
Fast Multi-Level Test Generation at the RTL
Kelson Gent and Michael S. Hsiao

Bradley Department of Electrical and Computer Engineering

Virginia Tech, Blacksburg, VA 24061, USA

{kelsong, mhsiao}@vt.edu

Abstract—Functional, at-speed vectors continue to provide
added value to the testing community as circuit complexity
rises. Complex defects may escape traditional scan vectors and
thus often require at-speed patterns. However, generation of
functional/sequential vectors is an extremely challenging problem.
Previous methods rely on formal models of the RTL or calls to
gate level ATPG, both of which are computationally expensive,
limiting the efficacy of gains made in RTL stimuli generation. In
this work, we present an efficient engine for the generation of high
quality functional tests at the RTL which are effective for both
validation and at-speed defect detection. The proposed method
utilizes a rule based, behavioral coverage metric to accurately
assess the activation of circuit modules by the generated stimuli.
Based on this metric, we are able to effectively generate functional
test vectors at the RTL, without additional gate level information,
that can achieve a high level of defect coverage and up to an order
of magnitude speedup over existing techniques.

I. INTRODUCTION

Due to the growth in circuit complexity, conventional test

methods, such as scan ATPG, is no longer sufficient to test

complex and transient defects that manifest in modern designs.

These defects require high-quality at-speed tests to adequately

cover[1] leading to functional tests being used more frequently

for testing across the entire design process [2, 3]. How-

ever, high quality functional/sequential automatic test pattern

generation (ATPG) is extremely computationally expensive,

particularly for large circuits. To manage this complexity, RTL

ATPG has become a significant area of interest to generate

such vectors to cover these cases. Vectors that simultaneously

provide high levels of coverage for RTL verification and at-

speed coverage stand to yield significant savings in the time

and monetary costs of test and verification.

Several techniques for generating sequential vectors have

been proposed at the RTL. Early RTL methods, such as

PRINCE [4] utilize line coverage as their primary coverage

metric. A prior approach at the RTL [5] represents the RTL as

assignment decision diagrams to utilize formal techniques for

test generation. A hybrid model was proposed in [6] using a

polynomial circuit model to leverage simulation alongside the

use of formal models. However, these techniques frequently

fail to reach deep, narrow states due to the significant overhead

imposed by their use of bounded model checking. Significant

advances in RTL state justification have been made utilizing

simulation-based and hybrid models. BEACON [7], utilized

an evolutionary ant colony optimization to generate functional

verification vectors targeting branch coverage. PACOST [8]

uses a formal model to generate an onion-ring guidance model

for simulation. In [9] a data-mining based approach to learn

supported by NSF grant 1422054

about cross cycle transitions which are used to guide the test

generation towards specified target states. However, all these

methods utilize macro level code coverage metrics, such as

branch coverage, which do not adequately represent lower level

behavior within the design. To combat this, mixed level gener-

ation is used in [10–12], these methods generate vectors at the

RTL and then refine the generation process using information

from gate level simulation or test generation. However, the

invocation of gate-level fault simulation significantly slows

these methods and the full benefit of generation at the RTL

is not realized.

To address the deficiencies in previous methods, we propose

a swarm intelligence based vector generation engine utilizing a

fine grained RTL coverage metric [15]. Originally proposed for

vector grading, we adapt the metric to target the generation of

functional tests for both design verification and at-speed defect

test. The coverage metric is based on bitwise behavioral cover-

age of RTL operators in the HDL source. Using a set of rules

based on the value of the operands, a set of coverage points is

updated based on the value of the operands during simulation.

In this work, operator coverage points serve as an abstraction

for potential defect activation during the search. By using this

metric as a heuristic basis for ATPG, we can assess areas in

the RTL with low levels of behavioral activation. Using an Ant

Colony Optimization(ACO) to target these areas during search,

we can achieve significant improvements in defect coverage

for functional test patterns generated at the RTL, while still

providing quality vectors for design verification. Additionally,

we do not incur the high cost of formal methods calls or gate-

level fault simulation, minimizing the time required for test

generation.

Our test generation algorithm is formulated as an Ant

Colony Optimization (ACO) meta heuristic using the operator

coverage metric as its base heuristic. Initially, the circuit is

compiled to a fast, optimized cycle-accurate C++ model and

instrumented via a set of monitors. These monitors provide

complete coverage of all intermediate signal values within the

single cycle model RTL. Then, during test generation, each

ant generates a sequential test vector. The quality of the test

vector is analyzed based on the fine-grain operator coverage

metric. A fitness score for each ant is assessed by the level

of coverage provided by the test vector. As the coverage of

a code block increases, additional coverage within that block

drops in value, allowing for the specific targeting of poorly

exercized blocks within the description. The coverage of deep

states in the state space provides additional propagation paths

and access to defects that would otherwise be undetectable.

The contributions can be summarized as follows:

• We present an ATPG engine with a novel guidance metric

that utilizes a fine grain RTL coverage metric to generate

quality functional test vectors at the RTL.

• The fine grain coverage metric allows for the targeting of

uncovered blocks during test generation to achieve high

level of behavioral activation in each module in the circuit.

• Our method provides significant performance improve-

ments over previous techniques by operating entirely at

the RTL. The gain is realized through the elimination

of computationally expensive gate-level simulation and

formal methods during generation.

The rest of the paper is organized as follows. Section II

discusses relevant past work and fundamental theories, includ-

ing the ACO and coverage metric. Section III covers search

algorithm and the utilization of the RTL coverage metric.

Section IV discusses the performance of the ATPG engine

compared to previous works. Finally, Section V provides the

concluding summary.

II. BACKGROUND AND PRELIMINARIES

In this section, we outline the prior works used during test

generation, as well as techniques used for analyzing RTL

descriptions. We additionally provide a description of the

coverage metric and the rules for generating the metric from

the RTL.

A. Ant Colony Optimization

The ACO [13] is a biologically inspired algorithm that

models graph search as a foraging simulation of an ant

colony. Each individual search unit is modeled as an ant that

communicates information through the use of pheromone trails.

This communication acts as the mechanism for reinforcement

learning of the swarm and can be used as a meta heuristic for

NP-hard search problems. Specifically, in a graph G, edges

denotep paths that ants can traverse. Starting from an initial

location, a population of ants begins a random walk throughG.

At each transition they make their decision based on a set of

parameters: pheromones(φ) and visibility(ψ). Pheromones

are left by each ant in the colony, based on how favorable the

transition was between two vertices in the graph. As ants pass

edges, they prefer paths with large amounts of pheromones,

because these paths have been evaluated well by other ants

within the colony. This produces a system of reinforcement

among the ants. In order to avoid convergence to a local,

non-optimal solution, evaporation is added to the system. This

globally reduces the amount of pheromones on each edge at

regular intervals to allow for promising new paths to better

compete with existing paths.

B. Control Flow Graphs

The Control Flow Graphs (CFG), proposed by Allen [14],

provides the basis for many compiler level optimizations and

static analysis tools. The CFG is represented as a directed

graph G(V, e) with vertices representing basic blocks and

edges representing the flow of execution between basic blocks.

Each basic block is the maximal number of program statements

such that it meets the following conditions:

1) Each block can only be entered via the first statement.

2) Each block may only contain one exit statement that

leads to another basic block.

3) All statements must execute sequentially within a block.

Graph edges are created based on the execution targets of the

final statement in the block to form the CFG. Based on this

analysis, loop optimization and unreachable program segments

can be determined and eliminated during compilation.

C. RTL Coverage Metric

The metric is based on the observation that within the

RTL, each conditional statement represents a potentially unique

logic path created during synthesis. Therefore, conditional

statements create critical barriers for propagation. These points

can block fault propagation to either state or output variables.

An example of a blocking control structure created during

synthesis is shown below in Figure 1. In this example, if x
never equals 1′b1; all faults from the ’and’ gate will never

be propagated across this gate. Due to these controlling struc-

tures, global metrics such as toggle, transition or signal value

coverage are insufficient to accurately gauge defect coverage.

To minimize this discrepancy, the coverage points for each

statement in the RTL are generated based on behavioral rules

for each operator. We provide an overview of the method [15]

below.

Fig. 1. Control Statement Synthesis

1) Operator Coverage Rules: The metric encapsulates the

behavior of each operator as a set of coverage points. The

coverage points are generated from a set of behavioral rules

which include a scheme to partition the inputs to the operator

and a set of critical observation values. The different operators

are shown below in Table I.

TABLE I
OPERATOR TYPES

Linear and Bitwise ±,+,−,&, |,∼,∧, >>,<<, reduction
Nonlinear ×,÷,%

Select Operators
[]

,
[

:
]

Conditional Operators ? : , <,≤, >,≥,==, 6=, &&, ‖

Linear and bitwise operators have straightforward coverage

point generation. The bitwise logical operators are direct

representations of gate level behavior and synthesis must reflect

that behavior. Therefore, they are modeled as a set of two input

logic gates connecting the operands. Other linear operators are

covered using behavioral coverage applied to the partitioned

operands. For example, an adder is covered as a set of single bit

additions. Binary shift operators are partitioned into individual

bits and covered as simple bit value coverage. However, if the

digits to be shifted are all one or zero, the shift operand is

2

ignored. The rules for partitioning and critical coverage values

are shown below in Table II.
TABLE II

LINEAR OPERATOR OVERVIEW

Ops Partition Coverage Values # Cov. Pts.

+,− {Xi, Yi} 00, 01, 10, 11 4 ·min(Wx,Wy)+ | Wx −Wy |
& {Xi, Yi} 11, 01, 10 3 ·min(Wx,Wy)+ | Wx −Wy |
| {Xi, Yi} 00, 01, 10 3 ·min(Wx,Wy)+ | Wx −Wy |
∼ {Xi} 0, 1 2 ·W
∧ {Xi, Yi} 01, 10, 11or00 3 ·min(Wx,Wy)+ | Wx −Wy |

reduction {Xi} 0, 1 2 ·W + 2
>>,<< Xi, Yi 0, 1 & 0, 1 2 ·W + log2(W)

W is the bit-width of the operand. X and Y are the operands of the operations.

To evaluate non-linear operators, coverage points are cre-

ated using an expanded form of the operator. The expansion

for multiplication is based on a technique for self-verifying

multipliers [16] with a low probability of fault escape.

Access operators, with the exception of array access, are

treated as masked signals. Therefore, a weak toggle coverage is

used to generate vectors that are sensitive to accidental changes

of the masking values. However, for array logic, the correctness

must be ensured of the selection logic. These memories are

categorized into two types, RAM and register files, denoted by

their size. Arrays of size less than 8192 bytes are considered to

be registers or lookup buffers. Table III outlines the properties

of the non-linear and select operators.

TABLE III
NON-LINEAR AND ACCESS OPERATOR OVERVIEW

Ops Partition Values # Cov. Pts.

× mod3 00, 01, 10 3 · (Wx/2 ·Wy/2)
[], [:] Xi 0, 1 W

III. METHODOLOGY

In this section, we describe the framework of the proposed

test generation algorithm and the integration of the coverage

metric described above into the swarm intelligence based

search. Although the ACO meta-heuristic has been used in the

past, the fitness functions and swarm dynamics in our method

operate quite differently.

A. Additional Operator Coverage

In addition to the coverage metric described in Section II-C,

we add new coverage points for conditional operators within

branching statements. To generate these coverage points, we

utilize techniques based on domain coverage [17]. The condi-

tion is treated as a boundary between two domains, true and

false. Conventional domain testing aims to properly exercise

the condition such that tests near the boundary that have a

high likelihood of a domain change in the presence of a defect.

We extend this concept to emphasize that domain changes due

to defects do not only occur along the boundary but also at

specific ranges based on the conditions.

For the two different types of logical operators, Boolean

arithmetic and numerical comparison, different techniques are

used for measuring the corresponding coverage. For Boolean

operators, the bitwise counterpart for each single bit is used. To

adequately target numerical operators, a fault on any given bit

should cause a behavioral change. Therefore, two conditions

must apply for a bit change to be considered exercised. First,

the change must cause the result of the comparison operator

to change value. Second, the change of operator evaluation

must change the evaluation of the entire conditional expression.

These two properties ensure that any defect will cause a

behavioral change along the circuit control path. An example

is shown below in Figure 2 for the conditional expression

x <= 5 when the value of x is set to 0110. Two bitwise domain

crossings are shown for x = 0110 flipping the second and third

least significant bits in the representation. Note, that when the

second least significant bit is flipped, x becomes 0100, or 4,

changing the outcome of the conditional x <= 5. A similar

analysis can be performed for the second most significant bit,

where 0110 is changed to 0010. In this case, the result will

also alter the outcome of the conditional x <= 5. However,

for covering the least significant bit, a different value for x
must be used, since flipping the least significant bit of 6 (i.e.,

0110 to 0111) will not alter the outcome of the conditional.

In our new metric, when all bits of variable involved in a

conditional is covered, we guarantee that a change to any bit

position in that variable is captured by at least one test.

Fig. 2. Bitwise Domain Coverage

For the conditional assignment operator, coverage points are

created for just the control statement, which is sufficient to

ensure that each possible assignment has been exercised. A

summary of these additional coverage points is given below in

Table IV.

TABLE IV
CONDITIONAL OPERATOR OVERVIEW

Ops Partition Values # Cov. Pts.

∧,∨ X0, Y0 0, 1 4

<,≤,>,≥,=, 6= Xi 0, 1 2 ·Wx + ·Wy

B. HDL Preprocessing

In order to process the circuit for test generation, we must

first analyze and generate meta-information to calculate our

coverage metric. We first translate the Verilog RTL to a cycle-

accurate C++ simulation library using Verilator[18]. During

the conversion, we extract and output the control flow data

graph (CDFG) of the circuit under test. Based on the CDFG,

we inject a set of monitoring functions into the RTL at

each control flow and data dependency edge as SystemVerilog

Direct Programmable Interface(DPI) calls. An example CDFG

with injected monitors is shown below in Figure 3.

Following monitor injection, each statement is registered

with a monitor. When called, the monitors capture the current

state of the simulator and a set of unique identifiers for the

3

START

END

if(X < 10)
1. always@ (clk)

2. begin

10. end

3. if(X < 10)

4. begin

7. end

9. W <= X;

5. Y = X;

6. Z <= Y;

8. Q <= Z;

Monitor 0

Y = X

Monitor 1

Z <= Y

Monitor 2

Q <= Z
W <= X

Fig. 3. CDFG Based Monitor Injection

registered assignments. Then, the DPI function updates the

coverage database based on passed circuit state. This platform

allows for direct access to simulator internals with the need for

custom code for each circuit. It also provides a flexible method

for introducing additional analysis code into the verilated

simulator. The preprocessing flow is shown in Figure 4.

Cover
Pts.

DPI
Monitor
Injection

Verilog
HDL

Verilator
Parse

C++
Simulator

Generation

Symbol
Table

Metric
Simulator

Fig. 4. Verilator Compilation with DPI Injection

C. Test Generation

Test vector generation is implemented using an ACO meta-

heuristic algorithm. The colony is a pheromone database φ,

and a set of K ants. Each ant in the swarm is represented

by a test vector initialized with random stimuli, a set of local

operator coverage points and a Verilated simulator instance.

Additionally, the colony reads the single cycle CDFG used

to inject monitors in phase to gain additional information

about the circuit structure. Each ant the simulates its associated

vector from the colony starting state S0, typically circuit reset.

Following generation, each vector is scored according to the

coverage reached during simulation and ants lay pheromones

based on the quality of the inputs generated. Then, we update

the relative value of each coverage point according to the

number of remaining uncovered points in the control flow

block. Additionally, we increase the number of cycles in the ant

generation to attempt to target deep code blocks that may need

long sequences to activate. Then, a new round begins and the

colony begins search based on the updated path weights. This

process continues until the system uncovers no new behavior in

Nr rounds. At this point, the algorithm assumes the system has

reached steady state within Nc cycles from S0 and terminates.

The pseudo code for the ACO is shown below in Algorithm

1.

Algorithm 1 ATPG Engine

1: initialize pheromone map φ
2: analyze CDFG

3: for all rounds r = 1 to Nr do

4: set the initial states to nest S0

5: ant vector generation()

6: if all points covered || sets = ∅ then

7: RETURN

8: else

9: Update path weights

10: Extend Nc

11: S0 = select(sets)
12: sets = ∅ //clear the stack

13: end if

14: end for

D. Ant Vector Generation

The ant vector generation process is shown in Algorithm

2. During vector generation, each ant within the colony at-

tempts to generate vectors that mimic known good behaviors

within the swarm-based on the pheromones deposited along

the CDFG. For each cycle within the search, an ant starts by

generating a random vector. The vector is simulated and the

execution path taken within the CDFG is determined based

on which monitors were activated. If the path activates high

value code blocks, then the vector is kept and added to the

ants generated vector. However, if only low value paths are

executed, then the ant attempts to generate a new vector based

on information learned by prior ants. This process continues

until a high value path is found or the local generation times

out. Following the vector generation, pheromones are updated

based on coverage behavior observed during the cycle.

E. Pheromone Deposit along CDFG Path

The pheromone database represents the relative value of the

observation of each path in the single cycle execution path

seen by the swarm. During vector generation, the pheromone

trail is used as a positive feedback mechanism to guide the

swarm towards desirable behavior. Following the simulation

of the test vector, the database is updated via reinforcement

and evaporation as described in the following sections.

1) Reinforcement: Pheromone Reinforcement is done in

two stages. First, if new coverage points or code blocks with

CDFG edges to unexecuted code blocks are activated during

simulation, pheromones are deposited based on the value of

executing the path with regards to the operator coverage met-

rics. Then, additional pheromones are added if the execution

leads to high value executions in the next cycle.

When paths are executed, they are given a key within the

database and an initial amount of pheromones are deposited

along the path. In future executions of the path this amount

is adjusted based on the percentage of uncovered points for

4

Algorithm 2 Ant Search with Targeted Input Generation

1: Sbranch = uncovered blocks()
2: for all ants k = 1 to K do

3: for all cycles c = 1 to Nc do

4: generate input()

5: evalutate path()

6: while ngen < TIMEOUT do

7: regenerate input()

8: evaluate path()

9: if path pheromones > threshold then

10: break

11: end if

12: ++ ngen

13: end while

14: deposit pheromones

15: end for

16: end for

17: update pheromone()

18: if new blocks covered then

19: n = 0 // clear the rounds counter

20: else

21: ++n

22: end if

statements along the path. The equation for this is given by:

φpath(t+ 1) = φpath(t) + ((Nc −Nh)/Nc) ·Q

where φpath(t) is the amount of pheromones currently on the

path,Nc is the number of coverage points associated with state-

ments along the path and Nh is the number of covered points

along the path. Basing the quantity of pheromones deposited

on the amount of remaining coverage has two primary benefits.

First code blocks devalue over time as their coverage increases,

therefore, the algorithm will naturally trend towards attempting

to execute paths with low levels of coverage. Second, paths

with fewer statements will devalue faster than blocks with

many statements, providing guidance on the importance of

particular paths to defect coverage.

Second, additional pheromones are deposited on the path

taken within the same always block in the prior cycle, if the

pheromones on the current path exceed a threshold value. This

additional deposit is given by the formula below:

φpriorpath(t+ 1) = φpriorpath +Qsecondary

This additional creates linkages between execution paths across

cycles and aids the generation algorithm in navigating narrow

execution paths by valuing paths whose statements already

have a high level of statement coverage if they lead to desirable

executions in the next cycle. This is necessary to the success

of the algorithm as an RTL behavioral description may have

paths with very few statements that are easily covered, yet, are

critical to the advancement of the finite state machine towards

hard to reach states.

2) Evaporation: For each path currently in the database,

after all ants have been executed, we perform evaporation via

the following equation:

∀φpath ∈ database : φ(t+ 1) = φ(t) · (1− ρ)

Where 0 < ρ < 1 is the evaporation rate.

Evaporation allows for high value paths to devalue over

time and not overly influence the test generation process.

Additionally, evaporation prevents from following paths that

saturate early from dominating the test generation process.

Additionally, it allows paths to degrade that have not yielded

any additional coverage information.

3) Pheromone Initialization: During the initial random sim-

ulation, pheromones are not deposited. However, we calculate

operator coverage for the initial randomly generated vectors.

This initialization creates a baseline value for each code block

by trimming coverage points that are easily covered by random

simulation. This initial value aids the ACO target harder to

reach paths by reducing the amount of pheromone that would

be deposited along the paths that are easy to test randomly.

IV. EXPERIMENTAL RESULTS

The effectiveness of the proposed method is evaluated on

a subset of the ITC99 benchmarks [19] and the OpenRISC

1200 processor [20]. We demonstrate the value of the method

on couple of fault models, non-scan transition and non-scan

stuck at, as well as provide the level of branch coverage

achieved by the metric. The non-scan stuck-at fault coverage

is compared to the mixed-level generation in [12] and a high

level test generation tool, HTest [5]. The characteristics of the

benchmarks are shown in Table V.

TABLE V
BENCHMARK CHARACTERISTICS

Benchmark Lines PIs POs FFs Logic Gates

b10 210 12 6 17 155

b11 131 8 6 30 353

b12 614 6 6 121 987

b13 361 11 10 53 289

b14 1030 33 54 247 3375

b15 750 36 70 447 6826

or1200 14695 164 207 2234 31144

A. Experimental Setup

Experiments were run on a single core of a Intel i7-

3770k@3.5GHz with 16 GB of RAM on Ubuntu Linux 14.10.

The ant colony is initialized with K = 100 ants and a

maximum number of iterations is set at R = 10. Nc is

initially set to 3000 vectors and the expansion multiplier is

1.5. Pheromones are initially set to 0 and the base deposit rate

is Q = 100. The secondary deposit rate Qsecondary is set at

15. The evaporation rate, ρ, is set to 0.1. Finally, the time out

for generating inputs that reach the pheromone threshold is set

to 15 attempts.

B. Generated Vector Quality

The non-scan stuck-at fault coverage for our method is

reported in Table VI. For stuck-at defects, our method is

able to achieve high levels of coverage comparable to the

5

TABLE VI
NON-SCAN STUCK-AT FAULT COVERAGE RESULTS

Benchmark
HTest BEACON [12] Ours

FC(%) Time (s) Size FC(%) Time (s) Size FC(%) Time (s) Size FC(%) Time (s) Size

b10 94.4 17.58 2847 85.5 11.4 3547 91.4 1.5 3160 91.0 0.66 4157

b11 89.4 5.85 972 77.5 11.9 1235 91.8 7.2 5680 91.3 0.72 3004

b12 N/A N/A N/A 77.7 111.4 37006 90.3 184.0 327578 89.7 22.8 182641

b14 N/A N/A N/A 81.9 204.6 4381 86.7 424.3 310000 83.9 37.2 204245

b15 N/A N/A N/A 77.0 255.9 12917 91.18 893.6 132794 90.6 59.8 112087

or1200 N/A N/A N/A 41.4 300.40 7946 N/A N/A N/A 59.7 363.3 32030

Note: Generation times for HTest are reported from older platforms

mixed-level generation algorithm, even for known difficult

sequential circuits such as b12. Our metric also provides value

over BEACON, which only considers branch coverage as it’s

metric. Once branch coverage saturates, there is still a large

amount of potential behavior left uncovered. The algorithm

also outperforms Gate-level sequential tst generators which

generally cannot reach even 50% coverage for b12. The loss

of 0.6% coverage in b12 represents a total loss of less than

20 stuck-at defects during the test simulation. However, we

are able to achieve a 9× speedup in execution time as well

as a much shorter test vector. Additionally, by performing our

search entirely at the RTL, we are able to limit the overhead

to generate vectors targeting the entire or1200 circuit which

was infeasible in previous techniques.

Our method also provides high quality coverage for other

metrics such as at-speed transition fault coverage and branch

coverage. In Table VII, we show the transition fault coverage

of vectors generated by our method. Though some of the

margins, such as b12 are larger than that of the stuck at model,

the transition coverage is similar to prior algorithms. This

means that small changes in observable coverage did not yield

significantly different transition coverage. Therefore, given

generally smaller vector lengths and high execution speed,

the RTL based generation yields competitive results compared

to the mixed level generator. Additionally, or1200 still yields

significant areas for improvement. Much of the OR1200 circuit

used is difficult to test due to the SOC packaging. External

interfaces such at the PWM and wishbone memory controllers

add significant levels of indirection to be able to handle as a

full package. In future work, we hope to address these levels

of indirection in testing large SoC type packages.

TABLE VII
BRANCH AND TRANSITION FAULT COVERAGE

Benchmark
Branch Coverage Transition Coverage
[12] Ours [12] Ours

b10 100 100 77.15 78.4

b11 97.9 97.9 80.2 79.6

b12 99.1 99.1 65.1 62.5

b14 93.4 93.4 71.3 70.7

b15 91.3 91.3 64.7 65.4

or1200 N/A 94.2 N/A 36.4

V. CONCLUSIONS

In this paper, we presented an algorithm for sequential ATPG

at the RTL. The test generation process is formulated as an

ant colony optimization using operator coverage as the primary

heuristic. Pheromones are placed along the single cycle CDFG

on discovery of new operator behavior. This method generates

high quality vectors for use in both validation and at-speed

functional test with a high level of design and defect cover-

age. The algorithm also shows significant performance gains

by leveraging the available information at the RTL without

requiring information from a gate-level netlist.

REFERENCES

[1] E. J. McCluskey and C.-W. Tseng, “Stuck-fault tests vs. actual defects,”
in Proceedings of the 2000 IEEE International Test Conference, ITC ’00,
(Washington, DC, USA), pp. 336–, IEEE Computer Society, 2000.

[2] L. Lee, L.-C. Wang, P. Parvathala, and T. Mak, “On silicon-based speed
path identification,” in VLSI Test Symposium, 2005. Proceedings. 23rd

IEEE, May 2005.
[3] R. McLaughlin, S. Venkataraman, and C. Lim, “Automated debug of

speed path failures using functional tests,” in VLSI Test Symposium, 2009.

VTS ’09. 27th IEEE, May 2009.
[4] F. Corno, G. Cumani, M. Reorda, and G. Squillero, “Effective techniques

for high-level atpg,” in Proc. Asian Test Symp., pp. 225–230, 2001.
[5] L. Zhang, I. Ghosh, and M. Hsiao, “Efficient sequential atpg for

functional rtl circuits,” in Proc. Int. Test Conf., vol. 1, pp. 290–298,
Sept 2003.

[6] M. Mirzaei, M. Tabandeh, B. Alizadeh, and Z. Navabi, “A new approach
for automatic test pattern generation in register transfer level circuits,”
IEEE Design & Test, vol. 30, pp. 49–59, Aug 2013.

[7] M. Li, K. Gent, and M. Hsiao, “Design validation of rtl circuits using
evolutionary swarm intelligence,” in Proc. Int. Test Conf., 2012.

[8] Y. Zhou, T. Wang, T. Lv, H. Li, and X. Li, “Path constraint solving
based test generation for hard-to-reach states,” in Proc. Asian Test Symp.,
pp. 239–244, Nov 2013.

[9] K. Gent and M. S. Hsiao, “Abstraction-based relation mining for func-
tional test generation,” in VLSI Test Symposium (VTS), 2015 IEEE 33rd,
pp. 1–6, April 2015.

[10] M. Reni Krug, M. Soares Lubaszewski, and M. de Souza Moraes,
“Improving atpg gate-level fault coverage by using test vectors generated
from behavioral hdl descriptions,” in Proc. VLSI Test Symp., pp. 314–
319, Oct 2006.

[11] S. Ravi and N. Jha, “Fast test generation for circuits with rtl and gate-
level views,” in Proc. Int. Test Conf., pp. 1068–1077, 2001.

[12] K. Gent and M. Hsiao, “Dual-purpose mixed-level test generation using
swarm intelligence,” in Test Symposium (ATS), 2014 IEEE 23rd Asian,
pp. 230–235, Nov 2014.

[13] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization
by a colony of cooperating agents,” IEEE Tran. Systems, Man, and

Cybernetics, vol. 26, pp. 29–41, Feb 1996.
[14] F. Allen, “Control flow analysis,” SIGPLAN Not., vol. 5, pp. 1–19, July

1970.
[15] K. Gent and M. S. Hsiao, “A control path aware metric for grading

functional test vectors,” in Latin American Test Symposium (LATS), 2016

IEEE 17th, April 2016.
[16] M. Yilmaz, D. Hower, S. Ozev, and D. Sorin, “Self-checking and self-

diagnosing 32-bit microprocessor multiplier,” in Test Conference, 2006.

ITC ’06. IEEE International, pp. 1–10, Oct 2006.
[17] Q. Zhang and I. G. Harris, “A domain coverage metric for the validation

of behavioral vhdl descriptions,” in Test Conference, 2000. Proceedings.

International, pp. 302–308, 2000.
[18] “Verilator.” http://www.veripool.org/wiki/verilator.
[19] S. Davidson, “Itc99 benchmark circuits - preliminary results,” in Proc.

Int. Symp. Circuits & Systems, p. 1125, 1999.
[20] “OpenRISC web page.” http://www.opencores.org.

6

