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Abstract

Understanding the lifetime behavior of their products is crucial to the success of any company

in the manufacturing and engineering industries. Statistical methods for lifetime data are a key

component to achieving this level of understanding. Sometimes a statistical procedure must

be updated to be adequate for modeling specific data as is discussed in Chapter 2. However,

there are cases in which the methods used in industrial standards are themselves inadequate.

This is distressing as more appropriate statistical methods are available but remain unused.

The research in Chapter 4 deals with such a situation. The research in Chapter 3 serves as

a combination of both scenarios and represents how both statisticians and engineers from the

industry can join together to yield beautiful results.

After introducing basic concepts and notation in Chapter 1, Chapter 2 focuses on lifetime

prediction for a product consisting of multiple components. During the production period,

some components may be upgraded or replaced, resulting in a new “generation” of component.

Incorporating this information into a competing risks model can greatly improve the accuracy

of lifetime prediction. A generalized competing risks model is proposed and simulation is used

to assess its performance.

In Chapter 3, optimal and compromise test plans are proposed for constant amplitude

fatigue testing. These test plans are based on a nonlinear physical model from the fatigue

literature that is able to better capture the nonlinear behavior of fatigue life and account

for effects from the testing environment. Sensitivity to the design parameters and modeling

assumptions are investigated and suggestions for planning strategies are proposed.

Chapter 4 considers the analysis of ADDT data for the purposes of estimating a thermal

index. The current industry standards use a two-step procedure involving least squares re-

gression in each step. The methodology preferred in the statistical literature is the maximum

likelihood procedure. A comparison of the procedures is performed and two published datasets

are used as motivating examples. The maximum likelihood procedure is presented as a more

viable alternative to the two-step procedure due to its ability to quantify uncertainty in data

inference and modeling flexibility.
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Chapter 1 General Introduction

In this chapter, a brief introduction will be given to the field of lifetime data analysis

with specific emphasis on reliability methodology. Any necessary terminology and concepts

required for understanding the material in the following chapters will also be introduced and

discussed.

1.1 Lifetime Data Analysis and Reliability

Lifetime data analysis is the branch of statistics and probability theory in which the

primary variable of interest is the time until some event. This event is most commonly

terminal, such as death or failure, but need not always be as is the case in recurrent events.

Furthermore, “time” need not necessarily be associated with clock or calendar time as it can

also be associated with steps in a sequence or runs of a process. Thus, lifetime data analysis

is actually quite flexible in its application. Lifetime data analysis can be especially useful in

obtaining reliability information on industrial products and systems. A general and useful

introduction to the methods used in analyzing reliability data can be found in the textbooks

by Meeker and Escobar (1998) and Lawless (2003).

1.1.1 Accelerated Failure Time and Log-Location Scale Models

For the purposes of this dissertation, T will denote the continuous time to failure of a

randomly selected product. This random variable has a survival function S(t; x,θ) = Pr(T >

t|x,θ) which may be dependent on external factors x and governed by parameters θ. The

cumulative distribution function (cdf) of T is the complement F (t; x,θ) = 1 − S(t; x,θ) of

the survival function and the probability density function (pdf) of T is given by f(t; x,θ) =

dF (t; x,θ)/dt = −dS(t; x,θ)/dt.

There are several classes of models used in analyzing lifetime data (see the monograph

1



by Bagdonavicius and Nikulin (2010) for a full discussion). In this dissertation, the class of

models will be restricted to that of accelerated failure time (AFT) models. These models

assume that any external factors that affect the lifetime of a product do so by “accelerating”

the lifetime. This can expressed in the survival function as

S(t; x,θ) = G[r(t,x);θ] (1.1)

where G is a base survival function and r is some specified function. In this dissertation, G is

specified to be a member of the log-location-scale family of distributions. These models are

very common in reliability due to their ease of use and interpretation. Specifically, a lifetime

distribution is log-location-scale if its pdf or cdf can be written as

f(t) =
1

σt
φ

[
log (t)− µ

σ

]
(1.2)

F (t) = Φ

[
log (t)− µ

σ

]
(1.3)

where φ and Φ are the standard pdf and cdf of a specified location-scale distribution. Two

popular examples of log-locations-scale distributions are the lognormal distribution, with φ =

φNORM and Φ = ΦNORM, and the Weibull distribution, with φ(z) = exp [z − exp (z)] and

Φ(z) = 1 − exp [− exp (z)], where z = [log (t) − µ]/σ. Each log-location-scale model has two

parameters: a location parameter µ and a scale parameter σ. If the lifetime is dependent on

external factors, this relationship is most commonly expressed through the location parameter

as a function µ(x). Thus, in the terminology of (1.1), r(t,x) = [log (t)− µ(x)]/σ. A generous

discussion of location-scale and log-location-scale distribution models can be found in (Meeker

and Escobar, 1998, Chapter 4) and (Lawless, 2003, Chapter 1).

2



1.1.2 Competing Risks

Often an industrial product or system consists of multiple components with the overall

system lifetime determined by the lifetimes of each component. If the system lifetime corre-

sponds to the minimum component lifetime, the situation is referred to as “competing risks” as

the components are in essence “competing” for the lifetime of the system. Several approaches

exist in the literature for modeling competing risks data. The classical approach (e.g., Chiang,

1961; David and Moeschberger, 1978; Crowder, 2001) assumes the risks are independent with

individual lifetime distributions. Alternative methods include the use of sub-hazard functions

(Prentice et al., 1978) and mixture models (Maller and Zhou, 2002). Specification of AFT

log-location-scale models in the context of classical competing risks is discussed in Section 2.2.

An excellent reference for competing risks and other multivariate data analysis techniques in

reliability is the recent book by Crowder (2012).

1.2 Accelerated Testing

Many industrial systems and products are highly reliable, with lifetimes consisting of

several years. While such reliability is by no means undesirable, in terms of testing not every

company and/or manufacturer has the luxury of waiting such long periods for results. As

such, it is common for experimenters to impose greater levels of stress on their samples than

would usually be encountered so as to accelerate the time to failure. After selecting varying

levels of stress or “accelerating” factors and performing the desired number of runs, a model

relating the stress to the lifetime is estimated and then used to extrapolate to the usual or

“use” stress levels to retrieve the predicted lifetime. This procedure is known as accelerated

testing.

1.2.1 Lifetime Testing

The most common form of accelerated testing is accelerated lifetime testing (ALT), in

which the test under the accelerating factor level is run until the product fails. Much of the

3



research in this area has focused on the design of optimal ALTs with respect to a specific

criterion. Examples of optimality criterion include minimizing the variance of parameter

estimates, the variance of a lifetime predictor, or the variance of a quantile estimator. A

good introduction to ALT methodology can be found in Nelson (1990) with a comprehensive

bibliography on the ALT literature given by Nelson (2005).

In this dissertation, the ALT scenario we consider is a special case known as fatigue testing.

This form of testing is used in the material sciences and involves subjecting a material sample

to varying levels of tensile (stretching) or compressive (squeezing) stress. The typical form of

fatigue testing is cyclic constant amplitude testing, which involves specifying a range of stresses

though which to cycle until failure is achieved. The maximum stress is often considered

the accelerating factor for modeling purposes. Some introductory texts for fatigue testing

include Harris (2003) and Vassilopoulos and Keller (2011). Degrieck and Van Paepegem

(2001) presents a thorough review of some of the models and methods used in analyzing

fatigue in composite materials, which are the materials considered here. In regards to optimal

ALT designs for fatigue testing, a good example is Pascual (2003), who derives several plans

based on different optimality criterion for constant amplitude testing.

1.2.2 Degradation Testing

An alternative form of accelerated testing is accelerated degradation testing (ADT), in

which repeated observations are made on a test subject under an accelerating factor. The

measurements on the test subject are referred to as a “degradation” measure and it is usually

assumed that they follow a degradation path which is a function of the accelerating factor

and time. Once the degradation measures drop below a pre-specified level, a “soft” failure is

said to have occurred. The research presented in this dissertation is a special case of ADT in

which the observations result in the destruction of the subject. This type of ADT is known as

accelerated destructive degradation testing (ADDT). Due to the destructive nature, greater

care is needed in the planning of the test and analysis of the resulting data. A useful reference

for accelerated degradation testing and ADDT is the article by Meeker et al. (2011).
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1.2.3 Censoring

When collecting lifetime data, it is often the case that some of the test subjects have

portions of their lifetimes fall outside of the observation period. This may be due to the

experiment being terminated before the event occurred or the event occurring prior to the

official start of the experiment. These partially observed lifetimes are said to be censored.

Unlike truncation, in which no information is known about the subject, censored observations

contain partial information on the lifetime distribution. Thus, it is beneficial to include

censored observations in the modeling and prediction procedure, though doing so may lead to

a slightly more complex analysis. Methods for handling censored data are discussed in Meeker

and Escobar (1998) and Lawless (2003). Procedures for making predictions with censored data

are given in Escobar and Meeker (1999).

1.3 Motivation

1.3.1 Genealogy Information for Product Components

For products that contain multiple components, it is common during the production pe-

riod for these components to receive upgrades or be replaced by components from a different

manufacturer due to financial or reliability reasons. In such instances, the components can

be said to belong to a particular generation. This genealogical information is readily avail-

able in many product databases, but has not been used in standard competing risks model

predictions. Through incorporation of this information into these models, it is believed that

warranty prediction accuracy will improve significantly. In Chapter 2, methods are provided

for including this genealogical information into a competing risks framework. Extensions of

the prediction procedures given in Hong and Meeker (2010) are derived and simulations are

used to compare the accuracy of predictions to those under a standard competing risks model.
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1.3.2 Optimal Test Plans for Constant Amplitude Fatigue Testing

The current standards for fatigue testing use balanced designs for testing of any criterion

and log linear models for analysis. The nonlinear physical models derived in the fatigue

literature are more appropriate for such data and test plans can be derived from such models

that are optimal for a desired criterion. In Chapter 3, optimal and compromise test plans

based on the fatigue model for composite materials proposed by Epaarachchi and Clausen

(2003) are derived for cyclic constant amplitude testing. The criterion of interest involves a

weighted sum of the asymptotic variances of a quantile estimator on a range of design stress

values. The effects of the design parameters and modeling assumptions on these plans are

investigated and suggestions are made regarding appropriate test planning. Simulations are

used to validate the designs.

1.3.3 Comparison of Industrial and Statistical Methodology for ADDT Model

Estimation

The methodology presented in the industry standards for estimating quantities from an

ADDT involves a two-step procedure of least squares estimation. This is in contrast with the

accepted method of maximum likelihood in the statistical literature. In Chapter 4 a compari-

son of both procedures is presented. The advantages and disadvantages of each procedure are

discussed with emphasis given on the maximum likelihood procedure as a more viable option.

Two public datasets are used to assist in presenting and motivating each procedure.

1.4 Overview

The remainder of the dissertation is organized as follows. In chapter 2, methods for

incorporating genealogical information on product components into current competing risks

methodology is presented. Chapter 2 is mainly based on King, Hong, and Meeker (2015), a

paper submitted to Quality and Reliability Engineering International for review. Chapter 3

discusses optimum test planning for constant amplitude fatigue testing based on a new fatigue
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model. Chapter 3 is based on King et al. (2015), a paper in progress. Chapter 4 presents a

comparison of two procedures for estimating models from ADDT data and proposes a viable

alternative to the current industrial standard. Chapter 4 is based on King et al. (2015), a

paper in progress.
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Chapter 2 Product Component Genealogy Modeling and Field-

Failure Prediction

2.1 Introduction

2.1.1 Background

Most products or systems consist of multiple components that are necessary for maintain-

ing proper product functionality. For example, a laptop computer needs a fully functioning

keyboard, monitor screen, CPU, and memory drive. If any one of these components were to

fail, it would result in the failure of the entire system. A manufacturer is responsible for the

repairs or replacements of components that fail during the warranty period. It is required that

manufacturers maintain cash reserves to cover warranty costs for their sold products. More

broadly, companies are often interested in the longer-term performance of their products, after

the warranty period is over. In some applications, there are more important concerns such as

safety. Inaccurate predictions could lead to financial penalties or safety concerns. Thus it is

always desirable to have accurate field-failure predictions.

Because the failure of components leads to product failure, the problem of modeling and

predicting the failure time of such a product often involves a competing risk analysis. Classi-

cal competing risk models are often used in field-failure prediction for products with multiple

failure modes (the failure of a particular component often corresponds to a particular failure

mode). Most of the current prediction methods for competing risks data assume that the

behavior of each risk is constant over the production period of the product. Specifically, while

the hazard function for a component may change over time, the hazard function used in the

prediction model is treated to be the same for units manufactured over different production

periods. It should be noted, however, that a product’s design often evolves over a period

of time with some components being replaced by alternative lower-cost or higher-reliability
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components, especially in certain technological areas where product components are evolving

rapidly. For example, a manufacturer may choose to make component replacements due to

customer feedback, to improve their product’s performance relative to a competitor, to incor-

porate new technological developments or for various other reasons regarding the performance

of their product, or to reduce cost.

Many common household products’ (e.g., televisions, laptop computers, and printers) sys-

tem components are constantly being updated over time. Let us consider the laptop computer

example given earlier. Even for the same laptop computer model from a specific manufacturer,

different generations of hard drives may be used during the production period to improve the

reliability or performance or to lower the cost of the laptop model. Figure 2.1 gives a graphical

example of a product that has four major components, which we will call Product G. Over

time, some of the component part numbers are changed while others stay the same. The

number of changes and the change times are generally not the same for all the components.

Products manufactured at different points in time will have different configurations, al-

though consumers usually would not notice such changes. The overall reliability of the product,

however, may change due to component part-number changes. Thus, the return rate of these

products could depend on such changes. Product configuration information is generally avail-

able but is usually ignored in currently-used product-failure prediction models. Incorporating

the product configuration information into field-failure prediction can provide important im-

provements over the classical prediction methods. A prediction model that does not consider

product generation information is likely to be biased. One simple approach for handling the

genealogy problem is to stratify the data according to the configuration groups and to perform

separate analyses on each group. Doing so would, however, usually result in small amounts

of data for some groups and is an inefficient use of available information. A better strategy

is to “borrow strength” across different groups corresponding to particular part numbers by

estimating common parameters. The primary objective here is to use generational information

to make field-failure predictions. We will also compare different strategies and quantify the

advantages of using generational information in predictions.
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Figure 2.1: Example of product with multiple components of possibly multiple generations.

2.1.2 The Motivating Application

This research was motivated by a prediction problem that is similar to product D in Hong

and Meeker (2010). Due to sensitive proprietary information, the actual data cannot be used

here and a simulated dataset, similar to the original data, is used for illustration. The scenario,

however, is close to the real application.

The dataset contains records of 6,000 system units, which entered into service at different

times from March 2010 to March 2011, according to Figure 2.2. The failure of Product G

is primarily caused by the failures of four key components. Based on early field returns,

component four underwent several changes during production while component three was

updated based on improvements in its manufacturing procedure. It was decided in mid 2010

to switch providers of component one for financial and quality reasons. Component two

remained unchanged throughout the product’s production. In March 2012, the dataset was

frozen for analysis.
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Figure 2.2: Generation functions for Product G.

2.1.3 Related Literature

A review of classical competing risks theory using latent response variables is given in

Chiang (1961), Moeschberger and David (1971), Gail (1975), David and Moeschberger (1978),

and Crowder (2001). Park and Kulasekera (2004) use this approach to model and compare

competing risks among different groups of samples from different populations. A second

method of using a cause-specific hazard rate to model competing risks data is discussed in

Prentice et al. (1978). A third approach using mixture models is explored in Larson and Dinse

(1985) and most recently in Maller and Zhou (2002). An excellent review of competing risks

methods is given in Crowder (2012).

A general introduction to warranty data analysis is given by Lawless (1998) and Kalbfleisch

et al. (1991). Methods for prediction in the presence of censored data are discussed in Escobar

and Meeker (1999). Hong and Meeker (2010) considered field-failure prediction with multiple

failure modes. The most common tool used to quantify potential field-failure prediction error is

the prediction interval (PI), with much of the literature focused on calibration methods for the

naive “plug-in” procedure. A theoretical perspective is taken in Komaki (1996), Barndorff-

Nielsen and Cox (1996), and Vidoni (2009), while Beran (1990) and Escobar and Meeker
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(1999) use simulation/resampling methods. The predictive distribution used in Lawless and

Fredette (2005) provides a useful method of presentation of the prediction interval procedure

that is equivalent to calibration of the naive intervals. Hong and Meeker (2010) adapted this

approach for warranty-prediction applications involving multiple failure modes.

2.1.4 Overview

The rest of this chapter is organized as follows. Section 2.2 describes the data and model

used in this paper. Section 2.3 gives the maximum likelihood (ML) procedure for estimating

the model parameters. Section 2.4 gives the procedure for predicting the cumulative number

of field failures at a future time for products in the risk set. Finally, Section 2.5 evaluates the

advantage of incorporating component genealogy information relative to methods that ignore

such information through simulation and discussion.

2.2 Data and Model

2.2.1 Product G Data

The failure-time data are denoted by {τi, ti, gij, δij; j = 1, . . . , J}, i = 1, 2, . . . , n. The

value J denotes the number of components and n is the total number of observations. For the

illustrative dataset, J = 4 and n = 6,000. Here, τi is the time of installation on the calendar

time scale for system i and ti is the observed time to failure (time in service) for the failed

(censored) system i. The quantity δij is the observed failure indicator for component j of

system i. Here δij = 1 and δik = 0 (k 6= j) if system i failed due to component j, and δij = 0

for all j if system i is censored. Finally, gij = g(τi, j) is the generation information function

that gives the generation of component j based on the installation time τi for the system

units. For example, for j = 4 and τi in June 2010 for the ith unit of Product G, gi4 = 3. We

denote by Gj the maximum number of possible generations for component j. An example

of the generation functions for Product G for all four components is presented in Figure 2.2.

Of the 6,000 system units followed, 609 failed prior to the data freeze date (DFD). Table 2.1
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Table 2.1: Failure proportion (# of failures / total # system units), the number of failures,
and number of system units surviving of Product G by component and generation at the
DFD. Here “C”, “Prop.”, “Fail.”, and “RS” stand for, component, failure proportion, number
of failures, and the number of system units in the risk set, respectively. The total number of
system units is 6,000.

C
Generation

Total
1 2 3 4

Prop. Fail. RS Prop. Fail. RS Prop. Fail. RS Prop. Fail. RS Prop. Fail.
1 0.0055 33 1838 0.0038 23 3553 - - 0.0093 56
2 0.0240 144 5391 - - - 0.0240 144
3 0.0048 29 777 0.0030 18 1520 0.0013 8 1426 0.0008 5 1668 0.0099 60
4 0.0528 317 777 0.0100 60 1061 0.0010 6 3553 - 0.0638 383
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Figure 2.3: Event plot showing the lifetimes for the first 40 system units of Product G. The
numbers next to the failure arrows indicate the component that caused failure.

shows the failure proportion (the number of failures divided by the total number of system

units), the number of failures, and number of system units surviving (the risk set) of Product

G by component and generation at the DFD.

2.2.2 Failure-time Model

The log-location-scale family of distributions, which includes the lognormal and Weibull

distributions as special cases, will be used here to model the component lifetimes. Let Tij

denote the latent lifetime of component j of system i. Assuming the particular log-location-

scale distribution does not change across generations, which is reasonable if the failure mode
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is the same within each component, the cumulative distribution function (cdf) of Tij is given

by

Fij(t; ξjgij) = Φij

[
log (t)− µjgij

σj

]
, (2.1)

where µjgij and σj are the location and scale parameter respectively for log(Tjgij), ξjgij =

(µjgij , σj)
′ is the parameter vector for component j of system i at the gijth generation, and Φ(·)

is the standard cdf for the log-location-scale family of distributions. Within the competing-risk

model, Fij is the marginal cdf for component j of system i. The probability density function

(pdf) for Tjgij is given by

fij(t; ξjgij) =
1

σjt
φij

[
log (t)− µjgij

σj

]
, (2.2)

where φ(·) is the standard pdf for the log-location-scale family of distributions.

The primary focus will be on models in which only generational changes in the location

parameter are considered, which we will refer to as “location-change” generational (LCG)

models. However, this model can easily be extended to allow for generational changes in the

scale parameter as well. We will refer to these models as “extended location-change” gen-

erational (ELCG) models. Because the scale parameter is often associated with the failure

mechanism, the LCG model tends to be more appropriate with respect to most field applica-

tions. However, the ELCG model is more flexible and may be appropriate in cases where an

updated component does contain a different failure mechanism than the previous generation.

An example would be transitioning from a traditional hard drive to a solid-state hard drive

in a laptop.

It is important to note that the location and scale parameters are used here in connection

with their usage in the location-scale part of the log-location-scale distribution. For example,

in the lognormal distribution, µ represents the location parameter and σ the scale parameter

of the normal distribution, describing the logarithms of the times. This is to be distinguished

from the shape and scale parameters of the lognormal, which can be represented by 1/σ and

exp (µ), respectively. It is with respect to the former case that we will be referring to the
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location and scale parameters of the distribution.

Many well known distributions used in lifetime modeling belong to the log-location-scale

family. For illustration purposes, we will model the component lifetimes using the Weibull

and lognormal distributions. The Weibull distribution cdf and pdf are given by replacing Φ

and φ in (2.1) and (2.2) with the standard smallest extreme value distributions Φsev(z) =

1 − exp [− exp (z)], and φsev(z) = exp [z − exp (z)], respectively. The lognormal distribution

cdf and pdf are obtained similarly, but with Φnor and φnor, which are, respectively, the cdf and

pdf for the standard normal distribution.

2.2.3 System cdf and Sub-distribution Function

Under the classical competing risks framework, the distribution of a system’s lifetime is

the same as the distribution of the minimum latent lifetime over the J components. Because

the components are assumed independent of one another, the cdf of the system lifetime Ti is

given by

Fi(t; ξi) = Pr[min(Ti1, . . . , TTiJ ) ≤ t] = 1−
J∏
j=1

[
1− Fij(t; ξjgij)

]
, (2.3)

where ξi = (ξ′1gi1 , . . . , ξ
′
JgiJ

)′ is the set of parameters for system i. An alternative expression

for the system lifetime cdf is

Fi(t; ξi) =
J∑
j=1

F ∗ij(t; ξi). (2.4)

Here, F ∗ij(t; ξi) is known as the sub-distribution function (e.g., see Moeschberger and David

(1971)), which is defined as

F ∗ij(t; ξi) = Pr(Ti ≤ t,∆ij = 1; ξi), (2.5)

where ∆ij = 1 and ∆il = 0 for all l 6= j if component j is the cause of system failure.

The F ∗ij(t; ξi) functions are needed to generate predictions for the individual failure modes.

Peterson Jr (1976) showed that sub-distribution functions are not necessarily the same as true

distribution functions as it may hold that lim
t→∞

F ∗ij(t; ξi) < 1. The sub-distribution function is

related to the marginal distributions of the components in classical competing risks theory by
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the following expression,

F ∗ij(t; ξi) =

∫ t

0

fij(s; ξjgij)
∏
l 6=j

[1− Fil(s; ξlgil)]ds. (2.6)

The sub-density function is

f ∗ij(t; ξi) =
dF ∗ij(t; ξi)

dt
= fij(t; ξjgij)

∏
l 6=j

[1− Fil(t; ξlgil)]. (2.7)

2.3 Parameter Estimation

2.3.1 The Likelihood Function

The parameters of the generational model are estimated using ML estimation. In this

section, we construct the likelihood function for the LCG and ELCG models. We will denote

the set of distinct parameters to be estimated by θ.

2.3.1.1 Location-Change Generational Model

For the LCG model, the set of distinct parameters is denoted by θ = (θ′1, . . . ,θ
′
J)′, where

θj = (µj1, . . . , µjGj
, σj)

′. The likelihood is expressed as follows:

L(θ|DATA) =
n∏
i=1

({
J∏
j=1

f ∗ij(ti; ξi)
δij

}
[1− Fi(ti; ξi)]1−

∑J
j=1 δij

)
. (2.8)

Note that ξi is defined in (2.3) as the set of parameters for system i, while θ here is the set of

distinct parameters in the LCG model. The construction of the likelihood function is based

on the following facts. If system i failed due to component j, then the likelihood contribution

is

Pr(Ti = ti; ∆ij = 1,∆il = 0, l 6= j) = Pr(Tij = ti;Til > Tij, l 6= j) = f ∗ij(ti; ξi).

If system i is censored, then the likelihood contribution is

Pr(Tij > ti; j = 1, . . . , J) = 1− Fi(ti; ξi).

The likelihood function in (2.8) can be re-expressed as

L(θ|DATA) =
J∏
j=1

{
n∏
i=1

fij(ti; ξigij)
δij [1− Fij(ti; ξigij)]

1−δij

}
. (2.9)
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The likelihood in (2.9) is equivalent to treating failures caused by components l 6= j as if

they were censored for component j, which is a common practice in competing risks analysis

and is also appropriate here because generational information is specific to a component and

is not affected by other components under our assumptions. One can also maximize the

likelihood in (2.9) separately for each component because there are no common parameters

across components.

2.3.1.2 Extended Location-Change Generational Model

For the ELCG model, the set of distinct parameters is denoted by θ = (θ∗
′

11, . . . ,θ
∗′
1G1

, . . .,

θ∗
′

J1, . . . ,θ
∗′
JGJ

)′. Here θ∗jg = (µjg, σjg)
′, and µjg and σjg are location and scale parameters for

the log lifetime of the gth generation of component j, respectively. The likelihood can be

expressed as

L(θ|DATA) =
J∏
j=1

 Gj∏
g=1

 ∏
i∈DATAjg

fij(ti;θ
∗
jg)

δij [1− Fij(ti;θ∗jg)]1−δij


 , (2.10)

where DATAjg is the portion of the sample that has component j belonging to generation g.

Here, the focus is on the lifetime contribution for a particular generation of the component

with failures due to other generations within the same component or in other components

being treated as censored observations.

2.3.2 Maximum Likelihood Estimates and Information Matrix

The ML estimate, denoted by θ̂, is obtained by maximizing (2.9) for the LCG model or

(2.10) for the ELCG model. Depending on the distribution of each component, the solution

may have a closed-form expression, but more often a numerical optimization procedure is

needed. For our analysis, the ML estimates were calculated using a quasi-Newton iterative

procedure. When estimating the scale parameter, a log transformation was used so that the

optimization was unbounded. Also, when there is heavy censoring, it is useful to replace µ by

a small quantile, so that the likelihood is more well-behaved.

The local information matrix is obtained by evaluating the negative Hessian at θ = θ̂. In

19



Table 2.2: Summary of ML estimation for Product G data. The time unit is weeks.

Comp. Gen. Param. True Values Estimate Std. Error 95% Lower 95% Upper

1
1 µ 6.20 6.080 0.213 5.662 6.498
2 µ 6.30 6.055 0.250 5.564 6.545

All σ 0.40 0.369 0.129 0.286 0.475

2 1
µ 5.00 4.991 0.035 4.923 5.059
σ 0.30 0.297 0.060 0.264 0.334

3

1 µ 5.63 5.635 0.148 5.345 5.925
2 µ 5.73 5.739 0.181 5.384 6.094
3 µ 5.83 5.768 0.219 5.339 6.196
4 µ 5.93 5.747 0.251 5.254 6.240

All σ 0.30 0.291 0.127 0.227 0.374

4

1 µ 4.68 4.670 0.010 4.651 4.690
2 µ 4.78 4.751 0.018 4.716 4.785
3 µ 4.88 4.810 0.033 4.746 4.875

All σ 0.20 0.186 0.042 0.171 0.202

particular, the local information matrix is

I(θ̂) = −∂
2 log[L(θ|DATA)]

∂θ∂θ′

∣∣∣∣
θ=θ̂

.

The details of the calculation of the local information matrix for each model are given in

Appendix 2.A. An estimate of the variance-covariance matrix of the parameter estimators, Σ̂,

is obtained by evaluating [I(θ)]−1 at θ̂.

Wald confidence intervals (CIs) can be calculated for the ML estimates using Σ̂. As an

example, a 100(1− α)% Wald CI for µjg in the LCG model is given by

µ̂jg ± z1−α/2

√
v̂ar(µ̂jg), (2.11)

where z1−α/2 is the 100(1− α/2)% quantile of the standard normal distribution and v̂ar(µ̂jg)

is the estimated variance of µ̂jg taken from the corresponding diagonal element of Σ̂.

2.3.3 Estimation for Product G Data

We apply the ML method for the LCG model to the Product G data to estimate the

unknown model parameters. Table 2.2 gives the ML estimates, standard errors, and the

approximate 95% CIs for the model parameters for each component and each generation.
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2.4 Field-Failure Predictions

2.4.1 Point Predictions and Intervals

For most applications, lifetime prediction involves calculation of point predictions with

corresponding PIs. Both point and interval predictions can be derived using conditional

predictive distributions (Lawless and Fredette, 2005), which are probability distributions for

the remaining lifetime of a system given its current lifetime. These distributions are presented

here in terms of the LCG model. The computing of the predictive distributions for the ELCG

model are similar.

The conditional predictive distribution for failure mode j of system i is

ρij = ρij(s) = Pr(∆ij = 1, Ti ≤ ti + s|Ti > ti) =
F ∗ij(ti + s; ξi)− F ∗ij(ti; ξi)

1− Fi(ti; ξi)
, (2.12)

for some s > 0. The ML estimate of ρij, denoted by ρ̂ij, can be obtained by evaluating (2.12)

at θ̂. The conditional predictive distribution for system i is

ρi = ρi(s) = Pr(Ti ≤ ti + s|T > ti) =
Fi(ti + s; ξi)− Fi(ti; ξi)

1− Fi(ti; ξi)
, (2.13)

for some s > 0. The ML estimator of ρi, denoted by ρ̂i, can be obtained by evaluating (2.13)

at θ̂. Note that here ρi =
∑J

j=1 ρij. The point prediction for the total number of failures is

given by N̂ = N̂(s) =
∑

i∈RS ρ̂i, where RS is the risk set containing systems that have not yet

failed by the DFD.

2.4.2 Prediction Results for Product G

Point predictions can be computed as a function of time after the DFD and PIs can also

be generated for each point prediction. In particular, the point prediction is obtained as

N̂ =
∑

i∈RS ρ̂i at the ML estimate. The computing of PIs is based on an extension of the

procedure given in Hong and Meeker (2010). The details of the calculations are discussed in

Appendix 2.B. Figure 2.4 shows the point predictions and PIs for the cumulative number of

failures for the at-risk system units as a function of time after the DFD.
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Figure 2.4: The predicted cumulative number of failures as function of time after the DFD,
plotted in the calendar time scale.

2.5 Assessment of Model by Simulation

2.5.1 Prediction Models

In Section 2.2.2, we introduced the LCG and ELCG models. In this section, we will com-

pare the standard competing risks (SCR) model, the LCG model, and the ELCG model. The

SCR model corresponds to the commonly-used prediction procedure in which no generational

changes are considered and all data are pooled to estimate a failure distribution for each

component. Thus, the likelihood for the SCR model simplifies to

L(θ|DATA) =
J∏
j=1

{
n∏
i=1

fij(ti;θ
∗
j)
δij [1− Fij(ti;θ∗j)]1−δij

}
, (2.14)

where ti is the lifetime of system i, θ∗j = (µj, σj)
′ is the vector of location and scale parameters

for the log of the lifetime of component j. The set of distinct parameters for the SCR model

is θ = (θ∗′1 , . . . ,θ
∗′
J )′. The derivation of the local information matrix is given in Appendix 2.A.

The conditional predictive distributions used in the point prediction and PI calculation are
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similar to those given in (2.12) and (2.13).

2.5.2 Comparison Criterion

The assessment of each model is based on the accuracy of its prediction of the cumulative

total number of failures at a specified time point after the DFD. For each simulated dataset,

the mean squared error (MSE) of its prediction will be estimated as a function of future time.

The estimated MSE is calculated as follows:

M̂SE =
1

B

B∑
b=1

(N̂b − N̂)2, (2.15)

where N̂b is the estimated prediction based on bootstrap simulation b, B is the total number of

bootstrap samples, and N̂ =
∑

i∈RS ρ̂i is the point prediction based on the simulated dataset.

The bootstrap samples were generated based on the random-weight bootstrapping procedure.

Details on this procedure are given in Appendix B. Here, we use bootstrapping to estimate

the MSE for each dataset because each simulated dataset will have a different size risk set.

Thus, the models were compared based on the average relative MSE (RMSE) of the MSEs

calculated for each dataset at individual time points after the DFD using the LCG model as

a basis. For example, the RMSE for SCR vs LCG is computed as the ratio of the MSE of

prediction based on the SCR model and the MSE of prediction based on the LCG model for

each dataset. A large number of datasets (e.g., 200) were simulated in order to ensure a stable

average of the RMSE.

2.5.3 Simulation Setup

To investigate performance of our models over a wide range of situations, our simulation

considers eight scenarios. In each scenario, lifetime data were simulated based on the compet-

ing risks model, in which each risk has a specified lifetime distribution and the overall lifetime

of a system is determined by the minimum lifetime of the independent competing risks. Each

dataset consisted of 6,000 system units with four competing risks, much like the original data.

The lifetimes of the components were randomly generated using staggered entry and the dis-
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Table 2.3: Summary of the simulation scenarios.

Component Dist. µ σ # Gens.
% Change in t0.1 for eight different scenarios (S1-S8)

S1 S2 S3 S4 S5 S6 S7 S8
1 Weibull 6.20 0.40 2 0 5 11 28 65 5 5 11
2 Lognormal 5.00 0.30 1 - - - - - - - -
3 Weibull 5.63 0.30 4 0 5 11 28 65 11 (5)(11)(28) (11)(-28)(11)
4 Lognormal 4.68 0.20 3 0 5 11 28 65 28 (5)(11) (11)(-5)

tribution form remained the same across generations with the parameters of the distribution

being dependent on the date the product was manufactured. After a set period of time, no

more lifetimes were generated, corresponding to the end of “production.” The values of the

parameters were chosen to make the total proportion failing similar to the original data.

Table 2.3 summarizes the generation scenarios, distribution information, and parameter

values used in the simulation. In the simulation, we use the LCG model as the true model.

That is, the generation changes only occur to the location parameter µ and the scale parameter

σ remains constant over generations. To aid in understanding, we present the changes in loca-

tion parameter in terms of changes in the 0.1 quantile of the component lifetime distribution.

That is, we use the percentage 100× exp(µ+ ∆µ+ z0.1σ)/ exp(µ+ z0.1σ)%, where ∆µ is the

amount of change and the z0.1 is the 0.1 quantile of the standard location-scale distribution.

The percentage changes presented in Table 2.3 are rounded to the nearest hundredth.

For the first five scenarios, the change across generations (if it exists) is the same for all

generations where the amount of change is specific to each scenario. This change in t0.1 ranges

from no change (a standard competing risks model) to an increase of 65%. The first five

scenarios will be used to test the sensitivity of the LCG and ELCG models to the magnitude

of the generational change.

The remaining three scenarios consider more general cases of changes in t0.1. The sixth

scenario allows the magnitude of changes to vary across components but remain the same

within each component. The seventh scenario consists of changes in t0.1 that gradually increase

over time. Note that the change for component 3 in this scenario is represented by (5)(11)(28)

in Table 2.3, which means the consecutive changes are 5%, 11%, and 28%, respectively. The

last scenario implements a decrease in lifetime across two selected generations.
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2.5.4 Simulation Results and Discussion

For each scenario, 200 datasets were simulated with estimation and point prediction per-

formed for each dataset. Figure 2.5 gives the results for each scenario. The SCR and LCG

models are nearly indistinguishable in the first scenario, which indicates that the LCG model

is still adequate for situations in which no generational changes are present. In the remaining

scenarios, the SCR model performs worse than the LCG when generational changes are intro-

duced. This is due to an increase in both the variance and bias of the SCR model predictions.

It is a clear indication of the inflexibility of modeling this type of data with the standard

approach. The tapering effect in all of the plots is due to the number of system units in the

risk sets decreasing as time goes on (eventually all system units will fail), meaning predictions

are slowly becoming more stable. It is interesting to note that the behavior of the SCR model

in Scenario 8 is not as poor as in the others. This is most likely due to the large decrease

in the quantile t0.1 compared to the increases, which yields data that is more similar to that

generated by a situation with no generational changes.

It is surprising to see the ELCG model performing more erratically than the more restricted

LCG. Further simulations were performed using progressively larger sample sizes while main-

taining a consistent fraction failing to determine if the number of expected failures might be

the cause. In the computing of the variance and bias, the normal approximation was used

to simulate data, instead of using bootstrap, to reduce the time needed for simulations. The

large size (e.g., 50,000) of several of these new simulations prevents us doing the bootstrap in

a reasonable time frame. Figure 2.6 gives the variance and squared bias as a function of time

after the DFD for sample size n = 6,000, 10,000, and 50,000. Both the variance and squared

bias of the prediction were divided by the sample size n so that a fair comparison can be made

across different sample sizes. Figure 2.6 reveals the prediction variance to be the dominant

factor in the MSE. As the sample increases, the variance of the early predictions decreases as

does the overall bias, confirming the sensitivity of the ELCG model to the number of failures.

This is because estimation of the parameters in the ELCG model is performed at the genera-
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Figure 2.5: Comparison of SCR and ELCG models relative to the LCG model via relative
MSE (RMSE) for each scenario. The horizontal line corresponds to RMSE= 1 for the LCG
model.

tional level and so more failures are needed in every generation, especially the later ones, to

yield more accurate predictions. At a sample size of n = 6,000, Table 2.1 shows the observed

fraction failing for the fourth generation of component 3 is only 0.08% (5 failures), providing

further insight into why the variance is large for the ELCG model. This simulation also shows

an advantage of the LCG model in its ability to borrow strength across generations.

The approach to field-failure predictions presented in this chapter is general and can easily

accommodate specific applications, such as warranty return prediction. One only needs to

adjust the risk accordingly for those system units with expired warranty (e.g., typically one-

year to three-year period). There are also situations when a company needs to predict warranty

costs not just for system units that have already gone to the field, but also for system units
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Figure 2.6: Variance and squared bias of ELCG model predictions adjusted for sample size.

that will be put into the field in the future. All that is needed is to add future system units

to the risk set and the predictions can be obtained correspondingly.
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2.A Likelihood Information Matrix Computation

2.A.1 Location-Change Generational Model

The likelihood given in (2.9) can be divided into a product of sub-likelihoods at the com-

ponent level. These sub-likelihoods are given by

L(j)(θj|DATAj) =
n∏
i=1

{
fij(ti; ξigij)

δij [1− Fij(ti; ξigij)]
1−δij

}
, (2.16)

where DATAj is the portion of the sample associated with component j. These sub-likelihoods

are useful in determining the local information matrix of the parameters.

The log-likelihood L(θ|DATA) = log [L(θ|DATA)] is the sum of the logarithms of the

sub-likelihoods, which are given as

L(j)(θj|DATAj) =
n∑
i=1

{
δij log [fij(ti; ξigij)] + (1− δij) log [1− Fij(ti; ξigij)]

}
, (2.17)

Because no system unit can belong to two different generations within the same component,

(2.17) can be re-expressed as

L(j)(θj|DATAj) =

Gj∑
g=1

∑
i∈DATAjg

{
δij log [fij(ti; ξig)] + (1− δij) log [1− Fij(ti; ξig)]

}
, (2.18)

where the subscript g indicates the generation and DATAjg is the portion of the sample

associated with generation g of component j.
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Because the log-likelihood can be expressed as the sum of sub-log-likelihoods, it follows

that

∂2L(θ|DATA)

∂µjg∂µj′g
=
∂2L(θ|DATA)

∂µjg∂µjg′
=
∂2L(θ|DATA)

∂µjg∂µj′g′
=
∂2L(θ|DATA)

∂σj∂σj′
= 0

for all j 6= j′ and g 6= g′. The local information matrix is then a (G+J)×(G+J) block-diagonal

matrix, where G =
J∑
j=1

Gj, with J sub-information matrices given by

I(j) =



Iµj1
0 · · · 0 Iµj1σj

0 Iµj2
· · · 0 Iµj2σj

...
...

. . .
...

...

0 0 · · · IµjGj
IµjGj

σj

Iµj1σj Iµj2σj · · · IµjGj
σj Iσj


.

Using the notation given in (2.1) and (2.2) for log-location-scale distributions, we define the

following functions for arbitrary µ and σ:

rij(z) =
φ′ij(z)

φij(z)
, and hij(z) =

φij(z)

1− Φij(z)
.

Here z = [log (t) − µ]/σ and φ′ij(z) is the first derivative of φij(z) with respect to z. Using

these functions, it follows that

Iµjg =
1

σ2
j

∑
i∈DATAjg

[
δijr

′
ij(zijg)− (1− δij)h′ij(zijg)

]
Iσj =

1

σ2
j

Gj∑
g=1

( ∑
i∈DATAjg

{
δij
[
z2
ijgr

′
ij(zijg) + 2zijgrij(zijg) + 1

]
−(1− δij)

[
z2
ijgh

′
ij(zijg) + 2zijghij(zijg)

]})
Iµjgσj =

1

σ2
j

∑
i∈DATAjg

{
δij
[
zijgr

′
ij(zijg) + rij(zijg)

]
− (1− δij)

[
zijgh

′
ij(zijg) + hij(zijg)

]}
, where zijg = [log (ti)− µjg]/σj.
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2.A.2 Standard Competing Risk Model

In a similar manner for the LCG model, the SCR likelihood given in (2.14) can also be

written as a product of J component-level sub-likelihoods given by

L(j)(θ∗j |DATAj) =
n∏
i=1

{
fij(ti;θ

∗
j)
δij [1− Fij(ti;θ∗j)]1−δij

}
with the corresponding log-sub-likelihoods given as

L(j)(θ∗j |DATAj) =
n∑
i=1

{
δij log [fij(ti;θ

∗
j)] + (1− δij) log [1− Fij(ti;θ∗j)]

}
.

Once again, it follows that

∂2L(θ|DATA)

∂µj∂µj′
=
∂2L(θ|DATA)

∂σj∂σj′
= 0

for all j 6= j′, where L(θ|DATA) is the logarithm of (2.14). The local information matrix is a

(2J)× (2J) block-diagonal matrix of J sub-information matrices given by

I(j) =

 Iµj Iµjσj

Iµjσj I∗σj

 ,
where

Iµj =
1

σ2
j

n∑
i=1

[
δijr

′
ij(zij)− (1− δij)h′ij(zij)

]
I∗σj =

1

σ2
j

n∑
i=1

{
δij
[
z2
ijr
′
ij(zij) + 2zijrij(zij) + 1

]
− (1− δij)

[
z2
ijh
′
ij(zij) + 2zijhij(zij)

]}
Iµjσj =

1

σ2
j

n∑
i=1

{
δij
[
zijr

′
ij(zij) + rij(zij)

]
− (1− δij)

[
zijh

′
ij(zij) + hij(zij)

]}
.

Here, zij = [log (ti)− µj]/σj.

2.A.3 Extended Location-Change Generational Model

For the ELCG model, the likelihood given in (2.10) can be divided at the generation level

with the sub-likelihoods given as

L(jg)(θ∗jg|DATAjg) =
∏

i∈DATAjg

fij(ti; ξig)
δij [1− Fij(ti; ξig)]1−δij . (2.19)
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and the corresponding sub-log-likelihoods as

L(jg)(θ∗jg|DATAjg) =
∑

i∈DATAjg

δij log [fij(ti; ξig)] + (1− δij) log [1− Fij(ti; ξig)]. (2.20)

As with the previous models, it follows that

∂2L(θ|DATA)

∂µjg∂µj′g
=
∂2L(θ|DATA)

∂µjg∂µjg′
=
∂2L(θ|DATA)

∂µjg∂µj′g′

=
∂2L(θ|DATA)

∂σjg∂σj′g
=

∂2L
∂σjg∂σjg′

=
∂2L(θ|DATA)

∂σjg∂σj′g′
= 0

for all j 6= j′ and g 6= g′, where L(θ|DATA) is the logarithm of (2.10). Thus, the local

information matrix is then a (2G) × (2G) block-diagonal matrix with G sub-information

matrices given by

I(jg) =

 I∗µjg Iµjgσjg

Iµjgσjg Iσjg

 ,
where

I∗µjg =
1

σ2
jg

∑
i∈DATAjg

[
δijr

′
ij(z

∗
ijg)− (1− δij)h′ij(z∗ijg)

]
Iσjg =

1

σ2
jg

∑
i∈DATAjg

{
δij
[
z∗2ijgr

′
ij(z

∗
ijg) + 2z∗ijgrij(z

∗
ijg) + 1

]
−(1− δij)

[
z∗2ijgh

′
ij(z

∗
ijg) + 2z∗ijghij(z

∗
ijg)
]}

Iµjgσjg =
1

σ2
jg

∑
i∈DATAjg

{
δij
[
z∗ijgr

′
ij(z

∗
ijg) + rij(z

∗
ijg)
]
− (1− δij)

[
z∗ijgh

′
ij(z

∗
ijg) + hij(z

∗
ijg)
]}
.

Here, z∗ijg = [log (ti)− µjg]/σjg.

2.B Prediction Procedure

Here we briefly describe the procedure for obtaining PIs in the context of the LCG model.

The procedure is similar to Hong and Meeker (2010) but is extended for the LCG model.

2.B.1 Sampling Distribution

1. Simulate random values Zi, i = 1, . . . , n that are independent and identically distributed

with a distribution that has the property E(Zi) =
√

Var(Zi). For our simulation, the
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distribution of choice was the exponential distribution with E(Zi) = 1.

2. The weighted likelihood is computed as

L∗(θ|DATA) =
n∏
i=1

[Li(ξi|DATA)]Zi ,

where

Li(ξi|DATA) =
n∏
i=1

{
fij(ti; ξigij)

δij [1− Fij(ti; ξigij)]
1−δij

}Zi

.

3. Obtain the ML estimate θ̂
∗

by maximizing L∗(θ|DATA).

4. Repeat steps 1-3 B times to get B bootstrap samples θ̂
∗
b , b = 1, 2, . . . , B.

2.B.2 Prediction Intervals

1. Simulate I∗i from Bernoulli(ρ̂i), i ∈ RS, and compute N∗ =
∑

i∈RS I
∗
i .

2. Repeat step 1 B times to get N∗b , b = 1, 2, . . . , B.

3. Obtain θ̂
∗
b by using the procedure described in B.1

4. Compute U∗b = FN(N∗b ; θ̂
∗
b), b = 1, 2, . . . , B, where FN(·) is the cdf of the Poisson-

Binomial distribution with probability vector ρ̂i’s, as given in Hong (2013).

5. Let ulN , u
u
N be, respectively, the lower and upper α/2 sample quantiles of U∗b , b =

1, 2, . . . , B. Compute the 100(1 − α)% calibrated PI by solving for Nl and Nu in

FN(Nl; θ̂) = ulN and FN(Nu; θ̂) = uuN , respectively.
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Chapter 3 Planning Fatigue Tests for Polymer Composites

3.1 Introduction

3.1.1 Motivation

All materials, regardless of their physical makeup, exhibit some form of weakening after

long periods of field use. This weakening is known as “fatigue” in the material sciences and is

of great importance for material manufacturers. Knowledge of fatigue behavior can be very

helpful for marketing promotions, pricing, differentiating, making claims and offering war-

ranties. It may also help manufacturers improve upon existing products or even allow for the

development of new and improved offerings. In light of these benefits, a large body of research

exists pertaining to the study of fatigue behavior in material products. Recently, the focus of

this research has shifted from homogeneous materials, such as metals and alloys, to the study

of heterogeneous materials, such as polymer composites. Composite materials have become

more commonplace due to their ability to remain lightweight while still retaining comparable

levels of strength and endurance, a property that makes them more energy efficient. This

has resulted in polymer composites becoming a key component in several large industries re-

lated to energy consumption, including transportation manufacturing and alternative energy

production.

Acquiring knowledge of polymer composite fatigue requires proper experimentation. A

well-designed experiment can yield invaluable information about a manufacturer’s product.

The majority of testing performed in this field is in accordance with the standards provided in

ASTM E739 (2010) for testing and analysis of polymer fatigue. All of the test plans discussed

within these standards are of a balanced nature with equal replication and spacing of the

test samples. While balanced plans are very desirable, research in the statistical literature on

optimal test planning for fatigue testing (e.g., Nelson and Kielpinski 1976; Nelson and Meeker
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1978; Pascual 2003) has shown that these plans may not result in the most precise information.

Optimal test planning involves the design of experiments in which the data that are collected

yield the maximum amount of information regarding a particular quantity of interest, such

as the lifetime by which at least a specified proportion of the product is expected to fail.

These optimal test plans tend to be more unbalanced and yet yield more precise estimates of

a selected quantity than could be achieved under a balanced design. As such, they may be

better suited for the task of gathering information on polymer composite fatigue behavior.

The most common form of fatigue testing is known as constant amplitude fatigue testing.

In this form of testing, a sample of material is either stretched or compressed (or in some

cases a combination of the two) to a maximum stress σmax and then cycled between that

stress and a lower level of stress σmin until failure is achieved. See Figure 3.1 for a graphical

example of this procedure. Due to the resilient nature of polymer composite materials, the

stress levels used in testing are usually higher than those experienced in the field in order to

induce failures on a shorter timescale. This is an example of accelerated life testing (ALT), in

which varying levels of higher than normal stress are selected for testing and the resulting data

are used to extrapolate out to the normal use levels about which inference is desired. Much of

the optimal design literature on ALTs consider a single use stress level as part of the design

criterion. However, it is more likely that a material will experience several varying levels of

stress over its lifetime. For example, the polymer composite materials in motor vehicles are

subject to a variety of stresses during the lifetime of the vehicle, such as changes in the terrain

(potholes, train tracks, etc.) or weather conditions to name a few. Thus, we propose an

optimality criterion consisting of a weighted sum of asymptotic variances over a distribution

of design stress levels with the weights corresponding to the frequency with which each stress

level is expected to be encountered. Such optimal test plans would be more relevant to fatigue

researchers.

In addition to specifying more relevant criteria, we also seek to incorporate existing fa-

tigue knowledge through specification of an appropriate model. Many of the optimal designs

proposed for fatigue testing are based on linear models, one of the few exceptions being the
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Figure 3.1: Example of constant-amplitude fatigue testing. Retrieved 2 April, 2014
from ETBX Stress-Life Fatigue Analysis Module http://www.fea-optimization.com/ETBX/
stresslife_help.html (Used under fair use 2015)
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designs proposed by Pascual (2003). This is also reflected in the choice of a linear model for

analyzing fatigue data proposed by the standards (ASTM E739, 2010). A casual observance

of the models proposed in the fatigue literature (see Section 3.1.2 for a small selection) reveals

the inadequacy of a linear model for explaining the relationship between stress and lifetime

for polymer composites. Instead, we propose using a physical model taken from the fatigue

literature as the basis for our optimal design. This will provide stronger justification for our

proposed test plans through the incorporation of subject-matter expertise. We also consider

compromise designs that utilize more design points so as to further increase robustness to any

assumption violations.

3.1.2 Related Literature

Our discussion of the related literature is divided into three parts. First, we present

relevant literature on knowledge regarding fatigue behavior and its relationship to the testing

procedure. Second, we review a selection of the most important models used to examine

fatigue behavior. Lastly, we discuss fatigue testing from the perspective of the statistical

literature, with an emphasis on optimal designs for accelerated lifetime testing.

3.1.2.1 Fatigue Damage Theory

It is well known in the fatigue literature that the fatigue of metals and other homogeneous

materials is primarily due to the initiation and propagation of a dominant crack. However,

the same is not necessarily true for polymer composite materials. Due to their heterogenous

makeup, the fatigue of polymer composites may consist of one or more failure modes such

as fiber breakage, matrix cracking, debonding, and delamination (Dharan, 1975; Reifsnider,

1980; Talreja, 1981; Konur and Matthews, 1989; Harris, 2003; Vassilopoulos and Keller, 2011).

In-depth investigation of fatigue due to each failure mode has been performed for several

materials; for example, Owen and Howe (1972) and Karlak et al. (1974) investigated failure of

glass fiber-reinforced plastics (GFRPs) due to interface debonding. Furthermore, the presence

of a particular failure mode is often dependent on several factors related to fatigue testing.
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For example, in unidirectional testing of GFRPs, high stress/low cycle fatigue is primarily due

to catastrophic fiber breakage while intermediate stress fatigue is due to matrix cracking that

leads to delamination (Dharan, 1975; Owen, 1980). The dominance of a particular failure mode

is also influenced by the material and layup used (Dharan, 1975; Owen, 1980; Reifsnider, 1980;

Chen and Harris, 1993), the loading frequency (Stinchcomb et al., 1974), the testing direction

(Talreja, 1981), and the ratio of minimum to maximum stress (Gamstedt and Sjögren, 1999;

Niu and Talreja, 2000). Because of this sensitivity, some attempts have been made to find

a standard by which various materials can be compared, such as the “characteristic damage

state” proposed by Reifsnider and Talug (1980). For the most part though, research has been

relatively specific to a certain material. Several reference materials for the fatigue of polymer

composites include Konur and Matthews (1989), Harris (2003) and Vassilopoulos and Keller

(2011).

3.1.2.2 Fatigue Modeling

There is an abundance of literature on models for polymer composite materials. Some

are specific to a particular material while others are more general. Here, the focus will be

on accelerated failure time (AFT) models for the stress-life (S-N) curve under cyclic constant

amplitude stress testing. In particular, models relating the central tendency of lifetime to

stress will be considered. Distributional models, which attempt to describe the conditional

distribution of lifetime given stress, are an alternative to AFT models and were first considered

by Bastenaire (1972). Examples of their usage can be found inCastillo et al. (1985); Castillo

and Hadi (1995); Castillo and Fernández-Canteli (2009), and Pascual and Meeker (1999).

Table 3.1 summarizes some of the important models in the fatigue regression literature.

With regards to the terminology, N is the lifetime in loading cycles, σM is the maximum stress

applied during testing, σe is the endurance limit below which lifetime is theoretically infinite,

and σu is the ultimate strength of the material, which represents the maximum stress the

material can withstand before instantaneous failure. All other parameters are model specific

and details regarding their function are given in the following descriptions.
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Table 3.1: Regression models for material fatigue from the literature.
Model Reference Formula

Wöhler (1870); ASTM E739 (2010) log (N) = A−BσM

Basquin (1910) log (N) = A−B log (σM )

Strohmeyer (1914) log (N) = A−B log (σM − σe)

Palmgren (1924) log (N +D) = A−B log (σM − σe)

Weibull (1949) log (N +D) = A−B log

(
σM − σe
σu − σe

)

Stüssi (1955) logN = A−B log

(
∆σM −∆σe
∆σu −∆σe

)

Spindel and Haibach (1981)

log

(
N

Ne

)
= A log

(
σM
σe

)
−B log

(
σM
σe

)
+

B

{
1

C
log

[
1 +

(
σM
σe

)−2C
]}

Kohout and Vechet (2001) log

(
σM
σe

)
= A log

(
N +N1

N +N2

)

Epaarachchi and Clausen (2003)

log (N) =
1

B
log

{(
B

A

)
fB
(
σu
σM
− 1

)
×(

σu
σM

)γ(α)−1

[1− ψ(R)]
−γ(α)

+ 1

}
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The earliest models (Wöhler, 1870; Basquin, 1910) were simple linear regression models on

either semi-log or log-log data. These are the models that are presented in ASTM E739 (2010)

for fatigue data analysis. However, as Castillo et al. (1985) noted, fatigue data is non-linear

by nature and the possible existence of an endurance limit rules out standard linear regression

techniques. The first attempt at expanding the original models came when Strohmeyer (1914)

introduced an endurance limit into the Basquin model. A further adjustment was made by

Palmgren (1924) with the introduction of an offset term D, which represents the point where

the lifetime changes from the low-cycle to the intermediate stage and is primarily a curve-

fitting tool. Weibull (1949) then tweaked this new model with the inclusion of ultimate

tensile strength. The model attributed to Stüssi (1955) is actually just a special case of the

Weibull model with the maximum stress replaced by the stress ranges ∆σM = σM − σm and

∆σe = σe−σm, where σm is the minimum stress. The model proposed by Spindel and Haibach

(1981) incorporates the endurance limit through a smooth splicing of two lines. Kohout and

Vechet (2001) decided to expand on the Palmgren model by incorporating the transitions from

low-cycle (N1) or high-cycle (N2) lifetimes to intermediate lifetimes simultaneously.

All of the previous models have attempted to enhance a linear model with known phys-

ical properties of the fatigue process, namely the inclusion of an endurance limit and/or an

ultimate strength parameter. However, they are not necessarily derived primarily from a phys-

ical understanding of the process. An example of a physically motivated model is given by

Epaarachchi and Clausen (2003). This model is derived from assumptions on the accumula-

tion of fatigue damage in polymer composite materials. It also considers the effect of variables

involved in the testing procedure based on previously known experimental data. This, com-

bined with its parsimonious nature (only parameters A and B are unknown), provided us with

sufficient evidence to consider it as the basis for our optimal designs. Further details on its

parameterization are discussed in Section 3.2.

40



3.1.2.3 Fatigue Testing

The industry standards for creating balanced test plans are given in ASTM D3479 (2012).

Discussions of data analysis are also presented there. Sample sizes for the test plans are

calculated separately based on the methods given in ASTM E122 (2009). With regards to

optimal fatigue testing, there has been substantial research in the field of accelerated life

testing, of which fatigue testing can be considered a special case. The earliest ALT plans were

based on linear models relating lifetime to stress. Chernoff (1962) proposed an asymptotically

optimal design with r stress levels, where r is the number of parameters to be estimated. This

design was based on an exponential distribution of the lifetime and was constructed so as to

minimize the variance of the maximum likelihood (ML) estimates of the parameters. Nelson

and Kielpinski (1976) derived plans based on normal and lognormal distributions with the goal

of minimizing the ML estimate of the mean/median lifetime. A similar approach was taken in

Nelson and Meeker (1978) except with Weibull and extreme value distributions and the goal

of minimizing the ML estimate of a specified quantile. Later, Meeker (1984) compared plans

based on Weibull and lognormal distributions and concluded that compromise plans may be

more suitable as they are more robust to departures of model assumptions.

An important weakness of the previous designs is their assumption of a linear model.

In light of this, there have been attempts to derive test plans for situations where certain

modeling assumptions are violated. Meeter and Meeker (1994) derive plans in which the

scale parameter is non-constant and Pascual (2006) discusses plans that are robust to model

misspecifications. In regards to fatigue testing specifically, Pascual (2003) derives several

plans based on his random fatigue limit model. A useful reference for ALT literature is the

bibliography compiled by Nelson (2005) and his book (Nelson, 1990) is considered a classic

reference in the field.
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3.1.3 Overview

The remainder of this chapter is organized as follows. Section 3.2 discusses further details

on the model used to build the test plans. Section 3.3 presents the settings and notation for

derivation of the test plans along with a description and example of each type of test plan.

The construction of the optimality criterion is also presented. In Section 3.4 we discuss the

effects of the design parameters and modeling assumptions on the test plans. A simulation

study is performed using selected test planning values to compare the asymptotic variance

with the actual variance under the test plans. Finally, Section 3.5 presents some suggestions

for fatigue test planning and a final summary of the results.

3.2 The Statistical Model

3.2.1 Model

For our test planning purposes, the fatigue data are assumed to come from a log-location-

scale family of distributions with the probability density function (pdf) and cumulative density

function (cdf) given as

f(t) =
1

ν
φ

(
log (t)− µ

ν

)
and

F (t) = Φ

(
log (t)− µ

ν

)
,

respectively. Here, φ(·) and Φ(·) are the standard forms of the pdf and cdf, respectively.

Common examples of the log-location-scale family of distributions include the lognormal and

Weibull distribution, which is very popular in fatigue modeling. The scale parameter ν is

assumed to be constant while the location parameter µ = µ(σM) is specified to be a function

of the stress. As mentioned in Section 3.1.2, we specify the relationship according to the

Epaarachchi and Clausen (2003) model as
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µ(σM ;A,B) =
1

B
log

{(
B

A

)
fB
(
σu
σM
− 1

)(
σu
σM

)γ(α)−1

[1− ψ(R)]−γ(α) + 1

}
(3.1)

The unknown parameters are θ = (A,B, ν)′, where A represents environmental effects

on the material fatigue and B is a material-specific parameter which represents effects from

the material itself. The remaining parameters are known from the testing procedure. The

ultimate strength σu is the same as described previously and f is the frequency of the cyclic

testing. The parameter ψ is a function of the ratio R = σm/σM , where

ψ(R) =


R −∞ < R < 1

1
R

1 < R <∞
,

and γ(α) = 1.6−ψ| sin (α)| is a function of the smallest angle α between the testing direction

and the fiber direction. These relations are based on previous experimental results. There are

several reasons why this specific model was chosen as the basis for our optimal test plans:

• The model is physically motivated as opposed to a curve-fitting technique or an extension

thereof. It is derived on the assumption of a power law relationship for damage within

the material structure (D’Amore et al., 1996).

• It incorporates current knowledge regarding the effects of the testing parameters on

the relationship between stress and lifetime in the material. None of the other models

discussed in Section 3.1.2 even considered these effects.

• It is parsimonious in terms of the number of unknown parameters to be considered.

Linear models have at least two parameters to be estimated and the same goes for this

model.

• Each of the unknown parameters has a physical meaning. In a linear or linearized model,

the slope and intercept may not have a physical meaning or may yield values that are

physically impossible.
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One primary weakness of this model in comparison to a linear model is that it is highly

nonlinear in its structure, resulting in a more complex estimation procedure. However, current

computing power and technology can easily be used to overcome this complexity.

3.3 Test Plan Settings

Consider a fatigue test with s stress levels and ki number of samples tested at stress levels

i = 1, . . . , s. The total number of units under test is k =
∑s

i=1 ki. Let σMi be the maximum

stress for level i. We define the design points for the test plan as qi = σMi/σu; the ratio

of maximum stress to the ultimate tensile strength. Note that 0 < qi ≤ 1. In practice, a

planning range of qi is specified prior to experimentation. We denote the planning range by

qi ∈ [qL, qU ], where qL and qU are the lower and upper bounds, respectively. An example of

a planning range could be qi ∈ [0.35, 0.75]. Denote the proportion of samples allocated to

level i by πi = ki/k. Note that 0 ≤ πi ≤ 1 and
∑s

i=1 πi = 1. Here, we enforce πi to be

a valid proportion of the total sample size. That is, πi = p/q for some positive integers p

and q. This is done to ensure that the resulting test plans yield sensible proportions of the

total sample making for easier implementation. Finally, our test plan consists of the vector

η = (q1, · · · , qs, π1, · · · , πs)′ containing the design points where samples are to be allocated

and the proportion of the sample allocated to each point. These are the parameters that can

be adjusted to create the desired test plan.

3.3.1 Traditional Test Plan

The test plan we will use to represent the current methodology, which we will denote as

the “traditional” test plan, is represented by ηtrad = (0.35, 0.50, 0.75, 1/3, 1/3, 1/3)′. This plan

is representative of what is commonly used in fatigue testing and will serve as the basis for

comparison.
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3.3.2 Optimal Test Plan

We will denote as the “optimal” test plan the vector ηopt = (q∗1, q
∗
2, . . . , q

∗
s , π

∗
1, π

∗
2, . . . , π

∗
s)
′,

where q∗i and π∗i are the design points and sample allocation values that optimize a desired

criterion. A common optimality criterion used in reliability known as C-optimality is to mini-

mize the variance of the p quantile of the product lifetime distribution at a specified use level

(e.g., Nelson and Kielpinski 1976, Nelson and Meeker 1978, Nelson 1990 and Pascual 2003).

This quantity is commonly used for marketing purposes or as part of industrial standards

to ensure products are performing to proper specifications. Here, we extend this criterion

to minimizing the weighted sum of the large-sample approximate variance of an estimator of

the p quantile of the lifetime distribution at a vector of specified use levels. Specifically, let

quse = (quse,1, quse,2, . . . , quse,n)′ denote a vector of use levels and w = (w1, w2, . . . , wn)′ denote

a vector of weights, where
∑n

i=1wi = 1. The vectors quse and w are chosen to best represent

the stresses and associated frequencies the material under consideration would experience in

the field. Thus, our optimal design can be represented as

ηoptim = arg min
η

n∑
i=1

wiAVar
{

log
[
T̂p(quse,i)

]}
(3.2)

where T̂p is the estimator of the p quantile of the lifetime distribution. This criterion is subject

to the following constraints:

(C1) The optimal design points must fall within the pre-specified planning range (q∗i ∈

[qL, qU ]).

(C2) The optimal sample allocations must be valid reasonable proportions (π∗i ∈ [0, 1], kπ∗i =

ki and
s∑
i=1

π∗i = 1).

(C3) The expected total time of the fatigue test must not exceed a pre-specified total test

time Ttot. (k
s∑
i=1

π∗iE[Ti] ≤ Ttot.).

The expected lifetime E[Ti] at stress level i is computed according to the assumed distribution.

For example, in the case of the lognormal distribution E[Ti] = exp (µi + ν2/2) and in the case
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of the Weibull distribution E[Ti] = exp (µi)Γ(1 + ν), where µi is the location parameter for

stress level i.

3.3.2.1 The Likelihood and Fisher Information Matrix

For our test plans, the estimator log (T̂p) will be derived based on the maximum likelihood

estimates of the model parameters in (3.1). Specifically, we proceed as follows. Let the data

from a fatigue test be denoted by {Tij, dij}, j = 1, . . . , ki, where Tij is the lifetime of the jth

sample at stress level i and dij is a censoring indicator. In particular,

dij =


1 Tij ≤ TM

0 Tij > TM

,

where TM is a pre-specified maximum test time. It is assumed for now that TM is the same

for each stress level. The total time under test can be computed as Ttot. =
∑s

i=1 kiTM . The

likelihood function based on this data and model (3.1) is

L(θ|DATA) =
∏
i,j

{
1

νTij
φ

[
log(Tij)− µi(A,B)

ν

]}dij {
1− Φ

[
log(TM)− µi(A,B)

ν

]}1−dij
,

(3.3)

where µi(A,B) = µ(σMi;A,B) is the Epaarachchi and Clausen (2003) model as defined

in (3.1). The log-likelihood function is

l(θ|DATA) = log[L(θ|DATA)] =
∑
ij

lij(θ),

where lij(θ) is the log-likelihood contribution from observation j at stress level i and θ =

(A,B, ν)′ is the vector of model parameters. In particular,

lij(θ) = dij {− log(ν)− log(Tij) + log[φ(zij)]}+ (1− dij) log[1− Φ(zMi)], (3.4)

where zij = [log(Tij)−µi(A,B)]/ν and zMi = [log(TM)−µi(A,B)]/ν. The maximum likelihood

(ML) estimates are those values of θ that maximize (3.4). The ML estimator log
[
T̂p(quse,i)

]
is then derived as

log
[
T̂p(quse,i)

]
= µuse,i(Â, B̂) + zpν̂, (3.5)
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where Â, B̂ and ν̂ are the ML estimators of A,B and ν, respectively, and zp = Φ−1(p).

3.3.2.2 The Large-sample Approximate Variance

The large-sample approximate variance of the estimator in (3.5) is derived from the Fisher

information matrix

Iθ = E

[
−∂

2l(θ)

∂θ∂θ′

]
.

The details of the calculation of Iθ for model (3.1) are given in Appendix 3.A. Specifically,

under the standard regularity conditions, the large-sample approximate variance-covariance

matrix of the ML estimators of A,B, and ν is

Σθ =


AVar

(
Â
)

ACov
(
Â, B̂

)
ACov

(
Â, ν̂

)
ACov

(
Â, B̂

)
AVar

(
B̂
)

ACov
(
B̂, ν̂

)
ACov

(
Â, ν̂

)
ACov

(
B̂, ν̂

)
AVar (ν̂)



=



E

[
−∂

2l(θ)

∂A2

]
E

[
−∂

2l(θ)

∂A∂B

]
E

[
−∂

2l(θ)

∂A∂ν

]
E

[
−∂

2l(θ)

∂A∂B

]
E

[
−∂

2l(θ)

∂B2

]
E

[
−∂

2l(θ)

∂B∂ν

]
E

[
−∂

2l(θ)

∂A∂ν

]
E

[
−∂

2l(θ)

∂B∂ν

]
E

[
−∂

2l(θ)

∂ν2

]



−1

.

Note that Σθ = I−1
θ . Then AVar

{
log
[
T̂p(quse,i)

]}
is computed as

AVar
{

log
[
T̂p(quse,i)

]}
=

[
µuse,i(A,B)

∂A
,
µuse,i(A,B)

∂B
, zp

]
Σθ

[
µuse,i(A,B)

∂A
,
µuse,i(A,B)

∂B
, zp

]′
.

(3.6)

The exact variances and covariances of the ML estimates of the parameters or functions

of parameters from nonlinear models can be very difficult to obtain in closed form so Σθ or

functions thereof are often used as a viable substitute. The design of optimal test plans usually

involve minimizing a function of Σθ primarily because of this constraint.

Because the quantities in Σθ usually depend on the true value of the model parameters,

planning values for the parameters are assumed so as to yield numeric values for the optimality

criterion. The use of planning values is quite controversial as the optimality of a test plan

depends strongly on the assumed model with any deviations from this model resulting in
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plans that produce suboptimal results. Great care should be taken in their selection. We

suggest that planning values for any experimental design project should be chosen based on

expert knowledge of the fatigue process or on the results of experiments performed on similar

materials. For the purpose of exposition, our planning values will be selected based on ML

estimates derived from data collected on a polymer composite material. Due to the sensitive

nature of the experiment and the resulting dataset, it is not presented here and has been

rescaled and relabeled for use with our test plans.

3.3.3 Compromise Test Plans

While optimal test plans are desired due to their ability to extract the greatest amount of

information from data, their reliance on an assumed model structure is a prominent weakness.

Furthermore, these test plans tend to be rather economical in terms of the number of design

points needed to implement them. Though this is certainly advantageous, it often does not

leave much room for experimenters to determine if their modeling assumptions were correct. In

order to alleviate this risk, many researchers propose a “compromise” plan in which additional

design points and/or more allocation of the sample to these points are included. These

additions help make the test plan more robust to possible misspecification of the model. In a

similar manner, we consider a compromise plan ηcomp = (q∗∗1 , q
∗∗
2 , . . . , q

∗∗
s , π

∗∗
1 , π

∗∗
2 , . . . , π

∗∗
s )′ in

which additional constraints are imposed on the optimality criterion given in (3.2). Specifically,

the optimality criterion is now subject to the following constraints:

(C’1) The optimal design points must fall within the pre-specified planning range (q∗∗i ∈

[qL, qU ]).

(C’2) The optimal sample allocations must be valid reasonable proportions and allocate no

less than a specified minimum π∗∗min to each design point. (π∗∗i ∈ [π∗∗min, 1], kπ∗∗i = ki and
s∑
i=1

π∗∗i = 1).

(C’3) The expected total time of the fatigue test must not exceed a pre-specified total test
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time Ttot. (k
s∑
i=1

π∗∗i E[Ti] ≤ Ttot.).

(C’4) The number of design points must be no less than a pre-specified number s∗∗ (s ≥ s∗∗).

The compromise plans we consider here have s∗∗ = 3 for constraint (C’4) as the inclusion

of more design points would result in test plans that are larger than the traditional plan

rendering them less efficient and so less desirable.

3.4 Assessment of Test Plans

The test plans will be assessed in two areas: the effects of the design parameters (total

sample size, total time on test and use stress level distribution) and the effects of the modeling

assumptions (planning values and lifetime distribution). The results of these assessments

will help us understand the behavior of our proposed test plans under a variety of possible

circumstances and make appropriate suggestions accordingly. Unless otherwise specified, the

default settings for the design parameters are k = 12 and TM = 1.0×107 cycles. The planning

values are based on those estimated from the rescaled data provided to us and a lognormal

distribution is used as the default lifetime distribution.

Optimization over the test plan parameters was performed using the optimization proce-

dure given in Appendix 3.B. Optimization according to the constraints given in Section 3.3.2

consistently resulted in test plans with only two design points at each end of the planning

range. This is a common occurrence in ALT plans as the optimal number of design points is

usually equal to the number of parameters to be estimated in the model, of which there are

only two here. In light of these results, a minimum distance of 0.1 was imposed between any

two design points for optimization of the compromise test plans to ensure they did not revert

to the optimal two design points.
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3.4.1 Design Parameters

The range of sample sizes consists of k ∈ {9, 12, 15, 18, 21, 24, 27, 30}. As each of these

sample sizes is a multiple of three, this makes for a more direct comparison with the traditional

test plans. The effect of the total time on test is expressed through the individual censoring

time TM . The range of censoring times considered are TM ∈ {(0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 5.0)×

106} cycles and was chosen to ensure fair comparison among the test plan types. More

restrictive censoring times would lead to poor test plans and less restrictive censoring times

would have no effect. The range of use stress levels consisted of 20 stress levels ranging from

5% to 25% of the ultimate strength of the material. Four distributions representing different

possible use profiles were selected and are presented in Figure 3.2. The effect of the design

parameters will be assessed under each use profile.

3.4.1.1 Sample Size

The configuration of each type of test plan under varying sample sizes and use profiles is

presented in Table 3.2. Figure 3.3 summarizes the effect of the sample size on each type of

test plan under each use distribution. As expected, all of the test plans yield more precise

estimates as the sample size increases. However, it is clear that the optimal and compromise

test plans yield more precise estimators across the board. Furthermore, they are both much

more efficient than the traditional test plan. For example, in order to obtain a more precise

estimator than that resulting from an optimal test plan with k = 9 samples under the first

use profile, it would require k = 15 samples for a traditional test plan, a roughly 67% increase

in the required number of samples.

When looking at the test plans in Table 3.2, one can see a marked difference in the

allocation of samples between the traditional and alternative plans. For both the optimal

and compromise test plans, the majority of the samples are allocated to the lower end of

the planning range. For the optimal test plan, this allocation is roughly 2:1 while for the

compromise plan it is roughly 6:1:3. This is also common in ALT plans as data collected in
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(a) Profile 1: Skewed right (b) Profile 2: Skewed left

(c) Profile 3: Unimodal symmetric (d) Profile 4: Bimodal asymmetric

Figure 3.2: Distribution profiles of use stress levels for the test plan assessment. Stress levels
increase towards the right.
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the planning range must then be used to extrapolate to the range of interest. Thus, optimal

test plans tend to assign more samples to the lower end of the planning range as these design

points are closest to the range of interest and so will yield more information regarding the

lifetime behavior there.

One notable result in terms of the sample size is the decreasing gap in the asymptotic

variance between the optimal and compromise plans. Specifically, for sample sizes k > 25,

the difference between the two plan types is almost negligible. Thus, if the sample size is

large enough, the penalty of choosing a compromise test plan over an optimal one when the

underlying assumptions are in fact true are much less severe. However, the overall discrepancy

between the asymptotic variances of the optimal and compromise plans is not that large even

with small samples.

With regards to the effect of the use profile, for the second use profile, which put most of

the weight on stress levels further away from the lower bound of the planning range, the test

plans yield less precise estimators. This is to be expected as the farther away the use levels

are from the planning range, the more uncertainty there is in the extrapolation. Furthermore,

when the majority of the weight is on use stress levels closer to the planning range, more of

the sample tends to be allocated to the lower stress levels in the planning range. Once again,

because these regions of the planning range are closer to the use levels (in these situations,

much closer), it is intuitive to assign even more samples to these regions as they are sufficiently

close to yield the maximum amount of information.

3.4.1.2 Censoring Time

The effect of the censoring time is summarized in Figure 3.4. The configuration of each type

of test plan under varying censoring times and use distributions is presented in Table 3.3. The

efficiency of the optimal and compromise plans remains resistant to severe time constraints.

This is most evident when TM = 500,000 cycles. The traditional plan is untenable as the

location of the design points and allocation of samples yields a test plan that will require a

longer average time of completion than is possible under this constraint. Both the optimal
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Figure 3.3: Sample size effect for each plan under each use profile. The lines connecting the
observation points only serve as a visual reference and have no physical meaning.
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Table 3.2: Test plans by sample size and use profile.

Profile k
Traditional Plan Optimum Plan Compromise Plan

AVar
Stress Level Allocation

AVar
Stress Level Allocation

AVar
Stress Level Allocation

q1 q2 q3 k1 k2 k3 q1 q2 k1 k2 q1 q2 q3 k1 k2 k3

1

9 0.73 0.35 0.50 0.75 3 3 3 0.51 0.35 0.75 6 3 0.55 0.35 0.45 0.75 5 1 3
12 0.55 0.35 0.50 0.75 4 4 4 0.38 0.35 0.75 8 4 0.42 0.35 0.65 0.75 7 2 3
15 0.44 0.35 0.50 0.75 5 5 5 0.30 0.35 0.75 10 5 0.33 0.35 0.65 0.75 9 2 4
18 0.37 0.35 0.50 0.75 6 6 6 0.25 0.35 0.75 12 6 0.27 0.35 0.65 0.75 11 2 5
21 0.31 0.35 0.50 0.75 7 7 7 0.22 0.35 0.75 13 8 0.24 0.35 0.65 0.75 12 3 6
24 0.27 0.35 0.50 0.75 8 8 8 0.19 0.35 0.75 15 9 0.21 0.35 0.65 0.75 14 3 7
27 0.24 0.35 0.50 0.75 9 9 9 0.17 0.35 0.75 17 10 0.18 0.35 0.65 0.75 16 3 8
30 0.22 0.35 0.50 0.75 10 10 10 0.15 0.35 0.75 19 11 0.16 0.35 0.65 0.75 18 3 9

2

9 0.37 0.35 0.50 0.75 3 3 3 0.26 0.35 0.75 6 3 0.27 0.35 0.65 0.75 6 1 2
12 0.28 0.35 0.50 0.75 4 4 4 0.19 0.35 0.75 9 3 0.21 0.35 0.65 0.75 8 2 2
15 0.22 0.35 0.50 0.75 5 5 5 0.15 0.35 0.75 11 4 0.17 0.35 0.65 0.75 10 2 3
18 0.19 0.35 0.50 0.75 6 6 6 0.13 0.35 0.75 13 5 0.14 0.35 0.65 0.75 12 2 4
21 0.16 0.35 0.50 0.75 7 7 7 0.11 0.35 0.75 15 6 0.12 0.35 0.65 0.75 14 3 4
24 0.14 0.35 0.50 0.75 8 8 8 0.10 0.35 0.75 17 7 0.10 0.35 0.65 0.75 16 3 5
27 0.12 0.35 0.50 0.75 9 9 9 0.09 0.35 0.75 19 8 0.09 0.35 0.65 0.75 18 3 6
30 0.11 0.35 0.50 0.75 10 10 10 0.08 0.35 0.75 21 9 0.08 0.35 0.65 0.75 20 3 7

3

9 0.52 0.35 0.50 0.75 3 3 3 0.36 0.35 0.75 6 3 0.39 0.35 0.65 0.75 6 1 2
12 0.39 0.35 0.50 0.75 4 4 4 0.27 0.35 0.75 8 4 0.30 0.35 0.65 0.75 7 2 3
15 0.31 0.35 0.50 0.75 5 5 5 0.21 0.35 0.75 10 5 0.23 0.35 0.65 0.75 9 2 4
18 0.26 0.35 0.50 0.75 6 6 6 0.18 0.35 0.75 12 6 0.19 0.35 0.65 0.75 11 2 5
21 0.22 0.35 0.50 0.75 7 7 7 0.15 0.35 0.75 14 7 0.17 0.35 0.65 0.75 13 3 5
24 0.20 0.35 0.50 0.75 8 8 8 0.13 0.35 0.75 16 8 0.15 0.35 0.65 0.75 15 3 6
27 0.17 0.35 0.50 0.75 9 9 9 0.12 0.35 0.75 18 9 0.13 0.35 0.65 0.75 17 3 7
30 0.16 0.35 0.50 0.75 10 10 10 0.11 0.35 0.75 20 10 0.11 0.35 0.65 0.75 19 3 8

4

9 0.56 0.35 0.50 0.75 3 3 3 0.39 0.35 0.75 6 3 0.42 0.35 0.65 0.75 6 1 2
12 0.42 0.35 0.50 0.75 4 4 4 0.29 0.35 0.75 8 4 0.32 0.35 0.65 0.75 7 2 3
15 0.34 0.35 0.50 0.75 5 5 5 0.23 0.35 0.75 10 5 0.25 0.35 0.65 0.75 9 2 4
18 0.28 0.35 0.50 0.75 6 6 6 0.19 0.35 0.75 12 6 0.21 0.35 0.65 0.75 11 2 5
21 0.24 0.35 0.50 0.75 7 7 7 0.17 0.35 0.75 14 7 0.18 0.35 0.65 0.75 13 3 5
24 0.21 0.35 0.50 0.75 8 8 8 0.15 0.35 0.75 16 8 0.16 0.35 0.65 0.75 15 3 6
27 0.19 0.35 0.50 0.75 9 9 9 0.13 0.35 0.75 18 9 0.14 0.35 0.65 0.75 17 3 7
30 0.17 0.35 0.50 0.75 10 10 10 0.12 0.35 0.75 20 10 0.12 0.35 0.65 0.75 19 3 8

and compromise plans are able to be run within this time constraint as they allow for more

flexible locations of the design points while still maintaining the mantra of “more samples at

the low points”. The degree of change during transitions to less restrictive time constraints

is fairly consistent for all but use profile two, where there is a change in sample allocation

for the optimal plan and the transition in the middle design point for the compromise plan

is much sooner. As with the previous results, more weight on use stresses closer to the lower

design point yield test plans that attempt to place more of the data at the closest stress level

as soon as is feasible.

3.4.2 Modeling Assumptions

The range of planning values were chosen to roughly cover a distance of one standard

deviation away from the estimated values from the rescaled motivating data. In addition to

the default lognormal lifetime distribution, the Weibull distribution will be considered as an

alternative due to the popularity of the related Weibull distribution in modeling fatigue data.

For the purposes of this portion of the assessment, the use profile was fixed at Skewed Right
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Figure 3.4: Censoring time effect for each plan under each use profile.
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Table 3.3: Test plans by censoring time and use profile. TM is in millions of cycles. For
TM = 500,000 cycles, the traditional plan was untenable, requiring more than the allotted
total time to implement.

Profile TM

Traditional Plan Optimum Plan Compromise Plan

AVar
Stress Level Allocation

AVar
Stress Level Allocation

AVar
Stress Level Allocation

q1 q2 q3 k1 k2 k3 q1 q2 k1 k2 q1 q2 q3 k1 k2 k3

1

0.50 - 0.35 0.50 0.75 4 4 4 0.68 0.41 0.75 8 4 0.77 0.41 0.51 0.75 6 2 4
0.75 0.90 0.35 0.50 0.75 4 4 4 0.55 0.39 0.75 8 4 0.63 0.39 0.48 0.75 6 2 4
1.00 0.73 0.35 0.50 0.75 4 4 4 0.48 0.37 0.75 8 4 0.54 0.36 0.46 0.75 6 2 4
1.50 0.60 0.35 0.50 0.75 4 4 4 0.40 0.35 0.75 8 4 0.46 0.35 0.45 0.75 6 2 4
2.00 0.57 0.35 0.50 0.75 4 4 4 0.38 0.35 0.75 8 4 0.43 0.35 0.65 0.75 7 2 3
3.00 0.55 0.35 0.50 0.75 4 4 4 0.38 0.35 0.75 8 4 0.42 0.35 0.65 0.75 7 2 3
5.00 0.55 0.35 0.50 0.75 4 4 4 0.38 0.35 0.75 8 4 0.42 0.35 0.65 0.75 7 2 3

2

0.50 - 0.35 0.50 0.75 4 4 4 0.33 0.41 0.75 8 4 0.38 0.40 0.50 0.75 6 2 4
0.75 0.45 0.35 0.50 0.75 4 4 4 0.27 0.38 0.75 8 4 0.31 0.39 0.65 0.75 8 2 2
1.00 0.36 0.35 0.50 0.75 4 4 4 0.23 0.37 0.75 8 4 0.26 0.37 0.65 0.75 8 2 2
1.50 0.30 0.35 0.50 0.75 4 4 4 0.20 0.35 0.75 9 3 0.22 0.35 0.65 0.75 8 2 2
2.00 0.29 0.35 0.50 0.75 4 4 4 0.19 0.35 0.75 9 3 0.21 0.35 0.65 0.75 8 2 2
3.00 0.28 0.35 0.50 0.75 4 4 4 0.19 0.35 0.75 9 3 0.21 0.35 0.65 0.75 8 2 2
5.00 0.28 0.35 0.50 0.75 4 4 4 0.19 0.35 0.75 9 3 0.21 0.35 0.65 0.75 8 2 2

3

0.50 - 0.35 0.50 0.75 4 4 4 0.57 0.41 0.75 8 4 0.54 0.41 0.51 0.75 6 2 4
0.75 0.63 0.35 0.50 0.75 4 4 4 0.38 0.38 0.75 8 4 0.44 0.38 0.48 0.75 6 2 4
1.00 0.51 0.35 0.50 0.75 4 4 4 0.33 0.37 0.75 8 4 0.38 0.36 0.46 0.75 6 2 4
1.50 0.42 0.35 0.50 0.75 4 4 4 0.28 0.35 0.75 8 4 0.32 0.35 0.65 0.75 8 2 2
2.00 0.40 0.35 0.50 0.75 4 4 4 0.27 0.35 0.75 8 4 0.30 0.35 0.65 0.75 7 2 3
3.00 0.39 0.35 0.50 0.75 4 4 4 0.27 0.35 0.75 8 4 0.30 0.35 0.65 0.75 7 2 3
5.00 0.39 0.35 0.50 0.75 4 4 4 0.27 0.35 0.75 8 4 0.30 0.35 0.65 0.75 7 2 3

4

0.50 - 0.35 0.50 0.75 4 4 4 0.51 0.41 0.75 8 4 0.58 0.41 0.51 0.75 6 2 4
0.75 0.69 0.35 0.50 0.75 4 4 4 0.42 0.39 0.75 8 4 0.47 0.38 0.48 0.75 6 2 4
1.00 0.55 0.35 0.50 0.75 4 4 4 0.36 0.37 0.75 8 4 0.41 0.36 0.46 0.75 6 2 4
1.50 0.46 0.35 0.50 0.75 4 4 4 0.31 0.35 0.75 8 4 0.35 0.35 0.45 0.75 6 2 4
2.00 0.43 0.35 0.50 0.75 4 4 4 0.29 0.35 0.75 8 4 0.33 0.35 0.65 0.75 7 2 3
3.00 0.42 0.35 0.50 0.75 4 4 4 0.29 0.35 0.75 8 4 0.33 0.35 0.65 0.75 7 2 3
5.00 0.42 0.35 0.50 0.75 4 4 4 0.29 0.35 0.75 8 4 0.33 0.35 0.65 0.75 7 2 3

from Figure 3.2.

3.4.2.1 Planning Values

Prior to beginning our assessment of the effect of the planning values, we believe it im-

portant to take a quick detour to examine the effect of the unknown model parameters A

and B on the Epaarachchi and Clausen (2003) model. In light of their descriptions given

in Section 3.2, we will for the remainder of this section refer to A as the “environmental”

parameter and B as the “material” parameter. The effects of each of these parameters on the

model curve are summarized in Figure 3.5. From this, we can clearly see that perturbing the

environmental parameter causes a much greater change in the overall curve than perturba-

tions in the material parameter. This is in agreement with what one would expect with small

changes in the environmental factors of the testing procedure as opposed to small changes in

the material makeup. Note that the effect is inversely related to the direction of increase for

both parameters. This knowledge will prove useful in evaluating the effects of changes in the

planning values for the test plans.
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Figure 3.5: Parameter effects on Epaarachchi and Clausen (2003) model.

Figure 3.6 gives contour plots of the weighted sum of asymptotic variances for each combi-

nation of parameter values for the three test plan designs. Figures 3.7 and 3.8 give shade plots

for the design points and sample allocation for the optimal and compromise plans, respectively.

For both plans, the location of the upper design point was fixed at 0.75 for all combinations

of the planning values. Both the optimal and compromise test plans are more robust to small

changes in the planning values, much more so than the traditional plan. Only for very small

values of the environmental parameter do the optimal and compromise plans become less

robust and yield results that are worse than the traditional test plan. The reason for this

is due to the inverse effect discussed previously. As the planning value of the environmental

parameter deviates to smaller values, the lifetime increases much more dramatically resulting

in more time required to evaluate the test plans. Thus, both the optimal and compromise

plans must adjust accordingly. However, for small changes in the environmental parameter

(< 0.03) beyond these small values, both the optimal and compromise plans are robust in

terms of outcome and setup.
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(c) Compromise Plan

Figure 3.6: Planning value effect on optimality criterion for each design type. The shaded
regions correspond to values that yield untenable plans due to the time restrictions.
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Figure 3.7: Changes in selected design parameters for the optimal design. The upper design
point qU was always fixed at 0.75.

3.4.2.2 Distribution Assumption

The effect of choice of lifetime distribution is summarized in Figure 3.9 and the specific

layout of each test plan is presented in Table 3.4. It was decided to compare lifetime distribu-

tions across a variety of sample sizes both for ease of comparison and to detect any changes

in sample size effect. We can see that though there is a large discrepancy in the asymptotic

variances under each lifetime distribution, the layout of the test plans is not that much differ-

ent, with the use of the Weibull distribution resulting in more samples allocated to the lowest

design point only in a few instances.

The previous results would seem to indicate that using a Weibull lifetime distribution

would result in more precise estimates. However, it is important to note that our criterion is

based on asymptotic values. The accuracy of the criterion may be dependent on the choice

of lifetime distribution, especially when that lifetime distribution is far from symmetric. We

performed a simulation study to ascertain the accuracy of our criterion under each of the

selected lifetime distributions and sample sizes. For each combination of distribution and
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Figure 3.8: Changes in selected design parameters for the compromise design. The upper
design point qL was always fixed at 0.75.
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Table 3.4: Test plans by sample size and lifetime distribution.

Distribution k
Optimum Plan Compromise Plan

AVar
Stress Level Allocation

AVar
Stress Level Allocation

q1 q2 k1 k2 q1 q2 q3 k1 k2 k3

Lognormal

9 0.51 0.35 0.75 6 3 0.55 0.35 0.45 0.75 5 1 3
12 0.38 0.35 0.75 8 4 0.42 0.35 0.65 0.75 7 2 3
15 0.30 0.35 0.75 10 5 0.33 0.35 0.65 0.75 9 2 4
18 0.25 0.35 0.75 12 6 0.27 0.35 0.65 0.75 11 2 5
21 0.22 0.35 0.75 13 8 0.24 0.35 0.65 0.75 12 3 6
24 0.19 0.35 0.75 15 9 0.21 0.35 0.65 0.75 14 3 7
27 0.17 0.35 0.75 17 10 0.18 0.35 0.65 0.75 16 3 8
30 0.15 0.35 0.75 19 11 0.16 0.35 0.65 0.75 18 3 9

Weibull

9 0.37 0.35 0.75 6 3 0.39 0.35 0.45 0.75 5 1 3
12 0.27 0.35 0.75 8 4 0.31 0.35 0.65 0.75 7 2 3
15 0.22 0.35 0.75 10 5 0.24 0.35 0.65 0.75 9 2 4
18 0.18 0.35 0.75 12 6 0.20 0.35 0.65 0.75 11 2 5
21 0.16 0.35 0.75 14 7 0.17 0.35 0.65 0.75 13 3 5
24 0.14 0.35 0.75 16 8 0.15 0.35 0.65 0.75 14 3 7
27 0.12 0.35 0.75 17 10 0.13 0.35 0.65 0.75 16 3 8
30 0.11 0.35 0.75 19 11 0.12 0.35 0.65 0.75 18 3 9
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Table 3.5: Asymptotic and simulated variances for the lognormal and Weibull lifetime distri-
butions for selected sample sizes.

k
Lognormal Weibull

Optimum Compromise Optimum Compromise
True Asymp True Asymp True Asymp True Asymp

9 0.51 0.51 0.54 0.55 0.69 0.37 0.74 0.39
12 0.39 0.38 0.42 0.42 0.52 0.27 0.51 0.31
15 0.31 0.30 0.33 0.33 0.41 0.22 0.41 0.24
18 0.26 0.25 0.27 0.27 0.35 0.18 0.34 0.20
21 0.21 0.22 0.24 0.24 0.30 0.16 0.29 0.17
24 0.19 0.19 0.20 0.21 0.27 0.14 0.25 0.15
27 0.16 0.17 0.18 0.18 0.23 0.12 0.22 0.13
30 0.15 0.15 0.16 0.16 0.21 0.11 0.20 0.12

sample size, an optimal and compromise test plan as given in Table 3.4 was implemented

and the resulting data used to estimate the unknown parameters A, B and ν. The estimated

quantile at each of the default use stress levels was then computed. This simulation and

estimation was performed 10,000 times and the final “exact” criterion was computed using

the empirical variance of the estimates with the weights selected according to the Skewed

Right use distribution. The results are summarized in Table 3.5. Note that the asymptotic

criterion severely underestimates the true value of the criterion when the Weibull lifetime

distribution is assumed.

3.5 Discussion

The results of this assessment lead us to make the following observations and suggestions

regarding fatigue test planning:

- Assigning more samples to the design point closest to the use levels yields more precise

estimates of quantiles at those use levels. Furthermore, if the use levels closest to the

planning range are more likely to be encountered, than even more of the sample should

be allocated to the lower end of the planning range.

- Both the optimal and compromise plans are robust to slight miscalculations in the plan-

ning values (< 0.03units) for all but the smallest values of the environmental parameter
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A. However, the compromise test plans are more consistent than the optimal test plans

with regards to sample allocation.

- Great care must be taken when using asymptotic variances as a criterion for test plan-

ning. As the simulation study showed, the accuracy of the criterion depends on the

choice of lifetime distribution. A quick simulation may be needed to determine the

required number of samples for particular choices of lifetime distribution and planning

values. We do not condone choosing lifetime distributions solely for the purpose of

creating easy test plans.

Regarding the decision to use one type of test plan over another, we propose using the

compromise test plan over the optimal test plan in general except when knowledge of the

underlying model is very strong. In addition to its ability to detect more curvature than the

optimal test plan, the difference in the criterion value between the two plans is rather small,

especially for large samples. Even when the asymptotic criterion results in underestimation,

the bias is roughly the same for both test plans for the distributions considered. This along

with the robustness and consistency in deviations from the planning values is justification

enough for us to advocate the use of compromise test plans for general test planning.
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Verlag VSB.

Talreja, R. (1981). Fatigue of composite materials: Damage mechanisms and fatigue-life

diagrams. Proceedings of the Royal Society of London. Series A, Mathematical and Physical

Sciences 378 (1775), 461–475.

Vassilopoulos, A. P. and T. Keller (2011). Fatigue of Fiber-reinforced Composites. London:

Springer.

Weibull, W. (1949). A statistical report of fatigue failure in solids. In Transactions, Volume 27,

Stockholm. Royal Institute of Technology of Sweden.
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3.A Formulae for the Fisher Information Matrix

This appendix provides the derivatives of the log likelihood given in Section 3.3.2.1, and the

details of the approach that we used to calculate needed expectations, and the large-sample

approximate variance-covariance matrix of the ML estimators of θ = (A,B, ν)′.
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Here, E = BfB log(f)c+ fBc, and F = BfB[log(f)]2c+ 2fB log(f)c.

Considering a log-likelihood for a single observation, the first partial derivatives with re-

spect to the unknown parameters can be expressed as
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Here, [
φ′(z)

φ(z)

]′
=

∂

∂z

[
φ′(z)

φ(z)

]
, and

[
φ(z)

1− Φ(z)

]′
=

∂

∂z

[
φ(z)

1− Φ(z)

]
.

Detailed formulae of Φ, φ, φ/(1−Φ), [φ/(1−Φ)]′, φ′/φ, and [φ′/φ]′ for commonly-used location-

scale distributions (normal, smallest extreme value, largest extreme value, and logistic, corre-

sponding to the lognormal, Weibull, Fréchet, and loglogistic log-location-scale distributions)

can be found in Table I of Hong et al. (2010). The scaled expectations of the second derivatives

are
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3.B Optimization Procedure

The following algorithm represents the procedure used during optimization:
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1. Given k and s, determine all P possible sample allocation schemes πp = (π1, . . . , πs)
t, p =

1, . . . , P (t denotes the transpose operator). If πmin is specified, all sample allocations

that include values of πi < πmin are excluded. This first step takes advantage of the

constraint on ki = kπi being an integer value.

2. For each πp :

(a) Divide the planning range into a grid of values separated by a specified grid size

“q−step”. Select all D possible combinations qpd = (q1, . . . , qs)
t, d = 1, . . . , D

of design points using these grid points. If a minimum distance between any two

design points is specified, remove those combinations that contain grid points closer

than this distance. Evaluate each plan ηpd = ((qpd)t, (πp)t)t and select the qpdmin

that yields the minimum value of the optimality criterion. This step was required

due to the sensitivity of the optimization to the initial values.

(b) Using qpdmin as the initial values, optimize over the design point space to find the

overall minimum value of the optimality criterion for the given πp. This was per-

formed using the free statistical software package R using the BFGS algorithm

option in the optim() function. To ensure stability in the optimization, the design

points were first transformed by the following function, which maps values from

the range [a, b] to the real line. Specifically, given a value x the transformed value

xT is given by,

xT = − log

[
(b− x)

(x− a)

]
.

To enforce the time constraint, a constant penalty term M = 10,000 was added to

the result if the expected total time exceeded the maximum total time.

3. Once a test plan ηp is obtained for each πp, select the test plan ηmin that yields the

minimum value of the optimality criterion across all πp. This is the optimal/compromise

plan.
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Chapter 4 A Comparison of Least Squares and Maximum Like-

lihood Approaches to Estimating Thermal Indices for

Polymeric Materials

4.1 Introduction

4.1.1 Motivation

Polymeric materials, including thermoplastic, thermosetting, and elastomeric materials,

are widely used in many industrial applications. Accelerated destructive degradation testing

(ADDT) is the most appropriate technique for evaluating long-term performance of such

polymeric materials. For example, ADDT is often used to evaluate properties which degrade

over time such as tensile strength. The destructive nature of the testing results from measuring

tensile strength by stretching the material until failure. When the tensile strength of an aged

material reaches a certain percentage (e.g., 50%) of the original tensile strength, a failure is said

to have occurred. The time taken to reach this point is referred to as the time to failure. Since

polymeric materials can last for long periods of time under standard use conditions, accelerated

testing, of which ADDT is a special case, is used to reduce the amount of time required to

observe a failure. For the tensile strength testing considered here, the acceleration factor

is temperature. Since the test measurements are destructive, only one measurement can be

taken from a single sample unit at a particular time and temperature. UL746B (2013) specifies

the current industry guidelines for long-term property evaluation of polymeric materials via

ADDT.

A thermal index (TI) or relative thermal index (RTI) is often used to characterize long-

term performance of polymeric materials. According to UL746B (2013), a TI of a material

serves as a measure of the material’s ability to retain a specific property (physical, electrical,

etc.) under exposure to elevated temperatures over a specified period of time (usually 100,000
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hours). For example, a TI of 200◦C may be interpreted as the material can reasonably be

expected to maintain properties at a temperature of 200◦C for 100,000 hours. The TI can be

used for the purposes of determining if a material is acceptable for a particular application. It

can also be used as a means of comparing multiple materials for an end use. A material with

a higher TI possesses a stronger resistance to thermal damage and so provides a competitive

advantage over similar materials with lower TIs. If the material is new to a particular field, the

TI of this material can be compared to a list of known TI values, such as the table containing

the RTI of common polymeric materials given in UL746B (2013).

There are two approaches to estimating the TI based on data collected from ADDT: the

least squares (LS) procedure and the maximum likelihood (ML) procedure. The LS procedure

is specified in the current industrial standards and is widely used in industrial applications.

The ML procedure is frequently used in the statistical literature but rarely seen in industrial

ADDT applications. At present, the ML procedure is not specified in current standards. In

this paper, we will compare these two procedures using two motivating datasets from the

literature and a simulation study. Due to its greater flexibility in uncertainty quantification

and its use in other aspects of statistical analysis, we propose that the ML procedure is a viable

alternative to the LS procedure. It is our intent that a comparison of the two procedures should

be considered in the designation of statistical methods for industrial standards.

4.1.2 Related Literature

Numerous industrial standards address property testing using an applications approach.

For example, UL746B (2013) gives the current guidelines for long term property evaluations for

polymeric materials. Other guidelines exist that are specific to thermal testing. IEEE-STD-

98-2002 (2002) is the IEEE standard for the preparation of test procedures for the thermal

evaluation of solid electrical insulating materials. IEEE-STD-101-1987 (2010) is the IEEE

guide for the statistical analysis of thermal life test data. Finally, IEEE-STD-421.1-2007

(2007) specifies the IEEE standard general principles for temperature limits in the rating of

electric equipment and for the evaluation of electrical insulation.
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In contrast to the industrial standards, the statistical literature describes reliability anal-

ysis and test planning using a statistical theory approach. Lu and Meeker (1993) first use

degradation data to obtain product reliability information. Tseng and Wen (2000) propose an

accelerated degradation analysis technique for highly reliable products. Meeker, Hong, and

Escobar (2011, 2011a) give a review of commonly used degradation models and data analysis

techniques. Recent development in test planning includes Shi et al. (2009), which proposes

procedures for accelerated destructive degradation test planning. Shi and Meeker (2012) per-

form ADDT test planning using Bayesian methods. The applications of parametric ADDT

analysis include Escobar et al. (2003), Tsai et al. (2013), and Li and Doganaksoy (2014). A

general introduction to statistical methods for reliability data can be found in Meeker and

Escobar (1998).

4.1.3 Overview

This paper will compare the methods presented in both the industrial and statistical lit-

erature and illustrate a proposed approach for estimating thermal indices with motivating

examples. Section 4.2 provides an overview of ADDT for long-term material property eval-

uation including test designs and data. The motivating examples are also introduced in this

section. Section 4.3 describes the LS and ML procedures for estimating the TI from ADDT

data. Each procedure is illustrated using a published dataset from the literature. Section 4.4

will give a comparison of both methods via a simulation study. Section 4.5 will address ad-

ditional considerations for the ML procedure including uncertainty quantification, prediction,

and software implementation. In section 4.6, both procedures are applied to an additional

published dataset based on an alternative test design to help illustrate further the discrep-

ancies between the LS and ML procedures. Finally, section 4.7 will present conclusions and

recommendations for ADDT analysis.
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4.2 Accelerated Destructive Degradation Testing

4.2.1 Test Designs and Data

Industry standards give detailed recommendations on how ADDT is to be conducted for

polymeric materials. Table 4.1 shows an example of a test plan in accordance with the

UL standard. Specifically, this test plan was designed based on the “Fixed Time Sampling

Method” laid out in Section 22 of UL746B (2013). According to this section, at least four

temperature levels are required with a span of no less than 10◦C between each temperature

level. Measurements are made according to a predetermined time schedule, with the UL

standard suggesting preferred time points. At least five samples are tested at each combination

of time and temperature level with an additional ten samples tested at the initial time for a

baseline measurement (usually tested at the lowest temperature level of the experiment at 48

hours). The UL standard uses 50% of the baseline measurement as the failure threshold though

this may vary for other materials. A set of measurements is required after the degradation

passes the 50% threshold in the LS procedure. The data resulting from the test are then used

to obtain the TI of the material.

Table 4.1: Illustration of a test plan that satisfies the requirements of UL746B (2013). The
table shows the number of samples allocated to each combination of temperature levels and
measuring time points.

Temperature Time Points (Hours)
Levels (◦C) 48 552 1008 2016 3528 5040

- 10
240 5 5 5 5 5
250 5 5 5 5 5
260 5 5 5 5 5
270 5 5 5 5 5

In practice, material scientists often have prior knowledge about products that lead to an

unbalanced test plan as illustrated in Table 4.2. The plan in Table 4.2 eliminates test combi-

nations beyond which samples will show little or no degradation. In addition, combinations at
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which samples will excessively degrade, even to a potentially non-measurable state, are also

eliminated in Table 4.2. These types of combinations do not contribute additional information

to the calculation of a TI.

It is important for practitioners to note that the statistical procedures described in this

chapter can be used for either test plan. As will be seen in Section 4.2.2, the first motivating

example consists of a balanced test plan similar to Table 4.1. For simplicity, the simulations

in Section 4.4 will also be based on a balanced test plan.

Table 4.2: Illustration of a test plan that satisfies the requirements of UL746B (2013) with
elimination of non-informative points. The table shows the number of samples allocated to
each combination of temperature levels and measuring time points.

Temperature Time Points (Hours)
Levels (◦C) 48 552 1008 2016 3528 5040

- 10
220 5
230 5 5
240 5 5 5
250 5 5 5 5
260 5 5 5 5 5
270 5 5 5 5
280 5 5 5
290 5 5
300 5

To help with the presentation of each procedure, it is necessary to first introduce some

notation. Let yijk be the degradation measurement (tensile strength) for the kth sample for

temperature level i at time point j. Let TempCi be the temperature in degrees Celsius for

temperature level i and let tj be the time in hours up to time point j. Here, k = 1, . . . , nij,

where nij is the number of samples tested under temperature level i and time point j. For

example, i = 3, j = 4, and nij = 5 in Table 4.1. The failure time tf is typically defined as the

time to reach 100p% of the original strength, where p is a pre-determined level corresponding

to material failure. For example, the UL standard specifies a failure at 50% of the original

strength so p = 0.5. In some cases, the failure time is defined as the time to reach a fixed
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strength. This can easily be seen as equivalent to the previous definition.

4.2.2 Motivating Examples

The motivation for this line of research is related to real world applications which cannot

be disclosed publicly. Consequently, two published datasets will be used to illustrate and

compare the LS and ML procedures. The first example is the Seal Strength dataset presented

in Li and Doganaksoy (2014). The data are summarized in both Table 4.3 and Figure 4.1(a).

The experiment consisted of testing the strength of a new seal. The test plan is similar to

that discussed in the UL standard. In the original application in Li and Doganaksoy (2014),

the failure is defined when the strength dropped below 0.5 Newtons (roughly 2% of the initial

strength). For the purposes of comparison, we use a 50% failure threshold here. This dataset

will be used to illustrate each of the procedures as they are introduced in Section 4.3.

The second example is the Adhesive Bond B data from Escobar et al. (2003) containing the

results of an ADDT on the strength of an adhesive bond. The data are summarized in both

Table 4.4 and Figure 4.1(b). The response for the Adhesive Bond B data is the material tensile

strength. Once again, for the purposes of comparison the failure threshold for the Adhesive

Bond B material is set at 50% of the baseline measurement. The ADDT experiment discussed

in Escobar et al. (2003) that generated this data is more similar to the “Fixed Temperature

Sampling Method” discussed in Sections 13-21 of the UL standard UL746B 2013 as the data

are not as balanced. For this method, the number of temperature levels is predetermined

and fixed while the selection of time points is more flexible. This dataset will be used in the

context of an application in Section 4.6 to further illustrate the differences between the LS

and ML procedures.
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Table 4.3: Data for Seal Strength Li and Doganaksoy (2014).

Temperature (◦C) Hours Seal Strength (Newtons)
100 0 28.74 25.59 22.72 22.44 29.48 23.85 20.24 22.33 21.70 27.97

200 840 52.52 30.23 31.90 33.15 34.26 31.82 27.10 30.00 26.96 42.73
1680 31.37 37.91 38.03 42.21 32.64 32.10 32.37 33.59 26.46 33.69
2520 9.47 13.61 8.95 8.61 10.16 8.82 8.84 10.73 10.63 7.70
3360 26.72 21.24 22.76 24.39 15.93 23.90 22.09 23.69 23.67 20.94
4200 14.53 17.95 11.90 17.00 15.56 18.07 13.96 13.57 16.35 18.76

250 840 28.97 35.01 27.39 36.66 27.91 31.03 32.65 35.08 28.05 33.54
1680 14.29 20.16 22.35 21.96 13.67 14.40 22.37 13.08 17.81 17.82
2520 9.59 14.37 12.08 11.79 17.69 14.05 17.08 11.52 13.03 18.37
3360 14.23 12.83 13.02 16.74 12.11 12.24 18.97 15.29 14.38 14.80
4200 14.75 11.54 11.57 10.83 12.78 10.14 11.45 12.91 13.06 6.76

300 840 10.63 8.28 13.46 13.47 9.44 7.66 11.16 8.70 9.44 12.23
1680 10.34 13.24 8.57 11.93 13.76 16.44 14.81 11.50 11.92 10.30
2520 3.86 4.76 5.32 3.74 4.58 3.62 3.58 3.47 3.29 3.63
3360 2.89 3.31 1.81 1.61 2.65 2.83 2.70 2.79 1.83 3.08
4200 1.95 1.55 2.19 2.00 2.00 2.33 1.80 2.34 1.88 2.66

350 840 13.79 15.10 20.58 18.20 16.64 10.93 12.28 18.65 20.80 15.04
1680 5.78 5.90 6.99 7.94 7.06 5.13 5.80 6.20 5.30 6.34
2520 1.34 0.92 1.31 1.76 1.30 1.47 1.11 1.25 1.02 1.30
3360 1.24 1.57 2.06 1.56 1.94 1.39 1.91 1.44 1.61 1.50
4200 0.27 0.20 0.26 0.26 0.27 0.18 0.13 0.20 0.13 0.21
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Figure 4.1: Scatter plots of the data for the two motivating examples.
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Table 4.4: Data for Adhesive Bond B Escobar et al. (2003).

Temperature (◦C) Hours Strength (Newtons)
50 0 70.1 76.7 84.5 88.0 88.9 90.4 91.9 98.1

50 336 77.8 78.4 78.8 80.5 81.7 83.3 84.2 89.2
1008 62.7 65.7 66.3 67.7 67.8 68.8 72.6 74.1
2016 45.5 54.3 54.6 61.4 62.5 73.8 75.9
2688 39.2 49.0 51.1 61.4 62.0 70.9 73.6

60 336 51.7 61.5 69.9 73.7 76.8 87.1
1008 43.2 54.4 56.7 59.2 77.1
2016 34.3 38.4 39.2 48.4 64.2
2688 28.5 33.1 37.1 44.3

70 336 35.8 44.1 45.2 45.7 59.6
672 32.3 35.3 37.9 38.6 39.4 46.9
1008 28.0 29.2 32.5 32.7
2016 20.6 21.0 22.6 23.3 23.4 23.5 25.1 31.6 33.0

4.3 Estimation Procedures

4.3.1 The Least Squares Procedure

The LS procedure is the name that will be given to the methodology described in UL746B

(2013) as the primary method for estimation is based on the least squares approach. This

procedure is the current accepted standard for ADDT data analysis in industry. The proce-

dure is outlined as follows:

Least Squares Procedure

1. Compute the averages of the sample measurements at each combination of time and

temperature level.

2. Fit a least-squares polynomial curve to the averages for each temperature level.

3. Interpolate the failure time for each temperature level using the estimated polynomial

79



curve.

4. Fit a least-squares line to the failure time data.

5. Use the fitted line to estimate the TI for the material.

Note that if the fitted mean degradation level from the polynomial regression has not yet

reached the failure threshold by the last time point of a particular temperature level, all data

collected from that temperature must be excluded from the analysis as there is insufficient

information to interpolate the failure time.

A third-order polynomial is typically used in steps 2 and 3 to interpolate the failure time

for each temperature level. Specifically, for temperature level i, we seek tfi satisfying

a0 + a0tfi + a0t
2
fi + a0t

3
fi = pα, (4.1)

where α is the initial strength of the material. Figure 4.2 gives an example of the polynomial

interpolation for the Seal Strength data. In step 4, a least-squares line is then fit to the failure

time data according to the following model based on the Arrhenius relationship:

log10(tfi) = β0 + β1xi, (4.2)

where xi = 1/(TempCi + 273.16). The estimated coefficients for the Seal Strength data based

on the LS procedure are β̂0 = 0.568 and β̂1 = 1487.999. Finally, in step 5, the TI at a specific

value of td (e.g., 100,000 hours), which is used in the UL standard, is computed as

T =
β1

log10(td)− β0

− 273.16 . (4.3)

The estimate T̂ is found by evaluating (4.3) at the least squares estimates of β0 and β1. The

estimated TI for the Seal Strength data based on the LS procedure is 63◦C and the fitted

time-temperature line is shown in Figure 4.4.
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Figure 4.2: Polynomial interpolation from the LS procedure for the Seal Strength data. The
labels give the interpolated failure time for each temperature, as marked by a square on the
failure threshold (50%) line.

The primary advantage of the LS procedure is the computational simplicity of each step.

However, it suffers from several drawbacks. The procedure uses polynomial regression to

model the degradation curves, which may serve well as a curve-fitting technique, but is known

to have issues on the boundaries of the data, as can be seen in Figure 4.2. While this may not

be as strong a disadvantage due to the lack of interest in extrapolation beyond the data, these

polynomial models have no physical basis in the process generating the data and so can serve

only as crude approximations. Furthermore, by averaging the observations at each time and

temperature level, the procedure ignores information that could be gleaned from the variation

in and between batches.

Another issue related to the first stage of the procedure lies in imposing the constraint

of requiring observations below the failure threshold. While this might ensure more accurate

estimates of the failure time, it severely restricts the usage of the procedure. Note that in

Figure 4.2, even though the mean observation at 250◦C and 40,000 hours is below the 50%
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threshold, the estimated mean from the polynomial regression is not below the threshold

resulting in the data for this temperature being discarded. The constraint cannot be resolved

by attempting to extrapolate to the failure threshold due to the aforementioned boundary

instability of the polynomial regression. This can become an issue when time constraints are

present or measurements are hard to obtain below the failure threshold.

A prominent weakness in the procedure involves its two-step nature for estimating the

TI. Not only does this make the quantification of uncertainty regarding the estimate rather

difficult, but it also makes the procedure susceptible to errors. The error in model-fitting in

the first stage will pass on into the second stage propagating throughout the entire procedure.

4.3.2 The Maximum Likelihood Procedure

The ML procedure is the name that will be given to the methodology used in the majority

of the statistical literature on ADDT. This is because the primary method for estimation and

inference is based on a parametric model and maximum likelihood theory. The procedure is

outlined as follows:

Maximum Likelihood Procedure

1. Based on the degradation measurement under investigation (e.g., tensile strength), use

a parametric model and probability distribution that is adequate for describing the

degradation path and construct the likelihood function.

2. Estimate the parameters of the degradation function by finding those parameter values

that maximize the likelihood of the data.

3. Use the fitted function to estimate the TI for the material.

The ML procedure assumes the underlying degradation path is some function µ(t, x) of
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time t and acceleration level x. The model for the degradation measurement is

yijk = µ(tj, xi) + εijk, (4.4)

where xi = 1/(TempCi+273.16) and εijk is an error term. Because of this model specification,

the ML procedure is able to estimate the complete model in a single step.

The function µ(t, x) is typically specified to be a decreasing function of t because the tensile

strength should be decreasing over time. It is also specified to be an increasing function of x

(i.e., decreasing function of temperature) because higher temperature should lead to a higher

rate of degradation. For polymer materials, the following parametric form is suitable for the

form of µ(t, x) Vaca-Trigo and Meeker e.g., 2009:

µ(t, x) =
α

1 +

[
t

η(x)

]γ , (4.5)

where η(x) = exp(ν0 + ν1x) is based on the Arrhenius relationship.

Here, the error term is modeled as εijk ∼ N(0, σ2) and is used to describe unit to unit

variability. Since measurements of samples tested from the same batch could possibly be

correlated, we model the correlation as Corr(εijk, εijk′) = ρ. The unknown parameters θ =

(ν0, ν1, α, γ, σ, ρ)′ are estimated by the maximum likelihood method. The likelihood is given

as

L(θ) =
∏
i,j

f(yij;θ) =
∏
i,j

(2π)−
nij
2 |Σij|−

1
2 exp

{
−1

2
[yij − µ(tj, xi)]

′Σ−1
ij [yij − µ(tj, xi)]

}
(4.6)

where yij = (yij1, yij2, . . . , yijnij
)′ is the corresponding vector of degradation measurements and

f(yij;θ) is the multivariate normal density with mean vector µ(tj, xi), a nij×1 column vector

of µ(tj, xi)’s, and variance-covariance matrix Σij, a nij×nij, a matrix with σ2 on the diagonal

entries and ρσ2 on the off-diagonal entries. The parameter estimates θ̂ consist of those values

of the parameters that maximize this likelihood function. The parameter estimates for the Seal

Strength data based on the ML procedure are θ̂ = (0.695,−8901.925, 3.421, 0.504, 1.057, 1.556)′.

Figure 4.3 gives an example of the degradation paths estimated for the Seal Strength data

using (4.5) as the underlying path model.
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Figure 4.3: Parametric fit of the Seal Strength data using the ML procedure. The lines with
different styles show the fitted mean functions for each temperature level.

The time to failure is obtained by solving µ(tf , x) = pα for tf , leading to the model

log10(tf ) =
ν0

log(10)
+

ν1x

log(10)
+

1

γ log(10)
log

[
1− p
p

]
. (4.7)

When p = 0.5 (i.e., the failure threshold is 50%), as is the case in the UL standard, (4.7)

reduces to

log10(tf ) = β0 + β1x (4.8)

where β0 = ν0/ log(10), and β1 = ν1/ log(10). The TI at td can be computed as

T =
β1

log10(td)− β0 −
1

γ
log10

[
1− p
p

] − 273.16 (4.9)

If p = 0.5, (4.9) reduces to (4.3). The estimate T̂ is obtained by evaluating (4.9) at θ̂. The

estimated TI for the Seal Strength data is 72◦C and the fitted time-temperature line is shown

in Figure 4.4.

The ML procedure has several advantages over the LS procedure. It is able to perform

estimation in a single step rather than the two steps required in the LS procedure, making it
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more robust to error propagation. Also, while a polynomial regression curve is quite flexible

in data modeling, the ML procedure allows the analyst to incorporate subject-matter knowl-

edge into the modeling procedure in both the choice of degradation path and distribution of

the response. No restrictions are placed on the need to have degradation levels below the

failure threshold as knowledge of the failure time is extracted from the estimated degradation

path model. The procedure also considers the information contribution from each individual

observation, resulting in estimation of within- and between-batch variation. Accounting for

these two quantities allows for greater accuracy in determining the underlying degradation

path, thus yielding more accurate measures of the TI. Furthermore, as will be discussed in

Section 4.5, the ML procedure is able to quantify the uncertainty in TI estimates or estimates

of any other desired quantity with relative ease.

The ML procedure is not without its faults, however. One disadvantage of the ML pro-

cedure is the greater complexity required to estimate the path model parameters compared

to estimation in the LS procedure. This disadvantage is primarily related to the complexity

present in the model selection and could be avoided by choosing a simpler model; however,

current computing power and statistical software packages can readily handle such complexity

as discussed in Section 4.5. Another potential weakness lies in the procedure’s strong depen-

dence on the specification of the degradation path and response distribution. However, this

too can be remedied by consulting the subject-matter expertise of those involved in the mate-

rial production. If there is still any uncertainty in the model selection, appropriate measures

can be taken to assess any deviation from the assumed model via residual analysis and other

similar procedures.
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Figure 4.4: Fitted temperature-time relationship lines from both procedures and the corre-
sponding estimated TIs for the Seal Strength data.

4.4 Simulation Study for Estimation Performance

In this section, we conduct a simulation study to compare the performance of the LS and

ML procedures in terms of estimating the TI.

4.4.1 Simulation Setting

The data were simulated according to the model given in (4.5) with α = 9000, ν0 =

−16 log (10), ν1 = 12500 log (10), and γ = 2. The failure threshold was the same as that in

the UL standard, p = 0.5. The true TI at 100,000 hours is 181◦C. Eight scenarios with

varying numbers of time and temperature levels were considered: four with four time points

and four with five time points. Consideration of fewer time points than those suggested by

the UL standard would allow us to test each procedure’s sensitivity to time constraints. The

number of temperature levels ranged from three to five to assess sensitivity to constraints on

accelerating factors. Two scenarios were considered for the case of four temperature levels,
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with the range of levels consisting of either higher or lower temperature levels. This was done

to determine the effect of the levels of accelerating factor in terms of distance from use levels.

Details for each scenario are given in Table 4.5. There were 600 runs for each scenario. The

choice of time schedule and temperature levels were based on the test plan from the original

motivating data.

Table 4.5: The temperature levels and measuring time points for the eight simulation scenarios.

Scenarios Temperature Levels (◦C) Time Points (Hours)
1: Temp. 3, Time 4 250 260 270 552 1008 2016 3528
2: Temp. 4, Time 4 250 260 270 280 552 1008 2016 3528
3: Temp. 4, Time 4 240 250 260 270 552 1008 2016 3528
4: Temp. 5, Time 4 240 250 260 270 280 552 1008 2016 3528
5: Temp. 3, Time 5 250 260 270 552 1008 2016 3528 5040
6: Temp. 4, Time 5 250 260 270 280 552 1008 2016 3528 5040
7: Temp. 4, Time 5 240 250 260 270 552 1008 2016 3528 5040
8: Temp. 5, Time 5 240 250 260 270 280 552 1008 2016 3528 5040

4.4.2 Simulation Results

Table 4.6 shows the estimated mean, bias, standard deviation (SD), and root mean square

error (RMSE) of the TI for the LS and ML procedures from the simulation study. Figure 4.5

plots the estimated mean and RMSE of the TI estimators for both procedures for each sce-

narios. The LS procedure appears to be sensitive to the number of time points whereas the

ML procedure is relatively stable. As the number of temperature levels increases, the RMSE

of the ML procedure decreases, as would be expected, but for the LS procedure the change

in RMSE is not as monotone. The LS procedure also appears to be more sensitive to the

selection of temperature levels than the ML procedure. Since higher levels of acceleration

and increased observation times give a greater chance of yielding failures, the LS procedure’s

improved behavior in these scenarios is intuitive as less failures yields less data for this pro-

cedure. Thus, a good TI estimate from the LS procedure would require more temperature

levels and more time points while the ML procedure is more stable across varying numbers
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Table 4.6: Estimated mean, bias, SD, and RMSE of the TI estimators for the LS and ML
procedures from the simulation study.

Scenarios True TI
Mean Bias SD RMSE

LS ML LS ML LS ML LS ML
1: Temp. 3, Time 4 181 167 178 14 3 26 15 29 15
2: Temp. 4, Time 4 181 165 181 16 0 26 9 31 9
3: Temp. 4, Time 4 181 165 181 16 0 26 9 31 9
4: Temp. 5, Time 4 181 174 181 7 1 15 7 16 7
5: Temp. 3, Time 5 181 177 178 4 3 17 14 17 14
6: Temp. 4, Time 5 181 181 179 0 2 10 10 10 10
7: Temp. 4, Time 5 181 175 180 6 1 13 8 14 8
8: Temp. 5, Time 5 181 179 180 3 1 8 7 9 7

of time and temperature levels. In summary then, the ML procedure has superior estimation

properties to the LS procedure.
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Figure 4.5: Plot of the estimated mean and RMSE of the TI estimators for the LS and ML
procedures from the simulation study. The labels across the top correspond to the particular
scenario represented.

88



4.5 Advantages of the ML Procedure

4.5.1 Uncertainty Quantification

As mentioned in Section 4.3, one important advantage of the ML procedure is its ability to

quantify uncertainty regarding T̂ . This can be accomplished through the construction of an

approximate confidence interval based on the asymptotic normality of the maximum likelihood

estimates. Specifically, the ML estimator θ̂ is asymptotically distributed as N(θ,Σθ̂). Here, Σθ̂

is the large-sample variance-covariance matrix obtained as the inverse of the local information

matrix Iθ̂ given by

Iθ̂ = −∂
2 logL(θ)

∂θ∂θ′

∣∣∣∣
θ=θ̂

.

Let T̂ be the ML estimator of the TI as given in (4.9). Then, by the delta method, it follows

that

T̂ ∼̇ N

(
T,

[
∂T (θ̂)

∂θ̂

]′
Σθ̂

[
∂T (θ̂)

∂θ̂

])
, (4.10)

where ∂T (θ̂)/∂θ̂ = ∂T (θ)/∂θ|θ=θ̂. A large-sample approximate (1 − q) × 100% confidence

interval for the TI is then given by

T̂ ± z1−q/2

√√√√[∂T (θ̂)

∂θ̂

]′
Σθ̂

[
∂T (θ̂)

∂θ̂

]
.

The approximation of the interval is with regards to the coverage probability, which will

approach the desired confidence as the sample size increases. A 95% confidence interval for

the Seal Strength data is [14.942◦C, 128.420◦C]. Note that this interval contains the LS point

estimate of the TI (63◦C). There is a large amount of variation in the data leading to a wide

confidence interval for this data. As will be seen in Section 4.6, such wide intervals are not

the norm.

4.5.2 Material Comparisons

The UL standards also define a relative thermal index (RTI) for the comparison of materials

of different brands. For example, if a control material has an established TI of 180◦C, an RTI,
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denoted by R, can be obtained for the candidate material. There are two situations in which

this comparison can be made with the ML procedure:

a). The only sample tested is from the candidate material and the established TI is treated

as a fixed constant.

b). Samples from both the candidate and control materials are tested and the TI of the

control material is forced to be equal to the established value for purposes of comparison.

For situation (a), inference on the comparison can be made using the confidence interval

procedure outlined in Section 4.5.1. If the established TI is contained within the interval,

then there is evidence to conclude that the candidate TI is not significantly different from the

established value.

For situation (b), one can use the model in (4.5) with a separate set of parameters, θc and

θa to describe the data collected from the control and candidate materials, respectively. Using

the ML procedure, we will have lines log10(tf ) = βc0 + βc1x and log10(tf ) = βa0 + βa1x for

both the control and candidate materials, respectively, with the coefficients estimated from

the data. The RTI for the candidate material can be obtained from the following expression:

R = R(ψ) =
βa1(T + 273.16)

(βc0 − βa0)(T + 273.16) + βc1
, (4.11)

where ψ = (θ′c,θ
′
a). The expression in (4.11) results from equating the control and can-

didate lines together at T and solving for R. For example, suppose βc0 = −39.316, βc1 =

20082.24, βa0 = −60.151, and βa1 = 30082.24 with the control material having an established

TI of 180◦C. Then, using equation (4.11) the candidate material’s RTI is 188.57◦C. Figure 4.6

gives a graphical view of this example.

The estimate R̂ can be obtained by substituting in the ML estimates. Then, by the delta

method, it follows that

R̂ ∼̇ N

(
R,

[
∂R(ψ̂)

∂ψ̂

]′
Σψ̂

[
∂R(ψ̂)

∂ψ̂

])
. (4.12)

Assuming the data for the control and candidate materials are independent of one another,

let Σθ̂c and Σθ̂a be the large-sample covariance matrix for the control and candidate ma-

90



180 200 220

     10

    100

  1,000

 10,000

100,000

2

4

6

8

2

4

6

8

2

4

6

8

2

4

6

8

Temperature C

T
im

e
 (

H
o
u
rs

)

TI=180 C RTI=188.57 C

Control

Candidate

Figure 4.6: Graphical illustration of the calculation of RTI in material comparisons.

terial parameters, respectively. The large-sample covariance matrix is then given by Σψ̂ =

Diag(Σθ̂c,Σθ̂a). An approximate (1− q)× 100% confidence interval for the RTI is then given

by

R̂± z1−q/2

√√√√[∂R(ψ̂)

∂ψ̂

]′
Σψ̂

[
∂R(ψ̂)

∂ψ̂

]
.

If the confidence interval contains the known TI of the control material, it will imply there is

no significant difference between the candidate and control materials or vice versa. Of course,

one must always consider power and the effect of sample size when making statements about

significant differences. However, such calculations are beyond the scope of this paper.

4.5.3 Conditional Prediction

Prediction of a future observation based on currently observed data could also be of interest

when studying material performance with ADDT. For example, based on data collected up

to 3528 hours after the start of a test, we may want to predict the expected tensile strength
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Figure 4.7: Point predictions and corresponding pointwise prediction intervals for the Seal
Strength data at 200◦C, based on the ML procedure.

of observations at the 5040 hour mark and/or derive a prediction interval for the observations

at that time point. A point prediction can be achieved as ŷij∗ = µ̂(tj∗ , xi), where tj∗ is some

future time point. To create a prediction interval with the ML procedure, we can use the

variance of the residual

Var(yij∗ − ŷij∗) = σ2

[
ρ+

1− ρ
nij∗

]
+

[
∂µ(tj∗ , xi)

∂θ

]′
Σθ̂

[
∂µ(tj∗ , xi)

∂θ

]
, (4.13)

where ρ is the within-batch correlation of the sample. An asymptotic (1−q)×100% prediction

interval for yij∗ has the form

ŷij∗ ± z1−q/2

√
V̂ar(yij∗ − ŷij∗),

where V̂ar(yij∗ − ŷij∗) is (4.13) evaluated at the ML estimate θ̂. Figure 4.7 gives an example

of prediction based on the ML procedure for a selected temperature level of the Seal Strength

data.
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4.5.4 Software Implementation

In terms of computation, the ML procedure is not as straightforward as the LS procedure.

However, computation of the ML estimates can easily be performed with modern computing

power and current statistical software packages. We have implemented the computing algo-

rithms used in this paper in R, a popular and free statistical software package. An R package

ADDT (Hong et al., 2014) containing several of the functions used in this paper has been de-

veloped to handle computing of the LS and ML procedures and an R GUI is currently in

development. The main function of the package is addt.fit(), which provides model fitting

and basic inference. For model-fitting of a single material, one can use the following command:

addt.fit(response~time+temperature, data=data, proc="ML")

For the comparison of two materials with samples of each material having been collected, the

addt.fit() command can be adapted as:

addt.fit(response~time+temperature+materials, data=data, proc="ML")

The summary() and plot() functions can then be used to obtain the results.

4.6 Application

In this section, we apply both the LS and ML procedures to the Adhesive Bond B data

mentioned in Section 4.2.2. Even though only two of the three temperature levels result

in a failure, as seen in Figure 4.8, it is still possible to perform the analysis using the LS

procedure. For the ML procedure, the same model assumptions used for the Seal Strength

data are used here and the resulting degradation paths are shown in Figure 4.9. The estimated

time-temperature line for both procedures are shown in Figure 4.10.
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Figure 4.8: Polynomial interpolation from the LS procedure for the Adhesive Bond B data.
The labels give the interpolated failure time for each temperature, as marked by a square on
the failure threshold (50%) line.

The estimated TI based on the ML procedure is 33◦C, which is not too far from the value of

39◦C obtained by the LS procedure. Note that the 95% confidence interval for the estimated

TI, roughly given as [27◦C, 39◦C], contains the estimated TI from the LS procedure. This

interval is also much smaller than that for the Seal Strength data as there is less variability

in the data. The ML procedure is also able to provide predictions and their associated uncer-

tainties for the temperature level that did not result in failure. Figure 4.11 shows pointwise

prediction intervals for time points after 2688 hours at temperature 50◦C for the Adhesive

Bond B data. The plot is helpful in determining the time at which the mean of 5 test samples

will pass the 50% threshold at the 50◦C level.
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Figure 4.9: Parametric fit of the Adhesive Bond B data using the ML procedure.
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Figure 4.11: Point predictions and corresponding pointwise prediction intervals for the Adhe-
sive Bond B data at 50◦C, based on the ML procedure.

4.7 Discussion

Table 4.7 summarizes the comparison of the LS and ML approaches performed in this

chapter. Both methods give similar conclusions about the TI, but the ML procedure has

several advantages over the LS procedure. The ML procedure can be used to analyze data

that have not yet reached the failure threshold whereas the LS procedure is unable to do so.

The ML procedure is also less sensitive to constraints on time and temperature levels. It can

also be used to quantify uncertainties in the estimation of the TI or in the comparison of TIs

between two different materials. Since the LS procedure requires two steps to estimate the

TI, it makes it very difficult to quantify uncertainties. While the ML procedure is slightly

more computationally intensive than LS, it should be noted that this can be easily overcome

with basic software packages, some of which are free to download. Thus, we believe the ML

procedure is more appropriate for analyzing ADDT data than the LS procedure. Industry
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Table 4.7: Comparison of the LS and ML procedures.

Feature LS Procedure ML Procedure
Specified in current standard Yes No
Uses data beyond the failure threshold No Yes
Requires parametric model No Yes
Considers within /between batch variations No Yes
Provides uncertainty quantification No Yes
Provides significance testing No Yes
Provides prediction capability No Yes
Requires statistical/computational software No Yes

procedures must be aligned with the most applicable and versatile statistical methods that

are easily implemented in software. We strongly encourage further consideration of the ML

procedure for setting performance indices for advanced materials.
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Chapter 5 Conclusion and Areas for Future Research

This dissertation considered several research problems related to the field of reliability.

Specifically, each of these problems represented the manner in which statistics and industry

can each benefit from the other, using expertise from one field to provide a solution to a

deficiency of methodology in the other. Chapter 3 discussed a special case in which both

fields brought something to the table, a true example of the collaboration that is hoped will

continue long into the future. In the remainder of this chapter, we summarize the research

presented in each of the preceding chapters and consider areas in which the research can be

extended further.

Chapter 2 presented an extension of the standard competing risks model to include the pos-

sibility of product components changing over the production period. Methods for estimating

parameters and calculating conditional predictive distributions were proposed. An assessment

of the generational model and an extended generational model was performed using cumula-

tive predictions under eight different scenarios. It was found that the SCR model performed

poorly relative to the LCG model when generational changes were present in the data. The

models presented in Chapter 2 were basic in their construction and several restrictions were

imposed in order to obtain a suitable foundation for the idea. In future work, these restric-

tions can be removed so as to formulate more complicated models. Allowing for covariates,

especially dynamic covariates, in a regression setting could also be considered. Methods for

lifetime predictions using dynamic covariates have been discussed in Hong and Meeker (2013)

and similar procedures could be adapted here. Heterogeneities in operating environments

(e.g., Ye et al. 2013) can also be considered with generational changes. One further restriction

involved the assumption of independence among the components. This assumption, however,

is not always true for products in the field. Although components may be grouped together to

allow for independence among groups, incorporating dependence among the components and
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investigating how it varies across generations and affects predictions may be useful in some

applications.

In Chapter 3, we sought to derive optimal test plans for cyclic constant amplitude fatigue

testing of polymer composites based on the model proposed by Epaarachchi and Clausen

(2003). The optimality criterion consisted of the weighted sum of asymptotic variances of

a quantile estimator for a vector of desired use stress levels. The model and criterion were

both chosen to better incorporate subject-matter knowledge into the test planning procedure.

Optimal and compromise plans were derived and assessed in terms of the effects of the de-

sign parameters and modeling assumptions. The optimum and compromise plans were more

efficient than the traditional plans and their flexibility in their configuration allowed them to

maintain that efficiency in the face of various constraints. In terms of the modeling assump-

tions, both plans were robust to slight changes in the planning values and provided similar

results under differing lifetime distributions, though the accuracy of the optimality criterion

wavered strongly under skewed log-lifetime distributions as confirmed by simulations. The

plans we presented here are specific to cyclic constant amplitude fatigue testing, which is the

most popular form of fatigue testing used in the industry. However, it is well known that such

testing procedures do not adequately represent the stress that materials experience in the

field. As such, procedures have been developed that allow the stress pattern to vary over the

testing of the material. Epaarachchi (2006) present an extension of their model for the case of

block testing, a simple extension of constant amplitude testing in which a sample is subjected

to blocks of cyclic testing with the amplitude varying among blocks. The number of blocks

and the amplitude for each block can be chosen to suit the experimenter’s need. A logical

next step would be to derive optimal test plans for fatigue testing under this scheme. Future

work could then include consideration of spectral testing, which is a more complex extension

of block testing. We can also consider a Bayesian approach to test planning (e.g., Hong et al.

2014), which can allow for the incorporation of uncertainty in the choice of planning values.

Finally, in Chapter 4, we compared two procedures for estimating the TI for a specified

material: the LS procedure given in the UL standard for ADDT testing and the ML procedure
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used in the statistical literature. The ML procedure possessed several advantages over the LS

procedure, especially with regards to uncertainty quantification. Both procedures were applied

to two different sets of data to further assist in illustrating the differences between the two

procedures. Though it did not necessarily present any new methodology, this chapter helped

to showcase the outstanding discrepancies that remain in current industrial standards which

current statistical methodology can help to fill. It is our intention to continue to promote as

well as contribute to such methodology in the future.
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