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Since the terrorist attacks on September 11, 2001, many state and local health
departments around the United States have started to develop syndromic
surveillance systems. Syndromic surveillance — a new concept in epidemiol-
ogy — is the statistical analyses of data on individuals seeking care in emer-
gency rooms (ER) or other health care settings with preidentified sets of
symptoms thought to be related to the precursors of diseases. Making use
of existing health care or other data, often already in electronic form, these
systems are intended to give early warnings of bioterrorist attacks or other
emerging health conditions. By focusing on symptoms rather than confirmed
diagnoses, syndromic surveillance aims to detect bioevents earlier than would
be possible with traditional surveillance systems. Because potential bioterror-
ist agents such as anthrax, plague, brucellosis, tularemia, Q-fever, glanders,
smallpox, and viral hemorrhagic fevers initially exhibit symptoms (“present”
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in medical terminology) of a flulike illness, data suggesting a sudden increase
of individuals with fever, headache, muscle pain, and malaise might be the
first indication of a bioterrorist attack or natural disease outbreak. Syndromic
surveillance is also thought to be useful for early detection of natural disease
outbreaks [Hen04].

Research groups based at universities, health departments, private firms,
and other organizations have proposed and are developing and promoting a
variety of surveillance systems purported to meet public health needs. These
include methods for analysis of data from healthcare facilities, as well as re-
ports to health departments of unusual cases. Many of these methods involve
intensive, automated statistical analysis of large amounts of data and intensive
use of informatics techniques to gather data for analysis and to communicate
among physicians and public health officials [WTE01]. Some of these systems
go beyond health care data to include nonhealth data such as over-the-counter
(OTC) pharmaceutical sales and absenteeism that might indicate people with
symptoms who have not sought health care [Hen04].

There are a number of technological, logistical, and legal constraints to
obtaining appropriate data and effective operation of syndromic surveillance
systems [Bue04]. However, even with access to the requisite data and perfect
organizational coordination and cooperation, the statistical challenges in reli-
ably and accurately detecting a bioevent are formidable. The object of these
surveillance systems, of course, is to analyze a stream of data in realtime and
determine whether there is an anomaly suggesting that an incident has oc-
curred. All data streams, however, have some degree of natural variability.
These include seasonal or weekly patterns, a flu season that appears at a dif-
ferent time each winter or perhaps not at all, differences in coding practices,
sales promotions for OTC medications, and random fluctuations due to small
numbers of individuals with particular symptoms. Furthermore, for some nat-
ural outbreaks or bioterrorist attacks the “signal” (the number of additional
cases over baseline rates) may be small compared to the “noise” (the random
or systematic variation in the data). As a result, even the most effective sta-
tistical detection algorithms face a trade-off among three factors: sensitivity,
false positives, and timeliness.

The goals of this chapter are (1) to introduce the statistical issues in
syndromic surveillance, (2) to describe and illustrate approaches to evaluat-
ing syndromic surveillance systems and characterizing their performance, and
(3) to evaluate the performance of a couple of specific algorithms through
both abstract simulations and simulations based on actual data. Section 1
of this chapter introduces and discusses the statistical concepts and issues
in syndromic surveillance, illustrating them with data from an ER surveil-
lance system from the District of Columbia. Section 2 presents methods from
the statistical process control (SPC) literature, including variants on exist-
ing multivariate detection algorithms tailored to the syndromic surveillance
problem, and compares and contrasts the performance of univariate and mul-
tivariate techniques via some abstract simulations. Section 3 then compares
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the new multivariate detection algorithms with commonly used approaches
and illustrates the simulation approach to evaluation using simulations based
on actual data from seven Washington, DC, hospital ERs. We conclude with
a discussion about the implications for public health practice.

1 Background

Immediately following September 11, 2001, the District of Columbia Depart-
ment of Health (DC DOH) began a surveillance program based on hospital
ER visits. ER logs from nine hospitals are faxed on a daily basis to the health
department, where health department staff code them on the basis of chief
complaint, that is, the primary symptom or reason that the patient sought
care, recording the number of patients in each of the following syndromic
categories: death, sepsis, rash, respiratory complaints, gastrointestinal com-
plaints, unspecified infection, neurological, or other complaints. These data are
analyzed daily using a variety of statistical detection algorithms, and when
a syndromic category shows an unusually high occurrence, a patient chart
review is initiated to determine if the irregularity is a real threat.

Simply displaying the daily number of ER visits for any given symptom
group results in a figure in which day-to-day stochastic variation dominates
any subtle changes in numbers of cases over time. To address this problem,
the DC DOH employs a number of statistical detection algorithms to analyze
data on a daily basis and raise an “alarm” when the count is significantly
greater than expected, which may suggest a possible outbreak or attack. This
type of analysis can help to identify the onset of the annual influenza season.
The data also reveal indications of the “worried well” who sought care during
the 2001 anthrax attacks and a previously undetected series of gastrointestinal
illness outbreaks that occurred over a four-month period in different hospitals.
No single symptom group or detection algorithm consistently signaled each of
the events [SSM04].

1.1 Characterizing the Performance of Statistical Detection
Algorithms

Although it is possible to have different levels of certainty for an alarm, syn-
dromic surveillance algorithms typically operate in a binary fashion; on any
given day they either alarm or they do not. Operating in this way, the per-
formance of a detection algorithm in the context of a particular dataset can
be characterized according to its sensitivity, false-positive rate, and timeli-
ness. Sensitivity , sometimes called the true positive rate and similar to the
power of a statistical hypothesis test, is the probability that an outbreak will
be detected in a given period when there in fact is an outbreak. Clearly, a
surveillance system should have as much sensitivity as possible. Lowering the
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threshold at which an alarm is sounded can generally increase sensitivity, but
only at the expense of false positives.

A false positive occurs when an algorithm alarms on a day when there is
no actual outbreak. In medical or epidemiological terminology, specificity is 1
minus the probability of a false positive, or the probability that an alarm will
not be raised on a day that there is no outbreak. Ideally, the probability of
a false positive would be zero, but practically it is always positive. Intrinsic
variability in the data means that every methodology can alarm when in fact
there is no event.

It is usually possible to make the false-positive rate tolerably small. There
are two difficulties, however. First, lowering the false-positive rate generally
involves either decreasing sensitivity or lowering timeliness (or both). Second,
even with a very low false-positive rate for a single algorithm or system, it
is still possible — even likely — that in the aggregate the number of false
positives may be unacceptably large.

For example, sometime in the near future it is possible that thousands
of syndromic surveillance systems will be running simultaneously in towns,
cities, counties, states, and other jurisdictions throughout the United States.
Each of these jurisdictions might be looking at data in six to eight symptom
categories, separately from every hospital in the area, and so on. Suppose ev-
ery county in the United States had a detection algorithm in place that was
used daily and that had a 0.1% false-positive rate. Because there are approxi-
mately 3,000 counties, nationwide three counties a day on average would have
a false-positive alarm. While any particular county would only experience a
false positive about once every three years, which may be an acceptable rate
at the county level, is the nationwide false-positive rate acceptable? The im-
pacts of excessive false alarms are both monetary, as resources must respond
to phantom events, and operational, as too many false alarms desensitize re-
sponders to real events.

Because a rapid response to a bioterrorist attack or natural disease out-
break is essential to minimizing the health consequences, timeliness is an im-
portant characteristic of all surveillance systems. With its focus on symptoms
that occur before formal diagnosis, syndromic surveillance is specifically de-
signed to enhance timeliness. While timeliness does not have a well-established
definition to parallel sensitivity and specificity, we think of it as the speed at
which an algorithm alarms during an outbreak.

Stoto, Schonlau, and Mariano [SSM04] characterized the trade-off between
sensitivity and timeliness in a simulation study. Using the daily number of
admissions of patients with influenzalike illness (ILI) over a three-year period
to the emergency department of a typical urban hospital, which averages three
per day outside the winter flu season, they added a hypothetical number of
extra cases spread over a number of days to mimic the pattern of a potential
bioterror attack. A “fast” outbreak was defined as 18 additional cases over
three days — 3 on the first day, 6 on the second, and 9 on the third. A
simulated “slow” outbreak involved the same total number of cases, but they
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were distributed over nine days as follows: 1, 1, 1, 2, 2, 2, 3, 3, 3. Each of these
simulated outbreaks was added on each day in the database outside the winter
flu season. Four different detection algorithms were examined. The first used
ER admissions from a single day; the others used data from multiple days
using various CuSum (cumulative sums) methods (such as those to be defined
in Sect. 2.3), with the algorithms varying in the weight they gave to more
recent data.

The simulation results suggest the minimum size and speed of outbreaks
that are detectable. Even with an excess of 9 cases over two days, which is
three times the daily average, there was only a 50% chance that the alarm
would go off on the second day of an outbreak. Figure 1 indicates how this
probability — the sensitivity of the algorithm — varies by day. In the slow
outbreak, when 18 cases were spread over nine days (see Fig. 2), chances were
no better than 50–50 that the alarm would sound by the ninth day.
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Fig. 1. Shaded bars correspond to four detection algorithms: the first using only one
day’s data, the other three combining data from multiple days. All four syndromic
surveillance methods worked equally well for fast-spreading bioterrorist attacks, but
had only about a 50–50 chance of detecting the outbreak by day two. See Stoto et
al. [SSM04] for more information.

1.2 Evaluation of Syndromic Surveillance Systems

There are a number of ways to evaluate syndromic surveillance systems, formal
and informal. For example, the Centers for Disease Control and Prevention’s
(CDC) “Framework for Evaluating Public Health Surveillance Systems for
Early Detection of Outbreaks” [CDC04a] offers a useful framework to guide
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Fig. 2. Methods that combine data from multiple days (the hatched bars) were
more effective at detecting slow-spreading attacks, but even the best method took
until day nine to have a 50–50 chance of detecting a slow outbreak. See Stoto et al.
[SSM04] for more information.

evaluation efforts. Other approaches focus on the completeness, timeliness,
and quality of the data [BBM04], or on how syndromic surveillance efforts re-
late to public health practice [Rei03]. The annual national syndromic surveil-
lance conference (see http://www.syndromic.org) offers many examples of
such evaluations.

Formal approaches tend to focus on characterizing the statistical perfor-
mance of detection algorithms applied to particular data streams. The Stoto,
Schonlau, and Mariano [SSM04] analysis described above illustrates the sim-
ulation approach, and Sect. 3 of this paper presents a more detailed example.
Both of these examples use real data as a baseline and add a simple simu-
lated outbreak. As a perhaps more realistic alternative, Stacey [Sta04] has
described an approach in which real data are used to model simulated out-
breaks for testing purposes.

The retrospective analysis of known natural outbreaks is an alternative
approach to evaluation. Siegrist and Pavlin [SP04], for instance, report on
an exercise in which four leading biosurveillance research teams compared the
sensitivity, specificity, and timeliness of their detection algorithms in two steps.
First, an outbreak detection team identified actual natural disease outbreaks
— eight involving respiratory illness and seven involving gastrointestinal ill-
ness — in data from five metropolitan areas over a 23-month period but did
not reveal them to the research teams. Second, each research team applied its
own detection algorithms to the same data, to determine whether and how
quickly each event could be detected. When the false-alarm rate was set at
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one every 2 to 6 weeks, the best algorithms from each research team were
able to detect all of the respiratory outbreaks; for two of the four teams de-
tection typically occurred on the first day that the outbreak detection team
determined as the start of the outbreak; for the other two teams, detection oc-
curred approximately three days later. For gastrointestinal illness, the teams
typically were able to detect six of seven outbreaks, one to three days after
onset. (Of course, as previously discussed, such detection times are partially a
function of the false-alarm rate — decreasing the false-alarm rate will increase
the detection time.)

One can also look at the epidemiological characteristics of various pathogens
to clarify the implications for syndromic surveillance [Bue04]. For instance,
Fig. 3 gives two examples that differentiate between attacks in which many
people are exposed at the same time, and those in which a contagious agent
might cause large numbers of cases in multiple generations. Example A (the
line with the triangles) illustrates what might be found if 90 people were
exposed to a noncontagious agent (such as anthrax) and symptoms first ap-
peared eight days on average after exposure. Example B (the line with the
squares) illustrates the impact of a smaller number of people (24) exposed to
a contagious agent (such as smallpox) with an average incubation period of 10
days. Two waves of cases appear, the second larger and 10 days after the first.
Because the two epidemic curves are similar on days one through three, it is
difficult to know what can be expected, but if the agent were contagious (Ex-
ample B), early intervention could save some or all of the second generation
of cases. In Example A, however, everyone would already have been exposed
by the time that the outbreak was detected.

1.3 Improving the Performance of Syndromic Surveillance

Faced with results like those in Figs. 1 and 2, one naturally asks whether more
effective systems can be developed. There are a number of alternatives that
could be considered and actually are the subject of current research.

Most detection algorithms can be characterized in three respects: (1) what
they assume as the background level and pattern of diseases or symptoms, (2)
the type of departures from normal that they are tuned to detect (an exponen-
tial increase in the number of cases, a geographic cluster of cases, and so on),
and (3) the statistical algorithm they use to determine when the data indicate
a departure from normal (i.e., an “anomaly”). Each presents opportunities to
improve the performance of detection algorithms. Ultimately, however, there
really is no free lunch. As is the case in other areas of statistics, there is an
inherent trade-off between sensitivity and specificity, and the special need for
timeliness makes it even more difficult in this application. Every approach to
increasing sensitivity to one type of attack is likely to cause a detection algo-
rithm to be less sensitive to some other scenario. To circumvent this trade-off,
we would have to have some knowledge about how a terrorist may attack.
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Fig. 3. Two epidemic curves that are similar on days one through three, but
then diverge. The line with the triangles results from a gamma distribution with
µ = 8 and σ = 4. The line with the squares simulates an infectious agent with a
mean latency of 10 days. It is made up of the sum of observations from two gamma
distributions, one with µ = 4 and σ = 2, and the second with µ = 14 and σ = 2.

Siegrist’s retrospective analysis [Sie04] summarizes the details of some of
the leading syndromic surveillance systems, illustrating each of the approaches
described below.

Background Level and Pattern

Models to adjust for background patterns can be simple or complex. At one
extreme, a method may assume a constant mean number of cases and standard
deviation over the entire year for each data series monitored. In other models,
the expected number of cases varies seasonally, in a constant weekly pattern
(reflecting availability of health services on weekends, for instance), or as
represented in an autoregressive process.

Syndromic surveillance systems typically compare current cases to the
number in the previous day or week, the number in the same day in the
previous year, or some average of past values. More sophisticated approaches
use statistical models to “filter” or reduce the noise in the background data
to try to make the signal more obvious so that an outbreak would be easier
to detect. For instance, if a hospital ER typically sees more ILI patients on
weekend days (when other facilities are not open), a statistical model can be
developed to account for this effect. With a long enough data series, annual
effects can also be incorporated. Some patterns are not so easy to adjust for,
however. Winter flu outbreaks, for instance, appear most years but vary in
size and timing.
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Departures from Routine Conditions

Better performance might also be obtained by carefully “tuning” the detection
algorithm to detect specific types of outbreaks or perhaps one might choose
to analyze a syndrome that is less common than ILI. Stoto, Schonlau, and
Mariano [SSM04] used the same methods, for instance, to analyze the data
on the number of patients with “Viral NOS” (NOS=not otherwise specified)
symptoms, which averaged 1 per day. Outside of the flu season, they were able
to detect a fast outbreak on day two 50% to 60% of the time, only a small
improvement over ILI. With a slow outbreak, however, integrated methods
had a 50% chance of detecting outbreaks on day 5 to 7, compared to day 9
for the same chance for ILI.

This improved performance, however, has a cost — it is only sensitive to
symptoms that ER physicians would classify as Viral NOS. The combination
of fever and rash is rare and suggests the early stages of smallpox. A syn-
dromic surveillance system set up to look at this combination would likely be
more effective than the results above suggest, but would only be sensitive to
smallpox and not terrorist agents that have other symptoms.

Data also can be analyzed geographically, tuning detection algorithms to
outbreaks that are focused in a small geographic area. For instance, if there
were an extra 18 cases of ILI in a city, and all lived in the same neighborhood,
that would surely be more informative than 18 cases scattered throughout the
city — it would suggest a biological agent released at night in that area. This
is only effective, however, for such a geographically focused attack. It would
not work if terrorists chose to expose people in an office building during the
workday or at an airport but the data were analyzed by home address.

Detection Algorithms

Finally, more sophisticated detection algorithms could lead to better perfor-
mance. The simplest detection algorithms focus on the number of excess cases
on a given day (the actual number minus some baseline value). If this is more
than some number of standard deviations, an alarm is sounded.

Within this simple statement, however, are many choices, each of which af-
fects the detection algorithm’s sensitivity, false-positive rate, and timeliness.
First, the normal background level and standard deviation must be deter-
mined. As indicated above, many choices — simple to complex — are possible
for these variables. Second, the observation period must be chosen. Syndromic
surveillance systems typically choose one day as the period for reasons of time-
liness; any longer period would require waiting for data before the detection
algorithm could be run. However, day-to-day variability in syndromic data
due to small numbers sometimes means that adequate sensitivity can only be
obtained at the cost of a high, false-positive rate. An alternative, therefore,
would be to aggregate data over the period of one week, or to use a running
average for the daily value. Both of these solutions are obviously less timely.
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Current syndromic surveillance systems are typically set up to monitor
eight or more separate sets of symptoms, perhaps in different geographical
areas and from different hospital ERs. Doing so increases sensitivity simply
because more conditions are monitored. If each set of symptoms has a 1% false-
positive rate, however, increasing the number monitored will also increase the
number of false positives.

One possibility is to pool data over multiple ERs, perhaps all hospitals in
a metropolitan area or state, and indeed that is what cities such as Boston
and New York are currently doing. If this results in both the signal and the
background increasing proportionally, it will result in a more effective system.
If, for instance, nine hospitals in the Washington area report daily, each with
a daily average of 3 ILI cases, and outbreaks were nine times as large in the
example above, the performance of detection algorithms would be substan-
tially improved. If, however, there were 18 extra cases of ILI in the city and
they all appeared in one hospital, this signal would be lost in the noise of the
entire city’s cases.

An alternative is to search for patterns in the set of symptoms; fever up
but rash down, for instance, might lead to better performing detection algo-
rithms. Statistical algorithms to determine whether a departure is sufficient to
signal an alarm range from simple to sophisticated. The sophisticated What’s
Strange About Recent Events (WSARE) system developed at the Real Out-
break and Disease Surveillance (RODS) lab, for instance, is based on Bayesian
belief networks [WMC03].

2 Statistical Process Control (SPC)

Quick detection of a change in a probability distribution is the fundamental
problem of statistical process control . The problem arises in any monitoring
situation, and lies at the foundation of the theory and practice of quality
control. SPC methods use data to evaluate whether distributional parame-
ters, such as the mean rate of a particular syndrome, have increased to an
unacceptable level.

The simplest and best understood version of the problem specifies a one-
parameter family of univariate distributions — the most studied family being
the normal distribution with unknown mean — and aims to detect a change
in the parameter from one value to another as quickly as possible after the
change occurs. A number of popular and successful algorithms have been
developed for this sort of problem, and a substantial body of theoretical and
experimental research has accumulated.

Our interest here is in extending these methods to the problem of syn-
dromic surveillance and, in particular, to the Washington, DC, ER data. That
SPC is appropriate for syndromic surveillance is not immediately obvious, par-
ticularly since a priori one would expect a successful methodology would have
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to account for seasonal and perhaps other cycles in the data, and that meth-
ods specifically designed to detect monotonic changes in incident rates would
outperform conventional SPC methods.

We address these and other issues below. In so doing, we introduce some
modified multivariate algorithms that may be applied to health-related data
for syndromic surveillance and then compare their performance to univariate
SPC methods, both using simulated and actual syndromic surveillance data.

2.1 SPC Background and Literature

Walter A. Shewhart [She31] developed the concept of the control chart , a
graphical statistical tool to help control the behavior of manufacturing pro-
cesses, and in so doing became one of the founders of the quality control
movement. Shewhart’s methodology defined a scientific, statistical framework
upon which to base decision-making and hence allow objective decisions to
be made about how to manage systems. The field of SPC has since grown
from Shewhart’s seminal work. An excellent introductory text to quality con-
trol and SPC is Introduction to Statistical Quality Control by Montgomery
[Mon85].

In addition to Shewhart’s methodology, the classical approaches to SPC
have generally been parametric and univariate. These include the CuSum
(“cumulative sum”) procedure of Page [Pag54] and Lorden [Lor71], the
Bayesian procedure of Shiryayev [Shi63, Shi73] and Roberts [Rob66], and
the EWMA (“exponentially weighted moving average”) procedure of Roberts
[Rob59].

The most basic SPC problem is that of monitoring a sequence of random
variables over time with the goal of raising an alarm as soon as possible after
the mean becomes too large. The CuSum has optimality properties if the
mean experiences a one-time jump increase from one known level to another.
However, syndromic surveillance is probably not realistically described by this
type of change. Rather, a disease outbreak or bioterrorism attack is likely to
be characterized by monotonically increasing numbers of people presenting to
an ER as the pathogen spreads or the fraction of those who were exposed who
develop symptoms increases (as illustrated in Fig. 3).

This difference would seem to cast doubt on the applicability of SPC to the
problem of syndromic surveillance. However, Chang and Fricker [CF99] com-
pared the performance of CuSum and EWMA versus a repeated generalized
likelihood ratio (GLR) test designed specifically for the monotone problem.
They found that the CuSum and EWMA, appropriately applied, performed
surprisingly well in comparison to the GLR test, usually outperforming it, and
concluded that the CuSum was probably the best overall choice. This result
provides some evidence that the simple SPC methods may perform well in
the syndromic surveillance problem.

Multivariate CuSum research has centered around detecting changes in
either the normal mean vector or the covariance matrix. Seminal work was by
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Hotelling [Hot47] in the manufacture of bomb sights in World War II who de-
veloped a Shewhart-like methodology for multivariate observations. More re-
cent research includes Pignatiello and Runger [PR90] and Healy [Hea87]. Pig-
natiello and Runger [PR90] and Crosier [Cro88], as well as other researchers,
have looked at the application of CuSum-like recursions to the product of
the observation vector and an assumed known covariance matrix. Others
have dealt with multivariate data by applying a number of individual uni-
variate algorithms, one to each marginal distribution [WN85], for example.
More detailed background information about multivariate SPC can be found
in [Alt85].

2.2 Some Notation and Terminology

In the simple case of detecting a shift from one specific distribution to another,
let f0 denote the in-control distribution, which is the desired or preferred state
of the system. For syndromic surveillance, for example, this could be the dis-
tribution of the daily counts of individuals diagnosed with a particular chief
complaint at a specific hospital or within a particular geographic region un-
der normal conditions. Let f1 denote the out-of-control distribution where,
under the standard SPC paradigm, this would be a particular distribution
representing a condition or state that is important to detect. Within the syn-
dromic surveillance problem, f1 might be a specific, elevated mean daily count
resulting from the release of a bioterrorism pathogen for example.

Let τ be the actual (unknown) time when the process shifts from f0 to f1
and let T be the length of time from τ to when an algorithm alarms (which
we call the delay). We use the notation Eτ (T |T ≥ 0) to indicate the expected
delay, which is the average time it takes an algorithm to alarm once the shift
has occurred. We also use the notation E∞(T ) to indicate the expected time
to a false alarm, meaning that τ = ∞ and the process never shifts to the
out-of-control distribution.

In the SPC literature, algorithms are compared in terms of the expected
time to alarm, where E∞(T ) is first set equally for two algorithms and then
the algorithm with the smallest Eτ (T |T ≥ 0), for a particular f1, is deemed
better. Often when conducting simulation comparisons, τ is set to be 0, so
the conditioning in the expectation is automatic.

The term average run length (ARL) is frequently used for the expected
time to alarm, where it is understood that when τ = ∞ the ARL denotes
the expected time to false alarm. Similarly, in simulation experiments, the
performance of various algorithms is compared by setting the expected time
to false alarms to be equal and then comparing ARLs when τ = 0, where it is
then understood that the ARL is the mean delay time. In general terms, an
algorithm with a smaller ARL has a higher sensitivity for detecting anomalies,
though this comes at the expense of an increased false-alarm rate.

For syndromic surveillance, the out-of-control situation can be more than
a jump change from f0 to f1. For example, if µ0 is the mean of f0, then one
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possible out-of-control situation might be a monotonic increase in the mean
so that for each time i > τ , µ1(i) = µ0 + (i − τ)δ, for some positive δ. Yet,
even for this type of out-of-control condition, algorithms can still be compared
using Eτ (T |T ≥ 0).

Note that the specific value of τ is generally irrelevant to the analysis.
What is important is how long an algorithm takes to alarm after time τ .
However, setting τ = 0 means that the algorithm is guaranteed to be in its
initial condition when the shift to f1 occurs (or starts to occur, in the case of
something other than a jump change), which may be a help or hindrance to
a particular algorithm.

Also, note that comparisons using the expected value are characterizing
the distribution of the delay via a single number. This has the advantage of
allowing many comparisons to be easily graphically summarized (as we will
show), but comes with all the inherent limitations of such summaries. Hence,
here we used both the ARL in our initial simulation investigations and then
subsequently used the distribution of the delay in the final simulations with
actual data.

2.3 Applying SPC to Syndromic Surveillance

This section presents two standard univariate algorithms (the Shewhart
and the CuSum) and two multivariate extensions of these two algorithms
(Hotelling’s T 2 and one of Crosier’s multivariate CuSums). Here we also dis-
cuss how to apply the univariate algorithms to multivariate syndromic surveil-
lance data and describe how we modified the multivariate algorithms to best
apply to the syndromic surveillance problem. We focus on the Shewhart and
CuSum algorithms, and not the EWMA, because the EWMA can be made
to perform very similarly to either of the Shewhart or CuSum through the
appropriate selection of the EWMA’s weighting parameter.

Furthermore, we chose to use Shewhart and CuSum SPC methods due to
the nature of our data. Specifically, for these particular data:

• The mean rates for each of the syndromic groups were quite constant, and
• The logarithmically transformed counts (not shown here) were quite nor-

mally distributed.

It is important to note that most SPC procedures, including those de-
scribed here, have been developed under the assumption that the observations
are independent. In industrial applications, this can often be reasonably well
achieved by taking observations sufficiently far apart in time. For syndromic
surveillance data that exhibit characteristics such as seasonal cycles or other
trends, which we were frankly surprised not to find in our data, other methods
such as the EWMA or those proposed by Nomikos and MacGregor [NM95]
might be more appropriate and effective.
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Univariate Shewhart Algorithm

Shewhart’s algorithm [She31] is probably the simplest and best known of
all SPC methods and is widely applied in industry. The basic idea is to se-
quentially evaluate one observation (or period) at a time, alarming when an
observation that is rare under f0 occurs. The most common form of the al-
gorithm, often known as the X̄ chart , alarms when the absolute value of an
observed sample mean exceeds a prespecified threshold h, often defined as the
mean value plus some number of standard deviations of the mean. There are
variants on the algorithm for monitoring the variability of processes and the
algorithm can be defined to only alarm for deviations in one direction.

For application to the syndromic surveillance problem, we assume that
only deviations in the positive direction that would indicate a potential out-
break are important to detect. For a univariate random variable X, and for
some desired probability p, the threshold h is chosen to satisfy

∫

{x>h}
f0(x) dx = p.

The algorithm proceeds by observing values of Xi; it stops and concludes
Xi ∼ f1 at time τ̂ = inf{i : Xi > h}.

If the change to be detected is a one-time jump in the mean and the prob-
ability of an observation exceeding the threshold is known, then simulation is
not required as the delay is geometrically distributed and exact calculations
for the average run lengths can be directly calculated as E∞(T ) = 1/p and

Eτ (T |T ≥ 0) = E0(T ) =

[∫

{x>h}
f1(x) dx

]−1

.

Generally, however, it is quite simple to empirically estimate the ARLs via
simulation. For a particular f0, choose an h and run the algorithm m times,
recording for each run the time t when the first Xi > h (where each Xi is a
random draw from f0, of course). Estimate the in-control ARL as

̂E∞(T ) =
∑

t/m,

adjusting h and rerunning as necessary to achieve the desired in-control ARL,

wherem is made large enough to make the standard error of ̂E∞(T ) acceptably
small. Having established the threshold h for that f0 with sufficient precision,
then for each f1 of interest rerun the algorithm n times (where n is often
smaller than m), drawing the Xis from f1 starting at time 1. As before, take
the average of t1, . . . , tn to estimate the expected delay.

For the multivariate syndromic surveillance problem, multiple univariate
algorithms are applied, one to each data stream. When comparing the perfor-
mance of simultaneous univariate algorithms applied to multivariate data to
a multivariate algorithm it is important to ensure that the expected times to
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false alarm are set equally. For multiple univariate algorithms running simul-
taneously, say j, one must choose how to set the j thresholds. If there is some
reason to make the combined algorithms more sensitive to changes in some
of the data streams, those thresholds can be set such that the probability of
exceeding the threshold(s) is greater in those data streams than in the others.
For the purposes of the simulations that follow in this chapter, there was no
reason to favor one data stream over another, so all the thresholds were set
such that the probability of false alarm was equal for all data streams.

Univariate CuSum Algorithm

The CuSum is a sequential hypothesis test for a change from a known in-
control density f0 to a known alternative density f1. The algorithm monitors
the statistic Si, which satisfies the recursion

Si = max(0, Si−1 + Li), (1)

where the increment Li is the log likelihood ratio

Li = log
f1(Xi)

f0(Xi)
.

The algorithm stops and concludes that Xi ∼ f1 at time τ̂ = inf{i : Si > h}
for some prespecified threshold h that achieves a desired ARL under the given
in-control distribution.

If f0 and f1 are normal distributions with means µ and µ+δ, respectively,
and unit variances, then (1) reduces to

Si = max(0, Si−1 + (Xi − µ)− k), (2)

where k = δ/2. This is the form commonly used, even when the underlying
data is only approximately normally distributed. For the DC hospital data
we examined, the log transformed data was generally very close to normally
distributed, so we applied (2) to log(Xi). Note that k may be set to values
other than δ/2 and frequently users specify a value for k rather than the mean
of f1. What is relevant to the performance of the CuSum is that when the
process shifts to a state where E(Xi) > µ + k, then the expected value of
the incrementXi − µ− k is positive and the CuSum Si tends to increase and
subsequently exceed h relatively quickly.

Note that, since the univariate CuSum is “reflected” at zero, it is only
capable of looking for departures in one direction. If it is necessary to guard
against both positive and negative changes in the mean, then one must simul-
taneously run two CuSums, one of the form in (2) to look for changes in the
positive direction, and one of the form

Si = max(0, Si−1 − (Xi − µ)− k),
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to look for changes in the negative direction. For the syndromic surveillance
problem, we are only interested in looking for increases in rates, so we only
use (2).

As with the univariate Shewhart, multiple univariate CuSum algorithms
must be applied, one to each data stream, for the multivariate syndromic
surveillance problem. As with the univariate Shewhart algorithms, for the
purposes of our simulations, there was no reason to favor one data stream
over another, so all the thresholds were set such that the probability of false
alarm was equal in all data streams and so that the resulting expected time
to false alarm for the combined set of univariate algorithms was equal to the
expected time to false alarm of the multivariate algorithm.

Multivariate Shewhart Algorithm (Modified Hotelling’s T 2)

Hotelling [Hot47] introduced the T 2 (sometimes referred to as the χ2) algo-
rithm. For multivariate observations Xi ∈ IRd, i = 1, 2, . . ., compute

T 2
i = X′

iΣ
−1Xi,

where Σ−1 is the inverse of the covariance matrix. The algorithm stops at
time τ̂ = inf{i : Ti > h} for some prespecified threshold h.

We refer to this as a multivariate Shewhart algorithm since it only looks
at data from one period at a time. Like the original univariate Shewhart X̄
algorithm, because it only uses the most recent observation to decide when to
stop, it can react quickly to large departures from the in-control distribution,
but will also be relatively insensitive to small shifts. Of course, it also requires
that the covariance matrix is known or well-estimated.

For the syndromic surveillance problem, it is desirable to focus the T 2

algorithm on the detection of increases in incident rates. We accomplish that
by modifying the stopping rule for the T 2 so that it meets two conditions:
(1) Ti > h and (2) Xi ∈ S, where S is a particular subspace of IRd that
corresponds to disease outbreaks, for example an increase in one or more data
streams.

For the purposes of the syndromic surveillance simulations, we defined S
as follows. Choose values s1, s2, . . . , sd such that

∫ ∞

x1=s1

∫ ∞

x2=s2

· · ·
∫ ∞

xd=sd

fo(x)dx ≈ 0.99,

and then define S = {x1 > s1, x2 > s2, . . . , xd > sd}.
For example, consider an in-control distribution following a bivariate nor-

mal distribution with some positive correlation, so that the probability con-
tour for the density of f0 is an ellipse with its main axis along a 45-degree line
in the plane. Then you can think about S as the upper right quadrant that
almost encompasses the 99% probability ellipse.
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The idea of using this region for S is that if f1 represents a shift in the
mean vector in any direction corresponding to an increase in one or more
of the data streams, then the modified T 2 algorithm will have an increased
probability of alarming, which should result in a decreased expected time
to alarm. On the other hand, if f1 represents a condition where the mean
vector corresponds to a decrease in one or more of the data streams, then
the probability of alarming will decrease and the algorithm will have less of a
chance of producing an alarm.

Multivariate CuSum Algorithm (Modified Crosier’s MCuSum)

The abbreviation MCuSum, for multivariate CuSum, is used here to refer to
the algorithm proposed by Crosier [Cro88] that at each time i considers the
statistic

Si = (Si−1 + Xi − µ)(1− k/Ci), if Ci > k, (3)

where k is a statistical distance based on a predetermined vector k, k =
{k′Σ−1k}1/2 and Ci = {(Si−1 + Xn − µ)′Σ−1(Si−1 + Xi − µ)}1/2. If Ci ≤
k, then reset Si = 0. The algorithm starts with S0 = 0 and sequentially
calculates

Yi = (S′
iΣ

−1Si)
1/2.

It concludes that Xi ∼ f1 at time τ̂ = inf{i : Yi > h} for some threshold
h > 0.

Crosier proposed a number of other multivariate CuSum-like algorithms
but generally preferred (3) after extensive simulation comparisons. Pignatiello
and Runger [PR90] proposed other multivariate CuSum-like algorithms as
well, but found that they performed similarly to (3).

It is worth noting that Crosier derived his algorithm in an ad hoc manner,
not from theory, but found it to work well in simulation comparisons. Healy
[Hea87] derived a sequential likelihood ratio test to detect a shift in a mean
vector of a multivariate normal distribution that is a true multivariate CuSum.
However, while we found Healy’s algorithm to be more effective (had shorter
ARLs) when the shift was to the precise f1 mean vector, it was less effective
than Crosier’s for detecting other types of shifts, including mean shifts that
were close to but not precisely the specific f1 mean vector.

In this application we prefer Crosier’s algorithm to Healy’s since it seems
to be more effective at detecting a variety of departures from the in-control
mean vector and the types of shifts for the syndromic surveillance problem
are not well-defined. That is, if we knew the type of departure to look for,
we could design a detection algorithm that would have more power to detect
that specific signal. However, given that the types of signals will vary, we have
opted for Crosier’s method because it is robust at detecting many types of
departures well.

We also prefer Crosier’s formulation for the syndromic surveillance prob-
lem as it is easy to modify to look only for positive increases. In particular, in
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our simulations, when Ci > k we bound Si to be positive in each data stream
by replacing (3) with Si = (Si,1, . . . , Si,d) where

Si,j = max[0, (Si−1,j +Xi,j − µj)(1− k/Ci)],

for j = 1, 2, . . . , d.

2.4 Performance Comparisons via Abstract Simulations

Before evaluating the performance of the methods using actual data, we com-
pared their performance using simulated data from normal and multivariate
normal distributions. The purpose of these simulations was to:

1. Compare and contrast the performance of the methods under known, ideal
conditions;

2. Gain some insight into how they performed as the dimensionality of the
data changed; and

3. Reach some preliminary conclusions about how best to implement the
algorithms for the real data.

In these simulations, we compared the performance by average run length,
first setting the ARL under the in-control distribution (i.e., E∞(T ), the ex-
pected time to false alarm) equally, and then comparing the ARL performance
under numerous out-of-control distributions resulting from various shifts in
the mean vector at time 0 (i.e., E0(T )).

For example, Fig. 4 illustrates the improved performance of the modified
T 2 algorithm and the modified MCuSum regardless of dimensionality and size
of (a positive) mean shift. Here (and in the other figures in this section) the in-
control distribution is a six-dimensional multivariate normal centered at the
zero vector with unit variance in all the dimensions and covariance ̺ = 0.3
between all the dimensions; that is, the in-control distribution is

f0 = N







0
0
0
0
0
0



,




1 0.3 0.3 0.3 0.3 0.3
0.3 1 0.3 0.3 0.3 0.3
0.3 0.3 1 0.3 0.3 0.3
0.3 0.3 0.3 1 0.3 0.3
0.3 0.3 0.3 0.3 1 0.3
0.3 0.3 0.3 0.3 0.3 1






.

The out-of-control distributions are the same as the in-control distributions
but with components of the mean vector shifted as indicated on the horizontal
axis for the number of dimensions shown in the key. So, for example, the
darkest line is for a mean vector that was shifted in all six dimensions from
0.0 — no shift — on the left to 3.4 on the right.

The vertical axis in Fig. 4 is the difference (∆) between the ARL for the
unmodified algorithm and the modified algorithm for a given mean vector shift
(measured only at the values indicated on the horizontal axis). Positive values
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indicate the modified algorithm had a smaller ARL and so performed better,
so that for a particular out-of-control condition the modified algorithm had
a shorter time to alarm. A difference of 0 at mean shift = 0.0 indicates that
the false-alarm rates (equivalently, the in-control ARLs) were set equally for
each algorithm before comparing the expected time to alarm for various out-
of-control mean vector shifts (within the bounds of experimental error, where
a sufficient number of simulation runs were conducted to achieve a standard
error of approximately 2.5 on the estimated in-control ARLs).

Figure 4 shows, as expected, that the modified algorithms perform better
than the original algorithms at detecting positive shifts regardless of whether
the shift occurs in one dimension, in all the dimensions, or in some number
of dimensions in-between, and for all magnitudes of shift. As the number of
dimensions experiencing a shift of a given size increases, the modified algo-
rithms do considerably better. However, for the largest shifts, the performance
of the original algorithms approaches that of the modified algorithms.

Not shown here, the results for other low-to-moderate values of ̺, from
̺ = 0 to ̺ = 0.9, are very similar. Only for large ̺ and small shifts in
a low number of dimensions does the original MCuSum algorithm best the
modified algorithm. However, in our actual data the covariances between chief
complaints, both within and between hospitals, whether aggregated or not,
tended to be quite low, generally less than 0.1 and never greater than 0.3.

A further benefit of the modified algorithms, at least in terms of syn-
dromic surveillance, is that they will not alarm if incidence rate(s) decrease.
While a decrease in rates might be interesting to detect for some purposes,
for the purpose of syndromic surveillance such detection would constitute a
false alarm. In addition, because these multivariate algorithms only look for
positive shifts, they can be directly compared to multiple one-sided univariate
algorithms operating simultaneously.

Given that the modified T 2 performs better than the original T 2 for this
problem, Fig. 5 focuses the performance of the modified T 2 as compared to
six one-sided Shewhart algorithms operating simultaneously. The comparison
is shown in two different ways: in terms of the distance of a shift measured in
the direction of one or more of the axes (“on axes” in the left graph), or in
terms of the distance of a shift “off axes” (right graph). At issue is that the
univariate algorithms are direction specific, meaning they are designed to look
for shifts along the axes. The multivariate algorithms are direction invariant,
meaning they are just as effective at detecting a shift of distance x whether
the shift occurs in the direction of one or more axes (“on axes”) or in some
other direction (“off axes”).

The left-side graph of Fig. 5, constructed just like Fig. 4, shows that six
simultaneous univariate Shewharts are more effective (have shorter ARLs)
than the modified T 2 when the shift occurs on axes. At best, for large shifts,
the ARL of the modified T 2 is equivalent to the multiple univariate Shewharts,
and for smaller shifts (roughly > 0.0 to 1.0) the multiple univariate Shewharts
are clearly better.
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Fig. 4. Performance comparison of the T 2 and MCuSum algorithms versus their
modified counterpart algorithms. The modified algorithms (T 2 on the left and
MCuSum on the right) perform better than the original algorithms at detecting
positive shifts regardless of whether the shift occurs in one dimension, in all the
dimensions, or in some number of dimensions in-between, and for all magnitudes of
shift.

Fig. 5. Performance comparison of the modified T 2 algorithm versus multiple
simultaneous univariate Shewhart algorithms for ̺ = 0.3. The multiple simultaneous
Shewhart algorithms generally have smaller ARLs except for small “off axis” shifts.

The graph on the right side of Fig. 5 is constructed differently. The hori-
zontal axis of this graph shows the distance of the shift, where the shift is in
the number of dimensions indicated in the key, and was constructed so that
the projection of the shift onto the axes for those dimensions was equal. That
is, for a shift of distance l in n dimensions, the mean vector component for
each of the affected dimensions shifted from 0 under f0 to l/

√
n under f1

(and where in the other 6–n dimensions, the mean vector components remain
unchanged at 0).
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This type of shift is the most extreme off-axis type of shift (meaning for
a given distance l, the maximum projection on the nonzero axes was the
smallest) and here we see a result similar to Fig. 5, except that the modified
T 2 does better than the simultaneous univariate Shewhart algorithms for very
small shifts.

Why is the distinction between the two types of shifts (on-axes versus
off-axes) relevant? Well, if each of the types of bioterrorism events to be de-
tected will manifest itself in the data being monitored as a separate increase
in one of the data streams, such as ER admit counts for a particular chief
complaint, then thinking about and optimizing the detection algorithm to
look specifically for shifts along the axes makes sense. On the other hand,
for a bioterrorism event that will manifest itself as changes in a number of
dimensions of the data being monitored, such as with less specific health data
that in combination may increase, it makes sense to provide for an event that
manifests itself more like a latent variable and hence appearing most strongly
in some off-axes direction.

Fig. 6. Performance comparison of the modified MCuSum algorithm versus mul-
tiple simultaneous univariate CuSum algorithms. The modified MCuSum tends to
have smaller ARLs whether the shift is along the axes (left) or whether the shift is
off the axes (right).

Given that the goal is a robust methodology to guard against either possi-
bility, the results for the simultaneous univariate Shewharts versus the mod-
ified T 2 are mixed. However, the results for the modified MCuSum versus
simultaneous univariate CuSums presented in Fig. 6 differ in that the mod-
ified MCuSum is generally better than the simultaneous univariate CuSums
regardless of whether the shift is on- or off-axis. In particular, in the left graph
of Fig. 6 the modified MCuSum performance is substantially better for small
shifts (roughly > 0.0 to 0.5 or so), equivalent for large shifts (roughly > 3.0),
and only marginally degraded for other shifts, with an ARL difference of less
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than 1. As expected, in the right graph of Fig. 6 the modified MCuSum per-
formance is better than or, for very large shifts, equivalent to the simultaneous
univariate CuSums.

Though not shown here, these results also hold for a range of low to mod-
erate correlations, from ̺ = 0 to ̺ = 0.6. Hence, these results would tend
to indicate that the modified MCuSum would be preferable to simultaneous
univariate CuSums for detecting a variety of types of mean shifts. What re-
mains, then, is a comparison of the modified MCuSum to either the multiple
univariate Shewharts or the modified T 2 in those scenarios where each does
better.

Fig. 7. Performance comparison of the modified MCuSum algorithm to multiple
simultaneous univariate Shewhart algorithms (left) and to the modified T 2 algorithm
(right). Whether the shift is on-axes or off-axes, the modified MCuSum algorithm
performs better than the preferred Shewhart-type algorithm.

Figure 7 provides this comparison: to the simultaneous univariate She-
wharts when the shift is on-axes (left graph) and to the modified T 2 when
the shift is off-axes (right graph). In both cases, the modified MCuSum al-
gorithms’ performance is better. Our conclusion, then, is a preference for the
modified MCuSum, at least in these simulations for a jump change in the
mean vector of multivariate normal distributions with moderate covariance.
In the next section, then, we further examine the performance of these meth-
ods using real data and more realistic shifts to evaluate the performance of
the algorithms.
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3 A Simulation Study Using DC ER Syndromic
Surveillance Data

One would expect that a properly designed multivariate algorithm would
be more effective — particularly, more sensitive and timely when the false-
positive rate is controlled — than standard univariate methods. However, as
the previous section demonstrated, some multivariate methods are better than
others, and there are situations in which simultaneous univariate algorithms
are preferable. Furthermore, since the evaluations in the SPC literature tend
to focus on a jump change in the mean, as did the evaluations in the preceding
section, it does not necessarily follow that those results will directly apply to
the syndromic surveillance problem in which the mean will likely change in
some monotonically increasing fashion. Hence, to evaluate the univariate and
multivariate algorithms described in Sect. 2, we also conducted a simulation
study on data from the DC Department of Health ER syndromic surveillance
system and then evaluated how the algorithms performed under a series of
outbreak scenarios.

3.1 Data and Methods

As baseline data for our simulation study we used data on the daily number
of ER admissions for four syndromic group “chief complaints” (unspecified
infection, rash, respiratory complaints, and gastrointestinal complaints) from
seven Washington, DC, hospitals with relatively complete data. Of the eight
syndromic groups available, these four were chosen because they are the most
common and, in univariate analyses, are most effective at detecting disease
outbreaks. The data on the resulting 28 data streams (4 syndromic groups
x 7 hospitals) span the period of September 2001 through May 2004 (with
missing data imputed as required [SJF04] to simplify the comparisons of the
detection algorithms).

This data provides the naturally occurring incident rates and variation
in the hospital ERs for the four syndromic groups. We then “seeded” these
data in various ways, meaning we added extra cases to the data, to simulate a
bioterrorism event. In the base case, Scenario A, we seeded the data adding 1
additional observation on day τ , 2 additional on day τ +1, and so on up to 10
on day τ +9 for each of the 28 data streams resulting in a total of 1,540 extra
cases over 10 days. Scenario A is intended to represent a bioterrorism event
that manifests itself in multiple ways across the entire population. Hence, all
of the chief complaints increase in all the hospital ERs.

In contrast, we defined Scenario C to represent a situation in which the
outbreak shows up in one syndromic group only, so we only seeded the “un-
specified infection” syndromic group only for all seven hospitals adding 1
additional observation on day τ , 2 additional on day τ + 1, and so on up to
10 on day τ + 9 (for a total of 385 extra cases).
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Since the total number of cases added in Scenario C is only one-quarter
of that of the base scenario, we also constructed Scenario CA in which the
seed was increased to 4 on day τ , 8 on day τ + 1, and so on, resulting in
220 extra unspecified infection cases in each of seven hospitals, which is a
total of 1,540 extra cases over 10 days. Hence, like Scenario C, Scenario CA
represents an event that manifests itself in only one syndromic group but with
the magnitude of Scenario A.

Scenarios D and DA repeat this with a focus on hospitals rather than
syndromic groups. In Scenario D we seeded the data adding 1 additional
observation on day τ , 2 additional on day τ + 1, and so on up to 10 on day
τ + 9 for every syndromic group but in only one medium-sized hospital. In
Scenario DA, the seed was increased to 7 on day τ , 14 on day τ + 1, and so
on, resulting in 385 extra cases in each syndromic group in only one hospital.
So, Scenarios D and DA represent an outbreak in a smaller geographic region,
with Scenario D being of a smaller magnitude and Scenario DA having the
magnitude of Scenario A.

These five scenarios were chosen to represent the extremes of a range of
ways in which a real bioevent might occur. (As the gap in the naming conven-
tion suggests, we investigated other scenarios as well, but do not present them
here.) Some might regard Scenario C, in which the outbreak is concentrated
in only one syndromic group, as the most likely of the scenarios. However,
we expect that any real outbreak will look like some combination of these
scenarios, so detection algorithms that work well across the test scenarios are
likely to be effective in actual practice.

Given these scenarios, we then compared the performance of the algo-
rithms described in Sect. 2.3 and a trend-adjusted CuSum (see Stoto et al.
[SSM04] for additional detail) applied in two ways. First, we applied simul-
taneous univariate algorithms or one multivariate algorithm to the individual
28 data streams, setting the detection threshold empirically so that the prob-
ability of an alarm outside the flu season (i.e., the false-alarm rate) was 1%.
Second, as an alternative to reduce the dimensionality of the problem, we
first summed the total number of cases across all hospitals in each of the four
syndromic groups and then applied either simultaneous univariate algorithms
or a multivariate algorithm to the resulting four data streams (again setting
the false-alarm rates equal at 1%).

To carry out the simulation we began by setting τ = 1 and adding the
appropriate seed on days 1 through 10 of the dataset. We repeated this setting
τ = 2 and adding the appropriate seed on days 2 through 11, and so on,
until we had created 970 alternative datasets. We then applied the detection
algorithms to each alternative dataset and calculated the proportion of times
that each algorithm alarmed on day τ through τ + 9, the first day of the
simulated bioevent to the 9th day after the simulated bioevent, to estimate
the sensitivity of the detection algorithm. Because we expect performance to
differ by season, the results are calculated separately for the flu season (defined
as December 1–April 30) and the rest of the year.
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3.2 Results

Figure 8 compares the performance of the modified MCuSum (“MV” in the
key) and simultaneous univariate CuSum methods (“Z” in the key) outside of
the flu season for all five scenarios — just one summary result of the many sim-
ulations we ran. Unlike the graphs presented in the previous section, showing
estimated ARLs for various changes in the mean, Fig. 8 plots the probability
of detection (which can be interpreted as an estimated probability of alarm)
for each algorithm under each scenario by day of the outbreak.

Note first that the probability of detection on day 0, that is, the day before
the outbreak begins, is 1% for each detection algorithm, the false-alarm rate
we set. Focusing first on Scenario A (in which the seed appears in all 28 data
streams), the results show that in 18% of the sample datasets the simultaneous
univariate CuSum algorithms (dashed line with open circles) alarm on day 2
of the outbreak, increasing to 67% on day 3 and 100% on day 4 and higher. In
this scenario, the modified MCuSum (solid line with open circles) does slightly
better. The probabilities of alarming on days 2, 3, and 4 are 36%, 93%, and
100%, respectively.

Fig. 8. Comparison of the modified MCuSum (“MV” in the key, solid lines in the
graph) and the simultaneous univariate CuSums (“Z” in the key and dashed lines
in the graphs) in terms of probability of outbreak detection by day of outbreak for
Scenarios A, C, CA, D, and DA previously defined.
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In Scenario C (closed circles), in which the simulated outbreak is concen-
trated in only one syndromic group and consequently involves only one-quarter
the number of cases of Scenario A, both detection algorithms not surprisingly
do less well. On day 4 of the simulated outbreak the univariate CuSums have
only a 77% probability of alarming, and the modified MCuSum only a 27%
probability of alarming. The results for Scenario CA (triangles), however,
show that most of the reason for the poorer performance is that there are
fewer excess cases. In this scenario the univariate and multivariate CuSum
algorithms have 100% and 98% probabilities of alarming, respectively, by day
2. Note that in Scenario C by day 4 a total of 10 excess cases of unspecified
infection have been seen in each hospital, and in Scenario CA there are 40
excess cases. The average daily number of such cases in the baseline data is
less than 1 for two of the hospitals, between 3 and 6 for four hospitals, and
over 30 for one hospital in the analysis.

Scenarios D and DA, in which the outbreak is concentrated in only one
hospital, show similar results. In Scenario D, which involves only one-seventh
the number of cases as Scenario A (open circles), the univariate CuSums
alarm probability reaches 62% only on day 5, and the modified MCuSum only
reaches 52% on that day. With the same number of cases as in Scenario A,
the performance of both algorithms improves under Scenario DA (squares).
Both reach a 100% alarm rate by day 2.

Comparing the performance of the two CuSum algorithms across these
scenarios, it is difficult to conclude that one is better than the other. The
modified MCuSum does noticeably better than the univariate CuSums in
Scenario A (solid versus dashed lines with open circles, respectively), but
worse in Scenario C (closed circles). In the other scenarios their performance
is similar.

To summarize this type of comparison for all of the algorithms we tested,
we calculated a performance index, defined as ΣiProb(detection on day i) for
i = 1 to 10. This is essentially the area under the curve in Fig. 8. In Scenario
A, for instance, the performance index for the modified MCuSum is 8.34 and
for the univariate CuSums is 7.90. In Scenario C, the situation is reversed:
5.99 versus 7.04. To get a sense of the range of the performance index, the
best performance represented in Fig. 8 is the modified MCuSum in Scenario
DA, with a performance index of 9.37, and the worst is the modified MCuSum
in Scenario D, with a performance index of 5.68.

Table 1 displays the performance index for 12 detection algorithms for the
five scenarios. “Z” results are univariate analyses operating on all 28 data
streams, and “C” results sum the syndromic group data over seven hospitals
(resulting in four data streams). In both cases we investigate simultaneous
univariate Shewhart (1a and 3a), CuSum (1b and 3b), and trend-adjusted
CuSum (1c and 3c) algorithms. “MV” results are multivariate algorithms,
and “CMV” results are for multivariate algorithms but with the data summed
across hospitals as in the C results: Hotelling’s T 2 (5a, 6a), the modified T 2

(5b, 6b), and the modified MCuSum (7, 8).
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Table 1. Comparison of performance of the univariate and multivariate algorithms
for the five scenarios using a performance index of ΣiProb(detection on day i) for
i = τ to τ+9. The “Z” results (1a, 1b, and 1c) are simultaneous univariate algorithms
operating simultaneously on all 28 series. The “C” results (3a, 3b, and 3c) are also
simultaneous univariate algorithms operating on syndromic group data summed over
the seven hospitals. “MV” results (5a, 5b, and 7) and “CMV” results (6a, 6b, and 8)
are multivariate algorithms operating on the 28 data streams and the summed four
data streams, respectively. These include Hotelling’s T 2 (5a and 6a), the modified
T 2 (5b, 6b), and the modified MCuSum (7 and 8)

Scenario
Performance Indices A C CA D DA

“Z” Algorithms

1a – Shewhart 6.34 5.76 9.18 3.30 9.34
1b – CuSum 7.90 7.04 9.20 5.89 9.17
1c – Trend-adjusted CuSum 1.64 0.68 9.34 0.24 9.34

“C” Algorithms

3a – Shewhart 8.03 4.78 9.08 0.67 8.03
3b – CuSum 2.00 0.16 0.94 0.49 2.00
3c – Trend-adjusted CuSum 8.22 5.97 9.08 0.62 8.22

“MV” Algorithms

5a – Hotelling’s T 2 6.71 3.27 8.71 0.87 9.03
5b – Modified T 2 7.40 4.30 8.22 1.87 9.03
7 – Modified MCuSum 8.34 5.99 9.07 5.68 9.37

“CMV” Algorithms

6a – Hotelling’s T 2 7.63 0.92 7.68 0.29 7.63
6b – Modified T 2 8.00 1.35 7.76 0.52 8.00
8 – Modified MCuSum 8.43 0.58 6.42 1.75 8.43

As displayed in Table 1, these results suggest that no one or two detection
algorithms clearly dominate the others across all five of the scenarios tested.
However, the two best are the simultaneous univariate CuSums and modified
MCuSum algorithms (Z-1b and MV-7), which are the focus of Fig. 8. Each
has a performance index in the 8 to 10 range for scenarios A, CA, and DA,
but in the 5 to 7 range for scenarios C and D.

Pooling data across hospitals is a common way to analyze multiple data
streams, the rationale being that the signal is more likely to emerge above the
random variability. Our results, however, suggest that at least for the scenarios
we used, algorithms operating on the pooling data (the C and CMV results)
were less effective than those same algorithms operating on the unpooled data
(Z and MV results).

Among the unpooled data for the simultaneous univariate algorithms (the
Z results), the standard CuSum algorithm (1b) performs at least as well
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and usually better than the Shewhart algorithm (1a) and the trend-adjusted
CuSum (1c). That the CuSum performs better than the Shewhart algorithm
should be expected since the CuSum is better at detecting small changes
and, in our scenarios, the outbreaks all begin with relatively small increases
early on. However, in contrast, with the pooled data (C results) the standard
CuSum (3b) performs substantially less well than the alternatives (3a and 3c).

Stoto et al. [SJF04] extend these results by investigating other detection
algorithms and performance outside the flu season and perform various sen-
sitivity analyses.

It should be noted that these results are potentially sensitive to many
arbitrary choices that had to be made in the details of the detection algorithms
tested and the design of the simulation. The performance of CuSum methods,
for instance, depends on the choice of the parameter k, and may be better
or worse for fast- or slow-growing outbreaks. The CuSum also depends on
the estimated mean count µ̂0 used as the baseline to calculate departures
for each series. The trend-adjusted CuSum method depends on the weighting
parameter λ in the exponentially weighted moving average.

In addition, we chose to set the false-alarm rate to 1% outside the flu sea-
son, which we arbitrarily defined as December 1–April 30; a different set of
dates may have given different results. Our simulated outbreaks used seeds of
the same size in every hospital, ignoring substantial variability in the back-
ground ER admission rates; again, a different and possibly more realistic
choice might lead to different results. Finally we should note that the results
also depend on the particular dataset used as the baseline for the simula-
tion. The results are likely to apply to similar data in the future, but may be
different for syndromic surveillance systems in cities other than Washington,
DC.

These results show roughly similar performance for the simultaneous uni-
variate CuSum and modified MCuSum algorithms, with one better than the
other or both having similar performance characteristics depending on the sce-
nario. In contrast, the abstract simulations in Sect. 2.4 show that the modified
MCuSum has a clear advantage when the shift to be detected is “off-axes”
and seems to show some performance improvements over the simultaneous
univariate CuSum algorithm even when the shifts are on-axes. Whether these
differences are the result of the simulation choices (jump change in the mean
versus gradual increase, for example) or some other factor or factors remains
to be determined.

However, some conclusions are clear:

• CuSum and CuSum-like algorithms are preferable to Shewhart and
Shewhart-like algorithms for syndromic surveillance applications.

• For multivariate algorithms, appropriately modifying the algorithms to
look only for increases in rates, such as we did in Sect. 2.3, provides addi-
tional detection power in syndromic surveillance applications.
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• When designing, implementing, and comparing syndromic surveillance al-
gorithms it is critical to ensure the appropriate thresholds are chosen to
achieve a common aggregate false-alarm rate.

• While the CuSum algorithms generally performed better than the others
we evaluated, unless the bioevent is so large so as to be obvious, a syn-
dromic surveillance system will take some time to detect the incident —
likely on the order of 2 to 5 days, depending on the size of the incident,
for a system using data similar to what we have evaluated here.

4 Discussion

Out of concern about the possibility of bioterrorist attacks, many health de-
partments throughout the United States and elsewhere are energetically de-
veloping and implementing a variety of syndromic surveillance systems. Our
analyses suggest that while these systems may be valuable, their effective-
ness for this purpose has not yet been demonstrated, and health departments
ought to be cautious in investing in this area and take the time and effort to
evaluate the performance of proposed systems in their own setting.

The central problem is that syndromic surveillance has been sold on the
basis that it is able to detect outbreaks hours after people begin to develop
symptoms, but our analyses suggest that unless the number of people affected
is exceptionally large, it is likely to be a matter of days before enough cases
accumulate to trigger detection algorithms. Of course, if the number of people
coming to emergency departments is exceptionally large, sophisticated detec-
tion systems are simply not needed — the incident will be obvious. Further,
the window (in terms of number of excess cases and time) between what is rea-
sonably detectable with a syndromic surveillance system, and what is obvious,
may be small.

Although an increasing number of statistically sophisticated detection al-
gorithms have been developed, there is a limit to their efficacy. More generally,
detection algorithms can be tuned to particular types of outbreaks (e.g., those
that are geographically focused), but are only effective if the terrorists choose
a matching method of exposing people. Moreover, as Stoto, Schonlau, and
Mariano [SSM04], Reingold [Rei03], and others have pointed out, the value of
an alarm system is limited by what happens when the alarm goes off. Simply
knowing that there are an excess number of people with flulike symptoms is
not enough, in itself, to initiate or guide a public health response.

Syndromic surveillance systems, however, can serve other public health
purposes. The information technology that has been developed in many cities
and states is truly impressive, and many health departments have worked hard
to build relationships with hospitals and other entities in their communities
to get access to data. The resulting systems and relationships would have
additional value for detecting food-borne disease and other outbreaks. For
many public health issues, for instance, knowing what is happening in a matter
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of days rather than weeks or months would indeed be a major advance for
state and local health departments. During the cryptosporidium outbreak in
Milwaukee in 1993, for instance, a syndromic surveillance system would have
made health officials aware of the outbreak weeks/months before they actually
were [MNG98].

Indeed, syndromic surveillance might prove to be most useful in determin-
ing the arrival of influenza in a community each year and in helping to de-
termine whether pandemic flu has emerged. Nationally, influenza surveillance
is based on a network of sentinel physicians who report weekly on the pro-
portion of their patients with influenzalike symptoms, plus monitoring deaths
attributed to influenza or pneumonia in 122 cities. Laboratory analysis to de-
termine whether a case is truly the flu, or to identify the strain, is only rarely
done [CDC04b]. Whether the flu has arrived in a particular state or local
area, however, is largely a matter of case reports, which physicians often do
not file. Pandemic influenza, in which an antigenic shift causes an outbreak
that could be more contagious and/or more virulent, and to which few people
are immune by virtue of previous exposure, is a growing concern [WW03].
Syndromic surveillance of flulike symptoms might trigger more laboratory
analysis than is typically done and hasten the public health response.
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