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Summary. Many complex systems are characterized by intriguing spatio-temporal
structures. Their mathematical description relies on the analysis of appropriate cor-
relation functions. Functional integral techniques provide a unifying formalism that
facilitates the computation of such correlation functions and moments, and further-
more allows a systematic development of perturbation expansions and other useful
approximative schemes. It is explained how nonlinear stochastic processes may be
mapped onto exponential probability distributions, whose weights are determined
by continuum field theory actions. Such mappings are madeexplicit for (1) stochastic
interacting particle systems whose kinetics is defined through a microscopic master
equation; and (2) nonlinear Langevin stochastic differential equations which provide
a mesoscopic description wherein a separation of time scales between the relevant
degrees of freedom and background statistical noise is assumed. Several well-studied
examples are introduced to illustrate the general methodology.
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Glossary

Absorbing state

State from which, once reached, an interacting many-particle system can-
not depart, not even through the aid of stochastic fluctuations.

Correlation function

Quantitative measures of the correlation of random variables; usually set
to vanish for statistically independent variables.

Critical dimension

Borderline dimension dc above which mean-field theory yields reliable re-
sults, while for d ≤ dc fluctuations crucially affect the system’s large scale
behavior.

External noise

Stochastic forcing of a macroscopic system induced by random external
perturbations, such as thermal noise from a coupling to a heat bath.

Field theory

A representation of physical processes through continuous variables, typi-
cally governed by an exponential probability distribution.

Generating function

Laplace transform of the probability distribution; all moments and corre-
lation functions follow through appropriate partial derivatives.

Internal noise

Random fluctuations in a stochastic macroscopic system originating from
its internal kinetics.

Langevin equation

Stochastic differential equation describing time evolution that is subject
to fast random forcing.

Master equation

Evolution equation for a configurational probability obtained by balancing
gain and loss terms through transitions into and away from each state.

Mean-field approximation

Approximative analytical approach to an interacting system with many
degrees of freedom wherein spatial and temporal fluctuations as well as
correlations between the constituents are neglected.

Order parameter

A macroscopic density corresponding to an extensive variable that cap-
tures the symmetry and thereby characterizes the ordered state of a ther-
modynamic phase in thermal equilibrium. Nonequilibrium generalizations
typically address appropriate stationary values in the long-time limit.

Perturbation expansion

Systematic approximation scheme for an interacting and / or nonlinear
system that involves a formal expansion about an exactly solvable simpli-
cation by means of a power series with respect to a small coupling.
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1 Fluctuations and correlations, field-theoretic methods

Traditionally, complex macroscopic systems are often described in terms of or-
dinary differential equations for the temporal evolution of the relevant (usually
collective) variables. Some natural examples are particle or population densi-
ties, chemical reactant concentrations, and magnetization or polarization den-
sities; others involve more abstract concepts such as an apt measure of activity,
etc. Complex behavior often entails (diffusive) spreading, front propagation,
and spontaneous or induced pattern formation. In order to capture these in-
triguing phenomena, a more detailed level of description is required, namely
the inclusion of spatial degrees of freedom, whereupon the above quantities all
become local density fields. Stochasticity, i.e., randomly occuring propagation,
interactions, or reactions, frequently represents another important feature of
complex systems. Such stochastic processes generate internal noise that may
crucially affect even long-time and large-scale properties. In addition, other
system variables, provided they fluctuate on time scales that are fast compared
to the characteristic evolution times for the relevant quantities of interest, can
be (approximately) accounted for within a Langevin description in the form
of external additive of multiplicative noise.

A quantitative mathematical analysis of complex spatio-temporal struc-
tures and more generally cooperative behavior in stochastic interacting sys-
tems with many degrees of freedom typically relies on the study of appro-
priate correlation functions. Field-theoretic, i.e., spatially continuous, repre-
sentations both for random processes defined through a master equation and
Langevin-type stochastic differential equations have been developed since the
1970s. They provide a general framework for the computation of correlation
functions, utilizing powerful tools that were originally developed in quantum
many-body as well as quantum and statistical field theory. These methods
allow us to construct systematic approximation schemes, e.g., perturbative

expansions with respect to some parameter (presumed small) that measures
the strength of fluctuations. They also form the basis of more sophisticated
renormalization group methods which represent an especially potent device
to investigate scale-invariant phenomena.

2 Introduction

2.1 Stochastic complex systems

Complex systems consist of many interacting components. As a consequence
of either these interactions and / or the kinetics governing the system’s tempo-
ral evolution, correlations between the constituents emerge that may induce
cooperative phenomena such as (quasi-)periodic oscillations, the formation
of spatio-temporal patterns, and phase transitions between different macro-
scopic states. These are characterized in terms of some appropriate collective
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variables, often termed order parameters, which describe the large-scale and
long-time system properties. The time evolution of complex systems typically
entails random components: either, the kinetics itself follows stochastic rules
(certain processes occur with given probabilities per unit time); or, we project
our ignorance of various fast microscopic degrees of freedom (or our lack of
interest in their detailed dynamics) into their treatment as stochastic noise.

An exact mathematical analysis of nonlinear stochastic systems with many
interacting degrees of freedom is usually not feasible. One therefore has to
resort to either computer simulations of corresponding stochastic cellular
automata, or approximative treatments. A first step, which is widely used
and often provides useful qualitative insights, consists of ignoring spatial and
temporal fluctuations, and just studying equations of motion for ensemble-
averaged order parameters. In order to arrive at closed equations, additional
simplifications tend to be necessary, namely the factorization of correlations
into powers of the mean order parameter densities. Such approximations are
called mean-field theories; familiar examples are rate equations for chemical
reaction kinetics or Landau–Ginzburg theory for phase transitions in thermal
equilibrium. Yet in some situations mean-field approximations are insufficient
to obtain a satisfactory quantitative description (see, e.g., the recent work
collected in Refs. [31, 32]). Let us consider an illuminating example.

2.2 Example: Lotka–Volterra model

In the 1920s, Lotka and Volterra independently formulated a mathematical
model to describe emerging periodic oscillations respectively in coupled au-
tocatalytic chemical reactions, and in the Adriatic fish population (see, e.g.,
Murray 2002 [2]). We shall formulate the model in the language of popula-
tion dynamics, and treat it as a stochastic system with two species A (the
‘predators’) and B (the ‘prey’), subject to the following reactions: predator
death A → ∅, with rate µ; prey proliferation B → B + B, with rate σ; pre-
dation interaction A + B → A + A, with rate λ. Obviously, for λ = 0 the
two populations decouple; while the predators face extinction, the prey pop-
ulation will explode. The average predator and prey population densities a(t)
and b(t) are governed by the linear differential equations ȧ(t) = −µa(t) and
ḃ(t) = σ b(t), whose solutions are exponentials. Interesting competition arises
as a consequence of the nonlinear process governed by the rate λ. In an ex-
act representation of the system’s temporal evolution, we would now need to
know the probability of finding an A-B pair at time t. Moreover, in a spa-
tial Lotka–Volterra model, defined on a d-dimensional lattice, say, on which
the individual particles can move via nearest-neighbor hopping, the predation
reaction should occur only if both predators and prey occupy the same or
adjacent sites. The evolution equations for the mean densities a(t) and b(t)
would then have to be respectively amended by the terms ±λ〈a(x, t) b(x, t)〉.
Here a(x, t) and b(x, t) represent local concentrations, the brackets denote the
ensemble average, and 〈a(x, t) b(x, t)〉 represents A-B cross correlations.
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In the rate equation approximation, it is assumed that the local densities
are uncorrelated, whereupon 〈a(x, t) b(x, t)〉 factorizes to 〈a(x, t)〉 〈b(x, t)〉 =
a(t) b(t). This yields the famous deterministic Lotka–Volterra equations

ȧ(t) = λa(t) b(t) − µa(t) , ḃ(t) = σ b(t) − λa(t) b(t) . (1)

Within this mean-field approximation, the quantity K(t) = λ[a(t) + b(t)] −
σ ln a(t) − µ ln b(t) (essentially the system’s Lyapunov function) is a constant
of motion, K̇(t) = 0. This results in regular nonlinear population oscillations,
whose frequency and amplitude are fully determined by the initial conditions,
a rather unrealistic feature. Moreover Eqs. (1) are known to be unstable with
respect to various model modifications (as discussed in Murray 2002 [2]).

Fig. 1. Field-theoretic Methods. Snapshots of the time evolution (left to right)
of activity fronts emerging in a stochastic Lotka–Volterra model simulated on a
512 × 512 lattice, with periodic boundary conditions and site occupation numbers
restricted to 0 or 1. For the chosen reaction rates, the system is in the species
coexistence phase (with rates σ = 4.0, µ = 0.1, and λ = 2.2), and the corresponding
mean-field fixed point a focus. The red, blue, and black dots respectively represent
predators A, prey B, and empty sites ∅. Reproduced with permission from Ref. [33].

In contrast with the rate equation predictions, the original stochastic spa-
tial Lotka–Volterra system displays much richer behavior (a recent overview
is presented in Ref. [33]): The predator–prey coexistence phase is governed,
for sufficiently large values of the predation rate, by an incessant sequence of
‘pursuit and evasion’ wave fronts that form quite complex dynamical patterns,
as depicted in Figure 1, which shows snapshots taken in a two-dimensional
lattice Monte Carlo simulation where each site could at most be occupied by
a single particle. In finite systems, these correlated structures induce erratic
population oscillations whose features are independent of the initial configura-
tion. Moreover, if locally the prey ‘carrying capacity’ is limited (corresponding
to restricting the maximum site occupation number per lattice site), there ap-
pears an extinction threshold for the predator population that separates the
active coexistence regime through a continuous phase transition from a state
wherein at long times t → ∞ only prey survive. With respect to the preda-
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tor population, this represents an absorbing state: once all A particles have
vanished, they cannot be produced by the stochastic kinetics.
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Fig. 2. Field-theoretic Methods. Static correlation functions (a) CAA(x) (note
the logarithmic scale), and (b) CAB(x), measured in simulations on a 1024 × 1024
lattice without any restrictions on the site occupations. The reaction rates were
σ = 0.1, µ = 0.1, and λ was varied from 0.5 (blue triangles, upside down), 0.75
(green triangles), to 1.0 (red squares). Reproduced with permission from Ref. [34].

A quantitative characterization of the emerging spatial structures utilizes
equal-time correlation functions such as CAA(x − x′, t) = 〈a(x, t) a(x′, t)〉 −
a(t)2 and CAB(x−x′, t) = 〈a(x, t) b(x′, t)〉−a(t) b(t), computed at some large
time t in the (quasi-)stationary state. These are shown in Figure 2 as mea-
sured in computer simulations for a stochastic Lotka–Volterra model (but here
no restrictions on the site occupation numbers of the A or B particles were
implemented). The A-A (and B-B) correlations obviously decay essentially
exponentially with distance x, CAA(x) ∝ CBB(x) ∝ e−|x|/ξ, with roughly
equal correlation lengths ξ for the predators and prey. The cross-correlation
function CAB(x) displays a maximum at six lattice spacings; these positive
correlations indicate the spatial extent of the emerging activity fronts (prey
followed by the predators). At closer distance, the A and B particles become
anti-correlated (CAB(x) < 0 for |x| < 3): prey would not survive close en-
counters with the predators. In a similar manner, one can address temporal
correlations. These appear prominently in the space-time plot of Figure 3 ob-
tained for a Monte Carlo run on a one-dimensional lattice (no site occupation
restrictions), indicating localized population explosion and extinction events.

3 Correlation functions and field theory

The above example demonstrates that stochastic fluctuations and correlations
induced by the dynamical interactions may lead to important features that
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Fig. 3. Field-theoretic Methods. Space-time plot (space horizontal, with peri-
odic boundary conditions; time vertical, proceeding downward) showing the tempo-
ral evolution of a one-dimensional stochastic Lotka–Volterra model on 512 lattice
sites, but without any restrictions on the site occupation numbers (red: predators,
blue: prey, magenta: sites occupied by both species; rates: σ = 0.1, µ = 0.1, λ = 0.1).
Reproduced with permission from Ref. [34].

are not adequately described by mean-field approaches. We thus require tools
that allow us to systematically account for fluctuations in the mathematical
description of stochastic complex systems and evaluate characteristic corre-
lations. Such a toolbox is provided through field theory representations that
are conducive to the identification of underlying symmetries and have proven
useful starting points for the construction of various approximation schemes.
These methods were originally devised and elaborated in the theory of (quan-
tum and classical) many-particle systems and quantum fields (Refs. [3]–[10]
represent a sample of recent textbooks).

3.1 Generating functions

The basic structure of these field theories rests in a (normalized) exponential
probability distribution P [Si] for the N relevant variables Si, i = 1, . . . , N :∫ ∏N

i=1 dSi P [Si] = 1, where the integration extends over the allowed range of
values for the Si; i.e.,

P [Si] =
1

Z exp
(
−A[Si]

)
, Z =

∫ N∏

i=1

dSi exp
(
−A[Si]

)
. (2)

In canonical equilibrium statistical mechanics, A[Si] = H[Si]/kBT is essen-
tially the Hamiltonian, and the normalization is the partition function Z. In
Euclidean quantum field theory, the action A[Si] is given by the Langrangian.

All observables O should be functions of the basic degrees of freedom Si;
their ensemble average thus becomes
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〈
O[Si]

〉
=

∫ N∏

i=1

dSi O[Si]P [Si] =
1

Z

∫ N∏

i=1

dSi O[Si] exp
(
−A[Si]

)
. (3)

If we are interested in n-point correlations, i.e., expectation values of the
products of the variables Si, it is useful to define a generating function

W [ji] =
〈

exp

N∑

i=1

ji Si

〉
, (4)

with W [ji = 0] = 1. Notice that W [ji] formally is just the Laplace transform
of the probability distribution P [Si]. The correlation functions can now be
obtained via partial derivatives of W [ji] with respect to the sources ji:

〈
Si1 . . . Sin

〉
=

∂

∂ji1
. . .

∂

∂jin

W [ji]
∣∣∣
ji=0

. (5)

Connected correlation functions or cumulants can be found by similar partial
derivatives of the logarithm of the generating function:

〈
Si1 . . . Sin

〉

c
=

∂

∂ji1
. . .

∂

∂jin

lnW [ji]
∣∣∣
ji=0

, (6)

e.g., 〈Si〉c = 〈Si〉, and 〈Si Sj〉c = 〈Si Sj〉−〈Si〉 〈Sj〉 = 〈(Si−〈Si〉) (Sj −〈Sj〉)〉.

3.2 Perturbation expansion

For a Gaussian action, i.e., a quadratic form A0[Si] = 1
2

∑
ij Si Aij Sj (for

simplicity we assume real variables Si), one may readily compute the corre-
sponding generating function W0[ji]. After diagonalizing the symmetricN×N
matrix Aij , completing the squares, and evaluating the ensuing Gaussian in-
tegrals, one obtains

Z0 =
(2π)N/2

√
detA

, W0[ji] = exp

(
1

2

N∑

i,j=1

jiA
−1
ij jj

)
, 〈Si Sj〉0 = A−1

ij . (7)

Thus, the two-point correlation functions in the Gaussian ensemble are given
by the elements of the inverse harmonic coupling matrix. An important spe-
cial property of the Gaussian ensemble is that all n-point functions with odd
n vanish, whereas those with even n factorize into sums of all possible per-
mutations of products of two-point functions A−1

ij that can be constructed
by pairing up the variables Si (Wick’s theorem). For example, the four-point
function reads 〈Si Sj Sk Sl〉0 = A−1

ij A−1
kl +A−1

ik A−1
jl + A−1

il A−1
jk .

Let us now consider a general action, isolate the Gaussian contribution,
and label the remainder as the nonlinear, anharmonic, or interacting part,
A[Si] = A0[Si] + Aint[Si]. We then observe that
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Z = Z0

〈
exp

(
−Aint[Si]

)〉

0
,

〈
O[Si]

〉
=

〈
O[Si] exp

(
−Aint[Si]

)〉

0〈
exp

(
−Aint[Si]

)〉

0

, (8)

where the index 0 indicates that the expectation values are computed in the
Gaussian ensemble. The nonlinear terms in Eq. (8) may now be treated per-
turbatively by expanding the exponentials in the numerator and denominator
with respect to the interacting part Aint[Si]:

〈
O[Si]

〉
=

〈
O[Si]

∑∞
ℓ=0

1
ℓ!

(
−Aint[Si]

)ℓ〉

0〈∑∞
ℓ=0

1
ℓ!

(
−Aint[Si]

)ℓ〉

0

. (9)

If the interaction terms are polynomial in the variables Si, Wick’s theorem
reduces the calculation of n-point functions to a summation of products of
Gaussian two-point functions. Since the number of contributing terms grows
factorially with the order ℓ of the perturbation expansion, graphical represen-
tations in terms of Feynman diagrams become very useful for the classifica-
tion and evaluation of the different contributions to the perturbation series.
Basically, they consist of lines representing the Gaussian two-point functions
(‘propagators’) that are connected to vertices that stem from the (polynomial)
interaction terms; for details, see, e.g., Refs. [3]–[10].

3.3 Continuum limit and functional integrals

Discrete spatial degrees of freedom are already contained in the above formal
description: for example, on a d-dimensional lattice with Nd sites the index i
for the fields Si merely needs to entail the site labels, and the total number
of degrees of freedom is just N = Nd times the number of independent rele-
vant quantities. Upon discretizing time, these prescriptions can be extended
in effectively an additional dimension to systems with temporal evolution. We
may at last take the continuum limit by letting N → ∞, while the lattice
constant and elementary time step tend to zero in such a manner that macro-
scopic dynamical features are preserved. Formally, this replaces sums over
lattice sites and time steps with spatial and temporal integrations; the action
A[Si] becomes a functional of the fields Si(x, t); partial derivatives turn into

functional derivatives; and functional integrations
∫ ∏N

i=1 dSi →
∫
D[Si] are

to be inserted in the previous expressions. For example, Eqs. (3), (4), and (6)
become

〈
O[Si]

〉
=

1

Z

∫
D[Si] O[Si] exp

(
−A[Si]

)
, (10)

W [ji] =
〈

exp

∫
ddx

∫
dt

∑

i

ji(x, t)Si(x, t)
〉
, (11)

〈 n∏

j=1

Sij
(xj , tj)

〉

c
=

n∏

j=1

δ

δjij
(xj , tj)

lnW [ji]
∣∣∣
ji=0

. (12)
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Thus we have arrived at a continuum field theory. Nevertheless, we may fol-
low the procedures outlined above; specifically, the perturbation expansion
expressions (8) and (9) still hold, yet with arguments Si(x, t) that are now
fields depending on continuous space-time parameters.

More than thirty years ago, Janssen and De Dominicis independently de-
rived a mapping of the stochastic kinetics defined through nonlinear Langevin
equations onto a field theory action (Janssen 1976 [35], De Dominicis 1976 [36];
reviewed in Janssen 1979 [11]). Almost simultaneously, Doi constructed a Fock
space representation and therefrom a stochastic field theory for classical inter-
acting particle systems from the master equation describing the corresponding
stochastic processes (Doi 1976 [37, 38]). His approach was further developed
by several authors into a powerful method for the study of internal noise and
correlation effects in reaction-diffusion systems (Grassberger and Scheunert
1980 [39], Peliti 1985 [40], Peliti 1986 [41], Lee 1995 [42], Lee and Cardy
1995 [43]; for recent reviews, see Refs. [12, 13]). We shall see below that the
field-theoretic representations of both classical master and Langevin equa-
tions require two independent fields for each stochastic variable. Otherwise,
the computation of correlation functions and the construction of perturbative
expansions fundamentally works precisely as sketched above. But the under-
lying causal temporal structure induces important specific features such as
the absence of ‘vacuum diagrams’ (closed response loops): the denominator in
Eq. (2) is simply Z = 1. (For unified and more detailed descriptions of both
versions of dynamic stochastic field theories, see Refs. [14, 15].)

4 Discrete stochastic interacting particle systems

We first outline the mapping of stochastic interacting particle dynamics as
defined through a master equation onto a field theory action [37]–[43]. Let us
denote the configurational probability for a stochastically evolving system to
be in state α at time t with P (α; t). Given the transition rates Wα→β(t) from
states α to β, a master equation essentially balances the transitions into and
out of each state:

∂P (α; t)

∂t
=

∑

β 6=α

[
Wβ→α(t)P (β; t) −Wα→β(t)P (α; t)

]
. (13)

The dynamics of many complex systems can be cast into the language of
‘chemical’ reactions, wherein certain particle species (upon encounter, say)
transform into different species with fixed (time-independent) reaction rates.
The ‘particles’ considered here could be atoms or molecules in chemistry, but
also individuals in population dynamics (as in our example in section 2.2), or
appropriate effective degrees of freedom governing the system’s kinetics, such
as domain walls in magnets, etc. To be specific, we envision our particles to
propagate via unbiased random walks (diffusion) on a d-dimensional hyper-
cubic lattice, with the reactions occuring according to prescribed rules when
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particles meet on a lattice site. This stochastic interacting particle system is
then at any time fully characterized by the number of particles nA, nB, . . . of
each species A,B, . . . located on any lattice site. The following describes the
construction of an associated field theory action. As important examples, we
briefly discuss annihilation reactions and absorbing state phase transitions.

4.1 Master equation and Fock space representation

The formal procedures are best explained by means of a simple example; thus
consider the irreversible binary annihilation process A + A → A, happening
with rate λ. In terms of the occupation numbers ni of the lattice sites i, we
can construct the master equation associated with these on-site reactions as
follows. The annihilation process locally changes the occupation numbers by
one; the transition rate from a state with ni particles at site i to ni−1 particles
is Wni→ni−1 = λni (ni − 1), whence

∂P (ni; t)

∂t
= λ (ni + 1)ni P (ni + 1; t) − λni (ni − 1)P (ni; t) (14)

represents the master equation for this reaction at site i. As an initial condi-
tion, we can for example choose a Poisson distribution P (ni) = n̄ni

0 e−n̄0/ni!
with mean initial particle density n̄0. In order to capture the complete stochas-
tic dynamics, we just need to add similar contributions describing other pro-
cesses, and finally sum over all lattice sites i.

Since the reactions all change the site occupation numbers by integer val-
ues, a Fock space representation (borrowed from quantum mechanics) turns
out particularly useful. To this end, we introduce the harmonic oscillator or
bosonic ladder operator algebra [ai, aj] = 0 = [a†i , a

†
j ], [ai, a

†
j ] = δij , from

which we construct the particle number eigenstates |ni〉, namely ai |ni〉 =

ni |ni − 1〉, a†i |ni〉 = |ni + 1〉, a†i ai |ni〉 = ni |ni〉. (Notice that a different nor-
malization than in ordinary quantum mechanics has been employed here.) A
general state with ni particles on sites i is obtained from the ‘vacuum’ config-

uration |0〉, defined via ai |0〉 = 0, through the product |{ni}〉 =
∏

i a
†
i

ni |0〉.
To implement the stochastic kinetics, we introduce a formal state vector

as a linear combination of all possible states weighted by the time-dependent
configurational probability:

|Φ(t)〉 =
∑

{ni}

P ({ni}; t) |{ni}〉 . (15)

Simple manipulations then transform the linear time evolution according to
the master equation into an ‘imaginary-time’ Schrödinger equation

∂|Φ(t)〉
∂t

= −H |Φ(t)〉 , |Φ(t)〉 = e−H t |Φ(0)〉 (16)

governed by a stochastic quasi-Hamiltonian (rather, the Liouville time evolu-

tion operator). For on-site reaction processes, Hreac =
∑

iHi(a
†
i , ai) is a sum
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of local contributions; e.g., for the binary annihilation reaction, Hi(a
†
i , ai) =

−λ(1−a†i ) a†i a2
i . It is a straightforward exercise to construct the corresponding

expressions within this formalism for the generalization kA→ ℓA,

Hi(a
†
i , ai) = −λ

(
a†i

ℓ − a†i
k
)
ak

i , (17)

and for nearest-neighbor hopping with rate D between adjacent sites 〈ij〉,

Hdiff = D
∑

<ij>

(
a†i − a†j

)(
ai − aj

)
. (18)

The two contributions for each process may be interpreted as follows: The
first term in Eq. (17) corresponds to the actual process, and describes how
many particles are annihilated and (re-)created in each reaction. The second

term encodes the ‘order’ of each reaction, i.e., the number operator a†i ai ap-

pears to the kth power, but in the normal-ordered form a†i
k
ak

i , for a kth-order
process. These procedures are readily adjusted for reactions involving multi-
ple particle species. We merely need to specify the occupation numbers on
each site and correspondingly introduce additional ladder operators bi, ci, . . .
for each new species, with [ai, b

†
i ] = 0 = [ai, c

†
i ] etc. For example, consider the

reversible reaction kA+ ℓB ⇀↽ mC with forward rate λ and backward rate σ;
the associated reaction Hamiltonian reads

Hreac = −
∑

i

(
c†i

m − a†i
k
b†i

ℓ
)(
λak

i b
ℓ
i − σ cmi

)
. (19)

Similarly, for the Lotka–Volterra model of section 2.2, one finds

Hreac = −
∑

i

[
µ
(
1 − a†i

)
ai + σ

(
b†i − 1

)
b†ibi + λ

(
a†i − b†i

)
a†iaibi

]
. (20)

Note that all the above quasi-Hamiltonians are non-Hermitean operators,
which naturally reflects the creation and destruction of particles.

Our goal is to compute averages and correlation functions with respect
to the configurational probability P ({ni}; t). Returning to a single-species
system (again, the generalization to many particle species is obvious), this is
accomplished with the aid of the projection state 〈P| = 〈0|∏i e

ai , for which

〈P|0〉 = 1 and 〈P|a†i = 〈P|, since [eai , a†j ] = eai δij . For the desired statistical
averages of observables (which must all be expressible as functions of the
occupation numbers {ni}), one obtains

〈O(t)〉 =
∑

{ni}

O({ni})P ({ni}; t) = 〈P|O({a†i ai}) |Φ(t)〉 . (21)

For example, as a consequence of probability conservation, 1 = 〈P|Φ(t)〉 =

〈P|e−H t|Φ(0)〉. Thus necessarily 〈P|H = 0; upon commuting e
∑

i
ai with
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H , the creation operators are shifted a†i → 1 + a†i , whence this condition is

fulfilled provided Hi(a
†
i → 1, ai) = 0, which is indeed satisfied by our above

explicit expressions (17) and (18). Through this prescription, we may replace

a†i ai → ai in all averages; e.g., the particle density becomes a(t) = 〈ai(t)〉.
In the bosonic operator representation above, we have assumed that no

restrictions apply to the particle occupation numbers ni on each site. If ni ≤
2s+ 1, one may instead employ a representation in terms of spin s operators.
For example, particle exclusion systems with ni = 0 or 1 can thus be mapped
onto non-Hermitean spin 1/2 ‘quantum’ systems (for recent overviews, see
Refs. [16, 17]). Specifically in one dimension, such representations in terms of
integrable spin chains have been very fruitful. An alternative approach uses
the bosonic theory, but incorporates the site occupation restrictions through

exponentials in the number operators e−a†

i
ai (van Wijland 2001 [44]).

4.2 Continuum limit and field theory

As a next step, we follow an established route in quantum many-particle
theory [5] and proceed towards a field theory representation through con-
structing the path integral equivalent to the ‘Schrödinger’ dynamics (16)
based on coherent states, which are right eigenstates of the annihilation
operator, ai |φi〉 = φi |φi〉, with complex eigenvalues φi. Explicitly, |φi〉 =

exp
(
− 1

2 |φi|2 + φi a
†
i

)
|0〉, and these coherent states satisfy the overlap for-

mula 〈φj |φi〉 = exp
(
− 1

2 |φi|2 − 1
2 |φj |2 + φ∗j φi

)
, and the (over-)completeness

relation
∫ ∏

i d
2φi |{φi}〉 〈{φi}| = π. Upon splitting the temporal evolution

(16) into infinitesimal increments, standard procedures (elaborated in detail
in Ref. [13]) eventually yield an expression for the configurational average

〈O(t)〉 ∝
∫ ∏

i

dφi dφ
∗
i O({φi}) e−A[φ∗

i ,φi;t] , (22)

which is of the form (3), with the action

A[φ∗i , φi; tf ] =
∑

i

(
−φi(tf ) +

∫ tf

0

dt

[
φ∗i

∂φi

∂t
+Hi(φ

∗
i , φi)

]
− n̄0 φ

∗
i (0)

)
,

(23)
where the first term originates from the projection state, and the last one
stems from the initial Poisson distribution. Through this procedure, in the
original quasi-Hamiltonian the creation and annihilation operators a†i and ai

are simply replaced with the complex numbers φ∗i and φi.
Finally, we proceed to the continuum limit, φi(t) → ψ(x, t), φ∗i (t) →

ψ̂(x, t). The ‘bulk’ part of the action then becomes

A[ψ̂, ψ] =

∫
ddx

∫
dt

[
ψ̂

(
∂

∂t
−D∇

2

)
ψ + Hreac(ψ̂, ψ)

]
, (24)
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where the discrete hopping contribution (18) has naturally turned into a con-
tinuum diffusion term. We have thus arrived at a microscopic field theory for
stochastic reaction–diffusion processes, without invoking any assumptions on
the form or correlations of the internal reaction noise. Note that we require
two independent fields ψ̂ and ψ to capture the stochastic dynamics. Actions
of the type (24) may serve as a basis for further systematic coarse-graining,
constructing a perturbation exapnsion as outlined in section 3.2, and perhaps
a subsequent renormalization group analysis [13]–[15]. We remark that it is

often useful to perform a shift in the field ψ̂ about the mean-field solution,
ψ̂(x, t) = 1 + ψ̃(x, t). For occasionally, the resulting field theory action allows
the derivation of an equivalent Langevin dynamics, see section 5 below.

4.3 Annihilation processes

Let us consider our simple single-species example kA→ ℓA. The reaction part
of the corresponding field theory action reads

Hreac(ψ̂, ψ) = −λ
(
ψ̂ℓ − ψ̂k

)
ψk , (25)

see Eq. (17). It is instructive to study the classical field equations, namely

δA/δψ = 0, which is always solved by ψ̂ = 1, reflecting probability conserva-

tion, and δA/δψ̂ = 0, which, upon inserting ψ̂ = 1 yields

∂ψ(x, t)

∂t
= D∇2 ψ(x, t) − (k − ℓ)λψ(x, t)k , (26)

i.e., the mean-field equation for the local particle density ψ(x, t), supplemented
with a diffusion term. For k = 1, the particle density grows (k < ℓ) or decays
(k > ℓ) exponentially. The solution of the rate equation for k > 1, a(t) =

〈ψ(x, t)〉 =
[
a(0)1−k + (k − l)(k − 1)λ t

]−1/(k−1)
implies a divergence within

a finite time for k < ℓ, and an algebraic decay ∼ (λ t)−1/(k−1) for k > ℓ.
The full field theory action, which was derived from the master equation

defining the very stochastic process, provides a means of systematically includ-
ing fluctuations in the mathematical treatment. Through a dimensional analy-
sis, we can determine the (upper) critical dimension below which fluctuations
become sufficiently strong to alter these power laws. Introducing an inverse
length scale κ, [x] ∼ κ−1, and applying diffusive temporal scaling, [D t] ∼ κ−2,

and [ψ̂(x, t)] ∼ κ0, [ψ(x, t)] ∼ κd in d spatial dimensions, the reaction rate
in terms of the diffusivity scales according to [λ/D] ∼ κ2−(k−1)d. In large di-
mensions, the kinetics is reaction-limited, and at least qualitatively correctly
described by the mean-field rate equation. In low dimensions, the dynamics
becomes diffusion-limited, and the annihilation reactions generate depletion
zones and spatial particle anti-correlations that slow down the density decay.
The nonlinear coupling λ/D becomes dimensionless at the boundary critical
dimension dc(k) = 2/(k − 1) that separates these two distinct regimes. Thus
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in physical dimensions, intrinsic stochastic fluctuations are relevant only for
pair and triplet annihilation reactions. By means of a renormalization group
analysis (for details, see Ref. [13]) one finds for k = 2 and d < dc(2) = 2:
a(t) ∼ (D t)−d/2 [41, 42], as confirmed by exact solutions in one dimension.
Precisely at the critical dimension, the mean-field decay laws acquire loga-
rithmic corrections, namely a(t) ∼ (D t)−1 ln(D t) for k = 2 at dc(2) = 2, and

a(t) ∼
[
(D t)−1 ln(D t)

]1/2
for k = 3 at dc(3) = 1. Annihilation reaction be-

tween different species (e.g., A+B → ∅) may introduce additional correlation
effects, such as particle segregation and the confinement of active dynamics
to narrow reaction zones [43]; a recent overview can be found in Ref. [13].

4.4 Active to absorbing state phase transitions

Competition between particle production and decay processes leads to even
richer scenarios, and can induce genuine nonequilibrium transitions that sep-
arate ‘active’ phases (wherein the particle densities remain nonzero in the
long-time limit) from ‘inactive’ stationary states (where the concentrations
ultimately vanish). A special but abundant case are absorbing states, where,
owing to the absence of any agents, stochastic fluctuations cease entirely, and
no particles can be regenerated [18, 19]. These occur in a variety of systems
in nature (Refs. [20, 21] contain extensive discussions of various model sys-
tems); examples are chemical reactions involving an inert state ∅, wherefrom
no reactants A are released anymore, or stochastic population dynamics mod-
els, combining diffusive migration of a species A with asexual reproduction
A → 2A (with rate σ), spontaneous death A → ∅ (at rate µ), and lethal
competition 2A→ A (with rate λ). In the inactive state, where no population
members A are left, clearly all processes terminate. Similar effective dynamics
may be used to model certain nonequilibrium physical systems, such as the
domain wall kinetics in Ising chains with competing Glauber and Kawasaki
dynamics. Here, spin flips ↑↑↓↓→↑↑↑↓ and ↑↑↓↑→↑↑↑↑ may be viewed as do-
main wall (A) hopping and pair annihilation 2A→ ∅, whereas spin exchange
↑↑↓↓→↑↓↑↓ represents a branching process A → 3A. Notice that the para-
and ferromagnetic phases respectively map onto the active and inactive ‘par-
ticle’ states. The ferromagnetic state becomes absorbing if the spin flip rates
are taken at zero temperature.

The reaction quasi-Hamiltonian corresponding to the stochastic dynamics
of the aforementioned population dynamics model reads

Hreac(ψ̂, ψ) =
(
1 − ψ̂

) (
σ ψ̂ψ − µψ − λ ψ̂ψ2

)
. (27)

The associated rate equation is the Fisher–Kolmogorov equation (see Murray
2002 [2])

ȧ(t) = (σ − µ) a(t) − λa(t)2 , (28)

which yields both inactive and active phases: For σ < µ we have a(t→ ∞) →
0, whereas for σ > µ the density eventually saturates at as = (σ − µ)/λ. The
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explicit time-dependent solution a(t) = a(0) as

/[
a(0) + [as − a(0)] e(µ−σ)t

]

shows that both stationary states are approached exponentially in time. They
are separated by a continuous nonequilibrium phase transition at σ = µ, where
the temporal decay becomes algebraic, a(t) = a(0)/[1 + a(0)λ t]) → 1/(λ t) as
t→ ∞, independent of the initial density a(0). As in second-order equilibrium
phase transitions, however, critical fluctuations are expected to invalidate the
mean-field power laws in low dimensions d < dc.

If we now shift the field ψ̂ about its stationary value 1 and rescale according
to ψ̂(x, t) = 1 +

√
σ/λ S̃(x, t) and ψ(x, t) =

√
λ/σ S(x, t), the (bulk) action

becomes

A[S̃, S] =

∫
ddx

∫
dt

[
S̃

(
∂

∂t
+D

(
r − ∇

2
))

S − u
(
S̃ − S

)
S̃ S + λ S̃2 S2

]
.

(29)
Thus, the three-point vertices have been scaled to identical coupling strengths
u =

√
σ λ, which in fact represents the effective coupling of the perturbation

expansion. Its scaling dimension is [u] = µ2−d/2, whence we infer the upper
critical dimension dc = 4. The four-point vertex ∝ λ, with [λ] = µ2−d, is
then found to be irrelevant in the renormalization group sense, and can be
dropped for the computation of universal, asymptotic scaling properties. The
action (29) with λ = 0 is known as Reggeon field theory (Moshe 1978 [22]); it
satisfies a characteristic symmetry, namely invariance under so-called rapidity
inversion S(x, t) ↔ −S̃(x,−t). Remarkably, it has moreover been established
that the field theory action (29) describes the scaling properties of critical
directed percolation clusters [45, 46, 47]. The fluctuation-corrected universal
power laws governing the vicinity of the phase transition can be extracted by
renormalization group methods (reviewed for directed percolation in Ref. [23]).
Table 1 compares the analytic results obtained in an ǫ expansion about the
critical dimension (ǫ = 4 − d) with the critical exponent values measured in
Monte Carlo computer simulations [20, 21].

Table 1. Field-theoretic Methods. Comparison of the values for the critical
exponents of the directed percolation universality class measured in Monte Carlo
simulations with the analytic renormalization group results within the ǫ = 4 − d
expansion: ξ denotes the correlation length, tc the characteristic relaxation time, as

the saturation density in the active state, and ac(t) the critical density decay law.

Scaling exponent d = 1 d = 2 d = 4 − ǫ

ξ ∼ |τ |−ν ν ≈ 1.100 ν ≈ 0.735 ν = 1/2 + ǫ/16 + O(ǫ2)
tc ∼ ξz ∼ |τ |−zν z ≈ 1.576 z ≈ 1.73 z = 2 − ǫ/12 + O(ǫ2)
as ∼ |τ |β β ≈ 0.2765 β ≈ 0.584 β = 1 − ǫ/6 + O(ǫ2)
ac(t) ∼ t−α α ≈ 0.160 α ≈ 0.46 α = 1 − ǫ/4 + O(ǫ2)
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According to a conjecture originally formulated by Janssen and Grass-
berger, any continuous nonequilibrium phase transition from an active to an
absorbing state in a system governed by Markovian stochastic dynamics that
is decoupled from any other slow variable, and in the absence of special addi-
tional symmetries or quenched randomness, should in fact fall in the directed
percolation universality class (Janssen 1981 [47]), Grassberger 1982 [48]). This
statement has indeed been confirmed in a large variety of model sytems (many
examples are listed in Refs. [20, 21]). It even pertains to multi-species gen-
eralizations (Janssen 2001 [49]), and applies for instance to the predator ex-
tinction threshold in the stochastic Lotka–Volterra model with restricted site
occupation numbers mentioned in section 2.2 [33].

5 Stochastic differential equations

This section explains how dynamics governed by Langevin-type stochastic

differential equations can be represented through a field-theoretic formalism
[35, 36, 11]. Such a description is especially useful to capture the effects of
external noise on the temporal evolution of the relevant quantities under con-
sideration, which encompasses the case of thermal noise induced by the cou-
pling to a heat bath in thermal equilibrium at temperature T . The underlying
assumption in this approach is that there exists a natural separation of time

scales between the slow variables Si, and all other degrees of freedom ζi which
in comparison fluctuate rapidly, and are therefore summarily gathered in zero-
mean noise terms, assumed to be uncorrelated in space and time,

〈ζi(x, t)〉 = 0 , 〈ζi(x, t) ζj(x′, t′)〉 = 2Lij [Si] δ(x − x′) δ(t− t′) . (30)

Here, the noise correlator 2Lij[Si] may be a function of the slow system vari-
ables Si, and also contain operators such as spatial derivatives. A general set
of coupled Langevin-type stochastic differential equations then takes the form

∂Si(t)

∂t
= Fi[Si] + ζi , (31)

where we may decompose the ‘systematic forces’ into reversible terms of
microscopic origin and relaxational contributions that are induced by the
noise and drive the system towards its stationary state (see below), i.e.:
Fi[Si] = F rev

i [Si] + F rel
i [Si]. Both ingredients may contain nonlinear terms

as well as mode couplings between different variables. Again, we first intro-
duce the abstract formalism, and then proceed to discuss relaxation to thermal
equilibrium as well as some examples for nonequilibrium Langevin dynamics.

5.1 Field theory representation of Langevin equations

The shortest and most general route towards a field theory representation of
the Langevin dynamics (31) with noise correlations (30) starts with one of the



20 Uwe Claus Täuber

most elaborate ways to expand unity, namely through a product of functional
delta functions (for the sake of compact notations, we immediately employ
a functional integration language, but in the end all the path integrals are
defined through appropriate discretizations in space and time):

1 =

∫ ∏

i

D[Si]
∏

(x,t)

δ

(
∂Si(x, t)

∂t
− Fi[Si](x, t) − ζi(x, t)

)
(32)

=

∫ ∏

i

D[iS̃i]D[Si] exp

[
−

∫
ddx

∫
dt

∑

i

S̃i

(
∂Si

∂t
− Fi[Si] − ζi

)]
.

In the second line we have used the Fourier representation of the (functional)

delta distribution by means of the purely imaginary auxiliary variables S̃i (also
called Martin–Siggia–Rose response fields [50]). Next we require the explicit
form of the noise probability distribution that generates the correlations (30);
for simplicity, we may employ the Gaussian

W [ζi] ∝ exp

[
−1

4

∫
ddx

∫ tf

0

dt
∑

ij

ζi(x, t)
[
L−1

ij ζj(x, t)
]]
. (33)

Inserting the identity (32) and the probability distribution (33) into the
desired stochastic noise average of any observable O[Si], we arrive at

〈O[Si]〉ζ ∝
∫ ∏

i

D[iS̃i]D[Si] exp

[
−

∫
ddx

∫
dt

∑

i

S̃i

(
∂Si

∂t
− Fi[Si]

)]
O[Si]

×
∫ ∏

i

D[ζi] exp

(
−

∫
ddx

∫
dt

∑

i

[
1

4
ζi

∑

j

L−1
ij ζj − S̃i ζi

])
. (34)

Subsequently evaluating the Gaussian integrals over the noise ζi yields at last

〈O[Si]〉ζ =

∫ ∏

i

D[Si]O[Si]P [Si] , P [Si] ∝
∫ ∏

i

D[iS̃i] e
−A[S̃i,Si] , (35)

with the statistical weight governed by the Janssen–De Dominicis ‘response’
functional [35, 36]

A[S̃i, Si] =

∫
ddx

∫ tf

0

dt
∑

i



S̃i

(
∂Si

∂t
− Fi[S]

)
− S̃i

∑

j

Lij S̃j



 . (36)

It should be noted that in the above manipulations, we have omitted the func-
tional determinant from the variable change {ζi} → {Si}. This step can be
justified through applying a forward (Itô) discretization (for technical details,

see Refs. [51, 11, 15]). Normalization implies
∫ ∏

i D[iS̃i]D[Si] e
−A[S̃i,S]i = 1.

The first term in the action (36) encodes the temporal evolution according
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to the systematic terms in the Langevin equations (31), whereas the second
term specifies the noise correlations (30). Since the auxiliary fields appear only
quadratically, they could be eliminated via completing the squares and Gaus-
sian integrations. This results in the equivalent Onsager–Machlup functional
which however contains squares of the nonlinear terms and the inverse of the
noise correlator operators; the form (36) is therefore usually more convenient
for practical purposes. The Janssen–De Dominicis functional (36) takes the
form of a (d+ 1)-dimensional statistical field theory with again two indepen-

dent sets of fields Si and S̃i. It may serve as a starting point for systematic
approximation schemes including perturbative expansions, and subsequent
renormalization group treatments. Causality is properly incorporated in this
formalism which has important technical implications [51, 11, 15].

5.2 Thermal equilibrium and relaxational critical dynamics

Consider the dynamics of a system that following some external perturbation
relaxes towards thermal equilibrium governed by the canonical Boltzmann
distribution at fixed temperature T ,

Peq[Si] =
1

Z(T )
exp (−H[Si]/kBT ) . (37)

The relaxational term in the Langevin equation (31) can then be specified as

F rel
i [Si] = −λi

δH[Si]

δSi
, (38)

with Onsager coefficients λi; for nonconserved fields, λi is a positive relaxation
rate. On the other hand, if the variable Si is a conserved quantity (such as the
energy density), there is an associated continuity equation ∂Si/∂t+∇·Ji = 0,
with a conserved current that is typically given by a gradient of the field Si:
Ji = −Di ∇Si+. . .; as a consequence, the fluctuations of the fields Si will relax
diffusively with diffusivity Di, and λi = −Di ∇2 becomes a spatial Laplacian.

In order for P(t) → Peq as t → ∞, the stochastic Langevin dynamics
needs to satisfy two conditions, which can be inferred from the associated
Fokker–Planck equation [24, 15]. First, the reversible probability current is
required to be divergence-free in the space spanned by the fields Si:

∫
ddx

∑

i

δ

δSi(x)

(
F rev

i [Si] e
−H[Si]/kBT

)
= 0 . (39)

This condition severely constrains the reversible force terms. For example,
for a system whose microscopic time evolution is determined through the
Poisson brackets Qij(x, x

′) = {Si(x), Sj(x
′)} = −Qji(x

′, x) (to be replaced
by commutators in quantum mechanics), one finds for the reversible mode-
coupling terms [24]
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F rev
i [Si](x) = −

∫
ddx′

∑

j

[
Qij(x, x

′)
δH[Si]

δSj(x′)
− kBT

δQij(x, x
′)

δSj(x′)

]
. (40)

Second, the noise correlator in Eq. (30) must be related to the Onsager relax-
ation coefficients through the Einstein relation

Lij = kBT λi δij . (41)

To provide a specific example, we focus on the case of purely relaxational
dynamics (i.e., reversible force terms are absent entirely), with the (meso-
scopic) Hamiltonian given by the Ginzburg–Landau–Wilson free energy that
describes second-order phase transitions in thermal equilibrium for an n-
component order parameter Si, i = 1, . . . , N [3]-[10]:

H[Si] =

∫
ddx

N∑

i=1

[
r

2
[Si(x)]

2 +
1

2
[∇Si(x)]

2 +
u

4!
[Si(x)]

2
N∑

j=1

[Sj(x)]
2

]
, (42)

where the control parameter r ∝ T − Tc changes sign at the critical tempera-
ture Tc, and the positive constant u governs the strength of the nonlinearity.
If we assume that the order parameter itself is not conserved under the dy-
namics, the associated response functional reads

A[S̃i, Si] =

∫
ddx

∫
dt

∑

i

S̃i

(
∂

∂t
+ λi

δH[Si]

δSi
− kBT λi S̃i

)
. (43)

This case is frequently referred to as model A critical dynamics [25]. For a
diffusively relaxing conserved field, termed model B in the classification of
Ref. [25], one has instead

A[S̃i, Si] =

∫
ddx

∫
dt

∑

i

S̃i

(
∂

∂t
−Di ∇2 δH[Si]

δSi
+ kBT Di ∇2 S̃i

)
. (44)

Consider now the external fields hi that are thermodynamically conjugate to
the mesoscopic variables Si, i.e., H(hi) = H(hi = 0)−

∫
ddx

∑
i hi(x)Si(x). For

the simple relaxational models (43) and (44), we may thus immediately relate
the dynamic susceptibility to two-point correlation functions that involve the
auxiliary fields S̃i [51], namely

χij(x− x′, t− t′) =
δ〈Si(x, t)〉
δhj(x′, t′)

∣∣∣∣
hi=0

= kBT λi

〈
Si(x, t) S̃j(x

′, t′)
〉

(45)

for nonconserved fields, while for model B dynamics

χij(x− x′, t− t′) = −kBT Di

〈
Si(x, t)∇2 S̃j(x

′, t′)
〉
. (46)

Finally, in thermal equilibrium the dynamic response and correlation functions
are related through the fluctuation–dissipation theorem [51]

χij(x− x′, t− t′) = Θ(t− t′)
∂

∂t′
〈Si(x, t)Sj(x

′, t′)〉 . (47)
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5.3 Driven diffusive systems and interface growth

We close this section by listing a few intriguing examples for Langevin sytems
that describe genuine out-of-equilibrium dynamics. First, consider a driven
diffusive lattice gas (an overview is provided in Ref. [26]), namely a parti-
cle system with conserved total density with biased diffusion in a specified
(‘‖’) direction. The coarse-grained Langevin equation for the scalar density
fluctuations thus becomes spatially anisotropic [52, 53],

∂S(x, t)

∂t
= D

(
∇2

⊥ + c∇2
‖

)
S(x, t) +

D g

2
∇‖S(x, t)2 + ζ(x, t) , (48)

and similarly for the conserved noise with 〈ζ〉 = 0,

〈ζ(x, t) ζ(x′, t′)〉 = −2D
(
∇2

⊥ + c̃∇2
‖

)
δ(x− x′) δ(t− t′) . (49)

Notice that the drive term ∝ g breaks both the system’s spatial reflection
symmetry as well as the Ising symmetry S → −S. In one dimension, Eq. (48)
coincides with the noisy Burgers equation [54], and since in this case (only)
the condition (39) is satisfied, effectively represents a system with equilibrium
dynamics. The corresponding Janssen–De Dominicis response functional reads

A[S̃, S] =

∫
ddx

∫
dt S̃

[
∂S

∂t
−D

(
∇2

⊥ + c∇2
‖

)
S+D

(
∇2

⊥ + c̃∇2
‖

)
S̃−Dg

2
∇‖S

2

]
.

(50)
It describes a ‘massless’ theory, hence we expect the system to generically
display scale-invariant features, without the need to tune to a special point in
parameter space. The large-scale scaling properties can be analyzed by means
of the dynamic renormalization group [52, 53].

Another famous example for generic scale invariance emerging in a nonequi-
librium system is curvature-driven interface growth, as captured by the
Kardar–Parisi–Zhang equation [55]

∂S(x, t)

∂t
= D∇2S(x, t) +

Dg

2
[∇S(x, t)]2 + ζ(x, t) , (51)

with again 〈ζ〉 = 0 and the noise correlations

〈ζ(x, t) ζ(x′, t′)〉 = 2Dδ(x− x′)δ(t− t′) . (52)

(For more details and intriguing variants, see e.g. Refs. [27]-[29].) The associ-
ated field theory action

A[S̃, S] =

∫
ddx

∫
dt

[
S̃

(
∂S

∂t
−D∇2S − Dg

2
[∇S]2

)
−D S̃2

]
(53)

encodes surprisingly rich behavior including a kinetic roughening transition
separating two distinct scaling regimes in dimensions d > 2 [27]-[29].
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6 Future directions

The rich phenomenology in many complex systems is only inadequately cap-
tured within widely used mean-field approximations, wherein both statistical
fluctuations and correlations induced by the subunits’ interactions or the sys-
tem’s kinetics are neglected. Modern computational techniques, empowered
by recent vast improvements in data storage and tact frequencies, as well as
the development of clever algorithms, are clearly invaluable in the theoretical
study of model systems displaying the hallmark features of complexity. Yet in
order to gain a deeper understanding and to maintain control over the typi-
cally rather large parameter space, numerical investigations need to be sup-
plemented by analytical approaches. The field-theoretic methods described in
this article represent a powerful set of tools to systematically include fluctua-
tions and correlations in the mathematical description of complex stochastic
dynamical systems composed of many interacting degrees of freedom. They
have already been very fruitful in studying the intriguing physics of highly
correlated and strongly fluctuating many-particle systems. Aside from many
important quantitative results, they have provided the basis for our funda-
mental understanding of the emergence of universal macroscopic features.

At the time of writing, the transfer of field-theoretic methods to prob-
lems in chemistry, biology, and other fields such as sociology has certainly
been initiated, but is still limited to rather few and isolated case studies. This
is understandable, since becoming acquainted with the intricate technicali-
ties of the field theory formalism requires considerable effort. Also, whereas
it is straightforward to write down the actions corresponding the stochas-
tic processes defined via microscopic classical discrete master or mesoscopic
Langevin equations, it is usually not that easy to properly extract the de-
sired information about large-scale structures and long-time asymptotics. Yet
if successful, one tends to gain insights that are not accessible by any other
means. I therefore anticipate that the now well-developed methods of quan-
tum and statistical field theory, with their extensions to stochastic dynamics,
will find ample successful applications in many different areas of complexity
science. Naturally, further approximation schemes and other methods tailored
to the questions at hand will have to be developed, and novel concepts be de-
vised. I look forward to learning about and hopefully also participating in
these exciting future developments.
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