-D (Wickert et al., 2010; Kulkarni et al., 2016), 2-D

(Cross and Canfield, 2014) or 3-D (Kulkarni et al., 2015). The dimensionality of the problem

affects the solution in two ways: (a) the spatial gradients have to be calculated with respect

to each dimension of the domain Ω, and (b) the CSA loads have to be calculated on the

boundaries of the domain. For example, for a 1-D problem such as an axial bar, the spatial

gradients operator ∇x defined in Eq. (2.5) includes only one spatial derivative ∂/∂x, and

the CSA loads are applied on the end points of the axial bar. For a 3-D problem consisting of

solid finite elements (Kulkarni et al., 2015), the spatial gradient operator involves derivatives

along each spatial dimension, i.e. ∇x =
[

∂
∂x

∂
∂y

∂
∂z

]
, and the CSA loads are applied on

the boundary surfaces of the three-dimensional domain e.g. the faces of the solid structure.

Regardless of whether one, two, or three spatial dimensions are involved, the hybrid adjoint

method proceeds in the same fashion.

3.3.5 Summary and Highlights of the Hybrid Adjoint Method

The continuum-discrete hybrid adjoint approach presented here is convenient for the case

when performance measure sensitivity is required with respect to a large number of design

variables, whereas direct formulation of CSA suffers from the limitation of being efficient only

for small number of design variables. This approach is called a hybrid adjoint formulation

because it starts with CSA for state variable derivatives, but the final adjoint equations

are based on the discretized CSEs and a discrete performance measure. The hybrid adjoint

approach enjoys the following benefits.

• The sensitivity boundary conditions are imposed on the state variable derivatives and

are accounted for in the reduced discretized CSEs. This is done before introduction

of the adjoint vector {λ}, so that there are no boundary conditions to derive for the

adjoint variable vector.

• SGR is performed for points only on the boundary surfaces and at locations contrib-
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uting to the performance metric through the vector {z} as seen from Eq. (3.23), no

matter how many design variables.

• Only one linear system (3.21) is solved to obtain the value of the adjoint vector {λ}

for each performance measure.

• Once {λ} is obtained, the inner product calculation in Eq. (3.22) can be done inex-

pensively for as many design variables as required.

• The derived formulation can be easily extended from 1D to 2D and 3D structural

applications.

The hybrid adjoint was initially demonstrated for a 1D axial bar (Kulkarni et al., 2016),

and is presented in the next section. In the following sections, we present application of the

hybrid adjoint method to 2D and 3D applications.

3.4 Axial Bar

Wickert et al. (Wickert et al., 2010) presented the following tutorial problem of finding

shape sensitivity of the axial displacement of a bar using CSA. This simple one-dimensional

problem illustrates the process of CSA for two different shape parameterizations. In this

section, the problem will be solved using the direct CSA formulation and the hybrid adjoint

formulation, and solutions will be compared with the exact solution.

3.4.1 Problem Description

The derivatives of axial displacement and axial stress in a bar are sought with respect to

the length of the bar. The bar with the applied linearly varying load and clamped boundary

conditions is shown in Figure 3.3.
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Figure 3.3: Elastic bar with axial load

3.4.1.1 Design Velocity

The design variable is the length of the bar, L; however, a designer may parameterize the

domain Ω : x ∈ [0, L] in a number of ways. Two such parameterizations are shown in Figure

3.4. The difference in these parameterizations can be realized from the design velocities for

the two cases, as explained next. The two design variables associated with the two shape

parameterizations will be used in Section 3.4.4 to illustrate how the hybrid adjoint is applied

to solve a single linear system for multiple shape design variables.

The change in shape of a structure can be expressed by a mapping function T from an

initial structural geometry Ω to a new structural geometry Ωb. Here b denotes a design

variable that results in a change of shape. If x and xb represent the spatial coordinates

in the initial geometry Ω and the perturbed geometry Ωb, respectively, then the mapping

T : Ω → Ωb is given by

xb = T (x, b).

A particular choice of the mapping T will determine the transformation of shape from Ω to

Ωb. Parameterizations 1 and 2 shown in Figure 3.4 correspond to two such mappings. The

process of shape change through a mapping is the concept of design velocity, also known as

geometric sensitivity. Following Choi and Kim (Choi and Kim, 2005), design velocity V is

defined as the rate of change of the transformation T with respect the design variable b.

V(x, b) = ∂xb

∂b
= ∂T

∂b
. (3.25)
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Figure 3.4: Different parametric representations of the elastic bar: (a): Parameterization 1:
Material points move to the right, (b): Parameterization 2: Material points move to the left.

Next the design velocities for parameterizations 1 and 2 are derived. The first paramet-

erization can be interpreted as increasing the length from an initial value L0 by pulling the

free end to the right by an amount b1 = ∆L1, while maintaining the location of the clamped

end. In this case, all the material points move to the right as shown in Figure 3.4. Let

ξ = x/L be a non-dimensional parameter such that ξ = 0 corresponds to the left end and

ξ = 1 corresponds to the right end. Then the transformation for the first parameterization

is given by

xb1 = ξ (L0 + b1) ı̂.

Here, ı̂ represents unit vector in the horizontal direction of the Cartesian coordinate system.

According to the definition of design velocity given by Equation (3.25), the design velocity

is

V1 = ∂xb1

∂b1
= ξı̂ = x

L
ı̂. (3.26)

In the second parameterization, the length of the bar is extended by pulling the clamped

end to the left by an amount b2 = ∆L2 leaving the material point at the free end in place.

The transformation in this case is given by

xb2 = [ξ (L0 + b2) − b2] ı̂.
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Figure 3.5: Types of linearly varying loads

Then, according to Equation (3.25), the design velocity for parameterization 2 is

V2 = ∂xb2

∂b2
= (ξ − 1) ı̂ =

(
x

L
− 1

)
ı̂. (3.27)

The two parameterizations shown above are just two different parameterizations of the

same shape design variable viz. length of the bar, L. This difference is characterized by the

design velocities in each case. Hence, the material derivatives (Dϕ/DL) of any response vari-

able ϕ will be the same for both parameterizations, although the local derivatives (∂ϕ/∂L)

will be different.

3.4.1.2 Distributed Axial Loading

The axial bar is subjected to a linearly varying distributed load, highest at the clamped

end and zero at the free end. The load can be represented in either of the two ways shown

in Figure 3.5. The difference in the loads: (a) f(x) = f0(L − x), and (b) f̂(x) = f̂0(1 −

x/L) is realized when the initial length L0 is increased by an amount ∆L. In case (a),

the load intensity at each material point increases with an increase in the length. This

is mathematically expressed as ḟ = Df(x)/DL ̸= 0. In case (b), the load intensity at

each material point remains the same as the length increases. This is expressed as ˙̂
f =

Df̂(x)/DL = 0. Wickert et al. Wickert et al. (2010) used a notation similar to (a) where

they assumed f0 = 1. We have modified that expression to included the factor f0 which has

dimensions of load per unit length.
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3.4.2 Analytical Sensitivity by Differentiating Exact Solution

The governing equations for the axial stress and displacement in a bar with a constant cross

sectional area A and an elastic modulus E are

Aσ, x + f = 0, (3.28)

Eu, x − σ = 0, (3.29)

subjected to the following boundary conditions

Essential boundary condition at boundary x = 0, Γe : u = 0, (3.30)

Nonessential boundary condition at boundary x = L, Γn : σ = 0. (3.31)

Here, (.), x = ∂
∂x

(.). Loading is linearly varying as shown in Figure 3.5(a), f(x) = f0(L− x).

The exact solutions for the axial stress σ and axial displacement u are

σ = f0

A

{
x2

2
− Lx+ L2

2

}
, (3.32)

u = f0

AE

{
x3

6
− Lx2

2
+ L2x

2

}
. (3.33)

A finite element displacement solution with 50 linear elements and the exact solution are

shown in Figure 3.6.

The exact local derivatives can be determined by partial differentiation of the above

equations.

u′ = ∂u

∂L
= f0

AE

(
−x2

2
+ Lx

)
(3.34)

σ′ = ∂σ

∂L
= f0

A

(
−x+ L

)
(3.35)
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Figure 3.6: Exact and finite element solutions to the axial bar problem.

Therefore, the exact total derivatives at the tip (x = L) are

u̇|x=L = Du

DL

∣∣∣∣
x=L

= ∂

∂L
(u|x=L) = ∂

∂L

(
f0L

3

6AE

)
= f0L

2

2AE
, (3.36)

σ̇|x=L = Dσ

DL

∣∣∣∣
x=L

= ∂

∂L
(σ|x=L) = ∂

∂L

(
0
)

= 0. (3.37)

The goal of the current exercise is to obtain the local derivative ∂u/∂L and total derivatives

Du/DL using direct CSA and hybrid adjoint CSA methods for the two parameterizations

described in Section 3.4.1.1.

3.4.3 Analytic Solution Using Direct Local CSA

3.4.3.1 Parameterization 1

The local CSEs are obtained by partial differentiation of the governing equations (3.28) and

(3.29).

Aσ′
, x + f ′ = 0 (3.38)

Eu′
, x − σ′ = 0 (3.39)
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Next, the load f ′ for the current parameterization is obtained as follows.

f ′ = ḟ − ∇xf.V1

The material derivative of the applied load, ḟ , and the spatial gradient of the load, ∇xf , do

not depend on the parameterization.

ḟ = D

DL
(f) = D

DL
(f0 (L− x)) = f0

D

DL
(L− ξL) = f0 (1 − ξ) (3.40)

∇xf = ∂f

∂x
ı̂ = −f0ı̂ (3.41)

Therefore, the load term f ′ in the CSEs changes with the parameterization according to the

corresponding design velocity. The design velocity for the first parameterization was derived

in Equation (3.26).

f ′ = f0 (1 − ξ) − (−f0) (ξ) = f0 (3.42)

The sensitivity boundary conditions require spatial gradients of displacement and stress,

which can be obtained analytically from the exact solution, Equations (3.32) and (3.33), as:

∇xu = ∂u

∂x
ı̂ = f0

AE

{
x2

2
− Lx+ L2

2

}
ı̂, (3.43)

∇xσ = ∂σ

∂x
ı̂ = f0

A
{x− L} ı̂. (3.44)

Thus, the CSE boundary conditions are

u′|x=0 = 0 − ∇xu.V |x=0 or ξ=0 = −
(
f0L

2

2AE

)
(0) = 0, (3.45)

σ′|x=L = 0 − ∇xσ.V |x=Lor ξ=1 = −(0)(1) = 0. (3.46)

To calculate local derivatives, Equations (3.38) and (3.39) may be solved subject to the
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loading (3.42), and the boundary conditions (3.45) and (3.46). Parameterization 1 results

in homogeneous essential boundary condition (3.45). Consequently, after discretization,{
u′

1

}
= 0 in Equation (3.12), and

{
F ′

local

}
=
{
F ′

2

}
in Equation (3.14). Also

{
F ′

2

}
̸= 0

according to Equation (3.42). Solving the CSEs (3.38) and (3.39) by simple integration, we

obtain local derivatives

σ′ = f0

A
{−x+ L} , (3.47)

u′ = f0

AE

{
−x2

2
+ Lx

}
. (3.48)

The total derivatives are obtained by adding the convective terms to the local derivatives.

u̇ = u′ + ∇xu.V (3.49)

σ̇ = σ′ + ∇xσ.V (3.50)

∴ u̇ = f0

AE

{
−x2

2
+ Lx

}
+ f0

AE

{
x2

2
− Lx+ L2

2

}
x

L
= f0

AE

{
x3

2L
− 3x2

2
+ 3Lx

2

}
(3.51)

∴ σ̇ = f0

A
{−x+ L} + f0

A
{x− L} x

L
= f0

A

{
x2

L
− 2x+ L

}
(3.52)

Thus, evaluation of Equations (3.51) and (3.52) at the tip, x = L, matches the exact de-

rivatives given by Equations (3.36) and (3.37), determined by direct differentiation of the

analytic analysis solution in Section 3.4.2, and given in the paper by Wicket et al. (Wickert

et al., 2010)
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u̇|x=L = f0L
2

2AE
σ̇|x=L = 0.

3.4.3.2 Parameterization 2

The expressions of ḟ and ∇xf will not change because the second parameterization is just

a new parameterization for the same design variable L. Hence, from Equations (3.40) and

(3.41), and with the design velocity derived in Equation (3.27), we obtain load f ′ for the

current parameterization.

f ′ = ḟ − ∇xf.V2 = f0 (1 − ξ) − (−f0) (ξ − 1) = 0 (3.53)

The boundary conditions for the CSEs for parameterization 2 are given by

u′|x=0 = 0 − ∇xu.V |x=0 or ξ=0 = −
(
f0L

2

2AE

)
(−1) = f0L

2

2AE
, (3.54)

σ′|x=L = 0 − ∇xσ.V |x=Lor ξ=1 = −(0)(0) = 0. (3.55)

Unlike parameterization 1, the essential boundary condition (3.54) is now non-homogeneous.

The following aspects in parameterization 2 are noteworthy:

• The load term in the CSEs is zero, i.e., f ′ = 0. When the CSEs are discretized, this

results in {F ′} = 0 in Equation (3.11), or equivalently
{
F ′

1

}
=
{
F ′

2

}
= 0.

• The essential boundary condition for the primary analysis (u|0 = 0) is converted to a

non-homogeneous boundary condition for the CSEs (u′|0 = f0L2

2AE ). This translates to{
u′

1

}
̸= 0 in Equation (3.12).

• Therefore, the load term
{
F ′

local

}
in the reduced form of the discretized CSEs (3.14)
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is nonzero.

To obtain local derivatives, we solve CSEs (3.38) and (3.39) subject to the loading (3.53),

and the boundary conditions (3.54) and (3.55) by simple integration to obtain the local

derivatives,

σ′ = 0, (3.56)

u′ = f0L
2

2AE
. (3.57)

The above equations differ Equations (3.47–3.48) for parameterization 1. Nevertheless, the

material derivatives recovered by adding the convective term are the same as given by (3.51)

and (3.52).

u̇ = f0L
2

2AE
+ f0

AE

{
x2

2
− Lx+ L2

2

}(
x

L
− 1

)
= f0

AE

{
x3

2L
− 3x2

2
+ 3Lx

2

}
(3.58)

σ̇ = 0 + f0

A
{x− L}

(
x

L
− 1

)
= f0

A

{
x2

L
− 2x+ L

}
(3.59)

As expected, these total derivatives match the exact derivatives calculated in Section 3.4.2

and the total derivatives calculated for parameterization 1 in Section 3.4.3.1 and in the paper

by Wicket et al. (Wickert et al., 2010). A graphical comparison of these results is shown in

the next section.

3.4.4 Solution Using Hybrid Adjoint Formulation

Next, the local and total derivatives are obtained using the hybrid adjoint formulation. A

finite element model consisting of 50 linear elements was used. The two design variables are:

(1) length L with parameterization 1, and (2) length L with parameterization 2. As discussed

in Section 3.3, calculation of the derivative of tip displacement at a particular location
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involves solving the linear system (3.21) only once to get the adjoint vector {λ}. The values

of
{
F ′

local

}
are obtained for the two design variables, and the local derivatives are calculated

by the inexpensive inner product in Equation (3.22). As against this, the direct CSA method

requires solving one linear system (3.14) for local derivatives with respect to each design

variable, which is certainly not preferred when the number of design variables outnumber

the performance measures. It is obvious that the direct CSA method is more expensive when

the problem involves many design variables. In the current example, derivatives are obtained

at five locations x = 0.1, 1.1, 2.1, 3.1, and 4.1 using the hybrid adjoint method.

The local derivatives obtained by direct CSA and hybrid adjoint method are shown in

Figure 3.7. The local derivatives differ for parameterizations 1 and 2, as expected. The

derivatives computed with the hybrid adjoint match with those computed by direct CSA

at the five locations. The convective term ∇xu.V for the two parameterizations is plotted

in Figure 3.8. The difference in the convective term is due to different design velocities in

the two cases. Analytic spatial gradients given by Equations (3.43) and (3.44) were used to

compute the convective term in this example. These could instead be approximated from

the computed finite element solutions for axial displacement and stress. Cross and Canfield

(Cross and Canfield, 2014) have proposed the spatial gradient reconstruction (SGR) method

to approximate spatial gradients. This method leads to a better estimate of the spatial

gradients than that obtained by the use of element shape functions. In fact it also provides

a means for nonintrusive implementation of CSA (Figure 2.3).

In the above example, there are five performance measures viz. the displacements at the

five selected locations. Hence, we will solve for five adjoint vectors according to Equation

(3.21), each corresponding to the performance measure at that particular location. These ad-

joint vectors are plotted in Figure 3.9. The adjoint vectors are normalized as λ̄ = λ/ (L/AE).

The inner product {λ}T
{
F ′

local

}
yields the local derivative of displacement at these loca-

tions, as given by Equation (3.22).

Addition of the convective term to the local derivatives results in the total derivatives,
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Figure 3.7: Non-dimensional local derivative of the axial bar displacement with respect to
its length.
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Figure 3.8: Non-dimensional convective term for parameterization 1 and parameterization
2.
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Figure 3.9: Discrete adjoint variable vectors.

according to Equation (2.3) for state variables and according to Equation (3.23) for a per-

formance measure by the hybrid adjoint approach. The total derivatives obtained from direct

CSA and hybrid adjoint method are shown in Figure 3.10 along with the exact derivatives.

All the five lines in this figure overlap, which means that: (a) the total derivatives obtained

for parameterizations 1 and 2 match with the exact values, and (b) the hybrid adjoint method

yields corresponding sensitivity values at the five locations.

3.5 Cantilever Beam with Solid Elements (Direct For-

mulation)

3.5.1 Problem Description

A cantilever beam modelled with trilinear iso-parametric hexagonal solid finite elements

is shown in Figure 3.11. The details of the finite element model are given in Table 3.1.

The beam consists of in all 80 CHEXA NASTRAN elements and 165 nodes. The task is

to obtain the material derivatives of transverse displacement of the beam and stress near
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Figure 3.10: Non-dimensional total derivatives of the axial bar displacement with respect to
its length.

the root with respect to six shape design variables bi ∈ {b} = [b1, b2, b3, b4, b5, b6]T . This

problem is adopted from the one defined in MSC NASTRAN Design Optimization Users

Guide (Chapter 6, Analytic Boundary Shapes) (Nastran, 2010). The point load applied

at the tip was modified to a surface traction with the same total load magnitude, and the

constraint on the left-side of the beam was modified from a clamped condition to essential

BCs as given by Augarde and Deeks (Augarde and Deeks, 2008). Also, the Poisson’s ratio

was set to zero. Although an analytic solution is not available for this problem, with these

modifications, the finite element solution obtained from NASTRAN could be compared with

a 2D Airy stress solution. The shape design variables {b} and their associated design

velocities are described next.

The six shape design variables (Nastran, 2010) {b} chosen to demonstrate results for the

hybrid adjoint formulation of CSA are shown in Figure 3.12. In these variables, the shape of

the beam changes due to change in either the bottom (z = 0) or the top (z = h) surface. This

shape change could be parameterized in different ways. In the current parameterization the

components Vx and Vy of the design velocity are zero, while Vz is nonzero. Design variables

b1 and b2 change the height of the beam uniformly along its length by displacing the bottom
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Figure 3.11: Cantilever beam modelled with solid elements and subjected to surface traction.

Table 3.1: Details of the cantilever beam finite element model for the coarsest grid.
Variable Symbol Value

Length, along X L 10 in
Width, along Y w 2 in
Height, along Z h 4 in
Young’s modulus E 2.068 × 105 psi

Poisson’s ratio ν 0.0
Number of elements along X nx 10
Number of elements along Y ny 2
Number of elements along Z nz 4
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and top surface, respectively. Design velocities for these variables are given by

Vzb1
=
(

1 − z

h

)
, Vzb2

=
(

−z

h

)
. (3.60)

Design variables b3 and b4 provide a linear taper from root (x = 0) to tip (x = L) by

displacing the bottom and top surface, respectively, while constraining translation at the

root but allowing rotation of the surface. Design velocities for these variables are given by

Vzb3
=
(
x

L

)(
1 − z

h

)
, Vzb4

=
(
x

L

)(
−z

h

)
. (3.61)

Design variables b5 and b6 provide a cubic taper from root to tip by displacing the bottom

and top surface, respectively, while constraining translation and rotation at the root. Design

velocities for these variables are given by

Vzb5
= 1

2

(
3 − x

L

)(
x

L

)2 (
1 − z

h

)
, Vzb6

= 1
2

(
3 − x

L

)(
x

L

)2 (
−z

h

)
. (3.62)

3.5.2 Primary Analysis

The partial differential equations (2.1) governing a three-dimensional (3D) structural dis-

placement response u = {ux, uy, uz}, based on linear elasticity are

[∂] [D] [∂]T u = f , (3.63)

where f = {fx, fy, fz}T are the applied body forces at a point in the domain Ω, [D] is the

constitutive matrix, and [∂] is the operator matrix given by

[∂] =


∂
∂x

0 0 ∂
∂y

0 ∂
∂z

0 ∂
∂y

0 ∂
∂x

∂
∂z

0

0 0 ∂
∂z

0 ∂
∂y

∂
∂x

 . (3.64)
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The stresses σ = {σx, σy, σz, τxy, τyz, τzx}T are related to the strains ϵ = {ϵx, ϵy, ϵz, γxy, γyz, γzx}T

through the stress-strain relationship σ = [D] ϵ, and the strains are are related to the dis-

placement through the strain-displacement relationship ϵ = [∂]T u. Comparing Eq. (3.63)

to the general Eq. (2.1), we can derive the PDE operator

A (u, L (u)) ≡ L (u) = [∂] D [∂]T u. (3.65)

Essential (geometric) BCs (2.2) are applied at the boundary Γe : x = 0 by prescribing

displacements ū

u|Γe
= ū. (3.66)

Nonessential (natural) boundary conditions are applied at the boundaries Γn by prescribing

surface tractions Φ̄ =
{
Φ̄x, Φ̄y, Φ̄z

}T

Φ|Γn
= Φ̄. (3.67)

The tractions at any point on the boundary surface are related to the stresses at that point

by the relation

Φ =


Φx

Φy

Φz


=


σx τxy τzx

τxy σy τyz

τzx τyz σz




nx

ny

nz


= [σ] n, (3.68)

where n = {nx, ny,nz}T are the direction cosines of a vector normal to the surface and [σ]

is the stress tensor at that point. Thus, the boundary condition (3.67) can be written in

terms of the stress components as

Φ|Γn
= [σ] n|Γn

= Φ̄. (3.69)

The 3D cantilever beam domain Ω has six faces that make up the boundary Γ. Essential BC
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Table 3.2: Natural BC applied on the faces of the 3-D (solid) cantilever beam.
Face of the beam Traction description Value, Φ̄

x = L Parabolic shear Φ̄tip = 6P (h−z)z
bh3

y = 0 Traction free 0
y = w Traction free 0
z = 0 Traction free 0
z = h Traction free 0

(3.66) is applied at the root face Γe : x = 0, and natural BCs are applied at the remaining

five faces which together make up the boundary Γn. The values of prescribed traction on

each of these five faces is given in Table 3.2. Typically, in displacement based finite element

solvers, such as NASTRAN, the traction free natural BCs are not applied explicitly. The

displacements on the center line and at the face x = 0 (where essential boundary conditions

are applied) are plotted in Figures (3.13–3.16). The z−transverse displacement of the solid

cantilever beam on the center line is shown in Figures (3.13–3.14). The stress distributions

are plotted in Figures (3.17–3.20). Note that the axial displacement is negligible. Also, the

values of stress τyz are negligible. The values of σz are one order of magnitude smaller than

τzx, and two orders of magnitude smaller than σx.

3.5.3 Continuum Sensitivity Analysis

The CSEs for the 2D problem are derived by partial differentiation of Eq. (3.63)

[∂] [D] [∂]T u′ = f ′. (3.70)

Comparing Eq. (3.70) to the general Eq. (2.6), we confirm that for the linear structural

analysis considered here, the PDE operator for the structural local derivatives is same as the

PDE operator for the structural response, i.e. Ab = A.

According to Eq. (2.5), the essential (geometric) CSE BCs are obtained by material

differentiation of (3.66), and are applied at the boundary Γe : x = 0 by prescribing local
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Figure 3.13: Axial displacement of the beam of the solid cantilever beam on the center line,
y = 1, z = 2. The symbol e indicates total number of elements.
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Figure 3.14: Transverse z-displacement of the solid cantilever beam on the center line, y =
1, z = 2. The symbol e indicates total number of elements.
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Figure 3.15: Axial displacement of the solid cantilever beam on the face x = 0 (where
essential boundary conditions are applied). The symbol e indicates total number of elements.
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Figure 3.16: Transverse z-displacement of the solid cantilever beam on the face x = 0 (where
essential boundary conditions are applied). The symbol e indicates total number of elements.
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Figure 3.17: Normal stress σx distribution in the solid cantilever beam for e = 640 elements.

Figure 3.18: Shear stress τzx distribution in the solid cantilever beam for e = 640 elements.
The filled marker indicates the analytic values from the Airy stresses.
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Figure 3.19: Normal stress τyz distribution in the solid cantilever beam for e = 640 elements.
Note that the values of stress τyz are negligible.
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Figure 3.20: Normal stress σz distribution in the solid cantilever beam for e = 640 elements.
Note that the values of σz are one order of magnitude smaller than τzx and two orders of
magnitude smaller than σx.
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displacement derivatives

u′|Γe
= ˙̄u − ∇x (u) · V |Γe

. (3.71)

This BC leads to a nonzero vector
{
u′

1

}
in Eq. (3.15).

Similarly, the non-essential (natural) CSE BCs are obtained by material differentiation

of (3.69), and are applied at the boundary Γn by prescribing traction values according to

Φ′|Γn
= ˙̄Φ −

(
Vx
∂ [σ]
∂x

+ Vy
∂ [σ]
∂y

+ Vz
∂ [σ]
∂z

)
n − [σ] ṅ

∣∣∣∣∣
Γn

, (3.72)

where

∂ [σ]
∂xk

= ∂

∂xk


σx τxy τzx

τxy σy τyz

τzx τyz σz

 , (3.73)

for the directional components xk = x, y, z, and ṅ is the material derivative of the unit

normal. Eq. (3.72) applies to each of the five faces, given in Table 3.2, that together make

up the boundary Γn. For the current problem, since Vx = Vy = 0 at all points, BC (3.72)

simplifies to

Φ′|Γn
= ˙̄Φ − Vz

∂ [σ]
∂z

n − [σ] ṅ

∣∣∣∣∣
Γn

. (3.74)

Thus, the natural CSE BCs to be applied at the faces of the 3D cantilever beam can be

stated as

Φ′|x=L = ˙̄Φtip − Vz
∂ [σ]
∂z

n − [σ] ṅ

∣∣∣∣∣
x=L

, (3.75)

Φ′|y=0 = 0 − Vz
∂ [σ]
∂z

n − [σ] ṅ

∣∣∣∣∣
y=0

= 0, (3.76)

Φ′|y=w = 0 − Vz
∂ [σ]
∂z

n − [σ] ṅ

∣∣∣∣∣
y=w

= 0, (3.77)

Φ′|z=0 = 0 − Vz
∂ [σ]
∂z

n − [σ] ṅ

∣∣∣∣∣
z=0

, (3.78)

Φ′|z=h = 0 − Vz
∂ [σ]
∂z

n − [σ] ṅ

∣∣∣∣∣
z=h

. (3.79)
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Eqs. (3.76–3.77) have zero right side because ∂[σ]
∂z

and ṅ are zero at the faces y = 0 and

y = w. Similar to the primary analysis, these traction free BCs (3.76–3.77) are not explicitly

applied during the finite element solution of the CSEs. The BCs (3.75, 3.78, 3.79) lead to

a nonzero vector
{
F ′

n

}
i

in Eq. (3.16). Apart from the loads arising from these CSE BCs,

there can also be loads due to the dependence of the applied body loads on the shape design

variable, leading to nonzero vector
{
F ′

Ω

}
i

in Eq. (3.16); however, they are zero for the

current problem.

The two most influential terms in the CSA BCs (3.75–3.79) are ˙̄Φtip and the convective

term Vz ∂[σ]
∂z

n on the top and the bottom surface (wherever the design velocity is the highest).

The former is known analytically. The latter involves calculation of the z-spatial gradients

of the stress components {τzx, τzy, σz}, of which ∂τzx

∂z
has the highest value. These spatial

gradients are calculated using SGR with second-order Taylor series and four patch layers,

and are shown in Figure 3.21. It is seen that the SGR approximates the spatial gradients

very accurately, compared to the analytical values obtained form the Airy stresses.

In theory, if the spatial gradients are accurately known and the linear CSEs are accur-

ately solved, the resulting local derivatives will be accurate. However, this is seldom realized

in practice because discretization error is introduced during solution of the differential equa-

tions. Since the Airy stress spatial derivatives are known, the best case scenario for CSA

would be when the CSE boundary conditions are calculated using the exact spatial gradients.

This is used as a limiting test case.

The CSEs were solved in NASTRAN by applying the corresponding loads and BCs in

the same way as the primary analysis was done. In the direct formulation of CSA, solution

of the CSEs gives the values of the local derivatives u′ at all points in the domain. Then, the

convective term is added to obtain the total derivatives u̇ at locations of interest, according

to Eq. (3.5). The total derivatives of transverse displacement on the center line are shown

in Figure 3.22. The results labelled “CSA-SGR BC, e=...” were calculated using SGR

with second-order Taylor series and four layer patches. The symbol e represents number of
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Figure 3.21: Distribution of the spatial gradient of the shear stress, ∂τzx

∂z
, in the solid cantilever

beam with e = 640 elements, calculated using SGR with second-order Taylor series and four
patch layers. The filled markers indicate the analytic values from the Airy stresses.

elements. The CSA results obtained by using Airy stress spatial gradients to calculate the

CSE BCs are labelled “CSA-Airy BC.” Analytical solution to the displacement and stress

derivatives is only available for the design variables 1 and 2, and are labelled “Analytic

(Airy).” It is seen that the displacement derivatives match the analytical solution closely.

Although unexpected, the “CSA-Airy BC” result for design variables 1 and 2 is further

away from the “Analytic (Airy)” result than the “CSA-SGR BC, e=...” result. This is an

intriguing result which will be investigated further.

In the direct formulation of CSA, the local derivatives of stresses are also obtained when

NASTRAN is run to solve the CSEs. The stress convective term can be added to these

local stress derivatives to obtain the total stress derivatives at locations of interest. The

distributions of stress derivatives are shown in Figures (3.23–3.24). The results labelled

“CSA-SGR BC” were calculated using SGR with second-order Taylor series and four layer

patches. As for displacement derivatives, the stress derivatives also match the analytical
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Figure 3.22: Total derivatives of z-transverse displacement of the solid cantilever beam
modeled with e = 5120 elements. “CSA-SGR BC” results were calculated using SGR with
second-order Taylor series and four layer patches.

solution closely.

3.5.4 Grid Convergence Study

A grid convergence study was done to obtain the rate of convergence of the displacement

and stress derivatives obtained using CSA. A series of four meshes is used. The coarsest

mesh had NC = 10 × 2 × 4 = 80 brick elements (where the three factors indicate the

number of elements in the X, Y and Z directions respectively), while the finest mesh had

NC = 80 × 16 × 32 = 40960 elements. Here NC stands for number of cells or number of

elements. The grid refinement was uniform such that the element edge lengths were halved

at each refinement. The direct formulation of CSA gives results of displacement and stress
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Figure 3.23: Total derivatives of normal stress σ̇x of the solid cantilever beam modeled with
e = 5120 elements, plotted near the root, on the line x = 2, y = 1. “CSA-SGR BC” results
were calculated using SGR with second-order Taylor series and four layer patches.
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Figure 3.24: Total derivatives of shear stress τ̇zx of the solid cantilever beam modelled with
e = 5120 elements, plotted on the line x = L/2, y = 1. “CSA-SGR BC” results were
calculated using SGR with second-order Taylor series and four layer patches.
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derivatives at all points in the domain. These derivatives were obtained with respect to all

six design variables described in Section 3.5.1.

As an example, the convergence of displacement,stresses and their derivatives are shown

only at particular points. The continuum values, labelled by an asterisk, for each of these

quantities is obtained by Richardson extrapolation to the continuum based on the rate of

convergence p (Vassberg and Jameson, 2010). These continuum values are expected to be

close to the analytic values, which are available from Airy solution. There may be differences

in the values because the NASTRAN finite element analysis is done for a 3-D model whereas

the Airy solution is for a 2-D case.

First, the convergence of the primary analysis is shown in Figures 3.22–3.27. The con-

tinuum value of the displacement at the tip of the solid cantilever beam, x = L, y = 1, z = 2,

matches almost exactly with the analytical value. The rate of convergence of the displace-

ment is close to two. Convergence of the normal stress σx is studied near the root of the solid

cantilever beam, where it peaks, at the point x = 2, y = 1, z = 4. Again, the continuum

value matches almost exactly with the analytical value and the rate of convergence is close

to 4. Convergence of the shear stress τzx is studied near the central portion of the solid

cantilever beam, where it peaks, at the point x = L/2, y = 1, z = 2. Again, the continuum

value matches almost exactly with the analytical value and the rate of convergence is close

to 2.5.

Next, the accuracy and convergence of the CSA derivatives of displacement and stresses

with respect to the design variable b1 (uniform decrease in height by displacing the bottom

surface) are shown in Figures 3.28–3.30. In all the results, CSE BCs were calculated using

SGR with second-order Taylor series and four layer patches. Notice that the absolute errors

of the derivatives at the finest mesh are about 7-10 orders of magnitude less than the actual

derivative values. This confirms that CSA yields highly accurate results. Based on the

continuum values, the derivative of transverse z-displacement, at x = L, y = 1, z = 2,

obtained using CSA is closer to the analytical value than the corresponding NASTRAN
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Figure 3.25: Convergence of the transverse z-displacement at the tip of the solid cantilever
beam, x = L, y = 1, z = 2. NC stands for number of cells or number of elements.
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Figure 3.26: Convergence of the normal stress σx near the root of the solid cantilever beam,
at the point x = 2, y = 1, z = 4. NC stands for number of cells or number of elements.
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Figure 3.27: Convergence of the shear stress τzx near the central portion of the solid cantilever
beam, at the point x = L/2, y = 1, z = 2. NC stands for number of cells or number of
elements.
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Figure 3.28: Convergence of the derivative transverse z-displacement with respect to the
design variable b1 at the tip of the solid cantilever beam, x = L, y = 1, z = 2. CSE BCs
were calculated using SGR with second-order Taylor series and four layer patches.

derivative. The important observation regarding the displacement derivative result is that

its rate of convergence is 3.4 significantly more than the rate of convergence of the primary

analysis, which is 2. The NASTRAN displacement derivatives were observed not to be in

the asymptotic range, although the absolute errors are of comparable to the converged CSA

values. The approximate rate of convergence of the NASTRAN displacement derivatives is

1.3. The continuum values of normal and shear stress CSA derivatives also closely match

the analytical values. Similar to the displacement derivative, the rates of convergence of the

normal shear stress CSA derivatives are 4.5 and 3.4, respectively, i.e. the rates of convergence

of CSA stress derivatives are about one more than the rates of convergence of the stresses.

We can say that CSA yields super-convergent results in this case.
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Figure 3.29: Convergence of the derivative of normal stress σ̇x with respect to the design
variable b1 near the root of the solid cantilever beam, at the point x = 2, y = 1, z = 4. CSE
BCs were calculated using SGR with second-order Taylor series and four layer patches.
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Figure 3.30: Convergence of the derivative of shear stress τ̇zx with respect to the design
variable b1 near the central portion of the solid cantilever beam, at the point x = L/2, y =
1, z = 2. CSE BCs were calculated using SGR with second-order Taylor series and four layer
patches.
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Figure 3.31: Design velocities for the two parameterizations of the cantilever beam.

3.6 Cantilever Beam with Solid Elements (Hybrid Ad-

joint Formulation)

3.6.1 Problem description

In this case, the same solid cantilever beam described in Section 3.5, but the design variables

are chosen differently. Similar to the axial bar problem, the domain can be parameterized

according to either two ways described in Section 3.4.1.1. So, the same design variable

viz. length L of the beam can be considered as two separate design variables, each with its

own corresponding design velocity. As a result, the design derivatives ẇ obtained for each

of these design variables should match with each other. This creates a good test case for

checking the results obtained using the hybrid adjoint method. The actual three dimensional

design velocity field V =
{

Vx Vy Vz
}T

, for this simple choice of design variables and the

rectangular cuboid geometry of the cantilever beam, is reduced to a one dimensional field

with V =
{

Vx 0 0
}T

. The design velocities for the two parameterizations are plotted in

Figure 3.31.

132



10
−4

10
−3

10
−2

10
−1

10
0

10
−1.63

10
−1.6

10
−1.57

10
−1.54

10
−1.51

Step size ∆ L [%L]

||
ẇ
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Figure 3.32: Step size study to determine the best step size: 2-Norm of the total derivative
ẇ on the center line of the beam, y = 1, z = 2, is plotted.

3.6.2 Result using finite difference method

An approximate solution was obtained using the finite difference method. It is difficult to

identify a priori the correct finite difference step size that would give the least round-off error

and the least truncation error. So, a step size study was conducted where 50 step sizes were

chosen between 0.0001 %L and 1 %L as shown in Figure 3.32. The best finite difference

result was obtained at a step size of 2.812 × 10−2 %L and is shown in Figure 3.33. However

in this case, to realize which step size is the best, the NASTRAN finite element analysis

(SOL 101) had to be conducted 51 times in all for the forward finite difference method and

100 times in all for the central finite difference method.

The finite difference result is compared to the the result obtained from Timoshenko

beam theory for a 1-D case in Figure 3.33. The next sub-sections will illustrate how CSA

was carried out using direct and hybrid adjoint formulations.
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Figure 3.33: Total derivative of transverse displacement on the center line of the beam,
y = 1, z = 2, obtained using finite difference method.

3.6.3 Results obtained from direct formulation of CSA

Since the detailed theoretical foundation of the direct formulation of CSA is given in Section

3.3.1, only the procedure used to get the direct CSA results nonintrusively using NASTRAN

is given below.

1. Perform primary analysis (SOL 101) in NASTRAN; Output displacements (at nodes)

and stresses (at Gauss points).

2. Parse the NASTRAN outputs and supply to 3D_SGR code.

3. 3D_SGR code gives the spatial gradients of the displacements and stresses on the

boundary Γ.

4. Construct CSA boundary conditions, i.e. the prescribed displacements and/ or pre-

scribed stresses.

5. Apply the CSA boundary conditions on the solid element model in NASTRAN.
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6. Obtain local design derivatives by performing analysis (SOL 101) with the new bound-

ary conditions and loads to solve Equation (3.14).

7. Add convective term to the local derivatives to obtain the total derivatives according

to Equation (2.3).

Since there are two design variables, the above process for direct CSA involves three linear

equation solutions in all: one for the primary analysis and one CSA in step-6 for each of the

design variables. Hence, if the derivatives would have been required for nb design variables,

then the number of linear equation solutions required would be (nb + 1). However, since it is

a direct formulation, the design derivatives can be obtained at all the points in the domain.

The above process is nonintrusive. In fact the same reduced stiffness matrix [K22] can

be used to solve for local sensitivities for each of the design variable. So, step-6 in the above

procedure could also be carried out without a new NASTRAN run, but with a restart for

another CSA load case.

The nondimensional local and total design derivatives for the solid cantilever beam ob-

tained using direct CSA are shown in Figures 3.34 and 3.35. The derivatives of the displace-

ment on the center line of the beam are plotted.

3.6.4 Results obtained from hybrid adjoint formulation of CSA

The procedure outlined in Section 3.3.2 is followed for obtaining the design derivatives. Five

performance measures are specified which are the transverse displacement w at five locations

x = 2, 4, 6, 8, and 10 on the center line, y = 1, z = 2 of the cantilever beam. Once the

performance measures are defined, we can get the corresponding virtual load vectors {z} for

each performance measure. The following steps were involved in obtaining design derivatives

with respect to the two design variables using the hybrid adjoint formulation of CSA for the

cantilever beam problem:

1. Perform primary analysis (SOL 101) in NASTRAN; Output displacements (at nodes),
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Figure 3.34: Nondimensional local derivative of the transverse displacement of cantilever
beam on the center line, with respect to its length, calculated using direct CSA formulation.
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Figure 3.35: Nondimensional total derivative of the transverse displacement of cantilever
beam on the center line, with respect to its length, calculated using direct CSA formulation.
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stresses (at Gauss points) and the reduced stiffness matrix [K22]

2. Parse the NASTRAN outputs and supply to 3D_SGR code

3. 3D_SGR code gives the spatial gradients of the displacements and stresses on the

boundary Γ

4. Construct CSA boundary conditions, i.e. obtain the correct values of
{
u′

1

}
and/ or{

F ′
2

}
in Equation (3.12)

5. Solve for adjoint variable {λ} for each performance measure according to Equation

(3.21)

6. Obtain local design derivatives by performing the inner product calculations in Equa-

tion (3.22)

7. Add convective term to the local derivatives to obtain the total derivatives as given in

Equation (3.23). Here, the convective term is only required to be calculated for the

the degrees of freedom included in performance measures.

In this procedure, only two linear equation solutions are involved: one for the primary

analysis and another in step-5 for solution to the adjoint variable. Hence, even for nb design

variables, it would involve only two linear solutions. However, all the derivatives are for the

nψ = 5 performance measures and not for the displacements at all locations in the domain.

This is clearly beneficial when performance derivatives are required for large number of design

variables. Again, similar to direct CSA, even adjoint CSA formulation has been implemented

nonintrusively.

The nondimensional local and total design derivatives for the solid cantilever beam ob-

tained using hybrid adjoint CSA are shown in Figures 3.36 and 3.37. It can be seen that these

derivatives match not only with the direct CSA results but also with the finite difference

results.
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Figure 3.36: Nondimensional local derivative of the transverse displacement of cantilever
beam on the center line, with respect to its length, calculated using hybrid adjoint CSA
formulation.
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Figure 3.37: Nondimensional total derivative of the transverse displacement of cantilever
beam on the center line, with respect to its length, calculated using hybrid adjoint CSA
formulation.
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3.7 Conclusion

A new continuum-discrete hybrid adjoint formulation was introduced that has the following

advantages: (a) it involves solving a linear discrete system only once for calculating deriv-

atives of a single performance criterion with respect to many design variables, (b) it enjoys

the benefits of local CSA with SGR, namely, the sensitivities are accurate and the mesh

sensitivity is avoided, and (c) unlike the continuous adjoint method (Lozano and Ponsin,

2012; Duivesteijn et al., 2005), there are no complications associated with adjoint boundary

conditions. This method was applied to a 1-D axial bar example and a 3-D cantilever beam

example (Nastran, 2010) modelled with solid elements. Local and total derivatives of a

few responses were obtained for multiple design variables using nonintrusive hybrid adjoint

CSA. The black-box used for the analyses was NASTRAN. The derivation of the hybrid

adjoint is independent of the number of spatial dimensions and so, it can be easily extended

form 1-D to 2-D or 3-D examples. Application of this method to other disciplines, such as

fluid analysis or coupled fluid-structure analysis is straightforward. The hybrid adjoint CSA

method computes the same values for shape derivatives as direct CSA. Therefore accuracy

and convergence properties are the same as for the direct local CSA (Cross and Canfield,

2015). Finally, we showed that for many design variables the hybrid adjoint formulation

permits computing shape derivatives with less effort as compared to the direct CSA.
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Chapter 4

Nonintrusive Continuum Sensitivity

Analysis for Aeroelastic Shape

Derivatives

ABSTRACT

Continuum Sensitivity Analysis (CSA) provides an analytic method to obtain design
derivatives of structural and fluid responses. The primary advantages of the presented local
CSA formulation are that analytic derivatives are computed and mesh sensitivity is avoided.
Spatial Gradient Reconstruction (SGR) has been applied for nonintrusive implementation
of CSA for structural and fluid systems. In the current work, we derive CSA for a coupled
fluid-structure system.

4.1 Introduction

Sensitivity analysis plays an important role in gradient-based optimization techniques. In

fact, convergence of a shape optimization problem depends on the accuracy of gradients of the

performance and constraint functions with respect to design variables. Sensitivity analysis

methods can be broadly categorized as numeric methods (finite difference, complex step),
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analytic methods (discrete analytic, continuum) or automatic differentiation method. In

general, analytic methods are favored over numeric methods because of their higher accuracy

and lower computational cost. Furthermore, analytic methods have the following advantages:

(a) there is no need of convergence study for choosing the correct step size (required for the

finite difference method), and (b) there is no requirement of the analysis code to handle

complex number operations (required for the complex step method). Among the analytic

methods, the discrete analytic method involves discretizing the governing equations followed

by differentiation. Hence, for shape design variables it suffers from the disadvantage of

calculating mesh sensitivity. Additionally, intimate knowledge of the analysis procedure is

required for implementation of the discrete analytic method because it is based on “discretize

then differentiate” approach. Automatic differentiation requires the actual source code for

its implementation. Continuum Sensitivity Analysis (CSA) may offer a better alternative.

CSA has been used successfully to compute shape derivatives of structural response

(Dems and Haftka, 1988; Haug et al., 1986; Arora, 1993; Choi and Kim, 2005) and fluid re-

sponse (Borggaard and Burns, 1994, 1997; Stanley and Stewart, 2002; Turgeon et al., 2005;

Duvigneau and Pelletier, 2006). However its application for aeroelastic response shape deriv-

atives is relatively new (Etienne and Pelletier, 2005; Liu and Canfield, 2013a, 2016; Cross and

Canfield, 2014). The motivation for using CSA for shape sensitivity of aeroelastic response is

twofold: (a) gradients are analytic (accurate and more efficient than finite difference) and (b)

mesh sensitivity calculation is avoided (a drawback of the discrete analytic shape sensitivity

approach).

In the current work, we demonstrate a nonintrusive implementation of CSA for analyzing

coupled fluid-structure systems. Recently, Cross and Canfield (Cross and Canfield, 2014)

demonstrated a nonintrusive implementation of CSA for coupled fluid-structure system with

typical section aerodynamics. Such aerodynamic theory may not work for designing systems

with compressible or viscous flow. Here, we extend the implementation of CSA for fluids

(Borggaard and Burns, 1994, 1997; Duvigneau and Pelletier, 2006) to CSA for an aeroelastic
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system with Euler flow aerodynamics. Similar to the coupling between the structural and

fluid degrees of freedom, the structural and fluid variable derivatives are also coupled. We

derive the sensitivity equations for the structural and fluid systems, identify the sources of

the coupling between the structural and fluid derivatives, and implement CSA nonintrusively

for structural finite element and fluid finite volume formulations to obtain the aeroelastic

response derivatives.

The example chosen for this purpose is of a flexible airfoil subjected to uniform subsonic

flow. The interface that separated the fluid and structural domains is thus chosen to be

flexible. This leads to coupling terms in the sensitivity analysis which are highlighted. In

particular, the structural sensitivity boundary loads are dependent on the pressure and

its derivative on the flexible airfoil. Along with this, the fluid sensitivity transpiration

boundary condition is applied on the flexible fluid-structure interface. This results in the

fluid sensitivity boundary conditions being dependent on the structural deformation of the

flexible interface and its derivatives.

Cross and Canfield (Cross and Canfield, 2012, 2014) demonstrated that, using Spatial

Gradient Reconstruction (SGR), analytic shape derivatives can be computed without any

information about the finite element formulation, element shape functions, or how the ele-

ment shapes change with changes to the mesh when the shape of the structure changes. In

other words, for the finite element method, the presented CSA method is element-agnostic

and does not require the knowledge of how the mesh changes with shape design variables. In

the current work, we will use SGR for nonintrusive implementation of CSA for the flexible

airfoil example.
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4.2 Local Continuum Shape Sensitivity Formulation

for Aeroelastic System

4.2.1 Governing Equations

Consider the following continuous nonlinear differential equation defined over a domain Ω

with a boundary Γ subject to distributed body forces f . We seek a solution for the state

variables u (x; t; b) of the equations

R (u, t; b) = A (u, L (u)) − f (x, t; b) = 0 on Ω, (4.1)

with the boundary conditions (BCs)

B (u, L (u)) = g (x, t; b) on Γ, (4.2)

where the vector of dependent (state) variables u(x, t; b) are functions of the spatial and

temporal independent coordinates, x and t, respectively and depend implicitly on design

variable b. The domain and boundary in Cartesian space are shown in Figure 4.1. The

linear differential operator L has terms such as
{
∂
∂t
, ∂
∂x
, ∂
∂y
, ∂2

∂x2 ,
∂2

∂y2 , . . .
}

that appear in the

governing equations or boundary conditions. A and B are algebraic or integral operators

acting on u and L (u) possibly in nonlinear fashion. Eqs. (4.1) and (4.2) are written in

a general notation and apply to the fluid domain Ωf or the structural domain Ωs, where

Ω = Ωf ∪ Ωs,

A (u, L (u)) =


Af (uf , Lf (uf ))

As (us, Ls (us))

 , (4.3)

and the state variables are partitioned for the fluid and structural responses: u (x; t; b) =
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{
uT
f , uT

s

}T
. Eq. (4.2) is a general form of representing structural or flow BCs

B (u, L (u)) − g (x; t; b) ≡



Bef (uf ) − gef (x; t; b)

Bes (us) − ges (x; t; b)

Bnf (uf , L (uf )) − gnf (x; t; b)

Bns (us, L (us)) − gns (x; t; b)

Bfs (u, L (u)) − gfs (x; t; b)



, (4.4)

which may be either Dirichlet (essential or geometric) such as a prescribed value Be (u) ≡

u|Γe
= ge ≡ ū on the boundary Γe, or they may involve a differential operator for Neumann

(nonessential or natural) BCs such that Bn (L (u)) = gn on the boundary Γn. Whereas the

partial differential equation (PDE) operators for the fluid, Af , and the structure, As , in

Eq. (4.3) are decoupled with respect to the other domain’s state variables, the fluid-structure

system is coupled by the appearance of BCs of the form Bfs (u, L (u)) − gfs (x; t; b) at the

fluid-structure interface boundary Γfs as given in Eq. (4.4). An example of such a boundary

condition is the no-penetration BC. Since the current work involves steady-state flow and

sensitivity analysis, the time term t in these equations is suppressed hereafter.

Figure 4.1: Domain, Ω, with boundary Γ.
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4.2.2 Differentiation of Continuous Equations

The focus of the current work is to obtain design derivatives of flow variables at points in

the domain with respect to a limited number of design variables. So, we use the direct

formulation of CSA as explained next. However, an adjoint formulation of CSA is also avail-

able, which allows one to calculate efficiently derivatives of a limited number of performance

measures with respect to many design variables using the same CSA boundary conditions

presented here (Kulkarni et al., 2016). Consider the problem of obtaining the derivative

of the steady-state response u(x; b) with respect to design parameter b at all points in the

domain. The response depends on the spatial variable x and may have an explicit or im-

plicit dependence on the shape variable b, as indicated by the semicolon. The boundary

velocity (local) formulation of CSA results in Continuum Sensitivity Equations (CSEs) that

are posed in terms of the local derivatives of the response, u′ = ∂u/∂b. Hence, solution of

the CSEs yields the local derivative. The total or material derivative u̇ = Du/Db is then

obtained by adding the convective term to the local derivative.

Du

Db
= ∂u

∂b
+

3∑
i=1

∂u

∂xi

∂xi
∂b

⇐⇒ u̇ = u′ + ∇x (u) · V (4.5)

The convective term consists of the spatial gradients of the response ∇xu = ∂u/∂x, and

the geometric sensitivity or design velocity V (x) = ∂x/∂b, which depends on the geometric

parametrization of the domain. For value design parameters independent of shape, the con-

vective term goes to zero, because the design velocity is zero, and so the material derivative

is same as the local derivative. However, for shape design variables, the design velocity is not

zero and hence there is a need to calculate the convective term for CSE boundary conditions

and transformation to material derivative wherever necessary.

CSA is based on the philosophy of “differentiate and then discretize” and involves differ-

entiating Eqs. (4.1) and (4.2) with respect to b, followed by discretization and solution of

the resulting discretized system. Based on the type of differentiation, CSA is categorized as
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either local form CSA or total form CSA (Liu and Canfield, 2016) in accordance with Eq.

(4.5). The local form CSA involves partial differentiation of Eq. (4.1), while the total form

CSA involves total differentiation. Due to the advantages (Cross and Canfield, 2014) of the

local form CSA over the total form CSA, the current work focuses on the local form CSA.

The CSEs are obtained by partial differentiation of Eq. (4.1) as

∂R

∂b
= ∂A (u, L (u))

∂u
u′ + ∂A (u, L (u))

∂L
L (u′) − ∂f (x, t; b)

∂b
= 0. (4.6)

Since the material boundary changes due to a change in the shape design parameter, the

boundary conditions for the CSEs are obtained by total or material differentiation of the

original boundary conditions (4.2) and moving the convective terms to the right side

∂B
∂u

u′ + ∂B
∂L

L (u′) = ġ (x, t; b) − V (x) ·
(
∂B
∂u

∇xu + ∇x (B (L (u)))
)
, (4.7)

where ġ (x, t; b) is the material derivative of the prescribed boundary condition, typically zero

for Dirichlet boundary conditions. Nevertheless, even when the the boundary condition (4.2)

is homogeneous, u|Γe
= 0, the CSE boundary condition (4.7) is in general non-homogeneous,

u′|Γe
= ġe − ∇xu · V (x), due to the convective term −∇xu · V (x), even for ġe = 0. The

commutation of derivatives on the left side of Eq. (4.7) is possible when the derivatives are

local. The CSEs (4.6) with the boundary conditions (4.7) form a linear system of equations

in terms of sensitivity variable u′, which can be solved by the same or different numerical

method used for solving the analysis problem.

Eqs. (4.6) and (4.7) may be restated as

∂R

∂b
= Ab (u, L (u′)) − f ′ (x, t; b) = 0 on Ω, (4.8)

with the corresponding sensitivity BCs

Bb (u, L (u′)) = gb (x, t; b) on Γ, (4.9)
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where gb is the right side of Eq. (4.7). The similarity of Eqs. (4.8) and (4.9) to Eqs. (4.1)

and (4.2) motivates the same solution method for each set of equations with the same mesh

for the discretized form. For linear governing Eqs. (4.1), Ab = A and Bb = B. For nonlinear

governing equations, the CSEs are still linear in u′ but with nonlinear dependence on the

solution u, which can be obtained from the analysis solution of Eq. (4.1) for use in Eqs.

(4.8) and (4.9).

In the direct formulation of CSA, Eqs. (4.8) and (4.9) are solved to obtain the local

derivatives u′ in the domain Ω. This may be followed by adding the convective term as

shown in (4.5), at the required locations in the domain, to obtain the total derivative of

the response variable u̇ at those locations. In shape optimization applications, one may be

interested in the derivative of a performance metric such as

ψ =
ˆ

Γ̄

σu dΓ̄ (4.10)

which is based on weighted surface integral of the response u. Here σ are the weights and

Γ̄ ∈ Γ. Assuming that the weights do not depend on the shape design variable, the total

derivative of the performance measure is obtained using the values of u̇ as

ψ̇ = Dψ

Db
=
ˆ

Γ̄

σu̇ dΓ̄ +
ˆ

Γ̄

σu ḋΓ̄, (4.11)

where ḋΓ̄ denotes the infinitesimal change in the boundary Γ̄ due to the shape design variable.

4.2.3 Discretization of the Differentiated Equations

Until this point, the continuous governing equations were differentiated to obtain the CSEs.

Thus, there is no approximation involved in deriving the CSE system (4.8–4.9). Next,

consider a discretization at mesh level h of the flow equations and a Newton-Raphson implicit
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scheme for primary analysis which results in a coupled linear system of equations

[T ({u}nh)] {∆u}nh = {R}nh , (4.12)

which is solved at each iteration n for the updates to the flow variables {∆u}nh. This update

is used to get the values of flow variables at the next iteration {u}n+1
h = {u}nh + {∆u}nh.

Here [T ({u}nh)] is the tangent matrix, and {R}nhis the residual of the flow equations at time

step n and discretization h. Similarly, the CSEs can be discretized to obtain a coupled linear

system of equations

[TCSE ({u}h)] {∆u′}h = {RCSE}h . (4.13)

The tangent matrix [TCSE ({u}h)] in the discretized CSEs (4.13) is independent of the sensit-

ivity variables u′ and only depends on the flow variables u. Borggaard and Burns (Borggaard

and Burns, 1994, 1997), Wickert et al. (Wickert et al., 2010) and Liu and Canfield (Liu and

Canfield, 2013b) have shown that if the same discretization used for the analysis is used to

discretize the CSEs, then

[TCSE ({u}h)] =
[
T
(
{u}Nh

)]
,

where N is the last iteration step of the flow solver until steady-state convergence is achieved.

Also, since the CSEs are linear in the sensitivity variables, the local sensitivities are ob-

tained by just a single (one-shot) solution of the linear system (4.13) for {u′}h, leading to

{u′}h = {∆u′}h with zero initial guess
(
{u′}0

h = 0
)

without loss of generality. Once the

local derivatives are computed by solving (4.13), the total derivatives can be obtained by

adding the convective term according to the discretized version of (4.5) and the derivative

of the performance measure can be obtained by the discretized version of (4.11).
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Figure 4.2: Flexible airfoil in uniform flow.

4.2.4 Two-dimensional Coupled Fluid-Structure Analysis

Consider the example of a flexible airfoil in uniform flow as shown in Figure 4.2. The airfoil

is assumed to be made of elastic material which allows in-plane deformation of the airfoil

boundary. The airfoil is fixed at the quarter chord by constraining the in-plane and drilling

degrees of freedom. The quarter chord point is the essential boundary Γes for structural

analysis. In the following sections, the undeformed airfoil boundary with respect to which

the structural deformation is obtained is denoted by Γns. The deformed airfoil boundary

which is used for evaluating the flow is denoted by Γfs. The farfield boundary is denoted by

Γef .
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4.2.4.1 Structural Response

The partial differential equations governing a 2D structural displacement response us =

{ux, uy}Tbased on linear elasticity are

[∂] D [∂]T us = F on Ω, (4.14)

where F = {Fx, Fy}T are the applied body forces at a point in the domain Ω, D is the

constitutive matrix, and [∂] is the operator matrix given by

[∂] =

 ∂
∂x

0 ∂
∂y

0 ∂
∂y

∂
∂x

 . (4.15)

The stresses σ = {σx, σy, τxy}T are related to the strains ϵ = {ϵx, ϵy, γxy}T through the plane

stress constitutive relationship σ = Dϵ, and the strains are are related to the displacement

through the strain-displacement relationship ϵ = [∂]T us. Comparing Eq. (4.14) to the

general Eq. (4.1), we can derive the structural operator

As (us, Ls (us)) ≡ Ls (us) = [∂] D [∂]T us. (4.16)

The boundary conditions (4.2) may be either essential (geometric) boundary conditions,

when the displacements ūs are prescribed

us|Γes
= ūs, (4.17)

or nonessential (natural) boundary conditions, when surface tractions Φ̄ =
{
Φ̄x, Φ̄y

}T
are

prescribed

Φ|Γns
= Φ̄. (4.18)

The tractions at any point on the boundary surface are related to the stresses at that point

by the relation
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Φ =


Φx

Φy

 =

 σx τxy

τxy σy



nxs

nys

 = [σ] ns, (4.19)

where ns = {nxs, nys}T are the direction cosines of a vector normal to the undeformed

surface Γns. Thus, the boundary condition (4.18) can be written in terms of the stress

components as

[σ] ns|Γns
= Φ̄. (4.20)

For the example of the flexible airfoil, Γes is the quarter chord point at which the airfoil is

constrained and ūs = 0. The drilling degree of freedom (Nastran, 2004) is also constrained

to avoid rotation about the axis perpendicular to the plane of the airfoil. This boundary

condition is represented as
1
2

(
∂uy
∂x

− ∂ux
∂y

)∣∣∣∣∣
Γes

= 0, (4.21)

The airfoil is immersed in uniform flow. This results in a pressure distribution p on the

airfoil surface. Thus the traction loads Φ̄ on the airfoil structure are functions of the fluid

flow,

Φ̄ ≡ −pnfs|Γfs
. (4.22)

More details of the fluid-structure coupling are given in Section 4.2.4.3.

4.2.4.2 Fluid Response

The Euler equations in conservation form for flow over an airfoil, are

∂F

∂x
+ ∂G

∂y
= 0 (4.23)

or

+ ∂F

∂uf

∂uf

∂x
+ ∂G

∂uf

∂uf

∂y
= 0 (4.24)
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subject to farfield boundary condition

uf |Γef
= uf∞, (4.25)

and flow tangency (or wall) boundary condition

(vxı̂+ vy ȷ̂) · nfs|Γfs
= 0, (4.26)

where uf (x, y, t) is the vector of conserved variables, F (x, y, t) and G (x, y, t) are the

flux vectors in the X and Y coordinate directions, and ∂F
∂uf

and ∂G
∂uf

are the respective flux

Jacobian matrices. The state vector and flux vectors are as given below.

uf =



ρ

ρvx

ρvy

ρet


, F =



ρvx

p+ ρv2
x

ρvxvy

ρvxht


, G =



ρvy

ρvxvy

p+ ρv2
y

ρvyht


. (4.27)

Variables ρ, p, vx, vy, et =
(

1
γ−1

p
ρ

+ (vx ı̂+vy ȷ̂)2

2

)
, and ht = et + p

ρ
denote density, pressure,

horizontal velocity, vertical velocity, total energy, and total enthalpy in the domain, respect-

ively. The pressure and density can be related to the temperature T by the equation of state

p = ρRT , where R is the specific gas constant.

Equation (4.23) is nonlinear and comparing it to the general Eq. (4.1), we can derive the

fluid operator and the source term

Af (uf , Lf (uf )) =



Af1

Af2

Af3

Af4


, (4.28)
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Af1 = ∂

∂x
(ρvx) + ∂

∂y
(ρvy) , (4.29)

Af2 = ∂

∂x

(
p+ ρv2

x

)
+ ∂

∂y
(ρvxvy) , (4.30)

Af3 = ∂

∂x
(ρvxvy) + ∂

∂y

(
p+ ρv2

y

)
, (4.31)

Af4 = ∂

∂x
(ρvxht) + ∂

∂y
(ρvyht) , (4.32)

f f (x; b) = 0. (4.33)

The farfield boundary condition implies that uf∞ is the prescribed state at the farfield bound-

ary Γef . The flow tangency boundary condition implies that the velocity vector (vxı̂+ vy ȷ̂)

has no component along the unit normal nfs on the airfoil boundary Γfs. The farfield and

wall boundaries for flow over an airfoil are shown in Figure 4.2. Note that the normal nfs and

the deformed airfoil boundary Γfs are functions of the structural response us, as described

in the next section.

4.2.4.3 Coupling of the Fluid and Structural Responses

Coupling of the aerodynamic and structural responses occurs because the loads on the struc-

ture come from the fluid response, whereas the fluid flow tangency boundary condition is

obtained from the deformed structure. If a weak coupling strategy is followed, normally

satisfactory for steady-state aeroelastic response, boundary loads for the airfoil structure are

derived from the pressure distribution on the airfoil, and the pressure distribution depends

on the deformed shape of the airfoil. This coupling can be represented as shown below.

Φ|Γns
= Φ̄ = −pnfs|Γfs

(4.34)

Γfs :
{
xfs yfs

}T
= Γns :

{
xs ys

}T
⊕ us :

{
ux uy

}T
, thus (4.35)
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xfs = xs + ux, (4.36)

yfs = ys + uy. (4.37)

Eq. (4.34) defines the traction loads Φ̄ on the (undeformed) airfoil shape. A negative sign

appears in Eq. (4.34) because the pressure acts in a direction normal to the airfoil surface

from the fluid to the structural domain, whereas the normal vector nfs is assumed to be in

the opposite direction (i.e. from the structural domain to the fluid domain). Since pressure

p is a fluid response, it depends on the flow analysis solution uf . Eq. (4.35) represents that

the deformed airfoil shape Γfs is dependent on the structural response us. Eqs. (4.36–4.37)

are used to get the deformed airfoil shape, on which to impose the fluid no-penetration

boundary condition (4.26).

In general, the normal n = {nx, ny} for a parameterized curve Γ : {x (b) , y (b)}T is given

by

nx (x, y) = − s√
1 + s2

, (4.38)

ny (x, y) = 1√
1 + s2

, (4.39)

where s (x, y, b) = dy
dx

(x, y, b) is the slope of Γ. Eqs. (4.38–4.39) can be used to get the

normal nfs = {nxfs, nyfs} for the deformed fluid-structure interface Γfs : {xfs, yfs}T or

the normal ns = {nxs, nys} for the undeformed structural boundary Γs : {xs, ys}T . The

dependence of Γfs and nfs on us clearly couples the fluid and structural responses.

4.2.4.4 Results

The coupled analysis was done using SU2 (finite volume vertex based solver) for flow analysis

and Nastran (finite element solver) for structural analysis. The flow and structural meshes

used for the analysis are shown in Figures 4.3 and 4.4, respectively. The flow O-mesh

was adopted from Vassberg and Jameson (2010), with 64×64 quadrilateral cells, and the
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Table 4.1: Details of the aeroelasticity analysis
Parameter Value

Mach number, M 0.3
Angle of attack,α 1.25◦

Reference chord length, Cref 1.0
Reference moment center, Xref 0.25

Free stream pressure, p∞ 101325 N/m2

Free stream temperature, T∞ 288.15 K
Flux scheme Roe’s II order upwind

Convergence criteria log10 of L2 norm of continuity residual less than −10
Thickness of airfoil (along Z) 0.1 m

Young’s modulus, E 5.0E7 N/m2

Poisson’s ratio, ν 0.3

structural mesh, created using Triange tool (Shewchuk, 1996), had 138 CTRIAR triangular

Nastran finite elements. The details of the aeroelasticity analysis are shown in Table 4.1. The

weak coupling converges in about 10 iterations. Convergence of the coupled analysis is shown

in the form of difference in the successive values of coefficient of lift, CL (Figure 4.5) and

coefficient of drag, CD (Figure 4.6). At the steady-state CL = 0.17706 and CD = 7.048E−3.

The steady-state flow and structural responses on the airfoil are shown in Figure 4.7. The

movement of the flexible fluid-structure interface due to structural deformation is plotted

in Figure 4.8. It can be observed that the boundary moves significantly only during the

first two or three iterations. The structural deformation us = {ux, uy}T at the steady-state

response can be visualized in a vector plot as shown in Figure 4.9. This illustrates that the

airfoil boundary is deformed mainly in the transverse direction during the weak coupling

iterations.
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Figure 4.3: Close-up of O-mesh around the flexible airfoil with 64×64 cells (Vassberg and
Jameson, 2010).

Figure 4.4: Structural mesh for the flexible airfoil with 138 triangular finite elements.
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Figure 4.5: Difference in successive values of CL for weak coupling iterations. The successive
difference for the last six iterations is exactly zero, hence not shown on the log scale of the
Y axis in the plot.

Figure 4.6: Difference in successive values of CD for weak coupling iterations. The successive
difference for the last nine iterations is exactly zero, hence not shown on the log scale of the
Y axis in the plot.
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Figure 4.7: Aeroelastic response of the flexible airfoil.
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Figure 4.8: Airfoil boundary movement during weak coupling iterations.

Figure 4.9: Vector plot to illustrate structural deformation of the flexible fluid-structure
interface at steady-state. The deformation is with respect to the undeformed NACA 0012
shape. Vector lengths indicate magnitude of displacements and are scaled for better visual-
ization.
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4.2.5 Two-dimensional Coupled Fluid-Structure Sensitivity Ana-

lysis

4.2.5.1 Structural Response Sensitivity Equations

The CSEs for the 2D problem are derived by partial differentiation of Eq. (4.14)

[∂] D [∂]T u′
s = F ′. (4.40)

Comparing Eq. (4.40) to the general Eq. (4.8), we confirm that for the linear structural

analysis considered here, the PDE operator for the structural local derivatives is same as the

PDE operator for the structural response, i.e. Asb = As.

According to (4.7), the structural CSE essential (geometric) boundary conditions would

be

u′
s|Γes

= ˙̄us − ∇x (us) .V |Γes
. (4.41)

For the example of the flexible airfoil,

u′
s

∣∣∣
Γ0

e

= 0, (4.42)

1
2

(
∂u′

y

∂x
− ∂u′

x

∂y

)∣∣∣∣∣
Γ0

e

= 0. (4.43)

These BCs (4.42–4.43) are homogeneous because the shape design variable considered here

changes only the shape of the airfoil, whereas the boundary Γes is unchanged, leading to zero

design velocity there.

The structural CSE nonessential (natural) boundary conditions, will be

Φ′|Γns
= [σ′] ns|Γns

= ˙̄Φ −
(

Vxs
∂ [σ]
∂x

+ Vys
∂ [σ]
∂y

)
ns − [σ] ṅs

∣∣∣∣∣
Γns

, (4.44)
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where

˙̄Φ = −ṗnfs − pṅfs|Γfs
,

∂ [σ]
∂xi

= ∂

∂xi

 σx τxy

τxy σy

 ,

Vs = {Vxs, Vys}T is the design velocity of the undeformed structure Γns, and ṅs = Dns

Db
and

ṅfs = Dnfs

Db
are the material derivatives of the unit normals on Γns and Γfs, respectively.

Both these variables may be calculated based on the parameterization of the airfoil shape

definition Γns. The natural CSE BC (4.44) is discussed in detail in Section 4.2.5.3. For

a given ṗ and ṅfs, solution of Eqs. (4.40–4.44) yields the local structural derivatives u′
s.

Addition of convective term to these yields the total structural derivatives u̇s.

4.2.5.2 Fluid Response Sensitivity Equations

The CSEs for the flow problem are given by

∂F ′

∂x
+ ∂G ′

∂y
= 0, (4.45)

where the state vector u′
f (x, y, t) and flux vectors F ′ (x, y, t) and G ′ (x, y, t) are

u′
f =



ρ′

(ρvx)′

(ρvy)′

(ρet)′


, F ′ =



(ρvx)′

p′ + (ρvx)′ vx + (ρvx) v′
x

(ρvx)′ vy + (ρvx) v′
y

(ρht)′ vx + (ρht) v′
x


, G ′ =



(ρvy)′

(ρvx)′ vy + (ρvx) v′
y

p′ + (ρvy)′ vy + (ρvy) v′
y

(ρht)′ vy + (ρht) v′
y


.

(4.46)

Although the Euler Eqs. (4.23) are nonlinear, the CSEs (4.45) are linear in the sensitivity

variables u′
f . Comparing Eq. (4.45) to the general Eq. (4.8), we confirm that although

the governing fluid Eqs. (4.23) are nonlinear with the nonlinear operator (4.28), the PDE
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operator Afb for the CSEs is linear in the sensitivity variables u′
f , and can be derived as

Afb

(
uf , Lf

(
u′
f

))
=



Afb1

Afb2

Afb3

Afb4


, (4.47)

Afb1 = ∂

∂x

(
(ρvx)′

)
+ ∂

∂y

(
(ρvy)′

)
, (4.48)

Afb2 = ∂

∂x

(
p′ + (ρvx)′ vx + (ρvx) v′

x

)
+ ∂

∂y

(
(ρvx)′ vy + (ρvx) v′

y

)
, (4.49)

Afb3 = ∂

∂x

(
(ρvx)′ vy + (ρvx) v′

y

)
+ ∂

∂y

(
p′ + (ρvy)′ vy + (ρvy) v′

y

)
, (4.50)

Afb4 = ∂

∂x

(
(ρht)′ vx + (ρht) v′

x

)
+ ∂

∂y

(
(ρht)′ vy + (ρht) v′

y

)
, (4.51)

f ′
f (x; b) = 0. (4.52)

The local derivatives of flow velocities and pressure can be written in terms of u′
f as

v′
x = 1

ρ

(
(ρvx)′ − (ρvx)

ρ
ρ′
)
, (4.53)

v′
y = 1

ρ

(
(ρvy)′ − (ρvy)

ρ
ρ′
)
, (4.54)

p′ = (γ − 1)

(ρet)′ − 1
2
ρ′

(ρvx
ρ

)2

+
(
ρvy
ρ

)2
−

(
(ρvx) v′

x + (ρvy) v′
y

) . (4.55)

The farfield CSE boundary condition is

u′
f

∣∣∣
Γef

= 0 − ∂uf

∂x
Vxf

∣∣∣∣∣
Γef

− ∂uf

∂y
Vyf

∣∣∣∣∣
Γef

= 0. (4.56)
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The shape design variable considered here only changes shape of the airfoil boundary which

results in Vxf |Γef
= Vyf |Γef

= 0 and thus, the boundary condition (4.56) is homogeneous.

Taking material derivative of the no-penetration (tangency) flow BC (4.26) yields the CSE

BC at the airfoil boundary Γfs

(
v′
xı̂+ v′

y ȷ̂
)

· nfs

∣∣∣
Γfs

= −
({

∂vx
∂x

Vxfs + ∂vx
∂y

Vyfs
}
ı̂+

{
∂vy
∂x

Vxfs + ∂vy
∂y

Vyfs
}
ȷ̂

)
· nfs − (vxı̂+ vy ȷ̂) · ṅfs

∣∣∣∣∣
Γfs

,

(4.57)

where Vfs = {Vxfs, Vyfs}T is the design velocity and ṅfs = Dnfs

Db
is the material derivative

of the unit normal, both defined at the deformed fluid-structure interface Γfs. The CSE

boundary condition (4.57) is called transpiration boundary condition, because the velocity

local derivative vector
(
v′
xı̂+ v′

y ȷ̂
)

has a nonzero component along normal direction of the

boundary Γfs. The terms ṅfs and Vfs in Eq. (4.57) are sources of the coupling between the

fluid and structural derivatives, and are derived in the following sub-section.

4.2.5.3 Coupling of the Fluid and Structural Derivatives

The coupling of the flow and structural derivatives occurs as follows:

• Sensitivity loads on the structure depend on the fluid response and its derivative: Sub-

stituting material derivative of Eq. (4.34) in Eq. (4.44), we get

Φ′|Γns
= −ṗnfs − pṅfs|Γfs

−
(

Vxs
∂ [σ]
∂x

+ Vys
∂ [σ]
∂y

)
ns − [σ] ṅs

∣∣∣∣∣
Γns

. (4.58)

Thus, the structural sensitivity boundary loads are dependent on the pressure p (uf )

and derivative ṗ (u̇f ). Here, ṅs = Dns

Db
is defined for the undeformed boundary Γns

whereas ṅfs = Dnfs

Db
is defined for the deformed boundary Γfs .

• Fluid CSE BC depends on structural response and its derivative: The CSE transpira-

tion BC (4.57) is to be applied on the deformed boundary Γfs : {xfs, yfs}T with the

corresponding normal nfs, both of which are dependent on the structural response us
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as given in Eqs. (4.35–4.39). Along with this, the material derivative of the normal

ṅfs = {ṅxfs, ṅyfs}T also appears in the transpiration BC (4.57). This term can be

derived as follows. Taking the material derivative of Eqs. (4.38–4.39), specifically for

the boundary Γfs : {xfs, yfs}T , we get

ṅxfs (xfs, yfs) = − ṡfs√
1 + s2

fs

+
s2
fsṡfs(

1 + s2
fs

)3/2 , (4.59)

ṅyfs (xfs, yfs) = − sfsṡfs(
1 + s2

fs

)3/2 , where (4.60)

ṡfs (xfs, yfs) = ∂sfs
∂b

+ ∂sfs
∂xfs

∂xfs
∂b

+ ∂s

∂yfs

∂yfs
∂b

. (4.61)

Eq. (4.61) can also be written in terms of design velocity as

ṡfs = s′
fs + Vxfs

∂sfs
∂xfs

+ Vyfs
∂sfs
∂yfs

. (4.62)

Differentiation of Eqs. (4.36–4.37) with respect to the shape design variable b yields

design velocity of the deformed fluid-structure interface

Vxfs = Vxs + u̇x, (4.63)

Vyfs = Vxs + u̇y. (4.64)

This design velocity appears in the fluid CSE BC (4.57), which clearly couples the

structural and fluid derivatives.

4.2.5.4 Results

A finite difference study was carried out to with a step size of 0.0001 to obtain the flow and

structural derivatives. These derivatives are plotted in Figure 4.10.
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Figure 4.10: Derivatives of aeroelastic response of the flexible airfoil obtained using finite
difference method.
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4.3 Conclusion

We demonstrated a nonintrusive formulation of CSA for analyzing coupled fluid-structure

systems, with linear structural analysis and Euler flow analysis. Similar to the coupling

between the structural and fluid degrees of freedom, the structural and fluid variable de-

rivatives are also coupled. We derived the sensitivity equations for the structural and fluid

systems, and identified the sources of the coupling between the structural and fluid deriv-

atives. This was demonstrated with an example of a flexible airfoil subjected to uniform

subsonic flow. The interface that separates the fluid and structural domains was chosen to

be flexible. This led to coupling terms in the sensitivity analysis which were highlighted. In

particular, the structural sensitivity boundary loads are dependent on the pressure and its

derivative on the flexible airfoil. Along with this, the fluid sensitivity transpiration boundary

condition was applied on the flexible fluid-structure interface. This results in the fluid sens-

itivity boundary conditions being dependent on the structural deformation of the flexible

interface and its derivatives. The coupling in the primary analysis and sensitivity analysis

was achieved with a weak formulation, with data transfer between the structural and flow

analysis codes during each iteration until convergence. The main contribution of this work,

compared to the few aeroelastic CSA applications in the literature (Etienne et al., 2007;

Wickert and Canfield, 2008; Liu and Canfield, 2013a, 2016; Cross and Canfield, 2014), is

the nonintrusive formulation of local CSA with SGR for the aeroelasticity problem including

finite volume CFD.

166



Chapter 5

Conclusions and Future Work

5.1 Conclusions

The three proposed research objectives for this PhD work were:

1. Formulate nonintrusive CSA with SGR for computation of high-fidelity flow derivat-

ives, and demonstrate its application using CFD tools that are based on finite volume

discretizations.

2. Develop hybrid adjoint formulation of CSA.

3. Formulate and demonstrate nonintrusive CSA with SGR for aeroelastic response de-

rivatives involving high-fidelity flow and structural computation.

These goals have been accomplished as described in Chapters 2, 3 and 4, respectively. A

summary of the contributions corresponding to each of these tasks is given next.

5.1.1 CSA for Fluid Applications

The method of CSA with SGR is used for calculating the material derivatives of 1-D and

2-D flows with respect to shape design parameters, with a focus on the flow solutions of

compressible Euler equations and incompressible Navier-Stokes equations. One of the main
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contributions of this work is the derivation of local CSA with SGR using finite volume

formulation. An example of flow over a NACA0012 airfoil is presented that highlights the

effect of the accuracy of the sensitivity boundary conditions on the derivatives of integrated

flow quantities such as lift and drag. The spatial gradients of flow velocities, calculated

using SGR, contribute significantly to the transpiration sensitivity boundary condition and

thus affect the accuracy of total derivatives of the flow variables. Apart from this, the weak

imposition of boundary conditions, which is typical in finite volume formulations, leads to

errors in the solution to the sensitivity equations. It is believed that this may be one of the

reasons affecting convergence of flow derivatives obtained using CSA. The CSA results are

verified with the derivatives calculated using the automatic differentiation method and the

finite difference method.

Another contribution of this work is the nonintrusive (without modifying the “black-box”

analysis source code) implementation of CSA for analyzing fluid systems even in cases where

consistent Jacobian may not be available. Particularly, we focus on the use of commonly

used CFD codes, which use finite volume discretization, for solving the flow variables and

their shape sensitivities nonintrusively. The main advantage of the nonintrusive approach is

the savings in time and efforts required to implement a sensitivity analysis algorithm which

otherwise requires programming, such as for the discrete (direct and adjoint) analytic meth-

ods. Apart from this it also offers a possibility to use software, such as Fluent or Nastran,

that are not accessible for modification to implement a user specific (custom) sensitivity

analysis method. However, many CFD and structural analysis software already have dis-

crete analytic methods for performing sensitivity analysis. The advantage of the proposed

CSA over such methods is three-fold, (a) since CSA is based on continuum equations, it can

possibly yield a derivative that is close to the true continuum derivative, rather than the

derivative that discrete methods may yield (assuming the two derivatives are different), (b)

ability to use Jacobian different from the one being used for flow analysis, and (c) possible

increase in efficiency of sensitivity analysis because CSEs are linear.
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It was shown that closely matching derivatives are obtained for derivatives of compress-

ible inviscid flow even with the use of inconsistent flow solution and Jacobian matrix. This

differs from the cases of nonintrusive CSA reported in literature (Godfrey and Cliff, 2001;

Borggaard and Burns, 1994, 1997). Godfrey and Cliff (2001) studied inconsistency of turbu-

lence modeling in the flow and sensitivity equations. Also, they used finite difference method

to compute the spatial gradients in the sensitivity analysis, which is reported to give poor

results for unstructured meshes (Duvigneau and Pelletier, 2006; Becker and Ashcroft, 2014).

A variety of examples were used to illustrate the nonintrusive application of CSA. We

presented the lid-driven cavity flow solved using Navier-Stokes (incompressible and viscous)

equations with a structured grid, finite difference spatial discretization, and an explicit tem-

poral discretization. Flow over a NACA0012 airfoil example was solved using Euler equa-

tions with a unstructured grid, finite volume spatial discretization, and an implicit temporal

discretization. A value parameter sensitivity example was also presented which involved

quasi-1-D flow in a convergent-divergent nozzle.

5.1.2 Hybrid Adjoint CSA Formulation

A new continuum-discrete hybrid adjoint formulation was introduced that has the following

advantages: (a) it involves solving a linear discrete system only once for calculating derivat-

ives of a single performance criterion with respect to many design variables, (b) it enjoys the

benefits of local CSA with SGR, namely, the derivatives are accurate and the mesh sensitivity

is avoided, and (c) unlike the continuous adjoint method, there are no complications asso-

ciated with adjoint boundary conditions. This method was demonstrated with applications

to 1-D, 2-D and 3-D structural problems. Application of this method to other disciplines,

such as fluid analysis or coupled fluid-structure analysis is straightforward. The hybrid ad-

joint CSA method computes the same values for shape derivatives as direct CSA. Therefore

accuracy and convergence properties are the same as for the direct local CSA. Finally, we

show that for many design variables the hybrid adjoint formulation permits computing shape
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derivatives with less effort as compared to the direct CSA.

5.1.3 CSA for Aeroelasticity Applications

We demonstrated a nonintrusive implementation of CSA for analyzing coupled fluid-structure

systems, with linear structural analysis and Euler flow analysis. Similar to the coupling

between the structural and fluid degrees of freedom, the structural and fluid variable de-

rivatives are also coupled. We derived the sensitivity equations for the structural and fluid

systems, identified the sources of the coupling between the structural and fluid derivatives,

and implemented CSA nonintrusively to obtain the aeroelastic response derivatives. This

was demonstrated with an example of a flexible airfoil subjected to uniform subsonic flow.

Particularly, the interface that separates the fluid and structural domains was chosen to be

flexible. This led to coupling terms in the sensitivity analysis which were highlighted. In

particular, the structural sensitivity boundary loads were dependent on the pressure and its

derivative on the flexible airfoil. Along with this, the fluid sensitivity transpiration boundary

condition is applied on the flexible fluid-structure interface. This results in the fluid sens-

itivity boundary conditions being dependent on the structural deformation of the flexible

interface and its derivatives. The coupling in the primary analysis and sensitivity analysis

was achieved with a weak formulation, with data transfer between the structural and flow

analysis codes during each iteration until convergence. The main contribution of this work,

compared to the few aeroelastic CSA applications in the literature, (Etienne et al., 2007;

Wickert and Canfield, 2008; Liu and Canfield, 2013a, 2016; Cross and Canfield, 2014) is

the nonintrusive implementation of local CSA with SGR for the aeroelasticity problem that

includes flow sensitivity calculations done with finite volume discretization. Thus, the con-

tributions of solving the flow CSEs externally using consistent or inconsistent Jacobian, also

apply to the aeroelasticity work.
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5.2 Code Development

The following primary codes were developed as a part of the research conducted during this

PhD work. There are also other supplementary codes, such as those for meshing and parsing

data, which are not mentioned in this list.

• Complex step improvement to MstcGeom (MATLAB) and VT-CST (C++): With

these improved codes, design velocities can be obtained for complex structures, with

multiple interfaces and complex aerodynamic shapes (within the limitations of Mst-

cGeom and VT-CST).

• 1-D, 2-D and 3-D SGR code for structured and unstructured meshes (MATLAB):

This code does automatic n-layer patch detection and prescribes the known continuum

values of the field variable at points in the patch wherever available. For example, if

the the stress component σz is known (theoretically) to be zero at a surface, its value

is taken to be zero at points in the patch on that surface, even if the values are nonzero

due to discretization error. The spatial gradients are further used to prescribe CSA

boundary conditions.

• SU2 code with CSA capability (C++): This code outputs the required Jacobian by

running the SU2 solver for only one iteration using the restart feature. The analysis

solution in the restart file could be either the one obtained from SU2 or from a different

solver such as FLUENT.

• External solution of CSEs (MATLAB): This code sets up the CSE BCs and applies

them using the weak formulation in the finite volume context. The CSEs are then

solved exactly using the flow Jacobian (available a priori) with the MATLAB linear

solver.

• Incompressible Navier-Stokes flow analysis and CSA solver (MATLAB)
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• Direct and Hybrid Adjoint CSA solvers for 1-D, 2-D and 3-D structures (MATLAB):

This suite of codes can be used to either do the sensitivity analysis inside MATLAB or

externally using NASTRAN, with either the direct or the hybrid adjoint formulation.

• CSA for flexible airfoil problem (MATLAB): This code solves both the coupled primary

analysis and coupled sensitivity analysis, with black-boxes being used for the structural

(NASTRAN) and flow analysis (SU2) separately.

5.3 Publications and Presentations

Results from this research have been presented at the AIAA SciTech (Kulkarni et al., 2014b,

2015) and Aviation conferences (Kulkarni et al., 2014a). The conference papers for the years

2014 (SciTech), 2015 (Aviation), and 2016 (SciTech) were selected in the final rounds of the

student paper competitions. The preliminary results of the hybrid adjoint research were

published in the AIAA Journal as a technical note (Kulkarni et al., 2016). The research

work on the reduced aerodynamics for flapping wing MAVs was published in the AIAA Struc-

tures, Structural Dynamics, and Materials Conference. Results were also presented during

the 2012, 2013, 2014 and 2015 Technical Advisory Committee meetings of the Collaborative

Center for Multidisciplinary Sciences at Virginia Tech. Apart from this, results were presen-

ted as posters, round-table discussions and talks during the Graduate Student Association

Symposium at Virginia Tech (2015, 2016) and the Virginia Tech Interdisciplinary Research

Society Symposium (2014, 2015).

5.4 Recommendations for Future Work

One of the lessons learned during this research was that the choice of SGR patch for CFD

applications that use finite volume discretization may depend on flow and geometry specific

information, and is critical for getting accurate spatial gradient predictions. For example,
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in the case of reconstruction of spatial gradients at the trailing edge of an airfoil, if a vertex

based finite volume discretization is used, a choice of data points in the patch downstream

of the trailing edge can lead to unreasonable values of the spatial gradients. Hence it is

necessary to avoid such data points. Similarly, for reconstruction of spatial gradients at

points close to the trailing edge but on the upper surface of the airfoil, if the SGR patch

has data points near the lower surface, erroneous results may be obtained. Hence at such

expansion points on the top surface and close to the trailing edge, the SGR patch should

have data points only near the top surface. As a result, improvements in the SGR code

are one of the key recommendations for future work. Additionally, all the problems in this

research are restricted to simplified problems with very few structural interfaces or material

discontinuities. In a realistic high performance structure, such as an aircraft, there are many

such interfaces that will complicate the CSA procedure due to the additional boundary

conditions to be applied at these interfaces. Automation of the CSA process for many

structural interfaces could be taken as a follow-up of the current work. Finally, all the

problems solved using the hybrid adjoint method are restricted to steady-state or stationary

analysis. Transient sensitivity analysis using the hybrid adjoint method could be another

follow-up task.

Some specific recommendations are as follows:

• SGR improvements: Create a program for approximating spatial gradients in the dir-

ection normal to the boundary that changes shape. Another suggestion is to use a

different method for approximating spatial gradients, such as the Green Gauss method,

along the lines of Becker and Ashcroft (Becker and Ashcroft, 2014).

• Sensitivity of flow with discontinuities: The presented sensitivity analysis could be

applied to a flow with discontinuities, such as flow with shocks. Some of the earlier

work in this respect is done by Appel (Appel, 1997).

• Sensitivity for turbulent flow and viscous compressible flow: The current version of CSA
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with SGR could be applied to turbulent flows with heat transfer. Results reported for

this case (Colin et al., 2006) were shown to improve with adaptive re-meshing. Such

re-meshing could potentially be avoided using the local CSA method with accurate

spatial gradients found using SGR.

• Comparison with continuous adjoint: The presented hybrid adjoint method could be

applied to fluid problems. This approach could be compared with the continuous

adjoint approach reported by Economon et al. (Economon et al., 2015).

• Automation of CSA procedure for case with more interfaces: As described earlier,

the implementation of the presented method becomes complicated if large number of

interfaces are present. Thus, a way to automate the process for this case is suggested

for future work.

• Transient sensitivity analysis with hybrid adjoint formulation: Such a formulation

could be used to get time-accurate design derivatives for cases such as gust response

of an aircraft.

• Monolithic formulation of the local CSA aeroelastic formulation: The present CSA

formulation can be modified to obtain a monolithic (strongly coupled) formulation for

solving sensitivity analysis for a coupled fluid-structure analysis problem, on the lines

of Etienne and Pelletier (Etienne and Pelletier, 2005).
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Appendix A

Sensitivity of Flow in a

Convergent-Divergent Nozzle

A.1 Flow Analysis

This problem involves calculating the steady-state flow quantities through the duct of a

convergent divergent nozzle as shown in Figure A.1.

Figure A.1: A convergent divergent nozzle (Anderson, 1995)

The flow is assumed to be isentropic with subsonic inflow condition and a supersonic

outflow condition resulting from a shock at the throat. The flow is also assumed to be quasi-

one-dimensional. This means that the flow properties are uniform across any given cross

section of the nozzle (Anderson, 1995). In other words, although the cross sectional area A
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varies as a function of distance x, we treat the flow variables to be invariant in the the cross

section. Unlike the Euler equations for flow over airfoil, the quasi-1-D approximation gives

rise to a nonzero source term H in the Euler equations

∂u

∂t
+ ∂F

∂x
− H = 0, (A.1)

where

u =


ρ

ρu

ρet


, F =


ρu

p+ ρu2

u (p+ ρet)


, H = ∂A

∂x


0

p

0


. (A.2)

When a cell centered finite volume discretization is used the following semi-discrete system

of equations is obtained.

Vj
∂

∂t
(Q) + F j+1/2Aj+1/2 − F j−1/2Aj−1/2 − Hj (∆x)j = 0 (A.3)

Here, ρ, p, u and et denote density, pressure, horizontal velocity and total energy in the

convergent divergent nozzle, respectively. The pressure and density can be related to the

temperature T by the equation of state p = ρRT , where R is the specific gas constant.

Although these equation can be used for time-accurate solutions to the nozzle flow problem,

the variable t in the present context only represents pseudo-time and is used for the purpose

of time marching to reach the steady-state. The state vector of conserved variables is u, F

is the flux vector, and H is the source term. Vj denotes the volume of the jth cell while

(∆x)j denotes the dimension of the jth cell in the X direction. The area of the left and right

faces of the jth cell are denoted by Aj−1/2 and Aj+1/2 respectively. The system is closed by

the equation of state for ideal gas

p = (γ − 1)ρ
[
et − u2

2

]
, et = 1

γ − 1
p

ρ
+ u2

2
. (A.4)
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In the present case, we have assumed that the nozzle flow is isentropic, with subsonic flow

at the left boundary and supersonic flow at the right boundary. Hence, using the method of

characteristics (Hirsch, 1990), we can conclude that (a) at the subsonic inflow boundary, we

must stipulate the values of two dependent flow variables (typically pressure and density),

whereas the value of one other variable (typically velocity) must be determined based on

interior values, and (b) at the supersonic outflow boundary all variables (pressure, density

and velocity) must be determined based on interior values. When value of a certain variable

at the boundary is not fixed, that value is determined based on (linear) extrapolation from

the values in the interior of the domain. Thus, the boundary conditions for this problem

are that the pressure pin and density ρin at the inlet are prescribed based on fixed values of

stagnation temperature T0 and stagnation pressure P0. Value of uin is extrapolated based

on values in the interior or the domain. The following isentropic relations are used to set

these boundary conditions.

Tin = T0 − γ − 1
2γR

u2
in (A.5)

ψ = T0

Tin
(A.6)

pin = P0

ψγ/(γ−1) (A.7)

ρin = P0

RT0ψ1/(γ−1) (A.8)

The Euler equations (A.3) can be solved with an implicit scheme as shown below. Since

the problem involves calculation of steady-state quantities, the residual at cell j is given by

Rj = F j+1/2Aj+1/2 − F j−1/2Aj−1/2 − Hj (∆x)j . (A.9)

For the Euler implicit scheme, the residual is evaluated at the (n+ 1)th time step and so the
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semi-discrete system can be written compactly as

∆u(n)

∆t
+ R(n+1) (u) = 0, (A.10)

where the superscript denotes the pseudo-time step, and ∆u(n) = u(n+1) −u(n). The residual

at the time step (n+ 1) can be approximated to first-order as

R(n+1) (u) ≈ R(n) (u) +
(
∂R

∂u

)(n)

∆u(n). (A.11)

Substituting this approximation (A.11) into Eq. (A.10), we get the implicit system

 I

∆t
+
(
∂R

∂u

)(n)
∆u(n) = −R(n) (u) , (A.12)

where I denotes an identity matrix. Here, the quantity
(
∂R
∂u

)(n)
is known as the Jacobian

matrix at time step n, and is same as the tangent matrix [T ({u}nh)] in Section 2.2.3. The

time term (I/∆t) is used for pseudo-time stepping, but can be avoided to get the Newton’s

method. This system of equations can be solved at each time step for the update of the flow

variables, ∆u(n). Thus the solution at the (n+ 1)th iteration is determined from

u(n+1) = u(n) + ∆u(n).

A.2 Derivatives of the Flow in a quasi-1-D Convergent

Divergent Nozzle

In this section we propose a nonintrusive formulation of CSA to find derivatives of the flow

in a convergent divergent nozzle. The design variables are parameters that change the shape

of the nozzle. Hence, if the shape of the nozzle is given by
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A(x) = b0 + b1x+ b2x
2,

we are interested in finding the values of u̇ = Du/Db where b = b0, b1 or b2. An analytical

solution is available for this problem. Since the analysis is concerning flow only in one

dimension, the parameters bi are value parameters and they do not physically change the

shape of the domain. Hence the sensitivity problem defined here is for obtaining value

sensitivity and u̇ = u′. As explained in Section 2.2, we will evaluate the local derivatives of

the flow variables, u′, by solving the local form of continuum sensitivity equations (CSEs).

The CSEs are obtained by partial differentiation of the state Equations (A.3) as follows.

∂

∂t
(u′) + ∂

∂x
(F ′) − H ′ = 0, (A.13)

where

u′ = ∂u

∂b
=



∂
∂b

(ρ)
∂
∂b

(ρu)
∂
∂b

(ρet)


,

F ′ = ∂F

∂b
=



∂
∂b

(ρu)
∂
∂b

(p) + u ∂
∂b

(ρu) + ρu ∂
∂b

(u)

p ∂
∂b

(u) + u ∂
∂b

(p) + u ∂
∂b

(ρet) + ρet
∂
∂b

(u)


,

H ′ = ∂H

∂b
= ∂A

∂x


0

∂
∂b

(p)

0


+ ∂

∂b

(
∂A

∂x

)


0

p

0


,

and where
∂

∂b
(u) =

[
∂

∂b
(ρu) − ρu

ρ

∂

∂b
(ρ)
]/

ρ,
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∂

∂b
(p) = (γ − 1)

[
∂

∂b
(ρet) − u

2
∂

∂b
(ρu) − ρu

2
∂

∂b
(u)

]
.

The sensitivity boundary conditions are obtained by differentiation of the corresponding

flow boundary conditions (A.5–A.8). In the present problem the boundaries of the domain

do not change with the design variable. Hence, the design velocity is zero. This leads to

the following sensitivity boundary conditions to be imposed at the inlet on the sensitivity

variables p′
in and ρ′

in.

T ′
in = −γ − 1

γR
uinu

′
in (A.14)

ψ′ = − T0

T 2
in

T ′
in (A.15)

p′
in = − P0

ψ1+γ/(γ−1)ψ
′ (A.16)

ρ′
in = − P0

RT0ψ1+1/(γ−1)ψ
′ (A.17)

The CSEs can be solved with the same implicit scheme and discretization that was used

to solve the Euler equations. This leads to the following linear system to be solved for

calculating the update, ∆u′(n), of the derivatives at the nth time step:

[
I

∆t
+
(
∂R′

∂u′

)]
∆u′(n) = −R′(n) (u′) , (A.18)

where R′(n) (u′) = ∂
∂x

(
F ′(n)

)
− H ′(n) is the residual for the CSEs. Note that since the CSEs

are linear, the tangent matrix
(
∂R′

∂u′

)
will be a constant matrix and pseudo-time stepping

is not required for solving the CSEs, as mentioned in Section 2.2.3. Borggaard and Burns

(Borggaard and Burns, 1994, 1997), Wickert (Wickert et al., 2010) and Liu and Canfield

(Liu and Canfield, 2013b) showed that, if the same discretization used for the analysis is

used to discretize the CSEs, then the tangent matrix for the sensitivity system is same as
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the tangent matrix at the converged steady-state solution,

(
∂R′

∂u′

)
=
(
∂R

∂Q

)(N)

, (A.19)

where N is the last pseudo-time step of the flow analysis. So, the same coefficient matrix

can be used for obtaining the local derivatives. Thus, the discretized update equation has

the form  I

∆t
+
(
∂R

∂Q

)(N)
∆u′(n) = −R′(n) (u′) . (A.20)

A few comments worth mentioning about Eq. (A.20) and the associated CSE BCs (A.14–

A.17):

• Pseudo-time stepping is optional, but if done, at each time step the derivatives can

be obtained based on the converged tangent matrix used for the calculating the state

variables. This avoids the expensive step of calculating Jacobian matrix for the CSEs,

provided it is available from the analysis.

• The only expense in solving sensitivities at each time step is involved in calculating

the residual R′(n) (u′) based on the expressions for the flux vector F ′ and source term

H ′.

• The design variables considered for this problem are value parameters, because they

lead to zero design velocity. Hence the CSE boundary conditions are homogeneous

(similar to those of the Euler equations). There are no convective terms involving

spatial gradients in these boundary conditions. This avoids calculation of the spatial

gradients at the boundaries, which are otherwise required for assembling the sensitivity

boundary conditions as seen in Equation 2.5. However, the quasi-1-D assumption leads

to a nonzero source term f (x, t; b) for the flow equations (2.1) and the term f ′ (x, t; b)

sensitivity equations (2.6). This is a typical feature of CSEs for value parameters.
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Figure A.2: Density, Mach number and pressure in a convergent divergent nozzle. Solid lines
indicate analytical solution, whereas the circles indicate numerical (Euler) solution.

A.3 Results

The Euler solution results for isentropic flow in the convergent divergent nozzle, compared

to the analytical solutions are shown in Figure A.2. The solutions were converged such that

the L2 norm of the conservation equations were less than 10−10.

Although an analytic solution is available for the derivatives of the nozzle flow, to high-

light the disadvantages of the finite difference method, a step-size study was performed as

illustrated in Figure A.3. It is not intuitive to find out the correct step-size of 1 × 10−5. As

expected, the central finite difference method yields better than the forward finite difference

for larger step-sizes, but is doubly expensive.

The derivatives of the nozzle flow obtained using CSA are plotted in Figure A.4 along

with the analytical derivatives and the finite difference derivatives. The CSA results are

closer to the analytical results than the best finite difference results.

A grid convergence study was done to find out the rate of convergence of the flow deriv-
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Figure A.3: Step size convergence of Euler solution for the convergent-divergent nozzle.

atives. The flow solution was based on a first-order accurate Euler code, so the derivatives

are expected to converge at a rate not more than one. This is seen in the convergence results

plotted in Figure A.5. These results were obtained with the Roe’s flux difference scheme

(Hirsch, 1990). To make sure that a change in the flux scheme does not alter the results, the

same problem was solved using the Van Leer flux vector splitting scheme (Knight, 2006).

The derivative solutions obtained with Van Leer scheme match those obtained with Roe’s

scheme. The rate of convergence of one was obtained with the Van Leer scheme as well

as shown in Figure A.6. This verifies that the CSA gives consistent result with both the

flux schemes. Implementation wise, there was no difference in CSA procedure other than

changing the flux scheme used for flow and sensitivity analysis.
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Figure A.4: Derivatives of the nozzle flow.
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Figure A.5: Rate of convergence of derivatives of the nozzle flow, with Roe’s flux difference
scheme.
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Figure A.6: Rate of convergence of derivatives of the nozzle flow, with Van Leer’s flux vector
splitting scheme.
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Appendix B

Reduced Order Model for Unsteady

Aerodynamics of Flapping Wing

Micro Air Vehicle in Hover

This work was presented as paper AIAA 2013-1645 (Kulkarni et al., 2013) at the 2013 AIAA

SDM conference.

B.1 Introduction and motivation

Micro Air Vehicles (MAVs) have gained large popularity (Petricca et al., 2011; Keennon et al.,

2012; Pines and Bohorquez, 2006) for surveillance and reconnaissance applications owing to

their small size and ability to fly in indoor environments. MAVs can be classified into three

main categories: fixed wing, rotary wing (including quadrotors) and flapping wing. Fixed

wing MAVs depend on forward speed for lift generation hence cannot be used for hovering.

Rotary wing MAVs are capable of hovering and vertical take-off and landing. However, such

maneuvers are energy expensive and decrease the range and endurance of rotary wing MAVs

(Petricca et al., 2011). Flapping wing MAVs can be more efficient than fixed and rotary

wing MAVs in terms of specific power requirement (Woods et al., 2001). As a result, a lot
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of research is being directed towards design and development of flapping wing MAVs.

Present day flapping wing MAVs, such as the Nano-Hummingbird (Keennon et al., 2012)

developed by Aerovironment Inc., are designed mainly based on quasi-steady aerodynamics

and blade-element theory based approaches. However, it has been found that such theories

are incapable of doing justice to the actual physics of the problem, which is much complex.

Flapping flight is associated with laminar, incompressible, unsteady flow in low Reynolds

number regime (Galinski and Zbikowski, 2007). Lift and thrust forces generated during

flapping are a result of several unsteady aerodynamic phenomenon such as delayed stall,

rotational circulation, wake capture (Dickinson et al., 1999), leading edge vortex, added

mass effect (Ansari et al., 2006a), etc.

Some researchers have suggested the use of low fidelity, quasi-steady aerodynamic models

(Sane and Dickinson, 2002) for designing flapping MAVs (Doman et al., 2009; Berman and

Wang, 2007). These models rely on assumptions of low angle of attack and low reduced

frequency flight. Such models give reasonably good estimate of lift and thrust forces for

high and moderate forward speeds. At low forward speeds and high reduced frequencies,

wake shed by the flapping MAV is in close vicinity of the lifting surface. In case of hovering

flapping wing, reduced frequency may even go to infinity. The wake pattern for such cases

is very complicated and unsteady effects become more prominent (Stanford and Beran,

2010; Fritz and Long, 2004). Researchers have proved that steady-state and quasi-steady-

state aerodynamic theories are insufficient to estimate the high lifting forces produced by

birds and insects (Pines and Bohorquez, 2006). Hence, quasi-steady aerodynamic models

are unreliable for designing flapping MAVs capable of hovering or performing low velocity

forward flight.

Momentum Disc Theory (MDT) is often used to model aerodynamics for micro heli-

copters (Schafroth, 2010). MDT was used by Weiss-Fogh to derive induced downwash for

hovering insects (Weis-Fogh, 1972). His theory was based on the assumption that the high

frequency flapping wings of the insects behave like an actuator disc. Lift which is produced
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by such a disc can be used to calculate inflow in the plane of the disc. This induced down-

wash incorporated the effect of the shed wake. This approach for modeling inflow can be

grouped in the category of low fidelity models. Later Ellington (Ellington, 1984) proposed an

expression based on partial-actuator disc which was more representative of actual hovering

flight. However, such approaches are not directly suitable to account for changes in flapping

kinematics or wing geometry and thus are not suitable for the design of flapping wing MAVs.

Several high fidelity studies such as CFD analysis (Sun and Xiong, 2005; Sun et al., 2007)

have been done to accurately capture the physics and to obtain lift and thrust forces produced

by birds and insects. Such studies are often very computationally expensive. Hence, it is not

feasible to carry out optimization and sensitivity analysis, or control system design studies

while relying on such high fidelity methods (Berman and Wang, 2007).

There are some studies which have used medium-fidelity aerodynamic tools such as Un-

steady Vortex Lattice Method (UVLM) for finding optimum design of flapping wing MAVs

(Ghommem, 2011). A model proposed by Ansari and co-workers (Ansari et al., 2006b,c)

is another medium-fidelity tool which accounts for the unsteady aerodynamic phenomenon.

These models are essentially two dimensional models which are extended to three dimen-

sions by using blade element theory. This means that there is no interaction between two

neighboring chord-wise strips of elements on the wing.

In reality, wake shed by the wing consists of tubes of vorticity. In case of a flapping wing,

these tubes would criss-cross each other and the vortex tubes would get severely twisted

and distorted (Stanford and Beran, 2010). It would be very complicated to model such a

wake using UVLM beyond a certain number of oscillations. To simplify this, wake is often

assumed to be fixed instead of being free to convect. Authors have not found any studies

which use medium fidelity three dimensional aerodynamics methods with free wake to model

hovering flapping flight. The current work is a step in that direction.

Viscous effects become prominent for flow at low Reynolds number. Insect-like flapping

flight (Dudley, 2000; Shyy et al., 2008) is categorized into flow at Reynolds numbers 10
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through 105. Flow structures for insect flight would certainly depend on viscosity of the

fluid and size of the insect. Still there is remarkable similarity in the aerodynamic forces

on airfoils predicted by CFD simulations and those predicted by inviscid methods (Sane

and Dickinson, 2002, 2003). Although inviscid aerodynamic models cannot capture flow

separation, transition and reattachment, viscosity is taken in consideration indirectly by the

Kutta-Joukowski condition (Ansari et al., 2006a). It is thus reasonable to use an invis-

cid aerodynamic model for doing optimization studies and design of flapping wing MAVs

(Stanford and Beran, 2010).

In the present paper, we propose a reduced order aerodynamic model for a flapping airfoil

in hover. This model is a combination of low fidelity MDT model and a medium fidelity

UVLM. The flapping airfoil sheds vortices at each time step. These vortices induce velocity

in the vicinity of the airfoil which is also called inflow. This inflow consists of two parts:

(a) A ‘global’ velocity, and (b) A ‘local’ velocity. The global velocity is a result of the

counter rotating vortices shed by the airfoil during each half stroke and has the effect of

pushing the flow downwards. The local velocity is the inflow due to vortices which are close

to the airfoil. Velocity induced by the vortices decreases with square of the distance from

the airfoil, and therefore, vortices far away do not contribute much to the local velocity.

In the current work, global inflow is approximated using the MDT while the local inflow is

approximated using UVLM and considering only the ‘near’ wake. Results are compared with

UVLM computation for the case when influence of the entire wake is retained. It is observed

that significant accuracy is obtained even when the recent one oscillation is retained. (By

‘retaining recent one oscillation’, it is meant that ‘retaining vortices shed in the recent one

oscillation’.) Retaining only a fraction of the wake simplifies computation significantly. Such

approach can thus be extended to the 3D case.

UVLM computation for calculating lift and drag is explained in the next section. Similar

computation for a quasi-steady case is explained in Section III. The proposed reduced order

scheme is explained in Section IV. Error metrics used to judge the effect of approximations are
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Figure B.1: Airfoil flapping motion

defined in Section V. Results are discussed in Section VI. It is found that there is uncertainty

in lift depending on the starting location. This is explained in Section VII.

B.2 Unsteady Vortex Lattice Method

The hovering flapping motion of an airfoil is shown in Fig. B.1. Xin − Yin define the

inertial reference frame while Xb −Yb define the body-fixed reference frame. The body-fixed

reference frame translates with the airfoil hinge and remains parallel to the inertial reference

frame. In Fig. B.1, the downstroke motion of the airfoil is shown below the upstroke motion.

However, in all the simulations, there is no deviation (up-down movement of the airfoil) and

hence, during upstroke and downstroke, mid chord of the airfoil moves on the stroke plane

defined by yin = 0. At any time t, position of the mid-chord in the inertial frame sin, and

airfoil angle of attack α are given by:

sin = s0 cos (ωt+ sϕ) (B.1)

α = π

2
− α0 sin (ωt+ αϕ)
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In Eq. B.1, α0 is the amplitude of rotation measured with respect to the vertical axis

Yb. It is assumed that the airfoil is flapping in still air, hence velocities experienced by the

airfoil due to this flapping motion are:

u∞ = −ustroke = −∂sin
∂t

= (s0ω)︸ ︷︷ ︸
u0

sin (ωt+ sϕ) = u0 sin (ωt+ sϕ) (B.2)

v∞ = 0... because no deviation

α̇ = ∂α

∂t
= −α0 cos (ωt+ αϕ)

The airfoil has semi-chord length b and the chord is divided into nb segments. It is

assumed that a bound vortex is located at quarter segment location and a control point is

located at three-quarter segment location of each segment. The hinge about which the airfoil

rotates while flapping, is located at a distance h0 from the leading edge as shown in figure

B.1.

Position of a control point (xcp, ycp) at a distance hcp from leading edge in the body

reference frame Xb − Yb is given by:

xcp = (hcp − h0) cosα (B.3)

ycp = −(hcp − h0) sinα

Similarly, the position of a bound vortex (xbv, ybv) at distance hbv from leading edge in

the body reference frame Xb − Yb is given by:

xbv = (hbv − h0) cosα (B.4)

ybv = −(hbv − h0) sinα

The recently shed vortex is placed at a distance of quarter segment location from the

trailing edge along the extended airfoil.
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As the airfoil flaps, it sheds one vortex at each time step. At each time step, the unknowns

are the strengths of the nb bound vortices (Γbi
) and the recently shed wake vortex (Γw1). To

get these values, we have nb number of equations which satisfy the no-penetration boundary

condition at each of the nb control points, and the equation of conservation of circulation

(Kelvin’s circulation theorem). Following algorithm is used for the computation:

1. Define kinematics (Eq. B.1)

2. Get positions of bound vortices, control points and recently shed vortex at each time

step (Eqs. B.3 and B.4)

3. Calculate Aerodynamic Influence Coefficients (AICs): Effect of bound vortices at each

control point and at each time step

4. Start iteration for each time step:

(a) Calculate AICs due to wake vortices: Effect of wake vortices at each control point

(b) Solve (nb + 1) equations simultaneously to get values of Γbi
and Γw1

(c) Plot airfoil, bound vortices, control points, shed vortices

(d) Calculate and plot inflow at the stroke plane

(e) Calculate lift and drag

(f) Free wake: Calculate velocity induced by bound and shed vortices at each shed

vortex and shift the shed vortex to its new position (in body-fixed frame Xb −Yb)

(g) Iterate steps (a)-(f) for t = 0 : dt : (nt − 1)dt

B.2.1 No-penetration boundary condition

No-penetration boundary condition is imposed at each control point on the airfoil. Velocity

at each control point is a combination of (i) Velocity induced by bound vortices (ub, vb),

(ii) Velocity induced by shed vortices (uw, vw), and (iii) Structural velocities given by Eq.
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B.2. Note that the structural velocity due to α̇ acts perpendicular to the airfoil. Hence, the

no-penetration boundary condition at each control point is given by:

(ub + uw + u∞) sinα + (vb + vw − v∞) cosα+ (hcp − h0)α̇ = 0

This equation can be simplified by splitting the velocity due to α̇ into components (uα̇, vα̇)

as:

(ub + uw) sinα + (vb + vw) cosα = − (u∞ − uα̇) sinα− (−v∞ + vα̇) cosα (B.5)

Vortex strengths are considered to be positive in clockwise direction (i.e. positive Γ is in

−Zin direction). Applying Biot-Savart law, velocities induced by the nb bound vortices and

nw wake vortices at control point j, can be found, and Eq. B.5 can be written as:

• Left-Hand-Side:

(ub + uw) sinα + (vb + vw) cosα

∣∣∣∣∣∣
j

=
nb∑
i=1

ABj, i
Γbi

+ AWj, 1Γw1 +
nw∑
i=2

AWj, i
Γwi

• Right-Hand-Side:

− (u∞ − uα̇) sinα− (−v∞ + vα̇) cosα

∣∣∣∣∣∣
j

= {−u∞ sinα+ v∞ cosα}︸ ︷︷ ︸
same for all j

+
{
ycpj

α̇ sinα− xcpj
α̇ cosα

}
︸ ︷︷ ︸

changes with j

Thus, the no-penetration boundary is:

nb∑
i=1

ABj, i
Γbi

+AWj, 1Γw1 +
nw∑
i=2

AWj, i
Γwi

= {−u∞ sinα + v∞ cosα}+
{
ycpj

α̇ sinα− xcpj
α̇ cosα

}
(B.6)

Here, AB and AW are AICs.
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B.2.2 Calculation of Γbi
and Γw1

No-penetration boundary condition at control point j (Eq. B.6) can be reorganized as:

nb∑
i=1

ABj, i
Γbi

+AWj, 1Γw1 = {−u∞ sinα + v∞ cosα} +
{
ycpj

α̇ sinα− xcpj
α̇ cosα

}
︸ ︷︷ ︸

Structural velocity, vstr

−
nw∑
i=2

AWj, i
Γwi︸ ︷︷ ︸

Effect of shed wake, vwake

(B.7)

In Eq. B.7, AIC ABj, i
relates the effect of bound vortex Γbi

on control point j and

AIC AWj, 1 relates the effect of recently shed wake vortex Γw1 on the control point j. These

coefficients can be pre-calculated since they depend only on the positions of the bound

vortices, control points and the recently shed wake vortex. This calculation can be done

once the kinematics are defined. The right hand side of Eq. B.7 consists of structural

velocity, vstr and, velocity induced by the shed wake vortices (other than the recently shed

vortex), vwake. vstr is also known and can be pre-calculated once the kinematics are defined.

vwake depends on the positions of the wake vortices. Since the wake is free, these wake

vortices move depending on the velocity induced at their position by other wake vortices.

Thus, calculation of vwake is a computationally expensive step. Aim of the current work is

to simplify computation of this term by making reasonable approximations to the wake shed

by the hovering airfoil.

The only unknowns in Eq. B.7 are Γbi
, i ⊆ [1, nb] and Γw1 . Equation B.7 can be written at

each of the nb control points to get a set of nb equations. To solve for the (nb+1) unknowns,

we need an additional equation, which is the equation for conservation of circulation:

nb∑
i=1

Γbi
+

nw∑
i=1

Γwi
= 0

=⇒
nb∑
i=1

Γbi
+ Γw1 = −

nw∑
i=2

Γwi
(B.8)

Combining Eq. B.7 ∀j ⊆ [1, nb] and Eq. B.8, we get:
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 ABj, i
AWj, 1

1 1


(nb+1)×(nb+1)︸ ︷︷ ︸

AIC are known


Γbi

Γw1

 = vstr + vwake︸ ︷︷ ︸
known at each time step

(B.9)

vwake = −

 AWj, i

1


(nb+1)×(nw−1)

{Γwi
}(nw−1)×1 (B.10)

vstr = (−u∞ sinα+ v∞ cosα)


1

0


(nb+1)×1

+


ycpj

0

 α̇ sinα−


xcpj

0

 α̇ cosα(B.11)

Equation B.9 can be solved at each time step to get values Γbi
and Γw1 . Expression for

vwake (Eq. B.10) and vstr (Eq. B.11) are the same as in Eq. B.7 except for an additional

row to account for the equation of conservation of circulation (Eq. B.8).

Computation of vwake involves computation of a (nb + 1) × (nw − 1) matrix of AICs.

Thus, computation of the influence of wake becomes increasingly complicated as the number

of wake vortices nw increases. It would be even more complicated to get the influence of

wake in the case of 3D flapping wing (Stanford and Beran, 2010; Fritz and Long, 2004). In

the current work we focus on getting the value of vwake using a combination of MDT and by

retaining only a part of the wake, instead of all the nw vortices.

B.2.3 Calculation of Lift and Drag

Circulation (positive in −Zin direction) produced on the airfoil is given by:

Γ̂b =
nb∑
j=1

Γbj
(B.12)

Circulatory force generated by the airfoil can be resolved into components along Xin and
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Yin as:

• Component along Yin or circulatory lift:

Lc =
nb∑
j=1

ρ
{
(uwj

+ u∞ − uα̇j
)
}

Γbj
(B.13)

• Component along Xin or circulatory drag:

Dc = −
nb∑
j=1

ρ
{
(vwj

− v∞ + vα̇j
)
}

Γbj
(B.14)

Here, uwj
, uα̇j

etc. are calculated at the vortex point j and not at the control point. This

is because Γb value is available at the vortex point and not at the control point.

The pressure difference ∆Pnc between the lower and upper surfaces of the airfoil due to

non-circulatory effects, at location x∗ (measured from leading edge) is given by:

∆Pnc(x∗) = ρ

ˆ x∗

0

∂γb
∂t

dζ

= ρ
∂

∂t

ˆ x∗

0
γb dζ

Γ̂b(x∗) =
ˆ x∗

0
γb dζ

∴ ∆Pnc(x∗) = ρ
˙̂Γb(x∗)

Here Γ̂b is the circulation which is the summation of Γbj
values obtained in the code.

Thus, pressure difference at segment j is given by:

∆Pnc
∣∣∣∣∣
j

= ρ
j∑
i=1

Γ̇bi

Using this pressure difference, we get the non-circulatory force produced by the airfoil

206



as:

Fnc =
ˆ c

0
∆Pnc(ζ) dζ

=
nb∑
j=1

∆Pncj
∆lj

= ∆l
nb∑
j=1

ρ
j∑
i=1

Γ̇bi
(B.15)

Since Fnc always acts perpendicular to the airfoil (from the lower surface to the upper

surface), total lift and drag forces, and sectional lift and drag coefficients are obtained as:

L = Lc + Fnc cosα, CL = L
1
2ρu

2
0(2b)

(B.16)

D = Dc + Fnc sinα, CD = D
1
2ρu

2
0(2b)

(B.17)

B.3 Quasi-steady calculation

In case of quasi-steady calculation, no wake is shed and the no-penetration boundary condi-

tion (Eq. B.9) is modified to:

[
ABj, i

]
nb×nb︸ ︷︷ ︸

AIC are known

{Γbi
}QS = vstr︸︷︷︸

known at each time step

(B.18)

vstr = (−u∞ sinα + v∞ cosα) {1}nb×1 +
{
ycpj

}
α̇ sinα−

{
xcpj

}
α̇ cosα

Since there are only nb unknowns (ΓbiQS
), and there are no vortices shed in the wake, the

equation of conservation of circulation is not used in the calculation.
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Quasi-steady circulation produced on the airfoil is given by:

Γ̂bQS
=

nb∑
j=1

ΓbjQS

Circulatory lift (along Yin) and circulatory drag (along Xin) are given by:

LcQS
=

nb∑
j=1

ρ
{
(u∞ − uα̇j

)
}

ΓbjQS

DcQS
= −

nb∑
j=1

ρ
{
(−v∞ + vα̇j

)
}

ΓbjQS

It should be noted that, as opposed to Eqs. B.13 and B.14, there are no terms corres-

ponding to velocity induced by wake vortices in these equations.

Non-circulatory quasi-steady force is given by:

FncQS
= ∆l

nb∑
j=1

ρ
j∑
i=1

Γ̇biQS

Thus, total quasi-steady lift and quasi-steady drag are given by:

LQS = LcQS
+ LncQS

cosα

DQS = DcQS
+ LncQS

sinα

This total lift LQS is used to obtain value of error metrics as shown in the Section V.
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B.4 Proposed reduced order method

B.4.1 Momentum Disc Theory (MDT) calculation

According to MDT (Johnson, 1994), inflow generated by an actuator disc which produces a

lift L is given by:

vwake,Momentum Disc Theory =
√
Lprevious cycle

2ρA
(B.19)

Here, A is the area of the actuator disc and ρ is the density of air. This inflow is a

result of the lift generated by the actuator disc. Weis-Fogh (1972) and Ellington (1984) used

similar expressions for approximating the effect of wake for a flapping airfoil.

As a first approximation, for a flapping airfoil, we can assume that A is the area swept

by the airfoil at the stroke plane, A = 2s0. Span of the airfoil is assumed to be unity. We

can assume that L is the lift generated by the airfoil in the recent one oscillation.

Inflow in the vertical direction, vwake calculated on the stroke plane during each time

step of the last flapping oscillation, is shown in Fig. B.2. Flapping kinematics are defined

by: frequency of 1 Hz (ω = 2π rad.), stroke amplitude s0 = 2 (i.e. flapping in the region

−2 ≤ xin ≤ 2 and yin = 0) and, rotation amplitude α0 = 30◦. The thick magenta line shows

inflow for the case of quasi-steady calculation. As expected, this value is zero, because no

wake is shed in quasi-steady calculation. Inflow obtained from MDT (Eq. B.19) is shown

with a thick black line. Thin blue lines represent inflow obtained using UVLM calculation

which has influence of entire wake, as explained in Section II. Red circle represents inflow

at the location of the mid-chord at each time step for which the blue thin lines are plotted.

Thick red line represents mean (time-average) of the values of inflow at the mid-chord (red

circles). The black line is quite close to the red line, thus, it can be seen that MDT gives

a close estimate of the full-wake UVLM inflow. However, MDT inflow is the same at all

locations on the stroke plane. We can thus assume that the value of inflow obtained from

MDT (Eq. B.19) represents a ‘global’ downward velocity.
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Figure B.2: Comparison of inflow obtained from MDT with inflow from total unsteady
calculation

Quasi-steady calculation assumes that there is no wake shed. Hence, it can be said to

be one end of the spectrum of approximating vwake, which gives the most inaccurate result.

Whereas, the case when the entire wake is retained (which is referred to as ‘total unsteady

calculation’) is the other end of this spectrum, which gives the most accurate result in

the current realm of UVLM calculation. We can improve the quasi-steady calculation by

incorporating the inflow calculated using MDT. With this assumption, the no-penetration

boundary condition will be:

[
ABj, i

]
nb×nb︸ ︷︷ ︸

AIC are known

{Γbi
} = vstr + vwake,MDT︸ ︷︷ ︸

known at each time step

(B.20)

vwake,MDT =
√
Lmean, previous cycle

2ρA
cosα {1}nb×1 (B.21)

vstr = (−u∞ sinα + v∞ cosα) {1}nb×1 +
{
ycpj

}
α̇ sinα−

{
xcpj

}
α̇ cosα
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As for quasi-steady calculation, no wake is shed in this case, however, a constant inflow

vwake,MDT is added to approximate the effect of shed wake as shown in Eq. B.20. Compu-

tation required to evaluate Eq. B.21 is minimal.

B.4.2 Calculation using Reduced Wake and Momentum Disc The-

ory (RW-MDT)

Velocity induced by shed vortices decreases as (1/r2), where r is the distance of vortex from

the point of interest. Thus, the inflow generated by vortices which are close to the airfoil

is more than that generated by far away vortices. During hover, most of the vortices shed

by the airfoil are close to it, however, these vortices slowly move downwards, away from the

airfoil, if stroke averaged lift is generated. One way of approximating the wake is to consider

only the recent vortices shed by the airfoil instead of all the shed vortices. Along these lines,

the no-penetration boundary condition for total unsteady calculation (Eqs. B.9, B.10) can

be modified as follows:

 ABj, i
AWj, 1

1 1


(nb+1)×(nb+1)︸ ︷︷ ︸

AIC are known


Γbi

Γw1

 = vstr + vwake,APPROX. + Γcorr︸ ︷︷ ︸
known at each time step

(B.22)

vwake,APPROX. = vNear wake + (vwake,MDT − vcorrection) (B.23)

vNear wake = −

 AWj, i

1


(nb+1)×(mw−1)

{Γwi
}(mw−1)×1 (B.24)
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vwake,MDT =
√
Lmean, previous cycle

2ρA
cosα


1

0


(nb+1)×1

(B.25)

vcorrection = vavg inflow cosα


1

0

 (B.26)

vavg inflow → Space-average (over the stroke-plane −2 ≤ x ≤ +2) and time-average

inflow (over previous cycle) calculated at the position of airfoil

vstr = (−u∞ sinα + v∞ cosα)


1

0

+


ycpj

0

 α̇ sinα−


xcpj

0

 α̇ cosα

Γcorr = −


0

1

 (
∑

Γw, neglected) (B.27)

The main difference between Eq. B.9 and Eq. B.22 is brought by changing the term

vwake. vwake is split into two parts as shown in Eq. B.23:

• vNear,wake represents the effect of retaining only the recent mw (2 ≤ mw < nw) vortices

instead of all the nw vortices shed in the wake. Thus, it can be seen that Eq. B.24

which is used to evaluate this term consists of a matrix of dimension (nb+1)×(mw−1)

which is smaller than the corresponding matrix in Eq. B.10. This would reduce the

complexity of solution significantly.

• (vwake,MDT − vcorrection) represents the global inflow as obtained from MDT, which is

not already calculated in the near wake inflow. The cosine factor in Eq. B.25 accounts

for the component of inflow perpendicular to the chord.

The idea behind this approximation is that vwake,MDT will represent the average inflow which

is the ‘global’ downward velocity induced by the shed vortices, while the local effect which

is not captured by the MDT, is accounted for by the term vNear,wake. In this way, a total

of (nw − mw) number of vortices are neglected. If these vortices are at a significantly large

distance from the airfoil, the effect of neglecting them will be minimal. However, if they are
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close, then neglecting them would lead to some error in lift and drag, as compared to the

total unsteady case, where all vortices are retained.

Structural velocity vstr is the same as in Eq. B.11. The term Γcorr is used to correct

the conservation of circulation equation, since now some vortices are neglected. The term

vavg inflow is the contribution of the retained mw vortices to the global downward velocity.

vavg inflow is thus subtracted from MDT inflow to avoid double counting. vavg inflow is approx-

imated by taking a space-average (over the stroke-plane −2 ≤ x ≤ +2) and time-average

(over previous cycle) of the inflow, due to the retained mw vortices. This calculation is re-

ferred to as Reduced Wake calculation including Momentum Disk Theory inflow (RW-MDT).

B.5 Error metric

To judge the effect of approximating vwake, following two error metrics are proposed. These

metrics give the error in lift as compared with the quasi-steady case and the UVLM.

B.5.1 Average error metric (non-dimensionalized with RMS quasi-

steady error)

This error metric gives the RMS difference between lift in ‘current’ calculation and lift

obtained from ‘total unsteady’ calculation. Here ‘total unsteady’ calculation is when the

entire wake is retained and calculation is done according to UVLM as described in Section

II. ‘Current’ calculation refers to the case at hand. The RMS difference thus obtained is

normalized by the RMS difference when the ‘current’ case is quasi-steady approximation.

Thus, the expression for e1 is summarized as:

Error e1 = RMS {LiftCurrent − LiftUnsteady}
RMS {LiftQS − LiftUnsteady}

(B.28)

Consider a case when the approximation in the calculation starts at time t0. Thus, if
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the approximation is started after 2 flapping oscillations, then t0 corresponds to the time

required to complete 2 oscillations. Then at any time t, value of error metric e1 is given by:

e1(t) =

√√√√√ 1
t−t0

´ t
t0

(LCurrent(τ) − LU(τ))2 dτ
1
t

´ t
0 (LQS(τ) − LU(τ))2 dτ

(B.29)

From time 0 through t0, the analysis would be the same as total unsteady calculation.

So for this period, value of e1 would be 0.

e1 gives an average or RMS error estimate since the instantaneous error (L(τ) − LU(τ))

is integrated with respect to time. With the above definition of e1, e1 = 1 corresponds to

quasi-steady calculation, while e1 = 0 means total unsteady calculation.

B.5.2 Instantaneous error metric (non-dimensionalized with RMS

quasi-steady error)

The instantaneous error in calculation is estimated using error metric e2 as:

e2(t) = LCurrent(t) − LU(t)√
1
t

´ t
0 (LQS(τ) − LU(τ))2 dτ

(B.30)

Since (LCurrent(t) − LU(t)) fluctuates with time, so does e2(t). e2QS
, i.e. e2 for quasi-

steady case, fluctuates about an approximate mean value of 1, and with an approximate

magnitude of 0.7. Magnitude of e2QS
can be taken as a reference to judge the values of e2

during the ‘current’ calculation.

B.6 Results

For the current analysis, sϕ = 0, αϕ = 0, i.e. airfoil start from an upright position at the right

end of the figure. It is assumed that h0 = b, i.e. hinge is located at mid-chord. Frequency

of flapping is 1 Hz, amplitude of rotation is 30 degrees, stroke amplitude is 2 units, chord
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length is 1 unit, there are 10 bound vortices and 40 vortices are shed per flapping oscillation.

B.6.1 Improvement of quasi-steady result using Momentum Disc

Theory

Results of using MDT inflow in the quasi-steady calculation are presented in this section.

Value of MDT inflow is obtained as explained in Section V (A).

Figure B.3: Improvement of quasi-steady lift using MDT

Results of computation proposed in Section V (A) are shown graphically in Figure B.3.

Blue line represents quasi-steady without MDT inflow for the first oscillation, since the

approximation starts after the first oscillation. As expected, amplitude of lift for quasi-

steady calculation is more than the lift obtained with total unsteady calculation (green

line). After the approximation starts, the amplitude of lift decreases and settles to a value

closer to the amplitude of unsteady lift as compared to the quasi-steady result. The time

required for computation of each time step during the calculation is also shown in Fig. B.3.

For the total unsteady calculation, one new vortex is shed at each step, thus time required
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for computation of each time step increases during the simulation. Whereas, for quasi-steady

calculation time required for computation of each time step is small and approximately the

same for all time steps.

Figure B.4: Effect of considering MDT inflow in a quasi-steady calculation

In Figure B.4, values of error metrics for the current case are plotted against non-

dimensional time. Value of e1 is 1 for the first oscillation, since this oscillation represents

quasi-steady calculation. After the approximation starts, e1 starts decreasing and settles to

a value of about 0.7 at the end of 10 oscillations. This can be interpreted as a 30% improve-

ment over the quasi-steady calculation. This is a significant improvement by a minor change

in the computation.

Inflow approximated using MDT is constant throughout the stroke plane. However, in

reality, the inflow values change significantly over the stroke plane (as seen by the blue lines

in Fig. B.2). Thus, MDT alone cannot be used to get the effect of wake. MDT inflow can

be understood as the ‘global’ effect of the shed vortices, which pushes the flow down.
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Figure B.5: Effect of retaining a fraction of the shed wake

B.6.2 Results for retaining only a fraction of the wake (RW cal-

culation)

Error metrics e1 and e2 for the cases when only a fraction of the wake is retained are

shown in Fig. B.5. Thus for results in this subsection, expression for vwake consists of only

the term vNear,wake. Thus these are the results for Reduced Wake (RW) calculation.

Blue line represents quasi-steady calculation, thus e1 is one throughout. Green line

represents the case f = 2, which means that vortices in the recent 2 oscillations are retained,

while the remaining vortices are neglected. For this case, the result is exact (or matches

the total unsteady calculation) till 2 oscillations (e1 = 0 for the first 2 oscillations), and

thereafter, e1 builds up and reaches a value of 0.12 at the end of 10 oscillations. Similarly,

for f = 5, i.e. retaining vortices shed in the recent 5 oscillations, the result is exact for the

first 5 oscillations and reaches a value of 0.05 at the end of 10 oscillations. For f = 8, the

final value of e1 at the end of 10 oscillations is 0.03. Thus, at the end of 10 oscillations when

we can assume that a steady-state has been reached, the error has been reduced by 88%

for the case f = 2, by 95% for the case f = 5, and by 97% for the case f = 8. It is quite
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Figure B.6: Effect of retaining a very small fraction of the shed wake

surprising that even with retaining only the recent 2 oscillations, we can capture as much

as 88% of the unsteady effects. Instantaneous error metric e2 also reveals that by retaining

only recent 2 oscillations yields significant improvement over quasi-steady case and is quite

close to result obtained using total unsteady calculation.

The effect of retaining a very small fraction of the wake is of more significance, for

example, retaining only the recent (1/10)th of the wake. This is illustrated in Fig. B.6. For

the above simulation, 40 vortices were shed per oscillation. The average error e1 for retaining

just the recent 4 vortices (f=0.1) is shown in the above figure by the green line. Similarly,

red line stands for retaining the recent 10 vortices (f=0.25), teal line represents retaining

the recent 20 vortices (f=0.5) and so on. It is observed that the average error at the end of

10 oscillations is less than 20%, even for retaining as less as 4 vortices. Thus almost 80% of

the unsteadiness is captures by retaining just 4 recently shed vortices.
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Figure B.7: Effect of retaining a fraction of the shed wake and also using MDT inflow

B.6.3 Results using the proposed reduced order scheme (RW-

MDT calculation)

Error metrics e1 and e2 for the calculation done as illustrated in Section V (B), i.e. as per

RW-MDT calculation, are shown in Fig. B.7. Blue line represents quasi-steady case, green

line represents calculation for retaining 2 oscillations without addition of MDT inflow, and

red line represents the case for retaining 2 oscillations with addition of MDT inflow. It is

seen that there is an improvement in the result from e1 = 0.12 to e1 = 0.08 by addition of

MDT inflow. This improvement can also be seen in values of e2, as fluctuations of the red

line are closer to zero than those of the green line.

Similar analysis can also be done to find error metric values with respect to drag. Values

of e1 (calculated for lift and drag separately) at the end of 10 oscillations is plotted against

the number of vortices retained, in Fig. B.8. Blue line represents calculation without MDT

inflow (RW calculation) while green line represents calculation with MDT inflow (RW-MDT
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Figure B.8: Effect of retaining only a fraction of the shed vortices, judged from the value of
e1 at the end of 10 oscillations

calculation). For all the simulations, 40 vortices were shed per oscillation. Thus, the figure

represents effect or retaining 1 through 400 vortices. As expected, the value of e1 for retaining

all 400 vortices is zero. It is observed that at some (but not all) points, addition of MDT

inflow yields a better result. As seen in Fig. B.7, f = 2 (or retaining 80 vortices) is one such

case. Adding MDT inflow always yields a better drag value, for the case of retaining up to

50 vortices.

The effect of individually changing different parameters in the current simulation on error

in lift and drag is presented graphically in Figs. B.9, B.10, B.11, B.12. In these figures value

of e1 at the end of 10 oscillations is plotted against the number of vortices retained.

From this parametric study, it is seen that individually changing parameters (while keep-

ing other parameters constant) such as amplitude of rotation (α0), semi-chord (b), number of
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Figure B.9: Parametric study; effect of changing rotation amplitude, α0
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Figure B.10: Parametric study; effect of changing semi-chord, b
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Figure B.11: Parametric study, effect of changing number of bound vortices, nb
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Figure B.12: Parametric study, effect of changing number of time steps per oscillation, ntpo
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Figure B.13: Lift generated in the 10th oscillation, starting at ten different location on the
stroke plane. The calculation is done according to the UVLM and all vortices are retained.

bound vortices (nb), or number of time steps per oscillation (ntpo) does not have a significant

effect on the error in lift and drag.

The following section illustrates uncertainty in lift observed due to different starting

locations.

B.7 Uncertainty in Lift

Flow field around the flapping airfoil and the lift generated by it depends on the position

at which it starts. To analyze this, simulation was run with 10 different starting locations.

The first starting location is at the right end of the stroke. The second starting location

is at (1/10)th distance from the right end of the stroke. The third starting location is at

(2/10)th distance from the right end of the stroke, and so on. Lift generated by the airfoil

in the 10th oscillation in each of these cases is plotted in Figure B.13. Lift plotted in this

figure is for the ‘Total Unsteady’ case, i.e. all vortices are retained. There is a large spread

in the lift. This could be due to the difference in the wake shed by the airfoil in each of these
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Figure B.14: Comparison of wake shed by airfoil at the end of 15 oscillations, starting at
different locations

ten cases. Location and magnitude of the shed vortices influences inflow at the stroke plane

which in turn influences the lift generated by the airfoil. The wake pattern (location and

magnitude of vortices) shed by the airfoil at the end of 15 oscillations is shown in Figure

B.14. The airfoil is represented by a small green line. Blue circles indicate clockwise vortices

while red circles indicate counter-clockwise vortices. Radius of the circles is proportional to

the magnitude of the vortices. Figure B.14 (a), the airfoil starts at a location (1/4)th stroke

length from the right end while in, Figure B.14 (b), the airfoil starts at a location (1/4)th

stroke length from the left end. The location and magnitude of the vortices at the end of 15

oscillations is significantly different in the two cases. This confirms that there is uncertainty

in the lift generated even for the ‘Total Unsteady’ case.

The effect of starting at different locations on the lift generated varies according to the

method used to calculate lift. Lift generated in the 10th oscillation, using different calculation

methods, is shown in Figure B.15. These methods are represented as: ‘TU’ = Total Unsteady

calculation, ‘QS’ = Quasi-steady calculation, ‘MDT’ = calculation with Momentum Disc
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Figure B.15: Lift generated in the 10th oscillation, starting at ten different location on
the stroke plane. ‘TU’ = Total Unsteady calculation, ‘QS’ = Quasi-steady calculation,
‘MDT’ = calculation with Momentum Disc Theory inflow, ‘RW’ = Reduced Wake calculation
with retention of 1 oscillation, ‘RW-MDT’ = Reduced Wake calculation with retention of 1
oscillation and MDT inflow

Theory inflow, ‘RW’ = Reduced Wake calculation with retention of 1 oscillation, ‘RW-MDT’

= Reduced Wake calculation with retention of 1 oscillation and MDT inflow. Ten curves are

plotted for each of these calculation methods, one for each starting location as described in

the previous paragraph. It is observed that the spread in the lift is largest for the TU case.

This seems appropriate because the TU calculation incorporates effect of all vortices shed

till the end of 10 oscillations. There is almost no uncertainty in the lift produced for the QS

and MDT calculations since no vortices are shed in these cases. There is some spread in the

lift for the RW and RW-MDT cases, however it is less that the spread in the TU case. This

is also expected since only the vortices shed in the recent one oscillation (i.e. 40 vortices)

are retained in the RW and RW-MDT cases.
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B.8 Summary and conclusion

Present day aerodynamic models used for designing flapping wing MAVs are not accommod-

ative enough to account for all the unsteady phenomenon responsible for generating lift and

drag due to flapping motion. This is due to lack of reduced order unsteady aerodynamic

models for simulating 3D flapping flight. Present work is the first step to create such a

model.

A UVLM calculation with retention of all the shed vortices is not possible for a hovering

flapping flight. This is because as time passes, the vortex sheets shed by the wing create

singularities in the flow. Thus there is a need of modifying the conventional UVLM to make

it applicable for design of 3D flapping flight. In the present work, a reduced order scheme

is proposed which uses MDT and UVLM for modeling inflow of a flapping airfoil. Retaining

only the recent 2 (out of 10) oscillations helps in capturing 88% of the unsteadiness, as

compared to the case of retaining all vortices. Addition of inflow calculated using MDT

for this particular case helps in capturing 92% of the unsteadiness. Thus this study shows

how the complications of UVLM can be reduced while ensuring that unsteady effects are

captured to the desired extent. The reduced model proposed in this work yields significant

understanding about the inflow generated by the vortices of flapping airfoil in hover. It is

found that retaining only a small fraction of these vortices can lead to significant improvement

over quasi-steady results. This 2D scheme can be the basis for creating a 3D unsteady

aerodynamic model for flapping flight.

Finally it is shown that there is some uncertainty in the lift generated by the airfoil. This

is due to the variation of wake patterns resulting from different starting positions.
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