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ABSTRACT
The pluripotent cells of the embryonic ectodermal tissues are known to 

be a precursor for multiple tumor types. The adaptability of these cells is a trait 
exploited by cancer. We previously described cancer-associated microsatellite loci 
(CAML) shared between glioblastoma (GBM) and lower-grade gliomas. Therefore, 
we hypothesized that these variants, identified from germline DNA, are shared by 
cancers from tissues originating from ectodermal tissues: neural tube cells (NTC) 
and crest cells (NCC). Using exome sequencing data from four cancers with origins 
to NTC and NCC, a ‘signature’ of loci significant to each cancer (p-value ≤ 0.01) 
was created and compared with previously identified CAML from breast cancer. The 
results of this analysis show that variant loci among the cancers with tissue origins 
from NTC/NCC were closely linked. Signaling pathways linked to genes with non-
coding CAML genotypes revealed enriched connections to hereditary, neurological, 
and developmental disease or disorders. Thus, variants in genes from tissues initiating 
from NTC/NCC, if recurrently detected, may indicate a common etiology. Additionally, 
CAML genotypes from non-tumor DNA may predict cancer phenotypes and are common 
to shared embryonic tissues of origin.

INTRODUCTION

Neural Tube & Crest Cells: During embryogenesis the 
neural tube gives rise to the glial cells of the central nervous 
system (CNS) and the pluripotent cells of the neural crest 
migrate extensively throughout the embryo and give rise to 
a number of differentiated cell types, including peripheral 
and enteric neurons, glia, melanocytes, Schwann cells, 
and cells of the craniofacial skeleton and adrenal medulla 
[1, 2]. After primary development ceases, neurons become 
post-mitotic and only a small compartment of stem cells 
remain, whereas glial cells retain the ability to proliferate 
throughout life. In this context, it is perhaps not surprising 
that most adult neurological tumors are of glial origin [3]. The 
classification of brain tumors is based on the predominant cell 
type(s), which is generally determined by morphological and 
immunohistochemical criteria. Therefore, improved insight 

into the interrelated hereditary, genetic, and genomic traits 
shared by these cancers might be relevant for the identification 
of tissue/tumor specific cancer prognosis and therapies.

DNA Microsatellite Repeat Loci: Variable tandem 
repeat loci, including microsatellites (MST), are causative 
or linked with many hereditary neural diseases and cancers 
most notably hereditary nonpolyposis colorectal cancers [4]. 
Modifications to coding and non-coding regions of these 
short repetitive sequences can result in mutations leading to 
modified mRNA and protein synthesis. Thus, alterations to 
these unique repetitive regions are associated with alternative 
mRNA splicing, microRNA synthesis, modified binding sites 
for transcription factors and changes in gene expression [4–6]. 
Microsatellite loci are identified as 6-12 nucleotides in length, 
consisting of monomeric, di, tri, and up to heptameric motifs 
[5, 7]. Non-coding repeat sequences promote changes in 
replication and transcription binding machinery which 
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can also contribute to changes in molecular and biological 
functions that propagate disease [4]. Repeat containing 
loci are highly vulnerable to genomic variation and they 
represent as much as 3% of the human genome; twice the 
size of the coding region [8, 9]. These simple sequences have 
attracted attention because expansion of tri-nucleotide repeat 
sequences are important contributors to over 40 different 
neurological disorders including Fragile X, Huntington’s 
and Parkinson’s disease [4]. Thus, changes to microsatellite 
sequences yield phenotypes and contribute to diseases.

We have developed a microsatellite genotyping 
algorithm that is highly accurate (96.5%) and has been 
successfully used to identify breast and brain cancer-linked 
DNA, MST variants in addition to variants identified 
in response to cell stressors and aging [10–13]. From 
predetermined histopathology classification of tumor 
and germline sequencing data we identified non-coding 
microsatellite loci that differentiate GBM from lower-grade 
gliomas (LGG) [14]. These data and others suggest it may 
be possible to identify a unique ‘signature’, for cancers 
of NTC/NCC lineage. We therefore hypothesized that the 
identification of these cancer-specific variant loci from 
germline DNA would indicate a common embryonic tissue 
of origin and that these variant loci could serve as targets for 
the development of powerful combination therapeutics and 
foster a novel understanding in cancer etiology.

RESULTS

We analyzed tumors whose tissues originate from 
embryonic ectodermal tissues (NTC and NCC) with breast 
cancer, a non-NTC/NCC tissue, to identify the extent of 
shared CAML genotypes. First, we identified no significant 
differences in shared CAML genotypes of MEL, GBM, 
LGG, and MB (cancers with tissues originating from NTC/
NCC) from each other. Whereas: GBM, LGG, and MEL 
compared with BC all demonstrated statistically significant 
differences (p < 0.05). MB when compared with BC and 
LGG showed statistically significant overlap (p < 0.05), 
see Table 1. MB had the smallest sample population and 
signature CAML set, with a larger sample cohort a more 
robust signature could further extricate loci specific to 
this disease. In the 3-set overlap analysis, shared CAML 
genotypes between the cancers originating from NTC/NCC 
lineage with BC were 0 or 1 locus (see Table 1). Genotypes 
from loci identified from tumors with NTC/NCC lineage 
showed multiple shared CAML genotypes (see Table 1); the 
most common locus identified in MEL, GBM, LGG, and 
MB was in an intron of PSME (15:63040517-63040532). 
The second most frequently shared locus was in an intron 
of LAMP1 (13:115002098-115002110). Unique to all of 
the brain cancers (GBM, LGG, and MB) was a locus in 
the intron of FUBP3 (9:133498230-133498244). The 
most common CAML identified in BC that were also in 
neural tissue cancers included the following genes: TLN2 
(in MEL and MB); KIF1B and NCOR1 (MEL and LGG). 

Interestingly, all seven CAML common to BC and GBM 
were unique to this relationship and were not identified in 
the other comparisons tested against BC.

In a separate analysis, signature loci common to any 
pair-wise comparison was used to identify the number 
of mutual CAML from either of two cancers. Results 
demonstrate: MEL, LGG, and MB shared the most CAML 
loci; CAML from LGG and MEL compose most of the loci 
found in the MB signature (see Tables 1 and 2). The least 
common loci were between (adult brain cancer) GBM 
and (childhood brain cancer) MB, see Table 2. Similar 
percentages of mutual CAML were identified when each 
of the cancers were analyzed with GBM, including LGG. 
LGG, MB, and MEL exhibited more variability in two-
way comparisons as opposed to pair-wise comparisons 
with BC or GBM.

To further identify tissue specificity and disease-
linked loci, we calculated the proportion of non-signature 
CAML genotypes shared between two cancers from the 
total shared loci (signature plus non-signature loci). Non-
signature loci are those that pass statistical significance tests, 
but fail false discovery tests so are considered potentially 
informative, and may attain a higher level of significance 
when studies are verified with larger number of samples. 
Here, we hypothesized that the proportion of shared non-
signature loci could demonstrate the degree of relatedness 
or non-relatedness between two tissues. Supporting this 
hypothesis, we discovered that from the total shared 
significant variant loci in BC and GBM, 47% were non-
signature loci, described in Tables 1 and 3. Similarly, 
between BC and MEL, 42% of loci were non-signature. 
While, most of the loci shared between MEL and the brain 
cancers were above 79% signature CAML genotypes. 
Similarly, between the brain cancers (adult and childhood), 
the numbers of non-signature loci shared are relatively 
similar between any pair-wise comparisons (see Table 3).

To determine the biological significance of shared 
genotypes, we reviewed genes harboring loci and 
determined which implicated genes were shared by the 
described cancer populations. From IPA analysis, we 
discovered that polyamine regulation associated with 
colon cancer was the most common and significant 
(p < 0.01) pathway effected in any combinatorial analysis 
of the NTC/NCC lineage tumors. Additionally, the most 
common networks disrupted by genes associated with 
these MST loci were important to hereditary diseases 
and neurological disorders (described in Table 4). 
Comparisons with BC showed metabolic pathways as the 
most common networks disrupted and Ca2+ regulation as 
the most common pathway affected (see Table 5).

DISCUSSION

With the reoccurrence of most cancers diagnosed 
at advanced stages and following chemotherapeutic and 
radiological treatments; and with more than 50% of somatic 
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Table 1: CAML Genotypes Shared by NTC/NCC Lineage Cancers & BC 
Variant Microsatellite Loci in Individual Cancers

Cancer Sample Population (n) Significant Genotypes Signature CAML 
Genotypes 

(FDR Corrected)

GBM 252 178 48

LGG 136 145 42

MEL 149 157 68

MB 51 58 12

BC 656 242 52

Signature CAML Genotypes Shared by Multiple Cancers

3-Way Comparison of Cancers Shared CAML Significance (p-value)

MEL v. GBM v. LGG 4 0.792

MEL v. GBM v. MB 1 1.000

MEL v. BC v. GBM 0 0.011*

LGG v. BC v. GBM 0 0.023*

LGG v. MB v. MEL 2 0.986

LGG v. GBM v. MB 2 1.000

MB v. BC v. LGG 0 0.037*

MB v. BC v. MEL 1 0.175

Signature CAML Genotypes Shared between Cancers

Pair-Wise Comparison of Cancers Number of Shared CAML

MEL v LGG 23

MEL v GBM 7

MEL v MB 6

MEL v BC 3

LGG v GBM 6

LGG v MB 4

LGG v BC 2

GBM v MB 3

GBM v BC 7

MB v BC 1

Described for each disease cohort- Glioblastoma (GBM), lower grade glioma (LGG), melanoma (MEL), medulloblastoma 
(MB), and breast cancer (BC) are the number of samples (n) analyzed to identify significant microsatellite loci, and those 
loci with genotypes which form a signature of cancer-associated allelic pairs based on false discovery rate correction. 
Further described are the analyses of FDR corrected, signature loci shared between different cancers. Cancers compared 
in sets of 3 are described with a p-value (p < 0.05) and significance (*). Lastly, the number of shared signature CAML 
between any two cancers is described.



Oncotarget22041www.impactjournals.com/oncotarget

Table 3: Non-Signature Variant Microsatellite Loci Shared by Cancers
Percentage of Shared Non-Signature Variant Microsatellite Loci

BC GBM LGG MB MEL

BC - 47% 36% 20% 42%

GBM - - 41% 38% 13%

LGG - - - 31% 21%

MB - - - - 7%

MEL - - - - -

Described are the total microsatellite loci genotypes shared between any pair-wise comparisons of cancers and the 
proportion of shared loci that were not a part of disease signatures. The highest percentage of non-signature loci 
shared between two diseases was observed between BC and GBM; whereas, loci shared by MEL and MB were mostly 
CAML genotypes (93%). Equation: % of Shared Non-Signature Variant Microsatellite Loci Shared = (x/y) * 100; x 
= non-signature loci shared by both cancers; y = total number of shared loci (non-signature plus signature loci) in a 
comparison.

Table 4: Common Disease and Gene Functions for CAML genotypes shared between cancers 
Common Cell Pathway Linked to Genes with CAML Genotypes Shared by Cancers from NTC/NCC Lineage

Disease Comparisons p-value Canonical Cancer Pathway

GBM-LGG-MB 2.3 × 10−3

Polyamine Regulation  MEL-LGG-MB 2.3 × 10−3

MEL-LGG-GBM 4.6 × 10−3

Described is the p-value (p < 0.01 are significant) from comparisons between the cancers arising from tissue originating 
from NTC/NCC lineage. The most significant cell signaling pathway that was affected was colon cancer associated 
polyamine regulation. The gene commonly shared in these comparisons was PSME. Comparison of MEL-LGG 
highlighted polyamine regulation but was below the cut-off for significance.

Table 2: Shared Signature Microsatellite Loci
Percentage of Shared Signature Variant Microsatellite Loci Between Cancer Comparisons

GBM LGG MEL MB

BC 9.3% 8.5% 9.4% 11%

GBM - 12% 14% 0.2%

LGG - - 26% 33%

MEL - - - 32%

Compared are four cancers with linkage to NTC/NCC lineage (GBM, LGG, MEL, and MB) compared with breast 
cancer (BC). Described is the relative percentage of signature genotypes that were identified from a shared cohort for 
any pair-wise comparison. The equation for this analysis is the following: % Common signature loci = ((x–z) / 
((y1 + y2)–z)) *100; where x = signature loci shared in both cancers; y1 = total signature loci in cancer1 (i.e. BC, 
GBM, LGG, or MEL); y2 = total signature loci in cancer2 (i.e. GBM, LGG, MEL, or MB); z = CAML common to 
both cancers.
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mutations arising prior to tumor formations in several 
cancers, efforts to identify cancer cell(s) of origin that are 
tissue-specific are intensively studied [22–24]. Genomic 
variants in non-coding regions of genomic material, including 
those in microsatellites, are accelerating the identification of 
cancer-promoting elements which may be additive to the 
effects of mutations in the coding regions of genes. These 
data show CAML genotypes, specifically those identified 
in melanoma (an NCC lineage tissue) were pervasive in the 
brain cancers (NTC lineage tissue) (Tables 1 and 2). This 
suggests that the spectrum of CAML genotypes in MEL may 
be attributed to variants in embryonic ectodermal tissues 
which might contribute to tumors with NCC and/or NTC 
lineage. As example, LAMP1 (a gene with an intronic CAML 
discovered in MEL, GBM, LGG, and MB) is identified with 
melanoma metastasis to lung tissue and notable LAMP1 
expression on the cell membrane of astrocytomas was 
recently discovered in immunohistochemistry analysis 
[25, 26]. Further supporting this tissue lineage association, 
advanced melanomas frequently metastasize to the brain 
and advanced neuroblastoma patients are commonly also 
susceptible to skin cancers [1].

We found relationships with GBM to be revealing, 
given that there were several CAML genotypes shared 
between GBM and all of the cancers (including BC). 
Identifying disease specific markers is challenging and 
especially with GBM, as also recently demonstrated by 
a single-cell sequencing analysis of GBM tumors which 

discovered high genomic variability between cells and RNAs 
[27]. Thus, finding comparable numbers of CAML between 
GBM vs BC and GBM vs LGG may further add to biological 
distinctions between GBM from other glioma types or grades.

Among genes shared with BC and NTC/NCC 
lineage cancers, in this study, NCOR1 was an important 
discovery. NCOR1, NCOR2 and HDAC3 collectively 
form the N-CoR transcription co-repressor complex [28]. 
Thus, modifications to NCOR1 could lead to changes in 
gene expression [28, 29]. Additionally, we discovered 
variants in KIF1B and TLN2 in BC and shared with NTC/
NCC lineage cancers: isoform-2 of KIF1B is important 
for neuronal apoptosis [30]; and TLN2 has been 
monitored in cerebrospinal fluid of epileptic patients 
and is mostly known for its contribution during plaque 
formation in cytoskeletal interaction with integrins [31]. 
Therefore, we wonder if these microsatellite variants may 
be important towards identifying potential transcriptional 
variants of genes that are preserved in tissue-specific 
tumors but are otherwise additive to tumorigenesis 
across numerous tissue types. Separately, BC can 
metastasize to brain tissues thus these shared genotypes, 
notably, between GBM and BC allow us to speculate 
as to whether such loci potentiate or may be sensitive 
predictive indicators of BC metastasis to brain tissue; 
although GBM and cancer metastasis to brain tissue do 
show different disease pathology. Potentially supportive 
of this nascent hypothesis are recent data showing 

Table 5: Shared Cell Pathways and Cellular Processes Linked to Genes with CAML 
Common Cell Pathways Linked to Genes with CAML Genotypes Shared by BC & NTC/NCC Lineage Cancers

Disease Comparisons p-value Canonical Pathway Top Networks

BC-GBM - -

Carbohydrate 
Metabolism, Small 

Molecule Biochemistry, 
Cardiovascular Disease

BC-LGG 8.0 × 10−3 VDR/RXR Activation 
TR/RXR Activation

DNA Replication, 
Recombination, and Repair, 
Energy Production, Nucleic 

Acid Metabolism

BC-MB 3.2 × 10−3 Regulation by Calpain 
Protease

Lipid Metabolism, Small 
Molecule Biochemistry, 

Cellular Movement

BC-MEL 
1.3 × 10−2 Regulation by Calpain 

Protease
DNA Replication, 

Recombination, and Repair, 
Energy Production, Nucleic 

Acid Metabolism 1.6 × 10−2 VDR/RXR Activation TR/
RXR Activation

Genes with functions important to Ca2+ transport and regulation were identified with BC and LGG, MB, or MEL; no 
pathways were identified with GBM. The comparison between BC-MEL was not significant though similar to the 
other pair-wise comparisons described. Multiple networks were described with these associations with small molecule 
biochemistry, nucleic acid metabolism, and energy production being the most common. P-value describes significance 
with (p < 0.01).
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modified expression and metabolic activity by GLUD1/2 
in gliomas with IDH1 mutation, we identified an intronic 
variant in GLUD1 in our GBM CAML signature and this 
locus is shared with BC (although, in BC the locus is a 
non-signature variant) [32,33]. Thus, CAML genotypes 
shared by breast cancer and the NTC/NCC lineage 
cancers may be generally important to cancers or indicate 
metastatic potential. Additionally, those genes associated 
with BC and the NTC/NCC lineage cancers show 
calcium regulatory pathways to be frequently shared 
(see Table 4). Calcium regulation is important during cell 
cycle and mobility and is observed to be a cell-division 
signal exploited by tumors [34,35]. And, in neural tissues 
Ca2+ release provides signal transduction and promotes 
neural cell elongation, processes notably exploited in the 
tumor microenvironment [36].

Thus, variants identified through our study could 
introduce tissue and disease specificity (as demonstrated 
by the uniqueness of some CAML signatures to an explicit 
pathology versus those shared between diseases (i.e. 
MEL vs. LGG)) suggesting the potential for conserved 
biology that could extend our understanding of cancer 
etiology. As such, the biological associations to hereditary 
and neurological diseases and disorders among genes 
containing overlapping CAML genotypes in the NTC/
NCC lineage cancers suggests that modification to non-
coding, intronic regions are (1) sensitive to disease 
manifestation and, (2) differing combinations of tissue-
specific CAML genotypes may contribute to diseases of 
NTC/NCC lineage, albeit different disease phenotypes, 
due to alternative splicing via non-coding variants [37]. 
Accordingly, a cancer-associated variant was identified in 
an intron of PSME in all of the cancers linked to NTC/
NCC lineage (MEL, GBM, LGG, and MB); PSME is a 
proteasome activator that promotes MDM2 dependent 
degradation of p53, preventing apoptosis after DNA 
damage. This conserved variant in all NTC/NCC 
originating cancers suggests the possibility to identify 
tumors with wild-type p53 that are regulated differently 
due to CAML variants in PSME [38]. Furthermore, the 
identification of a variant locus in FUBP3 in all the brain 
cancers (GBM, LGG, and MB) supports the potential 
for tissue-specific CAML and disease linkage. FUBP3 
has previously been shown to regulate the expression 
of FGF9, a gene important during embryogenesis and 
healthy neuronal cell differentiation and development 
[39–41]; FGF9 also contributes to gliomagenesis [42, 43]. 
Interestingly, FUBP3 binds to a microsatellite repeat 
region at the 3’-end of FGF9 and regulates its expression 
[40]. Thus, we speculate whether FGF9 regulation could 
be modified due to CAML genotypes in FUBP3 and 
importantly in brain cancer pathogenesis. As previously 
identified, mutations in FUBP1 and IDH1 are closely 
associated with oligodendrogliomas, and are important 
prognostic and molecular markers for differentiating 
glioma phenotypes [24, 44, 45].

MATERIALS AND METHODS

Microsatellite genotyping

Exome sequencing data, from Illumina HiSeq 
sequencing machines were obtained from The Cancer 
Genome Atlas (TCGA) and the 1000 Genomes Project 
(1kGP). Sequences from ethnically matched cohorts 
were used in these analyses, which included Caucasian 
populations for both cancer and control groups. Sequences 
were aligned to a reference human genome (hg19) using 
BWA, and MST loci were identified with methods 
previously developed by our laboratory [10, 15, 16]. 
Loci with sequencing reads with a depth of coverage 
15x or greater were used in these analyses for uniformity 
of sequenced data quality. A population of alleles from 
cancer genomes (TCGA data) and control (non-cancer 
samples; 1kGP) cohorts was created. An allele is defined 
by a genomic locus with a specific microsatellite repeat 
and nucleotide sequence length; in each sample a pair 
of alleles was identified and each pair was defined as a 
genotype. The most common genotype(s) for a locus 
was identified in control (1kGP) samples; this genotype 
was defined as the consensus or pre-dominant genotype 
(if more than a pair of alleles was identified for a locus 
then that locus in that sample was not used). Similar to 
the analysis of 1kGP samples, glioblastoma (GBM), 
lower-grade glioma (LGG), medulloblastoma (MB), and 
melanoma (MEL) samples were analyzed for genotypes, 
loci with significantly different variants (non-predominant) 
from the consensus (predominant genotype) in one 
population compared with the second population were 
identified as significant (p-value ≤ 0.01). The statistically 
significant genotypes were determined from data adjusted 
for false discovery rate (FDR), using a two-sided Fisher’s 
exact- test and Benjamini-Hochberg correction and these 
genotypes were assembled into a signature cohort.

More specifically, an R script computed the 
adjusted p-value for each locus using the two-sided 
Fisher-test function. The Benjamini-Hochberg cut-off 
was selected as 0.01% (computed as the FDR < 1/X 
(where X is the total number of loci with p-value < 1 
for the signature)) to reduce the identification of false 
positives. Those genotypes, that were individually 
significant and informative, were then assembled into the 
described ‘signature’ or a collection of cancer-associated 
microsatellite loci (CAML) which together increase the 
statistical significance across all samples; loci that were 
significant but did not pass FDR correction compose 
a non-signature set. Relative risk for each locus was 
computed as the percent of individuals with the non-
predominant genotype from the cancer set divided by 
the percent of individuals with the non-predominant 
genotype in the control set. Sequences included 390 
(n = 249 female; n = 141 male) control samples from the 
1kGP, GBM germline (n = 252), LGG germline (n = 136), 
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melanoma germline (MEL; n = 149), and breast cancer 
germline (BC; n = 656) through the Cancer Genomics 
Hub (CGHub) (dbGAP Study Accession: phs000178.
v8.p7) [17], and medulloblastoma (MB; n = 90; dbGAP 
Study Accession: phs000504.v1.p1). These samples, like 
all others, were processed to remove any reads that did 
not meet the QC thresholds required in the 1kGP [18]. 
Next, we created a microsatellite target set: initially a 
population of over 1 million MST loci was identified in 
the human genome (NCBI36/hg18) using Tandem Repeats 
Finder (TRF) [19], using established methods [11, 14]. 
These data were filtered using a custom Perl script with 
SAMTOOLS [20] with specific parameters important to 
the flanking sequences used to identify loci, repeat region 
nucleotide length maxima and minima, SNP variations, 
and InDELs [11,14]. Loci were further identified using 
RefSeq data from the UCSC Genome Table Browser [21]. 
As previously described, our methods resulted in 96.5% 
validation of identified MST genotypes from Mendelian 
inheritance of triads, Sanger sequencing data and 
HapMAP; these data are described in a publically available 
database (http://discovery.vbi.vt.edu/MicrosatDB/) [10].

CAML overlap analysis between cancers

A custom R script was used to identify statistical 
differences (p < 0.05) between any three cancers. For this 
analysis, data were measured using a 3-set overlap comparison 
and organized according to the Venn diagram shown in 
Supplementary Figure S1 (Supplementary Figure S1). 
A one-sided Fisher’s exact test was used to determine 
significance and demonstrate the extent of overlap; see 
Supplementary Figure S1.

CAML gene function analysis

Using Ingenuity Pathway Analysis Systems© (Qiagen, 
Inc), comparisons between genes with CAML genotypes 
shared among the five cancers were conducted to identify 
enriched gene functions, pathways, and diseases/disorders. 
Significant (p < 0.01) data are reported in Table 4.

CONCLUSIONS

Variant cancer-associated microsatellite loci 
appear to demonstrate disease and tissue specificity [14]; 
identifying these variants from germline DNA highlights 
the potential for conserved cancer and tissue-specific 
mechanistic attributes and therapy targets in addition to 
understanding cancer origin. Locating CAML variants that 
are shared globally by tissues originating from ectodermal 
tissues (NTC and NCC: LGG, MB, GBM, and MEL) 
but also distinct to the central nervous system (GBM, 
LGG, and MB) and further unique from breast cancer 
(a non-nervous system tissue) strengthens the argument for 

cancer cells of origin being in-part intrinsic to the ecology 
of tumorigenesis, cancer, and the individual.
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