EVALUATION OF WORKLOAD ESTIMATION TECHNIQUES IN SIMULATED PILOTING TASKS EMPHASIZING MEDIATIONAL ACTIVITY,

by

Mansour Rahimi

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Industrial Engineering and Operations Research

APPROVED:

Dr. W. W. Wierwille, Chairperson

Dr. J. S. Greenstein Dr. K. H. E. Kroemer

Dr. C. E. Nunnally Dr. H. L. Snyder

July, 1982
Blacksburg, Virginia
ACKNOWLEDGEMENTS

This research was sponsored jointly by the NASA Ames Research Center, Moffett Field, California and Virginia Polytechnic Institute and State University. Thanks are due to , who served as grant monitor.

The author wishes to extend his special gratitude to Dr. Walter W. Wierwille, major advisor, whose constant guidance, assistance, and support made this dissertation possible. I would like to express my appreciation to each of my committee members, whose valuable comments helped immensely in the accomplishment of this research.

Special thanks are also extended to and for their practical help and valuable discussions throughout this research. I also thank those people, not mentioned here, who gave their technical and moral support.

Finally, deep appreciation goes to for her love, understanding, and support throughout the years. She is also thanked for typing this dissertation.
CONTENTS

ACKNOWLEDGEMENTS ... ii

INTRODUCTION .. 1

Candidate Workload Estimation Techniques 4
 Opinion ... 4
 Spare Mental Capacity 4
 Primary Task Measures 4
 Physiological Measures 4

LITERATURE REVIEW ... 5

General Reviews ... 5
 Opinion .. 8
 Rating Scales .. 9
 Spare Mental Capacity 15
 Time estimation 19
 Tapping regularity 21
 Physiological Measures 22
 Pupil dilation 23
 Pulse rate variability 24
 Primary Task Measures 27
 Mediational reaction time 28
 Control movements per unit time 28

RESEARCH OBJECTIVES 30

METHOD ... 31

Experimental Design 31
 Apparatus ... 33
 Flight simulator 33
 Time estimation 35
 Tapping regularity 35
 Pupil dilation 35
 Pulse rate variability 37
 Primary Task Design 37
 Adjustment of Task Difficulty 41
 Subjects ... 42
Appendix

A. EXPERIMENTAL APPARATUS

- General Description of the Experiment for Participants
- Participant's Consent Form
- Flight Task Practice Instructions
- Flight Task Instructions

B. INSTRUCTIONS

- General Description of the Experiment for Participants
- Participant’s Consent Form
- Flight Task Practice Instructions
- Flight Task Instructions

C. WIND TRIANGLE PROBLEMS

- Wind Triangle Problems, Instructions, and Training

D. MEASUREMENT TECHNIQUE INSTRUCTIONS

- Modified Cooper-Harper Rating Scale Instructions
 - Overview
 - Important Definitions
 - Rating Scale Steps
 - How You Should Think of the Rating
- Multiple Descriptor Ratings
 - Overview
 - Important Definitions
 - Rating Scale Steps
 - How You Should Think of the Rating
- Familiarization Session Instructions
 - (Physiological Measures)
- Physiological Sensor Description
- Time Estimation (Secondary Task) Instructions
- Tapping Regularity (Secondary Task) Instructions

E. DEFINITIONS AND DESCRIPTIONS OF MEASURES USED

- Opinion measures
- Modified Cooper-Harper Ratings
- Multiple Descriptor Ratings
- Spare Mental Capacity Measures
 - Time Estimation
 - Tapping Regularity
- Physiological Measures
 - Pulse Rate Variability
 - Pupil Dilation
- Primary Task Measures
 - Mediational Reaction Time
 - Percent Error Response
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Experimental Design Matrix for Sensitivity Analysis</td>
<td>32</td>
</tr>
<tr>
<td>2. Classification of Universal Operator Behavior Dimension</td>
<td>38</td>
</tr>
<tr>
<td>3. Overall ANOVA Summary Table for Sensitivity</td>
<td>53</td>
</tr>
<tr>
<td>4. Summary Table for Rating Scales Simple Effects F-Tests</td>
<td>56</td>
</tr>
<tr>
<td>5. Summary Table for Secondary Tasks Simple Effects F-Tests</td>
<td>58</td>
</tr>
<tr>
<td>6. Summary Table for Primary Tasks Simple Effects F-tests</td>
<td>60</td>
</tr>
<tr>
<td>7. Summary Table for Physiological Measures Simple Effects F-tests</td>
<td>62</td>
</tr>
<tr>
<td>8. List of the Sensitive Techniques</td>
<td>63</td>
</tr>
<tr>
<td>9. Estimating Number of Subjects Required for Sensitivity</td>
<td>65</td>
</tr>
<tr>
<td>10. Newman-Keuls Test for the Sensitive Measures</td>
<td>67</td>
</tr>
<tr>
<td>11. Classification of Sensitive Techniques</td>
<td>69</td>
</tr>
<tr>
<td>12. ANOVA Summary Table for Experience Level</td>
<td>70</td>
</tr>
<tr>
<td>13. MANOVA Summary for Intrusion Analysis (Wilk's Criterion)</td>
<td>77</td>
</tr>
<tr>
<td>14. Intrusion ANOVA Summary for Error Rate</td>
<td>78</td>
</tr>
<tr>
<td>15. Intrusion ANOVA Summary for Mediational Reaction Time</td>
<td>79</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>3.</td>
<td>Multi-descriptor bipolar adjective rating scale for attentional demand. 13</td>
</tr>
<tr>
<td>4.</td>
<td>Procedural steps for the sensitivity analysis. 51</td>
</tr>
<tr>
<td>5.</td>
<td>Mean z-scores for Cooper-Harper rating scale measure vs. load. 57</td>
</tr>
<tr>
<td>6.</td>
<td>Mean z-scores for the time estimation measure vs. load. 59</td>
</tr>
<tr>
<td>7.</td>
<td>Mean z-scores for the mediational reaction time measure vs. load. 61</td>
</tr>
<tr>
<td>8.</td>
<td>Mean z-scores versus experience level. 72</td>
</tr>
<tr>
<td>9.</td>
<td>Procedural steps for the intrusion analysis. 75</td>
</tr>
<tr>
<td>10.</td>
<td>Photograph of experimental equipment. 112</td>
</tr>
<tr>
<td>11.</td>
<td>Photograph of a subject in the aircraft simulator wearing the physiological sensor. 113</td>
</tr>
<tr>
<td>12.</td>
<td>A sample wind triangle problem for a GROUND SPEED question. 125</td>
</tr>
<tr>
<td>13.</td>
<td>A sample wind triangle problem for an AIRCRAFT HEADING question. 129</td>
</tr>
<tr>
<td>14.</td>
<td>A sample wind triangle problem for an ETA question. 130</td>
</tr>
</tbody>
</table>
INTRODUCTION

In modern aviation, cockpit instrumentation, communications procedures, and mission operations are becoming more complex. This higher system complexity places additional mental requirements on aircrew personnel. To complete missions successfully, aircrew members have to meet increasing system demands. During a mission phase, aircrew members may become overburdened either instantaneously or for prolonged periods of time. The result may be degradation of aircrew/aircraft performance. Significant aircrew errors may lead to an accident. Such concerns have resulted in the need to measure aircrew workload.

In designing new systems or modifying the existing ones, it is becoming imperative for the cockpit and system engineers to consider total mental workload demands placed on the pilots. To accomplish this task, accurate measurement of pilot mental workload remains a necessary part of an optimum pilot/aircraft design.

Over the past thirty years, a large body of literature has been accumulated on operator workload assessment techniques. Wierwille and Williges (1978) have pointed out
the lack of workload research in the area of flight operations and evaluations, and Wierwille (1979) has suggested the need for a more comprehensive study of the existing techniques. He explained that to select a technique for a given task, the following attributes should be included:

1. The technique should accurately and reliably assess pilot workload.
2. The technique should be well suited to the specific problem situation.
3. The introduction of the technique should not significantly change the behavior of the pilot/vehicle system.

The purpose of this research was to examine workload estimation techniques and help fill the need for information in the above three areas.

Among the tasks that pilots are routinely called upon to perform are the so-called mediational tasks. These tasks usually involve problem solving activity. A mediational task may also involve activities such as calculation, coding, interpolation, comparison, and extrapolation. In modern aircraft, these activities make up a substantial part of the pilot's workload. Because mediational workload is very important, the present study was directed at
determining workload estimation techniques suitable for measurement of mediational load. Several techniques for assessing pilot workload were compared with the goal of evaluating their sensitivity to mediational loading. A workload estimation technique is said to be sensitive if it reliably discriminates between differences in operator mental loading requirements of an assigned task. These techniques were also compared for their level of intrusion when introduced in the mediational task environment. A workload estimation technique is said to be intrusive if a significant primary task performance degradation is observed due to the use of the technique and associated equipment. A highly intrusive technique may substantially degrade a pilot's performance, creating hazardous situations in actual flight operations.

The present study examined eight techniques which are likely to be sensitive measures of pilot mental workload in simulated and actual flight operations. Comparative statistical evaluations of the measures were conducted. This research is original in that no previous study has examined both sensitivity and intrusion of a group of mental workload estimation techniques in a piloting task emphasizing mediational activity.
Candidate Workload Estimation Techniques

Two techniques were selected from each of the four major workload assessment technique categories proposed by Wierwille and Williges (1978). The techniques have been chosen because of the promise shown in previous research and because of their compatibility with the mediational primary task.

The eight mental workload estimation techniques used in this experiment are:

Opinion.
1. Modified Cooper-Harper rating scale
2. Multi-descriptor rating scale

Spare Mental Capacity.
Secondary task measures:
3. Time estimation
4. Tapping regularity

Primary Task Measures.
5. Mediational reaction time
6. Control movements per unit time

Physiological Measures.
7. Pulse rate variability
8. Pupil dilation
LITERATURE REVIEW

General Reviews

Research literature concerning mental workload is numerous and remarkably diverse. The following is a general discussion of review articles which have surveyed the concept of mental workload and its associated estimation techniques.

Reising (1972) provides one of the earlier reviews of operator mental workload. This report is divided into several sections providing background information on the relevance of workload to the piloting task. The mental workload measures are divided into two categories, physiological and psychological measures. One section of this report concentrates on workload data analysis and reduction. Gerathewohl (1976), in a status report, categorized pilot and aircrew workload into perceptual and mental workload. This review classifies piloting tasks as primary or secondary for quantitative determination of workload. Workload measures are classified as psychological, physiological, and operational.
A critical survey of workload, fatigue, and associated assessment techniques was conducted by Gartner and Murphy (1976). The notions of workload are discussed as a set of task demands, efforts, and activities or accomplishments. Delineation of workload techniques is categorized as task requirements, task performance, psychophysiological, and opinion measures. Schiflett (1976) compiled a selected annotated bibliography of methodologies that measure operator mental workload in operational aircrew systems. Eighty-three articles were selected and placed in seven categories. The categories were general reference, systems analysis, subjective techniques, psychomotor, information processing, physiological measures, and combined methodologies.

Roscoe (1978) edited an AGARD (Advisory Group for Aerospace Research and Development) report on various categories of mental workload techniques. This report contains sections on physiological and subjective opinion measures. A section is also devoted to objective methods including laboratory, analytic, and synthetic techniques in simulated and in-flight environments (Chiles, 1978).

Hartman and McKenzie (1979) edited another AGARD report which contains 19 papers. The measurement domains were sensory threshold function tests, motor function, and
responses to psychological, physiological, and chemical excitation. The methodologies used were laboratory and in-flight measurement and modeling. Wierwille and Williges (1978) provided the most comprehensive survey and classification of mental workload estimation techniques. Over 400 documents were analyzed in this report. To classify these documents, a two-dimensional scheme was employed. One dimension was the universal operator behaviors according to Berliner, Angell, and Shearer (1964), which includes categories of perceptual, mediational, communications, and psychomotor processes. The other dimension was workload assessment methodologies, which were cataloged into 28 procedures under the general categories of subjective opinion, spare mental capacity, primary task, and physiological measures. A brief overview of the various workload assessment techniques was presented along with a set of criteria that need to be considered in evaluating the feasibility of these measures. Wierwille and Williges (1980) have updated this report in a publication which contains a bibliography of more than 600 citations.

The Wierwille and Williges (1978) report provided a conceptual framework that was employed later by Connor (1981). In Connor's report a comparison of the sensitivity and intrusion of 20 pilot workload assessment techniques was
conducted. This research used a psychomotor loading task in a three degree-of-freedom moving-base aircraft simulator. Only five measures demonstrated useful sensitivity. These measures were Cooper-Harper ratings, Workload Compensation Interference/Technical Effectiveness ratings, time estimation standard deviation, pulse rate mean, and number of control movements per unit time. None of the techniques was found to be intrusive in this experiment.

The remainder of this chapter contains literature reviews addressing each proposed workload estimation technique according to the Wierwille and Williges (1978) classification scheme, namely opinion, spare mental capacity, physiological, and primary task measures.

Opinion

Opinion techniques are commonly used in most studies concerning assessment and evaluation of workload measures. The general forms of opinion measures are structured or unstructured questionnaires, rating scales, and interviews. Psychometrically-derived rating scales are usually quantitative and therefore are easier to analyze than questionnaire procedures. Rating scales have the advantage of being nonintrusive, often sensitive, and widely acceptable. A disadvantage of rating scales is that the
rating is usually obtained after the actual flight phase. Thus, subjects are relying on their memory in providing a rating. Other disadvantages include possible sensitivity to emotional and physical state, training, and fatigue.

Rating Scales

Most rating scales have been designed for situation-specific applications and have not been tested for their reliability and validity as measures of pilot mental workload. Furthermore, only a few rating scales have been used in more than one study.

One rating scale which has received considerable application is the Cooper-Harper rating scale (Cooper and Harper, 1969), shown in Figure 1. This rating scale was not systematically designed according to rigorous psychometric developments. Primarily, the scale was designed for assessing handling qualities of aircraft. The underlying assumption in this scale is that a pilot's rating of perceived task loading is directly proportional to the pilot's actual task loading. The pilot is given a set of instructions describing the proper procedure for using the rating scale and defining the terms used in the scale. The pilot follows a logic tree for making his/her rating. This scale contains 10 categories with descriptors that are
Figure 1: Cooper-Harper rating scale (Cooper and Harper, 1969).
believed to be mutually exclusive. The descriptors of the scale indicate various degrees of "flyability" of an aircraft.

A modified Cooper-Harper scale was designed (Wierwille, 1982) containing descriptors pertaining to "mental effort" of a task. The pilot's decisions follow a logic tree as in the original Cooper-Harper scale. This scale is less situation-specific than the original Cooper-Harper scale. In particular it does not deal with handling. Figure 2 shows the modified Cooper-Harper scale.

The second rating scale used in this experiment is a multi-descriptor bipolar adjective (semantic differential) rating scale (Appendix D). An example of this scale is shown in Figure 3.

The bipolar adjective rating scale is one of the four major types of psychological scales. The other three scales are the Guttman (scalogram) scale, the Thurstone scale, and the Likert scale. The interested reader is referred to Guilford (1954), Edwards (1957), and Nunnally (1967) for detailed construction and explanation of each scale. Semantic differential rating scales were developed as a method for measuring various aspects of meaning towards objects or concepts (Osgood and Suci, 1955).
Figure 2: Modified Cooper-Harper rating scale (Wierwille, 1982).

DIFFICULTY LEVEL OPERATOR DEMAND LEVEL RATING

VERY EASY HIGHLY DESIRABLE OPERATOR MENTAL EFFORT IS MINIMAL AND DESIRED PERFORMANCE IS EASILY ATTAINABLE 1

EASY DESIRABLE OPERATOR MENTAL EFFORT IS LOW AND DESIRED PERFORMANCE IS ATTAINABLE 2

FAIR MILD DIFFICULTY ACCEPTABLE OPERATOR MENTAL EFFORT IS REQUIRED TO ATTAIN ADEQUATE SYSTEM PERFORMANCE 3

MINOR BUT ANNOYING DIFFICULTY MODERATELY HIGH OPERATOR MENTAL EFFORT IS REQUIRED TO ATTAIN ADEQUATE SYSTEM PERFORMANCE 4

MODERATELY OBJECTIONABLE DIFFICULTY HIGH OPERATOR MENTAL EFFORT IS REQUIRED TO ATTAIN ADEQUATE SYSTEM PERFORMANCE 5

VERY OBJECTIONABLE BUT TOLERABLE DIFFICULTY MAXIMUM OPERATOR MENTAL EFFORT IS REQUIRED TO ATTAIN ADEQUATE SYSTEM PERFORMANCE 6

MAJOR DIFFICULTY MAXIMUM OPERATOR MENTAL EFFORT IS REQUIRED TO BRING ERRORS TO MODERATE LEVEL 7

MAJOR DIFFICULTY MAXIMUM OPERATOR MENTAL EFFORT IS REQUIRED TO AVOID LARGE OR NUMEROUS ERRORS 8

MAJOR DIFFICULTY INCREASE OPERATOR MENTAL EFFORT IS REQUIRED TO ACCOMPLISH TASKS, BUT FREQUENT OR NUMEROUS ERRORS PERSIST 9

IMPOSSIBLE INSTRUCTED TASK CANNOT BE ACCOMPLISHED RELIABLY 10
ATTENTIONAL DEMAND refers to the portion of your total time required (or the amount of attention required) to perform the instructed task.

YOUR RATING OF ATTENTIONAL DEMAND

A B C D E F G H I J K

NONE MODERATE EXTREMELY HIGH

Figure 3: Multi-descriptor bipolar adjective rating scale for attentional demand
Osgood and Suci (1955) used factor analysis to distinguish among three general factors of meaning that tend to cluster with the semantic differential scales: evaluation (good/bad), potency (strong/weak), and activity (exciting/calm). Nunnally (1970) determined an additional factor of familiarity (clear/complex) which can be clustered with the other three factors.

The multi-descriptor rating scales (total of six) used in this experiment employ all four factors mentioned above. Also, the results of a study by Hart, Childress, and Hauser (1982) were useful in designing the scales. One advantage of the multi-descriptor scales used is that the scores obtained may be analyzed by parametric methods. Baker, Hardyck, and Petrinovich (1970) compared the sensitivity of the t-test to equal interval scores and scores representing three situations of interval size inequalities (randomly varied, inequality at the extremes of the scale, and half equal and half randomly varied interval sizes) under three frequency distributions (normal, rectangular, and exponential). Interval size inequalities and frequency distributions were found to have no effect on Type I error, but the standard error of the estimate (variance) was influenced by extreme inequality of interval sizes. Baker et al. (1970) concluded that ordinal data (such as those
obtained from the multi-descriptor scales used in this experiment) may be analyzed by interval statistics. A major problem with this scale is concept-scale interaction. That is, the meaning of the scale may depend on the concept being rated (such as hard/easy to describe a test or a person).

In the present experiment, each subject rated six bipolar adjective scales for each experimental flight. Each scale was rated by circling one of the letters A through K. Letter A represents a score of 0 (the lowest rating) and letter K represents a score of 10 (the highest rating). The score on each scale (from 0 to 10) is representative of a pilot's experience in that aspect or dimension of imposed mental workload. Hopefully, the six scales (one descriptor for each scale) take into account the multi-dimensionality of pilot mental workload.

Spare Mental Capacity

Spare mental capacity can be considered as a measure of the difference between the mental capacity required to perform a given task and the total capacity of the operator (Wierwille and Williges, 1978). The important assumptions (Senders, 1970) associated with this concept are that (a) the operator is a single-channel system, (b) the channel has a fixed capacity, (c) the capacity has a single metric by
which any task can be measured, and (d) the constituents of workload are linearly additive. Chiles (1977) maintained that the first two assumptions (i.e., single channel, fixed capacity) are only important under certain circumstances. Schiflett (1976) explained that the first two assumptions ignore the adaptive nature of human performance in a multi-task real-world operational setting. Consequently, extrapolated criteria become irrelevant to real-world situations. Kahneman (1973) proposed a model which describes human operators as multi-channel, fixed capacity systems. Maintaining Sender's (1970) assumptions, the operator's spare mental capacity supposedly decreases as his/her workload increases.

In general, the following three approaches have been used to measure spare mental capacity:

1. Task analytic
2. Secondary task
3. Occlusion

The task analytic approach involves the use of mathematical/theoretical methods to assess spare mental capacity. Task analytic methods assume that all task components, performed serially, require specific periods of time to complete. Task loading occurs when the sum of theoretical time durations for performing the task
components exceeds the actual time available for overall completion of the task.

The secondary task approach involves the presentation of an additional (secondary) task to be performed only when the main (primary) task is being performed satisfactorily. Theoretically, the performance on the secondary task should decrease as the difficulty of the primary task increases. Secondary task performance, then, becomes an indirect measure of operator workload.

The occlusion approach involves a time sharing technique in the form of suppressing information inputs to the operator, that is, by giving the operator time samples of input information. Occlusion is usually accomplished by blanking of the visual display or moving an opaque blind over the operator's eyes. Workload is assumed to increase as the proportion of off-time (non-viewing time) decreases. The occlusion method can be used to obtain an estimate of the information content (mostly visual) in the operator's task (Senders, Kristofferson, Levison, Dietrich, and Ward, 1967).

The spare mental capacity techniques used in the present study are from the secondary task group only. Task analytic methods are fundamentally theoretical approaches based primarily on laboratory data. Validity of task analytic
results are in question when applied to the actual (i.e., in-flight) test and evaluation environments. Also, a major revision of the fundamental task analytic approach has been provided by Wingert (1973). He suggests the concept of "function interlacing" in which total processing time is less than the sum of the individual task component times. The occlusion technique, on the other hand, may cause serious safety problems. For example, it could not be used in actual take off, landing, and difficult maneuvers. Also, Hicks and Wierwille (1979) indicated that the occlusion method was not sensitive to task loading in a simulated driving situation.

The following factors should be considered in selecting secondary task measures (Knowles, 1963):

1. The secondary task should be easy to learn, and simple to perform and score.
2. The task should have minimum interference with the primary task.
3. The rate of presentation should be determined for each specific subject.

Levine, Ogden, and Eisner (1978) provide the most comprehensive literature review and annotated bibliography concerning the use of the secondary task method in estimating operator spare mental capacity. The assumption apparent in
the Levine et al. (1978) review papers is that the operator performs the secondary task only when he/she has additional or free mental resources available from the instructed primary task. This assumption emphasizes the serious problem of secondary task interference on the primary task performance. Two ways to approach this problem are: 1. careful selection and design of primary and secondary task procedures and equipment to minimize their physical interference, and 2. accurate design of instructions for effective application of the secondary task while performing the primary task. Pilots must be thoroughly instructed to attend to the primary task and to timeshare the secondary task when they have free mental resources. The intrusion (interference) of a variety of secondary tasks has been recognized and studied by Hawkins, Church, and deLemos (1978), Hicks and Wierwille (1979), Whitaker (1979), and Wickens (1974). The present study used an experimental design which would allow detection of any significant intrusion of the selected techniques.

Time estimation. In theory, the degree of accuracy with which individuals make short time estimates (e.g., 10 to 15 seconds) in a secondary task mode is a potential measure of mental workload (Hart, 1976). This technique is generally easy to instrument and score. One method of estimating time
is production. In this method the pilot is presented with a verbal or a visual signal to begin producing the time interval. The pilot presses a switch to indicate the beginning of the interval and his second activation of the switch indicates the end of the interval.

There are two strategies an individual may use to estimate time while performing a primary task (Hart and McPherson, 1976). One is the active mode of time assessment in which the individual consciously keeps track of the passage of time using strategies such as counting. The other is the retrospective mode of time assessment in which the individual estimates the amount of time elapsed at a few discrete points in time, referring to memory of the events that occurred. In other words, in this mode, they do not mentally or actively count time intervals. They estimate the time elapsed.

Hart, McPherson, and Loomis (1978) explained that, theoretically, active time estimates increase in length and variability with increase in mental workload because of distractions in time keeping produced by other activities. Retrospective time estimates, however, decrease in length and increase in variability with increase in mental workload because of the learned correlation between passage of time and the occurrence of events. In other words, perceived
passage of time decreases when the rate of activity increases.

In the present study, the retrospective time estimation mode was emphasized. Subjects were specifically instructed not to count the passage of time.

Tapping regularity. The regularity with which individuals successively move their limbs (e.g., tapping a finger or a foot to depress a switch) is believed to be affected by the increase in the difficulty of a primary task (Michon, 1964). Indications are that tapping regularity decreases as the difficulty of the primary task increases. In other words, there is greater variability in the tapping interval as mental loading increases. According to Michon (1966), subjects must be carefully instructed not to count between tapping intervals if the technique is to be used for workload assessment. In this respect, it is similar to the retrospective mode of time estimation.

Michon (1966) devised and explained a complex scoring formula to account for the variability of the tapping intervals. Michon (1964, 1966) found that tapping regularity measures were sensitive to an increase in difficulty of a variety of perceptual and cognitive tasks (e.g., choice reaction task, letter detection, multiplication, and Bourdon-test). This measure was used by Johannsen,
Pfendler, and Stein (1976) in a simulated instrument landing approach of a STOL aircraft simulator. Mental workload was increased by an increase in autopilot failures. Tapping regularity decreased with increases in the primary task loading.

Physiological Measures

The underlying concept in physiological measures is that involuntary physiological changes (i.e., circulatory system, nervous system, respiratory system, and body fluid chemistry) occur when the human operator experiences increasing workload. These physiological changes can be monitored and used as a measure of workload. The exact functional relationships between the changes in loading and the resulting physiological changes need not be known precisely to make this measure useful. Two major disadvantages of using physiological responses as mental workload measures are:

1. Possible contamination of the measure by subject's physical effort, fatigue, circadian rhythms, level of arousal, and stress.
2. Possible large differences among subjects in their physiological responses to the primary task mental loading.
With advancement in medical instrumentation technology, physiological measures are becoming more reliable and less intrusive.

A wide variety of physiological measures have been proposed for estimating workload, as is evident from the overview papers by Perelli (1979), Rolfe and Lindsey (1973), Spyker, Stackhouse, Khalafalla, and McLane (1971), Ursin and Ursin (1979), and Wierwille and Williges (1978). In the present study, two techniques (pupil dilation and pulse rate variability) were selected which, on the basis of the available literature, show promise in assessing cognitive or mediational workload. These two techniques are easily implemented and are not likely to be intrusive.

Pupil dilation. It has been demonstrated that the pupil dilates as mediational workload increases (Beatty, 1976). The physiological processes involved are very complex. Increasing workload stimulates the central nervous system. The pupil, in turn, responds to the increased central nervous system activity by dilating or enlarging its diameter. It is not clear whether the changes are a result of changes in mental loading directly or a result of changes in emotional stress (Beatty, 1976). In general, an increase in pupil diameter occurs with increased cognitive load. However, when an operator is subjected to overload, pupil
constriction may occur (Noel, 1974). Support for using pupil diameter as a measure of pilot mental workload is presented by Westbrook, Anderson, and Pietrzak (1966). The loading task was a variable difficulty control dynamics tracking task. The results indicate that the pilots' pupil diameter increased with decreases in control dynamics stability. A larger increase in pupil size was observed when the pilot approached loss of control. Also, Krebs, Wingert, and Cunningham (1977) studied pupil diameter changes of 12 pilots in a fixed-base Boeing 737 simulator. Turbulence and degree of autopilot engagement were used to create an increase in pilot loading. They found that pupil diameter changes accounted for 89% of the variability in pilots' Cooper-Harper rating scale scores of mental workload.

Pulse rate variability. Pulse rate can be easily obtained by measuring the instantaneous changes in peripheral artery pressure. Pulse rate is closely related to heart rate.

Generally, a heart rate variability measure is obtained by processing interbeat intervals of an instantaneous heart rate output. For example, standard deviation of consecutive heart beat (R-R nodes on an EKG waveform) time intervals is often used as a heart rate variability measure. Most of the
support for using this measure has been generated by studies which used the electrocardiogram as a data recording instrument.

In theory, heart rate variability, as a measure of operator workload, decreases as mental load increases. In recent years, several studies have supported this theory. For example, Ettema and Zielhuis (1971) found that two measures of sinus arrhythmia (heart rate variability) decreased as task load (auditory choice reaction task) increased. The two measures took into consideration the magnitude as well as the frequency of variation in heart rate. Kalsbeek (1973) found the same results involving similar binary choice tasks. He introduced visual cues into his task design. He asked the subjects to depress a pedal if they saw a light flash and to depress a switch if they heard a tone. It was hypothesized that "concentration of attention" causes a reduction in heart rate variability. Also, the results of a study by Boyce (1974) indicate that heart rate variability decreases with increase in mental load. His experiment involved mental subtraction tasks.

In a flight-related environment, Stackhouse (1973) increased pilot mental workload by increasing the difficulty of simulated and actual flight helicopter hover maneuvers. He found that pilots' heart rate variability (standard
deviation of R-R interval) correlated significantly with pilots' performance. In another study, Opmeer and Krol (1973) found that heart rate variance significantly decreased with increased difficulty of the simulated flight task. They concluded that heart rate variability is more sensitive to cognitive load than to perceptual load.

In contrast, there are some studies which indicate that heart rate variability is an insensitive measure of mental workload. For example, Mobbs, Davids, and Thomas (1971) found no systematic relationship between heart rate variability and task difficulty. The task was summing a series of single digit numbers. Mental load was increased by increasing the number of digits to be summed and increasing the presentation rate. Sherman (1973), in studying a sonar doppler identification task, found no systematic change in heart rate variability with task difficulty. In regard to a task emphasizing psychomotor behavior, Hicks and Wierwille (1979) found that heart rate variability was insensitive to driver task loading.

Several methods of scoring heart rate variability have been devised by different researchers. The standard deviation of a sequence of R-R intervals is the simplest and perhaps most promising measure of heart rate variability.
Primary Task Measures

The fundamental hypothesis of primary task measures is that the increase in operator mental workload is accompanied by a degradation of operator task performance. However, for a given task, a primary task measure might not be sensitive to all of the levels of workload. Cooper and Harper (1969) hypothesized that the operator calls upon his reserve capacity under higher workload conditions to maintain relatively constant overall performance. Then, an additional primary task measure is necessary to detect any strategy changes due to inclusion of the reserve capacity into the operator's overall behavioral pattern. Nevertheless, a primary task measure directed at a specific task performance parameter may show sensitivity to changes of loading in that aspect of the primary task. Wierwille and Williges (1978) concluded that, under low loading, primary task measures are generally insensitive to changes in task difficulty. Under high loading, primary task measures may change with task difficulty.

Primary task measures are usually easy to obtain in flight simulators because of the existence of the required signals in the simulator's control systems. They are more difficult to obtain in an actual aircraft because of the additional instrumentation and signal processing required.
Comprehensive reviews of primary task measures as indicators of operator mental workload were authored by Clement (1978) and Wierwille and Willeges (1978). The primary task measures selected for this study were reflective of the mediational loading changes (mediational reaction time) and strategy changes of the pilots in lower loadings (number of control movements per unit time). It is generally accepted that primary task measures and the equipment necessary for obtaining them do not intrude on primary task performance because they are usually embedded in the primary task itself and need not appear explicitly.

Mediational reaction time. Pilots' reaction times to the mediational portion of the primary task were recorded during all of the experimental sessions. These scores were used as primary task measures of the extent to which the pilots were loaded mediationally.

Control movements per unit time. In flight-related experiments, the number of aileron, rudder, elevator, and throttle movements per unit time is often obtained as a measure of task difficulty (psychomotor load). The number of control movements per unit time reflects the activity of the pilot in controlling and positioning the aircraft. Dick, Brown, and Bailey (1976) found this measure to be sensitive to changes in the difficulty of a predominantly
psychomotor task. The task difficulty was increased by increasing turbulence in a Boeing 737 simulator. Connor (1981) used a similar type of psychomotor loading and found that control movements (rudder, aileron, and elevator) are sensitive to the changes in psychomotor loading. It is believed that this measure reflects any change in the control strategy used by the pilot which might result from higher loading on a concurrent mediational task.
RESEARCH OBJECTIVES

In reviewing the previous literature on pilot mental workload assessment techniques, certain shortcomings become apparent. First, there remains a need for applying individual workload assessment techniques and determining their sensitivity to changes in mental loading elicited by mediational activity requirements of a piloting task. A technique may be sensitive to one type of mental loading but not to another. Second, a comprehensive study is needed to determine the relative intrusion of these techniques under the influence of the same behavioral processes. Finally, in a great number of studies, statistical methods have not been fully employed for data collection and analysis.

In the present research, eight mental workload assessment techniques were evaluated in a moving base aircraft simulator using a piloting task emphasizing mediational activity. The objective of this research was to determine the relative sensitivity and intrusion of each technique when applied to a mediational load setting. Experimental conditions were identical for the eight techniques. The results were analyzed in a quantitative statistical manner.
METHOD

Experimental Design

The experimental design for sensitivity analysis was a complete factorial 3 X 8 (Load X Technique) design. The load factor (low, medium, and high) was a within-subject variable. The technique factor (eight levels) was a between subjects variable. The experimental design matrix is shown in Table 1.

For each technique 6 subjects were used, and the order of presentation of the three load levels was completely counterbalanced across the subjects.

Additionally, five primary task dependent measures were obtained in all 8 technique conditions for intrusion analysis. The matrix in Table 1 was used to collect the data. A multivariate analysis of variance (MANOVA) was used to analyze the main effect of technique on the five dependent measures combined.
TABLE 1
Experimental Design Matrix for Sensitivity Analysis

<table>
<thead>
<tr>
<th>Workload measurement</th>
<th>Load (Within-subject)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technique (Bet.-sub.)</td>
<td>Low</td>
</tr>
<tr>
<td>Mod. C-H Rating</td>
<td>S1, ..., S6</td>
</tr>
<tr>
<td>Multi-descriptor Ratings</td>
<td>S7, ..., S12</td>
</tr>
<tr>
<td>Time Estimation</td>
<td>.</td>
</tr>
<tr>
<td>Tapping Regularity</td>
<td>.</td>
</tr>
<tr>
<td>Pulse Rate Variability</td>
<td>.</td>
</tr>
<tr>
<td>Pupil Dilation</td>
<td>.</td>
</tr>
<tr>
<td>Mediational Reaction</td>
<td>.</td>
</tr>
<tr>
<td>Time</td>
<td>.</td>
</tr>
<tr>
<td>Control Movements</td>
<td>S43, ..., S48</td>
</tr>
</tbody>
</table>
Apparatus

Flight simulator. A flight simulator (Singer Link, Inc., General Aviation Trainer, GAT-1B) was used as the principal apparatus of this experiment. The GAT-1B is a self-contained electronic simulator with three degrees of freedom of motion (pitch, roll, and yaw). The simulator cockpit contains required instruments for IFR flight. In the tail portion of the simulator, 26 electronic cards perform all necessary computing functions. Three servo drives housed in the base of the simulator are controlled by the flight dynamics computer contained within the 26 cards. These three servo drives produce pitch, roll, and yaw motions of the simulator.

No outside visual cues were provided. The simulator windows were covered with translucent blinders to control cockpit illumination and to reduce visual distraction. The simulator is also equipped with simulated engine sound, outer and middle marker beacons lights, and touch down tire squeals. Certain flight simulator characteristics (e.g., engine controls, outside air temperature, rough air) can be changed using the control panel installed on the outside of the simulator cabin.
Flight simulator modifications were necessary to permit the flight task to be performed and to provide a means for changing the level of mediational task difficulty. An audio-viewer slide projector (Kodak Ektographic Model 260) was installed to present slides containing task problems which emphasized mediational workload. Pilots were able to see only the projector screen through the windshield, and the rest of the projector was masked. In addition to the remote control advance capability, the projector was time-programmed using its audio cassette portion. Using this programming capability, the slide advance rate was held constant across all loading conditions. A connector and a small omnidirectional microphone were mounted in the simulator cockpit to record the pilot's verbal responses to the visual slide problems.

The simulator modifications necessary to obtain secondary task measures included a microswitch mounted on the control yoke. This switch allowed the pilots to signal the beginning and end of the time intervals in the tapping regularity and time estimation tasks.

For the physiological measures the following modifications were incorporated: 1) a connector for the pulse rate sensor (plethysmograph), and 2) a CCTV camera and zoom lens for video taping of pilots' pupil diameter changes while performing the primary task.
Time estimation. The actuating lever of the microswitch was positioned near the right hand grip of the yoke so the pilots could activate it with their right thumbs. A tape recorded voice signaled the pilots to begin production of a 10-second time interval. The pilots estimated time by activating the microswitch once for the beginning and once for the end of the interval. The time between estimation intervals was 20 seconds. A digital timer was located at the experimenter's station for data collection.

Tapping regularity. The microswitch also served as the tapping instrument. Each microswitch activation indicated the end of the previous time interval and a reset for the next one. The pilots were instructed to maintain regular 2-second tapping intervals. A recorded voice signaled the beginning and the end of the session. The tapping signals were routed to the EAI-380 computer, where ramps were generated. The length of the ramps were dependent on the intervals between taps. The computer output was then recorded on a strip chart recorder (Sanborn 350).

Pupil dilation. A video camera (Panasonic model PK-700) was installed on the front of the aircraft simulator. The camera was mounted outside the windscreen and was aimed at the pilot's eyes. Only the lens of the camera was visible through the windscreen. The rest of the camera was masked.
to reduce pilot distraction. The camera field of view allowed for normal pilot head movements. Also, ambient illumination was held constant to prevent changes in pupil diameter due to changes in ambient illumination. The video signals were sent through a connecting cable to a video tape recorder (Panasonic model NV-8310). For the purpose of data collection, recorded video signals were displayed on a CRT. Pupil diameter was measured directly from the CRT screen with the recorder in the freeze-frame mode.

To obtain reliable data from this measure, several precautions were taken. First, pupil diameter was always measured with the pilots fixating at the same position, that is, observing the external Ektagraphic display. Second, only pilots with light colored irises (i.e., light blue, blue grey, or grey) were used so that maximum discrimination in pupil diameter could be obtained. Third, the measure taken was pupil diameter divided by iris diameter to remove any biases of geometry associated with pilots looking at the display from slightly different angles. Finally, the measure was only taken after the pilots had observed the Ektagraphic display for 3 seconds. This approach was used to eliminate biases resulting from pupil dilation or restriction due to change in luminance.
Pulse rate variability. Pulse rate was measured using a plethysmograph attached to the pilot's ear at the antihelix. A plethysmograph is a small transmitter and receiver of light. The sensor associated with the plethysmograph senses small changes in opacity of the antihelix and converts them to an electrical signal. The signals were received by a Hewlett-Packard 7807C heart rate monitor which computes pulse rate from the plethysmograph signal. The pulse rate signals were processed on-line by the EAI-380 hybrid computer to produce the standard deviation of pulse rate over the data interval.

Primary Task Design

Pilots perform a variety of tasks while flying an aircraft. This study emphasized a mediational portion of the piloting tasks. The universal operator behavior categorization scheme (Table 2) developed by Berliner, Angell, and Shearer (1964) was used to explain the specific behaviors involved in a predominantly mediational task. The designed piloting task emphasizing mediational activity included at least 8 of the 13 mediational "specific behaviors".

The basis of the mediational loading task was a group of wind triangle problems. A wind vector triangle is basically
TABLE 2
Classification of Universal Operator Behavior Dimension

(Berliner, Angell, and Shearer, 1964)

<table>
<thead>
<tr>
<th>Processes</th>
<th>Activities</th>
<th>Specific Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Perceptual processes</td>
<td>Searching for and receiving information</td>
<td>Detects, Inspects, Observes, Reads, Receives, Scans, Surveys</td>
</tr>
<tr>
<td></td>
<td>Identifying objects, actions, events</td>
<td>Discriminates, Identifies, Locates</td>
</tr>
<tr>
<td></td>
<td>Information processing</td>
<td>Categorizes, Calculates, Codes, Computes, Interpolates, Itemizes, Tabulates, Translates</td>
</tr>
<tr>
<td>2. Mediational processes</td>
<td>Problem solving and decision-making</td>
<td>Analyses, Calculates, Chooses, Compares, Computes, Estimates, Plans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advises, Answers, Communicates, Directs, Indicates, Informs, Instucts, Requests, Transmits</td>
</tr>
<tr>
<td>3. Communication processes</td>
<td></td>
<td>Activates, Closes, Connects, Disconnects, Joins, Moves, Presses, Sets</td>
</tr>
<tr>
<td></td>
<td>Complex/Continuous</td>
<td></td>
</tr>
</tbody>
</table>
a vector presentation of aircraft speed, wind speed, aircraft heading, and wind direction, when wind conditions of significant magnitudes are present (Appendix C). Wind causes an airplane to drift away from the direction of crosswind. Pilots are expected to know the necessary corrections involved in maintaining the proper path over the ground. For example, a crosswind of 40 mph on an airplane moving at 100 mph requires a heading correction of 22 degrees. This relationship is apparent by constructing a right-triangle with a 40 unit opposite leg, a 100 unit adjacent leg, and a resulting hypotenuse of 108 units. The hypotenuse gives the airplane speed necessary to maintain the 100 mph corrected speed along the desired heading. The angle between the uncorrected airplane heading (indicated heading) and the corrected one is called the heading correction angle.

Pilots differ in their ability to work trigonometric problems. Therefore, each problem presentation included a "reference triangle" which directly corresponded to the problem presented (Appendix C). The solutions to the problems required pilots to perform one or more of the following:

* compare triangles
* match corresponding triangle legs and/or angles
* add or subtract two angles (in degrees), or
*divide two numbers.

The Kodak Ektagraphic slide projector was used to present the problems to the pilots. A triangle in the upper left corner of each slide indicated the triangle leg units and the angles corresponding to the wind vector triangle. In the center, the slide presented a red arrow indicating the wind vector, a black arrow indicating the airplane corrected speed and heading, and a dashed black arrow indicating the desired speed and course over the ground. The three arrows formed a wind vector triangle. The necessary information, such as wind and aircraft speed and direction, was concisely presented next to the arrows to reduce the pilot's perceptual and reading effort. The presentation format remained constant for different levels of loading. This prevented the pilot from detecting the level of task difficulty by mere appearance of slide complexity. Therefore, the slides of medium and low difficulty contained some redundant information. In the lower left corner of the slide, pilots were asked a single question. The question was: "GROUND SPEED?", or "AIRCRAFT HEADING?", or "ETA?". ETA is an initialization for "Estimated Time of Arrival" which can be calculated by dividing the given destination distance by the computed ground speed.
Adjustment of Task Difficulty

For each problem (slide), three variables were used to change the task difficulty. They were:

1. The difficulty of the question asked. A ground speed calculation requires a direct comparison and mathematical matching of the corresponding triangle legs. An aircraft heading calculation requires an addition or subtraction of the wind correction angle in addition to the similar processes involved in ground speed calculations. An ETA calculation requires a comparison, matching, and subsequent division.

2. The numbers used in the trigonometric properties of the reference triangle legs and angles. For example, subtracting a wind correction angle of 27 degrees from a heading of 286 degrees is more difficult than subtracting 10 degrees from 310 degrees.

3. The degree to which rotational direction of the wind vector triangle matches the reference triangle. A mismatch of direction forces the pilot to rotate the reference triangle mentally to fit the directions of the problem triangle, thereby resulting in a higher degree of mental loading.
Subjects

Forty-eight pilots participated as subjects in this experiment. Six pilots were used for evaluation of each technique. They were informed that their participation was voluntary, and they were paid by the hour. All pilots had at least a private pilot license and 50 or more flying hours.

Pilots' experience levels were determined from personal data questionnaires. The entire group was then divided into sextiles based on number of flight hours. One of the sextiles contained only instrument-rated pilots. To equalize experience for each workload technique examined, one pilot was drawn from each of the sextiles (to match a group of six). The average number of flight hours were 80, 100, 140, 160, 440, and 800 for the groups one through six, respectively.

By coincidence, only male pilots volunteered for the experiment.
PROCEDURE

Initially, each subject was given general instructions regarding the nature of the experiment (Appendix B). Subsequently, the subject was given a consent form to read and sign (Appendix B). This form indicated the subject's rights, and in particular pointed out that the subject could withdraw from the experiment after reading and receiving more detailed instructions, or any time thereafter.

Pre-experimental Tests

Two preliminary tests were administered to each subject prior to experimental sessions.

1. Personal data. Each pilot was asked to fill out a personal data sheet. It contained questions regarding the pilot's number of flight hours and types of aircraft flown. It also asked for the pilot's eye color. Eye color information was used to optimize the pupil diameter measurements portion of the experiment.

2. Knowledge of trigonometry. The mental loading task used in this experiment was based on wind triangle
problems. Subjects, therefore, were tested to insure that they had a minimum knowledge of basic trigonometric relationships. They were first given a sheet of data which reviewed basic trigonometric relationships used in the experiment. Then, they were given problems to work which contained the same concepts. The passing score was approximately 50 percent correct responses on a timed test. Two subjects failed the test and they were replaced.

After the trigonometric test, subjects were divided into groups of six. Each group served as subjects for one workload estimation technique. The following discussion explains the general procedures used for the various techniques (further details are explained in Appendix D).

Rating Scales

A subject assigned to this group was given instructions pertaining to the primary task equipment and operations. Then, the subject flew a practice flight for approximately 10 minutes. Subsequently, the subject flew an experimental session. In this session, the subject experienced a setting of mediational load which lasted approximately 6 minutes. Then, the simulator was placed in an autopilot mode and the subject read the necessary instructions and descriptions for
the rating scale to be used. After the rating was obtained from the subject, the experimental session procedure was repeated twice, once for each of the other two load levels.

Secondary Task Measures

A subject assigned to this group was given instructions pertaining to the equipment and operation of the assigned secondary task. The subject practiced on the secondary task by itself for a period of five minutes. Thereafter, a baseline score was obtained for the secondary task. Next, instructions for the primary task and for the primary and secondary tasks together were read by the subject. The subject flew the simulator for approximately 5 minutes to practice the primary task. Subsequently, the subject flew the simulator for another five minutes to practice the primary and secondary tasks together. Then, the subject flew the simulator for the experimental trial in which he performed the primary and secondary tasks simultaneously. Experimental data were obtained during this period. This flight was repeated for the remaining two loading conditions.
Physiological Measures

A subject in this group began with an adaptation session which involved sitting in the aircraft simulator quietly for a period of approximately 10 minutes. This session was necessary for the subject to reach a normal (baseline) physiological response level. Late in this 10 minute session, physiological baseline data were obtained. Thereafter, instructions for the primary task were given. After the instructions, the subject flew a primary task practice flight for approximately 10 minutes. Subsequently, the subject repeated the same flight, experiencing a mediational load level, for data gathering. After the completion of the first data gathering flight, two additional data gathering flights were run, one for each of the remaining two mediational load settings.

Primary Task Measures

A subject in this group first read the instructions for the primary task. Then he flew the simulator for approximately 10 minutes, experiencing the practice mediational load. This run was then repeated for data gathering. Subsequently, two more experimental flights were run for the remaining two mediational load conditions.
Flight Task

Prior to each flight, the simulator was positioned at a predetermined heading. The heading used for the low, medium, and high loading conditions was the magnetic north (360 degrees). Subjects were then instructed to take off, to climb to 2000 ft with the rate of climb of 500 ft/min, and then to level the aircraft and maintain 2000 ft altitude. Once they had reached this altitude, they were instructed to maintain an airspeed of 100 mph. After the simulated aircraft had been trimmed, the remainder of the primary task loading condition involving the presentation of wind trangle problems was introduced. Between loading conditions, the simulated aircraft was placed in "altitude hold" and the motion base was deactivated. This produced a condition similar to autopilot control in perfectly calm air. Subjects were given a 5-minute rest between loading conditions.

All of the flight parameters (controllable by the remote panel) were positioned at their normal settings, except for rough air. To force the subject to monitor and perform the flight task continuously, while attending the mediational loading task, windgusts having an r.m.s. amplitude of approximately three mph were introduced. The level of this windgust was the same for each loading condition. The
windgusts required the subject to make corrections to maintain straight and level flight and correct heading.

Each loading condition took approximately 6 minutes. Subjects responded verbally to the question presented on each slide. Concurrently, data were recorded from the assigned technique and other primary task measures. Rating scale scores were obtained after the completion of each loading condition. After data had been gathered in each run, subjects were instructed to descend (at a rate of 500 ft/min) and land the aircraft while maintaining the north heading. After the last flight session had been completed, subjects were paid for the total time of their participation, their questions were answered, and they were released.

Specific Secondary Tasks Instructions

The following procedures were used in instructing the subjects for the various secondary tasks.

Time estimation. Each subject assigned to this technique was instructed to produce intervals of 10 seconds by pressing a microswitch mounted on the control yoke of the simulator. A recorded male voice signaled the subject to begin producing an interval by using the word "now". The subject then pressed the microswitch to begin the interval
and later pressed the microswitch a second time to end the interval. There was an interval of 20 seconds between "now" messages.

Tapping regularity. Subjects in this group were instructed to depress the microswitch every two seconds with their right thumb. Subjects were told that the "downstroke" of the switch ended one interval and began the next. In other words, interval timing was independent of the length of time the microswitch was depressed. This task was performed continuously during the data taking period. The beginning and end of the period were signaled by the experimenter over the intercom system.

Data taking period. A data taking period lasted approximately five minutes. Pilots performed the wind triangle task (and the secondary tasks where required) for an interval of 5-1/2 minutes. Data taking began approximately 1/2 minute into the wind triangle task.
RESULTS

Sensitivity Analysis

The sensitivity analysis was directed at answering two major questions:

1. Which techniques were sensitive to mediational load?
2. Among those techniques sensitive, which ones were relatively more sensitive than others?

The procedure illustrated in Figure 4 was followed for the sensitivity analysis. This is similar to the procedure used by Connor (1981).

Raw scores computations. For some of the techniques the data were recorded in the form of unscaled signal values or verbal responses during the instructed tasks. These signal values and responses had to be converted to raw score values for data analysis. The raw score computations are defined in Appendix E. Upon completion of the raw score computations, the scores were placed in a data matrix in which there were six scores for each cell, one per subject.

Conversion to z-scores. The raw scores in the data matrix represent different entities, e.g., pulse rate
Figure 4: Procedural steps for the sensitivity analysis
variability, a rating scale score, or a secondary task score. To detect true differences in the techniques, rather than scaling value differences, the raw scores were transformed into z-scores (standard scores). (A z-score computation is the raw score minus the mean of the scores, divided by the standard deviation of the scores.)

For each given technique, z-score computations were based upon all the scores for that technique alone. Subsequently, all of the z-scores were placed in a matrix in which there were six scores for each cell, one score per subject.

Overall ANOVA

An overall analysis of variance (ANOVA) was performed on the standardized scores (z-scores). Since z-scores were used, a technique main effect was precluded. A significant main effect of load was found. This indicates that the manipulation of load was effective in changing the response scores obtained in this experiment. A significant technique by load interaction was found. These results are summarized in an ANOVA summary table (Table 3).
TABLE 3
Overall ANOVA Summary Table for Sensitivity

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between-subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technique (T)</td>
<td>7</td>
<td>0.0009</td>
<td>0.00</td>
</tr>
<tr>
<td>Subjects (S)/T</td>
<td>40</td>
<td>1.6236</td>
<td></td>
</tr>
<tr>
<td>Within-subject</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load (L)</td>
<td>2</td>
<td>8.5042</td>
<td>20.36 *</td>
</tr>
<tr>
<td>LXT</td>
<td>14</td>
<td>1.4967</td>
<td>3.58 **</td>
</tr>
<tr>
<td>L X S/T</td>
<td>80</td>
<td>0.4177</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>0.9533</td>
<td></td>
</tr>
</tbody>
</table>

*p < 0.0001
**p < 0.001
Simple Effects F-tests

There was a significant load by technique interaction which indicates that the response scores were differentially affected by changes in the load variable. In other words, scores of some techniques were more responsive to changes in load than others.

The normal procedure for determining the individual effect of load on each technique is the use of simple effects F-tests. Eight simple effects F-tests were performed (one for each technique) to isolate those techniques which contributed to the interaction effect. The simple effects F-tests use the overall ANOVA error term (L X S/T) as the denominator error term of the F-ratios. The results of these tests are presented in Tables 4, 5, 6, and 7. Each table contains F-test results for the two techniques in each classification as presented in the introduction. The figures following each table (Figures 5, 6, and 7) are the plots of mean z-scores for the techniques demonstrating significance (sensitivity).

In the opinion measure group, the Modified Cooper-Harper scale (MCH) showed a significant effect of load. The Multi-Descriptor rating scale (MD) showed no significant effect of load.
In the secondary task group, the time estimation measure (TE) showed a significant load effect. However, no significant effect of load was present for tapping regularity measure (TR).

In the primary task measure group, Mediational Reaction Time (MRT) showed a significant main effect of load. However, the number of control movements per second showed no significant effect of load.

In the physiological measures group, neither the pulse rate variability measure nor the pupil dilation measure showed a significant load effect. Table 8 lists the sensitive measures under their associated mental workload technique categories.

Sample Size Estimation

If an ANOVA test yields nonsignificance, it should not be taken as "proof" that treatment effects (e.g., the load effect) are completely absent (the null hypothesis is true). It is possible that the effects to be detected are too small in relation to the sensitivity (power) of the experiment. In other words, a conclusion drawn from an F-test is valid only if the experiment possesses adequate power. Keppel (1973) explains that there is a definite relationship (formula) among power of the test, number of subjects used,
TABLE 4
Summary Table for Rating Scales Simple Effects F-Tests

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Cooper-Harper</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject (S)</td>
<td>5</td>
<td>0.8067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load (L)</td>
<td>2</td>
<td>4.8524</td>
<td>11.62</td>
<td><0.001</td>
</tr>
<tr>
<td>L X S/T</td>
<td>80</td>
<td>0.4177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-descriptor scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject (S)</td>
<td>5</td>
<td>2.2533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load (L)</td>
<td>2</td>
<td>1.0679</td>
<td>2.56</td>
<td>0.068</td>
</tr>
<tr>
<td>L X S/T</td>
<td>80</td>
<td>0.4177</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 5: Mean z-scores for Cooper-Harper rating scale measure vs. load.
TABLE 5
Summary Table for Secondary Tasks Simple Effects F-Tests

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time estimation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject (S)</td>
<td>5</td>
<td>0.7669</td>
<td>10.95</td>
<td><0.001</td>
</tr>
<tr>
<td>Load (L)</td>
<td>2</td>
<td>4.5747</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L X S/T</td>
<td>80</td>
<td>0.4177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tapping regularity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject (S)</td>
<td>5</td>
<td>0.5954</td>
<td>1.37</td>
<td>>0.05</td>
</tr>
<tr>
<td>Load (L)</td>
<td>2</td>
<td>0.5731</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L X S/T</td>
<td>80</td>
<td>0.4177</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 6: Mean z-scores for the time estimation measure vs. load.
TABLE 6
Summary Table for Primary Tasks Simple Effects F-tests

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediational reaction time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject (S)</td>
<td>5</td>
<td>0.2441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load (L)</td>
<td>2</td>
<td>7.2431</td>
<td>17.34</td>
<td><0.0001</td>
</tr>
<tr>
<td>L X S/T</td>
<td>80</td>
<td>0.4177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control movements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject (S)</td>
<td>5</td>
<td>2.9908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load (L)</td>
<td>2</td>
<td>0.1966</td>
<td>0.47</td>
<td>>0.05</td>
</tr>
<tr>
<td>L X S/T</td>
<td>80</td>
<td>0.4177</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 7: Mean z-scores for the mediational reaction time measure vs. load.
TABLE 7
Summary Table for Physiological Measures Simple Effects F-tests

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse rate variability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject (S)</td>
<td>5</td>
<td>2.3617</td>
<td>0.95</td>
<td>>0.05</td>
</tr>
<tr>
<td>Load (L)</td>
<td>2</td>
<td>0.3979</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L X S/T</td>
<td>80</td>
<td>0.4177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupil dilation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject (S)</td>
<td>5</td>
<td>2.9695</td>
<td>0.18</td>
<td>>0.05</td>
</tr>
<tr>
<td>Load (L)</td>
<td>2</td>
<td>0.0757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L X S/T</td>
<td>80</td>
<td>0.4177</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 8
List of the Sensitive Techniques

<table>
<thead>
<tr>
<th>OPINION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Cooper-Harper rating scale</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPARE MENTAL CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time estimation (standard deviation)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRIMARY TASK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediational reaction time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHYSIOLOGICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(None)</td>
</tr>
</tbody>
</table>
and experimental error obtained. In terms of workload measurement, the issue of the number of subjects required is one of importance, especially from the standpoint of economics. A sensitive technique requiring a large number of subjects would not be cost-effective to implement in an operational flight environment.

The procedure in Keppel (1973) was followed to estimate the number of subjects required to detect a significant load effect for the techniques failing to demonstrate sensitivity. A significance level of 0.05 and a power of approximately 0.8 were used for estimating the number of subjects. The results of these estimates are presented in Table 9.

Newman-Keuls Comparisons

The three techniques showing sensitivity to mediational load (modified Cooper-Harper, time estimation, and mediational reaction time) require further analysis. The locus and direction of the effect of load on these techniques was examined using Newman-Keuls comparisons. The comparisons were performed on the mean z-scores at the three load levels. Table 10 presents the results of these comparisons for the sensitive techniques. All three sensitive techniques indicate that the mean z-scores
<table>
<thead>
<tr>
<th>Technique</th>
<th>Number of Subjects Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-descriptor rating scale</td>
<td>16</td>
</tr>
<tr>
<td>Tapping regularity</td>
<td>>100</td>
</tr>
<tr>
<td>Control movements</td>
<td>>100</td>
</tr>
<tr>
<td>Pulse rate variability</td>
<td>>100</td>
</tr>
<tr>
<td>Pupil dilation</td>
<td>>100</td>
</tr>
</tbody>
</table>
(therefore the raw scores) increase monotonically across the three load levels.

The Newman-Keuls results for the modified Cooper-Harper scale (Table 10) show that there was no significant difference between low and medium loadings. But, a significant difference between medium and high loading in addition to a significant difference between low and high loading was detected.

The Newman-Keuls results for the mediational reaction time measure indicates that the differences between all pairs of means were statistically significant.

Finally, the Newman-Keuls results for the time estimation (standard deviation) measure indicate a significant difference between the mean z-scores of low compared to medium and high loading. But, no difference was detected between medium and high loading mean z-scores. All Newman-Keuls comparisons were conducted using a significance level of 0.05.

Classification of Techniques

One objective of this study was to determine the relative sensitivity of each technique to discriminate among different load levels. Based on the results of the Newman-Keuls tests, a logical classification of the sensitivity of all the techniques is presented in Table 11.
TABLE 10
Newman-Keuls Test for the Sensitive Measures

<table>
<thead>
<tr>
<th></th>
<th>Modified Cooper-Harper scale*</th>
<th>Mediational reaction time</th>
<th>Time Estimation*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOW</td>
<td>MEDIUM</td>
<td>HIGH</td>
</tr>
<tr>
<td>Load level means</td>
<td>-0.8228</td>
<td>-0.1372</td>
<td>0.9600</td>
</tr>
<tr>
<td></td>
<td>I------------------------------</td>
<td>I-------------------------</td>
<td></td>
</tr>
<tr>
<td>Medialional reaction</td>
<td>LOW</td>
<td>MEDIUM</td>
<td>HIGH</td>
</tr>
<tr>
<td>reaction time</td>
<td>Load level means</td>
<td>-0.1742</td>
<td>1.1752</td>
</tr>
<tr>
<td></td>
<td>I------------------------------</td>
<td>I-------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Load level means</td>
<td>-1.0015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I------------------------------</td>
<td>I-------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Load level means</td>
<td>-0.9857</td>
<td>0.3087</td>
</tr>
<tr>
<td></td>
<td>I------------------------------</td>
<td>I-------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time Estimation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Load level means</td>
<td>0.3087</td>
<td>0.6768</td>
</tr>
<tr>
<td></td>
<td>I------------------------------</td>
<td>I-------------------------</td>
<td></td>
</tr>
</tbody>
</table>
| * Means with a common underline do not differ significantly at the p < 0.05 level.
A technique was considered to be completely sensitive (class I) if it discriminated between all pairs of load levels (i.e., low-medium, low-high, and medium-high).

A technique was considered to be partly sensitive (class II) if it did not discriminate between all pairs of load levels but did discriminate between at least one pair of load levels. Finally, techniques not demonstrating sensitivity were categorized as class III. This class includes all techniques except those in classes I and II.

An additional question studied in the sensitivity analysis was whether the experience level of the subjects had any effect on the obtained scores. To study the effect of experience level, an ANOVA was performed on the sensitivity data matrix. The matrix was collapsed across the technique factor and the experience level of the subjects was considered as a separate independent variable. A two way ANOVA was performed on the z-scores and the results are presented in Table 12.

The z-scores showed a significant main effect of experience level. Also, as expected, a significant main effect of load was present. However, no load by experience level interaction was found.

Further analysis was necessary to study the trend of the z-scores versus the experience levels of the pilots used in
TABLE 11
Classification of Sensitive Techniques

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I:</td>
<td>Completely sensitive</td>
</tr>
<tr>
<td></td>
<td>Mediational reaction time</td>
</tr>
<tr>
<td>Class II:</td>
<td>Partly sensitive</td>
</tr>
<tr>
<td></td>
<td>Modified Cooper-Harper scale</td>
</tr>
<tr>
<td></td>
<td>Time estimation (standard deviation)</td>
</tr>
<tr>
<td>Class III:</td>
<td>Not sensitive</td>
</tr>
<tr>
<td></td>
<td>The remaining five techniques</td>
</tr>
</tbody>
</table>
TABLE 12
ANOVA Summary Table for Experience Level

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between-subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experience Level (EL)</td>
<td>5</td>
<td>3.022</td>
<td>2.55 *</td>
</tr>
<tr>
<td>Linear component</td>
<td></td>
<td>4.500</td>
<td>2.13</td>
</tr>
<tr>
<td>Nonlinear component</td>
<td>4</td>
<td>2.651</td>
<td>2.65</td>
</tr>
<tr>
<td>Subject (S)/EL</td>
<td>42</td>
<td>1.187</td>
<td></td>
</tr>
<tr>
<td>Linear component</td>
<td>7</td>
<td>2.110</td>
<td></td>
</tr>
<tr>
<td>Nonlinear component</td>
<td>35</td>
<td>1.001</td>
<td></td>
</tr>
<tr>
<td>Within-subject</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load (L)</td>
<td>2</td>
<td>8.504</td>
<td>14.61 **</td>
</tr>
<tr>
<td>L X EL</td>
<td>10</td>
<td>0.549</td>
<td>0.94</td>
</tr>
<tr>
<td>L X S/EL</td>
<td>84</td>
<td>0.582</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>0.953</td>
<td></td>
</tr>
</tbody>
</table>

* p = 0.0423
** p < 0.0001
this experiment. First the mean z-scores were plotted for each experience level (Figure 8). In this figure, experience levels 1, through 6 represent average flight hours of 80, 100, 140, 160, 440, and 800, respectively. Then, a trend analysis was performed on the z-scores. The trend analysis involved the computation of orthogonal polynomial coefficients to be multiplied by the mean z-scores for sums of squares calculations (Myers, 1966). The linear component of the experience level (EL) F-ratio was computed and was not found to be significant (Table 12). This indicates that the slope of the line of best fit (linear trend) does not significantly differ from zero. In other words, no overall increasing or decreasing z-scores trend was observed with increases in the experience levels of the pilots. Also, the nonlinear component of the experience level (EL) was not found to be significant. In summary, the z-scores obtained did not show any interpretable pattern with the increase in experience level.

Intrusion Analysis

The purpose of this section is to evaluate possible interference of equipment and procedures used for estimating pilot mental workload with performance on the primary flight task. For each technique measurement condition, five
Figure 8: Mean z-scores versus experience level.
primary task measures were obtained. The eight technique measurement conditions were: modified Cooper-Harper rating scale (MCH), multi-descriptor rating scale (MD), time estimation (TE), tapping regularity (TR), pupil dilation (PD), pulse rate variability (PRV), control condition one (C1), and control condition two (C2). The C1 and C2 conditions were those under which the two primary task measures (mediational reaction time and number of control movements) data were obtained for the sensitivity analysis. Significant differences among groups of primary task scores is an indication that the addition of equipment and procedures used for data collection intrude on the primary task performance.

It is assumed that the equipment and procedures used in C1 and C2 measurement conditions were not intrusive to primary task performance. Therefore, the primary task measures obtained in C1 and C2 can be used as a standard for comparing intrusion of the other six measurement conditions.

The five primary task measures obtained were designed to evaluate different aspects of primary task (piloting task) performance. They were as follows:

1. Percent error of the mediational (slide) problems. This measure is indicative of the accuracy of subjects' responses to the mediational loading portion of the overall piloting task.
2. Mediational reaction time. This measure was the average time that the subjects spent before providing a verbal answer to the slide problems. This measure is indicative of the speed of subjects' responses to the mediational loading portion of the overall piloting task.

3. Pitch high-pass mean-squared (PHPMS) error. This measure (explained in detail in Appendix E) provides information as to how accurately and reliably the subjects were tracking in pitch of the aircraft.

4. Roll high-pass mean-squared (RHPMS) error. This measure (explained in detail in Appendix E) provides information as to how accurately and reliably the subjects were tracking in roll of the aircraft. The PHPMS and RHPMS error measures are indicative of the accuracy of the subjects in performing the flight task portion of the overall piloting task.

5. Number of control movements per second. This measure (explained in detail in Appendix E) is indicative of the amount of control (aileron, elevator, and rudder) activity exhibited by the subjects.

The procedure outlined in Figure 9 was followed for the intrusion analysis.
OVERALL MANOVA

INDIVIDUAL ANOVAs

NEWMAN-KEULS TESTS

CLASSIFICATION OF INTRUSIVE TECHNIQUES

Figure 9: Procedural steps for the intrusion analysis
Overall MANOVA

A multivariate analysis of variance (MANOVA) was performed to examine the overall effect of technique (condition), load, and the interaction of technique and load on the five primary task measures combined. The main effect of load was significant. The main effect of technique was also significant. No significance was found for the load by technique interaction. Wilk's criterion (Rao, 1965) and a level of significance of 0.05 were used in the above MANOVA. The results of the MANOVA are summarized in Table 13.

The significant main effect of technique indicates that primary task measures (as a group) are affected by different techniques used in this experiment. Further analysis was required to determine which primary task measures were affected (or interfered with) by which techniques (Finkelman, Wolf, and Friend, 1977).

Individual ANOVAs

The overall MANOVA found no significant interaction effect. The main effect of technique was further studied using five individual ANOVAs, one for each primary task. The results of these ANOVAs are summarized in Tables 14, 15, 16, 17, and 18 for error rate, mediational reaction time, pitch HPMS, roll HPMS, and control movements, respectively.
TABLE 13
MANOVA Summary for Intrusion Analysis (Wilk's Criterion)

<table>
<thead>
<tr>
<th>Source</th>
<th>P</th>
<th>df(H)</th>
<th>df(E)</th>
<th>U-Statistic (Approx. F-ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between-subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technique (T)</td>
<td>5</td>
<td>35</td>
<td>153</td>
<td>1.72 *</td>
</tr>
<tr>
<td>Subject (S)/T</td>
<td></td>
<td></td>
<td></td>
<td>(Error term for T)</td>
</tr>
<tr>
<td>Within-subject</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load (L)</td>
<td>5</td>
<td>10</td>
<td>152</td>
<td>37.23 **</td>
</tr>
<tr>
<td>L X T</td>
<td>5</td>
<td>70</td>
<td>365</td>
<td>1.22</td>
</tr>
<tr>
<td>L X S/T</td>
<td></td>
<td></td>
<td></td>
<td>(Error term for L and LXT)</td>
</tr>
</tbody>
</table>

*p < 0.05
**p < 0.0001

- P = number of dependent variables
- df(H) = degrees of freedom for treatment
- df(E) = degrees of freedom for error

\[
U\text{-Statistic (likelihood ratio)} = \frac{E}{E+H}
\]

where H = sum of squares and cross-products matrix for treatment
E = sum of squares and cross products matrix for error
TABLE 14
Intrusion ANOVA Summary for Error Rate

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between-subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technique (T)</td>
<td>7</td>
<td>1135.00</td>
<td>3.91 *</td>
</tr>
<tr>
<td>Subject (S)/T</td>
<td>40</td>
<td>290.01</td>
<td></td>
</tr>
<tr>
<td>Within-subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load (L)</td>
<td>2</td>
<td>19908.84</td>
<td>157.77 **</td>
</tr>
<tr>
<td>L X T</td>
<td>14</td>
<td>342.40</td>
<td>2.71 *</td>
</tr>
<tr>
<td>L X S/T</td>
<td>80</td>
<td>126.19</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>519.27</td>
<td></td>
</tr>
</tbody>
</table>

*p = 0.0025
**p < 0.0001
TABLE 15
Intrusion ANOVA Summary for Mediational Reaction Time

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between-subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technique (T)</td>
<td>7</td>
<td>31.48</td>
<td>3.36 *</td>
</tr>
<tr>
<td>Subject (S)/T</td>
<td>40</td>
<td>9.37</td>
<td></td>
</tr>
<tr>
<td>Within-subject</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load (L)</td>
<td>2</td>
<td>972.81</td>
<td>281.59 **</td>
</tr>
<tr>
<td>L X T</td>
<td>14</td>
<td>1.56</td>
<td>0.45</td>
</tr>
<tr>
<td>L X S/T</td>
<td>80</td>
<td>3.45</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>19.85</td>
<td></td>
</tr>
</tbody>
</table>

*p = 0.0065

**p < 0.0001
TABLE 16

Intrusion ANOVA Summary for Pitch (HPMS) Error

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between-subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technique (T)</td>
<td>7</td>
<td>56.63</td>
<td>1.66</td>
</tr>
<tr>
<td>Subject (S)/T</td>
<td>40</td>
<td>34.02</td>
<td></td>
</tr>
<tr>
<td>Within-subject</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load (L)</td>
<td>2</td>
<td>35.78</td>
<td>4.33 *</td>
</tr>
<tr>
<td>L X T</td>
<td>14</td>
<td>7.27</td>
<td>0.88</td>
</tr>
<tr>
<td>L X S/T</td>
<td>80</td>
<td>8.25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>18.12</td>
<td></td>
</tr>
</tbody>
</table>

*p < 0.05
TABLE 17
Intrusion ANOVA Summary for Roll (HPMS) Error

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between-subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technique (T)</td>
<td>7</td>
<td>661.77</td>
<td>0.86</td>
</tr>
<tr>
<td>Subject (S)/T</td>
<td>40</td>
<td>768.92</td>
<td></td>
</tr>
<tr>
<td>Within-subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load (L)</td>
<td>2</td>
<td>1343.30</td>
<td>10.99 *</td>
</tr>
<tr>
<td>L X T</td>
<td>14</td>
<td>115.72</td>
<td>0.95</td>
</tr>
<tr>
<td>L X S/T</td>
<td>80</td>
<td>122.22</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>345.97</td>
<td></td>
</tr>
</tbody>
</table>

*p<0.0001
TABLE 18
Intrusion ANOVA Summary for Control Movements

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between-subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technique (T)</td>
<td>7</td>
<td>0.39</td>
<td>2.71</td>
</tr>
<tr>
<td>Subject (S)/T</td>
<td>40</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Within-subject</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load (L)</td>
<td>2</td>
<td>0.09</td>
<td>0.194</td>
</tr>
<tr>
<td>L X T</td>
<td>14</td>
<td>0.03</td>
<td>0.435</td>
</tr>
<tr>
<td>L X S/T</td>
<td>80</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>0.22</td>
<td></td>
</tr>
</tbody>
</table>
The results of the ANOVAs showed that, among the five primary task measures, error rate and mediational reaction time were significantly affected by technique. The technique factor did not affect the other three primary task measures. Note that only the control movements measure did not show any significant change in load (Table 18). This result is similar to the result of the sensitivity analysis for control movements measure.

The locus of the effect of technique on the error rate and mediational reaction time measures was further studied using Newman-Keuls multiple comparisons tests. The purpose was to show which technique was relatively intrusive on each primary task measure. Since two of the technique conditions were considered nonintrusive (C1 and C2), comparisons can be made regarding the relative intrusion of the other six techniques.

Comparisons of the mean error rates for the eight techniques showed that the mean error rates for the time estimation technique were significantly higher than the scores obtained for all other techniques (Table 19). The mean error scores for other techniques were not significantly different. Also, as expected, the mean error rates for C1 and C2 were not significantly different.
TABLE 19
Newman-Keuls Test for Error Rate

<table>
<thead>
<tr>
<th>Mean</th>
<th>Technique</th>
<th>Grouping *</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.33</td>
<td>TE</td>
<td>A</td>
</tr>
<tr>
<td>19.78</td>
<td>MCH</td>
<td>B</td>
</tr>
<tr>
<td>19.72</td>
<td>PRV</td>
<td>B</td>
</tr>
<tr>
<td>18.00</td>
<td>PD</td>
<td>B</td>
</tr>
<tr>
<td>13.72</td>
<td>C1</td>
<td>B</td>
</tr>
<tr>
<td>12.78</td>
<td>C2</td>
<td>B</td>
</tr>
<tr>
<td>9.72</td>
<td>MD</td>
<td>B</td>
</tr>
<tr>
<td>8.22</td>
<td>TR</td>
<td>B</td>
</tr>
</tbody>
</table>

* Means with the same letters do not differ significantly at the p < 0.05 level.
The second multiple comparisons test was performed on the mean mediational reaction time scores across the eight techniques. The results indicate that the mean mediational reaction times for two groups of techniques were not significantly different (Table 20). A close inspection of Table 20 reveals that the mean scores for the time estimation technique (TE) are significantly larger than the mean scores for the TR, MD, and C2 techniques.

A simple explanation of the multiple comparison tests results is that the time estimation technique intruded on the error rate measure compared to both control primary task conditions (C1 and C2). Additionally, the time estimation technique intruded on the mediational reaction time measure compared to only one control primary task condition (C2).

Classification of Techniques

In the present study, an intrusive technique (or condition) is defined as one which causes a significant change in the primary task measures compared to a control condition. The classification scheme in Table 21 was generated using the results of Duncan's multiple comparisons tests.

Techniques which demonstrated intrusion on the primary task compared to both control conditions (C1 and C2) were
<table>
<thead>
<tr>
<th>Mean</th>
<th>Technique</th>
<th>Grouping *</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.94</td>
<td>TE</td>
<td>A</td>
</tr>
<tr>
<td>14.36</td>
<td>PRV</td>
<td>A B</td>
</tr>
<tr>
<td>13.22</td>
<td>MCH</td>
<td>A B</td>
</tr>
<tr>
<td>12.56</td>
<td>PD</td>
<td>A B</td>
</tr>
<tr>
<td>12.27</td>
<td>Cl</td>
<td>A B</td>
</tr>
<tr>
<td>11.87</td>
<td>TR</td>
<td>B</td>
</tr>
<tr>
<td>11.54</td>
<td>MD</td>
<td>B</td>
</tr>
<tr>
<td>11.29</td>
<td>C2</td>
<td>B</td>
</tr>
</tbody>
</table>

* Means with the same letters do not differ significantly at the p < 0.05 level.
included in class I. Techniques which demonstrated intrusion on the same primary task compared to only one control condition (C1 or C2) were included in class II. Finally, class III techniques did not demonstrate any intrusion.

In summary, the time estimation condition was found to be a class I intrusive technique, and pulse rate variability was found to be a class II intrusive technique.

Finally, an analysis was performed to determine whether or not level of experience had an effect on the five primary task measures combined. This analysis is similar to the one performed to determine the intrusion of the techniques upon the primary task measures. However, it should be understood that the results dealing with experience level are simply further primary task results and do not provide an indication of the effect of experience on intrusion. A MANOVA was performed on the primary task raw scores with the six levels of experience as a new independent variable. The results are summarized in Table 22. No significant overall effect of experience level was found. Similarly the interaction of load and experience level was not significant. Therefore, an increase in the experience level did not affect the combined primary task measures.
TABLE 21
Classification of Intrusive Techniques

<table>
<thead>
<tr>
<th>Intrusion on error rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I:</td>
</tr>
<tr>
<td>Time estimation</td>
</tr>
<tr>
<td>Class II:</td>
</tr>
<tr>
<td>None</td>
</tr>
<tr>
<td>Class III:</td>
</tr>
<tr>
<td>All other techniques</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intrusion on mediational reaction time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I:</td>
</tr>
<tr>
<td>None</td>
</tr>
<tr>
<td>Class II:</td>
</tr>
<tr>
<td>Time estimation</td>
</tr>
<tr>
<td>Class III:</td>
</tr>
<tr>
<td>All other techniques</td>
</tr>
</tbody>
</table>
TABLE 22
MANOVA Summary for Experience Level (Wilk's Criterion)

<table>
<thead>
<tr>
<th>Source</th>
<th>p</th>
<th>df(H)</th>
<th>df(E)</th>
<th>U-Statistic (approx. F-ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between-subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experience Level (EL)</td>
<td>5</td>
<td>25</td>
<td>120</td>
<td>0.96</td>
</tr>
<tr>
<td>Subject (S)/EL</td>
<td></td>
<td></td>
<td></td>
<td>(Error term for EL)</td>
</tr>
<tr>
<td>Within-subject</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load (L)</td>
<td>5</td>
<td>10</td>
<td>136</td>
<td>31.50*</td>
</tr>
<tr>
<td>L X EL</td>
<td>5</td>
<td>50</td>
<td>313</td>
<td>0.76</td>
</tr>
<tr>
<td>L X S/EL</td>
<td></td>
<td></td>
<td></td>
<td>(Error term for L and L X EL)</td>
</tr>
</tbody>
</table>

*p < 0.0001

p = number of dependent variables
df(H) = degrees of freedom for treatment
df(E) = degrees of freedom for error

U-Statistic (likelihood ratio) = \[\frac{E}{E+H} \]

where H = sum of squares and cross-products matrix for treatment
E = sum of squares and cross-products matrix for error
DISCUSSION

The primary goal of this section is to review the major findings of this experiment and provide a rationale for recommending techniques as measures of pilot mediational workload. In this experiment, mediational load was manipulated by instructing the subjects to solve wind triangle problems while flying an aircraft simulator within specified tolerances of heading, altitude, and airspeed. This was found to be an effective method of increasing pilot mental workload from low to high. The reasons are (1) a significant main effect of load was found in the sensitivity analysis, and (2) a significant main effect of load was found in the intrusion analysis.

Sensitivity

The individual ANOVAs indicated that, out of eight workload measures examined, only three demonstrated sensitivity to (significant effect of) load. These measures were:

1. modified Cooper-Harper rating scale,

2. time estimation standard deviation, and
3. mediational reaction time.

The next step was to determine the relative sensitivity of these techniques. This step in the analysis is important in that some techniques are able to detect wide differences of load and some are not. More importantly, a technique which can detect load differences only in low loading situations should not be used for tasks requiring high mental workload.

The mediational reaction time measure showed significant differences within all pairs of load levels. This measure seems to be the most sensitive one in this experiment. However, it should be noted that the measure may not be fully applicable in some mediational tasks. If the task does not have a well-defined beginning point and response point, mediational reaction time will most likely not be measureable.

The modified Cooper-Harper scale did not show significant differences in scores between the low and medium load levels. However, significant differences were found in the comparison of the low and high load levels and in the comparison of the medium and high load levels. Consequently, this measure would be useful for detecting differences between moderate and high separations of load. The time estimation measure did not show significant
differences between the medium and high load levels only. Therefore, this measure would be useful for detecting mediational load differences in the low to medium region. This measure seems to complement the rating scale measure in detecting mediational load levels.

The rest of the measures did not demonstrate sensitivity to the increase in mediational load. The reviewed literature on the nonsensitive measures generally favors using them as estimators of mental workload. The question arises as to why these measures did not demonstrate sensitivity. The following discussion focuses on the possible factors which may have caused the remaining five measures to show no significant differences between the three load levels.

First, the separations of the load levels might not have been large enough for the technique to discriminate reliably between scores measured at different load levels. In other words, some studies may have used wider separations of load in their experiments. However, there is indication that the separations of load levels used in the present study were quite wide. Mediational reaction time, for example, demonstrated that the subjects clearly required progressively more time to solve the problems as load was increased from low to medium and from medium to high.
Second, the equipment and procedures used to collect data could affect the resulting sensitivity of the techniques under investigation. Based on existing literature, most of the equipment and procedures used in this study were comparable to those used in other mental workload studies. For the pupil dilation measure, subjects' pupil diameters were measured manually from the television screen. A much more expensive alternative would be to use automatic or computerized procedures to measure the pupil size with high accuracy. It is possible that a computerized procedure would have yielded sensitivity for pupil dilation measure. However, it appears that in any case pupil diameter would not be as sensitive as the other three measures which demonstrated sensitivity in this study.

Third, the type of primary task performed by the subjects may have a bearing on the resulting sensitivity of the mental workload measure (Wierwille, 1979). The four types of tasks suggested by Wierwille (1979) are: psychomotor, mediational, perceptual, and communications. The psychomotor primary task loading was used in an experiment involving 20 measures of pilot mental workload (Connor, 1981). In general, the equipment and procedures were similar to the ones used in this experiment. The sensitive measures that matched the sensitive measures obtained in
this experiment were Cooper-Harper rating scale (designed for psychomotor load) and time estimation standard deviation. No intrusion was found for the techniques used in Connor's (1981) study. The present study found time estimation technique to be intrusive on the mediational primary task measures.

The primary task used in this experiment was designed to be predominantly mediational or cognitive within an overall piloting task. However, there is no doubt that the designed primary task required some visual (perceptual) attention. Also, with the application of a small random windgust, subjects were required to exhibit some psychomotor activity to control the aircraft simulator within the specified tolerances. The purpose was to increase the subjects' mediational load while requiring a minimum effort for the visual and psychomotor aspects of the task. Therefore, the results of this experiment must be interpreted with attention to the type of piloting task used. It is the opinion of the author that the piloting task used in this experiment did emphasize mediational processes. The primary task included a majority of the "mediational specific behaviors" categorized by Berliner et al. (1964).

Finally, the number of subjects (pilots) used directly affects the power of the experiment to detect differences
between the scores obtained for a given technique. The power analysis performed for the nonsensitive techniques provided mathematical relationships among the level of significance (for rejecting the null hypothesis), power of the F-tests, and the estimates of error variances. A significant level of 0.05 and a power of 0.8 (fairly high power) was used for these tests. The results indicated that, all other factors equal, only the multi-descriptor bipolar adjective rating scales could have demonstrated sensitivity with 16 subjects (instead of six) in each cell of the experiment. The other four techniques (pulse rate variability, pupil dilation, control movements, and tapping regularity) could not have shown sensitivity even with 100 subjects in each cell. An experiment requiring this many subjects would require resources of a magnitude unavailable to most organizations involved in mental workload research and measurement.

One final finding was that the scores obtained showed sensitivity to the change in the subjects' experience level. However, trend analysis tests indicated that the scores did not follow an increasing or decreasing pattern across the six experience levels. Therefore, one cannot conclude that the scores increased or decreased with the increase in the subjects' experience level. However, one could speculate
based on Figure 8 that pilot technique scores tend to become more stable as experience level increases.

Intrusion

Each mental workload estimation technique used in this experiment requires certain equipment (instruments) and procedures for obtaining the data. Rating scales require instruction forms and rating scale sheets to be completed after the flight task. Secondary tasks require a microswitch to be pressed periodically and recording equipment for prompting. Physiological measures require either a sensor attached to the body (a plethysmograph for pulse rate variability) or external devices monitoring the pilot's behavior (a camera for pupil dilation).

These instruments, procedures, and instructions may intrude upon the primary task assigned to the subjects. Clearly, using a workload estimation technique that does not interfere with the subject's primary task performance is preferable to using one that does. The results of the intrusion analysis for this experiment showed that the time estimation technique intruded on the mediational aspects of the primary task performance. The primary task measures affected were error rate of the slide problems and reaction time to solve these problems. This result disagreed with
the one obtained in an experiment involving a psychomotor task of flying an aircraft simulator (Connor, 1981). He found that measurement of time estimation did not intrude on primary task measures.

Finally, it was hypothesized that the primary task performance of the subjects did not change with the increase in their experience level. The results of this analysis indicated that there was no significant change in the primary task performance across the six experience levels. Therefore, more experienced and less experienced subjects performed the combined flight task and the mediational (problem solving) task with equal proficiency.

Complementary Findings and Explanations

The rest of this section is devoted to the individual nonsensitive techniques and explanations of possible applicability of these techniques in the future studies of pilot mental workload.

Multi-descriptor rating scale. The present experiment was the first application of this measure using a piloting task emphasizing mediational activity. The measure did not demonstrate sensitivity. However, the following two findings point toward the possible usefulness of this measure in future experiments. First, the scores obtained
for this measure showed a monotonic increase. This is an important attribute of a useful mental workload measure, since a non-monotonic trend (U or inverted U-shape) can not be interpreted easily. For example, when using a measure having a nonmonotonic trend, a higher score could be interpreted as a "higher" or "lower" mental workload. Second, the required number of subjects (more than 16) to obtain sensitivity for this measure (resulting from the power analysis) encourages a researcher to optimize the scale. The measure may be improved by inclusion of other descriptors with the purpose of tapping other aspects of mental workload. Also, more precise definitions of the descriptors may be used to describe only the concept being rated.

Tapping regularity. Since publication of the article by Michon (1964), only a few studies used this technique as a measure of operator mental workload. Generally, the data acquisition and recording equipment is substantial and is difficult to implement in a flight-related environment. The tapping regularity equipment used in this experiment included a microswitch to transmit the signals, the ramp generator program on the hybrid computer, and the chart recorder to record the signals for later computation using the tapping regularity formula.
A reasonable explanation for the nonsensitivity result of the tapping regularity measure might be the following. The formula used to compute the scores for this measure was first derived for perceptual-motor mental loading (Michon, 1964). Most of the follow-up supporting studies used the same type of load. Also, in the present experiment the tapping intervals used to compute each score were cut off if they exceeded 5 seconds. This restriction was used to account for possible data outliers, which would violate the assumptions of the ANOVA (particularly, normality of data). Finally, the central capacity assumption of spare mental capacity measures has not been successfully supported by the existing literature on mental workload. For example, Gopher and Navon (1978) examined the central capacity assumption using a dual axis tracking task. They concluded that the influence of task difficulty on performance of both primary and secondary tasks grows as more resources are allocated to the secondary task whose difficulty increases. then, they proposed a multiple channel, multiple capacity model for a human operator. Wickens (1979) provided additional evidence for a multiple attentional resources model of a human operator.

Control movements. For a primary task involving psychomotor loading, one expects an increase in the number
of control movements per unit time to justify a constant flight task performance at higher loadings (Connor, 1981; Cooper and Harper, 1969). From the results obtained in the present experiment, it appears that the amount of control activity does not reflect an increase in the pilots' mediational loading.

Pupil dilation. In the present experiment, the equipment used for measuring pupil diameter provided an approximate measure for this technique. It seems that a wider separation of load levels is necessary for this measure to demonstrate sensitivity. A more precise measure based on data obtained from a sophisticated oculometer system would have helped to evaluate this technique more thoroughly.

Pulse rate variability. The existing literature on this measure does not overwhelmingly support the sensitivity of this measure to mediational load. There is more evidence in favor of the sensitivity of this measure to perceptual (visual and auditory) loading tasks. The sensitivity of this measure appears to be task-specific. Overall, the measurement equipment and procedures used in this experiment were nearly optimal. Finally, the power analysis did not provide any support for using a reasonably larger number of subjects in future experiments. Based on the results of the intrusion analysis, it appears that the ear plethysmograph
worn by the subjects is a nonintrusive method of measuring pulse rate (or pulse rate variability).
SUMMARY AND CONCLUSIONS

In the present research, the relative sensitivity and intrusion of eight pilot mental workload estimation techniques were investigated. To accomplish this, ordinal differences in task loading were introduced. The type of task employed was a piloting task emphasizing mediational activity in a moving-base aircraft simulator. Among the eight techniques, three demonstrated sensitivity to the mediational task loading. Only one technique showed complete sensitivity across the three mediational load levels. Among the eight techniques, two demonstrated intrusion upon the primary task performance. The major results of this experiment are summarized in Table 23.

A measure of the amount of time required to solve mediational problems seems to be the best measure of pilot mediational workload. Also, the technique of asking the pilots "how mentally loaded they are", in a systematic format (modified Cooper-Harper scale), appears to be a desirable alternative. Time estimation appears sensitive to mediational loading, but it also intrudes on the primary task. However, based on the results of this experiment, the
rest of the techniques should not be ruled out for inclusion in the future pilot mental workload researches.

This research used a pilot mental loading which emphasized mediational behavior. Connor (1981) investigated the psychomotor dimension of a piloting task in a setting similar to the one used in this experiment. Further research should determine the relative sensitivity and intrusion of appropriate mental workload techniques with regard to the other two workload categories (perceptual and communications). The next logical step would be to combine the findings of these four researches into one integrated analysis. This analysis would indicate which techniques are useful (sensitive and nonintrusive) in estimating workload for a piloting task that emphasizes one or more of the four mental workload dimensions.
TABLE 23
Summary of Results of Present Experiment

<table>
<thead>
<tr>
<th>Technique</th>
<th>Sensitivity</th>
<th>Intrusion</th>
<th>Combined rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opinion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified Cooper-Harper scale</td>
<td>Partial</td>
<td>None</td>
<td>GOOD</td>
</tr>
<tr>
<td>Multi-descriptor</td>
<td>Potential*</td>
<td>None</td>
<td>SOME POTENTIAL</td>
</tr>
<tr>
<td>Spare mental capacity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time estimation (standard dev.)</td>
<td>Partial</td>
<td>Substantial</td>
<td>FAIR</td>
</tr>
<tr>
<td>Tapping regularity</td>
<td>Low</td>
<td>None</td>
<td>LITTLE POTENTIAL</td>
</tr>
<tr>
<td>Primary task</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediational reaction time</td>
<td>Complete</td>
<td>None</td>
<td>BEST</td>
</tr>
<tr>
<td>Control movements</td>
<td>Low</td>
<td>None</td>
<td>LITTLE POTENTIAL</td>
</tr>
<tr>
<td>Physiological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse rate var.</td>
<td>Low</td>
<td>None</td>
<td>LITTLE POTENTIAL</td>
</tr>
<tr>
<td>Pupil dilation</td>
<td>Low</td>
<td>None</td>
<td>LITTLE POTENTIAL</td>
</tr>
</tbody>
</table>

* requires larger sample size.
REFERENCES

Boyce, P. R. Sinus arrhythmia as a measure of mental load. Ergonomics, 1974, 17, 177-183.

Hicks, T. G. and Wierwille, W. W. Comparison of five mental workload assessment procedures in a moving base driving simulator. Human Factors. 1979, 21, 129-143.

Michon, J. A. A note on the measurement of perceptual motor load. Ergonomics, 1964, 7, 461-463.

Michon, J. A. Tapping regularity as a measure of perceptual motor load. Ergonomics, 1966, 9, 401-412.

Wierwille, W. W. Personal communication, 1982.

Appendix A

EXPERIMENTAL APPARATUS
Figure 10: Photograph of experimental equipment.
Figure 11: Photograph of a subject in the aircraft simulator wearing the physiological sensor.
Appendix B

INSTRUCTIONS
General Description of the Experiment for Participants

The purpose of this experiment is to examine the responses of pilots under varying levels of task difficulty. In this experiment, you will be asked to fly four simulated flights. Each flight contains a simple take off, approximately 10 minutes of straight and level flying, and a simple approach and landing. The first flight will be a practice session. The remaining flights will be for data collection. The data collected during this experiment will be treated with anonymity.

All of the flights will be flown in the GAT-1B aircraft simulator. This simulator is widely used for training purposes in the United States. The simulator has been enhanced with some research equipment for this experiment. You should fly the simulator as you would a real aircraft.

In addition to flying the simulator, you will be asked to perform concurrent tasks. These will include solving navigation problems involving the effects of crosswind on flight path. You will be given practice on this additional task prior to data taking.

Depending upon the group to which you are assigned, you may also be requested to do one of the following:

1. to perform an additional task called a secondary task,
2. to provide opinion ratings of difficulty, or
3. to wear a special physiological sensor.
You may rest assured that the physiological sensor will not
harm you in any way. It does not make any electrical
contact with your body, nor does it emit any type of harmful
radiation. Its only purpose is to sense your body's
reaction to the tasks.

If you decide to participate, you will be paid for each
hour of your participation. The entire experiment is
expected to last approximately two hours.

The research team consists of:
1. Mr. Mansour Rahimi, Graduate Student, IEOR
 Department,
2. Mr. John Casali, Graduate Student, IEOR Department, and
3. Dr. Walter Wierwille, Faculty Member, IEOR
 Department.

The research is sponsored by NASA, Ames Research Center,
Moffett Field, California.

Further instructions will follow your reading and signing
the attached consent form. As the participant's consent
form indicates, you have the right to decline to participate
at any point in this experiment. This includes the right to
decline after reading the detailed instructions.
A member of experimental team will answer any questions you may have. However, in cases that may affect the outcome of the experimental data, the team member may delay a detailed answer until you have completed your runs.

You are requested to refrain from discussing the experiment with other persons (pilots) who may become subjects. We expect all data to be taken by March, 1982. Following that date, feel free to discuss the experiment with anyone you wish.

Finally, we want to point out that some tasks or portion of tasks may be difficult to perform. When this occurs, simply do your best. This experiment is not designed to test your skill. Furthermore, your results will be treated with anonymity. Your name will be removed from your data file immediately after you complete your portion of the experiment.
Participant's Consent Form

As a participant in this experiment, you have certain rights. The purpose of this note is to make you aware of these rights and to obtain your consent to participate.

1. You have the right to stop the experiment in which you are participating at any time if you feel that it is not agreeable to you. Should you terminate the experiment, you will receive pay only for the time you participated.

2. You have the right to see your data and to withdraw it from the experiment if you feel that you should. In general, data are processed after all runs are completed. In this experiment, we can provide you with some qualitative information immediately after the experiment. Subsequently, all data are treated with anonymity. Therefore, if you wish to withdraw your data, you must do so immediately after your participation is completed.

3. You have the right to be informed on the results of the overall experiment. If you wish to receive information on the results (four to six months hence), please include your address (four to six months hence) with your signature below. A summary will be sent to you. If you would then like further
information, please contact the Human Factors Laboratory and a full report will be made available to you.

We hope you will find the experiment a pleasant and interesting experience. The faculty and graduate students involved greatly appreciate your help as a participant. If you have any questions about the experiment or your rights as a participant, please do not hesitate to ask. We will do our best to answer them, subject only to the constraint that we do not want to pre-bias the experimental results.

Your signature below indicates that you have read the above stated rights and that you consent to participation. If you include your printed name and address below, a summary of experimental results will be sent to you.

Signature

Print name and address
Flight Task Practice Instructions

The purpose of this session is to familiarize you with the aircraft simulator and the flight procedures used in this experiment.

The flight procedures are the same as the flight procedures you will experience in the experimental sessions. The loading conditions (wind triangle problems) may vary from one flight to another. You will experience flight task and loading conditions similar to the experimental sessions and your questions will be answered at the end of the session.

Any question?
Flight Task Instructions

The procedures for the flight task are as follows:

1. Prior to each flight, the simulator will be positioned at predetermined heading of 0 degrees (north).

2. The experimenter will tell you when you are cleared for take-off over the intercom system.

3. Assuming a mild turbulence, you will take-off maintaining the predetermined heading and climb to 2000 feet with the rate of climb of 500 feet per minute. Take-off speed is approximately 70 mph in the simulator under zero wind condition. The maximum rate of climb can be reached at approximately 72 mph.

4. After you arrive at 2000 feet, you should level the aircraft and maintain 2000 (±100) feet while flying at 100 (±10) mph airspeed.

5. You will fly this level flight for approximately 10 minutes. It is within this portion of your flight that the mediational loading task will be presented. The task is in the form of wind triangle problems presented on a slide projector. At the end of this portion of your flight the experimenter will tell you to descend.
6. Then, reduce your airspeed to 70 mph and lower one half flaps. Descend at a rate of 500 feet per minute at the same heading until you make a landing. Field elevation is 180 feet, and barometric pressure at the field is 29.92 inches of mercury.

7. Upon landing, you should pull the parking brakes, leave the engine on. Then, you will be instructed to exit the simulator.

You should maintain adequate performance while flying the simulator in the level portion of your flight. Adequate performance is defined as maintaining the indicated heading of 0 (+/-10) degrees, maintaining altitude of 2000 (+/-100) feet, maintaining airspeed of 100 (+/-10) mph, and solving wind triangle problems *simultaneously*.

Any questions?

The simulator is already set up for takeoff. All you need to do is to release the parking brakes and apply throttle to begin taxiing for the takeoff. Do not begin until the experimenter has cleared you for the takeoff.

In summary: Your primary task is to takeoff and climb to 2000 feet, cruise at the constant altitude of 2000 at 100 mph and 0 degrees heading, solve the problems on the slides, and when you are told, descend and land the simulator.

Any questions?
Appendix C

WIND TRIANGLE PROBLEMS
Wind Triangle Problems, Instructions, and Training

During the level portion of your flight scenario (between takeoff and landing), you will be presented with a series of slides. Each slide contains one wind triangle problem (e.g., Figure 12). A wind triangle is a vector presentation of aircraft speed, aircraft heading, wind speed, and wind direction. The three vectors constructing a triangle are: 1) red arrow indicating crosswind, 2) black arrow indicating true airspeed (TAS) and indicated heading, and 3) dashed black arrow indicating true course or the path over the ground. To the center of each slide a wind triangle problem is presented. Notice the triangles are right-angle triangles because the wind components considered are cross-winds only. The magnitude of each arrow indicates "speed" in miles per hour, and the direction of each arrow indicates "direction" or "heading" from true north (clockwise).

Any questions?

In the upper left hand of each slide a "reference" triangle is presented. These triangles are drawn with solid black lines (not arrows). They demonstrate the trigonometric leg/angle relationship of the wind problems presented in the center of the slides. The purpose of a reference triangle is to give all the necessary information
Figure 12: A sample wind triangle problem for a GROUND SPEED question.
to solve the wind triangle problem given in the center of the slide. For example, if two legs of the wind problem are given, the hypotenuse (TAS) can be found by referring to the "reference" triangle (Figure 12).

Any questions?

In the bottom portion of each slide, you are asked only one question. The three possible questions are:

1. GROUND SPEED?

Ground speed is the speed with which the aircraft is moving in the direction of "true course" over the ground. True airspeed (TAS) is the speed with which the aircraft is moving into the air. Therefore, ground speed considers the speed correction due to the wind. To find the ground speed (Figure 12) you should compare the reference triangle with the problem triangle. Find out which leg corresponds to the wind vector, then find out which leg corresponds to the TAS, finally the leg corresponding to the dashed black arrow will give you the magnitude of the arrow or the ground speed. You may need to mentally rotate one or the other triangle to match the other one. This mental rotation will help you to find the required speed.

Any questions?
In some problems the reference triangle speeds are proportional to the problem triangle speeds. In that case, you have to 1) mentally rotate a triangle, 2) find the proportionality with which the triangle speeds are related, 3) find the leg corresponding to the ground speed, and 4) multiply that number by the ground speed given in the reference triangle.

CAUTION: For experimental purposes, use only this method to find the ground speed. Do not use pythagorean theorem to find the third leg of a triangle. It is impossible to calculate the ground speed using this theorem within the time frame given for a slide.

Any questions?

2. AIRCRAFT HEADING?

By definition, the difference between true course and indicated heading of an aircraft, when winds of a significant magnitude are present, is called wind correction angle. To calculate aircraft heading (Figure 13), first you should find the wind correction angle from the reference triangle which is the angle between the corresponding TRUE COURSE and TAS. Then, you add that angle to the TRUE COURSE if the wind is blowing from right to left; or, subtract the angle from TRUE COURSE if the wind is blowing form left to
right. The true course directions are given next to the dash arrows.

Any questions?

3. ETA?

Estimated Time of Arrival (ETA) can be calculated by dividing the distance to the destination by ground speed (Figure 14).

Find the ground speed exactly the same way as you would in the "GROUND SPEED?" slides. Then, divide the destination distance given next to the dashed arrows (e.g., DESTINATION: 87.5 miles) by the ground speed (e.g., 70 mph) you will have ETA (e.g., one hour and 15 minutes).

Any questions?

Remember that a) the question "ETA?" is asked only if the word "DESTINATION:" appears next to the dashed arrow. B) When you divide distance (miles) by speed (miles per hour), the result would be a measure of time (hours). You can express this time by hour and a fraction of hour (e.g., 1 and half hour; half an hour; 1 and one sixth of an hour) or by hour and minutes (e.g., 1 hr. and 30 minutes, 30 minutes, 1 hr. and 10 minutes). Try to simplify all the fractions as much as possible.

Any question?
Figure 13: A sample wind triangle problem for an AIRCRAFT HEADING question.
Figure 14: A sample wind triangle problem for an ETA question.
The following is some general information you should keep in mind while working on the problems:

1. There is no relationship between the results (answers) of the wind triangle problems and the actual parameters of your simulated flight. In other words, the problems are presented for you to solve cognitively and not to implement.

2. All directions are in degrees from true north and all speeds are in miles per hour (mph).

3. Some of the problems might be difficult to solve within the time frame available. Do not quit on any problem. Keep working on the problem until the next slide appears. It is important for you to realize that these problems are presented to increase your mediational load. They are, by no means, used to measure your mathematical or trigonometrical abilities.

4. If during your mental calculations a slide is advanced, stop working on it and start solving the next problem.

5. Respond verbally and as clearly as possible.

6. Make only one response for each slide when you are sure of the answer.
7. During the practice trial you might experience a different level of problem difficulty than the experimental runs.
Appendix D

MEASUREMENT TECHNIQUE INSTRUCTIONS
Overview

After each of the following flights, you will be asked to give a rating on the Modified Cooper-Harper Scale for workload. This rating scale and important definitions for using the scale are shown on the sample which I have given you. Before you make any flights, we will review:

1. The definitions of the terms used in the scale,
2. The steps you should follow in making your rating on the scale, and
3. How you should think of the ratings.

If you have any questions as we review these points please ask me.

Important Definitions

To understand and use the modified Cooper-Harper scale properly, it is important that you understand the terms used on the scale and how they apply in the context of this experiment.

First, "instructed task" is the task you have been assigned in this experiment. It includes all the duties you have been requested to perform over the time interval designated by the experimenter.
Second, the "operator" in this situation is you. Because the scale can be used in different situations, the person performing the ratings is called an operator. You will be operating the system and then using the rating scale to quantify your experience.

Third, the "system" is the complete group of equipment you will be using in performing the instructed task. Together you and the system make up the "operator/system". For the present experiment, the system is composed of the aircraft simulator, its instruments and controls and the slide projector display near the windscreen.

Fourth, "errors" include any of the following: mistakes, incorrect actions or responses, blunders, omissions, and incompletions. In other words, errors are any appreciable deviation from desired operator/system performance.

Finally, "mental workload" is the integrated mental effort required to perform the instructed task. It includes such factors as level of attention, depth of thinking, and level of concentration required by the instructed task.

Rating Scale Steps

On the modified Cooper-Harper scale you will notice that there is a series of decisions which follow a predetermined logical sequence. This logic sequence is designed to help
you make more consistent and accurate ratings. Thus, you should follow the logic sequence on the scale for each of your ratings in this experiment.

The steps which you will follow in using the rating scale logic are as follows:

1. First you will decide if the instructed task can be accomplished most of the time; if not, then your rating is a 10 and you should circle the 10 on the rating scale.

2. Second, you will decide if adequate performance is attainable. Adequate performance means that the errors are small and inconsequential in performing the instructed task. If they are not, then there are major deficiencies in the system and you should proceed to the right. By reading the descriptions associated with the number 7, 8, 9, you should be able to select the one that best describes the situation you have experienced. You would then circle the most appropriate number.

3. If adequate performance is attainable your next decision is whether or not your mental workload for the instructed task is tolerable. If it is not tolerable, you should select a rating of 4, 5, or 6. One of these three ratings should describe the
situation you have experienced, and you would circle the most appropriate number.

4. If mental workload is tolerable, you should then move to one of the top three descriptions on the scale. You would read and carefully select the rating 1, 2, 3, based on the corresponding description that best describes the situation you have experienced. You would circle the most appropriate number.

Remember you are to circle only one number, and the number should be arrived at by following the logic of the scale. You should always begin at the lower left and follow the logic path until you have decided on a rating. In particular, do not skip any steps in the logic. Otherwise your rating may not be valid and reliable.

How You Should Think of the Rating

Before you begin making ratings there are several points that need to be emphasized. First, be sure to try to perform the instructed task as instructed and make all your evaluations within the context of the instructed task. Try to maintain adequate performance as specified for your task.

Second, the rating scale is not a test of your personal skill. On all of your ratings, you will be evaluating the system for a general user population, not yourself. You may
assume you are an experienced member of that population. You should make the assumption that problems you encounter are not problems you created. They are problems created by the system and the instructed task. In other words, don't blame yourself if the system is deficient, blame the system.

Third, try to avoid the problem of nit picking an especially good system, and of saying that a system which is difficult to use is not difficult to use at all. These problems can result in similar ratings for systems with quite different characteristics. Also, try not to overreact to small changes in the system. This can result in ratings which are extremely different when the systems themselves are quite similar. Thus, to avoid any problems, just always try to "tell it like it is" in making your ratings.

Any questions?
Multiple Descriptor Ratings

Overview

After each of the flights, you will be asked to give a rating on several descriptors associated with the instructed task. The descriptors are attentional demand, difficulty, error level, task complexity, mental workload, and stress level. Each of these descriptors is defined on the sheet on which your rating will be made, so that you will not become confused by the terms. Before you make any flights, we will review:

1. a full set of the rating scale sheets and the definition of terms used,
2. the steps you should follow in making your ratings on the scale, and,
3. how you should think of the ratings.

If you have any questions as we review these points, please ask me. You will have one practice trial before we begin the experimental trials.

Important Definitions

Before examining the rating scale sheets, I want to provide you with an important definition that you should keep in mind while performing the ratings. The words "instructed task" appear on every rating sheet. "Instructed
task" is the task you have been assigned in this experiment. It includes all the duties you have been requested to perform over the time interval designated by the experimenter. Thus your ratings should be based on the total of your duties during the experimental runs.

Also, later we will use the word "system". The system is the complete group of equipment you will be using in performing the instructed task. For the present experiment, the system is composed of the aircraft simulator, its instruments, controls, and the slide projector display.

Now, let's proceed to rating sheets. The first of them deals with Attentional Demand. As the sheet indicates, attentional demand refers to the portion of your total time required (or the amount of attention required) to perform the instructed task. Below the definition on the sheet is a rating scale. After an experimental run you are to circle the one letter which best describes the attentional demand associated with the instructed task. If the task took up most of your attention, your rating should be to the right of center, that is, one of the letters G through K. If the task took little of your time, your rating should be to the left of center (letters A through F).

The letters themselves have no meaning implied. They are simply used to designate equal intervals on a continuum of
attentional demand from none to extremely high. The letters allow us to extract information from the sheet with little likelihood of error.

We would like for you to rate your attentional demand in performing the instructed task as accurately as possible. Please take as much time as necessary and remember, that as you move to the right on the scale, you are indicating higher attentional demand, and as you move to the left on the scale, you are indicating lower attentional demand. A rating of C represents less attentional demand than a rating of D.

The remaining five rating scale sheets each contain a single descriptor definition and a single rating scale associated with that descriptor. Please read over the five remaining definitions and carefully examine their corresponding scales. The descriptors are not necessarily mutually exclusive (non-overlapping). Therefore, it is possible that your ratings on two or more scales may be similar. However, on each scale, please rate the descriptor based on the definition given. If there are any questions, please ask.
Rating Scale Steps

After you have completed an experimental run, you will be given a full set of the rating scale sheets. Read the descriptor definition at the top of the first sheet. Then carefully select a rating on the scale which best describes the level of the descriptor you experienced.

Remember, please do not hurry in making your rating. Read the definition first, then carefully make the rating by circling the letter which is most appropriate.

How You Should Think of the Rating

Before making ratings there are several points that need to be emphasized. First, be sure to try to perform the instructed task as instructed and make all your evaluations within the context of the instructed task. Try to maintain adequate performance as specified for your task. Second, the rating sheets are not a test of your personal skill. On all of your ratings, you will be evaluating the system for a general user population, not yourself. You may assume you are an experienced member of that population. You should make the assumption that problems you encounter are not problems you created. They are problems created by the system and the instructed task. In other words, don't blame yourself if the system is deficient, blame the system.
Third, try to avoid the problem of nit picking an especially good system and of saying that a system which is difficult to use is not difficult to use at all. These problems can result in similar ratings for systems with quite different characteristics. Also, try not to over-react to small changes in the system. This can result in ratings which are extremely different when the systems themselves are quite similar. Thus, to avoid any problems, just always "tell it like it is in making your ratings".

Any questions?
ATTENTIONAL DEMAND refers to the portion of your total time required (or the amount of attention required) to perform the instructed task.

YOUR RATING OF ATTENTIONAL DEMAND

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NONE MODERATE EXTREMELY HIGH
DIFFICULTY refers to how hard or difficult you found the instructed task.

YOUR DIFFICULTY RATING

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTREMELY EASY</td>
<td>MODERATE</td>
<td>EXTREMELY DIFFICULT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ERROR LEVEL refers to the magnitude and frequency of mistakes, omissions, incorrect procedures, and incompletions you made in performing the instructed task.

YOUR ERROR LEVEL RATING

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>MODERATE</td>
<td>NUMEROUS AND/OR LARGE ERRORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERRORS</td>
<td>LEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TASK COMPLEXITY refers to how complicated or complex you found the instructed task.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTREMELY EASY</td>
<td>MODERATE</td>
<td>EXTREMELY COMPLEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MENTAL WORKLOAD refers to the integrated mental effort required to perform the instructed task. It includes such factors as depth of thinking and level of concentration required by the instructed task.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTREMELY LOW</td>
<td>MODERATE</td>
<td>EXTREMELY HIGH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STRESS LEVEL refers to your emotional reaction while you performed the instructed task. Stress may be considered as your feeling of anxiety, concern, uneasiness and uncertainty brought on as a direct result of performing the instructed task.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSOLUTE</td>
<td>MODERATE</td>
<td>EXTREME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALM</td>
<td>STRESS</td>
<td>STRESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Familiarization Session Instructions (Physiological Measures)

Before attending the experimental sessions, you are to sit in the aircraft simulator, quietly, for 10 minutes. There are two purposes for this session: a) This period allows you to become familiar with the aircraft systems and environment while getting used to wearing the physiological sensor, and b) allows the experimenter to adjust the physiological monitoring equipment and to obtain your physiological baselines for later comparisons. The experimenter will help you to position the sensor properly. After wearing the sensor, remain in the seated position and do not make sudden moves. The experimenter will instruct you to your next task. Meanwhile, try to adapt to the new environment as much as you can.

Any questions?
Physiological Sensor Description

In this set of trials you will be asked to wear a special physiological sensor while you fly the simulator. This sensor will not harm you in any way. It does not emit any type of harmful radiation, and it does not make any electrical contact with your body. Its sole purpose is to check your body's reaction to the flight task.

The sensor is the ear plethysmograph. The ear plethysmograph is worn on the anti-helix of your left ear like this (experimenter demonstrates on his own ear).
Time Estimation (Secondary Task) Instructions

In each of your four flights (one practice flight and three experimental flights) you will be asked to perform a secondary time estimation task while flying the aircraft simulator. You are to perform the time estimation task simultaneously with the integrated primary task.

The primary task in this experiment consists of flying the simulator within the specified accuracy and solving the wind triangle problems simultaneously.

The performance requirements for the primary task will be explained in more detail later.

For the time estimation task, you will perform mental estimates of 10-second intervals, indicating the beginning and end of each interval by pressing the microswitch mounted on the control yoke of the simulator. Follow the procedure outlined below for each trial.

1. The beginning of each trial will be indicated by the word "ready" over the cockpit speaker. This is to signal you to prepare to estimate a 10-second interval.

2. Soon after the word "ready", the word "now" will be presented over the speaker. "Now" signals you to press the microswitch once to indicate the beginning of the 10-second interval.
3. When you feel that 10 seconds have elapsed since you first pressed the microswitch, press it again (once) to indicate the end of the 10-second interval.

4. After you have pressed the microswitch a second time to signal the end of the interval, the current trial is over. Wait for the next "ready" signal to begin the next trial.

During your time estimates, you are to continue flying straight and level, maintaining specified altitude, airspeed, and heading, and solving wind triangle problems presented on the slide projector. Try not to count or to tap to aid yourself in making time estimates. Merely press the microswitch to indicate the beginning and end of an interval which you perceive to be of 10-seconds duration. Also, please remember that your primary task is to fly the simulator and to solve wind triangle problems. Try not to allow your time estimations to interfere with the performance of your primary task.

Prior to performing the time estimation task during the three experimental flights, you will be given two opportunities to practice the time estimation task.

First, while seated in the stationary simulator ("on the ground") you will be given several practice trials to perform the time estimation task by itself. The procedure
for the practice trials will be identical to the procedure discussed above. When you hear "ready", prepare to press the microswitch. When you hear "now", press the microswitch to indicate the beginning of a 10-second interval. After you feel that 10 seconds have elapsed, press the microswitch again to indicate the end of the interval. Also, you will have an opportunity to practice the time estimation task again while flying the simulator during the practice flight. Again, your signal to prepare to begin an interval estimate will be the word "ready" over the cockpit speaker. If you have any questions concerning the time estimation task procedures, please ask the experimenter at this time.
Tapping Regularity (Secondary Task) Instructions

In each of your four flights (one practice flight and three experimental flights) you will be asked to perform a secondary tapping task while flying the aircraft simulator. You are to perform the tapping task simultaneously with the integrated primary task. The primary task consists of flying the simulator within specified levels of accuracy and solving wind triangle problems as presented on the slide projector.

The primary task will be described in more detail later.

For the tapping task, you are to tap (depress) the control yoke-mounted microswitch at a rate of 1 tap (depression) every 2 seconds. Try your best to tap the microswitch at this rate as regularly or as rhythmically as possible. Because you are trying to tap at a rate of 1 tap per 2 seconds, each microswitch depression will indicate that 2 seconds (in your opinion) have elapsed since your last depression. The measured interval will be from one switch depression to the next depression. You do not have to "flick" or hit the microswitch and let it return immediately after each tap. Instead, it is probably better to tap the microswitch with a smooth, stroking motion to maintain rhythm.
Also, please remember that your primary task is to fly the simulator and to solve wind triangle problems. Try not to allow your tapping to interfere with performance of your primary task.

Prior to performing the tapping task during the three experimental flights, you will be given two opportunities to practice the tapping regularity task.

First, while seated in the stationary simulator ("on the ground") you will be instructed to tap the microswitch at the rate of 1 tap per 2 seconds for a few minutes of practice. Later, you will again perform the tapping task while actually flying the simulator during the practice flight.

During all flights, the experimenter will instruct you over the cockpit speaker when to begin tapping and when to stop tapping. If you have any questions concerning the tapping task procedures, please ask.
Appendix E

DEFINITIONS AND DESCRIPTIONS OF MEASURES USED
Opinion measures

Modified Cooper-Harper Ratings

Ratings provided by the subjects were obtained on the Modified Cooper-Harper scale for the instructed tasks performed during the level portion of each flight. No computation was necessary to score these ratings.

Multiple Descriptor Ratings

Ratings provided by the subjects were obtained on the multiple descriptor scales for the instructed tasks performed during the level portion of each flight. Each rating (A to K) was converted to a number (0 to 10). The final score for each experimental run (each load level) was the average of the six descriptor ratings.

Spare Mental Capacity Measures

Time Estimation

The standard deviation of the interval duration for the time estimation trials performed during the level portion of a given flight. Trials on which pilots did not signal the end of the time interval were considered as the maximum allowable interval (20 seconds). Trials on which pilots did not even start the beginning of the time interval were not included in the score computation.
Tapping Regularity

The formula derived by Michon (1966) was used for score computation of the tapping regularity measure. This formula considers both the variability and the mean of the tapping intervals compared to a baseline (without the effect of primary task loading). The formula is:

$$PML = \frac{N_{\Delta_t} \frac{T}{N} \sum_{i=1}^{N_{\Delta_t}-1} |\Delta_t| - N_b \frac{T_b}{N_b} \sum_{i=1}^{N_b-1} |\Delta_{t_b}|}{N_b \frac{T_b}{N_b} \sum_{i=1}^{N_b-1} |\Delta_{t_b}|}$$

(1)

where, PML = perceptual motor load

- \(T\) = total time of a run (s)
- \(N\) = number of taps in a run
- \(t\) = time between two consecutive taps (s)
- \(b\) = baseline values
- \(l\) = loaded values

Time intervals more than 5 seconds were mapped to 5 seconds.
Physiological Measures

Pulse Rate Variability

The standard deviation of the instantaneous pulse rate. The instantaneous pulse rate was calculated by a Hewlett-Packard 7807C heart rate monitor. The standard deviation was calculated over a 5-minute period by the EAI-380 hybrid computer.

Pupil Dilation

The average normalized diameter of the pupil (measured horizontally) while the pilot viewed the slide projector display. To correct for rotational and translational eye and head movements, pupil diameter was normalized (divided) by the diameter of the iris. Samples were taken approximately 3 seconds after the first glance fixation on the projector screen for each slide (12 data points for each loading level).

Primary Task Measures

Mediational Reaction Time

Subjects' verbal responses to each slide were timed. A digital timer was started with an appearance of a slide on the screen and ended when the subject made his first response to the slide. Subjects had 25 seconds for each
slide. Lack of response or any response longer than the
time interval given was considered as 25 seconds duration.

Percent Error Response
Percent of errors (out of 12 slides for each loading
level) made by the subjects. Subjects were instructed that
only their first response was accepted.

Control Movements per Unit Time
A count per unit time (seconds) of the number of inputs
to the flight controls (aileron, elevator, and rudder). A
movement was defined as control rate reaching a velocity of
more than 2 percent of full range per second after having
passed through zero velocity.

Pitch High-Pass Mean-Squared (PHPMS) Error
This measure computes the amount of pitch deviations from
a level flight integrated over a 5-minute experimental
period. The filter used for this computation had a time
constant 20 seconds and a corner frequency of 0.05
radian/second. The low frequency deviations were not
considered because some pilots have a habit of trimming the
simulator slightly pitched up or down. Therefore, PHPMS is
a primary task measure reflecting pilots quick responses (or
corrections) of pitch.
Roll High-Pass Mean-Squared (RHPMS) Error

Similar to the previous measure, this measure computes the amount of roll deviation from level flight integrated over a 5 minute experimental period. The same high pass filter used in pitch calculation was used for RHPMS also. This is a primary task measure reflecting pilots quick responses (or corrections) of roll.
The two page vita has been removed from the scanned document. Page 1 of 2
The two page vita has been removed from the scanned document. Page 2 of 2
EVALUATION OF WORKLOAD ESTIMATION TECHNIQUES IN SIMULATED PILOTING TASKS EMPHASIZING MEDIATIONAL ACTIVITY

by
Mansour Rahimi

(ABSTRACT)

Pilots and other aircrew members are often required to perform tasks involving a substantial amount of mediational or cognitive activity. Generally speaking, workload estimation techniques have not been tested to determine their relative sensitivity and intrusion to mediational piloting tasks.

An experiment comparing the sensitivity and intrusion of eight workload estimation techniques was conducted using a mediational loading task in a three-degrees-of-freedom moving-base aircraft simulator. The primary task mediational loading required the pilots to solve a variety of navigational problems while maintaining straight-and-level flight. The presented problems were sorted prior to the experiment into low, medium, and high difficulty problems. The eight techniques included opinion measures (modified Cooper-Harper rating scale and
multi-descriptor rating scale), spare mental capacity measures (time estimation and tapping regularity), primary task measures (mediational reaction time and control movements per unit time), and physiological measures (pulse rate variability and pupil dilation).

A sensitive technique was defined as a technique which indicated statistical differences of scores across the three mediational load levels. An intrusive technique was defined as a technique which significantly changed the primary task measures compared to the primary task measures obtained in a control condition. One opinion measure (modified Cooper-Harper rating scale), one spare mental capacity measure (time estimation), and one primary task measure (mediational reaction time) demonstrated sensitivity. Mediational reaction time demonstrated sensitivity to all levels of load. The other two showed partial sensitivity to load. One spare mental capacity measure (time estimation) demonstrated intrusion on two primary task measures (mediational reaction time and percent error response).