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Abstract

Background: Nonrandom distribution of rearrangements is a common feature of eukaryotic chromosomes that is not well
understood in terms of genome organization and evolution. In the major African malaria vector Anopheles gambiae,
polymorphic inversions are highly nonuniformly distributed among five chromosomal arms and are associated with
epidemiologically important adaptations. However, it is not clear whether the genomic content of the chromosomal arms is
associated with inversion polymorphism and fixation rates.

Methodology/Principal Findings: To better understand the evolutionary dynamics of chromosomal inversions, we created
a physical map for an Asian malaria mosquito, Anopheles stephensi, and compared it with the genome of An. gambiae. We
also developed and deployed novel Bayesian statistical models to analyze genome landscapes in individual chromosomal
arms An. gambiae. Here, we demonstrate that, despite the paucity of inversion polymorphisms on the X chromosome, this
chromosome has the fastest rate of inversion fixation and the highest density of transposable elements, simple DNA
repeats, and GC content. The highly polymorphic and rapidly evolving autosomal 2R arm had overrepresentation of genes
involved in cellular response to stress supporting the role of natural selection in maintaining adaptive polymorphic
inversions. In addition, the 2R arm had the highest density of regions involved in segmental duplications that clustered in
the breakpoint-rich zone of the arm. In contrast, the slower evolving 2L, 3R, and 3L, arms were enriched with matrix-
attachment regions that potentially contribute to chromosome stability in the cell nucleus.

Conclusions/Significance: These results highlight fundamental differences in evolutionary dynamics of the sex
chromosome and autosomes and revealed the strong association between characteristics of the genome landscape and
rates of chromosomal evolution. We conclude that a unique combination of various classes of genes and repetitive DNA in
each arm, rather than a single type of repetitive element, is likely responsible for arm-specific rates of rearrangements.
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Introduction

A growing number of studies demonstrate that chromosomal

inversions facilitate genetic differentiation during speciation [1,2].

An intriguing observation is that the rates of genome rearrange-

ments in many organisms are chromosome sensitive [3,4]. This

fact suggests that certain chromosomes have an increased role in

adaptation and evolution of species, including insect pests and

disease vectors. Among insects, extensive studies of chromosomal

evolution have been performed only on Drosophila [5,6,7,8].

Although these studies provided important insights into the rates,

patterns, and mechanisms of rearrangements, the evolutionary

forces that govern the unequal distribution of rearrangements

among chromosomes remain poorly understood. Malaria mosqui-

toes are an excellent system for studying the dynamics of

chromosomal evolution because inversions are highly nonuni-

formly distributed among five chromosomal arms. In species of the

Anopheles gambiae complex, 18 of the 31 common polymorphic

inversions, associated with ecological adaptations, have been

found on arm 2R suggesting the role of positive selection in

accumulating inversions on the 2R arm. Only two polymorphic

inversions have been found on the X chromosome within the An.

gambiae complex [9]. A study of the distribution of 82 rare, mostly

neutral, polymorphic inversions in An. gambiae s.s. found no

inversions on the X chromosome, 67 inversions on the 2R arm,

and only 15 inversions on the 2L, 3R, and 3L arms together [10].

Clustering of chromosomal polymorphism and cytological colo-

calization of multiple breakpoints on the 2R arm indicates that this
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arm is especially prone to rearrangements [9,10]. In contrast to the

polymorphic inversions, the majority of fixed inversions (5 of 10)

were found on the X chromosome in the An. gambiae complex

suggesting a role of these inversions in speciation. Although, the

high density of fixed inversions on the sex chromosome was found

within several mosquito species complexes [11], it is unclear

whether the X chromosome rearranges rapidly on a larger

evolutionary scale and whether it is enriched in genes important

for speciation. Previous studies of chromosomal evolution using

physical maps of distant Anopheles species, An. albimanus, An. gambiae,

and An. funestus have demonstrated that paracentric inversions and

whole-arm translocations are the major types of rearrangements

and that the 2R arm has the fastest rate of inversion fixation

among autosomes [12,13]. However, low densities of markers on

the physical maps of the X chromosomes in these studies preclude

us from drawing a definite conclusion about the relative rate of sex

chromosome evolution.

The high rate of rearrangements on the 2R arm could be

explained by 2R-biased distribution of repetitive DNA capable of

generating inversions. However, the transposable element (TE)

density in the An. gambiae genome was found to be lowest on the

2R arm [14]; thus, it is not clear whether the molecular content could

be associated with inversion polymorphism and fixation rates.

Moreover, simple measuring of the TE densities is not a robust

way for discerning differences between arms. Statistically sound

comparisons of molecular features among chromosomal arms can be

performed using Bayesian statistical models and procedures. Also, a

study of other potentially rearrangement-causing elements, such as

simple repeats and segmental duplications (SDs), is yet to be

performed in Anopheles. Nucleotide base composition can also play a

role in genome instability. For example, GC-rich regions have been

implicated in forming fragile hotspot regions for rearrangements

[15,16]. In addition, the nonrandom pattern of genome rearrange-

ments can be governed by the nuclear architecture. Because of the

nonrandom nuclear organization, certain loci may colocalize and

have increased opportunities to interact and generate specific

rearrangements in certain types of tumors in humans [17,18].

Additionally, other interactions may be inhibitory. Matrix-associated

regions (MARs) of DNA can bind directly to lamin—a major protein

of the nuclear envelope—and can potentially increase chromosome

stability in the cell nucleus [19,20].

An. gambiae and An. funestus are the major malaria vectors in

Africa, and An. stephensi is the principal malaria vector in Asia.

Taxonomically, these species belong to different series within the

subgenus Cellia: Pyretophorus (An. gambiae), Myzomyia (An. funestus),

and Neocellia (An. stephensi) [21]. A comparative study of

mitochondrial genomes suggested that An. gambiae and An. funestus

diverged from each other at least 36 million years ago [22].

Interestingly, the common polymorphic inversions tend to cluster

on the chromosomal arm 2R in all three species [9,23,24,25],

suggesting that natural selection has a better chance to operate on

the genetic content of this arm. The common inversions 2Rb,

2Rbc, 2Rcu, 2Ru, 2Rd, and 2La of An. gambiae are frequent in the

arid Sahel Savanna and almost absent in humid equatorial Africa

[9]. It has been argued that these inversions confer adaptive fitness

to the drier environment [10,26]. Therefore, it would be

interesting to see if the 2R and 2L arms are enriched in genes

that could be responsible for this adaptation. A comparison of sizes

between rare and common polymorphic inversions has revealed

that common inversions are less frequent at shorter lengths

[10,27], reflecting a smaller selective advantage when an inversion

captures fewer genes [28]. This model predicts the positive

correlation between gene density and the abundance of common

inversions in a chromosomal arm.

Here, we developed a physical map for an Asian malaria mosquito,

Anopheles stephensi, and compared gene orders among An. gambiae, An.

funestus, and An. stephensi. We present the results of the Bayesian

analysis of the genome landscapes and their association with the

nonrandom distribution of chromosomal rearrangements in malaria

mosquitoes. Our study revealed that the sex chromosome and

autosomes have different patterns of relationships between inversion

fixation and polymorphism. We also demonstrated that the rapidly

and slowly evolving chromosomal arms have very distinct genome

landscapes characterized by distinctly enriched gene subpopulations

and classes of repetitive DNA.

Results

A 1-Mb-resolution physical map for An. stephensi
Availability of the genome sequence for An. gambiae [14] and

physical maps for An. funestus [12,29] and An. stephensi (this work)

enabled a fresh perspective on the relationships between the

genome landscape and evolutionary rates. In this study, we

mapped 231 DNA markers to the An. stephensi chromosomes at a

density of 1 marker/megabase (Mb) based on the mapped An.

gambiae genome assembly [14,30]. Table S1 shows chromosomal

positions of the DNA clones mapped in this study, as well as in

previous studies [12,14,29,31,32]. We performed a test on the

uniformity of marker distribution in An. gambiae, An. stephensi, and

An. funestus using the X2 statistic. The distribution of markers was

shown to be uniform for each arm and each species (Table S2).

Comparative mapping established arm homologies among the

three species; found no evidence for inter-arm transposition events,

pericentric inversions, or partial–arm translocations (Table S1);

and confirmed that whole-arm translocations and paracentric

inversions are common rearrangements among species in the

subgenus Cellia [12,21].

Pattern and rates of inversion fixation in the subgenus
Cellia

We calculated the minimum number of inversions between An.

gambiae and An. stephensi using the order of mapped markers (Table

S1) and the Genome Rearrangements In Man and Mouse

(GRIMM) program without assuming directionality of the markers

[33]. GRIMM software uses the Hannenhalli and Pevzner

algorithms for computing the minimum number of rearrangement

events and for finding optimal scenarios for transforming one

genome into another. A minimum of 15 rearrangement events are

needed to transform the 24.4-Mb-long X chromosome of one

species into the other. In contrast, only 11 and 7 inversions are

required to transform the 53.2-Mb-long 3R arm and the 42-Mb-

long 3L arm, respectively (Figure 1). The 2R and 2L arms had 29

and 16 fixed inversions, respectively (Figure S1, S2). When

normalized to account for differences in chromosome length, the

X chromosome had the highest density of fixed inversions of any

chromosome (Figure S1, S2, Table 1). The highest level of

inversion fixation on the X chromosome was also found for the

analogous comparison of An. gambiae and An. funestus (Table S3).

We calculated number of breaks per Mb under the assumption

that there is no breakpoint re-use and no inversions at the very

ends of chromosomes (Table 1, Table S3). The rearrangement

scenarios provided by the GRIMM program had breakpoint

reuses and yielded lower number of breaks per Mb (Figure 1, S1,

S2). However, the actual breakpoint reuse cannot be identified at

1Mb density of markers physically mapped to chromosomes.

As another approach to inversion frequency, we also employed

an analysis of conserved syntenic blocks (CSBs), which are defined

as the regions with the same order and distance between at least

Mosquito Chromosome Evolution
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two markers (Table S1). In order to provide better estimates of

CSBs, we further developed the Nadeau and Taylor method [34].

Using the adapted Bayesian Nadeau and Taylor analysis, we

found the posterior mean, standard error, 95% credible interval,

and Maximum A Posteriori (MAP) estimate for the mean length of

CSBs (See Methods). These lengths (X, 0.600 Mb; 2R, 1.315 Mb;

2L, 1.712 Mb; 3R, 3.756 Mb; and 3L, 2.412 Mb) (Table S4) were

also used to infer the number of fixed inversions between An.

gambiae and An. stephensi. If each inversion requires two disruption

events, then n inversions result in 2n+1 conserved segments. The

number of CSBs was calculated by dividing the total length of the

arm by the mean length of the CSB (Table 2). Nadeau and Taylor

analysis was not applied to An. gambiae and An. funestus because no

CSBs were detected on the X chromosome. However, the

GRIMM analysis inferred the level of rearrangement between

An. gambiae and An. funestus (Table S3). Given that An. gambiae and

An. funestus diverged from each other at least 36 million years ago

[22], the rate of genome rearrangement in the subgenus Cellia for

1 Mb mapping density is 0.006–0.01 disruptions per 1 Mb per

million years per lineage.

Both Nadeau-Taylor and GRIMM analyses revealed that the X

chromosome had the highest rate of inversion fixation and that the

Figure 1. The GRIMM scenario of gene order transformation between An. gambiae and A. stephensi. Relative position and orientation of
the conserved syntenic blocks (CSBs) are shown by colored blocks. Numbers within the blocks indicate markers physically mapped to polytene
chromosomes. Numbers over brackets show inversion steps. The telomere ends are on the left.
doi:10.1371/journal.pone.0010592.g001
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2R arm evolved faster than other autosomes. The fastest evolution

was in the X chromosome, which was in conflict with the absence

of polymorphic inversions on the X chromosome in all three

species [10,29,32]. In contrast, inversion fixation rates on

autosomes were well correlated with the distribution of polymor-

phic inversions in An. gambiae—An. stephensi (correlation coefficients

were 0.98 and 0.89 for GRIMM and Nadeau-Taylor analyses,

respectively), when all polymorphic inversions in An. gambiae [10]

and An. stephensi [23,35,36] were combined (Figure 2). The

correlation coefficient between fixed and polymorphic inversions

in An. gambiae—An. funestus [12,29] was 0.87 (Figure S3).

Distribution of repetitive elements and genes in
chromosomes of An. gambiae

We applied a Bayesian statistical model and procedure for

discerning differences between arms in molecular features, such as

DNA-mediated TEs (DNA TEs), RNA-mediated TEs (RNA TEs),

SDs, micro- and minisatellites, satellites, MARs, and genes. For

this analysis, we incorporated data that distinguishes both the

counts and the overall basepair coverage for each molecular

feature in the genomic windows of each of the five chromosome

arms. Dominant model selection procedures gave us the ability to

compare all possible competing models and to select between

parsimonious models by maximizing the posterior distribution. For

DNA TEs, RNA TEs, microsatellites, minisatellites, satellites, and

genes, we found that each of the arms showed significant

differences (Figure 3, Table S5). For MARs, we found that the

model with arms 2L = 3L and the model with 2L = 3R = 3L are

almost equally possible. For the regions involved in SDs, we found

little support for the difference between the model with X = 2L

and the model with all arms being different. In all cases, the 2R

arm showed clear differences and did not show patterns that

match any of the other arms.

The X chromosome had the highest density of TEs and the

highest coverage of microsatellites, minisatellites, and satellites.

The 2R arm had the highest density of genes and regions involved

in SDs but had the lowest densities of TEs and the lowest coverage

of minisatellites and MARs (Figure 3). In contrast to all other

repeats, MARs were concentrated in arms 2L, 3R, and 3L. We

found a negative correlation between the rates of fixed inversions

from GRIMM analysis and MARs coverage (r = 20.766),

suggesting a role for nuclear architecture in controlling the

rearrangements. The coefficients of correlation between inversion

fixation rates and the densities or coverage of other individual

molecular elements were the following: 0.274 for DNA TEs, 0.266

for RNA TEs, 20.193 for SDs, 0.824 for microsatellites, 0.562 for

minisatellites, and 0.812 for satellites. If we assume that all these

repetitive elements except MARs have an equal positive impact on

chromosomal breakage, then we can consider mean ranks of their

density/coverage as a function of inversion fixation rate. The

average mean ranks for all repeats without MARs were 3.914,

2.575, 2.989, 2.663, and 2.860 for X, 2R, 2L, 3R, and 3L,

respectively (Table S5). The coefficient of correlation between

inversion fixation rates and the average mean ranks was only

0.662. Also, we assumed that MARs have a negative impact on

chromosomal breakage, and we considered mean ranks of MAR

coverage as a function of genome stability. Therefore, to obtain a

resulting effect of all repetitive elements on inversion fixation rates,

we subtracted the mean ranks for MARs from the average mean

ranks for all other repeats and obtained 1.213, 0.231, 20.337,

20.391, and 20.714 for X, 2R, 2L, 3R, and 3L, respectively. The

recalculated correlation coefficient value between these mean

ranks and the inversion fixation rates increased significantly up to

0.962. These results demonstrate a strong association between the

observed inversion fixation pattern and the possible combined

effect of MARs and other repeats on chromosome instability.

Table 1. Inversion fixation rates between An. stephensi and An. gambaie calculated from GRIMM analysis of gene order.

Chromosome arm
The number of
inversions, n

The length of
chromosomal
arm, G (Mb)

The number of
inversions per 1 Mb

The number of
breaks per 1 Mb

X 15 24.393 0.615 1.230

2R 29 61.545 0.471 0.942

2L 16 49.364 0.324 0.648

3R 11 53.201 0.207 0.414

3L 7 41.963 0.167 0.334

doi:10.1371/journal.pone.0010592.t001

Table 2. Inversion fixation rates between An. stephensi and An. gambiae calculated from the Nadeau-Taylor analysis of the mean
length of CSBs.

Chromo-
some arm

The mean length of
CSBs, L (Mb)

The length of
chromosomal
arm, G (Mb)

The number of
CSBs, M = G/L

The number of
inversion,
n = (M21)/2

The number of
inversions
per 1 Mb

The number of
breaks per 1 Mb

X 0.600 24.393 40.652 19.826 0.813 1.626

2R 1.315 61.545 46.791 22.895 0.372 0.744

2L 1.712 49.364 28.830 13.915 0.282 0.564

3R 3.756 53.201 14.165 6.583 0.124 0.247

3L 2.412 41.963 17.395 8.198 0.195 0.391

doi:10.1371/journal.pone.0010592.t002
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In addition to the arm differences, we analyzed the distribution

of molecular features within chromosomal arms. There was a

uniformly low concentration of TEs in euchromatin with peaks

being in pericentric and intercalary heterochromatin. The

distribution of gene densities had the opposite pattern. MARs

were found concentrated in the pericentric regions of all arms, but

they were also abundant in euchromatiic regions of the 2L, 3R,

and 3L arms. We detected the highest density of regions with SDs

in the proximal half of the 2R arm where the breakpoint-rich area

is located [10] (Figure 4). The correlation coefficient between the

densities of breakpoints and regions involved in SDs in 5-Mb

intervals within 50 Mb of the euchromatic part of 2R was 0.9091,

suggesting an arm specific involvement of SDs in inversion

formation rather than a genome-wide impact.

AT/GC content of the An. gambiae chromosomes
We analyzed empirical median AT content and found it equal

to 0.46, 0.46, 0.55, 0.56, and 0.56 for the X, 2R, 2L, 3R, and 3L

arms, respectively. To statistically compare AT/GC content

among chromosomal arms, we quantified the level of uncertainty

associated with these numbers and calculated probabilities that

respective arms have a higher AT content than the X

chromosome, which was used as the baseline reference for all

comparisons. The probabilities were 0.677 (2R), 0.855 (2L), 0.871

(3R), and 0.888 (3L). These results demonstrate that 2L, 3R, and

3L have a moderate increase in AT content over the X

chromosome; whereas, the 2R arm has only a mild increase.

The correlation coefficient between inversion fixation rates and

the GC content was 0.954.

Gene ontology analysis
We used Gene Ontology (GO) terms [37] to characterize gene

content of individual chromosomal arms of An. gambiae. The

frequencies of GO terms assigned to genes in chromosomal arms

were compared to frequencies for all GO-annotated genes in the

peptide dataset of An. gambiae (Figure 5). We found significant

enrichment of GO terms in molecular function category on the X

chromosome including molecular transducer activity (10 genes),

signal transducer activity (10 genes), and binding (307 genes).

Moreover, 12 genes on the X chromosomes were involved in

nucleobase, nucleoside, and nucleotide metabolic processes

representing a significant enrichment of the GO biological process.

Chromosomal arm 2L had overrepresentation of several gene

types including those encoding for proteins involved in structural

constituent of cuticle, structural molecule activity, and protein

binding (molecular function). In addition, 2L was enriched in GO

terms of biological process: cell wall macromolecule catabolic

process, cell wall macromolecule metabolic process, and cell wall

organization or biogenesis. Arm 2R had overrepresentation of the

following GO terms: membrane part, transmembrane proteins,

proteins intrinsic to the membrane (cellular location), oxidoreduc-

tase activity, acting on CH-OH group of donors (molecular

function), DNA repair, cellular response to stimulus, cellular

response to DNA damage stimulus, cellular response to stress, and

response to DNA damage stimulus (biological process). Chromo-

somal arm 3L was enriched in GO terms related to binding

(molecular function) and metabolic/catabolic processes (biological

process). Finally, 3R had an overrepresentation of several gene

types including those encoding for proteins located in the

membrane, cell, and cell parts (cellular location).

Discussion

Our study revealed contrasting patterns of sex chromosome and

autosome evolution. We demonstrated that the sex chromosome

has the highest rate of inversion fixation, which is in contrast with

the absence of polymorphic inversions on the X chromosome in

the studied species (Figure 2, S3). The paucity of polymorphic

inversions on the X chromosome could be a consequence of a low

rate of origin of inversions. However, the X chromosome had the

highest densities of TEs, microsatellites, minisatellites, and

satellites, which are known for their roles in the origin of

inversions [38,39,40]. The excess of fixed inversions, as compared

to a deficit of polymorphic inversions, on the X chromosome has

been documented in other insect species [11,41]. A classical work

has shown that the fixation rate of underdominant and

advantageous partially or fully recessive rearrangements should

be higher for the X chromosome (due to the hemizygosity of

males) than for the autosomes [41]. It is possible that strong sex-

specific selection favors hemizygous males carrying the X

inversion, which is underdominant in females. Ayala and Coluzzi

proposed that genes responsible for reproductive isolation of

mosquito species should be located on the X chromosome [1].

Indeed, the X chromosome has a disproportionately large effect

on male and female hybrid sterility and inviability in An. gambiae

and An. arabiensis [42,43]. The rapid evolution of sterility and

inviability genes captured by polymorphic inversions on the X

chromosome may cause a selection against inversion heterozy-

gotes. From a vector control point of view, if heterozygote

inversions on the X chromosome have a deleterious effect on

viability and reproduction of mosquitoes, then they could be

introduced artificially into the vector population to reduce its size.

Our study of GO term distribution suggests that the X

chromosome is enriched in genes that may be involved in

premating isolation, such as genes encoding for proteins with

molecular and signal transduction activity. Signal transduction is a

crucial component of olfaction that plays a major role in mate

recognition. For example, X-linked genes encoding for signal

transduction proteins were differentially expressed between virgin

females of two incipient species of An. gambiae that differ in

swarming behavior [44]. Rapid generation and fixation of

Figure 2. The contrasting patterns of the X chromosome and
autosome evolution. The fastest evolution of the X chromosome and
parallelism between the extent of inversion polymorphism and
inversion fixation rates on the autosomes are shown. The number of
breakpoints of fixed inversions is calculated per 1 Mb from Nadeau-
Taylor analysis (the blue bar) and GRIMM analysis (the red bar). The
number of breakpoints of all polymorphic inversions in An. gambiae and
An. stephensi is combined and calculated per 1 Mb (the green bar).
doi:10.1371/journal.pone.0010592.g002
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inversions on the X chromosome may facilitate speciation in

Anopheles by differentiating alleles inside of the inverted regions as

has been shown in Drosophila [45].

Unlike the X chromosome in insects, the eutherian X

chromosome had its gene order conserved during 105 million

years of evolution, probably reflecting strong selective constraints

posed by the X inactivation system in mammals [46]. A study of

the opossum genome revealed that the evolution of the X

chromosome inactivation was associated with suppression of large-

scale rearrangements in eutherians [47]. Conversely, rapidly

evolving sex chromosomes in insects have a dosage compensation

system. Because the X chromosome in Drosophila males recruits

fewer histones and possesses an ‘‘open’’ chromatin [48], it may be

more sensitive to breakage [16] and, thus, more prone to

rearrangements.

In contrast to the X chromosome, the 2R and 2L arms of An.

gambiae and their homologous arms in An. stephensi and An. funestus

harbor polymorphic inversions associated with ecological adapta-

tions [9,23,24]. Natural selection has been implicated in fixation of

the 2Rj inversion during ecotypic speciation in An. gambiae [49].

Adaptive alleles or allelic combinations can be maintained within a

polymorphic inversion by suppressing recombination between the

loci [2,50]. It has been demonstrated that adaptive inversions are

less frequent at shorter lengths [10,27], reflecting a smaller

selective advantage when an inversion captures fewer genes [28].

Therefore, we predicted that chromosomal arms rich in

polymorphic inversions (2R, 2L) would have higher gene densities.

This prediction was met; moreover, the polymorphic inversion-

poor X chromosome had the lowest gene density (Figure 3, Table

S5). Similarly, the polymorphic inversion-rich chromosomal

Figure 3. Median values of density and coverage of molecular features in chromosomes of An. gambiae. Counts per 1 Mb are given for
DNA TEs, RNA TEs, regions involved in SDs, and genes. Percentage of region length occupied per 1 Mb are indicated for microsatellites, minisatellites,
satellites, and MARs.
doi:10.1371/journal.pone.0010592.g003

Mosquito Chromosome Evolution
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Figure 4. Genome landscapes of the An. gambiae chromosomal arms. Median counts per 1 Mb are given for DNA TEs, RNA TEs, regions
involved in SDs, and genes. Percentage of region length occupied per 1 Mb is indicated for microsatellites, minisatellites, satellites, and MARs. Median
values of density and coverage of molecular features are displayed as 5 Mb intervals in euchromatin and ,1 Mb intervals in heterochromatin. The
coordinates and orientation of each arm are the following: X: 0 Mb—telomere, 24.3 Mb—centromere; 2R: 0 Mb—telomere, 61.5 Mb—centromere;
2L: 0—centromere, 50 Mb—telomere; 3R: 0 Mb—telomere, 53.2 Mb—centromere; 3L: 0 Mb—centromere, 41.9 Mb—telomere.
doi:10.1371/journal.pone.0010592.g004
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elements C and E have higher gene densities than the rest of the

genome in Drosophila [5]. These observations highlight the

fundamental differences between the evolutionary dynamics of

the sex chromosome and autosomes. The high rate of sex

chromosome evolution is being achieved by the rapid generation

and fixation of inversions without maintenance of a stable

inversion polymorphism. In contrast, the high rate of the

autosomal evolution results from the high level of inversion

polymorphism maintained by selection acting on gene-rich

chromosomal arms. The increase of gene density in rearrange-

ment-rich regions of autosomes was also found in vertebrates

[15,51,52] suggesting the general applicability of the principle

‘‘from polymorphism to fixation’’ to autosomal evolution.

The polymorphic inversions 2Rb, 2Rbc, 2Rcu, 2Ru, 2Rd, and

2La of An. gambiae are associated with adaptation of mosquitoes to

the dry environment [9]. Cuticle seems to play a major role in

desiccation resistance of embryo and adult mosquitoes [26,53].

These observations suggest an exciting possibility that genes

involved in the cuticle development may be disproportionally

clustered on the 2R and 2L arms. Our study of GO terms provides

evidence that 2L is indeed enriched with genes involved in the

structural integrity of a cuticle while the 2R arm has overrepre-

sentation of genes involved in cellular response to stress (e.g.,

temperature, humidity) and in building membrane parts (Figure 5).

These data support the role of natural selection in maintaining

polymorphic inversions associated with ecological adaptations.

If nonrandom origin of inversions can be attributed to unequal

density of repetitive DNA among chromosome arms, we would

predict higher densities of break-causing elements on faster

evolving arms. Indeed, the X chromosome had the highest

densities of DNA and RNA TEs (Figure 3), which can potentially

generate inversions [38,39]. In addition, the X chromosome had

the highest microsatellite, minisatellite, and satellite DNA content.

Simple repeats have been shown to play a role in the formation of

hairpin and cruciform structures, which can cause double-strand

DNA breaks and rearrangements [40]. In Drosophila, the fastest

evolving X chromosome has the highest densities of microsatellites

and TEs [5,54]. Although, the role of TEs in the origin of

individual inversions was demonstrated earlier [38,39,55,56,57],

the more recent sequencing of breakpoints discovered alternative

mechanisms of inversion generation [6,7,8,58]. SDs have been

implicated in inversion generation in mosquitoes and mammals

[59,60] and are considered as a marker of genome fragility [61].

Our study showed that the most rapidly evolving autosomal arm

2R had the lowest density of TEs but the highest density of regions

with SDs (Figure 3). Importantly, the regions involved in SDs were

clustered in the proximal half of the 2R arm (Figure 4) where the

majority of inversion breakpoints are found [10]. We also

demonstrated that the 2R arm has the lowest coverage of MARs,

which can potentially mediate interactions of specific chromosome

sites with the nuclear envelope [19,20]. Three-dimensional

organization of chromosomes in the nuclear space can affect

rearrangement rates by facilitating or hindering interchromosomal

interactions [17,18]. In agreement with this statement, MARs

were found accumulated in the slowly evolving 2L, 3R, and 3R

arms (Figure 3). We propose that multiple attachments of 2L, 3R,

Figure 5. Overrepresented GO terms enriched on each chromosomal arm of the An. gambiae genome assembly. The percentages of arm-
enriched (red) genes containing the listed GO biological process (pink shading), cellular location (blue shading), and molecular function (green shading)
terms are compared to the percent of genes in the whole genome matching that term. Numbers in parentheses refer to the actual number of arm-enriched
genes annotated with the listed GO domain. P-value significance scores, as determined by GO-Term-Finder, are shown to the right (grey shading).
doi:10.1371/journal.pone.0010592.g005
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and 3L to the nuclear envelope make rejoining different breaks

and forming inversions more difficult despite the abundance of

TEs and simple repeats in these arms (Figure S4). Finally, we

demonstrated that the An. gambiae X chromosome and 2R arm

have the highest G+C content. GC-rich regions have been

implemented in forming hotspots for chromosome rearrangements

[15,16] because of their propensity to form Z-DNA, hairpin loops,

and other unstable structures that are capable of generating

double-strand breaks [62]. Interestingly, our GO term analysis

demonstrated that the X chromosome is enriched with nucleo-

base, nucleoside, and nucleotide metabolic processes and that the

2R arm has overrepresented gene clusters involved in DNA

damage repair. It is possible that these GO term enrichments have

evolved in response to high rates of DNA breakage on the X and

2R chromosomes.

Our study has shown that because of the paucity of pericentric

inversions and partial-arm translocations in mosquito evolution, the

genome landscapes and evolutionary histories of individual arms are

different. The results demonstrated a strong association between the

genome landscape characteristics and the rates of chromosomal

evolution. We conclude that a unique combination of various classes

of genes and repetitive DNA in each arm, rather than a single type of

repetitive element, is likely responsible for arm-specific rates of

rearrangements. These findings call for a reevaluation of the genomic

analyses, which must be performed on an arm-by-arm basis using

sequences physically mapped to the chromosomes.

Methods

Mosquito strain and physical mapping
For the physical map development, we used the Indian wild-

type strain of An. stephensi. Chromosomal preparations from ovaries

of half-gravid females and fluorescent in situ hybridization

experiments were performed as described previously [12]. An.

stephensi, An. gambiae, and An. funestus cDNA and BAC clones were

hybridized to polytene chromosomes of An. stephensi (Table S1).

Localization of a signal was done using a standard cytogenetic

map for An. stephensi [32]. The BLASTN and BLASTX algorithms

were used to identify homologous sequences in the An. gambiae

genome, which is available at VectorBase [63].

Test of uniformity of marker distribution
In order to determine if the marker distribution, along each

chromosome arm, is distributed uniformly, we considered the x2

statistic:

X 2~

PN
i~1 Oi{Eið Þ

Ei

,

where N denotes a number of equally spaced bins. Under the null

hypothesis (in this case, the distribution is uniform), Ei is the

expected number of observations and Oi is the the observed

number. Under large sample sizes, with each bin observed count

having a sufficiently high count, X 2
~x2

N{1. Large values of this

statistic correspond to large deviations from the null. Analyses of

distributional fit are often based on p-values, where the hypothesis

is rejected when the p-value is under some predetermined

threshold. However, these p-values (based on x2 asymptotics) are

only reliable under large sample sizes. Some of the chromosomes

exhibit low marker counts (specifically the X chromosome), hence

simulated p-values, based on bootstrap replications (100,000) are

also provided. Under large sample sizes, bootstrap and asymptotic

p-values will coincide.

Bin counts N were determined so that the each expected bin

count was at least 5.

Bayesian analysis of the Nadeau and Taylor model
We briefly review the method developed by Nadeau and Taylor

(N-T) [34]. Letting r denote the range of observed marker lengths

(as defined by the presence of two or more syntenic markers), N-T

have shown the length of each marker to be

m~r nz1ð Þ= n{1ð Þ

where n§2 are the number of markers in each sytnteny region.

We emphasize that m is the length of each region, given that it has

been defined by at least two markers (as opposed to an unbiased

length). N-T used a Poisson distribution for marker counts in order

to account for this bias. Explicitly, the probability of observing at

least two markers is

1{ e{DxzDxe{Dx
� �

where D is the density (of all) markers in the genome, and x is the

length of the conserved region. The density (D) is computed by:

D = T/G, where T is the number of markers, and G is the genome

length. Using this, N-T obtain the (un-normalized) sampling

density for the length of each conserved block as

p xð Þ~ 1{e{Dx{Dxe{Dx
� �

f xð Þ

where f xð Þ is the sampling density for the length (given that it is

observed) of each region. N-T specify that f xð Þ has an exponential

distribution

f xð Þ~ 1

L
e{x=L

where L is the average length of each conserved segment. The

analysis goal was to obtain an estimate of L. N-T have adopted a

Method of Moments (MOM) approach for their estimation

procedure. Under large sample sizes, it can be derived that

E xð Þ& L2Dz3L
� ��

LDz1ð Þ

where E xð Þ is obtained via the sample mean of the transformed

lengths (given by equation m~r nz1ð Þ= n{1ð Þ). E Lð Þ is obtained

by back solving for L. V Lð Þ is obtained via the large sample

estimate

V Lð Þ&V xð Þ dL=dxð Þ2

where dx=dL~ LDz1ð Þ 2DLz3ð Þ{ DL2z3L
� �

D
� �.

LDz1ð Þ2.

While the model adopted by N-T is useful for modeling the

length of conserved chromosomal regions, the moments based

estimation approach can lead to unreliable inferences.

Previously, we applied the N-T model to find the expected

length of conserved synteny regions. After model fitting, we

proceeded in diagnostically checking the model to see if it

accurately represents our observed data trends. Through a leave one

out cross validation procedure, under the described large sample

approximations, a confidence region for the CDF (based on the fit

parameters) was constructed. While the trend found in the data

approximately matches that of the model, the expected 5% error
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rate was dramatically exceeded (29.6%). This excessive error rate

could have occurred for either of two reasons. 1) The model is

inappropriate for out data, or 2) the asymptotic approximations to

the mean and variance are performing badly. In our case, we

believe the variance estimates are simply underestimated. It should

be noted that if we did have a larger data set, the problem incurred

in (2) would diminish. In general, since sample sizes are fixed (for a

given experiment), we will adopt a Bayesian inferential framework

for overcoming the asymptotic deficiencies observed in the

moments based approach. For notation, let us denote the model

by

p xDLð Þ~
1{e{Dx{Dxe{Dx½ �f xð Þ 1

L
e{x=L

1{1= L DzL{1ð Þð Þ{D
.

L DzL{1ð Þ2
� � :

Formally, in a Bayesian analysis, one constructs a distribution on

the parameter space L, given the data set D~ x1, . . . ,xNf g. This

distribution is referred to as a posterior distribution, and explicitly

follows as

p LDDð Þ~p DLð Þp Lð Þ=p()

! P
N

i~1
p xi DLð Þp Lð Þ:

The distribution p(L) is called the prior distribution and is used to

model beliefs about L, before observing the data. For our purposes,

we used p Lð Þ!1, which represents (in this case) neutral beliefs

about L, and doesn’t favor any particular values L. While the

choice of prior is quite flexible, the choice presented here makes

the posterior have the same form as the likelihood. From this, we

will obtain a full distribution for L, which will not rely on

asymptotic approximations (The original framework simply

provides an estimated mean and variance, which are valid under

large sample sizes). Through Markov chain Monte Carlo, we

obtain the posterior distribution for L. From this, we find the

posterior mean, standard error, 95% credible interval, and

Maximum A Posteriori (MAP) estimate for L, which are tabulated

in Table S4. We assess the appropriateness of our estimated

parameter (L) through the posterior predictive distribution:

p ~xxDDð Þ~
ð

p ~xxDLð Þp LDDð ÞdL

Under the Bayesian model fit, 2/54<4% of the data falls out of

the 95% region. While the nominal error rate is 5%, the actual

error rate <4% is well within reasonable limits. While the

modeling falls under the N-T framework, we’ve adopted a

Bayesian methodology, which provided us with more robust

estimates that do not depend on the large sample assumptions in

the original paper.

Analysis of the genomic landscapes of the chromosomal
arms in An. gambiae

We analyzed the An. gambiae AgamP3 genome assembly. Counts

and length of coverage of all molecular features were identified in

5-Mb intervals in euchromatin and ,1-Mb intervals in hetero-

chromatin. Gene density and transposable element content were

analyzed using the Biomart [64] and RepeatMasker (http://www.

repeatmasker.org/) programs, respectively. Micro- and minisatel-

lites were analyzed by Tandem Repeats Finder [65]. Only repeats

with 80% matches and a copy number of 2 or more (8 or more for

microsatellites) were included in the analysis. Microsatellites,

minisatellites, and satellites had period size from 2 to 6, from 7 to

99, and from 100 or more, respectively. SDs were detected using

BLAST-based whole-genome assembly comparison [66] limited to

putative SDs represented by pairwise alignments with #2.5-kb

and .90 sequence identity. The alignment length was specifically

chosen to avoid the vast majority of incompletely masked

repetitive elements. SD counts are not discrete duplication events

but indicate the number of regions that have been involved in

duplications within our interval of interest. Putative MARs in the

An. gambiae genome sequence were predicted using the SMARTest

bioinformatic tool [67]. In order to compare and discern the

genome landscape between chromosome arms, we have developed

a Generailized Linear Model (GLM) to analyze specified

molecular features. We incorporate data that distinguishes both

the counts for each molecular feature, and the overall coverage of

each feature, in subdivided regions, for each of the five

chromosome arms: ji [A~ X, 2R, 2L, 3R, 3Lf g. By indepen-

dence of each region, the likelihood follows as:

P
jj [A

P
i [ jj

Pr Ci,jj
DData,H

� �

where Ci,jj
are the counts associated with arm jj , in region i. H

are unknown model parameters that must be estimated. For our

application, we used a Poisson random effects model for

explaining the counts, but include information about the coverage

in each region as well. To make this connection, we parameterize

the mean effect, li,jj
, through the canonical log-link function:

log li,jj

� �
~mjj

zbjj
log Lið Þzfjj

log Kið Þ,

where Li is the total length and Ki is the coverage length for

region i.

bjj
and fjj

are random effects relating to each of the arm

specific lengths. mjj
defines the overall density of counts, on each

arm. The model unknowns are H~ mjj
,bjj

,fjj

n o
, for each

ji [A~ X, 2R, 2L, 3R, 3Lf g. Our goal was to determine if the

arm effects: H~ mjj
,bjj

,fjj

n o
can be distinguish across arms.

Many methods have been proposed for performing such an

analysis. Dominant model selection procedures have the ability to

compare all possible competing models, and also compensate for

the number of parameters involved in each model. That is, if

model fit is the objective, then all procedures will determine

optimality by utilizing as many parameters as is possible. In our

case, these would correspond to 15 possible parameters. Since

models selected this way are generally sub-optimal in terms of

prediction, likelihood penalization schemes are common practice.

For instance, BIC and AIC are commonly used devices for

selecting between models. In accordance with these procedures,

we select between parsimonious models by maximizing the

posterior distribution for each possible model configuration.

Automatic multiplicity correction was achieved by penalizing

through the prior structure. For our purposes, all prior distribution

have been chosen to have the form p hð Þ~1=h, which will achieve

the desired results.

As a final step in selecting models, we search through the

Maximum A Posteriori (MAP) space, associated with each model.

We used a simulated annealing algorithm for performing both the

model search, and associated parameter maximization. Models

with high posterior probability are compared through the ratio:

p DataDM̂Mk

� ��
p DataDM̂M~kk

� �
, where M̂Mk,M̂M~kk correspond to the
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MAP models found by the optimization procedure. Table S5

shows mean and median densities and length of coverage as well as

mean ranks for all molecular elements in chromosomal arms of An.

gambiae.

Analysis of AT/GC content
AT/GC content was calculated using 100-kb nonoverlapping

windows with the help of the program ATcontent (Tu 2001). The

analysis of AT content was based on a Poisson regression model,

since the data arises as discrete counts. Under such a model, the

probability of observing the feature count Ci,j , for the ith region on

chromosome j [ X, 2R, 2L, 3R, 3Lf g, is

Pr Ci,j

� �
~e{li,j

l
Ci,j
i,j

Ci,j !
:

The unknown parameter, li,j denotes the mean count for

observation i, on chromosome j. This mean form is generalizable

to account for different sources of variability found in the data; and

in our case, we must account for the variability specific to each

chromosome arm j [ X, 2R, 2L, 3R, 3Lf g, and the length of each

region (Li,j ). We used the canonical log-link for representing the

mean response li,j as:

log li,j

� �
~jjzlog Li,j

� �
,

where jj is a chromosome specific random effect for the data.

Since log li,j

� �
models the logged expectation of counts for each

molecular feature, we interpret the estimated parameters by noting

the relationship

log li,j

�
Li,j

� �
~jj ,

From this, we see that jj models the AT percent content on

chromosome j.

While a simple descriptive statistic can be formed for comparing

the AT content, across chromosomal arms, such a model based

formulation accurately describes the level of variability across the

individual arms.

GO annotation of chromosomal arms
We analyzed the An. gambiae AgamP4 annotated peptide set using

a locally installed copy of Interproscan 4.4.1 [68]. A GO [37]

annotation file was generated using Interproscan-assigned GO

terms and custom Perl scripts. We used Go-Term-Finder [69]

version 0.86 to search for significantly overrepresented (i.e.

p,0.05) GO terms assigned to genes in chromosomal arms

relative to frequencies for all GO-annotated genes in the peptide

dataset. Bar graphs were generated with Microsoft Excel and

labeled using Adobe Illustrator CS4.

Supporting Information

Figure S1 The GRIMM scenario of gene order transformation

between the An. gambiae 2R arm and the An. stephensi 2R arm.

Relative position and orientation of the conserved syntenic blocks

(CSBs) and markers physically mapped to polytene chromosomes

are indicated by colored blocks. Numbers over brackets indicate

inversion steps. The telomere ends are on the left.

Found at: doi:10.1371/journal.pone.0010592.s001 (8.33 MB TIF)

Figure S2 The GRIMM scenario of gene order transformation

between the An. gambiae 2L arm and the An. stephensi 3L arm.

Relative position and orientation of the CSBs and markers

physically mapped to polytene chromosomes are indicated by

colored blocks. Numbers over brackets indicate inversion steps.

The telomere ends are on the right.

Found at: doi:10.1371/journal.pone.0010592.s002 (10.24 MB

TIF)

Figure S3 The contrasting patterns of the X chromosome and

autosome evolution. The fastest evolution of the X chromosome

and parallelism between the extent of inversion polymorphism and

inversion fixation rates on the autosomes are shown. The number

of fixed inversions (Y axis) is calculated per 1 Mb from GRIMM

analysis (the blue bar). The number of all polymorphic inversions

in An. gambiae and An. funestus is combined and calculated per

3 Mb (the green bar).

Found at: doi:10.1371/journal.pone.0010592.s003 (4.03 MB TIF)

Figure S4 A model of interaction of the 2R and 3L arms with

the nuclear envelope. The higher coverage of MARs on 3L

generates multiple attachments of this arm to the nuclear

envelope. These attachments make more difficult rejoining

different breaks and forming inversions despite the abundance of

TEs and simple repeats on 3L. In contrast, the lower coverage of

MARs on 2R makes fewer nuclear envelope-chromosome contacts

and allows more interaction between loci.

Found at: doi:10.1371/journal.pone.0010592.s004 (4.36 MB TIF)

Table S1 Physically and in silico mapped DNA markers in the

An. gambiae, An. funestus, and An. stephensi genomes.

Found at: doi:10.1371/journal.pone.0010592.s005 (0.47 MB

DOC)

Table S2 Measures of uniformity of marker distribution for An.

gambiae, An. stephensi, and An. funestus.

Found at: doi:10.1371/journal.pone.0010592.s006 (0.06 MB

DOC)

Table S3 Inversion fixation rates between An. funestus and An.

gambaie calculated by GRIMM from the gene order.

Found at: doi:10.1371/journal.pone.0010592.s007 (0.05 MB

DOC)

Table S4 Posterior estimates for the mean length of each

conserved segment (L, Mb) for each of the chromosome arms and

the whole genome.

Found at: doi:10.1371/journal.pone.0010592.s008 (0.05 MB

DOC)

Table S5 Density and coverage of molecular elements in

chromosomal arms of An. gambiae.

Found at: doi:10.1371/journal.pone.0010592.s009 (0.08 MB

DOC)
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