A CASE STUDY OF A RETURN-TO-INDUSTRY PROGRAM, AN INSERVICE APPROACH FOR VOCATIONAL INSTRUCTORS AT A TWO-YEAR POSTSECONDARY INSTITUTION

by

Barbara Helen Kline

Dissertation submitted to the Graduate Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of DOCTOR OF EDUCATION in Vocational and Technical Education

APPROVED:

Barry L. Reese, Chairman

_____________________________ ______________________________
F. Marion Asche B. von Haller Gilmer

_____________________________ ______________________________
James L. Hoerner Sharan B. Merriam

May, 1981
Blacksburg, Virginia
DEDICATION

TO MY PARENTS

who instilled in me a love for learning
ACKNOWLEDGEMENTS

The writer wishes to express her sincere appreciation to the many people whose cooperation and assistance have made this study possible.

Deep appreciation is extended to the faculty and staff at Hagerstown Junior College for their support and endorsement of this study and to the businesses and industries in the Hagerstown area who so willingly gave of their time during the fieldwork phase of the study.

Special thanks is extended to the members of my research committee: Barry L. Reece, Chairman, F. Marion Asche, B. von Haller Gilmer, James L. Hoerner, and Sharan B. Merriam for their continuous guidance, support, and trust throughout my graduate program.

Appreciation is extended for his critique of the manuscript and for her invaluable help in securing documents through the Newman Library.

Thanks for the moral support and encouragement provided by the members of the Graduate Leadership Development Fellowship Program and especially to Director, for his patience, understanding and advice.
Finally, love, gratitude, and life-long friendship to my roommate, who has shared in all the trials and tribulations accompanying this timely treatise.
EXECUTIVE SUMMARY

This study was designed to examine the dynamics of a return-to-industry program, an inservice activity for vocational instructors at a two-year postsecondary institution. Specifically, the study documented the process of collaboration with business and industry and assessed the impact of the return-to-industry program on the vocational instructors and the participating businesses and industries.

A naturalistic inquiry paradigm using the case study approach was the research design used for this study. The data was in the form of field notes obtained during observation; semi-structured, open-ended interviews; and an examination of the institutional records and documents associated with the return-to-industry inservice program at Hagerstown Junior College (Hagerstown, Maryland).

Analysis of the data resulted in documentation of the process of collaboration with education, business, and industry. A description of the outcomes of the return-to-industry program for the vocational instructors and the participating businesses and industries was also provided. Additionally, the findings indicate that three elements—the persona of the vocational instructor, a known contact in the community, and an established reputation recognized by
the business/industry community—contribute to the promotion of the collaborative process.

It appears from this research that Hagerstown Junior College has a unique reputation within the surrounding community. Because of this reputation a halo-effect envelopes the college. The consequences of this phenomenon contribute significantly to business/industry acceptance of the return-to-industry program. While this is true for Hagerstown Junior College, it may not be true for all other community colleges.

The results of this study provide a process model for establishing a return-to-industry program for vocational instructors who wish to reinforce, update and expand their technical skills. In addition, the results demonstrate the benefits to be derived by business, industry, and education through collaboration.
TABLE OF CONTENTS

DEDICATION ... ii
ACKNOWLEDGEMENTS iii
EXECUTIVE SUMMARY v

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. THE PROBLEM</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Background of the Problem</td>
<td>1</td>
</tr>
<tr>
<td>Statement of the Problem</td>
<td>6</td>
</tr>
<tr>
<td>Importance of the Study</td>
<td>6</td>
</tr>
<tr>
<td>Delimitations of the Study</td>
<td>7</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>7</td>
</tr>
<tr>
<td>Summary</td>
<td>10</td>
</tr>
<tr>
<td>II. REVIEW OF RELATED LITERATURE</td>
<td>12</td>
</tr>
<tr>
<td>Introduction</td>
<td>12</td>
</tr>
<tr>
<td>The Community College Vocational Instructor</td>
<td>12</td>
</tr>
<tr>
<td>Purposes of Inservice Education</td>
<td>15</td>
</tr>
<tr>
<td>Current Inservice Education Practices</td>
<td>18</td>
</tr>
<tr>
<td>Issues Associated with Collaboration</td>
<td>19</td>
</tr>
<tr>
<td>Current Collaborative Practices</td>
<td>24</td>
</tr>
<tr>
<td>Summary</td>
<td>29</td>
</tr>
<tr>
<td>III. RESEARCH METHODOLOGY</td>
<td>31</td>
</tr>
<tr>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>Research Design</td>
<td>31</td>
</tr>
<tr>
<td>Site Selection Process</td>
<td>36</td>
</tr>
<tr>
<td>Preparation of the Investigator</td>
<td>37</td>
</tr>
<tr>
<td>Data Collection</td>
<td>38</td>
</tr>
<tr>
<td>Treatment of the Data</td>
<td>41</td>
</tr>
<tr>
<td>Summary</td>
<td>44</td>
</tr>
<tr>
<td>IV. ANALYSIS OF THE DATA</td>
<td>45</td>
</tr>
<tr>
<td>Introduction</td>
<td>45</td>
</tr>
<tr>
<td>Framework of the Return-to-Industry Program</td>
<td>46</td>
</tr>
<tr>
<td>Profile of the Participants</td>
<td>55</td>
</tr>
<tr>
<td>Awareness</td>
<td>59</td>
</tr>
<tr>
<td>Commitment</td>
<td>64</td>
</tr>
</tbody>
</table>

vii
Preparation ... 69
Participation .. 78
Impact ... 88
Summary ... 98

V. CONCLUSIONS, DISCUSSION, RECOMMENDATIONS 99

Introduction .. 99
Conclusions ... 99
Discussion .. 101
Recommendations .. 105

BIBLIOGRAPHY .. 109

Appendix .. page
A. PANEL OF JUDGES 116
B. PROGRAM REVIEW CRITERIA 118
C. LETTER OF INTENT TO COLLEGE 120
D. PROPOSAL FORMAT 122
E. NOTICE OF APPROVAL 124
F. ON-SITE EVALUATION REPORT 126
G. BUSINESS/INDUSTRY EVALUATION 129
H. INSTRUCTOR SUMMARY REPORT 132
VITA ... 135
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Background Characteristics of Educational Respondents</td>
<td>56</td>
</tr>
<tr>
<td>2. Background Characteristics of Business/Industry Respondents</td>
<td>58</td>
</tr>
<tr>
<td>Figure</td>
<td>page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>1. Collaborative Process of the Return-to-Industry Inservice Program</td>
<td>53</td>
</tr>
<tr>
<td>2. Impact of the Return-to-Industry Inservice Program</td>
<td>54</td>
</tr>
</tbody>
</table>
Chapter I
THE PROBLEM

Introduction
This chapter is concerned with the problem of the study. Specifically, the chapter will present the background of the problem, the statement of the problem, the importance of the study, delimitations of the study, and definition of terms used in the study.

Background of the Problem
Because of unprecedented growth in technology, changes in clientele served, educational settings and instructional methods, instructors will need continually to assess their approach to instruction and seek experiences designed to keep them personally and professionally competent (Amara, 1979; Packlam, 1977; Gaff, 1975; Hill, 1971). In light of these trends, many postsecondary institutions are offering programs that facilitate faculty development in instruction (Francis, 1975; Gaff, 1975).

Lippitt and Fox (1971) emphasize that instructors should have a voice in planning learning experiences. They suggest instructors should participate in identifying growth experiences which are most effective. It should be noted,
however, that there is no single practice that will aid all instructors in all areas in their quest for improvement and growth. Because changes will continue to occur in the educational system during the foreseeable future, provisions should be made for the professional enhancement of instructors that recognize the characteristics of flexibility in teaching style, capacity for self-renewal, and receptivity to change (Bush, 1971).

Vocational instructors in two-year postsecondary institutions are charged with the task of developing students to their fullest potential, as well as providing them with skills demanded by industry. Accompanying advances in technology is the continuing demand that vocational instructors provide their students with programs that are relevant to the world of work.

Schools that become isolated from the rest of the community become isolated from the knowledge of what it takes for youth to participate in those other institutions, from how employing establishments view the developed abilities provided by the schools, from the resources throughout a community for enriching and extending the educational process, and from the reserve of good will potentially existing for furthering educators' objectives . . . (Wirtz, 1977, p. 1).

Yet the rapidity of technological change makes it difficult for faculty to remain up to date and well informed about educational and occupational innovations (Amara, 1979; Facklam, 1977). Lack of time and money (Gaff, Festa, Gaff,
1978; O'Banion, 1973) are also the most frequently cited factors that prevent faculty from being current.

Although professional development includes a wide range of activities for improving the teaching/learning process, technical upgrading and/or renewal is but one facet of professional development available to the vocational instructor. Many efforts to revitalize and update vocational instructors are in existence and have been used for some time. Among these have been the use of advisory committees, the reading of technical journals, travel to conferences and workshops, staff retreats, the use of consultants, packaged programs, and visitations to industrial plants, businesses and health care facilities (Bishop, 1976; O'Banion, 1973; "Revitalization for Technical Educators," 1980). Although each of these possesses merit, few allow the vocational instructor to experience the live atmosphere in today's workplace.

One way to improve the quality of vocational education and maximize the vocational instructors' contributions is a collaborative interaction among business, industry, labor, and education (Dieffenderfer, Kopp, Cap, 1977). Since the inception of the Smith-Hughes Act in 1917, attention has been given to increasing interaction among business, industry, labor, and education for professional development. For
example, the Education Professions Development Act as described under the Vocational Education Amendments of 1976, Subpart 3, Section 135, authorized federal support for a variety of professional development projects that encourage collaboration with business, industry, and labor. The exchange of vocational education instructors with skilled technicians and/or supervisors in industry is supported. The legislation also advocates preservice and inservice training programs and short-term institutes designed to improve instruction and enrich the qualifications of vocational education instructional personnel. The implication is that collaboration among business, industry, labor, and education is vital for improving the technical expertise and instructional effectiveness of vocational instructors.

Collaboration between two-year postsecondary vocational instructors and business, industry, and labor assumes many forms. Most frequently business and technical professional associations sponsor courses, workshops and training sessions (Storm, 1976). However, as previously stated, few of these allow the vocational instructor to experience the live atmosphere of today's work place. One way of increasing the interaction and at the same time upgrading the technical expertise of vocational instructors is a return-to-industry program. "The concept of placing faculty in the business or
industrial setting to validate theory, study current practice, or apply problem solving techniques demonstrates potential for staff development" (Parsons, 1979a, p. 3). Benefits that may accrue to the vocational instructor from this collaborative interchange could include improvement in both classroom teaching and curriculum design. Knowledge of the current trends and practices could also enhance the vocational instructor's credibility with students as well as with members of the business, industry, and labor community (Dieffenderfer, Kopp, Cap, 1977).

Most research in the area of inservice education for postsecondary vocational instructors has been limited to surveys which seek to determine needs and preferred practices (Bloom, 1973; Eichorn, 1977; Jenkins, 1978; Kolendrianos, 1977; Kruk, 1974; Visger, 1977). Absent from this research are findings to indicate the processes of collaboration, the impact on the instructor following a return-to-industry program, and some indication as to why or how programs succeed or fail. Accordingly, there exists a need to study and document the dynamics of vocational education inservice programs, specifically a return-to-industry program.
Statement of the Problem

The purpose of this research study was to examine a return-to-industry program, an inservice activity for vocational instructors, at a two-year postsecondary institution. Specifically, the study (a) examined the process of collaboration with business, industry, and labor and (b) assessed the impact of the return-to-industry program on the vocational instructors and the participating businesses and industries.

Importance of the Study

Vocational instructors in two-year postsecondary institutions need to be updated and revitalized in the technological advances of their occupational specialty. Professional development through various forms of inservice activities have been used for some time, but most of these do not allow the vocational instructor to experience the live atmosphere of today's work place. As a means of experiencing change and innovation, collaboration with business, industry, and labor appears to be an important component for upgrading the vocational instructor and the quality of instruction. Although research regarding this type of inservice education is limited, it appears that placing vocational education instructional personnel in a business or industrial setting
provides one way of improving communication, upgrading technical skills, and contributing to improved instruction.

It is anticipated that this study will provide a holistic portrayal of a return-to-industry program which may assist two-year postsecondary administrators and program sponsors in their programmatic decision making. Additionally, it will contribute to the body of knowledge on in-service education for postsecondary vocational instructors.

Delimitations of the Study

The study contained the following delimitations:

1. The return-to-industry program examined has been operational for at least two years.

2. The vocational education personnel interviewed came from a comprehensive vocational education program rather than a specific service area.

Definition of Terms

Auditing - a procedure whereby the categories established from the data are shared with another judge to determine if they are reasonable and contextually appropriate (Guba, 1980).
Case Study - the study of a bounded system (the case) which features descriptions that are complex, holistic and involving a myriad of interrelated variables; data that are likely to be gathered at least partly by personalistic observation; and a writing style that is similar to a narrative (Stake, 1978).

Collaboration - a voluntary association which may include government agencies, citizens, school organizations, professional organizations and colleges or universities who work together in a joint venture to achieve some separately held and commonly held goals or objectives; it involves sharing of planning, decision-making, and human and material resources in the venture; each organization maintains its own organizational independence and identity throughout (Drummond, 1976).

Constant Comparative Analysis - a strategy whereby an analysis is made comparing the data and the categories for the purpose of verifying the accuracy of the categories and the placement of data in the categories (Glaser & Strauss, 1967).

Faculty/Professional/Staff Development - enhancing the talents, expanding the interests, improving the competence and otherwise facilitating the professional and personal growth of faculty members particularly in their roles as instructors (Gaff, 1975, p. 14).
Inservice Education - efforts to promote by appropriate means the professional growth and development of teachers while on the job; includes planned and organized efforts to improve knowledge, skill and attitudes of instructional staff members to make them more effective on the job (Dictionary of Education, 1973, p. 446).

Maximum Variation Sampling - a strategy in which the researcher attempts to increase the diversity or variation in the sample to enhance confidence in those patterns that emerge as common among programs/individuals, while at the same time being able to describe some of the variation that has emerged to make programs/individuals unique as they adapt to different settings (Patton, 1980).

Naturalistic Inquiry - an inductive approach which attempts to present "slice-of-life" episodes documented through natural language; there is minimal investigator manipulation of the study setting and no prior determination of the outcomes (Guba, 1978; Wolf & Tymitz, 1976-77).

Purposeful Sampling - a strategy used when the researcher wants to learn something, or understand something about certain select sites/individuals, and does not need to generalize the findings to an entire population (Spirer, 1980).
Return-to-Industry Program - an inservice program which places a faculty member in a business or industrial setting for an extended period of time for the purpose of technical updating.

Theoretical Sampling - data collection . . . whereby the analyst jointly collects, codes, and analyzes his data and decides what data to collect next and where to find them . . . as it emerges (Glaser & Strauss, 1967, p. 45).

Triangulation - the process of checking data against other sources so that the researcher can guard against the accusation that a study's findings lack credibility due to the use of a single method, a single data source, or a single investigator's bias (Patton, 1980).

Summary

Rapidly changing technology has increased the need for vocational education instructors to revitalize their technical knowledge in order to be current in the classroom. Few of the present methods of inservice education permit the instructor to experience the live atmosphere of today's workplace.

Research in inservice education seems to suggest that collaboration with business, industry, and labor is important for improving the technical expertise and instructional
effectiveness of vocational instructors. There is, however, no clear evidence to indicate the impact on the instructor of this type of inservice activity (return-to-industry program). Therefore, this study will examine a return-to-industry program, an inservice activity for vocational instructors, at a two-year postsecondary institution. Specifically, the study will examine the process of collaboration with business, industry, and labor and assess the impact of the return-to-industry program on the vocational instructor.

This chapter has reviewed the nature of the problem and the intentions of the study. Included are the following components: (a) introduction; (b) background of the problem; (c) statement of the problem; (d) importance of the study; (e) delimitations of the study; and (f) definition of terms.
Chapter II
REVIEW OF RELATED LITERATURE

Introduction
The review of literature documents research and developmental activities related to the community college vocational instructor, purposes of inservice education, current inservice education practices for vocational instructors, issues associated with collaboration, and current collaboration practices with business, industry, and labor.

The Community College Vocational Instructor
The demand for qualified vocational instructors increased during the sixties and early seventies. This increase resulted from the development of many new community colleges, expanded vocational program offerings, and an increase in the number of high school graduates attending community colleges. Due to the wide array of vocational course offerings, there was a change in emphasis. Thornton (1972) states that the emphasis changed from craftsmanship to technology and from "instruction in tools and artisanship to instruction in instruments and techniques" (p. 132).

This expansion of vocational course offerings in the community college resulted in a cadre of instructors who
were not well prepared to teach at the level of competence required. Gorman and Hamilton (1975, p. 21) divided these instructors into the following four groups:

1. new vocational instructors from industry who are occupationally qualified, but limited in professional preparation;

2. new instructors completing a teacher education program;

3. experienced vocational instructors with identifiable professional development needs; and

4. postsecondary vocational and technical instructors who are technically competent, but hold minimal certification.

Justice (1976) found that the average community college instructor will teach for twenty-five years or more. These are years in which an instructor can become out of touch in his or her occupational specialty, or years in which to strive to stay abreast of the advances in the technical field.

Evans (1971) provides a clear description of what often happens in practice with community college vocational instructors. Some are allowed to teach for twenty years or
more with no teacher preparation, while others get a minimum of training when starting out, and then teach for twenty years or more without updating. This is significant when one considers the unprecedented growth in technology, the changes in clientele served, the educational settings, and instructional methods. Blake (1972) adds another dimension to this problem. When the community college is attempting to respond to the ever-changing needs of society, its "staff must be continually retrained and upgraded" (p. 12). The unprecedented growth in technology that is occurring allows the world to pass the vocational instructor by in two to three years if he does not participate in meaningful inservice activities (Justice, 1976).

With the mounting pressure to stay up to date in one's field, the instructor wants to participate in the plans for his self improvement. When this is not possible, many leave the field of education (Smith, 1969). Reinmuth (1974) found that when instructors are allowed to participate in a study of their needs, areas in which they are deficient can be identified with greater accuracy.

Taylor (1975) found that there was a significant difference in the type of experience needed in professional development from one occupational area to another. In the field of electronic data processing, for example, hardware
and software are changing rapidly requiring more frequent updating.

Purposes of Inservice Education

Within the literature numerous terms are used to describe professional development and inservice education. To aid the reader, the term inservice education is used predominantly. For the purpose of this study, inservice education is defined as "any professional development activity that a teacher undertakes singly or with other teachers after receiving his or her initial teaching certificate and after beginning professional practice" (Edelfelt & Johnson, 1975, p. 5).

Inservice education programs are diverse in format and embrace an assortment of purposes. An analysis of inservice education practices reveals that they are grounded in some fundamental concepts with regard to schooling, learning, teaching, and human motivations and relationships (Edelfelt & Lawrence, 1975). Inservice education is usually required of teachers; the content is prescribed by a higher authority; and course credits are mandated from above (Edelfelt & Lawrence, 1975). Although the motives of those who plan inservice education are well intended, the programs are often ineffective. They lack systematic methodology and
have been managed with astonishing clumsiness (Rubin, 1971). Inservice education is seldom based on teacher needs and is frequently conducted in a way that negates the principles of good teaching and learning (Bishop, 1976; Edelfelt & Lawrence, 1975). A substantial amount of the potential for inservice education is destroyed because it is conducted for administrative purposes, with the results being used to rate teachers for promotion and tenure (Bush, 1971).

In a statewide survey of Florida community college instructors, Shafer (1970) found that the primary goal of inservice education was to improve the quality of the instructional program. Activities which were designed to enhance the instructor's subject matter competence as well as experiences in working with the special instructional programs of the community college student were cited as a means to achieving this goal. Gaff (1975) supports this finding and extends the idea by identifying three different, but related, approaches for reaching this primary goal. He defines these as follows: (p. 9)

1. faculty development--faculty members acquire knowledge, skills, and techniques related to teaching and learning;
2. instructional development--faculty attempt to improve student learning by preparing learning materials, redesigning courses and making instruction systematic; and

3. organizational development--faculty create an effective environment for teaching and learning; improve interpersonal relationships, enhance team functioning and create policies that support effective teaching and learning.

Russel (1975) states that the purposes of inservice programs are to foster professional development of instructors, aid in identifying and solving problems and needs of instructors, disseminate pertinent information, and communicate administrative policies and procedures. Kolendrianos (1977) found that despite the fact that methods, motivations, and the roles of people involved in inservice education have changed considerably since the early days of public education, the basic purpose of inservice education remains the same--to provide a continuing growth opportunity for all professional personnel.
Current Inservice Education Practices

Attempts are now underway to improve inservice education, but progress is slow largely because most educational systems give inservice programs a low priority (Justice, 1976; O’Banion, 1972). One of the most common inservice programs—college and university courses—appears to have limited value for community college faculty (Martorana, 1975). Vocational instructors frequently take these courses to meet inservice requirements, but enrollment seldom results in direct improvement of services to the students. This kind of inservice education appears to be more like career development, as the activities are usually taken to gain a degree or salary increment (Mesa, 1976).

Current inservice practices vary from one college to another, but the common activities are found to be university courses, workshops, orientation, summer employment, participation in professional meetings, writing, assisting the administration with various activities, and public service activities (Gaff, 1975; Gaff, Festa, Gaff, 1978; Kolendrianos, 1977; O’Banion, 1973). Few of these relate to the specific needs of the vocational instructor but may give credit for the next salary increment.
Issues Associated with Collaboration

Technical updating is a recurring need for vocational instructors and the development of collaboration with business and industry is one effective way to meet this need. Inservice education of vocational instructors will be successful only to the extent of a "total partnership with the community at large" (Barlow, 1974, p. 32).

Efforts to bring business, industry, labor, and education together for the purpose of technical updating has been encouraged in recent years (Dieffenderfer, Kopp, Cap, 1977). The Education Professions Development Act described under the Vocational Education Amendments of 1976, Subpart 3, Section 135, authorized federal support for a variety of professional development projects that encourage collaboration between business, industry, and labor as a means of improving instruction and upgrading the technical expertise of vocational instructors.

Collaboration, however, has not developed easily for many reasons. McKnight indicates that despite the proposed value, "educators assume business people are too busy. Business people assume educators will think they just want to meddle, if they step forward without invitation" (1978, p. 38). Connors (1972a), past president of the American Society for Training and Development, stressed that neither
side seems to have found a way to break the communication barriers which prevent effective mutual assistance. Burt and Lessinger (1970) identified several problems which impede the process of collaboration at the secondary level.

School administrators are:

1. confused as to what they want from industry;

2. lacking in knowledge of how to approach industry or how industry is organized;

3. suspicious of the motivations of industry in working with schools;

4. fearful that industry groups will become special interest pressure groups;

5. unwilling to provide staff to work with industry in developing cooperative relationships; and

6. overemphasizing advisory committees as the sole technique for achieving industry-education cooperation.

Business, industry, and labor are:

1. confused concerning the mission of public education, school organization and how to work effectively with school personnel;
21

2. unwilling to make long-range commitments to volunteer services to schools;

3. lacking in organization, assignment of staff and budgeted funds to channel and implement effectively the desire to be involved in work with schools;

4. disillusioned when school officials take a cautious approach to industry initiated cooperative programs; and

5. lacking in guidance from federal, state and local officials for realistic guidelines and adequate staff to enlist and encourage industry participation in school matters.

Although these problems occurred at the secondary level, they nonetheless can occur at the postsecondary level. Dieffenderfer, Kopp, Cap (1977) identified additional constraints on collaboration which were common at the postsecondary level; these are:

1. the lack of administrative incentives for faculty participation;
2. the difficulty in obtaining administrative permission for faculty involvement;

3. the lack of administrative interest and support;

4. the difficulty in obtaining released time for faculty to work in industry;

5. the reluctance on the part of industry to cooperate when the economy is down;

6. university policies regarding faculty work load that do not provide work load credit for this kind of activity;

7. some educators' fear of involvement with industry;

8. the difficulty in changing certain faculty members' attitudes to recognize the talent and benefits found through collaboration with industrial leaders;

9. the belief of some administrators and educators that unions are hurdles and provide little worthwhile assistance; and

10. the lack of funds that prevents closer cooperation and sufficient time to make contracts and maintain working relationships.
Although the merits of collaboration seem apparent, authorities in the field recognize that achieving it may be difficult.

[Collaboration], although universally applauded in the abstract, has seen little practical application, probably because it requires much from both individuals and institutions. The variables in institutional and individual relationships are so numerous that collaboration may appear to be a near impossible task. Yet, in spite of the seeming barriers to achieving real collaboration, the times call for it (Gleazer, 1977, p. 1).

Despite the difficulty of developing collaboration, there continues to be support for this approach to inservice education. Connors (1972b, p. 231) states some basic reasons why business and industry should be interested in the creation of a strong partnership with vocational education in the area of inservice education:

1. industry utilizes the products of the vocational education system; quality of instruction is therefore of concern to them;

2. industrialists and their employees have sons and daughters enrolled in vocational programs; hence they have a personal concern for the overall quality of the teaching staff; and

3. business and industry in today's world can seldom afford to assume a head-in-the-sand role on any issue relating to the common good.
Burt and Lessinger (1970, p. 3) felt "the most important and pervasive single reason for industry volunteer involvement in public education is industry's concern for an assured continuing supply of well-educated and properly trained manpower." Collaboration provides an opportunity for the vocational instructor to identify skills that are lacking, that require upgrading, or need to be revitalized (Visger, 1977).

Current Collaborative Practices

The scope of collaborative efforts is broad and can be identified through courses offered by universities, workshops sponsored by professional associations, State Department supported activities; and industry operated programs (Storm, 1976; Warmbrod, Persovich, L'Angelle, 1981).

One approach to technical upgrading for the two-year postsecondary vocational instructor is a return-to-industry inservice program. In this approach, vocational instructors are employed in industry for an extended period of time. This is a way to improve inservice education with a resulting improvement in instruction. "Return-to-industry will provide the opportunity for the occupational faculty of the college to reinforce, update, or expand the skills and knowledge required to keep current with changing technology within their professions" (Project Application cited in Par-
sons, 1979b, p. 3). It appears that industry provides an environment for the vocational instructor that cannot be duplicated in the laboratory or the classroom.

Hagerstown Junior College and Spartanburg Technical College instituted return-to-industry programs in 1978. Vocational-technical instructors were placed in a business or industrial setting related to their occupational specialty for a period of two to fifteen weeks. The instructors gained hands-on practical knowledge as the sights and sounds of new trends in technology were directly experienced (Parsons, 1979a; "Revitalization for Technical Educators," 1980).

Another approach to inservice education has been the personnel exchange program whereby vocational instructors and business or industrial representatives exchange positions for a stated period of time. The Texas Education Agency proposed an exchange program in 1975. Through the efforts of the Advisory Council for Industry-Business and Education Personnel Exchange, there were 225 participants at over 100 sites across the state. The training period ranged from two weeks to three months. The representatives from business, industry, and labor were selected on the basis of their involvement in employee training, staff development or other kinds of instructional programs. The vocational
instructors were chosen from among applicants who had five or more years of continuous teaching experience in their occupational specialty, ability to acquire knowledge from business, industry, or labor, and the ability to transfer that knowledge to the classroom (Goad, 1975). Central Missouri State University implemented an exchange program for distributive education and trade and industrial instructors. The purpose of this project was to improve articulation and working relationships between school and the world of work. The participants worked together for six days. The first day was an orientation to the program and a planning session. Two days were spent at a business/industry site so the vocational instructors could observe current occupational practices. Two days were then spent at the instructor's school so that industry representatives could observe vocational programs and serve as resource persons. The final day was used to evaluate the program (Kopp, Cap., 1977). A staff/industry exchange program has been conducted in Kentucky by the Bureau of Vocational Education. This program provides short-term, up-to-date work experiences for vocational instructors and administrators and allows business and industrial leaders to observe the educational process and to learn about vocational curricula and instructional procedures (Thomas & White, 1976).
Internships and externships sponsored by universities in conjunction with business, industry, labor and other agencies represent another approach in the professional development of vocational instructors (Bridge, 1980; Visger, 1977). Adams (1976) noted that the utilization of the internship concept looks promising and is being promoted at institutions of higher learning. Kodak Industries, in cooperation with Rochester Institute of Technology, employed university professors for a six-week period. They were given assignments typical of those that technical and scientific graduates would receive. The professors' goals were to get outside the "ivory tower" and get firsthand experience of what industry expects and to bring that experience and the atmosphere back to the classroom ("Four College Professors Spend a Work-Study Vacation at Kodak," 1974). In Oak Ridge, Tennessee, a training and technology project was begun in 1966 as an experimental effort. The purpose was to combine the technological facilities and knowledge of industry with educational institutions to develop industrial manpower and vocational instructors with expertise (Cook, 1975).

The Georgia State Department of Education in cooperation with the University of Georgia provides an opportunity for all vocational instructors to upgrade their occupational
knowledges and skills. Vocational instructors are placed in formal training sessions and structured work experiences in business, industry, agriculture, and other selected areas (Storm, 1976). New River Community College, Dublin, Virginia, sponsors a summer internship program in cooperation with local industries. Vocational instructors are released from teaching assignments to be employed in their specific occupational specialty as working consultants and summer replacements (Barnes, 1980). State Departments, universities and other sponsors in Colorado, Connecticut, Florida, Illinois, Tennessee, Virginia and Washington have similar programs in cooperation with business, industry, and labor (Eckman Center, 1974; Storm, 1976; Warmbrop, 1978; Warmbrop, Persavich, L'Angelle, 1981).

Business, industry, labor, and other organizations are engaged in providing workshops, institutes, and short-term programs to support upgrading of vocational instructors. The National Printing Equipment Association and the Graphic Arts Technical Foundation conduct two-week instructor institutes for full-time instructors. The programs cover a wide range of topics relating to graphic communications technology (Storm, 1976). General Motors, American Motors, Chrysler Corporation, and Volkswagen of America offer five-day to three-week workshops on new product and service technology for automotive instructors (Storm, 1976).
Another avenue that appears to have gained support from both industry and education is industry-education councils. These organizations bring together local education, labor, business, and industry representatives. Lee (1980) states that the councils serve as an umbrella for coordinating industry-education cooperation. Technical updating for instructors, combating high youth unemployment, and career awareness are only a few of the activities of this group.

Summary

As the demand for qualified community college vocational instructors increases and the pressure to stay up to date mounts, inservice education activities designed to update the technical expertise of the vocational instructor emerge. The development of collaboration with business, industry, and labor has been suggested as one way to update technical knowledge and at the same time provide an opportunity for continued professional growth. While the merits of this approach seem apparent, authorities contend that achieving collaboration may be difficult. Despite this fact, support continues for this approach to inservice education.

Although the scope of collaborative efforts for faculty renewal is broad, this study will examine one approach (a
return-to-industry program) to technical upgrading for the two-year postsecondary vocational instructor. In this approach vocational instructors are employed in industry for an extended period of time for the purpose of updating, expanding skills and reinforcing knowledge required to keep current. It appears from the literature review that industry provides an environment for the vocational instructor which cannot be duplicated in the classroom or laboratory.

This chapter has documented the research and developmental activities related to (a) the community college vocational instructor; (b) purposes of inservice education; (c) current inservice education practices for vocational instructors; (d) issues associated with collaboration; and (e) current collaboration practices with business, industry, and labor.
Chapter III
RESEARCH METHODOLOGY

Introduction

The purpose of this research was to examine a return-to-industry program, an inservice activity for vocational instructors, at a two-year postsecondary institution. Specifically, the study examined the process of collaboration with business and industry and assessed the impact of the return-to-industry program on the vocational instructor and the participating businesses and industries. This chapter describes the research design, site selection process, preparation of the investigator, data collection methods, and treatment of the data.

Research Design

A naturalistic inquiry paradigm using a case study approach was selected for this study. Naturalistic inquiry is an alternative to the conventional methods of investigation. It has been defined by Wolf and Tymitz (1976-77) as a method of inquiry aimed at understanding actualities, social realities, and human perceptions that exist untainted by the obtrusiveness of formal measurement or preconceived questions. It is a process geared to the uncovering of many idiosyncratic but nonetheless important stories told by real people, about real events, in real and natural ways. The more general the provoca-
tion, the more these stories will reflect what respondents view as the salient issues, the meaningful evidence, and the appropriate inferences. . . . Naturalistic inquiry attempts to present "slice of life" episodes documented through natural language and representing as closely as possible how people feel, what they know, how they know it, and what their concerns, beliefs, perceptions, and understandings are.

Willems and Raush attempt to provide a systematic definition by suggesting that naturalistic inquiry is "the investigation of phenomena within and in relation to their naturally occurring contexts" (1969, p. 3). Guba (cited in Patton, 1980, p. 42) defines naturalistic inquiry as a "discovery oriented" approach which minimizes investigator manipulation of the study setting and places no prior constraint on what the outcomes of the research will be.

This type of inquiry begins inductively; the researcher is open to whatever emerges from the data. As patterns are revealed by the various data sources, the researcher focuses on verifying what has emerged and the process becomes more deductive. As new inputs emerge the researcher may return to the discovery phase followed by the verification phase. Guba (1978) describes this evolving movement from discovery to verification as a wave on which the researcher attempts to understand the real world.

Reinharz, in discussing various ways of seeking reality using naturalistic or qualitative methods, defines the case
study as one approach. "The case study approach is based on intensive examination of individuals by interviews and other means to produce an analysis profound enough to permit generalization" (1979, p. 5).

The case study approach was selected for this study because of its usefulness in identifying and describing the various patterns that emerged with regard to the collaboration of vocational instructors with business, industry, and labor. This method was chosen because a broad range of behaviors and events associated with a given situation can be documented, analyzed and categorized by the researcher. This design has been described as illuminative evaluation in that its primary concern is with description and interpretation rather than measurement and prediction (Parlett & Hamilton, 1977). It focuses on gathering information rather than decision making. The principal objective is to look at a particular setting holistically to provide a total picture from beginning to end. This method is particularly useful in eliciting the personal views of individuals relative to attitudes, motives, meanings, and emotions because it is the respondents who are in the best position to explain their perceptions of a given event.

This is an adaptable research strategy for the problem under examination. The researcher focuses on the reality of
the setting being studied. Parlett and Hamilton (1977) note that the task of the researcher in focusing on the setting is "to unravel it; isolate its significant features; delineate cycles of cause and effect; and comprehend relationships between beliefs and practices and between organizational patterns and the responses of individuals" (p. 14). The strategy can be summarized in the following stages:

(Parlett & Hamilton, 1977)

1. Stage one is exploratory in nature with the researcher seeking to understand the setting. The researcher begins this process by becoming immersed in the examination through observation, interviews, and document analysis during an extended time at the site. While maintaining an open mind, the researcher tries to familiarize himself with the setting as impressions emerge.

2. In stage two the examination is more focused. The researcher moves to the verification mode by checking the respondents' input to establish corroboration. Significant features, patterns, or recurring regularities of the setting under examination emerge and form the basis for initial categories. Communication with respondents is more
logically consistent; inquiry is more directed, systematic, and selective.

3. In the third stage the researcher seeks general principles underlying organization of the program and patterns of cause and effect derived from responses of the individuals. Again, the researcher seeks recurring regularities from the various sources of data as the foci of the study. He confirms or further clarifies these regularities or patterns by continuously cross-checking and monitoring the data through the respondents.

The three stages of the examination are not mutually exclusive. "The transition from stage to stage, as the [examination] unfolds, occurs as problem areas become progressively clarified and defined" (Parlett & Hamilton, 1977, p. 15). Because of the uniqueness of a strategy that requires no prior manipulation or intervention by the researcher, the course of the inquiry cannot be determined in advance. From the enlarged data base that begins in the first stage, the researcher is able through the various stages to reduce systematically the extent of the inquiry so as to concentrate on the recurring issues that arise.
Site Selection Process

The number of two-year postsecondary institutions with return-to-industry programs is limited. Because of this limitation, Patton (1980) advocates the use of purposeful selection when the researcher seeks to learn and understand something about certain select cases. It is a technique used when a tradeoff is necessitated between a desire for indepth, detailed information about cases and a desire to generalize about a program. Patton also recommends using a maximum variation sampling strategy which requires knowledge of variations within a site. The purpose of the strategy is to strive for the greatest variety of respondents obtainable in order to document common patterns that emerge.

The National Center for Research in Vocational Education identified from a nationwide survey (Warmbrod, 1980) seven exemplary programs that had collaboration with business, industry or labor through return-to-industry programs. Documents and other information to determine the scope of the seven programs were obtained. Two were identified that met the criteria of having a comprehensive vocational education curriculum with a return-to-industry inservice program that has been in operation for at least two years.

Based on the program documents and other information about its return-to-industry program, Hagerstown Junior Col-
lege (Hagerstown, Maryland) was selected for this study. Permission to conduct the research study was requested from the President and Dean of Instructional Affairs at the school.

Patton (1980) notes that the use of a single program requires that individuals selected for study have different experiences making it possible to describe more accurately the variation in the program and to understand the variation in individual experiences. It was for this reason that a comprehensive vocational education program was identified for this study. The Hagerstown site was selected because it appeared to have maximum variation and allowed the researcher to study individuals from several vocational areas.

Preparation of the Investigator

Rist (1973) indicates the accuracy of the investigator's data is often challenged due to the lack of data collection skills, the presence of preconceived ideas and the use of selective perception in observation. These deficiencies can distort descriptions, findings and interpretations. For these reasons the investigator was trained in data collection skills.
Practice interviews were conducted with individuals who had been involved in a return-to-industry program similar to the one being examined in this study. A video-tape was made so that the investigator and her advisor could make a critique of the effectiveness of her interviewing skills.

Practice observations were conducted and notes were corroborated by the investigator, her advisor and a research associate. In addition, the investigator discussed data collection skills with research experts in order to provide assurance to her doctoral committee of her preparation to conduct the study.

Data Collection

Fieldwork is the term used to indicate that the researcher is on the site where the program is occurring using a variety of methods to gather information. In this study, the researcher, a nonparticipant observer, collected the data using observation; semi-structured, open-ended interviews; and an examination of the institutional records and documents. Use of this combination of sources contributed to the credibility of the findings.

Observational data are used to describe settings that were observed, activities that occurred, people who participated, and the meaning of the setting and activities to
those people who participated. Observations can be used as a check on information that is revealed during interviews (Patton, 1980).

Those interviewed included the following key personnel: President of the institution, Dean of Instructional Affairs, Department Chairpersons, career program instructors who completed a return-to-industry program, career program instructors who are eligible but have not completed a return-to-industry program, and business and industry representatives. Semi-structured, open-ended interviews were used in the collection of data for this study because they permitted the researcher to pursue inquiry which was suggested during the course of the interview. Kerlinger strongly supports the interview as an effective means of collecting information: "The personal interview far overshadows the other [methods] as perhaps the most powerful and useful tool of social scientific research" (1973, p. 412). An additional reason for the use of the semi-structured, open-ended interview is that it allowed the researcher to select and expand the interview population as necessary.

Initial interview questions were derived from literature on inservice education of vocational education instructors. As the data were gathered these questions were refined by the patterns that emerged during the course of
the interview. Each interview was taped using an audio-cassette tape recorder. This provided a precise record of responses to questions, comments, and reactions while permitting the researcher to direct her attention to the conversation and other non-verbal cues of the respondent. Interviews allowed the researcher to examine the perceptions of respondents who had been observed.

Printed documents describing program policy and procedures, contracts and agreements, formative and summative evaluations, correspondence and other pertinent records were examined. Program documents and records were used as a basic source of information about program activities and were also stimuli for generating questions for interviews. Document analysis provides an opportunity for a behind-the-scenes look at the program which may not be directly observable (Patton, 1980).

Multiple sources of information and multiple resources were sought because no single source is sufficient to provide a holistic view. According to Patton, "by using a variety of sources and resources, the evaluator-observer can build on the strengths of each type of data collection while minimizing the weaknesses of any single approach" (1980, p. 158). Using the data collected from observation, interviews, and a review of institutional records and documents,
the researcher assembled a profile or record of the case under examination.

Treatment of the Data

In using qualitative or naturalistic inquiry, the researcher's principal objective is to describe in detail what was observed in the field. The use of a theoretical sampling technique was applied during the data collection process to enable the researcher to present a detailed, holistic analysis. Theoretical sampling, according to Glaser and Strauss, is a "process of data collection . . . whereby the analyst jointly collects, codes and analyzes his data" (1967, p. 45). It should be noted that the significance of this technique is the underlying reason for not predetermining the course of the inquiry.

The researcher began the examination with interviews of key personnel (career program instructors who had completed a return-to-industry program), observations of an activity (staff development meeting), and a review of program documents (contracts, procedures, correspondence, and proposals). An analysis of these initial data resulted in tentative categories. The categories were determined by looking for regularities such as commonalities and differences that seemed important in understanding the situation (Darkenwald,
1980; Guba, 1980). At times a salient note was coded under two categories which seemed appropriate. The categories were built upon consistently with each succeeding interview, observation, and/or document review. The patterns, themes, and categories emerged out of the data rather than being imposed on the data prior to data collection and analysis. In analyzing qualitative data, the steps and procedures are not mechanical and rigid; for the most part the process is "arty and intuitive" (Guba, 1980).

Categories can be judged by two criteria according to Guba (1978): "internal homogeneity"—how the data fit together in a meaningful way, and "external heterogeneity"—how distinct the differences appear. The researcher continually made an analysis between the data and the categories to verify the accuracy of the categories and the placement of data in the categories. Glaser and Strauss (1967) refer to this strategy as constant comparative analysis.

Criteria for establishing the completeness of a set of categories were determined by the processes of triangulation and auditing. Triangulation is a process of confirming or further clarifying issues related to the study by continuous cross-checking and monitoring the data through the respondents. Auditing (Guba, 1980) is a procedure whereby the
categories established from the data are shared with another judge to determine if they are reasonable and contextually appropriate. Guba (1980) and Patton (1980) suggest the use of triangulation and auditing as safeguards to increase the credibility of the findings. The categories in this study were audited by two judges who attested to their reasonableness. Three additional judges audited the data and confirmed that the data were contextually appropriate to the categories. Appendix A lists the panel of judges.

Darkenwald (1980) recommends that at various points in the collection process it may be helpful to take time to reflect and summarize the main elements of the analysis and to determine which steps to take next.

As the data were compared and contrasted, themes emerged under which categories could be organized. Each theme was continually added to and analyzed to establish convergence of the data. Extracted from the data were five major themes which reflected the focus of the research.

A duplicate set of the coded notes was made. The multiple sources of data were assigned letters. The duplicate notes were cut and pasted according to the category codes and assigned letters. A note pasted on a card under one category was recorded under a second category in several instances. For example, Respondent H reported that he
"acted as an ear for the staff." This was recorded under the category "link between manager and employees." It was also recorded under "role of instructor." This cross-referencing generated thoughts about the integration of the categories. As relationships were formed, some categories were collapsed and others eliminated.

Categories were continually reviewed and refined throughout analysis of the data and writing of the findings. Actual incidents and quotes from respondents are used for illustrative purposes.

Summary

This chapter has presented the research procedures and methods that were used in this study. Included are the following components: (a) the research design; (b) the site selection process; (c) preparation of the investigator; (d) procedures for data collection; and (e) procedures for treatment of the data in constructing and writing the case study.
Chapter IV
ANALYSIS OF THE DATA

Introduction

In this study an examination of a return-to-industry program, an inservice activity for vocational instructors at a two-year postsecondary institution, was conducted using naturalistic inquiry. Specifically, the study (a) examined the process of collaboration with business and industry, and (b) assessed the impact on the vocational instructors and the participating businesses and industries. It should be noted that labor organizations were not represented in this study. Instructors who sought return-to-industry experiences were generally placed in businesses or industries which were non-union organizations. In a few cases, instructors were placed in unionized organizations, but there was limited contact with union work.

This chapter presents the findings from an inductive comparative analysis of the data. First, a narrative framework of the return-to-industry program is presented. This is followed by a profile of the participants. Finally, a portrayal of the process of collaboration and a description of the impact of the return-to-industry program is provided through the themes of awareness, commitment, preparation, participation, and impact.
Framework of the Return-to-Industry Program

Hagerstown, the county seat of Washington county, one of the nation's thirteen Appalachian regions, is strategically located between interstates 81 and 70 in the Cumberland Valley of western Maryland. With a population of 37,000 in the city and 108,000 in the county, the area has a total labor force of 55,000.

Manufacturing and agriculture are the chief industries of the city and its environs. Industry is widely diversified and includes among its approximately 100 manufacturers an aircraft plant and the world's largest pipe-organ company, as well as the largest plants engaged in blast-cleaning, dust collecting equipment, and refrigerator doors. Other manufacturing plants include a cement mill, five furniture factories, silk mills, knitting mills, shoe factories, electronic equipment, trucks, toy manufacturers, a fertilizer manufacturing plant, four clothing manufacturers, tanneries, flour mills, publication houses, and a plastic pipe manufacturer. In addition, there are 900 farms with 151,281 acres of land.

With regard to the educational system, the community supports 46 public schools, 2 special-education centers and 11 private schools enrolling 21,000 students.
Hagerstown Junior College, (HJC) Maryland's oldest public two-year community college, is a major educational, cultural, and recreational resource for the entire community. The college is situated on a 187 acre site southeast of the city of Hagerstown, Maryland. The college enrolls 875 full-time students and 1,222 part-time students. The staff consists of 58 full-time instructors and 81 part-time instructors.

For more than thirty years the college has responded to the ever-changing needs of society by providing a wide variety of courses and programs designed to assist students in meeting their educational objectives. Among the programs of study available are:

1. a transfer program which is designed to meet the basic requirements of the first two years of a senior college or university.

2. a career program which is designed to meet the requirements of those who desire to enter business, industry, or public service.

3. a directed studies program which is designed to reinforce academic skills and aid in the transition to other programs.
4. a continuing education program which is designed for individuals to acquire new skills, explore new interests, upgrade existing talents, and expand cultural horizons.

Hagerstown Junior College, like other community colleges, is concerned with staff development. There are a number of staff development activities which meet many of the needs of the instructors. Among these are summer grants for research and development, subsidized graduate study, sabbaticals, seminars, workshops, instructional clinics, and an assortment of projects emanating from the consortium composed of the three community colleges and one four-year college located in western Maryland. Even with this myriad of opportunities available to facilitate professional growth and development, a significant group—the vocational instructors—experience a continuing need to update and expand their technical skills and knowledge. Vocational instructors represented in this study had an average of nine years of teaching experience at the college, which indicates they have been out of the field of their teaching specialty for at least that length of time.

The unprecedented growth in technology and the subsequent needs of this group resulted in HJC applying for a grant under the Appalachian Regional Development Act. HJC
was the first community college to request funds for staff development under this Act. The project, as described in the application, was designed to return vocational instructors to business or industry with the objective of "providing opportunities to the professional career faculty of the college to reinforce, update, or expand the knowledge and skills required to keep current with changing technology within their profession" (Project Application, p. 1).

In 1977, the Appalachian Regional Commission awarded the college a five-year grant for staff development through a Return-to-Industry Career Faculty Project. Instructors teaching in approved vocational programs were eligible to apply for funds from the grant. Instructors were selected for participation by the Professional Staff Development Committee based on the program review criteria outlined in Appendix B. Each instructor had eight weeks of eligibility over the life of the grant.

Vocational instructors returned to industry for the first time during the summer of 1978. This inservice staff development program was conducted during the summer for two reasons. First, instructors are generally on contract for a ten-month period. Absence of a teaching schedule or related responsibility during the summer provides the time and opportunity for instructors to spend four or more weeks par-
ticipating in a staff development activity like the return-to-industry program. The second reason is to insure to the Appalachian Regional Commission that the instructors are not being remunerated twice.

In 1978 five instructors returned to industry. Participants represented career programs in Mechanical Engineering Technology, Electrical Engineering Technology, Management, Data Processing, and Physics. The length of time in business or industry varied from two to four weeks.

In 1979, the second year of the project, there was a moderate rate of growth in the program. Eight applications were approved. One participant, the Mechanical Engineering Technology instructor, was approved for a second experience. This experience was with a different organization and was designed to expand knowledge and skills in a different area of mechanical engineering technology. The seven other instructors represented career programs in Correctional Services, Police Services, Early Childhood Instruction, Hospitality, Accounting, Communications, and Human Services. The instructors were placed in the business or industrial setting for two to four weeks.

By the end of the second year of the project, instructors from ten of the fourteen career programs at HJC had selected the return-to-industry program as a staff develop-
ment alternative. Instructors from programs not specifically designated as career programs, such as Physics, but who had teaching responsibilities that included students from vocational programs, could apply for the return-to-industry program. For example, the Physics instructor teaches engineering technology students and works cooperatively with the engineering technology instructors. Because of this cooperative arrangement, the Physics instructor was able to return to industry to reinforce, update, and expand knowledge and skills useful in teaching these students.

During the summer of 1980, the third year of the project, seven instructors representing Communications, Accounting, Hospitality, Human Services, Police Science, Biology and Management returned to industry. Of this group, four were approved for a second experience.

Evaluation of the return-to-industry program consisted of three parts. First, the Project Director met with the business or industrial representative and the instructor to discuss achievement of objectives. A summary report was prepared by the Project Director and was reviewed by the instructor. The second facet was a report prepared by the business or industrial representative at the conclusion of the experience. The report details the realization of objectives and their value to the business or industry. The
report was discussed with the instructor and the Project Director to determine agreement. The third phase was a report prepared by the instructor upon returning to the College. This report details how the experience would be integrated into the faculty member's instructional program. The report was discussed with the Project Director to insure that the experience could be transmitted to the students.

In this study, five themes descriptive of the process of collaboration and the impact of the return-to-industry program emerged from an inductive comparative analysis of the data. Figure 1 provides a model of the collaborative process and Figure 2 depicts the impact of the return-to-industry inservice program. Findings of the study suggest that the process of collaboration is symbiotic and involves a mutual exchange by both education and business/industry to achieve results. The relationship that exists for business/industry and education is not linear for all aspects of the process. Therefore, it is sometimes necessary in documenting the dynamics to move from describing a category in the educational arena to the business/industry arena and back to the educational arena. Use of this style in describing the process and the impact demonstrates the dynamic nature of collaboration.
BUSINESS/INDUSTRY ARENA

Contact by Instructor
Contact via Advisory Committee Member
Contact by Administration

Management Endorsement
Acceptance of Instructor

External Preparation
a. Consult with Instructor
b. Letter of Intent to College

Internal Preparation
a. Examine/Determine Areas of Needs/Expectations
b. Match Needs of Organization and Instructor
c. Cost to Business/Industry

Role of Business/Industry Activities Scheduled
Informal Feedback
Formal Summative Evaluation

AWARENESS

EDUCATIONAL ARENA

Advertised by Administration
Advertised by Staff Development Committee

Administrative Endorsement Instructor Commitment

External Preparation
a. Make Business/Industry Contact
b. Establish Objectives

Internal Preparation
a. Write Proposal/Objectives
b. Receive Approval
c. Funding

Role of Vocational Instructor Activities Performed
Difficulties Encountered
On-Site Evaluation
Summary Report by Instructor

Figure 1. Collaborative Process of the Return-to-Industry Inservice Program
BUSINESS/INDUSTRY ARENA

Measureable Results
a. Filled Labor Shortage
b. New Procedure
c. Ongoing Activity/Project
d. Training Programs

Nonmeasureable Results
a. Community Involvement
b. Informal Link/Resource

Future Return-to-Industry Plans

EDUCATIONAL ARENA

Measureable Results
a. Curriculum Development/Improvement
b. Ongoing Activity/Project
c. Recruitment of HJC Students

Nonmeasureable Results
a. Increased Professional Credibility
b. Informal Link/Resource
c. Personal Changes/Insights

Future Return-to-Industry Plans

Figure 2. Impact of the Return-to-Industry Inservice Program
Profile of the Participants

Participants in this study include those interviewed and those not interviewed. The background characteristics of the educational personnel who were interviewed are shown in Table 1.

Of the three females and sixteen males who were interviewed, seventeen were instructors and two were administrators. Sixteen program areas were represented in the study. Two of the areas, Physics and Biology, are not designated as Career Programs. However, the instructors in these program areas have teaching responsibilities that include students from career programs.

The background characteristics of business/industry personnel who were interviewed are shown in Table 2. Seven males representing four business related and three industrial related organizations were interviewed.

Among the participants who were not interviewed were eleven males and one female; two were instructors, one was an administrator and nine were business/industry representatives. The two instructors represented program areas in Correctional Services and Early Childhood Instruction. These participants were represented in the study through documents and other supporting data.
Table 1

BACKGROUND CHARACTERISTICS OF EDUCATIONAL RESPONDENTS

<table>
<thead>
<tr>
<th>Respondent</th>
<th>Sex of Respondent</th>
<th>Role</th>
<th>Program Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Male</td>
<td>Instructor</td>
<td>Management</td>
</tr>
<tr>
<td>B</td>
<td>Male</td>
<td>Instructor</td>
<td>Biology</td>
</tr>
<tr>
<td>C</td>
<td>Male</td>
<td>Instructor</td>
<td>Mechanical Engineering Technology</td>
</tr>
<tr>
<td>D</td>
<td>Male</td>
<td>Instructor</td>
<td>Electrical Engineering Technology</td>
</tr>
<tr>
<td>E</td>
<td>Male</td>
<td>Instructor</td>
<td>Police Science</td>
</tr>
<tr>
<td>F</td>
<td>Male</td>
<td>Instructor</td>
<td>Hospitality</td>
</tr>
<tr>
<td>H</td>
<td>Male</td>
<td>Instructor</td>
<td>Human Services</td>
</tr>
<tr>
<td>I</td>
<td>Male</td>
<td>Instructor</td>
<td>Hospitality</td>
</tr>
<tr>
<td>J</td>
<td>Male</td>
<td>Instructor</td>
<td>Communications</td>
</tr>
<tr>
<td>K</td>
<td>Male</td>
<td>Instructor</td>
<td>Accounting</td>
</tr>
<tr>
<td>N</td>
<td>Male</td>
<td>Instructor</td>
<td>Physics</td>
</tr>
<tr>
<td>P</td>
<td>Female</td>
<td>Instructor</td>
<td>Secretarial Science</td>
</tr>
<tr>
<td>Q</td>
<td>Male</td>
<td>Instructor</td>
<td>Data Processing</td>
</tr>
<tr>
<td>R</td>
<td>Male</td>
<td>Administrator</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 Continued

<table>
<thead>
<tr>
<th>Respondent</th>
<th>Sex of Respondent</th>
<th>Role</th>
<th>Program Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Female</td>
<td>Instructor</td>
<td>Secretarial Science</td>
</tr>
<tr>
<td>T</td>
<td>Male</td>
<td>Instructor</td>
<td>Communications</td>
</tr>
<tr>
<td>U</td>
<td>Male</td>
<td>Instructor</td>
<td>Merchandising</td>
</tr>
<tr>
<td>W</td>
<td>Male</td>
<td>Administrator</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Female</td>
<td>Instructor</td>
<td>Nursing</td>
</tr>
</tbody>
</table>

NOTE: Respondents G, L, M, O, V, X, and Y are Business/Industry personnel and are represented in Table 2.
Table 2

BACKGROUND CHARACTERISTICS OF BUSINESS/INDUSTRY RESPONDENTS

<table>
<thead>
<tr>
<th>Respondent</th>
<th>Sex of Respondent</th>
<th>Role</th>
<th>Business/Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Male</td>
<td>Business</td>
<td>Protective Services</td>
</tr>
<tr>
<td>L</td>
<td>Male</td>
<td>Business</td>
<td>Entertainment</td>
</tr>
<tr>
<td>M</td>
<td>Male</td>
<td>Business</td>
<td>Natural Resources</td>
</tr>
<tr>
<td>O</td>
<td>Male</td>
<td>Industry</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>V</td>
<td>Male</td>
<td>Industry</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>X</td>
<td>Male</td>
<td>Industry</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>Y</td>
<td>Male</td>
<td>Business</td>
<td>Protective Services</td>
</tr>
</tbody>
</table>
Awareness

Becoming aware of the return-to-industry program for both groups—the vocational instructors and the business and industrial representatives—involved promotional effort. This promotion or publicizing of the program was an essential element of the awareness theme.

Advertised by Administration. Advertising for the return-to-industry program began in the educational arena. Respondents P (Secretarial Science instructor) and U (Merchandising instructor) indicated they found out about the program at a faculty meeting. The information was given to them by the Dean of Instructional Affairs according to Respondents K (Accounting instructor), W (Physics instructor), P (Secretarial Science instructor), Q (Data Processing instructor), and S (Secretarial Science instructor). Respondents B (Biology instructor) and H (Human Services instructor) stated "there was publicity around campus" and "information in newsletters and bulletins."

Advertised by Staff Development Committee. Because of the role played by the Professional Staff Development Committee, Respondent B (Biology instructor) also acknowledged awareness of the return-to-industry program through his membership on that committee. He in turn relayed the information to his department members.
The information that the vocational instructor received from this promotional effort can be summarized as follows:

1. The vocational instructor or career program faculty member can be placed in a business or industry that specializes in his or her area of expertise.

2. The instructor conducts tasks under the direction of an on-site supervisor—a business or industry representative.

3. The tasks have a twofold purpose:
 a) the instructor's expertise can be refreshed through a process of using subject matter skills
 b) the instructor is exposed to the latest practices in the specific business or industry

4. The instructor can use the learning to update classroom material.

Contact by Instructor. Once the vocational instructors were aware of the return-to-industry program as a staff development alternative, they began to make contacts in the business and industrial community. In some cases instruc-
tors knew representatives in the business and industrial community from other associations. This was true for Respondents B (Biology instructor), C (Mechanical Engineering Technology instructor), E (Police Science instructor), F (Hospitality instructor), H (Human Services instructor), J (Communications instructor), K (Accounting instructor), and Q (Data Processing instructor). "Making a contact was easy for me because I knew so many people in the community," reported Respondent E (Police Science instructor).

Contact via Advisory Committee. In other cases, as Respondent D (Electrical Engineering Technology instructor) indicated, "they did not know people at the top" or upper levels of the organization. In this case, they sought help from their Advisory Committee. Respondent A (Management instructor) stressed that "Advisory Committees provide good contacts." Three instructors used Advisory Committees as a means of making a contact in a business or industry in the local area.

Contact by Administration. In other cases where the instructor did not have contact with the local business or industrial community, the administration promoted the program. As indicated by Respondent R (Administrator), the need for return-to-industry may have been even greater in those areas where instructors had developed theoretical
expertise critical to technical programs but lacked knowledge of how it was applied outside the classroom.

The information supplied to business and industrial representatives can be summarized as follows:

1. Hagerstown Junior College has received a grant from the Appalachian Regional Commission to facilitate reinforcement and updating of technical skills for vocational instructors. This can be accomplished by returning a vocational instructor to his or her previous occupational field.

2. The vocational instructor will be available to an industry or business for up to four weeks at no cost to the business or industry for the services rendered by the instructor.

3. The instructor will perform a project or a series of tasks scheduled by the business or industry representative or another designated representative. This may be accomplished by having the instructor validate theory, study current practice, or apply problem-solving techniques.

4. The tasks should have a twofold purpose:
a) the tasks presented should utilize the subject matter skills of the instructor for the benefit of the business or industry.

b) the instructor should be exposed to the latest practices in the business or industry.

5. The instructor will continue dialogue if desired with the business or industrial representative as a resource and to encourage future collaboration.

Promotion of the return-to-industry inservice concept was essential for generating interest among vocational instructors and personnel associated with business and industry.

A majority of the participating instructors already had contacts in the local community and therefore did not need special assistance in securing business or industrial sponsorship. Six instructors currently or previously had served in a resource capacity and were familiar with negotiating projects based on the business/industry's needs and their own skills. Three instructors used Advisory Committees as a means of making a contact in a business or industry in the local area. Although Advisory Committees can be important in making contacts in the local community, the data do not support the use of Advisory Committees as the main source for making a contact.
It can be seen through the awareness theme that promotion of the program was advanced in several ways, and the findings suggest that both groups had awareness of the return-to-industry concept. This was an important step in documenting the dynamic nature of the collaborative process.

Commitment

Being aware of and thinking through the concept of returning to industry was an important aspect in the process of collaboration. Knowledge of the return-to-industry concept as an alternative staff development activity for the vocational instructor and a possible resource for business and industry offered insight into the second theme--commitment.

While the vocational instructor and the business and industrial representatives were the main actors in this phase of the process, the administration in the educational setting and upper level management in the business and industrial setting were also a part of the process.

Administrative Endorsement. In the educational setting, administrative endorsement was represented by the tenacity exhibited to secure the grant, the time devoted to promoting the opportunity to the staff, and the "behind-the-scenes" effort extended to make it a staff
development option. These aspects of endorsement from the administration were frequently echoed by the respondents and confirmed in the document sources.

Instructor Commitment. Commitment from the instructor involved some self examination for the possible benefits or liabilities which might be incurred by participating in the return-to-industry program. At this stage, the instructor wrestled with thoughts that have bothered him for some time. For example, Respondent D (Electrical Engineering Technology instructor) observed:

> Are we doing it [teaching a skill] correctly? Could we do it a better way? Could I find out if what I am teaching is relevant to what industry is doing in the microprocessor field? [It's a] question of whether we should expand our teaching of chips. [Perhaps it] would be too confusing; if students can understand one chip, it may be easier to transfer because there is a basis on which to learn.

Other instructors, Respondents B (Biology), C (Mechanical Engineering Technology), and T (Communications), had textbook and educational knowledge about their areas of expertise, but lacked actual business and industry experience. Respondent B (Biology instructor) noted that he "lacked personal experience and wanted to tie the project together by putting into practice what [he] taught and had students do."

Respondent T (Communications instructor) stated that his reason for returning to industry was:
to cover the technical end of writing--find out what was done on the job to make courses realistic. [I] mostly wanted to observe the work of technical writers.

A desire to examine new technology and learn current business and industrial practices provided a reason to return to industry for Respondents F (Hospitality instructor), I (Hospitality instructor), K (Accounting instructor), N (Physics instructor), and Q (Data Processing instructor). Respondent I (Hospitality instructor) stated a desire to know "how 5000 people could be served" in a food service operation. This respondent had never before been involved with automated food preparation. Respondent Q (Data Processing instructor) was trying to link accounting with data processing. "I wanted to make that relationship between class and industry." Respondent N (Physics instructor) indicated a "desire to learn about microprocessors in an industrial environment and implement what was seen in college courses." The vocational instructors' perceptions of how the return-to-industry program would be meaningful to them strengthened their commitment to the program.

Management Endorsement. Business and industrial representatives were more cautious in their acceptance and commitment to the process. This was a natural occurrence as indicated in the review of literature in Chapter Two.
In the larger organizations, it was necessary to have approval from upper level management before a commitment to participate could be given. Respondent X (Manufacturing representative) stated that most companies don't want to do anything unless it "impacts the bottom line." Respondent A (Management instructor) had to demonstrate to Respondent X (Manufacturing representative) how participation would have impact on employee attitudes. In turn, Respondent X (Manufacturing representative) had to convince upper level management before the project was approved.

In another case, due to the nature of the business, it was also necessary for Respondents F and I (Hospitality instructors) to have approval from an outside regulatory agency as well as upper level management prior to acceptance.

Acceptance of Instructor. Business and industry want to know something about the instructor. Respondent G (Protective Services representative) reported:

> [the vocational instructor] was a former policeman and instructor at the [Police] Academy. [We] have had students in the past who wanted to do projects, but they were only interested in the project to accomplish their own goals. [I] knew [the instructor's] background and expertise at the college. Saw [him] helping me with a project as well as enhancing his own knowledge or helping school's program--put respectability into the program. No, [I] would not accept just anyone. Have dealt with consultants and they have a job to do. In a town the size of Hagerstown [they] try to put big city ideas into a small town and it doesn't work. Hav-
ing someone like [the vocational instructor] with a vested interest makes it more beneficial for the local area.

Respondent F (Hospitality instructor) remarked that his reputation in the local community was an important selling point in his acceptance by business and industry. This was confirmed by Respondents E (Police Science instructor) and L (Entertainment representative). Respondent L (Entertainment representative) also reported that he would be "willing to accept anyone with interest in working and learning about the theater." And, Respondent M (Natural Resources representative) noted he "would be willing to take another biology teacher from HJC."

To summarize this theme, the data suggest that commitment involved more than mere acceptance of the return-to-industry concept. Commitment involved establishing some justification for participation by the vocational instructors and the business and industrial representatives. It was difficult to see the internal decision-making that occurred during the commitment theme.

This stage of the process could be described as informal and cooperative with each group involved in exploratory discussions. There was an air of negotiation as offers and counter-offers were exchanged. Little was explicit; much was implied with trust and good faith being key elements in this aspect of the process.
Preparation

Much of the work of the preceding two themes involves open communication between the instructors and business and industry. It was not until commitment was internalized that real preparation, the third theme in the process, occurred.

Preparation was composed of internal and external activities for both the vocational instructor and the business and industrial representative. In the subcategories of external preparation there was more mutual exchange and reciprocal cooperation as placement in a business or industrial setting neared. This was seen more clearly in the back-and-forth shift between the business/industry arena and the educational arena. This movement was indicative of the symbiosis present in the collaborative process.

The subcategories within internal preparation are not collaborative; they are independent activities. Each group proceeded with the internal tasks that supported its participation in the program.

Make Business/Industry Contact. Within the category of external preparation, the vocational instructor again made a contact with the business or industrial representative whom he originally contacted when promoting the program. Making contact twice (during awareness and then during preparation) did not occur in every case. However, the time between the
first and second contacts allowed both the instructor and
the business or industrial representative to internalize
their reasons for participating in the return-to-industry
program. In a few cases, contact could be described theo-
retically as ongoing. Four business and industrial repre-
sentatives were former students of the instructors and three
others served as adjunct instructors at the college.

Consult with Instructor. This second meeting was more
or less a consultation between the instructor and the busi-
ness or industrial representative to establish some specific
objectives or goals for the period of time the instructor
was at the site.

Establish Objectives. Because no two programs were
alike in the way in which objectives were established, it
was difficult to portray a pattern in describing the proper-
ties of this subcategory. In the case of Respondent J (Com-
munications instructor) and Respondent L (Entertainment re-
presentative) the instructor had some ideas, and both he and
the business representative refined them. According to
Respondent M (Natural Resources representative) there were

... no predetermined goals and objectives. As prob-
lems arose, they were discussed and dealt with
assuming [the instructor] had some interest. [I] asked him daily what his interests were and what
would he do to solve a problem.
Respondent D (Electrical Engineering Technology instructor) indicated the industrial representative developed the program. This was accomplished after the industrial representative was assured that "we only wanted to know how our courses could be better and more relevant to what they did." Respondent O (Manufacturing representative) and Respondent T (Communications instructor) discussed the work of the industry. As the instructor expressed what he would like to do, the industrial representative explained what could be done to help the instructor accomplish his objectives. Respondent A (Management instructor) "suggested what I wanted to do" and the industrial representative "provided a structured agenda." Although the business representatives were not available to corroborate how objectives were established by Respondents K (Accounting instructor) and F (Hospitality instructor), an analysis of the documents written by these representatives revealed that both instructors expressed what they wanted to do and the businesses agreed.

Letter of Intent to College. As the goals and objectives were being established, the instructors requested the various business and industrial representatives to send a letter to the Dean of Instructional Affairs at the college indicating their agreement to participate. This letter of intent constituted the first formalized step in the process
of collaboration. An example of this letter is included in Appendix C.

Examine/Determine Areas of Need/Expectations. Within the category of internal preparation for business and industry, a needs assessment was conducted. In reporting his expectations, Respondent X (Manufacturing representative) "thought the program would allow a good knowledgeable instructor to look at this facility from a different point of view to determine company needs." Another business representative, Respondent H (Natural Resources representative), remarked:

originally [the instructor] was to help out in various aspects of the cold water program—four-five days on lake surveys with [the Director], two-three days at the hatchery and twelve days with me. [However], lack of a student technical assistant . . . put a crimp in the summer survey schedule . . . [so] I managed to get [the instructor] for most of the time.

Therefore, after reexamining the business' needs, it was decided that the instructor would be more useful to the business in one particular area. This decision was based on the instructor's needs as well as on his abilities (wanted to put into practice what he taught) and the needs of this business (needed a field survey worker to conduct fish population studies).

Match Needs of Organization and Instructor. Respondent H's (Natural Resources representative) organization not only
identified and determined its needs but also matched its needs to those of the instructor.

In another industry, Respondent V (Manufacturing representative) reported that the expectations of the company were considered during this period of internal preparation. The industry knew from the initial contact that the instructor wanted to help his students attain the skills required for jobs in the company. In matching the industry's needs to those of the instructor, the industry's view was toward "recruiting more qualified students."

Respondent G (Protective Services representative) noted that his organization had a need which could not adequately be accomplished by the existing staff.

[We have a] unique association because [the instructor] is a former police officer and now in a teaching role. [I] could see a project developing [that would] benefit me and one that was successful for [the instructor].

Knowledge of the instructor's abilities in his former role and now in his role as an instructor was beneficial in reaching this decision.

It should be noted that the tasks and projects scheduled by the businesses and industries provided worthwhile experiences. The work assigned was not "busy work;" it met a genuine need. However, in some cases, it was not of imminent priority.
Cost to Business/Industry. Although the businesses and industries received the services of the instructors without charge, there was nevertheless a cost to the business or industry in time and man hours. As previously mentioned, large organizations in this study were more willing to participate in collaborative ventures if a positive impact could be shown on the balance sheet. Other organizations in this study were more community-oriented and felt their participation resulted in an indirect benefit to the organization. Whether tangible or intangible results were achieved, both approaches reflected properties of this subcategory.

The range of costs incurred by business and industry was between "no idea because we worked separately" (Respondent Y, Protective Services representative) to "in the neighborhood of several thousand" (Respondent G, Protective Services representative). Although the business and industrial representatives were not very specific, Respondent X (Manufacturing representative) appeared to summarize their feelings by saying, "In terms of dollars, it is difficult to say [how much it cost], but overall, you get back more than what you put in."

Internal preparation was conducted largely independently for the educators and the business/industry personnel and did not require collaboration. However, it is important
to note that while internal preparation followed external preparation in the educational arena, this pattern was not consistently reported in the business/industry arena.

Write Proposal/Objectives. While business and industry worked through the internal preparation phase, the instructor was also performing tasks necessary to insure preparation for the return-to-industry experience. Appendix D provides the format for writing the proposal. The written proposal was submitted for review to the Professional Staff Development Committee which was composed of the Dean of Instructional Affairs, a faculty representative from each instructional division, and the division head from each division.

Receive Approval. Using the program review criteria outlined in Appendix B, instructors received approval for participation and were recommended for funding. Appendix E is an example of the notice of approval. From time to time approval was withheld until a proposal was rewritten to conform to proposal guidelines.

Funding. Funds received by the vocational instructor amounted to the regular salary of the instructor for the time spent in the business or industrial setting. As Respondent Q (Data Processing instructor) observed, "we were paid by the college through the grant, but were subject to normal working conditions of the company."
Federal funding for the return-to-industry project was an integral element in the process. Respondent C (Mechanical Engineering Technology instructor) observed that "funding by the 'feds' is important because we could not do it [participate in the project] otherwise."

There was a question as to the continuation of the return-to-industry program once the initial grant was completed and the funds were depleted. Respondent W (Administrator) acknowledged that "the concept should not be dropped" but added that it "may have to be on a more limited basis."

Business and industrial representatives seemed to be receptive to the idea of providing some of the funding. Respondent X (Manufacturing representative) advocated establishing a procedure whereby "it could be worked out." Respondent O (Manufacturing representative) reported that he "would not rule out the possibility of funding, but it would be scrutinized closely." Respondent G (Protective Services representative) indicated that funding for the vocational instructor was possible "if budgeted."

Vocational instructors, on the other hand, were more apprehensive about business or industry providing funds. Respondent P (Hospitality instructor) expressed the belief that industry would not financially support the return-to-
industry concept unless the instructor could "prove to them that you could do something for them that no one else could." Respondent D (Electrical Engineering Technology instructor) "doesn't see why they should do it," and Respondent B (Biology instructor) didn't think that the industry in which he worked "would ever be able to provide funds."

Preparation was an important theme in the overall process. It was during this phase of the process that real collaboration with business and industrial personnel and the vocational instructor occurred and formalized procedures began.

There was more mutual planning and reciprocal cooperation, as evidenced by the establishment of objectives and the submission of letters of intent to the college. The process was very dynamic at this stage.

Internal preparation was an independent category. There was little exchange as each group proceeded with tasks that supported its participation in the program. In matching the needs of the organization and the instructor, the data revealed that the tasks and projects scheduled by business and industrial personnel were carefully planned and contributed to the reinforcement and updating of the instructor's technical skills.
The data suggest that most businesses and industries would be willing to contribute financially to continuation of the program under certain prescribed conditions. These conditions included prior budgetary planning and assurance of a predetermined outcome. Vocational instructors, however, were concerned about continuation of the return-to-industry program when project funds were depleted. They were and continue to be apprehensive about business/industry financial support of the project.

Participation

Conclusion of the preparation period resulted in formalized plans and procedures for participation—the next theme identified in the collaborative process.

Role of the Vocational Instructor. Within the business and industrial settings, many roles were performed by vocational instructors. The most common role was that of a participant observer, where part of the instructor's time was spent in observation and part of the time in performance of specific duties. The reason this was the most frequently occurring role was expressed by Respondent H: "At first you have to figure out what goes on [in the business or industry]; you're not very productive at first." Respondent X (Manufacturing representative) reported, "to have an
indepth look and make a satisfactory adjustment takes time; a few weeks is too short to grasp this size of organization."

Another role reported by Respondents A (Management instructor) and E (Police Science instructor) was working consultant. In some industries, the instructor provided educational expertise and the industry personnel provided technical expertise as both worked together on projects.

In two cases, Respondents F (Hospitality instructor) and K (Accounting instructor) assumed the role of nonparticipant observer. In this position, the instructor had the opportunity to interview personnel throughout the organization. These interviews were in addition to observations of working conditions and various company procedures. This role enabled the instructor to learn about the industry's expectations of employees, the kinds of training needed for positions in the industry, and procedures for entering the industry.

One additional role, reluctantly mentioned by instructors, was that of confidant. Several business and industrial representatives discussed this role. Many saw it as a serendipitous role performed by the instructor. As indicated by Respondent L (Entertainment representative):

[the instructor] was very helpful as a third party observer; [he] is very perceptive and people listen to him. He was an eye and ear for the employees.
Respondent M (Natural Resources representative) "felt safe with [the instructor] in discussing problems in the agency--more so than with other State employees." "Because of [the instructor's] relationship with the personnel, he could convince them of the merits of the project," reported Respondent G (Protective Services representative).

Role of Business/Industry. The roles assumed by the business and industrial representatives varied as did the roles assumed by the vocational instructors. Respondent X (Manufacturing representative) and Respondent G (Protective Services representative) identified their role as supervisor. Although identified as supervisor, more of a client-consultant relationship existed between the business/industry representatives and the instructors. The training program developed by Respondent A (Management instructor) and the proposed performance appraisal developed by Respondent E (Police Science instructor) served as examples of the client-consultant relationship.

Another role assumed by business representatives was coordinator. Respondent O (Manufacturing representative) reported that he "did not work directly with either instructor, [but] was a coordinator" for their activities.

The representatives in nearly all the smaller businesses in the Hagerstown community served in an advisory
role. Instructors were assigned tasks and/or projects and the business representative provided assistance. In the case of Respondent Y (Protective Services representative), "I provided technical knowledge in terms of fire investigation and advised [the instructor] on several areas."

Activities Scheduled. The activities scheduled by the various businesses and industries were as varied as the roles performed by the vocational instructors and the business and industrial representatives.

For example, Respondent V (Manufacturing representative) said:

[We] introduced the type of work being done that involved computers [and] the way microprocessors were used for machine control. [The instructors] followed a planned program covering software, programmable controllers, computer-aided documentation, compiling software programs, editing, understanding flow charts and parts of listings of flow charts. [The instructors] saw trouble shooting using a logic analyzer [and they were] exposed to electronic quality control.

Respondent M (Natural Resources representative) reported:

On a typical day [we would] load equipment and proceed to the stream site. [We determined] fish populations—number, kinds, weight, length. Electro-fishing was used to capture fish; [then we] mark, dip, weigh, measure, identify species, and release. [We] determined growth rates by statistics.

Respondent O (Manufacturing representative) stated:

It was primarily an observational activity—not too tough. Background information could not be obtained in a day or two. After exposure [the instructor] got to perform a job like the other
technical writers. Technical writers convey changes that the engineering group makes. [They] take drawings and bits of information and put together so other departments and divisions can understand.

It should be noted that all the activities scheduled met the objectives of using the instructors' subject matter skills and at the same time exposed the instructor to the latest practices in the business or industry. This was significant when considering the host of roles assumed by the vocational instructors. Respondent L (Entertainment representative) observed, "the day is dependent on our schedule, there is no typical day in this business because things come up and happen and change." This sentiment was frequently expressed by other business and industrial representatives.

Activities Performed. The vocational instructors' comments regarding their activities were confirmed by the business and industrial representatives as well as by other documents. Respondent H (Human Services instructor) related that he:

designed an adult education type course. [I] had my own group of hospitalized depressives for fourteen sessions. [I] presented information [and] discussed various topics to see what extent education had—what therapeutic value. [But] because of the short time with patients, no real results were ascertained. But, because patients and staff seemed to like it, (group therapy sessions) it was continued.
The work of Respondent E (Police Science instructor) in developing a new performance appraisal was still being evaluated by the rank-and-file members of the organization. Each time he returned to the theater, Respondent J (Communications instructor) could see examples of promotional displays and box office procedures—results of his work with the staff. Respondent C (Mechanical Engineering Technology instructor) related his activities in this manner:

[I] went to construction sites with the sales manager (the business representative) as he did his daily routine. [We did] some troubleshooting and checked the IRS Building in Martinsburg because of stringent requirements for environmental air control. [I] worked in the office on air conditioning design in the afternoon.

Respondent K (Accounting instructor) reported:

While in the public accounting firm [I] went on three audits and performed the same functions as regular employees.

Respondent I's (Hospitality instructor) activities contributed directly to his instructional role at HJC:

In the morning [I] prepared 1400 shrimp salads each day plus 15-20 other types of salad. In the afternoon [I] worked for special functions preparing canapes, hors d'oeuvres and decorative cold plates for various functions.

It can be seen from these descriptions that the activities and projects varied with each situation. Some activities resulted in more closure than others. However, completion of a task or project during the period in which the
vocational instructor was placed in the business or industrial setting was not required.

Difficulties Encountered During Return-to-Industry. The difficulties encountered by the vocational instructors during their return-to-industry experience were typical of problems experienced by anyone moving from a known environment to an unknown environment. For example, Respondent V (Manufacturing representative) noted "there was difficulty with technical terminology," and Respondent T (Communications instructor) "didn't know what questions to ask." Respondent J (Communications instructor) reported that initially employees were suspicious of his motives "because I had more degrees and what appeared to be a controlling interest." All of these issues were eventually resolved by daily interaction between the instructors and the employees over the period of time the instructor was at the site.

Informal Feedback. The informal feedback given and received was an example of the collaboration which occurred for both the vocational instructors and the business and industrial representatives. The respondents reported that feedback was on a range from "not much" to "continuous." However, the respondents reported that feedback was not one-sided. Both the vocational instructor and the business or industrial representative provided a give-and-take oppor-
tunity for each other. Respondent M (Natural Resources representative) declared that feedback was "not a formal dialogue [but] friendly, open conversations." This comment seemed to characterize the relationship that existed throughout the return-to-industry program.

On-Site Evaluation. The on-site evaluation conducted by the Dean of Instructional Affairs or the instructor's division head was formative in nature. It was conducted midway through the time the instructor was located at the business or industrial site. The purpose of the assessment was to examine the extent to which the instructor's stated objectives were being met through a discussion with the business or industrial representative. Again, depending on the type of activities in which the instructor was engaged, an observation of the instructor at work may have been included during the visit. After conducting an on-site evaluation, Respondent W (Administrator) reported that he was "impressed with the way they gave [the instructor] a worthwhile experience." A summary report of this evaluation was prepared and reviewed by the instructor. See Appendix F for a sample evaluation report.

Formal Summative Evaluation. At the conclusion of the return-to-industry experience, the business and industrial representatives were expected to provide a formal summative
evaluation of the instructor's work and how it helped the business or industry. The business and industry representatives did not view their participation in the evaluation procedure as formalized. Respondent V (Manufacturing representative) reported that he "wrote a letter indicating what the instructor had done." The nature of the experience and the role assumed by the instructor led Respondent O (Manufacturing representative) to indicate "no evaluation was necessary." Respondent G (Protective Services representative) observed that the "formal evaluation was verbal." The business "gave input into the final product" [as a means of evaluation]. Respondent L (Entertainment representative) remarked that the instructor was "evaluated on a formal basis in the form of a letter." An example of this evaluation report is included in Appendix G.

Summary Report by Vocational Instructor. At the conclusion of the return-to-industry experience, the vocational instructor prepared a report detailing how the experience would be communicated to his or her students. In essence, this report was a plan analyzing how the experience would be integrated into the instructor's teaching responsibilities. The report was discussed with the Dean of Instructional Affairs to determine its efficacy. See Appendix H for a sample report.
Thus, this theme revealed that participation in the return-to-industry program provided the opportunity for vocational instructors to refresh their occupational expertise, to reinforce and update their skills, and to assume some roles they had not envisioned when planning this activity. Further analysis of the data revealed that the businesses and industries who participated served in roles not unlike their normal roles of supervisor, coordinator, and advisor. For the most part, working with the vocational instructor did not prove to be a disruption to their daily schedule of activities. Through this collaborative venture, they gained an increased respect for the knowledge and industriousness shown by the vocational instructors.

The business and industrial representatives concluded that the four-week time period was too short to be very productive. (It should be noted that many projects were completed after the period in which the vocational instructors were located at the business or industry sites.) Instructors who participated in the return-to-industry program were not in complete agreement regarding the length of the time period. Some felt four weeks was the appropriate amount of time for the tasks performed and the knowledge gained. Others felt six to eight weeks would be the ideal length of time.
During the participation phase no major difficulties were encountered by either the instructors or the business/industry representatives or other personnel. Although some businesses and industries were initially apprehensive about collaborating with education, the success of the program contributed to their interest in maintaining the liaison.

The process of collaboration is symbiotic and involved a mutual exchange by education and business/industry to achieve results. This relationship was not serial or linear; it was dynamic and reciprocal.

Impact

The final theme which emerged from a comparative analysis of the data concerned the results or impact of the return-to-industry program. In analyzing the data, it was evident that the program touched the vocational instructors and the participating businesses and industries. The categories of this theme were descriptive of that impact.

Curriculum Development/Improvement. The development of curriculum as a result of participating in the return-to-industry program was substantial. Respondent C (Mechanical Engineering Technology instructor) noted that:

[the] experience helped in all aspects of heating and air conditioning necessary in setting up the program. [It] gave better insight into what had
to be accomplished, what is needed for sales personnel etc., [and] it helped determine direction for the program.

Respondent F (Hospitality instructor) stated that "typing and data processing were introduced in the curriculum."

While these were additions to existing programs or new options within programs, one change resulted in collapsing two courses into one. Respondent D (Electrical Engineering Technology instructor) observed that "what was previously taught in two courses is now taught in one leaving time to offer a microprocessor course."

There were other changes that resulted in curriculum improvements. The respondents were more explicit during interviews in how these improvements were made in their classes than they were in their written summative reports.

For example, Respondent E (Police Science instructor) indicated that he "could talk about performance appraisals using an example of an old one and the new proposed model and how it evolved." Respondent T (Communications instructor) used the material developed in industry in his class because it "makes the course more justifiable." He further concluded that:

the concept of following directions came in part from looking at police reports and in part from experience with technical writers. Rigid format has to be followed. [I] corroborated ideas seen in texts about conciseness of writing, organization, etc.
Respondent H (Human Services instructor) used "real life examples in class to describe concepts." In one class, which was case-oriented, Respondent A (Management instructor) "developed ten new cases based on real life situations and altered others so they were realistic."

In only two cases respondents were unable to provide concrete evidence of curriculum development, improvements, or changes in instructional strategies. Their experiences, however, resulted in another type of measurable result—a source of employment for HJC students.

Recruitment of HJC Students. It has previously been mentioned that business and industry was impressed with the knowledge and industriousness of the vocational instructors. These impressions have resulted in "new employment opportunities for students through contacts made," reported Respondent F (Hospitality instructor). Respondent K (Accounting instructor) noted that the company where he was located "has called for employees as a result of the return-to-industry program." He stated further that this company would not ordinarily recruit from HJC because a four-year degree was usually needed. At least five businesses and industries participating in the return-to-industry program would consider HJC students for employment.
Ongoing Activity/Project. In over fifty per cent of the businesses and industries, an ongoing activity, project, or dialogue was experienced as a result of participation. Respondent E (Police Science instructor) reported that he "still goes out with the Fire Marshal if an interesting case occurs." At another site where Respondent E (Police Science instructor) had an experience, his work was "still being studied by members of the department from various ranks." Respondents A (Management instructor) and H (Human Services instructor) have conducted programs that were developed as a part of their return-to-industry experience. Respondent H (Human Services instructor) "developed an inservice training program on the modern interpretation of depression," and Respondent X (Manufacturing representative) reported that Respondent A (Management instructor) "will probably be asked to conduct the sexual harassment segment of an EEO [Equal Employment Opportunity] program." Respondent J (Communications instructor) provided assistance to the theater in several ways. He recruited students from HJC when ushers were needed on a temporary basis and he directed an opera. These ongoing activities have occurred as a result of the collaboration achieved through the return-to-industry project.
Filled Labor Shortage. While this result occurred in only one situation, Respondent M (Natural Resources representative) indicated that without the instructor's assistance, "the work could have been completed but would not have been quite as good." Another Respondent, H (Human Services instructor), remarked that "it [filling a labor shortage] may be a way to retain the return-to-industry program."

New Procedures. A new procedure developed by the vocational instructor resulted in an improvement in public relations, reported Respondent L (Entertainment representative). It was also "good for the employees to know a professor—a person from the academic world ... with a different perspective."

During his first return-to-industry experience Respondent E (Police Science instructor) said that he developed promotional procedures for the business. As a result of that experience, he was asked to do a similar project for another business.

Training Program. A variety of training programs were developed by instructors. One program was used as an inservice activity for the professional personnel at the site.

A slide-tape presentation and manual were mutually developed by Respondents E (Police Science instructor) and Y (Protective Services representative). Respondent Y (Protec-
tive Services representative) provided the technical knowledge, while Respondent E (Police Science instructor) used his educational expertise to develop the final product. The program is used by the instructor in preservice training of students while the industrial representative used the product for inservice training of agents.

Respondent A (Management instructor) was involved in developing a training procedure for a new product the company was making. Because of the stringent quality control requirements, putting the program together demanded several sessions with the skills training manager before the project was complete.

Community Involvement. Two industries perceived their involvement in the return-to-industry program as a benefit to the local community. Respondent O (Manufacturing representative) remarked that "any benefit derived by the community was worthwhile for the local industry." Respondent V (Manufacturing representative) commented that his company benefited by "staying close to the technical schools in the community."

Increased Professional Credibility. One impact that the return-to-industry program had on the vocational instructor was increased credibility. Respondent E (Police Science instructor) observed that "a new relationship devel-
oped." The organization learned about him, his previous experiences and his expectations. The experience provided not only increased credibility for Respondents C (Mechanical Engineering Technology instructor) and J (Communications instructor) but improved confidence. Respondents B (Biology instructor) and F (Hospitality instructor) noted that the experience "developed increased credibility with students too." Because of the increased professional credibility resulting from the return-to-industry experience, Respondents H (Human Services instructor) and J (Communications instructor) were able to secure a secondary effect. One instructor was elected to the Board of Directors of the organization. The other instructor used the experience as a three-credit internship toward an advanced degree.

Informal Link/Resource. In both arenas—business/industry and education, an informal link was established as a result of the return-to-industry program. The business and industrial representatives saw the instructor as a resource—"a kind of consultant available for future reference or for followup," remarked Respondent G (Protective Services representative). In another case, Respondent E (Police Science instructor) noted that serving as a resource was mutual. A local business sought his help and he in turn had a representative of the business come to his
class. Respondent I (Hospitality instructor) commented that not only will the industry come and "talk to my class" but HJC has "access to the business at reduced rates."

Respondent V (Manufacturing representative) reported that the "relationship with HJC was closer and warmer" as a result of the return-to-industry program. Respondent L (Entertainment representative) remarked that it was "stupid to have expertise, talent, ability, experience and not take advantage of it."

Personal Changes/Insights. Personal changes for participants in the return-to-industry program had no pattern. For respondent N (Physics instructor) the experience motivated him to enroll in a computer course that would advance his knowledge in the technical area in which he worked. Respondent K (Accounting instructor) "learned a few tricks of the trade not in accounting textbooks." "Use of the team approach—different from teaching [but effective]" was the insight gained by Respondent C (Mechanical Engineering Technology instructor).

Respondents B (Biology instructor) and T (Communications instructor) gained insights into their professional role. For Respondent B (Biology instructor):

as a biologist my experience was so great that I would want to do it for a living but would take a cut in pay, so I feel better about my job as an instructor.
Respondent T (Communications instructor) reported the following insights:

In an effort to really get into it [I] bought white shirts and ties and I haven't worn them since Dad made me dress for church. [I] developed an increased appreciation for the amount of freedom in my job as a teacher. In one way [the industry job was] a relief because everything was confined within those hours—easy to relax, but at school [we] take work home and become anxious or worry about it. [I] would have difficulty working under those conditions. [There was] too much regimentation. The experience of driving in in a line of cars, walking past guards, fluorescent lights, no windows—like going in prison. Being an academic in an industrial setting made me paranoid. [I] felt I was getting in their way. Felt bad about taking their time. After learning the basics, I tried to figure out something I could do without disturbing them. I put together a style manual. It's useful in my classes but I doubt if it's of any use to [the organization]. Over the years [I have] developed a distaste for my job which I still have, but found out how lucky I was, I was not in industry. Getting out of HJC to see what the outside world is like helped my attitude toward my classes although it's intangible and hard to measure.

Future Return-to-Industry Plans. Of the vocational instructors who participated, the comments were almost unanimous regarding their desire to participate in a return-to-industry program again. A few reported tentative ideas of activities they would like to undertake. One instructor, who had already participated in a return-to-industry experience, was approached by an industrial representative to develop a new training plan for an inservice program. The instructor would like to be placed on this site because "it
would be a new experience." He had not worked previously in this area of his occupational specialty. Another respondent would like to return to a company which has the new data processing equipment that HJC plans to install.

The business and industrial representatives were interested in having the instructors return. Respondent M (Natural Resources representative) stated "the experience would be an exact duplication of last summer ... but I could certainly benefit from having him here." Respondent L (Entertainment representative) noted that the instructor "is very talented; we complement each other very well."

Vocational instructors who had not returned to industry expressed some interest in doing so. Respondent P (Secretarial Science instructor) "would like to see new procedures, equipment, and job requirements" currently being used in her occupational specialty. Respondent U (Merchandising instructor) secured the names of individuals in industries where he would like to make initial contacts.

In summary, many results which accrued to instructors and business/industry representatives were unanticipated. Increased professional credibility and personal insights served as stimuli to the instructors to consider the continuation of collaboration. Increased respect for the knowledge and industriousness shown by the vocational instructors
elicited business and industry's support for the return-to-industry program and other collaborative ventures.

It can also be seen from these findings that the impact of the return-to-industry program went beyond the business and industrial representatives and the vocational instructors. The students of the vocational instructors derived benefit through changes and improvements in curriculum as well as through increased employment opportunities. The employees in some of the businesses and industries participating derived benefit through new procedures and training programs. Some employees even enrolled in courses at the community college. Ongoing activities and informal links between both groups were indirect benefits that occurred as a result of the return-to-industry program and are likely to maintain the collaborative process.

Summary

This chapter has presented the findings from an inductive comparative analysis of the data. Included are the following components: (a) a framework of the return-to-industry program; (b) a profile of the participants; and (c) a portrayal of the process of collaboration and a description of the impact provided through the themes of awareness, commitment, preparation, participation, and impact.
Chapter V

CONCLUSIONS, DISCUSSION, RECOMMENDATIONS

Introduction

This study was designed to examine a return-to-industry program, an inservice activity for vocational instructors at a two-year postsecondary institution. Specifically, the study examined the process of collaboration with business and industry and assessed the impact of the return-to-industry program on the participating vocational instructors and businesses and industries. This chapter presents the conclusions derived from an inductive comparative analysis of the data, a discussion of relevant information and implications, and recommendations made by participants and the researcher.

Conclusions

This study provides a process model for establishing a collaborative return-to-industry inservice program for vocational instructors at postsecondary institutions. The following three conclusions were derived from the findings of this study. The process of collaboration is symbiotic and involves a mutual exchange by both education and business/industry to achieve results. While the relationship
that exists between business/industry and education is not serial or linear in all aspects of the process, the cooperation that occurs throughout is the major element that contributes to the achievement of collaboration. With regard to the vocational instructor, three other elements--the persona of the instructor, a known contact in the community, and an established reputation recognized by the business/industry community--also contribute to the collaborative process. While these elements were important to the success of the Hagerstown Community College return-to-industry program, the absence of these elements does not preclude successful implementation of this type of inservice education program at other community colleges.

From the results presented it can also be concluded that participation in a return-to-industry program provides the opportunity for vocational instructors to reinforce, update, and expand their technical skills. In addition, integration of the vocational instructor's experience into the curriculum provides up-to-date knowledge for vocational students which enables them to better prepare for employment.

Participation in a return-to-industry program for business and industry provides opportunities to employ the resourcefulness of the vocational instructor in ways that
benefit the business or industry. Instructors generally perform activities and tasks that are useful to business and industry. Participation also results in increased respect for the knowledge and industriousness of the vocational instructor while the instructor is engaged in these scheduled activities and tasks. This asset enhances business and industry's willingness to support the return-to-industry program and other collaborative ventures.

In summary, the conclusions presented offer insight into the process of collaboration as well as offer examples of the impact of the return-to-industry program on the vocational instructors and the participating businesses and industries.

Discussion

The constraints to collaboration presented in Chapter Two did not surface as major problems in this study. The cooperative relationship that exists between Hagerstown Junior College and the surrounding business and industrial community appears to preclude these barriers to collaboration.

Use of naturalistic inquiry in this study resulted in at least twenty-six different episodes regarding each respondent's perceptions of his or her experience with the return-to-industry program. Added to this are observations
of these respondents in other settings and analyses of the documents and institutional records. Synthesis of these types of data do not always yield clear, concise patterns. Some points of interest gleaned from comments of the respondents and the other sources resulted in perceptions by the researcher in regard to the instructors, the business and industrial representatives, and Hagerstown Junior College.

Instructors. It appears that three elements—the persona of the vocational instructor, a known contact in the community, and an established reputation recognized by the business/industry community—contribute to the promotion of the collaborative process.

The instructors who participated in this study are typified as having drive and aggressiveness in seeking out opportunities to stay up to date in their occupational specialty. Equally important, they show consideration toward their students and a concern for the quality of instruction.

For the most part, instructors at Hagerstown Junior College have developed prior contacts in the local community. An established relationship with business and industry eliminates or eases the first major step for the instructor in the collaborative process.

Not only does having a contact eliminate the first step, it also contributes to the realization of the second
step—acceptance of the instructor. Instructors who have established contacts and cooperative relationships in the community also have professional integrity and a reputation to maintain. These attributes ease endorsement and acceptance of the instructor by business and industry.

Business/Industry. Participation by business and industry in the return-to-industry project is motivated by two factors: a desire to perform a community service and a need to achieve a tangible result. These motives for business and industry appear to be based on the size of the various organizations. Without making a distinction between business or industry, the participating businesses and industries can be divided into large and small organizations.

Most small organizations in this study had limited budgets and usually sought some tangible reward for participating, such as "free help." Although most large organizations would prefer a tangible result, all do not expect to receive one. Some of the large organizations view their participation as a service to the community. For example, if participation by a large organization results in the organization's employees enrolling in a course at HJC or if the organization recruits students from HJC for employment, these organizations feel they have contributed something to the local community.
A few large organizations were initially reluctant to accept instructors. Acceptance and endorsement was not readily made and usually required some assurance that participation would be of benefit to the organization. Acceptance of an instructor in some cases must be approved through more administrative channels than would be necessary in a small organization.

Another concern expressed by one of the engineering research and development organizations was related to the scope of instruction offered to students in engineering technology and the caliber of work performed by this organization. The work of the organization was more complex and technical than community college students are normally prepared. The industrial representative felt the time spent by the instructors was not beneficial for making improvements in their classes. He reported that in the future there may be cooperation in the technical area with four-year colleges and universities, but this same arrangement with a two-year college seemed doubtful.

Hagerstown Junior College. Hagerstown Junior College appears to have a unique reputation within the surrounding community. Because of its reputation for being community-oriented and responsive to the changing needs of the local area, a halo-type effect envelopes the college. The conse-
quences of this phenomenon have resulted in an assortment of cooperative arrangements between the College and the community over the past thirty years. Part of this effect can be attributed to the leadership, supervision, and management exhibited by the administration with regard to training and cultivating human resources—both faculty and students. Another part can be attributed to the faculty who have endeavored to develop students to their fullest potential and provide them with skills required by local businesses and industries. While this halo-type effect was evident in this study, it may not be apparent in all situations. This inservice program appears to be successful in Hagerstown because there is a total partnership with the community at large.

Recommendations

1. Those who plan and direct staff development programs should consider the unique contribution that a return-to-industry program provides as an inservice option for vocational instructors to reinforce, update, and expand technical skills and knowledge. The findings of this study provide a process model for establishing this developmental activity.
2. As a means of encouraging participation by business and industry, examples of both tangible and intangible results should be described. These results can be used as a means of promoting the opportunities available to business/industry through collaboration with education.

3. In those cases where several staff development activities are available to the faculty, care should be taken to avoid announcing orally too much information about these activities. To avoid some of the confusion regarding eligibility and procedures required for participation, concise, written information should be provided which would eliminate this problem.

4. In schools where this inservice activity has not previously been conducted and/or where there are no prior relationships with business and industry, assistance should be provided to instructors preparing for participation. This assistance should provide instructors with the necessary information for making a contact with business or industry, negotiating what duties could be performed, matching instructor needs with business/industry needs, and writing a proposal which will be acceptable to business/industry and the school administration.

5. A followup activity to determine the status of the instructor's contribution to the sponsoring business or
industry is recommended. It is also suggested that instructors at HJC who have not participated in the return-to-industry program be given an annual review of program outcomes. These recommendations were suggested by the participating instructors.

6. Program planners considering inservice activities for vocational instructors may find it necessary to initially provide funding to operationalize a return-to-industry program. A successful program may be the impetus needed for industry to contribute a portion of the financial support.

7. A follow-up of the present study should be conducted at the conclusion of the grant period to determine if results other than those reported have occurred, if the process of collaboration has been altered over time, and if collaboration has continued at a level that is of benefit to all the participants.

For other researchers who wish to conduct a naturalistic inquiry, this researcher recommends the following:

1. Use of the case study approach is a particularly effective investigative technique for the examination of dynamic systems such as the inservice program investigated in this study. Use of this technique yields descriptive information about programmatic processes which are helpful
in the interpretation and explanation of products and processes relevant to program effectiveness.

2. Keep an investigator's journal separate from your other data collection materials. This journal can take the form of a diary. It should include perceptions, experiences while in the field, fears, ideas, mistakes, and any problems that arise. This journal represents the personal views and feelings of the researcher.

3. Be cognizant of ambiguities which arise in this type of research. There will be immense amounts of data which must be recorded, coded and analyzed, but this type of data can yield vast amounts of detailed information about the natural environment and the feelings of the participants in that environment.
BIBLIOGRAPHY

Barnes, E. Personal communication, August, 1980.

Dieffenderfer, R., Kopp, L., & Capo, O. *Improving vocational teacher education department linkages with business, industry, and labor*. Columbus, OH: National Center for Research in Vocational Education (ERIC Document Reproduction Service No. ED 159 327)

Four college professors spend a work-study vacation at Kodak. *Technological Horizons in Education*, 1974, 1, 17-18;27.

Goad, H. H. In-service personnel development program for improving technical competence in Texas. In K. E. Gray and W. Petrie (Eds.), Eighth national vocational education personnel development seminar (ERIC Document Reproduction Service No. ED 112 100)

Lee, A. Personal communication, August, 1980.

Parsons, M. Back to the salt mines—career faculty return to industry. Hagerstown, MD: Hagerstown Junior College, 1979a. (ERIC Document Reproduction Service No. ED 175 354)

Parsons, M. The salt mines revisited: two years of faculty returning to industry. Hagerstown, MD: Hagerstown Junior College, 1979b. (ERIC Document Reproduction Service No. ED 180 547)

Warmbroad, C. P. Personal communication, August, 1980; September, 1980.

Appendix A

PANEL OF JUDGES
PANEL OF JUDGES

Research Associate
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Research Associate
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Assistant Professor
Virginia State University
Petersburg, Virginia 23803

Dean of Instructional Affairs
Hagerstown Junior College
Hagerstown, Maryland 21740

, Director
Staff and Program Development
Spartanburg Technical College
Spartanburg, South Carolina 29303
Appendix B

PROGRAM REVIEW CRITERIA
HAGERSTOWN JUNIOR COLLEGE
Hagerstown, Maryland

Criteria for Evaluating
Return to Industry Proposals

Return to Industry projects are selected for funding using the following criteria:

1. The length of time that an instructor has been out of the industrial setting:
 a) Initial return 10 points
 b) First return less than four weeks 7 points
 c) Completed four weeks 5 points

2. A description of the technological advances or revisions that have occurred within the industry since the instructor last worked in the industry which change significantly that industry's production design or delivery system. 15 points

3. Demonstration that the changes within the industry are related to skills or knowledge needed by the student and, therefore, required of the instructor. 15 points

4. Availability and willingness of an industry to provide the learning experience needed by the instructor. The proximity of the industry and the comprehensiveness of the experience will be taken into consideration. 10 points

5. The comprehensiveness of the industrial experience package prepared by the instructor. Particular attention will be paid to the integration of the industrial learning experience and the skills and knowledge to be transmitted to the students. 10 points

72 points total

OIA/Revised 1-23-80
Appendix C

LETTER OF INTENT TO COLLEGE
March 7, 1980

Dr.,

HAGERSTOWN JUNIOR COLLEGE

Dear

We would be pleased to have work at Company for four weeks in June as part of the Return-to-Industry program.

We are in the process of developing a program for which will involve him in as many facets of Industrial Accounting as feasible within a limited time frame. We anticipate having the program completed by April 30, 1980 at which time we will meet with you or your representative to review it.

We will be glad to meet with you or your representative during the four week period and at the conclusion of same, will provide you with a written assessment of experience.

Very truly yours,

COMPANY

Vice President - Finance
Appendix D

PROPOSAL FORMAT
I. Subject Matter Area
 A. Indicate in brief compass the specific area of specialization to be reviewed, updated or increased.
 B. Specify how the proposed project will be applied in your teaching area.
 C. Indicate the length of time since your last involvement in industry.

II. Objectives
 A. Identify what you plan to do.
 B. Indicate the time frame required to accomplish the task.
 C. List any specific resources necessary to accomplish the task.

III. Location
 A. Where will the project be conducted?
 B. Is the business, industry or agency willing to host you while you conduct the project? Please provide evidence of the commitment, preferably in writing.

IV. Evaluation
 A. A report detailing the accomplishments of the project will be submitted to the Office of Instructional Affairs.
 B. An assessment of the individual's activity will be submitted to the Office of Instructional Affairs by the host agency representative.
 C. An on-site visit will be made by a college representative during the project.

OIA/Revised 1-23-80
Appendix E

NOTICE OF APPROVAL
MEMORANDUM

TO:

FROM:

SUBJECT: Return to Industry - 1980

DATE: April 16, 1980

On April 8, 1980, the Professional Development Committee reviewed your return-to-industry proposal.

The group felt that your presentation was valid and met the guidelines of the grant; therefore, you have been awarded four weeks (May 27 through June 23) of return to industry at the appropriate salary level.

As a part of the return-to-industry grant requirements, you will be expected to attend a pre-seminar to be held during the May workshop. At that time you will be asked to discuss the focus of your project and the educational objectives which you seek to achieve.

Further, at the conclusion of the return to industry, you will be required to participate in a post-seminar in which you will disseminate the results of your activity to other members of the college staff.

Finally, within one month after you complete your return to industry, please submit an evaluation report to the Office of Instructional Affairs. Last year's project evaluators strongly urged that these reports focus on the educational applications of your experience.

We will discuss the on-site evaluation component of your project during the May workshop seminar.

If you have any immediate questions, please do not hesitate to contact me.
RETURN TO INDUSTRY
REPORT OF ON-SITE VISIT

Participating Faculty Member:
Industry: Company, Hagerstown, Maryland
Date of Visit: June 13, 1980
Attendees:
Company
Dean of Instructional Affairs, HJC
Assistant Professor, HJC

The visit took place to assess the return-to-industry project of Mr. Mr. stated that the objectives of the return-to-industry activity had been (1) to provide with a variety of experiences in personnel administration, (2) to use his expertise in technical communication by having him instruct support staff in effective written communication, and (3) to have him review and assess training materials available.

In keeping with these objectives, has performed the following tasks:

1. He assisted in the preparation of the Affirmative Action Plan for the Hagerstown facility.
2. He reviewed several grievance documents in preparation for their being reviewed by.
3. He visited the Farmingdale, New York, facility and worked with training director, to review those training materials available from The purpose of the review was to determine the usefulness of the training materials in the Hagerstown plant.
4. He worked with local training director, in the development of a training plan to prepare technicians for a new drilling procedure.
5. He has been conducting a training activity for technical support staff in effective written communication.
6. He worked with chief of safety and security, to develop a training program to sensitize employees to the importance of safety and security.
7. He participated in the recruitment process conducted by by writing position advertisements and reviewing resumes submitted for open positions.

indicated that the quality and quantity of work far exceeded his expectations. The tasks performed and the products delivered.
were of benefit to the company and were immediately usable. Further,

stated that Mr. or other members of the college staff
are welcome to return to

My assessment of this return to industry is that it has met the objectives
established by Mr.

His work in grievance procedures, affirmative
action, recruitment, effective written communication, and training design
will be directly applicable to the courses which he teaches for HJC. Further,
a review of available training materials will assist the college by making us
aware of the current state of training in industry and will provide us with
a source of supportive materials for our classes. Finally,
satisfaction with Mr. has already resulted in continued interaction
following the conclusion of the return to industry. The outcome is the
generation of FTE for the college.

Dean of Instructional Affairs
Hagerstown Junior College

6/19/80
Appendix G

BUSINESS/INDUSTRY EVALUATION
July 8, 1980

Dr.
Dean of Academic Affairs
Hagerstown Junior College

Dear Dr.:

We were very pleased to have [Name] with us again this year as part of the Return to Industry Program. I think that the four-week period that he was here this year enabled us to have a far richer experience than we were able to accomplish in the two-week period last year. Since and I were able to do some planning before hand this year, we were able to structure his time in a way which I think was very meaningful both to him and to [Institution]. Specifically, he was involved in three projects this year at [Institution]:

1. He planned and conducted a 10-hour teaching unit for selected inpatients at [Institution] who were suffering from depression. This unit consisted of a didactic and discussion group on the topic of depression-education. This was a pilot project to evaluate the benefits of information per se to the patient regarding his or her illness. The feedback from the patients was positive.

2. He did some research and field work for us to determine what sources of public funding, if any, are now available for mental-health-education projects in the community. Part of this involved a trip to the National Institute of Mental Health in Washington, D.C. He presented me with the results of his inquiries.

3. He also participated in the Therapeutic Recreation program at [Institution] by giving demonstrations of fly tying for the patients.

Once again we were glad to participate in this program, and particularly pleased to work with [Name]. I would like to follow-up on the depression-education topic by once again asking him to conduct an inservice training for us sometime during the coming year, reviewing this teaching unit for staff in case some of them would like to use it here at [Institution] either in individual work or group work with patients in the future.
If H.J.C. plans to continue participating in the Return to Industry Program and if you have any staff members, particularly ones with some background in mental-health-related fields, we will be glad to continue our participation in the future.

Sincerely,

Clinical Psychologist
Appendix H

INSTRUCTOR SUMMARY REPORT
To: Dr.
From:
Re: Return to Industry
Date: September 1980

Working for one month at the restored, historical Maryland Theatre in downtown Hagerstown had three emphases:

A) to observe and participate in the general operational procedures of this theatre, concentrating on grant writing, contracts, and publicity.

B) to implement the June schedule, consisting of five projects:
- a Gershwin concert, country-western concert, classic film festival, gospel-music concert, and the Miss Maryland Beauty-Scholarship pageant.

C) to advise in planning the Fall schedule.

The educational application of the experience:
All of the above activities will aid and assist in teaching all the theatre courses at Hagerstown Jr. College, as the experience was an integral part of each course we offer:
- Introduction to the Theatre, Elements of Dramatic Production, Twentieth Century Drama, Fundamentals of Acting and Public Speaking. The experience provided "on-hands" overview of production processes, the basic elements of theatre management, box-office procedures, and policies of hiring, firing and dealing with theatre and C.E.T.A. employees. Construction,
set design, lighting, and costuming were all touched upon. Observation of training and skill of theatre employees and their functions in a community theatre setting was given attention. The complications of the "politics" of theatre was also observed. The many theatrical experiences publicized, planned and accomplished by me, will enhance my lectures in the classroom and the community, broaden and enrich my attitudes and my experiences (and my students, hopefully) because all the endeavors were first hand ventures. It is hoped that the students will realize, from first hand experience, the finances, the cultural advantages, and the necessity for trying to maintain this historical theatre center as part of their cultural heritage.
The two page vita has been removed from the scanned document. Page 1 of 2
The two page vita has been removed from the scanned document. Page 2 of 2
A CASE STUDY OF A RETURN-TO-INDUSTRY PROGRAM, AN INSERVICE APPROACH FOR VOCATIONAL INSTRUCTORS AT A TWO-YEAR POSTSECONDARY INSTITUTION

by

Barbara Helen Kline

(ABSTRACT)

This study was designed to examine a return-to-industry program, an inservice approach for vocational instructors at a two-year postsecondary institution. Specifically, the study (a) examined the process of collaboration with business and industry, and (b) assessed the impact of the return-to-industry program on the vocational instructors and the participating businesses and industries.

A naturalistic inquiry paradigm using the case study approach was the research design used for this study. This design was useful in identifying and describing the various patterns that emerged with regard to the process of collaboration with business/industry and education. The design was chosen because there exists a need to document the dynamics of linkage between business/industry and education.

Hagerstown Junior College was purposefully selected for this study. This site was chosen because it provided the
researcher an opportunity to study a maximum variety of individuals from different vocational programs as well as participating businesses and industries in the Hagerstown area.

The data was in the form of field notes obtained during observation, semi-structured, open-ended interviews, and an examination of the institutional records and documents associated with the return-to-industry inservice program.

An inductive comparative analysis of the data resulted in patterns, categories and themes which reflected the purpose of the research. A portrayal of the process of collaboration and the impact of the return-to-industry program is provided through a thematic narrative.

The results of this study provide a process model for establishing a return-to-industry program for vocational instructors who wish to reinforce, update, and expand their technical skills. In addition, the results demonstrate the benefits to be derived by business, industry, and education through collaboration.

Based on the findings of this study, it is recommended that a followup of the present study be conducted at the conclusion of the funding period to determine if results other than those reported have occurred, if the process of collaboration has been altered over time, and if collabora-
tion has continued at a level that is of benefit to all the participants.