Biochemical and Functional Characterization of Induced Terpene Formation in Arabidopsis Roots

Reza Sohrabi

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
In
Biological Sciences

Dorothea Tholl, Committee Chair
Glenda Gillaspy
Khidir Hilu
John Jelesko

July 23rd 2013
Blacksburg Virginia

Keywords: Cytochrome P450, plant volatiles, specialized metabolism, root chemical defense, Arabidopsis
Biochemical and Functional Characterization of Induced Terpene Formation in Arabidopsis Roots

Reza Sohrabi

ABSTRACT

Plants have evolved a variety of constitutive and induced chemical defense mechanisms against biotic stress. Emission of volatile compounds from plants facilitates interactions with both beneficial and pathogenic organisms. However, knowledge of the chemical defense in roots is still limited. In this study, we have examined the root-specific biosynthesis and function of volatile terpenes in the model plant *Arabidopsis*. When infected with the root rot pathogen *Pythium irregularare*, *Arabidopsis* roots release the acyclic C\textsubscript{11}-homoterpene (E)-4,8-dimethylnona-1,3,7-triene (DMNT), which is a common constituent of volatile blends emitted from insect-damaged foliage. We have identified a single cytochrome P450 monooxygenase of the CYP705 family that catalyzes a root-specific oxidative degradation of the C\textsubscript{30}-triterpene precursor arabidiol thereby causing the release of DMNT and a C\textsubscript{19}-degradation product named arbidonol. We found that DMNT shows inhibitory effects on *P. irregularare* mycelium growth and oospore germination *in vitro*, and that DMNT biosynthetic mutant plants were more susceptible to *P. irregularare* infection. We provide evidence based on genome synteny and phylogenetic analysis that the arabidiol biosynthetic gene cluster containing the arabidiol synthase (*ABDS*) and *CYP705A1* genes possibly emerged via local gene duplication followed by
de novo neofunctionalization. Together, our studies demonstrate differences and plasticity in the metabolic organization and function of terpenes in roots in comparison to aboveground plant tissues.

Additionally, we demonstrated that the arabidiol cleavage product, arabidonol, is further modified by yet unknown enzymatic reactions into three products, which are found in root exudates. We suggested a pathway for their biosynthesis based on precursor feeding experiments and NMR analysis. Although DMNT biosynthetic genes are clustered on chromosome 4 along with several potential modification genes, we did not find a possible role of these genes in the derivatization of arabidonol. Preliminary experimental results using genetic and biochemical approaches for identifying genes involved in the modification steps are also presented.

In summary, this study demonstrates an alternative route for volatile terpene formation belowground different from aboveground plant tissues via triterpene degradation and provides evidence for an unexplored triterpene catabolism pathway in Arabidopsis.
ACKNOWLEDGEMENTS

I owe my gratitude to all those people who have made this dissertation possible and because of whom my experience as graduate student has been one that I will treasure forever. First I would like to gratefully and sincerely thank Dr. Dorothea Tholl for her guidance, understanding, patience, and great opportunities she has provided during my graduate studies. She encouraged me to think independently and taught me how to question thoughts and ideas critically.

I am grateful to my committee members Drs. Khidir Hilu, Glenda Gillaspy and John Jelesko for their academic support, valuable comments and discussion, and guidance during all these years. I would like to thanks Dr. Brenda Winkel for all her support and also for accepting to serve as proxy on the defense date. It has been an honor for me to have you all.

I would like to appreciate Dr. Liva Harinantenina for NMR analysis, Dr. Dan Kliebenstein for help in QTL analysis, Dr. Somayesadat Badieyan for protein modeling experiments and Dr. Jim Tokuhisa for his advice and discussions. My special thanks go to all former and current members of the Tholl lab: Jason Lancaster, Jingyu Zhang, Dr. Jung-Hyun Huh, Dr. Sungbeom Lee, Dr. Martha Vaughan, and Dr. Qiang Wang.

Lastly, I would like to express my special thanks to my friends and family members, who have been cheering and supportive of my endeavors during my entire education. I owe great gratitude and appreciation to my mother, father, brothers and sisters for their assurance and encouragement, which were appreciated. Specially, I would like to thank my wife Somayesadat Badieyan for her sincere support and sacrifice throughout my journey and my wonderful daughter Sarah Sohrabi. Both of you are the best things that has ever happened to me and you inspires me with great confidence.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>IV</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>IV</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>V</td>
</tr>
<tr>
<td>LIST OF FIGURES AND TABLES</td>
<td>VII</td>
</tr>
<tr>
<td>1. GENERAL INTRODUCTION AND OVERVIEW OF RESEARCH</td>
<td>1</td>
</tr>
<tr>
<td>CHEMICAL COMMUNICATION IN PLANT–ORGANISM INTERACTIONS</td>
<td>2</td>
</tr>
<tr>
<td>THE IMPORTANCE OF VOLATILE TERPENES IN PLANT-ENVIRONMENT INTERACTION</td>
<td>4</td>
</tr>
<tr>
<td>DISTRIBUTION AND FUNCTIONS OF C11- AND C16-HOMOTERPENES IN LAND PLANTS</td>
<td>6</td>
</tr>
<tr>
<td>BIOSYNTHESIS OF REGULAR TERPENES AND IRREGULAR HOMOTERPENES</td>
<td>12</td>
</tr>
<tr>
<td>ARABIDOPSIS AS A MODEL FOR THE FORMATION OF BELOWGROUND VOLATILE TERPENES</td>
<td>16</td>
</tr>
<tr>
<td>OVERVIEW OF RESEARCH</td>
<td>17</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>20</td>
</tr>
<tr>
<td>2. AN ALTERNATIVE BIOSYNTHETIC ROUTE TO THE PATHOGEN-INDUCED VOLATILE HOMOTERPENE DMNT VIA TRITERPENE DEGRADATION IN ARABIDOPSIS ROOTS</td>
<td>26</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>27</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>28</td>
</tr>
<tr>
<td>RESULTS</td>
<td>30</td>
</tr>
<tr>
<td>Pythium-Induced Production of DMNT in Arabidopsis Roots</td>
<td>30</td>
</tr>
<tr>
<td>Identification of CYP705A1 as a Root-Specific Gene Involved in DMNT Biosynthesis</td>
<td>32</td>
</tr>
<tr>
<td>Arabidol is the Precursor in DMNT Biosynthesis in Arabidopsis Roots</td>
<td>35</td>
</tr>
<tr>
<td>Arabidol is Cleaved into DMNT and the Non-Volatile C19 Tricyclic Ketone Arabidonol</td>
<td>38</td>
</tr>
<tr>
<td>Transcript Analysis of ABDS and CYP705A1 in Pythium-Infected and JA-Treated Arabidopsis Roots</td>
<td>40</td>
</tr>
<tr>
<td>Spatial Pattern of DMNT Biosynthetic Gene Expression</td>
<td>42</td>
</tr>
<tr>
<td>DMNT Negatively Effects Pythium Oospore Germination and Growth</td>
<td>44</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>47</td>
</tr>
<tr>
<td>Arabidopsis Roots Produce DMNT via the Breakdown of a Triterpene Precursor</td>
<td>47</td>
</tr>
<tr>
<td>DMNT Biosynthetic Genes are Expressed in Specific Cell Types of the Arabidopsis Root and Respond to Jasmonate and Pathogen Treatment</td>
<td>51</td>
</tr>
<tr>
<td>Arabidiol Breakdown Products are Involved in the Defense Against P. irregulare</td>
<td>53</td>
</tr>
<tr>
<td>Evolution of DMNT Biosynthesis in Arabidopsis via Triterpene Gene Cluster Assembly</td>
<td>54</td>
</tr>
<tr>
<td>METHODS</td>
<td>58</td>
</tr>
<tr>
<td>Plant Materials and Growth Conditions</td>
<td>58</td>
</tr>
<tr>
<td>Volatile Collection and Analysis</td>
<td>59</td>
</tr>
<tr>
<td>Genotyping of Plant Materia</td>
<td>60</td>
</tr>
<tr>
<td>Construction and Analysis of Transgenic Plants</td>
<td>60</td>
</tr>
<tr>
<td>Yeast Expression, Arabidonol Purification and Enzyme Assays</td>
<td>61</td>
</tr>
<tr>
<td>Transcript Analysis by RT–PCR and Quantitative Real-Time PCR</td>
<td>63</td>
</tr>
<tr>
<td>Growth and Bioassay Conditions of P. irregulare</td>
<td>64</td>
</tr>
</tbody>
</table>
3. IDENTIFICATION OF DOWNSTREAM MODIFICATION PRODUCTS IN THE ARABIDIOL CATABOLIC PATHWAY IN ARABIDOPSIS ROOTS
LIST OF FIGURES AND TABLES

<table>
<thead>
<tr>
<th>FIGURE/TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td></td>
</tr>
<tr>
<td>Figure 1.1 Ecological roles of VOCs in plant-environment interactions</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.2 Plant families with reported emission of DMNT and TMTT</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1.3 Biosynthetic pathways of terpenes in plants</td>
<td>14</td>
</tr>
<tr>
<td>Chapter 2</td>
<td></td>
</tr>
<tr>
<td>Figure 2.1 DMNT emission in Arabidopsis roots is induced by infection with P. irregulare or treatment with jasmonic acid</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.2 Identification of CYP705A1 as a DMNT synthase</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.3 Arabidiol is the substrate for DMNT biosynthesis</td>
<td>36</td>
</tr>
<tr>
<td>Figure 2.4 Detection of arabidonol in the yeast co-expression system</td>
<td>39</td>
</tr>
<tr>
<td>Figure 2.5 qRT-PCR Analysis of CYP705A1 and ABDS Transcript Levels</td>
<td>41</td>
</tr>
<tr>
<td>Figure 2.6 Spatial expression pattern of CYP705A1</td>
<td>43</td>
</tr>
<tr>
<td>Figure 2.7 DMNT negatively effects P. irregulare oospore germination and formation</td>
<td>46</td>
</tr>
<tr>
<td>Figure 2.8 Docked conformation of arabidiol in the active site of modeled CYP705A1</td>
<td>49</td>
</tr>
<tr>
<td>Figure 2.9 The proposed mechanism for oxidative degradation of arabidiol by CYP705A1</td>
<td>50</td>
</tr>
<tr>
<td>Figure 2.10 Comparative Genome Analysis Maps of ABDS Gene Cluster</td>
<td>55</td>
</tr>
</tbody>
</table>

Supplemental Figure 2.1 Infection of *Arabidopsis* roots with *P. irregulare* | 66 |
Supplemental Figure 2.2 DMNT emission from hydroponically grown Arabidopsis roots | 67 |
Supplemental Figure 2.3 The *cyp82g1-1* T-DNA insertion mutant is not impaired in JA induced production of DMNT from roots. | 68 |
Supplemental Figure 2.4 Pharmacological study of DMNT formation in *Arabidopsis* hairy root culture | 69 |
Supplemental Figure 2.5 QTL analysis of natural variation in DMNT biosynthesis among Arabidopsis accessions | 70 |
Supplemental Figure 2.6 Selection of Candidate P450 Genes for DMNT Biosynthesis | 72 |
Supplemental Figure 2.7 RT-PCR Analysis of CYP705A1 | 73 |
Supplemental Figure 2.8 DMNT formation in *Arabidopsis* roots is dependent on the mevalonate pathway of terpene precursor biosynthesis | 74 |
Supplemental Figure 2.9 RT-PCR analysis of ABDS and CYP705A1 genes | 76 |
Supplemental Figure 2.10 HRESIMS analysis and 1H-NMR spectrum of arabidonol | 77 |
Supplemental Figure 2.11 Full HMBC NMR spectrum of arabidonol | 78 |
Supplemental Figure 2.12 HMQC NMR spectrum of arabidonol | 79 |
Supplemental Figure 2.13 NOESY NMR spectrum of arabidonol | 80 |
Supplemental Figure 2.14 COSY NMR spectrum of arabidonol | 81 |
Supplemental Figure 2.15 Structure of arabidonol | 82 |
Supplemental Figure 2.16 Induced promoter-GUS activity of CYP705A1 and ABDS | 85 |
Supplemental Figure 2.17 Confocal microscopy analysis in response to JA treatment in ProCYP705A1:CYP705A1-eYFP lines .. 86
Supplemental Figure 2.18 Effect of arabidiol, arabidonol and DMNT on the growth of P. irregulare 110305 .. 87
Supplemental Figure 2.19 Molecular Phylogenetic Analysis of A. thaliana and A. lyrata CYP705 members on the ABDS and THAS gene clusters .. 88
Supplemental Figure 2.20 Sequence alignment of active site residues of CYP705A1 to CYP705A5 .. 89

Supplemental Table 2.1 DMNT Biosynthesis Gene Candidates ... 71
Supplemental Table 2.2 Candidate genes co-expressed with CYP705A1 evaluated based on the ATTED-II database ... 75
Supplemental Table 2.3 Proton and carbon chemical shifts for arabidiol and key correlations from NMR spectra .. 83
Supplemental Table 2.4 Sequence of primers used in different experiments 84

Chapter 3

Figure 3.1 The arabidiol degradation pathway .. 103
Figure 3.2 Detection of arabidiol-derived compounds in Arabidopsis root tissue 104
Figure 3.3 Detection of arabidiol-derived compounds in Arabidopsis root exudates 105
Figure 3.4 Arabidonol is converted into several modification products in planta 107
Figure 3.5 Putative pathway for the formation of arabidonol derivatives 109
Figure 3.6 Arabidonol is converted to acetyl-arabidonol via two intermediates 111
Figure 3.7 Natural Variation in the Modification of Arabidol-Derived Compounds Between Different Accessions of Arabidopsis ... 113
Figure 3.8 Arabidonol is modified differently in A. thaliana and A. lyrata 114

Supplemental Figure 3.1 Genes on the ABDS/BARS cluster are not highly co-regulated under normal developmental condition ... 125
Supplemental Figure 3.2 Genes of the ABDS/BARS cluster are not co-regulated under stress conditions .. 126
Supplemental Figure 3.3 Genome evolution analysis of the ABDS/BARS region 127
1. General Introduction and Overview of Research
Chemical Communication in Plant–Organism Interactions

Plants, as sedentary organisms, have to adjust to the surrounding environment throughout their life cycle. To compensate for their immobility, plants have evolved several mechanisms for interacting with beneficial and pathogenic organisms including the accumulation of diverse arrays of small molecules with specialized functions. Although many of these phytochemicals were not considered essential for plant survival and were referred to as secondary metabolites (Verpoorte and Alfermann, 2000), they contribute to adaptation under strong selective pressure in specific ecological situations, such as the attraction of pollinators or defense against specific herbivores (Pichersky et al., 2006). The ability to synthesize such “specialized metabolites” has evolved in various plant lineages and these compounds are composed of several classes of metabolites including terpenoids, alkaloids, glucosinolates, and phenolics with estimated numbers exceeding 200,000 compounds (Yonekura-Sakakibara and Saito, 2009).

Among specialized metabolites are volatile organic compounds (VOCs) with more than 1700 VOCs identified from 90 different plant families in both angio- and gymnosperms (Knudsen et al., 2006). VOCs are typically lipophilic liquids with high vapor pressures and can easily cross membranes and be diffused into the surrounding environment in the absence of a barrier (Pichersky et al., 2006). They are primarily derived from four major classes of specialized metabolic pathways including phenylpropanoids/benzenoids, fatty acid derivatives, amino acid derivatives and terpenoids (Dudareva et al., 2006). Plants emit VOCs from their leaves, flowers, and fruits into the atmosphere and from their roots into the soil (Figure 1.1). One of the main functions of volatile compounds is to defend plants against pathogens and herbivores through antimicrobial and direct repellent activities (De Moraes et al., 2001; Kessler and Baldwin, 2001; Vancanneyt et al., 2001). Volatiles also function as indirect defense compounds by attracting
natural enemies of attacking herbivores in tritrophic interactions (Drukker et al., 2000; van Loon et al., 2000). By emitting volatiles in response to insect feeding or pathogen infection, plants can also prime neighboring plants to respond faster to future herbivore or pathogen attack (Shulaev et al., 1997; Kessler et al., 2006). Furthermore, volatile compounds emitted from flowers provide a reproductive advantage by attracting pollinators and seed dispersers (Dudareva et al., 2006). Additionally, VOCs such as isoprene have been implicated in the protection of plants against oxidative stress or sunlight-induced rapid heating (Loreto and Velikova, 2001; Sharkey et al., 2008).

Figure 1.1 Ecological roles of VOCs in plant-environment interactions

Emission of VOCs occurs from aboveground and belowground tissues. VOCs play various roles in plant interaction with different beneficial and pathogenic organisms including pollinators and seed dispersers, and act as antimicrobial or anti-feeding agents. They also play a role in tritrophic interactions. See text for details. Modified from (Tholl, 2006).
The Importance of Volatile Terpenes in Plant-Environment Interaction

Terpenes or terpenoids compose the largest class of plant secondary metabolites with many volatile representatives. Hemiterpenes (C\textsubscript{5}), many monoterpenes (C\textsubscript{10}), sesquiterpenes (C\textsubscript{15}), homoterpenes (C\textsubscript{11} and C\textsubscript{16}), and some diterpenes (C\textsubscript{20}) have a high vapor pressure allowing their release into the atmosphere. Terpenoids are defined by their carbon backbone consisting of isoprene (2-methylbuta-1-3-diene) units. The generic name “terpene” was originally applied to hydrocarbons found in turpentine, the suffix “ene” indicating the presence of olefinic bonds. Additionally, degradation products of terpenoids in which carbon atoms have been lost through chemical or biochemical processes may contain different numbers of carbon atoms (e.g. C\textsubscript{11} and C\textsubscript{16}), but their overall structure indicates their terpenoid origin (Sell, 2003).

Volatile terpenes are often synthesized as constituents of essential oils and stored as liquid in specialized secretory cells and structures (e.g. glandular trichomes and resin ducts), which are frequently found in plant species from the Coniferae or Lamiaceae family. These structures establish a constitutive chemical defense barrier against herbivores or pathogens. Herbivore contact with plant tissue ruptures the trichomes and results in the release of stored chemicals, leading to plant protection from the attacking herbivore due to toxicity effects of the volatile compounds (Pichersky and Gershenzon, 2002). Additionally, antimicrobial activities of essential oils against animal and plants bacterial pathogens (Dorman and Deans, 2000) are presumably associated with the ability of terpenes to diffuse freely in biological membranes and disrupt the integrity and functionality of membranes (Trombetta et al., 2005).

Although storage of terpene metabolites in specialized structures as essential oils has been implicated in constitutive plant defense, plants have evolved alternative strategies to defend against attacking herbivores or pathogen via localized or systemic de novo induction of terpene
metabolites. For example, maize plants release a mixture of volatiles from their leaves including \((E)-\text{nerolidol}, (E)-\alpha\text{-bergamotene and (E)-}\beta\text{-farnesene upon feeding damage by lepidopteran larvae (van Loon et al., 2000). The majority of these volatiles are emitted only by insect-damaged plants and not by unattacked or artificially damaged plants. The mixture of volatiles released is largely synthesized \textit{de novo} following initial damage by herbivore attack (Pare and Tumlinson, 1997) and can be released from non-damaged plant parts in a systemic response as well (Rose et al., 1996).}

In many cases \textit{de novo} plant responses to herbivore attack by emitting volatile terpenes are associated with the attraction of natural enemies of herbivores via tritrophic interactions. For example, lima bean \textit{(Phaseolous lunatus)} plants damaged by the spider mite \textit{Tetranychus urticae}, emit a mixture of monoterpenes, \(C_{11}\)- and \(C_{16}\)-homoterpenes, and methyl salicylate, which attracts a carnivorous mite, \textit{Phytoseiulus persimilis}, that preys on spider mites (Dicke, 1994). When maize or cotton are attacked by \textit{lepidopteran} larvae, a blend of monoterpenes, sesquiterpenes, homoterpenes and other volatile compounds is released, which attracts parasitic wasps that oviposit on the larvae (Turlings et al., 1995). Additionally \textit{de novo} herbivore-induced volatiles can function as stress signals between neighboring plants. For example, lima bean plants exposed to the terpene volatiles emitted from spider mite \textit{(Tetranychus urticae)} infested neighboring plants show induced defensive gene expression and emission of volatiles and, therefore are primed against the spider mites and are less susceptible (Arimura et al., 2000; Choh et al., 2004).

The induced emission of volatiles is not limited only to aerial parts of plants. Plants also release volatiles from their roots with a chemical and structural diversity comparable to that found in emitted volatiles from aerial plant organs. Similar to aboveground volatile compounds,
root volatiles may contribute to a belowground defense system by acting as antimicrobial or antiherbivore substances, or by attracting enemies of root-feeding herbivores. Infection of Arabidopsis roots with either bacterial (Pseudomonas syringae strain DC3000) or fungal (Alternaria brassicola) pathogens or root-feeding insects (Diuraphis noxia) triggers the rapid emission of 1,8-cineole (Steeghs et al., 2004). Previously, the sesquiterpene (E)-β-caryophyllene was identified as a first root insect-induced belowground plant signal that strongly attracts the entomopathogenic nematode Heterorhabditis megidis under in situ laboratory and field conditions (Rasmann et al., 2005). Maize roots released this sesquiterpene in response to feeding by western corn rootworm larvae (Diabrotica virgifera virgifera). A five-fold higher nematode infection rate of the larvae was found on a maize variety that produced the signal than on a variety that did not. This finding indicated a communication between plant roots and insect-parasitizing nematodes as the third trophic level in the rhizosphere tritrophic interactions and emphasizes the importance of root emitted volatiles in plant defense belowground.

Distribution and Functions of C₁₁- and C₁₆-Homoterpenes in Land Plants

Homoterpenes are acyclic terpenoid volatiles, found in floral bouquets of night-scented plant species and are also emitted from plants in response to herbivore damage (Bartlet et al., 2004; Bichao et al., 2005). The common C₁₁ homo/norterpene 4,8-dimethylnona-1,3,7-triene (DMNT) and the C₁₆ homoterpene 4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) are irregular terpenes that are suggested as degradation products of C₁₅ and C₂₀ terpene precursors, respectively (Boland et al., 1998). To better understand the function and taxonomic distribution of homoterpenes in land plants, we have done a comprehensive survey of the literature on
constitutive and induced emissions of DMNT and TMTT (Tholl et al., 2011) which is summarized in Figure 1.2 and Table 1.1.

Although several terpenes have been found in non-vascular lower plants (such as mosses, liverworts and hornworts) as well as vascular lower plants (pteridophytes) no homoterpene volatile has been reported from these plants. Also, homoterpenes have been rarely reported in gymnosperms. For example, DMNT was found in volatile blends emitted from needles of masson pine (*Pinus massoniana*) upon mechanical damage or insect feeding by larvae of the masson pine moth (*Dendrolimus punctatus*) (Su et al., 2009). Detection of homoterpenes from gymnosperms suggests that their biosynthesis has emerged most likely during the evolution of gymnosperms.

Angiosperms show widespread emission of DMNT and TMTT homoterpenes from numerous plant species. In primitive angiosperms such as species in the *Magnoliaceae* family both homoterpenes are emitted as floral volatiles (Arimura et al., 2008). In many families of monocots and dicots, DMNT and TMTT homoterpenes have been reported as floral volatiles. Indeed, homoterpenes are part of the floral odors contributing to the so-called “white floral image” of night-scented flowers (Kaiser, 1991) in species of *Orchidaceae*, *Magnoliaceae*, and *Liliaceae* and presumably play a role in attracting pollinators.

Interestingly, in several studies homoterpenes have been reported to play a role as insect attractants (kairomones) (Supplemental Table 1.1). DMNT emitted from flowers of the crucifer *Iberis amara* (candytuft) as part of the floral volatile blend has been shown to attract the pollen beetle *Meligethes aeneus* (van Schie et al., 2007). Other examples of homoterpene effects as kairomones include the attraction of strawberry blossom weevil, *Anthonomus rubi* (Aharoni et
al., 2004), the apple maggot fly, *Rhagoletis pomonella* (Nagegowda et al., 2008), and the grapevine moth *Lobesia botrana* (Aharoni et al., 2003).

Plant species, which emit homoterpenes constitutively from their flowers, can also release these compounds in response to herbivore attack from their leaves (Arimura et al., 2008).Interestingly, DMNT and TMTT are emitted from herbivore-damaged foliage of a wide variety of plant species including important crops such as maize, lima bean, tomato, rice, and cucumber (Supplemental Table 1.1). There is growing evidence showing that the increased emission of TMTT and DMNT is likely to play a role in attracting natural enemies of arthropod herbivores (Kant et al., 2004; Kappers et al., 2005). This function is not only limited to herbivore feeding damage but is also implicated in the attraction of egg parasitoids. As an interesting example, egg deposition by the elm leaf beetle *Xanthogaleruca luteola* on leaves of the European elm *Ulmus minor* leads to an induced production of a volatile mixture including DMNT, and subsequent attraction of the egg parasitoid *Oomyzus gallerucae* (Aharoni et al., 2003).

Volatiles released upon herbivore attack can induce or prime defense responses in neighboring plants or different parts within the same plant (Kappers et al., 2005). Interestingly, homoterpene emission upon spider mite attack in lima bean leaves resulted in the induced expression of defense genes such as lipoxygenase (*LOX*) and pathogen-related (PR) protein *PR-2* (β-1,3-glucanase) in the undamaged control plants (Schnee et al., 2002). In addition to this airborne effect, homoterpenes could possibly function as a stress-induced short range signal which diffuses into adjacent cell layers upon herbivore attack.
Figure 1.2 Plant families with reported emission of DMNT and TMTT.

Phylogenetic tree of angiosperm orders and some families obtained from http://www.phylodiversity.net. Orders are highlighted in yellow. See Table 1.1 for details. * DMNT; ‡ TMTT.
Table 1.1 Detailed list of DMNT- and TMTT-emitting gymnosperm and angiosperm families

Herbivores and other conditions causing induced homoterpene emissions are listed. No entries were made for constitutive emissions. * DMNT, ‡ TMTT. References are given below if not listed in the text.

<table>
<thead>
<tr>
<th>Order</th>
<th>Family</th>
<th>Species</th>
<th>Homo-terpene</th>
<th>Tissue</th>
<th>Condition</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coniferales</td>
<td>Pinaceae</td>
<td>Pinus massoniana</td>
<td>*</td>
<td>Needle</td>
<td>Mechanical damage</td>
<td>(Su et al., 2009)</td>
</tr>
<tr>
<td>Magnoliales</td>
<td>Magnoliaceae</td>
<td>Magnolia grandiflora</td>
<td>*</td>
<td>Leaf</td>
<td>Mechanical damage</td>
<td>(Azuma et al., 1997)</td>
</tr>
<tr>
<td>Magnoliales</td>
<td>Magnoliaceae</td>
<td>Magnolia liliflora</td>
<td>*</td>
<td>Flower</td>
<td>(Kaiser, 1991)</td>
<td></td>
</tr>
<tr>
<td>Magnoliales</td>
<td>Magnoliaceae</td>
<td>Liriodendron tulipifera</td>
<td>*</td>
<td>Flower</td>
<td>(Azuma et al., 1997)</td>
<td></td>
</tr>
<tr>
<td>Zingiberales</td>
<td>Zingiberaceae</td>
<td>Elettaria cardamomum</td>
<td>*</td>
<td>Seed</td>
<td>(Maurer et al., 1986)</td>
<td></td>
</tr>
<tr>
<td>Zingiberales</td>
<td>Zingiberaceae</td>
<td>Hedychium coronarium</td>
<td>*</td>
<td>Flower</td>
<td>(Knudsen et al., 2006)</td>
<td></td>
</tr>
<tr>
<td>Poales</td>
<td>Poaceae</td>
<td>Zea mays</td>
<td>*</td>
<td>Seedling</td>
<td>Spodoptera exigua and</td>
<td>(Turlings et al., 1991)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spodoptera littoralis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poaceae</td>
<td>Oryza sativa</td>
<td>*</td>
<td>Leaf</td>
<td>Jasmonic acid</td>
<td>(Lou et al., 2006)</td>
</tr>
<tr>
<td></td>
<td>Poaceae</td>
<td>Triticum aestivum</td>
<td>*</td>
<td>Leaf</td>
<td>Heliothis virescens and</td>
<td>(Tooker and De Moraes, 2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mayetiola destructor</td>
<td></td>
</tr>
<tr>
<td>Arecales</td>
<td>Areaceae</td>
<td>Phytelephas seemannii</td>
<td>*</td>
<td>Flower</td>
<td>(Knudsen et al., 2006)</td>
<td></td>
</tr>
<tr>
<td>Asparagales</td>
<td>Asparagaceae</td>
<td>Yucca filamentosa</td>
<td>*</td>
<td>Flower</td>
<td>(Svensson et al., 2005)</td>
<td></td>
</tr>
<tr>
<td>Asparagales</td>
<td>Asparagaceae</td>
<td>Dracaena fragrans</td>
<td>*</td>
<td>Flower</td>
<td>(Kaiser, 1991)</td>
<td></td>
</tr>
<tr>
<td>Orchidaceae</td>
<td>Aerangis frietorum</td>
<td></td>
<td>*</td>
<td>Flower</td>
<td>(Kaiser, 1991)</td>
<td></td>
</tr>
<tr>
<td>Liliales</td>
<td>Liliaceae</td>
<td>Lilium longiflorum</td>
<td>*</td>
<td>Flower</td>
<td>(Kaiser, 1991)</td>
<td></td>
</tr>
<tr>
<td>Pandanales</td>
<td>Cyclanthaceae</td>
<td>Cyclanthus bipartitus</td>
<td>*</td>
<td>Flower</td>
<td>(Schultz et al., 1999)</td>
<td></td>
</tr>
<tr>
<td>Alismatales</td>
<td>Araceae</td>
<td>Spathiphyllum wallissii</td>
<td>*</td>
<td>Leaf</td>
<td>(Donath and Boland, 1995)</td>
<td></td>
</tr>
<tr>
<td>Ranunculales</td>
<td>Berberidaceae</td>
<td>Berberis vulgaris</td>
<td>*</td>
<td>Flower</td>
<td>(Knudsen et al., 2006)</td>
<td></td>
</tr>
<tr>
<td>Cucurbitales</td>
<td>Cucurbitaceae</td>
<td>Cucumis sativus</td>
<td>*</td>
<td>Leaf</td>
<td>Tetranychus urticae</td>
<td>(Takabayashi et al., 1994b)</td>
</tr>
<tr>
<td>Fagales</td>
<td>Betulaceae</td>
<td>Betula pubescens</td>
<td>*</td>
<td>Leaf</td>
<td>Epirrta autumnata</td>
<td>(Mantyla et al., 2008)</td>
</tr>
<tr>
<td></td>
<td>Fagaceae</td>
<td>Fagus sylvatica</td>
<td>*</td>
<td>Leaf</td>
<td>Phyllaphis fagi</td>
<td>(Joo et al., 2010)</td>
</tr>
<tr>
<td></td>
<td>Fagaceae</td>
<td>Quercus ilex</td>
<td>*</td>
<td>Leaf</td>
<td>Lymantria dispar</td>
<td>(Staudt and Lhoutellier, 2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cydia pomonella</td>
<td>(Buttery et al., 2000)</td>
</tr>
<tr>
<td>Rosales</td>
<td>Cannabaceae</td>
<td>Humulus lupulus</td>
<td>*</td>
<td>Leaf</td>
<td>(Donath and Boland, 1995)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rosaceae</td>
<td>Malus domestica</td>
<td>*</td>
<td>Leaf</td>
<td>Tetranychus urticae</td>
<td>(Takabayashi et al., 1994a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Bengtsson et al., 2001)</td>
</tr>
<tr>
<td></td>
<td>Rosaceae</td>
<td>Crataegus monogyna</td>
<td>*</td>
<td>Fruit</td>
<td>(Nojima et al., 2003)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rosaceae</td>
<td>Fragaria x ananassa</td>
<td>*</td>
<td>Flower</td>
<td>Anthomonos rubi</td>
<td>(Bichao et al., 2005)</td>
</tr>
</tbody>
</table>
Ulmaceae Ulmus minor * Leaf Xanthogaleruca luteola, egg deposition and herbivory (Wegener et al., 2001)

Fabales Fabaceae Medicago truncatula * ‡ Leaf Spodoptera exigua (Arimura et al., 2008)
Fabaceae Phaseolus lunatus * ‡ Leaf Tetranychus urticae (Takahayashi et al., 1991; Dicke et al., 1990)
Fabaceae Phaseolus lunatus * ‡ Leaf O3 (Vuorinen et al., 2004)
Fabaceae Trifolium pratense * Leaf Spodoptera littoralis (Kigathi et al., 2009)
Fabaceae Lotus japonicus * Leaf Tetranychus urticae (Ozawa et al., 2000)
Fabaceae Phaseolus vulgaris * ‡ Leaf (Dicke et al., 1990)
Fabaceae Phaseolus vulgaris * ‡ Leaf Tetranychus urticae (Maeda et al., 1998)
Fabaceae Medicago sativa * ‡ Foliage Lygus hesperus (Blackmer et al., 2004)
Fabaceae Trifolium pratense * Leaf Spodoptera exigua (Kolesnikov et al., 2004)
Fabaceae Robinia pseudoacacia * ‡ Flower Feeding and egg deposition by Nezara viridula (Colazza et al., 2004)

Malpighiales Passifloraceae Passiflora adenopoda * ‡ Flower Helicoverpa zea (Knudsen et al., 2006)
Rhizophoraceae Bruguiera gymnorrhiza * Flower Helicoverpa zea (Knudsen et al., 2006)
Salicaceae Populus trichocarpa * Leaf Malacosoma disstria (Arimura et al., 2004)

Malvales Malvaceae Gossypium hirsutum * Seedling Helicoverpa zea (McCaffrey et al., 1994)
Malvaceae Gossypium hirsutum * ‡ Leaves Spodoptera exigua (Rose et al., 1996)
Malvaceae Gossypium hirsutum * ‡ Flower buds Helicoverpa zea (Rose et al., 1996)
Malvaceae Gossypium herbaceum * Blossom, Leaf Unknown (Donath and Boland, 1995)

Brassicaceae Arabidopsis thaliana * ‡ Root Pythium irregulare (Unpublished data)
Brassicaceae Arabidopsis thaliana * ‡ Leaf Several herbivores (Herde et al., 2008)
Brassicaceae Brassica oleracea * ‡ Leaf Pieris rapae and Pieris brassicae (Geervliet et al., 1997)

Brassicaceae Brassica rapa * Leaf Methyl jasmonate (Loivamaki et al., 2004)
Brassicaceae Iberis amara * Flower (Bartlet et al., 2004)
Caricaceae Carica papaya * Flower (Knudsen et al., 2006)

Tropaeolaceae Tropaeolum majus * Leaf Pieris rapae (Geervliet et al., 1997)

Sapindales Rutaceae Citrus madurensis * Flower (Knudsen et al., 2006)
Myrtales Combretaceae Lumnitzera racemosa * Flower (Knudsen et al., 2006)
Lythraceae Pemphis acidula * buds and pedicels (Knudsen et al., 2006)
Myrtaceae Eucalyptus dunnii * Flower Mechanical damage (Zini et al., 2003)
Vitales Vitaceae Vitis riparia * Leaf and fruit (Tasin et al., 2005; Tasin et al., 2006)
Saxifragales Grossulariaceae Ribes nigrum * leaves Unknown (Griffiths et al., 1999)
Caryophyllales Caryophyllaceae Agrostemma githago * Flower (Knudsen et al., 2006)
Portulacaceae Seneciohamatus * Flower (Kaiser, 1991)
In summary, homoterpenes can serve various functions in plants. These functions are primarily associated with enhancing plant defense response directly or indirectly as part of a volatile blend emitted upon herbivore attack. In addition, homoterpenes have been exploited by herbivores to localize a suitable host as well. However, no specific insect anti-feeding or antimicrobial activities have been reported for homoterpenes.

Biosynthesis of Regular Terpenes and Irregular Homoterpenes

Although terpenes are extraordinarily diverse, they all originate from the condensation of the universal five-carbon precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In higher plants, two independent pathways that are located in separate intracellular compartments are involved in the biosynthesis of IPP and DMAPP (Figure 1.3).
the cytosol, IPP is derived from the classic mevalonic acid (MVA) pathway that starts from the condensation of three acetyl Coenzyme A (acetyl-CoA) molecules to form the C₆ compound 3-hydroxy-3-methylglutaryl CoA (HMG-CoA), which in turn is reduced to mevalonic acid, phosphorylated twice and subsequently decarboxylated to yield C₅-IPP. IPP is then converted to DMAPP via an IPP isomerase enzymatic activity. In plastids, IPP is formed from pyruvate and glyceraldehyde 3-phosphate via the methylerythritol phosphate (MEP or non-mevalonate) pathway. A C₂-unit derived from pyruvate is combined with glyceraldehyde-3-phosphate to form 1-deoxy-D-xylulose-5-phosphate which successively is transformed into IPP and DMAPP by seven enzymatic steps (Gershenzon and Kreis, 1999; Hunter, 2007).

Initial research indicated that cytosolic IPP serves as a precursor of farnesyl diphosphate (FPP, C₁₅) which is the primary substrate for sesquiterpene and triterpene formation, whereas plastidial IPP and DMAPP are converted into geranyl diphosphate (GPP, C₁₀) and geranylgeranyl diphosphate (GGPP, C₂₀), the substrates in monoterpene and diterpene biosynthesis. Although the subcellular compartmentation of MVA and MEP pathways allows them to operate independently, metabolic “crosstalk” between these two pathways mediated by specific metabolite transporters was discovered (Bick and Lange, 2003), with a preferential transport of IPP from plastids to the cytosol (Laule et al., 2003; Dudareva et al., 2005). Although cross talk between two different IPP biosynthetic pathways has been documented, the relative contribution of each pathway to the biosynthesis of various classes of terpenes remains uncertain.
Figure 1.3 Biosynthetic pathways of terpenes in plants.

IPP, isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate; GPP, geranyl diphosphate; FPP, farnesyl diphosphate and GGPP, geranylgeranyl diphosphate. TPS, terpene synthase,

The next step in the biosynthesis of terpenes is catalyzed by terpene synthases or terpene cyclases which convert the prenyl diphosphate substrates (FPP, GPP, and GGPP) into different classes of terpene compounds with higher molecular weight terpenes including triterpenes (C30), Carotenoids (C40), chlorophyll, sterols and brassinosteroids. Terpene synthases are dependent on a divalent metal ion cofactor such as Mg$^{2+}$ for catalysis. The reaction of most terpene synthases starts with the cleavage of the diphosphate moiety leading to the formation of a
carbocation intermediate which undergoes a series of structural rearrangements that may include hydride shifts, alkyl shifts, deprotonation, reprotonation, and additional cyclizations prior to a deprotonation reaction or capture of a water molecule as a final step. Alternatively, ionization of prenyl diphosphates can also occur by the protonation of the double bond at the opposite end of the molecule from the diphosphate moiety. This mechanism is characteristic for several diterpene synthases, including the enzymes synthesizing ent-copalyl diphosphate (CPP) a precursor in gibberellin formation (Gershenzon and Kreis, 1999; Tholl, 2006).

Several studies using stable-isotope precursors have been performed to elucidate the biosynthesis of the volatile homo-/norterpenes DMNT and TMTT. Early experiments in cotton showed that DMNT is synthesized de novo in response to herbivore attack, since labeled DMNT was detected after $[^{13}\text{C}]\text{CO}_2$ pulse-labeling experiments (Pare and Tumlinson, 1997a). Using deuterium labeled precursors, it was demonstrated that DMNT is derived from the sesquiterpene (E)-nerolidol (Donath and Boland, 1994). Later on, nerolidol synthase enzyme activities and corresponding genes were identified in different species such as cucumber, maize and lima bean (Bouwmeester et al., 1999, Degenhardt and Gershenzon, 2000). Boland and coworkers reported that (E)-nerolidol undergoes a C–C oxidative bond cleavage reaction, which proceeds by syn-elimination of the polar head together with the allylic hydrogen atom at the β-carbon atom (β-cleavage) (Boland et al., 1998). More recently, is has been shown that the structural analog of (E)-nerolidol, (E,E)-geranyllinalool, undergoes oxidative degradation to produce TMTT, the structural analog of DMNT in Arabidopsis (Lee et al., 2010). However, because of the absence of endogenous (E)-nerolidol synthase activity in Arabidopsis leaf and root tissue (Vaughan et al., 2013), we concluded that DMNT in Arabidopsis roots is not made from the C$_{15}$ precursor (E)-
nerolidol. Elucidation of the DMNT biosynthetic pathway will be important for a complete understanding of the ecological role of DMNT in plants.

Arabidopsis as a Model for the Formation of Belowground Volatile Terpenes

Arabidopsis thaliana has been shown to be a promising model plant for studying biosynthesis, regulation and function of terpene secondary metabolites in plant-environment interaction (Aharoni et al., 2003; Chen et al., 2003). The *Arabidopsis* genome contains 32 genes that are annotated as terpene synthase genes. Recent investigations by the Tholl laboratory on the biosynthesis of volatile terpenes in *Arabidopsis* flowers led to the identification of two monoterpene synthases and two sesquiterpene synthases, which are responsible for the formation of the *Arabidopsis* floral volatile blend (Tholl et al., 2005). In *Arabidopsis* leaves, the emission of volatile terpenes such as myrcene, β-ocimene, (E,E)-α-farnesene and the C$_{16}$-homoterpene TMTT is induced in response to herbivore feeding (Tholl and Lee, 2011). The induced volatile blend has been shown to attract the parasitic wasp *Cotesia rubecula* leading to increased plant fitness (Van Poecke et al., 2001). Similar to aboveground volatile compounds, root volatiles may contribute to a belowground defense system by acting as antimicrobial or anti-herbivore substances, or by attracting natural enemies of root-feeding herbivores. But to date only few studies have focused on the biochemical and molecular analysis of root volatile terpenes. Infection of *Arabidopsis* roots with either bacterial or fungal pathogens or root-feeding insects triggers the rapid emission of 1,8-cineole (Steeghs et al., 2004). It has been shown that a root-specific monoterpene synthase gene is responsible for the formation of 1,8-cineole in *Arabidopsis* roots (Chen et al., 2004). Additionally a recently characterized diterpene volatile
from Arabidopsis roots has been suggested as a defense metabolite against root herbivory by the larvae of fungus gnats (Bradysia spp) (Vaughan et al., 2013). Arabidopsis has been selected as a model for studying the formation and function of root volatile terpenes, since 14 terpene synthase genes are expressed in the Arabidopsis root.

We have discovered for the first time that sterile and non-sterile cultures of Arabidopsis roots emit the C_{11}-homoterpene DMNT in response to infection with root-rot pathogen (Pythium irregulare) suggesting a possible new role for this homoterpene volatile as an antimicrobial factor. Although DMNT is known as floral and insect-induced volatile terpene with suggested functions in mediating interactions with arthropod insects, its presence has not been reported in plant roots before. DMNT emission is also induced upon treatment with the defense hormone jasmonic acid as the main volatile induced in Arabidopsis roots. The emission of DMNT from Arabidopsis roots in not only induced by JA treatment but also to some extent by root-feeding larvae of the flea beetle Phyllotreta spp. (Dr. Stefan Schütz, Georg-August University, Göttingen, Germany Lab), suggesting that insect-feeding can induce JA-mediated production of volatile terpene from Arabidopsis roots. A detailed study of the role of DMNT in plant organism interactions requires elucidation of the biosynthetic pathway and functional characterization of genes involved in its biosynthesis.

Overview of Research

The induced formation of volatile terpenes has been investigated as a defense mechanism in plant-insect and plant-pathogen interactions. Research on volatile terpenes has focused primarily on aerial parts of plants, and there are limited numbers of studies concerning the role of volatile emissions from roots. Recent studies in the Tholl lab have suggested that volatile
terpenes can function as anti-feedants against herbivores of Arabidopsis roots (Vaughan et al., 2013). Also here we show that volatile DMNT could be induced in response to pathogens. Therefore, we hypothesized similar defensive functions for pathogen-induced volatiles in the rhizosphere. Here we present our study on the identification of DMNT biosynthetic genes in Arabidopsis roots and evaluate the defensive activities of DMNT by using bioassays with the root pathogen Pythium irregulare. Our experimental work revealed a DMNT biosynthetic pathway via the degradation of a triterpene precursor resulting in the production of DMNT and a non-volatile breakdown compound, which is further modified in planta. We performed structural studies of triterpene degradation products in roots and did preliminary studies on the identification of enzymatic activities associated with their biosynthesis.

The specific objectives of this study were to:
I. Identify DMNT biosynthetic genes in Arabidopsis roots and understand the role of DMNT in the interaction of Arabidopsis with the root pathogen Pythium irregulare
II. Identify downstream derivatives and putative enzymatic steps in the DMNT producing, triterpene-specific catabolic pathway

Chapter II presents the biochemical and functional characterization of the DMNT biosynthetic pathway in Arabidopsis. Experimental evidence based on genetic analysis and gene expression experiments is provided showing that DMNT is biosynthesized by a so far unknown pathway via the oxidative degradation of the triterpene alcohol, arabidiol, into DMNT and a C₁₉ ketone product. We show that the reaction is catalyzed by the crucifer-specific cytochrome P450 monooxygenase CYP705A1, which clusters and is co-regulated with the gene encoding an
arabidiol synthase. Additionally, we evaluate the biological activity of DMNT against root pathogen *Pythium* using oospore germination and root infection assays. In summary, our results suggest that DMNT contributes to defense in *Arabidopsis* roots.

Chapter III presents a study on the “non-volatile” branch of the arabidiol catabolic pathway by identifying derivatives of the C₁₉ ketone breakdown product of arabidiol. We provide evidence for the detection of these metabolites from root tissue and from root exudates and suggest a pathway for their formation based on NMR analysis and precursor feeding experiments. Preliminary experimental results using genetic and biochemical approaches for identifying genes involved in the modification steps are also presented.

Chapter IV presents the final discussion and future perspectives of the described research.
Literature Cited

attraction and parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae in the field. J Chem Ecol 32, 2375-2387.

2. An alternative Biosynthetic Route to the Pathogen-Induced Volatile Homoterpene DMNT via Triterpene Degradation in *Arabidopsis* Roots

Other Contributors:

Jung-Hyun Huh, former PhD student, did screening of TPS mutants, and performed and analyzed results for all *Pythium* experiments in this study.

Somayesadat Badieyan, postdoctoral associate in the Biochemistry Department at Virginia Tech, did the protein modeling and mechanism predictions.

Liva Harinantenaina, postdoctoral associate in the Chemistry Department at Virginia Tech, did the NMR analysis.

Daniel Kliebenstein, professor at the University of California at Davis, performed the analysis of the QTL data.
ABSTRACT

Plant-derived volatile compounds such as terpenes exhibit substantial structural variation and serve multiple ecological functions. Despite their structural diversity, volatile terpenes are generally produced from a small number of core five- to twenty-carbon intermediates. Here we present unexpected plasticity in volatile terpene biosynthesis by showing that irregular homo/norterpenes can arise from different biosynthetic routes in a tissue specific manner. While *Arabidopsis* and other angiosperms are known to produce the homoterpene \((E)-4,8\text{-dimethyl-1,3,7\text{-nonatriene}}\) (DMNT) or its \(C_{16}\text{-analog \((E,E)-4,8,12\text{-trimethyl-1,3,7,11\text{-tridecatetraene}}\) (TMTT) by the breakdown of sesquiterpene and diterpene tertiary alcohols in aboveground tissues, we demonstrate that *Arabidopsis* roots biosynthesize DMNT by the degradation of the \(C_{30}\) triterpene diol, arabidiol. The reaction is catalyzed by the *Brassicaceae*-specific cytochrome P450 monooxygenase CYP705A1 and transiently induced in a jasmonate-dependent manner by infection with the root-rot pathogen *Pythium irregulare*. CYP705A1 clusters with the arabidiol synthase gene *ABDS* and both genes are co-expressed constitutively in the root endodermis and pericycle. We further provide *in vitro* and *in vivo* evidence for the role of arabidiol and DMNT in resistance against *P. irregulare*. Our results suggest convergent evolution in DMNT biosynthesis in land plants via the assembly of triterpene gene clusters and presents biochemical and genetic evidence for volatile compound formation via triterpene degradation in plants.
Plants employ volatile compounds of diverse structure to interact with their environment. Volatile terpenes have been implicated with multiple functions in the attraction of insects, defense against herbivores or pathogens, and plant-plant interactions (McGarvey and Croteau, 1995; Dudareva et al., 2006; Pichersky et al., 2006), and these activities often correlate with the tissue and cell type specific biosynthesis of terpenes. Independent of their tissue specific origin, the specific classes of terpene compounds are supposed to be derived from the same central intermediates. For example, regular terpenes such as C_{10} monoterpenes, C_{15} sesquiterpenes, and C_{20} diterpenes are assembled from the 5-carbon units isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are condensed to the core C_{10}, C_{15}, and C_{20} trans- or cis-prenyl diphosphate substrates of terpene synthases (Bohlmann et al., 1998; Fridman and Pichersky, 2005; Chen et al., 2011).

The C_{15} and C_{20} tertiary alcohols, (E)-nerolidol and (E,E)-geranyl linalool, have been shown to function as precursors of the irregular C_{11}-homo/norterpene volatile (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and its C_{16}-analog (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), respectively. DMNT and TMTT are common constituents of floral and herbivore- or pathogen-induced volatile blends of angiosperms and they contribute to the deterrence or attraction of insect pests and their parasites or predators (Mumm and Dicke, 2010; Tholl et al., 2011). For example, both homoterpenes occur as floral volatiles of night-scented, moth-pollinated orchids (Kaiser, 1991; Donath and Boland, 1995). Several studies have supported the role of DMNT and TMTT in indirect defense against spider mite attack by promoting the attraction of predatory mites (Dicke et al., 1990; De Boer et al., 2004; Kappers et al., 2005). Moreover, homoterpenes have been shown to induce defense gene expression in plant-plant
interactions (Arimura et al., 2000). The formation of DMNT and TMTT in leaf or flower tissues usually occurs by the oxidative breakdown of (E)-nerolidol or (E,E)-geranyl linalool (Boland et al., 1998). The C-C cleavage reaction is catalyzed by cytochrome P450 monooxygenases, of which only a single enzyme, CYP82G1, has so far been identified in Arabidopsis (Lee et al., 2010). CYP82G1, which is induced in Arabidopsis leaves upon insect feeding damage, produces DMNT and TMTT in vitro but functions as a TMTT synthase in planta because of the presence of (E,E)-geranyllinalool (Herde et al., 2008) but not (E)-nerolidol in Arabidopsis leaves.

Here we show that Arabidopsis can produce DMNT via an unexpected novel alternative pathway in a tissue specific manner by the oxidative degradation of arabidiol a tricyclic triterpene diol in Arabidopsis roots. We demonstrate that CYP705A1, a member of Brassicaceae-specific CYP705 family, cleaves the prenyl side chain of arabidiol to produce DMNT and the non-volatile C19-ketone derivative arabidonol. The reaction is induced by the root rot oomycete pathogen Pythium irregulare and treatment with the plant defense hormone jasmonic acid (JA) and contributes to Arabidopsis root defense. The CYP705A1 gene clusters with the arabidiol synthase (ABDS) (Xiang et al., 2006) as part of a larger triterpene biosynthetic gene cluster on chromosome 4. Our results provide evidence for convergent evolution and biosynthetic plasticity in the formation of functionally active volatiles. We discuss how alternative pathways in the production of the same homoterpene compound may evolve depending on the tissue-specific expression of biosynthetic terpene synthase/P450 gene modules. Our findings also support the notion that triterpenes, similar to C40 carotenoids, can undergo enzyme-mediated degradation to serve as precursors of plant volatiles.
RESULTS

Pythium-Induced Production of DMNT in Arabidopsis Roots

We investigated whether *Arabidopsis* roots release volatile compounds in response to infection by the soilborne pathogen *Pythium irregulare*. *Pythium* is an oomycete pathogen causing seedling damping off, root rot and vascular wilt disease in various plant species including *Arabidopsis* (Armstrong and Armstrong, 1981; Agrios, 1997). *Arabidopsis* plants were grown in liquid axenic and hydroponic culture, and inoculated with a uniform suspension of mycelium and oospores of the oosporic *P. irregulare* isolate 110305. Root tissue was detached at different time points after inoculation and root volatiles were analyzed by solid phase microextraction gas chromatography-mass spectrometry (SPME-GC/MS). We found that DMNT was transiently released in response to *P. irregulare* treatment (Figure 2.1 B). Emission of DMNT was highest 3 h after inoculation with a 7-fold increase over constitutive background levels and then decreased over the following 10 to 20 h (Figure 2.1 B). DMNT was detected at approximately 10 ng/g root fresh weight at the peak of emission. Light microscopy analysis of *Pythium*-inoculated roots showed that the release of DMNT coincided with the attachment of hyphae and oospores to the root surface and the germination of oospores to produce infection hyphae (Supplemental Figure 2.1). A transient emission of DMNT was also observed in roots grown under non-sterile, hydroponic conditions (Supplemental Figure 2.1 A).

Since *Pythium* produces elicitors such as lytic enzymes and phytotoxins (Brandenburg, 1950; Deacon, 1979) we tested the effect of a soluble *Pythium* filtrate on DMNT emission. Furthermore, we examined whether treatment with *Escherichia coli*, a non-plant pathogen, could cause induction of DMNT emission. Transient DMNT emission was observed only following
inoculation with a suspension of *P. irregulare* containing mycelium and oospores and neither inoculation with the soluble filtrate nor treatment with an *E. coli* suspension could mimic this response (Figure 2.1 B).

![Figure 2.1 DMNT emission in Arabidopsis roots is induced by infection with *P. irregulare* or treatment with jasmonic acid.](image)

(A) Structure of the acyclic-irregular terpene DMNT. (B) Axenically grown *Arabidopsis* roots were infected with a suspension of *P. irregulare* mycelium and oospores, a *P. irregulare* filtrate, or with a suspension of *E. coli*. (C) Treatment of axenically grown roots with 100 μM JA. Root volatiles were analyzed from detached roots at different time points by SPME-GC/MS. Normalized peak areas are shown. Values represent the mean ± SE of three biological replicates. Results were analyzed by two-way ANOVA, and Tukey-Kramer HSD test; *P* < 0.001. The experiment was repeated at least two times with similar results.

The importance of the defense hormone jasmonic acid (JA) in plant defense against *Pythium* has been reported previously (Vijayan et al., 1998). To further understand the role of JA in DMNT formation in *Arabidopsis* roots, axenically grown *Arabidopsis* plants were treated with 100 μM JA. Roots were excised and headspace volatiles were measured by SPME-GC/MS. DMNT
emission was induced at 12 h after the beginning of treatment and peaked at 24 h with approximately 70 ng/g fresh weight (Figure 2.1C). JA-inducible DMNT production was also observed in hydroponically grown roots (Supplemental Figure 2.2 B).

Identification of CYP705A1 as a Root-Specific Gene Involved in DMNT Biosynthesis

Previous studies on the formation of TMTT in Arabidopsis leaves elucidated a two-step biosynthetic pathway consisting of the formation of the tertiary alcohol \((E,E)\)-geranyllinalool (GL) catalyzed by the GL synthase TPS04 (Herde et al., 2008) and the subsequent breakdown of GL to \((E)\)-TMTT catalyzed by CYP82G1 (Lee et al., 2010). Even though the CYP82G1 enzyme can convert \((E)\)-nerolidol into DMNT \textit{in vitro} (Lee et al., 2010) and possibly \textit{in planta} (Kappers et al., 2005), CYP82G1 is not expressed in roots (Lee et al., 2010) and the null mutant \textit{cyp82g1-1} is not impaired in root-specific DMNT biosynthesis (Supplemental Figure 2.3) indicating that this P450 is not involved in the formation of DMNT in Arabidopsis roots. Since treatments of Arabidopsis hairy roots with the cytochrome P450-specific azole inhibitors miconazole and clotrimazole severely reduced JA-induced emission of DMNT (Supplemental Figure 2.4), we hypothesized that DMNT is most likely produced by a different root-specific P450 enzyme.

To identify P450 gene(s) involved in DMNT formation, we performed quantitative trait locus (QTL) analysis of DMNT emission using recombinant inbred lines of the accession Cave Verdi Island (CVI), a non-DMNT emitter, and the DMNT-emitting accession Landsberg erecta (Ler) (Alonso-Blanco et al., 1998) (Supplemental Figure 2.5 A). This analysis suggested that only a single region on chromosome 4 contributes to the natural variation in DMNT biosynthesis (Supplemental Figure 2.5B). To further refine this analysis, we searched for the expression of all Arabidopsis P450 genes in publically available microarray data sets using GENEVESTIGATOR,
(Zimmermann et al., 2004) under the treatment with methyl jasmonate (MeJA) or wounding assuming that the expression of the target P450 gene would be induced in roots under these conditions. This approach again excluded \textit{CYP82G1} and resulted in a final list of 9 candidate genes (Supplemental Table 2.1). We then conducted a comparative RT-PCR analysis of transcripts of the selected candidate genes with and without JA-treatment in hydroponically grown roots of wild type plants and the JA-insensitive mutant \textit{coi1-1} (Xie et al., 1998). As a result, two P450 genes, \textit{CYP705A1} and \textit{CYP81D1}, were found, whose transcripts accumulated upon JA-treatment in wild type but not \textit{coi1-1} roots (Supplemental Figure 2.6). Of these two genes only \textit{CYP705A1} resides in the identified QTL region on chromosome 4. SPME-GC-MS analysis of volatiles emitted from roots of the gene knockout line \textit{cyp705a1-1} (SALK_043195) with a T-DNA insertion in the second exon (Figure 2.2 A) lacked emission of DMNT upon JA-treatment while a second line carrying a T-DNA insertion in the \textit{CYP705A1} promoter region \textit{cyp705a1-2} (SALK_090621) produced wild type levels of DMNT (Figure 2.2 B) and the \textit{CYP705A1} transcript (Supplemental Figure 2.7 A). This finding suggested that \textit{CYP705A1} is involved in DMNT biosynthesis in \textit{Arabidopsis} roots.

To further study the role of the \textit{CYP705A1} gene in DMNT production, the \textit{cyp705a1-1} mutant was complemented with a full length \textit{CYP705A1} cDNA in C-terminal fusion to enhanced yellow fluorescent protein (eYFP) under the control of a 1.5 kb fragment of the native \textit{CYP705A1} promoter. Additionally, the full length \textit{CYP705A1} transcript was fused to the \textit{CaMV 35S} promoter for ectopic expression in the \textit{cyp705a1-1} mutant background. In \textit{ProCYP705A1:CYP705A1-eYFP} lines accumulation of the full length \textit{CYP705A1} transcript was detected upon JA treatment, while only basal transcript levels of the gene were observed in \textit{CaMV35S-CYP705A1} lines with no JA-dependent increase of transcript abundance.
Figure 2.2 Identification of CYP705A1 as a DMNT synthase.

(A) Schematic showing the genomic locus of *Arabidopsis* CYP705A1 (At4g15330) in tandem with the arabidiol synthase (ABDS) gene. Exons are represented by grey boxes. Introns and intergenic regions are represented by the black line. Insertion sites of the T-DNA mutants used in this study are marked with inverted triangles. (B) DMNT emission in roots of wild-type, and cyp705a1 mutants after 24 h of JA treatment. The retention time for DMNT authentic standard is marked with a dotted line. (C) DMNT emission in mock- and JA-treated plants in wild-type background compared to representative transgenic lines. Volatiles were collected from roots after 24 h of JA treatment and analyzed by SPME-GC/MS. Mock controls were treated with ethanol (EtOH). Normalized peak areas are shown and the values represent the mean ± SE of three biological replicates. Letters show significant differences based on two-way ANOVA and Tukey-Kramer HSD test, P < 0.001. N.D. indicates that no volatile was detected.
(Supplemental Figure 2.7 B). Consistent with the transcript accumulation, DMNT volatile formation was restored in both transgenic lines (Figure 2.2C) further supporting the role of CYP705A1 in the DMNT biosynthetic pathway.

Arabidiol is the Precursor in DMNT Biosynthesis in Arabidopsis Roots

Despite our prediction that DMNT would be produced from \((E)\)-nerolidol, we were unable to detect this precursor in the headspace or in organic extracts of JA-treated roots. In addition, an analysis of T-DNA insertion lines of several root-expressed TPS genes (Vaughan et al., 2013) did not lead to the identification of a gene involved in DMNT formation. However, treatment of *Arabidopsis* hairy roots with lovastatin, an inhibitor of the IPP producing mevalonate (MVA) pathway in the cytosol, severely reduced jasmonate-induced emission of DMNT, while this was not the case when fosmidomycin, an inhibitor of the plastidial methylerythritol phosphate (MEP) pathway, was applied (Supplemental Figure 2.8). This result suggested a major contribution of the MVA pathway and a possibly FPP-derived precursor in the DMNT biosynthetic pathway.

Since P450s are often co-expressed with genes of the same biosynthetic pathway (Ehlting et al., 2008; Field and Osbourn, 2008; Lee et al., 2010), we applied an in silico gene co-expression approach using the ATTED II database (http://atted.jp/) to identify genes that may be responsible for the formation of the DMNT precursor. According to this analysis, a gene encoding a triterpene synthase called arabidiol synthase (*ABDS*) (Xiang et al., 2006) was highly co-expressed with *CYP705A1* (Supplemental Table 2.2). Moreover, both genes clustered in tandem on chromosome 4, which strongly suggested a contribution to the same biosynthetic pathway (Figure 2.2 A). Arabidiol has a 6,6,5-tricyclic ring system with two hydroxyl groups,
Figure 2.3 Arabidol is the substrate for DMNT biosynthesis.

(A) Structure of arabidol. We predicted that DMNT could be produced from the arabidol hydrophobic tail via C-C bond cleavage catalyzed by CYP705A1. (B) DMNT emission in yeast and Arabidopsis plants. DMNT was detected from WAT11 yeast cells co-expressing ABDS with a wild type CYP705A1 cDNA but not a mutated version of CYP705A1 (mut-CYP705A1). The yeast control line expressed ABDS and the empty vector used for expression of CYP705A1. Volatile analysis of Col-0 roots and abds mutants after 24 h of 100 μM JA treatment is shown. No DMNT was detected from abds mutants. Volatile products were analyzed in the yeast culture or plant tissue headspace by SPME-GC/MS. (C) Arabidol detection from Arabidopsis roots. GC chromatograms of liquid extracts from 1 g JA-treated roots of wild type Col-0, atpen1-1 and cyp705a1-1 are depicted. Arabidol was only detected in the cyp705a1-1 mutant after JA treatment as shown in TIC (total ion chromatogram) and in single ion monitoring (SIM) mode for m/z 247. (D) DMNT emission from roots in wild type Col-0 and three ABDS 35S overexpression line in two different mutant backgrounds treated with JA for 24 h. Normalized peak areas are shown. Normalized peak areas are shown. Values represent the mean ± SE of three biological replicates. Results were analyzed by two-way ANOVA, and Tukey-Kramer HSD test; P < 0.001. (E) Microsomal preparations expressing CYP705A1 converted arabidol to DMNT in the presence of 2.4 mM of the P450 cofactor NADPH.
whose tricyclic backbone is covalently linked to a C_{13}-prenylalcohol side chain (Figure 2.3 A). We predicted that the tertiary hydroxyl group of this side chain made arabidiol a suitable substrate for oxidative degradation by a P450 enzyme to produce a compound resembling DMNT and a second non-volatile degradation product (Figure 2.3 A).

To test this hypothesis, we co-expressed the *CYP705A1* and *ABDS* genes in *Saccharomyces cerevisiae* WAT11 cells. In addition, co-expression of *ABDS* with a truncated *CYP705A1* gene lacking the heme binding domain was performed to control for any possible non-specific or yeast-mediated conversion of arabidiol to DMNT. Volatile headspace analysis of the respective yeast cultures demonstrated that DMNT was detected only after induction with galactose and when a functional copy of both biosynthetic genes was expressed (Figure 2.3B). Involvement of arabidiol in DMNT biosynthesis was further confirmed by the absence of JA-induced DMNT emission in two independent T-DNA insertion mutants of the *ABDS* gene, SALK_018285 (*abds-1*) and SALK_067736 (*abds-2*), (Figure 2.3 B) both of which lack a full length *ABDS* transcript (Supplemental Figure 2.9A). To detect arabidiol from *Arabidopsis* plants we performed organic solvent extraction from JA-treated roots of wild type and DMNT biosynthetic mutants (Figure 2.3 C). Arabidiol was neither detected in the *abds-1* mutant nor in wild type plants presumably due to an immediate conversion into DMNT. However, an accumulation of arabidiol was observed in *cyp705a1-1* missing a functional arabidiol degradation enzyme. Additionally, complementation of the two *abds* mutants with the full length *ABDS* cDNA driven by the *CaMV 35S* promoter led to a restoration of DMNT emission in both mutants (Figure 2.3 D). Treatment with JA did not further enhance volatile emission from these lines because of the absence of the JA-responsive *ABDS* promoter (Supplemental Figure 2.9B).

Finally, purified microsomal fractions from yeast expressing only *CYP705A1* converted arabidiol
into DMNT in the presence of the cofactor NADPH (Figure 2.3 D). In conclusion, these findings suggest that both CYP705A1 and ABDS are necessary and sufficient for the biosynthesis of DMNT.

Arabidiol is Cleaved into DMNT and the Non-Volatile C19 Tricyclic Ketone Arabidonol

In analogy to examples of P450-mediated C-C cleavage reactions such as the dealkylation of steroids (Akhtar and Wright, 1991) and the oxidative degradation of (+)-marmesin to the furanocoumarin psoralen and acetone (Larbat et al., 2007), we expected CYP705A1 to catalyze an oxidative C-C cleavage of arabidiol at its C14-C15 bond. We proposed that a double bond is introduced in the isoprenyl side chain to produce DMNT and the tertiary hydroxyl group at C14 is converted into a ketone group resulting in a C19 tricyclic ketone cleavage product (Figure 2.4C). We then searched for the presence of a non-volatile C19 compound with a ketone functional group and a predicted molecular weight of 292 in yeast lines expressing ABDS with either CYP705A1 or mut-CYP705A1. A m/z 292 molecular ion was detected in ethyl acetate extracts of yeast expressing ABDS and CYP705A1 but not in lines expressing the non-functional CYP705A1 gene (Figure 2.4A). This result suggested the formation of the predicted C19 degradation product which we named arabidonol.
Figure 2.4 Detection of arabidonol in the yeast co-expression system.

(A) The C₁₉ degradation product arabidonol was detected in WAT11 yeast cells expressing ABDS and CYP705A1 but not the mut-CYP705A1. The GC chromatogram of the purified degradation product is depicted. TIC: total ion chromatogram; SIM: single ion monitoring (B) MS spectrum of arabidonol with a m/z 292 molecular ion. (C) The pathway for arabidiol degradation to DMNT and arabidonol. The molecular structure of arabidonol was determined by NMR analysis.

For a rigorous structural analysis, arabidonol was purified from ABDS and CYP705A1 expressing yeast cells using ethyl acetate extraction followed by flash chromatography
separation and thin layer chromatography. GC-MS analysis of purified arabinodonol showed a single peak at $t_R = 22.65$ min with the expected molecular ion of m/z 292 (Figure 2.4 B). The molecular formula of C$_{19}$H$_{32}$O$_2$ was then tentatively assigned to arabinodonol. The pseudomolecular ion peak at m/z 275.2362, [M-OH]$^+$ (calculated for C$_{19}$H$_{31}$O: 275.2369) observed in high resolution electrospray ionization mass spectrometry (HRESIMS) analysis confirmed the proposed molecular formula with four degrees of unsaturation (Supplemental Figure 10 A). The arabinodonol structure was then further determined using proton 1H-NMR (Supplemental Figure 10B), HMBC, HMQC, NOESY and COSY (Supplemental Figure 2.11 to 2.14). Proton and carbon chemical shifts are listed in Supplemental Table 2.3 and key correlations are shown in Supplemental Figure 2.15. This analysis confirmed formation of a ketone group at the cleavage site of arabiniodol (Figure 2.4 C).

Transcript Analysis of ABDS and CYP705A1 in Pythium-Infected and JA-Treated Arabidopsis Roots

To understand whether the biosynthesis of DMNT is regulated by the transcription of ABDS and CYP705A1, transcript levels of both genes were monitored by quantitative real-time PCR (qRT-PCR) in axenically grown roots upon Pythium infection and treatment with JA. Both genes showed some constitutive expression at time point 0 of treatment. During the early stage of Pythium infection (1, 3, 12 h post-inoculation), when DMNT emission is observed, (Figure 2.5A-B) no significant changes in transcript levels of ABDS were found in comparison to those at the start of inoculation. By contrast, expression of CYP705A1 was induced 2 fold one hour after inoculation prior to a decline to transcript levels similar to those prior to inoculation. Since this transient increase of CYP705A1 mRNA precedes the emission of DMNT, we conclude that the
Pythium-induced formation of DMNT appears to be, at least in part, regulated by the expression of *CYP705A1* but not *ABDS*.

Figure 2.5 qRT-PCR Analysis of CYP705A1 and ABDS Transcript Levels.

Relative transcript levels of *CYP705A1* and *ABDS* were determined in Col-0 plants inoculated with *Pythium* (A and B) or treated with JA (C and D) over a series of several time points. Values were normalized to those of UBC21 and represent means ± SE of three biological replicates. Transcript levels at 0 h time point were arbitrary set to 1. Asterisk indicates statistically significant differences among means compared to transcript levels at 0 h time point calculated by one-way ANOVA and student *t*-test (*P* < 0.005). No significant difference was found in *ABDS* transcript levels upon inoculation with *Pythium*.
Upon JA treatment, transcript accumulation was significantly higher for both genes at 12 h and 24 h after the beginning of JA treatment. Transcripts of ABDS and CYP705A1 were induced 10 fold and 5-fold, respectively, over constitutive levels suggesting a significant contribution of both ABDS and CYP705A1 in JA-induced DMNT formation.

Spatial Pattern of DMNT Biosynthetic Gene Expression

We further examined the tissue specific expression of the DMNT biosynthetic genes by performing promoter activity assays in Arabidopsis transgenic lines expressing the β-glucuronidase gene (GUS) under the control of the native CYP705A1 and ABDS promoters. In 12-day-old seedlings grown on MS medium, promoter activities of both genes were primarily observed in roots and only weak ProCYP705A1-GUS and ProABDS-GUS activity was found in the vasculature of cotyledons and in true leaves, respectively (Figure 2.6 A and B and Supplemental Figure 2.16). In roots of ProCYP705A1-GUS lines, GUS staining was mainly detected in the stele in addition to weak activity in the cortex and epidermis at the root differentiation zone. GUS staining expanded to all cell layers proximal to the cell elongation-differentiation zone boundary (Figures 2.6 A-E). No GUS activity was observed in the cell elongation area but, curiously, a cell type specific activity was found in the quiescent center at the root meristematic zone (Figure 6D-E). Similar expression patterns were detected in lateral roots (Figures 2.6).

GUS activity driven by the promoter of the ABDS gene largely co-localized to the same areas where ProCYP705A1-GUS activity was observed. However, ProABDS-GUS activity was confined to the stele in the differentiation and elongation zones and was very strong in all cells of the root meristematic zone (Supplemental Figure 2.16).
Figure 2.6 Spatial expression pattern of CYP705A1.

(A) to (E) GUS activity in twelve-day-old ProCYP705A1-GUS transgenic lines. (A) Whole seedling. (B) Main root at the root hair zone. (C) and (D) Lateral roots. (E) Main root. For (A) Bar = 1 mm and for (A) to (E) Bar = 200 μm. (F) and (G) Protein expression pattern in ProCYP705A1:CYP705A1-eYFP transgenic plants. (F) Localization of CYP705A1-eYFP protein in the pericycle in the root hair zone and the quiescent center in the root meristematic zone (G). Bar = 50 μm.

To further evaluate the tissue specificity of constitutive DMNT production at the protein level, we examined the cell type specific localization of the CYP705A1 protein in ProCYP705A1:CYP705A1-eYFP lines. Confocal microscopy analysis of three independent transgenic lines suggested that the CYP705A1 protein is expressed primarily in the pericycle and very weakly in the endodermis, cortex, and stele at the root differentiation zone (Figure 2.6F).
Observation of a YFP signal in the quiescent center confirmed CYP705A1 expression in the root meristem (Figure 2.6G) under normal developmental conditions.

Since we observed DMNT at high levels upon JA treatment, we also analyzed spatial patterns of GUS activity and YFP-fusion protein expression in 12-days old transgenic seedlings treated with 100 μM JA for 12 h. in three independent transgenic lines. Jasmonate treatment induced strong \(CYP705A1 \) promoter activity in the root meristem and cell elongation zone in main and lateral roots but at the differentiation zone much stronger activity was detected in lateral roots compared to the main roots (Supplemental Figure 2.16). Enhanced \(ProCYP705A1 \)-GUS activity was also observed in the vasculature of cotyledons but not in true leaves suggesting that the induced breakdown of arabidiol and emission of DMNT is largely confined to roots (Supplemental Figure 2.16). Patterns of JA-induced \(ABDS \) promoter-GUS activity were similar to those found for the \(CYP705A1 \) promoter except that no changes were detected in leaves in comparison to mock controls (Supplemental Figure 2.16).

At the protein level, JA treatment appeared to enhance CYP705A1-YFP expression largely in the area of the pericycle at the root differentiation zone (Supplemental Figure 2.17) without major systemic effects in this root zone. In the root meristematic zone, expression of the CYP705A1-YFP protein expanded from the quiescent center to the endodermis and cortex but was excluded from the stele and columella lateral root cap, epidermis, and pericycle and.

DMNT Negatively Effects Pythium Oospore Germination and Growth

Since we had observed highest emission levels of DMNT within hours of oospore germination and germ tube penetration, we examined a possible effect of DMNT on *Pythium* oospore germination. Since an accurate quantitative assessment of these effects under in vivo
conditions proved too difficult, we observed oospore germination rates in vitro on corn meal agar plates supplemented with DMNT at different concentrations. Oospore germination was inhibited by about 50% at concentrations as low as 50 pM DMNT (Figure 2.7A). Higher DMNT concentrations caused only minor additional inhibitory effects, which may suggest a dose-specific response. We also tested whether DMNT had any effect on the mycelium growth rate of the oomycete by comparing the growth area of the mycelium on potato dextrose agar (PDA) at different DMNT concentrations. Incubation with 10 nM DMNT resulted in approximately 30% reduction of *Pythium* growth (Supplemental Figure 2.18), but again no strong dose-specific responses were observed at higher concentrations. In summary, these results indicate that DMNT can inhibit oospore germination and to some extend retard *Pythium* growth specifically at low concentrations under *in vitro* conditions similar to the inhibitory effects of DMNT on *Pythium* mycelium growth although at about 200-fold lower concentrations. Measurement of DMNT effects on mycelium growth rate was done by Incubation with DMNT resulted in approximately 30% reduction *Pythium* growth at 10nM concentration (Supplemental Figure 2.18) with no strong dose-specific effect. These results indicate that DMNT can primarily inhibit oospore germination and to some extend retard *Pythium* growth *in vitro*. Incubation with DMNT resulted in approximately 60% reduction in *Pythium* growth at 13 nM concentration (Supplemental Figure 2.18) with a small further decrease at 133 nM which may suggest a dose-specific effect. These results indicate that DMNT can retard *Pythium* growth and inhibit oospore germination *in vitro*.
Figure 2.7 DMNT negatively effects *P. irregulare* oospore germination and formation.

(A) Effect of DMNT on oospore germination of *P. irregulare*. DMNT was applied at different concentrations in 10 ml of corn meal agar containing streptomycin. Oospore suspensions were added into each plate and incubated at 27 °C in the dark. Germination rates were determined 24 h after inoculation. Thirty percent of the oospores germinated in the control treatment. The results were plotted relative to distilled water (DW) and oospore germination rate for DW was arbitrary set to 1. (B) Root infection assay of *P. irregulare* in wild-type, DMNT biosynthetic mutants (*abds-1, abds-2, cyp705a1-1*) and the control line *cyp705a1-2*. Representative root segments were taken three weeks after infection of soil grown plants with the pathogen to measure oospore formation. Oospores were counted approximately 10 mm behind the root tips. Statistical analysis was done using one-way ANOVA and Tukey-Kramer HSD test. The values represent the mean ± SE of 5 replicates (*P* < 0.01) for (A) and at least six root segments from 3 different plants (*P* < 0.05) for (B).

We further investigated whether the formation of arabidiol or its volatile and non-volatile break-down products had any long term effects on the root infection level of wild type and *abds* and *cyp705a1* mutant plants grown in potting substrate. To this end, roots of six-week-old plants were harvested three weeks post inoculation and stained with acid-fuchsin lactophenol to observe and count oospores inside root tissues in a 10-mm zone behind the root tip (Figure 2.7B). Whereas few oospores were found in roots of wild-type plants and the *cyp705a1-2* line (DMNT
wild type phenotype), both abds-1 mutants and the cyp705a1-1 exhibited higher levels of oospores inside infected root tissues (significant for abds-1 and cyp705a1). However, the abundance of oospores in these mutants was significantly lower than that of the highly susceptible jar1-1, which is deficient in the formation of the JA-Ile conjugate (Staswick et al., 1998). Together, these results indicate that arabidiol biosynthesis and breakdown contribute to the plant defense response to the selected P. irregulare isolate.

DISCUSSION

Arabidopsis Roots Produce DMNT via the Breakdown of a Triterpene Precursor

Our results provide genetic and biochemical evidence for a novel pathway for DMNT formation via oxidative degradation of the triterpene alcohol, arabidiol, in *Arabidopsis* roots. This finding was rather unexpected since previous biochemical studies administrating stable isotope precursors had demonstrated that DMNT in aerial parts of plants is derived from the sesquiterpene alcohol (E)-nerolidol (Donath and Boland, 1995; Boland et al., 1998). Additionally, transgenic *Arabidopsis* plants carrying a nerolidol synthase from cultivated strawberry (FaNES1) were shown to emit DMNT from leaves (Kappers et al., 2005). These studies were further supported by the characterization of the leaf-specific and insect-induced *Arabidopsis* P450 enzyme CYP82G1, which catalyzes the *in vitro* conversion of both (E)-nerolidol and (E,E)-geranyllinalool into DMNT and TMTT, respectively. Although, only TMTT is produced in wild type *Arabidopsis* leaves by CYP82G1 activity (Lee et al., 2010), the root specific emission of DMNT is not impaired in cyp82g1-1 plants confirming no contribution of CYP82G1 in the formation of DMNT in *Arabidopsis* roots. However, because of the absence of
endogenous (E)-nerolidol synthase activity in Arabidopsis leaf (Lee et al., 2010) as well as root tissue (Vaughan et al., 2013), we concluded that DMNT biosynthesis in Arabidopsis roots is not via C15 precursor (E)-nerolidol. Our findings rather suggested a novel pathway for volatile DMNT biosynthesis via degradation of a C30 triterpene arabidiol in Arabidopsis.

To explore the mechanism of tricyclic triterpene arabidiol cleavage, docking of arabidiol to the active site of a homology based protein model of CYP705A1 was performed. The most energetically favorable orientation of arabidiol in the CYP705A1 active site is illustrated in Figure 2.8. The C3-OH atom makes a hydrogen bond to both the main and side chain of Thr213; however, the hydroxyl group on C14 is not involved in any hydrogen binding. The H-bond made by the C3-OH group and the orientation of the tricyclic moiety in the active site are comparable to the positioning of abiraterone (an sterol based inhibitor) in the active site of CYP17A1, the template used for homology modeling (PDB:3RUK) (DeVore and Scott, 2012). Two Phe residues (F223 and F224) mainly shape the active site and along with A371, T372, and V376 are in hydrophobic interaction to the alkyl chain of arabidiol (Figure 2.8).

The predicted coordination of arabidiol in the active site may properly be allied with the C-C bond cleavage through the radical attack by [Fe(III)-O-O]- and hydrogen abstraction from C16 of the arabidiol molecule followed by an internal atomic rearrangement that leads to the C-C bond breakage (Figure 2.9). In addition, the relative position of C16 indicates the hydrogen abstraction is probably a syn elimination reaction since the hydrogen atom on the same side of the hydroxyl group is closer to the Fe atom (Figure 2.9). This is in agreement with previous studies on homology modeling of CYP82G1 and substrate docking experiments, which suggested that the oxidative degradation of the alcohol substrates (E)-nerolidol and (E,E)-geranyllinalool proceeds via syn-elimination of the polar head, together with an allylic C-5
Docking was performed using AutoDock-Vina. The structure of the arabidiol molecule to be docked into the active site of modeled CYP705A1 was taken from ZINC database (ZINC 59211647). The most energetically favorable orientation of arabidiol with -8.9 Kcal/mol binding affinity is shown. The side chains of residues in 5 Å of substrate are illustrated. The main chain of Thr213 forms a H-bond to C3-OH of arabidiol. The figure is prepared by PyMol.

hydrogen atom (Lee et al., 2010). Similar cleavage reactions of a tertiary alcohol catalyzed by P450s have been described for the dealkylation of 22-hydroxycholesterol into androstenolone (Akhtar and Wright, 1991) and the formation of the furanocoumarin psoralen from its precursor (+)-marmesin (Larbat et al., 2007). CYP705A1, a P450 enzyme of the Brassicaceae-specific
CYP705 family, shares only about 31% amino acid sequence identity with CYP82G1 however, the configuration of the arabidiol substrate with a tertiary hydroxyl group at its prenyl side chain makes a C-C cleavage mechanism equivalent to that catalyzed by CYP82G1 and marmesin synthase very likely. While it is not yet well understood whether CYP82G1 produces DMNT or TMTT in a single cleavage step or in two sequential steps, our results clearly demonstrate that CYP705A1 synthesizes DMNT by a one-step cleavage reaction with arabidonol as the second product (Figure 2.4C). Our analysis of JA-treated roots of the cyp705a1 mutant showed an accumulation of small amounts of arabidiol, but the compound was not detected in JA-treated wild type roots, suggesting a rapid breakdown of the triterpene precursor. Since we were not able to detect arabidonol in roots of JA-treated wild type plants using GC-MS analysis, it is possible that this compound is further modified by additional downstream reaction steps.

![Figure 2.9 The proposed mechanism for oxidative degradation of arabidiol by CYP705A1](image)

The coordination of arabidiol in the active site based on docking experiments is shown. Radical attack by [Fe(III)-O-O]•, hydrogen abstraction and subsequent internal atomic rearrangement are proposed for the C-C bond breakage of arabidiol to form arabidonol and DMNT. The figure is prepared by Ultra ChemDraw.
According to their promoter GUS activities, both DMNT biosynthetic genes, \textit{ABDS} and \textit{CYP705A1}, are co-expressed primarily in the root vasculature under constitutive conditions. These expression patterns are consistent with those found in high resolution root gene expression maps (Birnbaum et al., 2003; Brady et al., 2007). Specifically, fine scale transcript profiles indicated an expression of \textit{CYP705A1} in the pericycle at the root differentiation zone, which was confirmed in our study by the tissue-specific localization of the CYP705A1-eYFP fusion protein (Figure 2.6). Interestingly, we also found a highly cell type specific expression of the P450 protein in the quiescent center of the meristematic zone (Figure 2.6). In contrast to the \textit{CYP705A1} gene, \textit{ABDS} appears to be expressed in the entire meristematic zone. It is possible, that the specific activity of CYP705A1 in the root stem cells is required to remove the arabidiol precursor from this cell area because of putative inhibiting effects. A recent study supports this idea by showing stunted growth and root hair deficiency in oat triterpene biosynthetic mutants that accumulate triterpene intermediates in the epidermis (Mylona et al., 2008). Additionally a pericycle-specific expression at the root differentiation zone could be important both under constitutive and induced conditions as a barrier to avoid vasculature invasion by root pathogens such as nematodes. A similar pericycle specific expression profile was found for rhizathalene synthase in response to herbivore attack in \textit{Arabidopsis} roots (Vaughan et al., 2013). The expanded expression in the elongation zone an area that is preferred by microbial pathogen infection positively correlates with potential defensive functions of arabidiol derived compounds. However it was difficult to observe induced gene expression with promoter-GUS assays \textit{in vivo} upon Pythium infection primarily due to the transient nature of infection and the overall weaker
response compared to JA treatment.

While treatment with JA resulted in 10- and 5-fold transcript induction for ABDS and CYP705A1, respectively, inoculation with *P. irregulare* caused only a two-fold transient increase in expression of CYP705A1 but had no effect on ABDS expression. Although both genes are required for the production of DMNT (Figure 4C), the induced formation of DMNT may not be regulated at gene transcript levels alone. Besides post-translational modifications, an increase in metabolite flux toward squalene and 2,3-oxidosqualene (Fulton et al., 1994), the common precursor in triterpene biosynthesis, might contribute to the enhanced formation of arabidiol and its breakdown products.

We observed only a transient breakdown of arabidiol and formation of DMNT at the time when oospores make initial contact with the root tissue and germ tubes start to penetrate the epidermis. Accordingly, expression of CYP705A1 was transiently induced prior to highest emission levels of DMNT 3 h post-inoculation. A similar transient accumulation of transcripts was found for marker genes of JA- and SA-dependent pathways (e.g. *PR1*, *PDF1.2*) within the first 5 h of inoculation of *Arabidopsis* roots with the oomycete, *Phytophthora parasitica* (Attard et al., 2010). In accordance with these observations, the transient nature of DMNT production might be resulted from activity of pathogen effectors that suppress host-specific defense responses within several hours after penetration of the pathogen. Previous studies on the infection of *Arabidopsis* seedlings with *P. irregulare* suggested an infection process similar to that of a hemibiotrophic pathogen with the formation of biotrophic appressoria and haustoria at the beginning of the infection followed by a necrotrophic movement of hyphae through the vasculature and invasion of all tissues. The suppression of host responses benefits a hemibiotrophic lifestyle, as described for *Phytophthora*-plant root pathosystems with biotrophic
Arabidol Breakdown Products are Involved in the Defense Against P. irregulare

Our results support a role of DMNT in chemical defense against *Pythium* showing that DMNT reduces *Pythium* mycelium growth and oospore germination *in vitro*. Although it is somewhat difficult to compare the actual concentration of DMNT released at the root surface with those in the *in vitro* assays, the concentrations of DMNT with inhibitory effects were in the range of the amounts emitted per g fresh weight of hydroponically grown roots. Due to the highly lipophilic nature of terpenes, it is assumed that terpenes exhibit antimicrobial activity by interfering with the integrity of the cellular membrane (disruption/alteration), which leads to ion leakage, membrane potential reduction, proton pump dysfunction and ATP pool depletion (Mann et al., 2000; Kalemba et al., 2002; Bakkali et al., 2008; Field and Osbourn, 2008b).

Despite the fact that the breakdown of arabidol seems to occur only within the first hours of infection, our comparative studies on long term disease assessment using oospore counting assays in wild type and arabidol and DMNT biosynthesis mutants demonstrate that metabolites of the arabidol degradation pathway have a partial contribution from the onset of infection to slow down the infection process in roots. The volatile and non-volatile breakdown products might exhibit different activities in this process. While DMNT appears to be primarily effective at the stage of oospore germination and penetration, it may also have signaling or priming effects. It has been shown that volatile blends including homoterpenes that are released from a site of wounding or infection can function as systemic signals by priming non-affected parts of the plant for defense responses (Frost et al., 2007). Since arabidonol did not have inhibitory
activity *in vitro*, we assume that its derivatives that are modified in the root tissue are functionally more important defense compounds. Strong antifungal activities have previously been described for root-produced triterpene saponins such as avenacin that is secreted from oat roots (Mary et al., 1986). Since the concentrations of arabidiol and other triterpenes in *Arabidopsis* are low compared to those in the roots of other plants such as oat, they represent only one component in the chemical defense machinery of *Arabidopsis* roots. Bednarek et al. (2005) reported that the infection of *Arabidopsis* roots with *P. sylvaticum* in axenic culture induced changes in the concentrations of secondary metabolite changes including indole glucosinolates and phenylpropanoids. Together, these specialized metabolites combined with other chemical and physical responses such as the formation of ROS or the reinforcement of cell walls (Adie et al., 2007; Oliver et al., 2009) may contribute to the comparatively mild pathogenicity of the *P. irregulare* strain investigated in this work on mature wild-type *Arabidopsis* plants.

Evolution of DMNT Biosynthesis in Arabidopsis via Triterpene Gene Cluster Assembly

To obtain insights on the evolution of the DMNT biosynthetic pathway in *A. thaliana* roots, we compared the chromosomal region of the *ABDS* and *CYP705A1* gene loci to those in close relatives of *Arabidopsis* including *Capsella rubella* (belonging to a genus close to *Arabidopsis*) and *A. lyrata*. Based on this genome synteny analysis and phylogenetic analysis of several genes on the *ABDS* gene cluster, we propose a genome evolutionary history for arabidiol biosynthesis and cleavage as depicted in Figure 2.10. The *ABDS* region in *A. thaliana* contains two triterpene synthase genes, *ABDS* and a baroul synthase (BARS), which has 84% amino acid sequence identity to the ABDS protein. *ABDS* and *BARS* cluster with 4 members of the
Brassicaceae specific CYP705 family, CYP705A1, A2, A3 and A4. Interestingly, neither a triterpene synthase nor a CYP705 member was found on the ABDS syntenic region in C. rubella. One OSC and two CYP705 P450 members were present in A. lyrata. In A. thaliana two OSC and four CYP705 members were found. A duplication of CYP705A3 and BARS gene orthologs in the common ancestor followed by inversion of CYP705 gene in A. thaliana could be likely source of DMNT biosynthesis gene evolution. Different gene families are color coded. Syntenic region flanking ABDs gene cluster are connected with grey line. The syntenic regions for DMNT biosynthesis gene are shown with cyan line.

Brassicaceae specific CYP705 family, CYP705A1, A2, A3 and A4. Interestingly, neither a triterpene synthase nor a CYP705 member was found on the ABDS syntenic region in C. rubella (Figure 2.10), but in A. lyrata a single triterpene synthase gene with 92% amino acid sequence identity to BARS and two P450s (CYP705A2 and CYP705A3) are present in this region. According to a phylogenetic analysis of CYP705A genes on the syntenic regions (Supplemental Figure 19), ABDS and CYP705A1 presumably have evolved after the divergence of A. lyrata and A. thaliana from their common ancestor of 5 Mya via a localized segmented duplication of BARS.

Figure 2.10 Comparative Genome Analysis Maps of ABDS Gene Cluster.

Synteny map for ABDS cluster between C. rubella, A. lyrata, and A. thaliana is shown. No OSC gene ortholog was found on highly syntenic region in C. rubella. One OSC and two CYP705 P450 members were present in A. lyrata. In A. thaliana two OSC and four CYP705 members were found. A duplication of CYP705A3 and BARS gene orthologs in the common ancestor followed by inversion of CYP705 gene in A. thaliana could be likely source of DMNT biosynthesis gene evolution. Different gene families are color coded. Syntenic region flanking ABDs gene cluster are connected with grey line. The syntenic regions for DMNT biosynthesis gene are shown with cyan line.
and CYP705A3 followed by an inversion of CYP705A1 and neofunctionalization of both genes in A. thaliana (Figure 2.10).

A related, highly coordinated triterpene gene cluster has recently been described for the formation and modification of the triterpene thalianol in Arabidopsis roots (Field and Osbourn, 2008b). Thalianol is a tricyclic triterpene similar to arabidiol with no hydroxyl group in the prenyl side chain. Because of the lack of the tertiary hydroxyl group, thalianol is not cleaved by CYP705A1. Instead, thalianol undergoes hydroxylation of the tricyclic moiety and desaturation at the prenyl side chain, catalyzed by two P450 enzymes, CYP708A2 and CYP705A5, respectively (Field and Osbourn, 2008b). A second functional triterpene/P450 gene cluster has been described for the biosynthesis and modification of marneral, an unusual monocyclic triterpene aldehyde, in Arabidopsis with a high degree of co-regulation for clustered genes (Field et al., 2011).

To study the underlying evolution of arabidiol cleavage activity in CYP705A1, we used a substrate docking and comparative protein homology modeling approach to examine the properties of the CYP705A1 active site and other CYP705 members on the gene cluster. Sequence alignment and homology modeling indicate variation in the active site between CYP705A1 and the other Arabidopsis CYP705A paralogs. Particularly, the active site of CYP705A5 involved in desaturation of the thalianol side chain is not conserved in comparison to that of CYP705A1 (Supplemental Figure 2.20). Only four residues (L115, F223, P371 and M491 based on sequence numbering of CYP705A1) out of 18 active site residue are conserved residues among CYP705A1-A5 suggesting enzyme-substrate specificity has diverged extensively after gene duplication events. Homology modeling of A2-A5 using the structure of CYP705A1 as the template suggests several alterations in the active site may be associated with their lack of
activity toward arabidiol. Residue T213, which form a H-bond to the C3-OH group of arabidiol is replace by V/A in other members. Furthermore, F223 that faces toward the active site and plays a major role in shaping the binding cavity in CYP705A1 is replaced by amino acids with smaller side chain (I, L, H). Two tandem alanine residues (A308 and A309) are replaced in all the other members of family by GT. These replacements reduce the hydrophobicity of the microenvironment and may affect the orientation of C_{14}-OH of arabidiol. Docking of arabidiol into the active site of modeled CYP705A2-A5 proteins did not result in reactive coordination of arabidiol and this molecule was bond in reverse orientation compared to its docked configuration in the active site of A1. In this orientation, C14 and C15 atoms of arabidiol are not accessible by oxygen activated heme. Therefore, the amino acid combinations in the active site of CYP705A2-A5 more likely interfere with the binding of arabidiol than affecting the mechanism. In conclusion, the ability of CYP705A1 to cleave arabidiol has been evolved presumably by substitution of several amino acids in the active site (including T213 and G223) after gene duplication events in the ABDS gene cluster region.

It is possible that other genes of the ABDS gene cluster are involved in downstream modifications of the arabidonol cleavage product such as hydroxylation and/or glycosylation, although these genes are not as tightly co-expressed with CYP705A1 and ABDS, which is also the case in the thalianol cluster. Gene clusters such as those described for thalianol and marneral have been found in other terpene metabolic pathways such as the one responsible for the biosynthesis of diterpenes in rice (Shimura et al., 2007). The selective forces driving the evolution of gene cluster assembly in terpene metabolism are not well understood and require further attention. In summary, the formation of DMNT in Arabidopsis roots evolved as part of a
triterpene biosynthesis gene cluster indicating plasticity in the biosynthesis of homoterpene volatiles and differences of specialized metabolic pathways above- and belowground.

METHODS

Plant Materials and Growth Conditions

Arabidopsis mutants (*abds-1, abds-2, cyp705a1-1, and cyp705a1-2*) used in this study were from the wild-type Col-0 genetic background and were acquired from the ABRC stock center (Alonso et al., 2003). The *coil-1* was kindly provided by John G. Turner (Xie et al., 1998). All plants were grown in short day (10-h light/14-h dark photoperiod) under standard growth conditions (150 μmol m⁻² s⁻¹ photosynthetically active radiation (PAR), 22°C, 55% relative humidity (RH).

Axenic plants were maintained as described by Hetu et al. (2005). Two days before treatments and harvesting the root tissue, the MS medium was changed to reduce the sucrose concentration to 1%. JA treatment was done by applying 100 μM JA (Sigma Aldrich, St. Louis, MO) directly to root cultures in the liquid medium. Hydroponic cultures were established by transferring 4-week-old soil grown plants to plastic containers containing Hoagland’s medium under constant aeration as previously described (Gibeaut et al., 1997). Plants were grown for three to four weeks in hydroponic culture before volatile analysis. *Arabidopsis* hairy root cultures was kindly provided by Dr. John Jelekso lab and were grown on Gamborg’s B5 liquid media with 2% sucrose. Cultures were kept at room temperature under dark conditions and with constant shaking at 75 rpm for two weeks at before treatment and analysis. JA treatment was done as described for axenic culture. P450 inhibitor treatments were done at 5 and 50 μM
concentration along with JA treatment for 24 h.

Volatile Collection and Analysis

Root volatiles from axenically or hydroponically grown plants were collected in the head space and analyzed by SPME-GC/MS. One gram of roots (fresh weight) was detached from plants and placed in screw-capped vials (20 mL) containing 1 mL of distilled water with 10 ng of 1-bromodecane as an internal standard. Root volatiles were adsorbed with a 100 μm polydimethylsiloxane fiber (Supelco) for 30 min at room temperature following incubation at 30ºC for 30 min in the headspace of a screw-capped vial (20-mL GC vial). Volatile compounds were desorbed from the fiber at 240ºC (4-min) with a splitless injection and analyzed with a Shimadzu GC/MS-QP2010S. Separation was performed on an Rxi-XLB column (Restek) of 30 m x 0.25 mm i.d. x 0.25 μm film thickness. Helium was the carrier gas (1.4 mL min⁻¹ flow rate), and a temperature gradient was applied at 4ºC min⁻¹ from 40ºC (2-min hold) to 220ºC followed by a gradient of 5ºC min⁻¹ from 40ºC to 220ºC and 20ºC min⁻¹ from 220ºC to 240ºC (2-min hold). Identification of all volatile compounds was achieved by comparison of their retention times and mass spectra with those of authentic standards and with mass spectra of the National Institute of Standards and Technology and Wiley libraries (John Wiley & Sons, Inc., New York, NY).

Standardization of the SPME-based volatile analysis for C₁₁-homoterpene 4,8-dimethyl-1,3,7-nonatriene (DMNT) was validated by performing the volatile analysis with and without root materials. Incubation was carried out in the presence of DMNT and 1-bromodecane standard with or without root material, and volatiles were analyzed as described above. Linear calibration was obtained between 5 and 50 ng (for 1-bromodecane, R² = 0.99; DMNT, R² = 0.99).
Genotyping of Plant Material

A T-DNA insertion line of the *CYP705A1* gene (*cyp705a1-1*, SALK_043195) with an insertion in the second exon was obtained from ABRC. Also, two independent T-DNA insertion lines, *abds-1* (SALK_018285) and *abds-2* (SALK_067736), with insertions in exon 1 and intron 5, respectively were obtained for the *ABDS* gene. Homozygous mutants were confirmed by PCR and the absence of full-length transcript in these mutant lines was verified by RT-PCR.

Construction and Analysis of Transgenic Plants

The full-length cDNAs of the *CYP705A1* and *ABDS* genes were prepared from 1 µg of total RNA extracted using the Tri reagent (Fisher) (Huang et al., 2010) from axenically grown Col-0 roots treated with JA for 24 h with full length cloning primers listed in Supplemental Table 2.4 using proofreading enzyme Pfx Turbo Cx hot start (Stratagene). The amplified fragments were cloned into the pENTR/D-TOPO vector (Invitrogen). For construction of *CaMV 35S* over-expression lines, the *ABDS* and *CYP705A1* cDNAs were subcloned into the pB7WG2 vector (Karimi et al., 2002) using LR recombination (Invitrogen). For construction of promoter:GUS fusion vectors, 1.5 kb and 2.6 kb fragments upstream of the start codon for *CYP705A1* and *ABDS*, respectively, were amplified from genomic DNA, cloned into pENTR/D-TOPO and recombined into pKGWFS7 (Karimi et al., 2002). Plant transformation was done with the *Agrobacterium tumefaciens* strain GV3101 using the vacuum infiltration method (Bechtold et al., 1993). Transformants were screened on half strength MS plates with 1% (w/v) sucrose and 75 µg mL⁻¹ kanamycin. Histochemical GUS assays were performed as previously described (Vitha et
al., 1993) for least three independent lines in the T2 generation. GUS staining was observed with an Olympus SZX16 microscope.

To construct the ProCYP705A1:CYP705A1-eYFP line, first the 1.5 kb promoter region upstream of start codon was subcloned into the pDONR P4-P1R vector (Invitrogen) via BP reaction using primers P5 and P6 (Invitrogen). Then, the LR reaction was done using pDONR P4-P1R and pENTR/D-TOPO vectors carrying promoter and gene fragments, respectively, with the pB7Y24WG binary destination vector (Tholl Lab) carrying the eYFP coding sequence. The pB7Y24WG was constructed by replacing the attR1 and promoter elements region in pB7YW2 with attR4 region from pK7m24GW using EcoRI and SacI digestion and ligation reactions. Upon introduction of the ProCYP705A1:CYP705A1-eYFP construct into A. tumefaciens strain GV3101, cyp705a1-1 plant transformation was done by floral vacuum infiltration. Transgenic plants were identified by spraying soil grown plants with 0.01% BASTA solution. Root samples from three independent T2 transgenic lines were mounted on a microscope slide with distilled water and visualized using a Zeiss Axiovert 200 inverted fluorescence microscope with FITC (λex = 480 nm; λem = 535 nm), Texas Red (λex = 570 nm; λem = 625 nm) fluorescent filter sets, an attached MRc5 Axiocamcolor digital camera, and an LD Achroplan 40X objective. Propidium iodine (PI) staining was done in liquid growth medium by incubating with 10 μg/mL of PI up to 30 min before confocal microscopy analysis.

Yeast Expression, Arabidonol Purification and Enzyme Assays

For establishing yeast co-expression lines, the full-length cDNA of CYP705A1 was amplified using primers P7 and P8, and directionally cloned into the multiple cloning site1 region of the pESC-TRP vector (Stratagene) and was expressed under the galactose-inducible
promoter GAL10. The mut-CYP705A1 cDNA with a truncation in the heme binding domain was amplified using primers P7 and P9 and subcloned into pESC-TRP as described above. The ABDS full-length cDNA was recombined into the Gateway yeast expression vector YEp352-GW under control of the constitutive ADH1 promoter (Takahashi et al., 2007). Both vector constructs were simultaneously transformed into the yeast line WAT11 (Urban et al., 1997) by following the protocol described by the provider of the pESC-TRP vector (Stratagene). Transgenic yeast strains were grown in yeast selective media (SGI) and protein expression was done as described previously (Takahashi et al., 2007). For DMNT production assays in yeast expression lines, 4 ml of yeast culture induced with 2% galactose for 16 h was transferred to a screw cap SPME vial and allowed to grow for another 4 h at 28 ºC at 220 rpm, followed by direct headspace volatile analysis using SPME-GC/MS. Protein expression for microsomal purification was done according to Takahashi et al. (2007) and enzyme assays were performed as described in (Lee et al., 2010) with 55 μM arabidiol substrate purified as described previously (Xiang et al., 2006).

To produce arabinodiol in large quantities, we used transgenic yeast lines expressing ABDS and CYP705A1. A 2 L of yeast culture was prepared in YPI medium and induced with 2% of galactose. DMNT levels were monitored every day to ensure continuous degradation of arabidiol and production of arabinodiol. After 3 days of galactose induction, 0.5 L of acetone was added to yeast culture to burst open cells followed by three times extraction with 1 L of ethyl acetate. The ethyl acetate extracts were combined and organic solvent was removed to dryness under low pressure using a rotary evaporator (Cole-Parmer). Then, the extract was subjected to flash chromatography over silica gel (Merck grade 9385, pore size 60 Å, 230-400 mesh, Sigma). For transferring the extract to the column, first, a slurry of extract was prepared by adding 50 mL of ethyl acetate and 3 g of silica gel to the round bottom flask followed by rotary evaporation to
obtain dried silica particles attached to the extracts. Then the silica gel with the extract was loaded onto a silica gel flash chromatography column preconditioned with 5:2 Ethyl acetate:Hexane and several fractions were collected. Upon verification of presence of arabidonol in fractions by GC-MS aliquots of fractions containing arabidonol were individually loaded on preparative thin layer chromatography (TLC) plates (20 x 20 cm silica gel pore size 60 Å (250 μm) with 2.5 x 20 cm concentration zone) and developed with a 5:2 mixture of hexanes:ethyl acetate as described before. Silica gel was scraped from the plates at an Rf value similar to that of arabidonol and the purity of the extracted compound was evaluated by GC-MS analysis.

Transcript Analysis by RT–PCR and Quantitative Real-Time PCR

Total RNA was extracted from 100 mg of root tissue using the TRIzol reagent (Invitrogen) according to (Huang et al., 2010). Two μg of total RNA was converted into cDNA using SuperScript II (Invitrogen) according to the manufacturer’s instructions. The expression of P450 candidates in root tissues was monitored by semi-quantitative RT-PCR according to (Huang et al., 2010) using gene specific primers designed by Prime-BLAST (Ye et al., 2012) listed in Supplemental Table 2.4. Homozygous mutants were identified using PCR based genotyping and full length *ABDS* and *CYP705A1* transcript expression was analyzed by RT-PCR using corresponding gene specific full length primer pairs (Supplemental Table 2.4). Quantitative real-time PCR was done according to Lee et al. (2010) using gene specific primers (Supplemental Table 2.4). Threshold cycle (Ct) values for *ABDS* and *CYP705A1* were normalized to the ubiquitin conjugating enzyme (*UBC21*) using primers listed in (Supplemental Table 2.4).
Growth and Bioassay Conditions of P. irregulare

P. irregulare 110305 was grown and maintained as described by (Huffaker et al., 2006) and kindly provided by Dr. Clarence A. Ryan. One-week-old *P. irregulare* cultures were collected from the plates into sterile water and lightly ground with a mortar and pestle to yield a uniform suspension. Aliquots (300 μL) of the suspension (≈ 2.475 X 10³ propagules) or water (used as a control) were added to the growth medium of axenically grown cultures containing approximately 20 plants per flask. Microscopy analysis of *Arabidopsis* root infection was done using five-day-old *Arabidopsis* seedlings grown on six-well plates containing 3 mL of ½ x MS media with 1% sucrose under short day conditions infected with *P. irregulare* as described previously (Adie et al., 2007). To observe *P. irregulare* on root tissues lactophenol-trypan blue staining (Koch and Slusarenko, 1990) was performed and followed by sample mounting in 50% glycerol and observed under a Olympus SV-16 stereomicroscope.

Disease assessment with *Pythium* on wild-type and DMNT biosynthetic mutants was performed by measuring oospore abundance 18 days after infection of plants in potting substrate. Plants were grown in jiffy pots (Φ 5 cm, height 6 cm) for three weeks under short day conditions (10-h light/14-h dark). *Jar1-1* (jasmonate signaling mutant) was used as a positive control for disease assessment due to its high susceptibility to *Pythium* (Staswick et al., 1998). Randomly selected individual plants were then transplanted along with the jiffy pot into single pots (6x6x8 cm³) containing *Pythium*-infested potting substrate (Sunshine mix 1). *Pythium*-infested substrate was prepared by slicing Potato Dextrose agar (PDA) containing one week-old *P. irregulare* mycelium, mixing it with the substrate, and incubating the mixture for two days for a uniform infestation. For mock treatments, sliced PDA pieces without *Pythium* were mixed with the substrate. Disease assessment was performed by counting the abundance of oospores inside root
tissues by staining of roots with acid-fuchsin lactophenol (Vijayan et al., 1998).

Oospore Isolation and Germination of P. irregulare 110305

Oospores were prepared following previous studies with minor changes (Yuan and Crawford, 1995; Manici et al., 2000). Briefly, an agar plug from 4-day-old cultures on PDA was inoculated on a V8 juice (Campbell Juice co.) agar plate and incubated at room temperature under dark conditions. After 10 days, V8 agar plugs containing mycelium were transferred into distilled water and further incubated for 10 days under dark conditions. The cultures containing abundantly produced oospores were comminuted with distilled water by a Polytron tissue homogenizer. The homogenized mycelial and oospore mixture was filtered through two layers of cheesecloth, and then the filtrate was subjected to centrifugation (4,500 x g for 10 min). The pellet was suspended in distilled water, and the concentration of oospores was determined using a hemacytometer.

To determine the germination rate of oospores according to chemical treatment, oospore germination conditions were applied as described by (Ruben and Stanghellini, 1978). Oospores were induced to germinate directly on corn meal agar (Difco) containing different concentrations of DMNT with 15 μg mL⁻¹ streptomycin. One hundred microliters of oospore suspension were applied to the surface of an agar plate (about 200 oospores per plate) and incubated for 24 h in an incubator at 27ºC under dark conditions. The oospore germination rate was measured by counting oospores with emerging germ tubes using light microscopy.
Supplemental Figure 2.1 Infection of *Arabidopsis* roots with *P. irregulare*.

Five-day-old *Arabidopsis* seedlings were used to monitor the infection process. A uniform suspension of mycelium and oospores of a one week-old *P. irregulare* culture grown on potato dextrose agar (PDA) plates was used for infection. According to different time points, approximately ten seedlings were observed after staining with lactophenol-tryphan blue. Arrows show *Pythium* oospores attached to the root surface with germinated infection hyphae three hours post inoculation (A and B).
Supplemental Figure 2.2 DMNT emission from hydroponically grown Arabidopsis roots.

Hydroponically grown Arabidopsis roots were infected with *P. irregulare* (A) or treated with 100 μM JA (B). Root volatiles were analyzed at different time points (3 h, 12 h and 24 h for *Pythium*, 24 h for JA) by SPME-GC/MS. Normalized peak areas are shown. Values represent the mean ± SE of three biological replicates. $P<0.05$, One-way ANOVA, Tukey-Kramer HSD test for all comparisons of mock and treatments (A), $P<0.01$, Student t-test (B).
Supplemental Figure 2.3 The cyp82g1-1 T-DNA insertion mutant is not impaired in JA induced production of DMNT from roots.

GC chromatograms of induced emission of DMNT upon JA-treatment in the cyp82g1-1 mutant and wild type Col-0 plants are shown. DMNT emission is not impaired in the cyp82g1-1 mutant suggesting a role for other cytochrome P450 enzymes in root-specific DMNT formation.
Supplemental Figure 2.4 Pharmacological study of DMNT formation in Arabidopsis hairy root culture.

(A) Treatment of hairy roots with the cytochrome P450 monooxygenase-specific azole inhibitors miconazole (MIC) and clotrimazole (CLT) at 50 μM concentration resulted in abolishing the production of DMNT. (C) Production of recently characterized volatile diterpene rhizathalene was not affected by inhibitor treatment.
Supplemental Figure 2.5 QTL analysis of natural variation in DMNT biosynthesis among Arabidopsis accessions.

(A) GC chromatograms of induced emissions of DMNT after 24 h of JA treatment in the Ler, Cvi and Col-0 Arabidopsis accessions. No DMNT was detected from the Cvi accession while the volatile was produced from roots of Col-0 and Ler. (B) Identification of the QTL region for DMNT formation in the Ler X Cvi RILs. The y axis is in log of the odds units, and the x axis is in centimorgan (cM); the horizontal lines represent the 0.05 significance threshold determined by 1,000 permutations (Hansen et al., 2008).
<table>
<thead>
<tr>
<th>Selection criteria</th>
<th>Gene name</th>
<th>AGI number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJ and wounding</td>
<td>CYP71A19</td>
<td>AT4G13290</td>
</tr>
<tr>
<td>MJ and wounding</td>
<td>CYP71A20</td>
<td>AT4G13310</td>
</tr>
<tr>
<td>MJ and wounding</td>
<td>CYP81D11</td>
<td>At3G28740</td>
</tr>
<tr>
<td>MJ and wounding</td>
<td>CYP81D1</td>
<td>AT5G36220</td>
</tr>
<tr>
<td>MJ and wounding</td>
<td>CYP705A12</td>
<td>AT5G42580</td>
</tr>
<tr>
<td>MJ and wounding</td>
<td>CYP708A3</td>
<td>AT1G78490</td>
</tr>
<tr>
<td>MJ and wounding</td>
<td>CYP705A1</td>
<td>AT4G15330</td>
</tr>
<tr>
<td>MJ and wounding</td>
<td>CYP71A12</td>
<td>AT2G30750</td>
</tr>
<tr>
<td>MJ and wounding</td>
<td>CYP81D8</td>
<td>AT4G37370</td>
</tr>
<tr>
<td>TPS co-expression</td>
<td>CYP76C4</td>
<td>AT2G45550</td>
</tr>
<tr>
<td>TPS co-expression</td>
<td>CYP78A8</td>
<td>AT1G01190</td>
</tr>
<tr>
<td>TPS co-expression</td>
<td>CYP705A4</td>
<td>AT4G15380</td>
</tr>
<tr>
<td>TPS co-expression</td>
<td>CYP705A18</td>
<td>AT3G20090</td>
</tr>
<tr>
<td>TPS co-expression</td>
<td>CYP705A13</td>
<td>AT2G14100</td>
</tr>
</tbody>
</table>

Supplemental Table 2.1 DMNT Biosynthesis Gene Candidates.

List of all initial gene candidates and their corresponding name and Arabidopsis Genome Initiative (AGI) locus number is listed. Genes on the selected QTL region on chromosome 4 are highlighted in grey.
Supplemental Figure 2.6 Selection of Candidate P450 Genes for DMNT Biosynthesis.

(A) Expression of selected P450 candidate genes in wounding and methyl jasmonate (MJ) treatment datasets. (B) Volatile analysis in roots of coi1-1, and its corresponding background genotype Col-6 (g11), and in wild type Col-0. No DMNT was detected in hydroponically grown coi1-1 plants upon JA treatment. (C) RT-PCR analysis of candidate gene expression in coi1-1 and WT Col-0 plants in JA and mock (ethanol) treatment. JA inducible and coi1-1 regulated genes are marked with asterisks. Error bars represent SD ± mean values of three replicates.
Supplemental Figure 2.7 RT-PCR Analysis of CYP705A1.

RT-PCR analysis was performed on mRNA extracted from roots treated with JA for 24 h. The full length CYP705A1 gene was amplified from cDNA prepared from different lines. Internal transcript of Actin 8 was used as a control. (A) RT-PCR analysis roots in wild type Col-0 and two cyp705a1 T-DNA insertion lines. (B) RT-PCR analysis of gene expression in roots of wild type Col-0 plants and two transgenic lines expressing CYP705A1 under control of the native promoter fused to eYFP and the CaMV 35S promoter in the background of the cyp70a1-1 mutant.
Supplemental Figure 2.8 DMNT formation in *Arabidopsis* roots is dependent on the mevalonate pathway of terpene precursor biosynthesis.

DMNT formation is not effected by fosmidomycin treatment at 400 μM. Volatile DMNT emission was significantly reduced in response to treatment with the mevalonate pathway inhibitor lovastatin at 50 μM suggesting a mevalonate dependent terpene biosynthetic route. LVS, lovastatin; FOS, fosmidomycin. Error bars represent SD ± mean values of three replicates.
Supplemental Table 2.2 Candidate genes co-expressed with \textit{CYP705A1} evaluated based on the ATTED-II database.

Annotation and correlation coefficients (COR) were adopted from ATTED-II (http://atted.jp/).
Supplemental Figure 2.9 RT-PCR analysis of *ABDS* and *CYP705A1* genes.

RT-PCR analysis was performed on samples treated with 100 μM JA for 24 h. The full length *ABDS* and *CYP705A1* genes were amplified from cDNA prepared from different lines. Internal transcript of *Actin 8* was used as a control.

(A) Transcript levels in DMNT biosynthetic mutants.

(B) Transcript levels in *ABDS* transgenic lines.

(C) *ABDS* and *Actin 8* transcript levels in *CYP705A1* transgenic lines.
Supplemental Figure 2.10 HRESIMS analysis and 1H-NMR spectrum of arabidonol.

(A) Detection of pseudomolecular ion peak at m/z 275.2362, [M-OH]$^+$. The m/z 551.4868 ion is for (2M+H)$^+$ or C$_{38}$H$_{53}$O$_2$ calculated for 551.4823.

(B) Full 1H-NMR spectrum of arabidonol.
Supplemental Figure 2.11 Full HMBC NMR spectrum of arabidol.
Supplemental Figure 2.12 HMQC NMR spectrum of arabidol.
Supplemental Figure 2.13 NOESY NMR spectrum of arabidonol.
Supplemental Figure 2.14 COSY NMR spectrum of arabidol.
Supplemental Figure 2.15 Structure of arabidonol.

(A) Structure of arabidonol with atom numbering.

(B) Key HMBC correlations observed in arabidonol.

(C) Key NOE correlations observed in arabidonol
Supplemental Table 2.3 Proton and carbon chemical shifts for arabidiol and key correlations from NMR spectra.

<table>
<thead>
<tr>
<th></th>
<th>Proton</th>
<th>Carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.97 td, (13.3, 3.9)</td>
<td>38.7</td>
</tr>
<tr>
<td></td>
<td>1.34 m</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.45 m</td>
<td>27.3</td>
</tr>
<tr>
<td>3</td>
<td>3.00 dd (11, 5)</td>
<td>77.4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>38.7</td>
</tr>
<tr>
<td>5</td>
<td>0.70 overlapped</td>
<td>55.9</td>
</tr>
<tr>
<td>6</td>
<td>1.56 m</td>
<td>19.7</td>
</tr>
<tr>
<td>7</td>
<td>1.49 overlapped</td>
<td>40.5</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>44.0</td>
</tr>
<tr>
<td>9</td>
<td>1.22 dd (12.8, 7.3)</td>
<td>63.4</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>38.6</td>
</tr>
<tr>
<td>11</td>
<td>1.99 m</td>
<td>21.9</td>
</tr>
<tr>
<td>12</td>
<td>1.43 overlapped</td>
<td>22.0</td>
</tr>
<tr>
<td>13</td>
<td>2.5 overlapped with the solvent signal</td>
<td>64.1</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>209.2</td>
</tr>
<tr>
<td>15</td>
<td>2.01 s</td>
<td>31.4</td>
</tr>
<tr>
<td>16</td>
<td>0.58 s</td>
<td>15.7</td>
</tr>
<tr>
<td>17</td>
<td>0.78 s</td>
<td>15.4</td>
</tr>
<tr>
<td>18</td>
<td>0.88 s</td>
<td>16.2</td>
</tr>
<tr>
<td>19</td>
<td>0.68 s</td>
<td>15.8</td>
</tr>
<tr>
<td>Primer</td>
<td>Sequence</td>
<td>Experiment</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>P1</td>
<td>5’-CACCATGGATGCAATCGTCGTTGACTC-3’</td>
<td>CYP705A1 cDNA amplification</td>
</tr>
<tr>
<td>P2</td>
<td>5’-TTAAAGATGGGAAATTAAAGAGTTTTGGG-3’</td>
<td>CYP705A1 cDNA amplification</td>
</tr>
<tr>
<td>P3</td>
<td>5’-CACCATGTGGAGACTAAGAATTGGAGCTAAGG-3’</td>
<td>ABDS cDNA amplification</td>
</tr>
<tr>
<td>P4</td>
<td>5’-TCAAGGCTGAAGCCGCCGTAG-3’</td>
<td>ABDS cDNA amplification</td>
</tr>
<tr>
<td>P5</td>
<td>5’-GGGGCAACATTTGTATAGAAAAGTTGTTGAAAAATGCACGGTCAATTCTACCTTCGACTC-3’</td>
<td>Cloning CYP705A1 promoter with attB4 (forward)</td>
</tr>
<tr>
<td>P6</td>
<td>5’-GGGGACTGCTTTTTTGTACAAACTTGTTGCTGAAAAAGCAGAAAGAGGC-3’</td>
<td>Cloning CYP705A1 promoter with attB1 (reverse)</td>
</tr>
<tr>
<td>P7</td>
<td>5’-CTATGAATTC ATGGATGCAATCGTCGTTGACTC-3’</td>
<td>CYP705A1 forward with EcoRI for yeast expression</td>
</tr>
<tr>
<td>P8</td>
<td>5’-CTATGAGCTC TTAAGATGGGAAATTTGAGGTTTTGGG-3’</td>
<td>CYP705A1 reverse with SacI for yeast expression</td>
</tr>
<tr>
<td>P9</td>
<td>5’-CTATGAGCTC TTAACTTAAAGGAGTAGGTG-3’</td>
<td>CYP705A1 reverse with SacI for yeast expression</td>
</tr>
<tr>
<td>P10</td>
<td>5’-ATCCAGGGGAGCTTCAATGTTC-3’</td>
<td>CYP71A19, RT-PCR</td>
</tr>
<tr>
<td>P11</td>
<td>5’-ACCAAGTGCCGAGTCTCCTACCTC-3’</td>
<td>CYP71A19, RT-PCR</td>
</tr>
<tr>
<td>P12</td>
<td>5’-AGTAAGGGACATTTGGAAGAGGC-3’</td>
<td>CYP71A20, RT-PCR</td>
</tr>
<tr>
<td>P13</td>
<td>5’-GACGGTTGCTTCAGTTAGG-3’</td>
<td>CYP71A20, RT-PCR</td>
</tr>
<tr>
<td>P14</td>
<td>5’-CTCAACTGCAACTGTGCTCTC-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P15</td>
<td>5’-TCAACAAATTCGACATCGCC-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P16</td>
<td>5’-ACGGTGAACCTGCTGCTACCTCG-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P17</td>
<td>5’-ATGCCATGTGTTGGACTAGC-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P18</td>
<td>5’-CGAGGAAGAAGGAGGCGTTC-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P19</td>
<td>5’-TGAAATCAACCTTTTTTCCCCC-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P20</td>
<td>5’-CCAGGGGAGCTTCAATGTTC-3’</td>
<td>CYP708A3, RT-PCR</td>
</tr>
<tr>
<td>P21</td>
<td>5’-CCAAACACGCCGAATTTGAT-3’</td>
<td>CYP708A3, RT-PCR</td>
</tr>
<tr>
<td>P22</td>
<td>5’-CGACGTTGAACTTTCCGCCAC-3’</td>
<td>CYP705A1, RT-PCR</td>
</tr>
<tr>
<td>P23</td>
<td>5’-CCATGGCCACTGTAATGCT-3’</td>
<td>CYP705A1, RT-PCR</td>
</tr>
<tr>
<td>P24</td>
<td>5’-CCGCAAGGGGATCTCAAGAAG-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P25</td>
<td>5’-ATGAGAGGAGAATTTCCGCA-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P26</td>
<td>5’TGTTAAGCTGCTCCTACCTC-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P27</td>
<td>5’TCTGAAACCAACCAGCAAAC-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P28</td>
<td>5’-GCAAGCGGAGAAAGAAGACA-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P29</td>
<td>5’-ATAGCCTGTTGGCTCCCTCC-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P30</td>
<td>5’-GAGATGAACTCCAGCTCC-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P31</td>
<td>5’-ACCAAACCGCAACAGTGTGC-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P32</td>
<td>5’-ACGTACGGACTTGATGGACG-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P33</td>
<td>5’-CCGGGACAACTTCTTCTCC-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P34</td>
<td>5’-CACAAGCTGCTCCGACCAC-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P35</td>
<td>5’TGGACGAGTATGATCCTG-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P36</td>
<td>5’-GGACCTGATTGATGTTG-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P37</td>
<td>5’-CTATGAGCTC TTAAGATGGGAAATTTGAGGTTTTGGG-3’</td>
<td>CYP71A12, RT-PCR</td>
</tr>
<tr>
<td>P38</td>
<td>5’-AGTTTATGATGACCTCGTCTTTCGACTC-3’</td>
<td>CYP71A12, qRT-PCR</td>
</tr>
<tr>
<td>P39</td>
<td>5’-ATGCTAAAGTATGAGGAGGC-3’</td>
<td>CYP71A12, qRT-PCR</td>
</tr>
<tr>
<td>P40</td>
<td>5’-CTATGAGCTC TTAAGATGGGAAATTTGAGGTTTTGGG-3’</td>
<td>CYP71A12, qRT-PCR</td>
</tr>
<tr>
<td>P41</td>
<td>5’-ATCGCCATGTGTTGGACTAGC-3’</td>
<td>CYP71A12, qRT-PCR</td>
</tr>
<tr>
<td>P42</td>
<td>5’-CGAGGAAGAAGGAGGCGTTC-3’</td>
<td>CYP71A12, qRT-PCR</td>
</tr>
<tr>
<td>P43</td>
<td>5’-ACCAAAACCGCAACAGTGTGC-3’</td>
<td>CYP71A12, qRT-PCR</td>
</tr>
<tr>
<td>P44</td>
<td>5’-AGTTTATGATGACCTCGTCTTTCGACTC-3’</td>
<td>CYP71A12, qRT-PCR</td>
</tr>
<tr>
<td>P45</td>
<td>5’-CTAAGGCTGCTTGGCTCCCTCC-3’</td>
<td>CYP71A12, qRT-PCR</td>
</tr>
<tr>
<td>P46</td>
<td>5’-GAGATGAACTCCAGCTCC-3’</td>
<td>CYP71A12, qRT-PCR</td>
</tr>
<tr>
<td>P47</td>
<td>5’TGGACGAGTATGATCCTG-3’</td>
<td>CYP71A12, qRT-PCR</td>
</tr>
<tr>
<td>P48</td>
<td>5’-GGACCTGATTGATGTTG-3’</td>
<td>CYP71A12, qRT-PCR</td>
</tr>
</tbody>
</table>

Supplemental Table 2.4 Sequence of primers used in different experiments.
Supplemental Figure 2.16 Induced promoter-GUS activity of CYP705A1 and ABDS.

GUS activity in twelve-day-old mock and JA-treated ProCYP705A1:GUS and ProABDS:GUS transgenic lines.

(A) to (D) Cotyledon and true leaves. Bar = 1 mm.

(E), (G), (I), (K) Main root tip. Bar = 200 μm.

(F), (H), (J), (L) Lateral root tip. Bar = 200 μm.

(M) to (P) Lateral –main root attachment site. Bar = 0.5 mm.
Supplemental Figure 2.17 Confocal microscopy analysis in response to JA treatment in ProCYP705A1:CYP705A1-eYFP lines.

(A) and (B) protein localization for CYP705A1 in root meristem zone. Bar = 50 μm.

(C) and (D) protein localization for CYP705A1 in root differentiation zone. Bar = 50 μm.

(A) and (C) are mock treatments. (B) and (D) are JA treatments.
Supplemental Figure 2.18 Effect of arabidiol, arabidonol and DMNT on the growth of *P. irregulare* 110305.

Different amounts of chemicals were applied to 10 mL of fresh potato dextrose agar (PDA) plates. An agar plug with *Pythium* mycelium (2X2 mm) was positioned in the center of each plate and incubated at room temperature under dark condition. The *Pythium* growth zone was determined 2 days after inoculation. Data represents the mean value ± standard error mean of at least four replicates. P<0.001, one-way ANOVA, Tukey-Kramer HSD test.
Supplemental Figure 2.19 Molecular Phylogenetic Analysis of *A. thaliana* and *A. lyrata* CYP705 members on the *ABDS* and *THAS* gene clusters

The TMTT synthase CYP82G1 from *A. thaliana* was used as an outgroup. Family tree evolutionary history was inferred by using the Maximum Likelihood method based on the JTT matrix-based model. The percentage of trees, in which the associated taxa cluster together, is shown next to the branches. Initial tree(s) for the heuristic search were obtained by applying the Neighbor-Joining method to a matrix of pairwise distances estimated using a JTT model. A discrete Gamma distribution was used to model evolutionary rate differences among sites (4 categories (+G, parameter = 1.8171). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. Evolutionary analyses were conducted in MEGA5 (Tamura et al., 2011).
Supplemental Figure 2.20 Sequence alignment of active site residues of CYP705A1 to CYP705A5.

Homology modeling of A2-A5 using the structure of CYP705A1 as the template gives evidence that several alterations in the active site may be associated with the lack of activity toward the oxidative degradation of arabidol in A2-A5. The residues interacting with arabidol (any atom in 5 Å including main chain) are listed and aligned to the equivalent residues in other member of this family (A2-A5). These major changes are highlighted with * in the table. The figure is prepared by WebLogo (Perkel, 2006).
SUPPLEMENTAL METHODS

Growth Inhibition Assay in Vitro

P. irregulare was cultured on half strength potato dextrose agar (PDA) (Difco213400) containing different concentrations of each chemical. *P. irregulare* plugs taken from water agar were placed in the center of the plate and incubated at room temperature under dark conditions for two days. The growth area was measured and calculated according to Adie et al. (2008) with minor modifications. Hyphal growth from a single inoculate establishes a distinct growth zone, therefore two diameters (*R₁*, *R₂*), perpendicular to each other, were measured for each growth zone and the mean was obtained. The growth area was calculated:

\[
\text{Area} = \pi \left(\frac{R_1 + R_2}{2} \right)^2
\]

The growth inhibition assay was repeated at least twice with more than three replicates and the inhibitory effect of chemicals on *Pythium* growth was determined by comparison with the control growth area.

NMR Analysis of Arabidonol Structure

The \(^1\)H NMR spectroscopic data of arabidonol (supplemental Figure 2.10B) displayed signals for four quaternary methyl groups (δ 0.58, 0.68, 0.78 and 0.88, each singlet), one singlet (δ 2.01, 3H) corresponding to one methyl group attached to a carbonyl, one oxymethine (δ 3.00, dd, *J* = 11, 5 Hz) (Supplemental Table 2). The Heteronuclear Single Quantum Coherence (HSQC) (Supplemental Figure 2.11) coupled with Heteronuclear Multiple Bond Correlation
(HMBC) experiment (Supplemental Figure 2.12) showed that arabinodol in fact had 19 carbons ascribable to four quaternary carbons including an acetyl carbonyl (δ 209.2, C-14), four methines, one of which attached to an oxygen (δ 77.4, C-3), six methylenes (δ 15.4, 15.7, 15.8, 16.2 and 31.4) and five methyls (δ 15.4, 15.7, 15.8, 16.2 and 31.4), (Supplemental Table 3). The four degrees of unsaturation deduced from HRESI mass spectroscopic data and the presence of carbonyl in the molecule demonstrated that arabinodol product must be a tricyclic compound. The allocation of the oxymethine to be at C-3, the acetyl group at C-13 and the presence of a five membered ring (ring C) were substantiated by the interpretation of HMQC and HMBC experiments. The long range cross-peaks from the proton at 3.00 ppm (H-3) to the methyl carbon at 16.2 ppm (C-18) and the methylene at C-2 (28.9), from the methyl protons at 0.88 (CH3-18) to C-3 (77.4 ppm), C-19 (15.8 ppm), C-4 (37.8 ppm) and C-5 (55.9 ppm) allowed us to locate the hydroxyl group at C-3 and two methyl groups at C-4. The attachment of the acetyl group at C-13 was corroborated by long range correlations between the downfielded methyl group (δ 2.01) and both the carbonyl (δ 209.2) and the methine at δ 64.1. The important long range correlations which support the structure of arabinodol are summarized in Supplemental Figure 15B. The relative stereochemistry of arabinodol was deduced by 2D Nuclear Overhauser Effect Spectroscopy (NOESY) experiment (Supplemental Figure 2.13). The beta-orientation of the hydroxyl group at C-3 was deduced by the NOE correlations from the proton at 3.00 ppm (H-3) to CH3-19; from CH3-18 methyl to CH3-17 and from CH3-17 to CH3-16. Moreover, the alpha-orientation of the proton at C-13 was substantiated by the NOE cross peak between H-13 and the two protons of C-7, and the methyl group at C-14 to CH3-16 (Supplemental Figure 2.15C).

Computational Methods:
The protein sequence of CYP705A1 (excluding the first 37 residues involved in membrane binding) was blasted against the RCSB Protein Data Bank to search for the optimal template for homology modeling. Three cytochrome P450 conformations were selected based on maximum identity/similarity, high resolution and minimum gap in the structure. Three structures (PDB: 3RUK_C, 2HI4_A, 4I8V_A) were selected for multiple template comparative modeling using Modeller 9v11 (Marti-Renom et al. 2000). The simulation steps include single template modeling, multiple template modeling, and ab-initio loop refinement (Fiser et al. 2000). Each step includes 1000 independent simulation scored using DOPE (Shen and Sali 2006) and GA341 (Melo and Sali 2007) scoring functions. The selected final model was subjected to additional modeling to include the heme group into the protein structure. The loop carrying the cysteine residue bond to the heme group in PDB:3URK has 80% identity to the equivalent loop 439-449 in CYP705A1. The regional alignment of this loop in 3URK and CYP705A1 was used to incorporate the heme into the heme binding site of CYP705A1. The quality of the final model was verified using PROCHECK (Morris et al. 1992) and Anolea (Melo F 1997). Due to the high sequence identity (> 65%), the 3D structures of CYP705A2- CYP705A5 from *A. thaliana* were modeled using the structure of CYP705A1 as template.

Molecular dockings were performed using AutoDock-Vina (Trott and Olson 2010) with exhaustiveness of 10 and evaluation of 10 docked positions in each run. The protonation state of titratable residues in CYP705A1 structure were predicted by H++ (Gordon et al. 2005). The structure of the arabidol molecule to be docked into the active site of modeled CYP705A1 was taken from the ZINC data base (ZINC 59211647) (Irwin et al. 2012). The ligands were fully flexible during docking and their Gasteiger partial charges (Gasteiger and Marsili 1980) of ligand and protein were determined by AutoDock Tools 1.5.4 (Morris et al. 1998; Morris et al.
The partial charges distribution over the heme group was calculated as described previously (Lee et al. 2010) using Gaussian09A_02 (Frisch et al. 2009). The main binding cavity of modeled CYP705A1 was determined by using AutoLigand (Harris et al. 2008) and structural alignment to the templates of comparative modeling. The analysis of the binding cavity shows the side chain of M454 of CYP705A1 (conserved among CYP705A1- CYP705A5) is directly extended to the center of the binding site that fills a major part of the binding cavity. Since in the template this methionine is replaced by a glycine, to avoid biased docking to the orientation of this Met, another rotamer for Met from the PyMol rotamer library was picked for CYP705A1. The most favored docked structure for each compound was selected based on the lowest binding energy using three independent replicated docking experiments.
LITERATURE CITED:

3. Identification of Downstream Modification Products in the Arabidiol Catabolic Pathway in *Arabidopsis* Roots

Other Contributors:

Liva Harinantenaina, postdoctoral associate in the Chemistry Department at Virginia Tech, did the NMR analysis.
ABSTRACT

Terpenoids represent the largest class of specialized or secondary metabolites and serve various functions in plant organism interactions. There are large numbers of functionally active terpenoid metabolites, which are derived by degradation of larger terpene skeletons such as C40 tetraterpenes. We have recently demonstrated that the root-specific triterpene alcohol, arabidiol, undergoes oxidative degradation to the volatile irregular C11 homoterpene or norterpenoid DMNT and the C19 tricyclic ketone arabidonol in a reaction catalyzed by the cytochrome P450 monooxygenase CYP705A1 (Sohrabi et al., unpublished). This breakdown reaction is induced upon infection of Arabidopsis roots with the oomycete Pythium irregulare and treatment with the defense hormone jasmonic acid and represents an alternative pathway to produce the common stress-induced volatile DMNT via catabolism of a regular terpenoid precursor. In contrast to DMNT, no defensive activity could be associated with arabidonol. Moreover, arabidonol could not be detected in planta, which raises the question of its conversion to potentially biologically active downstream products. Here we present genetic and biochemical evidence that arabidonol is modified in a jasmonate-independent manner to at least three products, of which two, a putative stereoisomer and its putative acetylated form, are released from root tissue. Analysis of gene expression data sets paired with functional expression in yeast provided no indication that genes located on the arabidiol synthase (ABDS) gene cluster are involved in the observed modification steps. Arabidopsis accession-specific and interspecific differences of the profiles of the modification products provide grounds for the identification of gene loci involved in this new pathway by applying QTL or genome synteny analysis.
INTRODUCTION

Plants produce a large number of structurally diverse terpenoid chemicals which play various roles in cell physiology as well as the interaction with the surrounding environment. Among terpenoids, the C30 triterpenoids with more than 20,000 skeletons have functions in plant growth and development by serving as precursors of membrane and steroid hormones and as possible growth-regulating signals (Nes and Heftmann, 1981; Benveniste, 2004; Boutte and Grebe, 2009). Additionally, triterpenes are involved in plant defense responses and responses to other environmental factors such as nutrient and water availability (Phillips et al., 2006; Augustin et al., 2011). Triterpenoids undergo several types of modifications via sequential reactions catalyzed by cytochrome P450 monooxygenases (P450), acyl transferases, and glycosyl-transferases, which give rise to diverse saponin metabolites (Osbourn et al., 2011). Saponin glycosides such as avenacins secreted from oat roots are biologically active compounds with potent antimicrobial properties (Mary et al., 1986). Moreover, modified triterpenoids have been used as medicine due to their pharmacological properties such as anti-proliferative and anti-cancer activities (Osbourn et al., 2011).

All terpenoids are derived from five carbon isopentenyl diphosphate (IPP) units. Sequential condensation of these C5 building blocks gives rise to the formation of regular terpenes such as monoterpenes (C10), sesquiterpenes (C15) diterpenes (C20), triterpenes (C30) and tetraterpenes (C40) (Bohlmann et al., 1998; Fridman and Pichersky, 2005; Chen et al., 2011). Norisoprenoids with an irregular (non-5x) number of carbon atoms are biosynthesized by the breakdown of regular terpene precursors. For example, the degradation of carotenoids by carotenoid cleavage enzymes and subsequent modification steps results in the production of norisoprenoids (also referred to as apocarotenoids) with C8-C18 atoms. These compounds have
gained increased attention because of their role as volatile aroma compounds in fruits such as tomato and melon (Winterhalter and Rouseff, 2001). In addition, non-volatile carotenoid derivatives can undergo multiple diverse enzymatic reactions and are converted to products that play important roles as hormones (e.g. strigolactones), signaling molecules, and chromophores (Walter et al., 2010). There are only limited numbers of volatile norterpenoid derived from the degradation of triterpenoids. For example, the violet fragrance from dried rhizomes of certain Iris (sword lily) species is due to compounds called irones (Jaenicke and Marner, 1990).

Recently, we discovered a new pathway to produce volatile compounds from triterpene precursors. Arabidopsis produces the triterpenoid alcohol arabidiol specifically in root tissues by the activity of the enzyme arabidiol synthase (ABDS) (Sohrabi et al., unpublished). Degradation of the arabidiol triterpene metabolite by the P450 CYP705A1 leads to the formation of the volatile irregular C11 homo-norterpenoid DMNT and a C19 norterpenoid ketone called arabidonol (Figure 3.1). The CYP705A1 and ABDS are highly co-regulated and are part of a gene cluster with a second triterpenoid synthase called baroul synthase and several P450s. We have reported that volatile DMNT emission is induced in response to root inoculation with an oomycete pathogen Pythium irregulare and treatment with defense hormone jasmonic acid (JA). Although we did not find biological activity for arabidonol our results suggested that DMNT volatile plays a role in inhibiting oospore germination (Sohrabi et al., unpublished). Since we were unable to detect arabidonol in vivo, we assumed that the compound could be further converted into derivatives with possible defensive activities. Here we report the detection of arabidonol downstream modification products in root exudates of Arabidopsis thaliana and predict a sequence of enzymatic reactions for these modification steps based on exogenous application of isolated intermediates to the root tissue. Additionally, NMR based structural
elucidation of the modification products is presented. Although we predicted that P450s on the gene cluster of the ABDS/CYP705A1 might be involved in further modification for arabidonol in planta, no biochemical activity was detected for selected candidates upon yeast expression. We present natural variation in arabidonol modification steps in two Arabidopsis accessions Ler and Cvi and discuss an evolutionary history for arabidiol degradation and cleavage in Arabidopsis.

Figure 3.1 The arabidiol degradation pathway.

The pathway for arabidiol degradation in Arabidopsis roots is shown. Arabidiol cleavage at the C_{14}-C_{15} bond by CYP705A1 leads to the formation of the volatile DMNT (C_{11}) and the norterpenoid arabidonol (C_{19}).

RESULTS

Arabidiol-Derived Compounds are Detected in Arabidopsis Root Tissue and Exudates

Previous experiments indicated that in jasmonate-treated Arabidopsis roots the triterpenoid alcohol, arabidiol, undergoes a rapid breakdown into DMNT and arabidonol, since arabidiol was only detected in cyp705a1-1 plants, which are impaired in the degradation of this precursor. The degradation of arabidiol is easily monitored by the trapping and analysis of DMNT. However, arabidonol was undetectable in organic extracts of roots indicating a rapid
turnover or conversion, similar to that of arabidiol, into downstream derivatives. We, therefore, searched for possible conversion products of arabidonol in organic extracts of JA-treated axenically grown root tissues of wild type plants in comparison to those of the arabidonol biosynthetic mutant cyp705a1 (Figure 3.2 A). When we examined root extracts of Col-0 wild type plants, a single compound potentially derived from arabidiol degradation was detected named Deg-R (for R for root) with a mass spectrum similar to that of arabidonol but with a different retention time at $T_R = 27.8$ min. This compound was not found in the cyp705a1 mutant. (Figure 3.2 B).

Figure 3.2 Detection of arabidiol-derived compounds in Arabidopsis root tissue.

(A) GC chromatograms of ethyl acetate extracts of root tissues of wild type and cyp705a1 plants treated with 100 μM JA for 24 h. A peak representing a putative arabidiol degradation product (named Deg-R) was detected in wild type roots but was absent in the cyp705a1 mutant. Arabidonol was not detected in roots. The lower panel shows an arabidonol standard. (B) Mass spectra of arabidonol and Deg-R. A molecular ion of m/z of 295 was found for Deg-R in contrast to the molecular ion of 292 for arabidonol.
Figure 3.3 Detection of arabidiol-derived compounds in Arabidopsis root exudates.

(A) GC chromatograms of ethyl acetate extracts of liquid medium of axenically grown roots of wild type plants and cyp705a1 and abds mutants. Upon 24 h of JA treatment a second compound in addition to Deg-R was detected called Deg-M with a retention time different to that of arabidonol. Left panel: Total ion chromatograms (TIC). Right panel: Single ion chromatograms (SIM) monitoring the 274 ion distinctive of arabidonol. The bottom chromatogram shows a pure arabidonol standard.

(B) Mass spectrum of Deg-M.
Since the exudation of specialized metabolites from plant roots has been reported previously (Bais et al., 2005; Badri et al., 2009), we also considered the possibility that arabinonol or any conversion product could be released into the rhizosphere. When exudates were extracted from axenically grown cultures of JA-treated wild type plants, we detected Deg-R and a second compound named Deg-M (M for medium) with a retention time of $T_R = 26.3$ min and a mass spectrum similar to that of arabinonol. Deg-M was absent in exudates of the cyp705a1-1 and abds-1 mutants (Figure 3.3). Based on these results, we concluded that arabinonol is converted into at least two other products, which are in part secreted by the root tissue.

Arabinonol is Converted into Deg-M, Deg-R, and a Third Compound, Deg-I, in Planta

To further examine the conversion of arabinonol into the observed putative derivatives, we performed feeding experiments with arabinonol using axenically grown abds-1 plants (Figure 3.4A). Prior to these experiments, arabinonol was purified from yeast lines co-expressing ABDS and CYP705A1 (see Methods). The compound was then applied at 3 μM concentration to three weeks old cultures of the abds-1 mutant without JA treatment followed by organic extraction from root tissue at different time points. To evaluate whether arabinonol could be directly modified by root exudates, plant root exudates were obtained 24 h after growth medium replacement from axenically grown *Arabidopsis* roots and inoculated with arabinonol in a new container for 30 h. No modification of arabinonol was observed under these experimental conditions indicating that the conversion of arabinonol occurs in the root tissue most likely by specific enzymatic activities (Figure 3.4.A). Feeding with arabinonol for 1.5 h, 3 h and 30 h resulted in the production and secretion of Deg-M and Deg-R. The compounds were found at
different ratios depending on the duration of the precursor application. At early stages of feeding, Deg-M and only trace amounts of Deg-R were detected from the organic extracts of the culture medium (Figure 3.4A). At late time points, the amount of the Deg-R was increased leading to the

![GC-MS chromatogram of organic extracts upon arabidonol feeding is shown. No conversion of arabidonol was observed upon exposure only to root exudates obtained axenically grown abds-1 plants (in the absence of root tissue—upper panel). When applied in the presence of root tissue, arabidonol was initially converted into Deg-M and Deg-I between 1-3 h of arabidonol application and also produced small amounts of Deg-R. Upon treatment for 30 h, the amounts of Deg-M and Deg-I decreased while the levels of Deg-R increased. (B) The mass spectrum of Deg-I with a molecular ion of 290 is depicted. The arrow points to appearance of the Deg-I peak.](image)

Figure 3.4 Arabidonol is converted into several modification products in planta.

(A) GC-MS chromatogram of organic extracts upon arabidonol feeding is shown. No conversion of arabidonol was observed upon exposure only to root exudates obtained axenically grown abds-1 plants (in the absence of root tissue—upper panel). When applied in the presence of root tissue, arabidonol was initially converted into Deg-M and Deg-I between 1-3 h of arabidonol application and also produced small amounts of Deg-R. Upon treatment for 30 h, the amounts of Deg-M and Deg-I decreased while the levels of Deg-R increased. (B) The mass spectrum of Deg-I with a molecular ion of 290 is depicted. The arrow points to appearance of the Deg-I peak.
same ratio of both derivatives as was observed in JA-treated wild type plants (Figure 3.3). Surprisingly, a third compound was detected after 1.5 h at retention time $T_R = 26.1$ min with a mass spectrum again similar to that of arabidonol (Figure 3.4B). This compound was also found at 3 h of arabidonol application though at lower amounts and was present at trace amounts 24 h after feeding suggesting that it is as a possible intermediate in the arabidonol modification pathway, therefor named Deg-I.

Purification and Structure Elucidation of Arabidonol Modification Products

Our initial attempt to purify the detected modification products directly from JA-treated *Arabidopsis* roots was not successful because of insufficient amounts of compounds and the complexity of the background matrix. However, since we found arabidonol to be efficiently converted into downstream products upon its application to axenic plant cultures, we used this bioconversion approach to produce the derivatives at levels sufficient for NMR analysis. For the production of Deg-I, *abds-I* plants were treated with 4-6 mg of purified arabidonol for 3 h prior to an extraction of the compound from the culture medium with ethyl acetate. In separate experiments ethyl acetate extractions of roots and culture medium were done 24 h after arabidonol feeding to extract Deg-R and Deg-M, respectively. The extracts were subjected to flash chromatography and thin layer chromatography (TLC) purification as described under Methods.

Deg-M and Deg-R samples with more than 90% purity were analyzed by NMR spectroscopy (1H-NMR, 13C-NMR, HMBC, and QMBC), which suggested the molecular structures shown in Figure 3.6. The difference between Deg-M and arabidonol was limited to the C3-OH position with a conversion from β in arabidonol into α in Deg-M indicating
epimerization reaction. In Deg-R, in addition to the C3-OH epimerization from β into α, the C3-OH has been modified by the addition of an acetyl group, evident from appearance of the second carbonyl correlation in HMBC analysis. NMR analysis of Deg-I is still in progress, but our preliminary analysis suggests a dehydrogenation reaction at the C3-OH position of arabidonol which follows by its immediate conversion into Deg-M. According to the structural analysis, a putative pathway for the modification of arabidonol was developed as shown in Figure 3.5.

Figure 3.5 Putative pathway for the formation of arabidonol derivatives.

Structural analysis of compounds was performed using 1H-NMR and 13C-NMR analysis. The structures of arabidonol derivatives are shown. We predict Deg-I as 3-dehydro-arabidonol. Deg-M is suggested to be a product of epimerization of arabidonol at the C3 position. Deg-R is modified by addition of an acetyl group to for acetyl-arabidonol.
Application of Individual Derivatives to Confirm the Sequence of Arabidonol Modification Steps

We performed feeding experiments with the purified individual compounds to further examine the suggested sequence of the modification reactions. Compounds were applied for 30 h to axenically grown *abds-1* plants and products were extracted from the culture medium and analyzed by GC-MS (Figure 3.6). Upon feeding with arabidonol, we detected Deg-I, the α-arabidonol isomer, Deg-M, and small amounts of acetyl-arabidonol (Deg-R) similar to results presented in Figure 3.4. Application of Deg-I resulted in substantial production of Deg-M suggesting an immediate conversion of this intermediate (Figure 3.6A). Feeding with Deg-M only yielded Deg-R suggesting Deg-M to be a substrate of a subsequent acetyl transferase reaction. Upon feeding with Deg-R no derivatives were detected (Figure 3.6B) indicating that the acetylated form of arabidonol might be converted into a more polar product, which is not extractable by ethyl acetate. Collectively, these results confirm the suggested sequential modification pathway of epimerization via a Deg-I intermediate followed by an acylation of the C₃ hydroxyl group to yield acetyl-arabidonol (Figure 3.5).
Figure 3.6 Arabidonol is converted to acetyl-arabidonol via two intermediates.

(A) Feeding studies were performed with arabidonol, Deg-I, Deg-M and Deg-R in axenically grown root cultures of abds-1 plants for 3 h. Single ion monitoring (SIM) mode analysis result is shown for characteristic ion from MS spectrum profiles (m/z 290 for Deg-I and m/z 274 for arabidonol, Deg-M and Deg-R). (B) The compounds detected after feeding with each modification product are listed. N.D., not detected. (C) Suggested order of compound modifications in the arabidonol conversion pathway.

Functional Expression of the Putative Acalytransferase At4g15390 in Yeast

As an approach to identify genes involved in the modification of arabidonol, we looked for genes on the **ABDS** gene cluster that may encode enzymes catalyzing the suggested conversion steps (isomerases, dehydrogenases, or acyl transferases). Although genetic linkage of the genes on the **ABDS** cluster region may suggest a role in the same biosynthetic pathway, our
analysis of publically available microarray experiments indicated that most of the clustered genes are not highly co-regulated with \textit{ABDS/CYP705A1} and are expressed only at low levels in roots (Supplemental Figures 3.1 and 3.2). One of the clustered genes (At4g15390) has been annotated as a putative acyltransferase gene (Figure 2.8). Although this gene is not co-regulated with \textit{ABDS} and \textit{CYP705A1}, it is expressed at high levels in roots suggesting a possible acyltransferase activity in converting Deg-M into acetyl-arabidanol. Expression of this gene in yeast in the presence of externally applied Deg-M did not lead to the detection of acetyl-arabidanol (data not shown). Therefore, we concluded that other possible acyltransferase enzymes, which are not physically linked to the \textit{ABDS} cluster, might be involved in this reaction.

\textit{Genetic and Evolutionary Approaches for the Identification of Genes Involved in the Arabidiol Catabolic Pathway}

We previously used QTL analysis as a successful approach in combination with gene expression analysis to identify the \textit{CYP705A1} gene, which is responsible for the degradation of arabidiol (Sohrabi et al., unpublished). The QTL approach was based on the analysis of recombinant inbred lines (RILs) of the two \textit{Arabidopsis} accessions Cvi and Ler. Since Cvi is impaired in the formation of DMNT, we reasoned that this accession might also be unable to modify arabidanol. However, upon feeding of axenically grown Cvi plants with arabidanol, we found a conversion of the compound into all downstream products that have been detected in the Col-0 accession (Figure 3.7). By contrast, in the Ler accession, arabidanol was converted only to Deg-M but not further converted into Deg-R (Figure 3.7). This result suggests accession-dependent natural variation in the acylation of arabidanol. A further analysis of the arabidanol
modification in recombinant inbred lines from a cross between Ler x Cvi will be required to associate this natural variation with corresponding biosynthetic genomic loci.

Figure 3.7 Natural Variation in the Modification of Arabidol-Derived Compounds Between Different Accessions of Arabidopsis.

(A) The total ion chromatograms (TIC) and SIM analysis profiles for m/z 290 and 274 are shown. Arabidol was applied at 30 μM concentration for 3 h to axenic cultures of Col-0, Cvi, and Ler plants. Roots of Col-0 and Cvi converted arbadidonol into the downstream products (Deg-I, Deg-M, and Deg-R), but in Ler only Deg-I and Deg-M were detected. The TIC and SIM scan profiles are shown. (B) The predicted pathway for arbadidonol modification is shown. The red X indicates the step impaired in the Ler accession.

Our previous genome synteny analysis of the ABDS gene cluster in Arabidopsis suggested that the arbadidonol biosynthesis and degradation pathway emerged recently after divergence of A. thaliana and A. lyrata from their common ancestor. Therefore, we postulated
that the ability to modify arabidonol should have evolved after this divergence and no modification of arabidonol should be observed in *A. lyrata*. To test this hypothesis, axenically grown *A. lyrata* plants were fed with 30 μM arabidonol for 3 h. Interestingly, we found that *A. lyrata* roots converted arabidonol primarily into the intermediate compound Deg-I and produced only trace amounts Deg-M and no acetyl-arabidonol was detected (Figure 3.8). However, the ability of *A. lyrata* to convert Deg-M into acetyl-arabidonol was not evaluated in a separate feeding experiment in this study.

Figure 3.8 Arabidonol is modified differently in *A. thaliana* and *A. lyrata*.

(A) and (B) The TIC and SIM analysis profiles for *m/z* 290 and 274 are shown. *A. thaliana Col-0* and *A. lyrata* plants were grown axenically and treated with arabidonol for 3 h. Organic extractions were done from culture medium (A) and root tissue (B). Only conversion to Deg-I and at a very low level to Deg-M was observed in as the culture medium and roots after arabidonol feeding while no Deg-R was detected in *A. lyrata*. (C) The predicted pathway for arabidonol modification is shown. The red X indicates steps in the pathway with possible difference between *A. thaliana* and *A. lyrata*.

114
DISCUSSION

The Arabidol Catabolic Pathway Contains Several Modification Steps

We have previously reported that the triterpene alcohol, arabidiol, is degraded into the volatile C_{11}-homo/norterpene, DMNT, and the C_{19} ketone, arabidonol, in a reaction that is induced upon treatment with JA and the soil-borne pathogen *P. irregulare*. Since arabidonol could only be detected as a product of CYP705A1 when this enzyme was expressed in yeast, but was absent in planta, we assumed that the cleavage product was further modified or catabolized. Upon JA treatment we have detected two compounds with high mass spectrum similarity to arabidonol, which were absent from *abds-1* plants, suggesting that they were possible arabidonol derivatives. Because of the unavailability of a labeled arabidonol substrate and the lack of knowledge about the enzymatic nature of the modification reactions, we used a biotransformation approach by applying purified precursors. This approach was successful in obtaining modification products at sufficiently high amounts for subsequent NMR analysis. Biotransformation has been used widely in pharmaceutical industry to produce value-added phyto-pharmaceuticals in hairy root cultures of various plant species by biochemical reactions such as glycosylation, oxidation, reduction, isomerization, cyclization, acetylation and hydrolysis (Banerjee et al., 2012).

Our feeding experiments with arabidonol suggested modification of arabidonol into at least three products. We have suggested Deg-I as putative intermediate in epimerization of arabidonol into Deg-M. Previous studies on the brassinosteroid hormone biosynthesis pathway have shown the presence of a ketone intermediate in C_{3}-epimerization of teasterone (β-C_{3}-OH) to typhasterol (α-C_{3}-OH). In this pathway, teasterone is modified to a 3-dehydroteasterone
intermediate via dehydrogenation and later converted to typhasterol by a reductase activity (Suzuki et al., 1994; Park et al., 1999). Therefore, we predict that Deg-I might similarly serve as a ketone intermediate in arabidonol epimerization to Deg-M. Interestingly, it has been shown that the rice CYP90D2 converts teasterone into 3-dehydroteasterone (Hong et al., 2003) and we predict that a similar P450 mediated reaction might result in arabidonol conversion to Deg-I.

The β orientation at the C3-OH group is the most abundant orientation in sterols and triterpenoids and in their corresponding glycosides is linked to sugar moieties via a β-glycosidic bond (Haralampidis et al., 2002; Benveniste, 2004). However, triterpenoid glycosides have been reported with an α orientation at their C3-OH such as saponin QS-21, derived from the bark of the Quillaja saponaria Molina tree (Jacobsen et al., 1996). Additionally, modifications such as β to α epimerization for cholesterol in animal systems which have been reported to increase the phosphatidylcholine chain order in membranes and decrease membrane permeability (Rog and Pasenkiewicz-Gierula, 2003). However the ability of Deg-M to partition in membranes and its potential effects on membrane fluidity and permeability is not clear.

Our results suggest that Deg-M (putative α-arabidonol) is further modified to Deg-R via acetylation. In triterpene glycoside biosynthesis there are several examples of acylation at C3-OH of the triterpene moiety prior to glycosidic bond formation (Augustin et al., 2011). At this time, it is not clear whether acetyl-arabidonol is further modified in planta. Since feeding with acetyl-arabidonol did not result in any detectable products, further modification reactions such as additional glycosylations and hydroxylations cannot be excluded. There are also examples of diterpene glycosides with biological activities such as stevioside, a stevia glycoside derived from the steviol diterpene (Hanson and De Oliveira, 1993) with inhibitory effect on monosaccharide metabolism in the rat liver (Ishii et al., 1987) Also, 17-hydroxygeranyllinalool diterpene
glycosides in *Nicotiana attenuata* are produced as JA-dependent anti-feeding diterpene glycosides (Heiling et al., 2010).

We have shown that α-arabidonol and its acetylated form occur in root exudates. It should be noted that these compounds have not been described in previous studies of *Arabidopsis* root exudation (Badri et al., 2009; Badri et al., 2012). Root exudation of phytochemicals from plants has been shown to play a role in plant interactions with microbial communities as well as other plant species (Bais et al., 2006; Badri and Vivanco, 2009). Therefore, we predict that the JA-induced production of the detected compounds might contribute to the interaction of *Arabidopsis* with microbial communities in the rhizosphere (Carvalhais et al., 2013).

Our previous experiments on evaluating the *in vitro* bioactivity of the arabidiol-derived degradation products suggested a role only for DMNT but not arabidonol in the inhibition of *Pythium* oospore germination and mycelium growth. It is possible that the detected arabidonol derivatives play a role in the defense against *Pythium* since the secretion of α-arabidonol and acetyl-arabidonol suggest a potential role as phytoalexins in the rhizosphere. To obtain a better understanding of the biological function of the arabidonol derivatives in the *Arabidopsis*- *Pythium* interaction or any other Arabidopsis root-pathosystem, a more comprehensive study of the effects of these metabolites in vivo and in vitro is required.

Our results have shown that the biotransformation of arabidonol is JA-independent. This is an interesting aspect of regulation of arabidiol biosynthesis and degradation in *Arabidopsis*. The transcripts of *ABDS* and *CYP705A1* are induced upon JA treatment in roots leading to the subsequent increased production of DMNT and arabidonol *in planta*. The immediate conversion of arabidonol into its downstream products may happen via enzymatic activities catalyzed by
constitutively expressed genes in roots. The reason for uncoupling JA-dependency of arabidonol production from its constitutive downstream modification is not clear yet but a possible cell auto toxicity effect for arabidonol derivatives could be considered.

We have found two degradation products of arabidiol in exudates from Arabidopsis roots in response to treatment with the defense hormone jasmonic acid. Recent findings suggest an involvement of ATP-binding cassette (ABC) transporters in the secretion of phytochemicals (including terpenes) from roots in Arabidopsis and other plant species (Loyola-Vargas et al., 2007; Sugiyama et al., 2007; Badri and Vivanco, 2008). ABC transporters, which are the largest family of transporters, use ATP to pump a diverse array of substrates across plasma membranes (Goossens et al., 2003; Bednarek et al., 2010). We hypothesize a role of ABC transporters in the secretion of arabidiol-derived metabolites in Arabidopsis roots, which are induced in the presence of the terpene metabolite as was previously reported for a diterpene-specific transporter in Nicotiana leaves (Jasinski et al., 2001). Additionally, several ABC transporters have been reported in the secretion of specialized phytochemicals from Arabidopsis roots (Badri et al., 2008; Badri et al., 2009). However, we currently cannot exclude other transporters such as those of the major facilitator superfamily or ion channels and, therefore, further studies are required to identify the respective transporter gene candidates.

Identification of Arabidonol Modifying Enzymes

Previous studies on the biosynthesis of diterpenes and triterpenes have revealed that genes encoding multiple steps of the corresponding pathways are clustered and often co-regulated in an operon-type fashion (Field and Osbourn, 2008; Swaminathan et al., 2009). Our previous genome synteny analysis has suggested recent evolution of the arabidiol production and
cleavage pathway as a gene cluster in *Arabidopsis* (Sohrabi et al.). In *A. lyrata*, a baroul synthase like protein with 84% amino acid sequence identity to *ABDS* along with two members of the *Brassicaceae* specific CYP705 family (CYP705A2 and CYP705A3) are present. Additionally, there are several different genes families on the ABDS region, which are highly syntenic between three genomes including *Brassicaceae* specific P450 CYP702, acyltransferases, glycosyltransferases and ABC transporters (Supplemental figure 3.1). We assumed that some genes on this cluster such as CYP705 and CYP702 members with so far unidentified function may play a role in the downstream modification of arabidonol. We did not necessarily expect these genes to be induced by JA since the modification reactions proofed to be JA-independent. However, we expected candidate genes to be expressed in the same tissue or cells as *ABDS* and *CYP705A1*. Against our expectation, most other genes on the cluster are not co-regulated at the tissue level with the *ABDS/CYP705A1* gene module and a putative acyltransferase with high expression in roots does not appear to modify \(\alpha \)-arabidonol when expressed in yeast. We predict that other loci are responsible for the observed modification steps. A QTL analytical approach using Cvi x Ler recombinant inbred lines could be used to pinpoint putative genes involved in the acetylation of \(\alpha \)-arabidonol.

Comparison of *A. thaliana* with its close relative, *A. lyrata*, showed that the enzymatic step to produce the intermediate compound Deg-I is conserved in both species, while this does not seem to be the case for the downstream reactions. This finding may suggest that the enzymatic activity for the modification of arabidonol into Deg-I was present in the common ancestor of *A. lyrata* and *A. thaliana* before their divergence and the subsequent evolution of the arabidiol biosynthetic and cleavage steps in *A. thaliana*. Such evolutionary scheme has been reported for the biosynthesis of arbidopyrones in *Arabidopsis*, in which a highly conserved
extradiol ring-cleavage dioxygenase was capable of converting a novel enzymatic reaction product (a catechol-substituted substrate) derived from gene duplication and neofunctionalization events (Weng et al., 2012). It is likely that the conversion of Deg-I into Deg-M is similarly associated with an existing enzymatic activity with low substrate specificity, which is capable of accepting arabidonol as an additional substrate. On the other hand, the enzymatic step for modification of Deg-I into α-arabidonol was partially active in A. lyrata and may have gone through subsequent evolutionary specialization to establish a new activity. Whether the final acyltransferase step is entirely absent in A. lyrata needs to be further investigated by the specific application of pure α-arabidonol compound. Together, our studies on Arabidopsis accessions and close relatives demonstrate genotype-dependent plasticity in the assembly of the arabidiol catabolic pathway and present an example of a secondary metabolic pathway that is dependent on gene-cluster specific and unspecific gene activities.

METHODS

Plant Materials and Growth Conditions

Arabidopsis mutants (abds-I and cyp705a1-I) used in this study were described in Chapter 2. The Cvi and Ler accessions were part of the RIL population described previously (Alonso-Blanco et al., 1998). Arabidopsis lyrata was acquired from the ABRC stock center (Alonso et al., 2003). Axenic plants were maintained as described by Hetu et al. (2005). Two days before treatment and harvesting of the root tissue, the MS medium was changed to reduce the sucrose level to 1%. JA treatment was done by applying 100 μM JA (Sigma Aldrich, St. Louis, MO) directly to the liquid medium of the root culture. All plants were grown in short day
Production and Purification of Arabidonol from Yeast Expression Lines

To produce arabidonol in larger quantities, we used transgenic WAT11 (Urban et al., 1997) yeast lines expressing ABDS and CYP705A1. Yeast cells were grown as described previously (Sohrabi et al.) with minor modification. Briefly, for large scale purification of arabidonol, 9 L of yeast culture was prepared in YPI medium and induced with 2% of galactose. DMNT levels were monitored every day to ensure continuous degradation of arabidiol and production of arabidonol. After 5 days of galactose induction, yeast cells were separated from the growth medium by centrifugation at 7000 rpm. The water from the growth medium was removed by sublimation in a lyophilizer (Labconco) over a period of 5 days and the dried out material was used for extraction of arabidonol. The residual lyophilized material from the medium was resuspended in 1 L of double distilled water followed by three times extraction with 1 L of ethyl acetate. The ethyl acetate extracts were combined and organic solvent was removed to dryness under low pressure using a rotary evaporator (Cole-Parmer). Then, the extract was subjected to flash chromatography over silica gel (Merck grade 9385, pore size 60 Å, 230-400 mesh (Sigma)). For transferring the extract to the column, first, a slurry of extract was prepared by adding 50 mL of ethyl acetate and 3 g of silica gel to the round bottom flask followed by rotary evaporation to obtain dried silica particles attached to the extracts. Then the silica gel with the extract was loaded onto a preconditioned silica gel flash chromatography column and several fractions were collected as described previously (Sohrabi et al.). Aliquots of fractions containing arabidonol were individually loaded on preparative thin layer chromatography (TLC) plates (20
x 20 cm silica gel pore size 60 Å (250 μm) with 2.5 x 20 cm concentration zone) and developed with a 5:2 mixture of hexanes:ethyl acetate as described before (Sohrabi et al.). Silica gel was scraped from the plates at an R$_f$ value similar to that of arabidinol and the purity of the extracted compound was evaluated by GC-MS analysis.

Analysis of Arabidinol Derivatives in Plants

Extraction of arabidinol derivatives from plants was performed with plant material from axenically grown cultures. Arabidinol dissolved in DMSO was applied at 3 or 30 μM concentration and cultures were incubated over a range of different times. Arabidinol derivatives were extracted with 10 mL ethyl acetate from 1 g of ground root material. One volume of water was added to the mixture for phase separation and the top organic layer was collected followed by two additional extractions with 10 mL of ethyl acetate each time. Ethyl acetate extracts were combined, dried down using a rotary evaporator, and passed through a small silica gel column (2 cm) that was prepared in glass pasture pipettes for removal of highly polar ethyl acetate extracted compounds. Samples were dried using compressed N2 (Airgas) and resuspended in ethyl acetate and analyzed by GC-MS. Extraction of arabidinol derivatives from root exudates was done by extracting the MS growth medium of abds-1 plants at different time points. Briefly, water from 15 mL of growth medium was evaporated to dryness using a lyophilizer and the sample was resuspended in 2 mL of double distilled water followed by three times extraction with 10 mL of ethyl acetate. Organic extracts were combined, dried under low pressure, resuspended in small amounts of ethyl acetate, and cleaned up by passing through a small silica gel column. Samples were concentrated under a N$_2$ stream subsequently analyzed by GC-MS.
Purification of Modification Products

In order to obtain large amounts of arabidonol derivatives, feeding experiments were done several times with aliquots of arabidonol ranging from 2-6 mg using axenically grown \textit{abds-1} plants. To obtain Deg-I, feeding experiments were done in three axenic culture flasks for 3 h followed by three extractions per flask with equal volumes of ethyl acetate and medium. Ethyl acetate extracts were combined and dried under low pressure and loaded onto a silica gel flash chromatography column (standard joint and PTFE Stopcock, 10” with 10 mm internal diameter glass column, Kemtech America) preconditioned with 4:1 hexanes:ethyl acetate. Then, 10 mL fractions were collected and a small aliquot was analyzed by GC-MS. A method was developed for TLC purification of Deg-I by evaluating different developing solvent conditions and identifying the TLC behavior of Deg-I. This was done by comparing \(R_f\) value of compounds between fractions containing high levels of Deg-I with the ethyl acetate extract before flash chromatography separation. In summary, fractions containing Deg-I were subjected to TLC purification by developing with 4:1 hexanes:ethyl acetate and Deg-I was localized by running a small aliquot of the ethyl acetate extract before flash chromatography separation followed by \(p\)-anisaldehyde-sulfuric acid staining (Hahn-Deinstrop, 2007).

For purification of \(\alpha\)-arabidonol (Deg-M), arabidonol feeding was done for 24 h. The same procedure for flash chromatography and TLC analysis was used. \(\alpha\)-Arabidonol was found in later fractions upon elution with 4:1 hexanes:ethyl acetate compared to Deg-I and showed a different TLC behavior more similar to arabidonol. \(\alpha\)-Arabidonol was verified with GC-MS at each step during separation and purification steps.

For purification of acetyl-arabidonol (Deg-R), arabidonol feeding was done for 24 h. Instead of the culture medium the root tissue was used for extraction since higher amounts of
acetyl-arabidonol were found in root extracts. Ground root material from three axenic cultures treated with 6 mg of arabidonol was mixed with 50 mL of double distilled and extracted three times with 50 mL of hexanes. The hexanes extract was condensed and loaded onto the flash chromatography column as described above. Upon eluting compounds from the column with 4:1 hexanes:ethyl acetate, the fraction containing acetyl-arabidonol were verified with GC-MS and used for TLC purification. Finally, acetyl-arabidonol was also verified by GC for purity.

NMR Analysis of Modification Products

Purified samples were dissolved in CDCl₃ and submitted to NMR analysis at Chemistry department at Virginia Tech. ¹H and ¹³C NMR spectra were recorded on a JEOL Eclipse 500 and Bruker Avance 600 spectrometers in CDCl₃ or CD3OD with TMS as internal standard.
Supplemental Figure 3.1 Genes on the ABDS/BARS cluster are not highly co-regulated under normal developmental condition.

Results were obtained from GENVESTIGATOR (Zimmermann et al., 2004). The expression values for genes are presented as gene expression potential percentage. A darker red color suggests higher expression.
Supplemental Figure 3.2 Genes of the ABDS/BARS cluster are not co-regulated under stress conditions.

Results were obtained from GENVESTIGATOR (Zimmermann et al., 2004). The expression values for genes are presented as fold change in log (2) ratios. A red color presents up-regulation and green down-regulation.
Supplemental Figure 3.3 Genome evolution analysis of the ABDS/BARS region.

The CYP705A1 activity has evolved most likely along with ABDS activity in *A. thaliana*. Only a single triterpene synthase ortholog in *A. lyrata* was found for the ABDS/BARS region presumable encoding a BARS activity. Other genes on the genome are highly syntenic between *C. rubella*, *A. lyrata* and *A. thaliana*, but the orientation and copy number has gone through several changes. Comparative genome analysis was done online using the GeVO tool (http://synteny.cnr.berkeley.edu/CoGe/) (Lyons and Freeling, 2008). (A) and (B) Syntenic regions between *C. rubella* and *A. lyrata*, *C. rubella* and *A. thaliana*, *A. lyrata* and *A. thaliana* are color coded in red, blue and yellow, respectively. (B) Syntenic regions between *C. rubella* and *A. lyrata*, and *A. thaliana* and *A. lyrata* are connected by green and cyan lines, respectively.
Literature Cited

Carvalhais, L.C., Dennis, P.G., Badri, D.V., Tyson, G.W., Vivanco, J.M., and Schenk, P.M.

4. Final Discussion and Future Perspectives
Plants are constantly exposed to various changes and threats in their surrounding environment. To cope with these changes, plants rely on different mechanisms including the biosynthesis of chemicals with enormous structural diversity. Although these naturally occurring chemicals used to be considered as waste products of a “luxurious metabolism”, they are now accepted as important players in ecological interactions with various biological roles, which has evolved through natural selection (Hartmann, 2007). Phytochemical have been studied extensively in various parts of plants, but knowledge of their biological role in the rhizosphere is still limited. During my research I have focused on understanding the biochemical pathway for the production of the volatile terpene DMNT emitted from Arabidopsis roots in response to the root pathogen Pythium irregulare and treatment with the defense hormone JA. The discovery of an alternative Brassicaceae-specific pathway for volatile homoterpe formation via the degradation of the triterpene precursor arabidiol, as presented in chapter II, raises new questions regarding the placidity and evolution of specialized metabolic pathways in plants. In chapter III we have tried to obtain a better understanding of these biochemical and evolutionary processes by further studying the catabolism of arabidiol-derived metabolites in Arabidopsis roots. In this chapter, I highlight the significance of my discoveries in a broader context and present possible future research directions.

Regulation and Functions of Phytochemicals in the Rhizosphere

Similar to aerial plant structures, roots are constantly exposed to numerous beneficial and pathogenic organisms in the rhizosphere and interact with these organisms largely via the release of chemical compounds derived from both primary and specialized metabolic pathways. Primary metabolites such as fatty acids and amino acids serve as attractants to beneficial microbial
communities in the rhizosphere (Jaeger et al., 1999) via recruiting plant growth promoting rhizobacteria to confer enhanced plant growth and immunity (Rudrappa et al., 2008). Additionally, specialized metabolites are found to orchestrate plant-organismal interactions belowground. For example, flavonoids are well-known for their function in establishing plant interactions with mycorrhizal fungi by promoting spore germination and attachment (Scervino et al., 2005). Phytochemicals in roots can also be induced as defense compounds against bacterial and fungal pathogens known as phytoalexins. For example, triterpenoid glycosides such as avenacins secreted from oat roots are involved in the defense against various soil-borne pathogens (Papadopoulou et al., 1999). Furthermore, phytochemicals are also involved in allelopathy interactions belowground. One of the best known examples are aromatic compounds such as juglone produced by the black walnut Juglans spp, which have strong allelopathic properties (Hejl and Koster, 2004). Interestingly, rice (Oryza sativa) produces diterpene lactones called momilactones, which function as both antimicrobial and allelopathic factors (Wang et al., 2011).

Emission of volatile specialized metabolites such as terpenes from aerial tissues has been reported to show several biological functions and it is expected to see similar activities for volatiles released belowground. Although the mobility of root emitted volatiles in the soil is limited and is dependent on overall physicochemical properties, it has been shown that volatile terpenes such as the C_{15} (\(E\))-\(\beta\)-caryophyllene can easily diffuse into air pockets surrounding root tissue and attract insect-parasitizing nematodes (Rasmann et al., 2005). Additionally, volatiles from roots can show allelopathic activities (Romagni et al., 2000) and possibly effect microbial communities in close vicinity of roots in the rhizosphere (Hammer et al., 2003). We have observed emission of the homoterpene DMNT in response to Arabidopsis root inoculation with
the oomycete pathogen *Pythium irregulare* and demonstrated that upon cleavage of arabidiol, in addition to DMNT a C19 ketone called arabidonol is produced, which is subsequently converted to several derivatives. *Pythium irregulare* is an oomycete pathogen categorized as a hemibiotroph since it forms haustoria-like structures in the early stage of infection but also produces both phytotoxins and lytic enzymes that degrade plant tissue (Deacon, 1979), which are typical features of necrotrophs (Oliver and Ipcho, 2004). Studies of *Pythium* pathogenicity with *Arabidopsis* suggests that plant defense responses involve the plant hormones, JA and ethylene (Staswick et al., 1998; Vijayan et al., 1998; Geraats et al., 2002). *Pythium* is not only affecting terpene metabolism, as shown in this study, but can also induce the production of indole glucosinolates, lignin, and phenylpropanoids within 48 h of infection (Bednarek et al., 2005; Adie et al., 2007). It is not clear whether the detected arabidiol-derived metabolites act individually or synergistically with other defensive metabolites in this particular pathosystem. Synergistic effects have been reported as an example for terpene mixtures resulting in increased toxic effects on larvae of the generalist lepidopteran *Spodoptera litura* when compared to individual compounds (Hummelbrunner and Isman, 2001). Since many oomycetes including *Pythium* change lifestyles from biotrophs to necrotrophs, studying the functions of induced and constitutive defense chemicals in a time-dependent manner would provide insight into dynamic interactions of the various defense-related phytochemicals. Further studies are required to measure the bioactivity of non-volatile arabidiol catabolism products against pathogens individually or in combination with volatile DMNT.

Cell-Type or Tissue Specificity of Chemical Defense in Roots
Plants are exposed to different selective pressures from organismal communities aboveground and belowground and, therefore, have evolved different chemical defense profiles in these tissues. To dissect the functions of chemical defense metabolites in roots, it is important to understand their tissue or cell type-specific organization. The radial structure of roots with a distinct concentric organization of different cell types makes roots an ideal system for studying cell type specificity. Previous studies reported that the monoterpene 1,8-cineole is synthesized in the epidermis and cortex of Arabidopsis roots (Chen et al., 2004) while the production of the sesquiterpene (Z)-γ-bisabolene occurs primarily in the sub-epidermal layers and the root cortex (Ro et al., 2006). Additionally, cell type specific biosynthesis of triterpenes has been reported in the epidermis of Arabidopsis and oat roots (Jenner et al., 2005). Similarly in this study we have shown that formation of basal DMNT levels is primarily restricted to the pericycle and quiescent center in root meristematic zone. Such cell-type specificity requires a highly coordinated expression of genes involved in the same biosynthetic pathway as recently shown for the thalianol biosynthesis and modification in Arabidopsis (Field and Osbourn, 2008) and is also evident in our promoter activity assays for both ABDS and CYP705A1 genes primarily in the root differentiation zone. However, unlike ABDS, the CYP705A1 is expressed only in the quiescent center but not in other cell layers in meristematic zone suggesting that presumably presence of arabidiol in quiescent center could have inhibitory effects on functions of cells in this center. This is supported by a recent study in which accumulation of triterpene intermediates led to disruption of membrane trafficking and inhibition of root growth in oat roots (Mylona et al., 2008). Whether arabidiol accumulation in quiescent center could result in interference with stem cell maintenance and regeneration in Arabidopsis roots is not clear. This question could be
addressed by expressing ABDS gene under control of a strong quiescent center specific promoter in the cyp705a1-1 background and evaluating root growth phenotype in these plants.

A cell-specific distribution of defense metabolites in roots may be critical for warding off soil-borne, root-attacking organisms such as nematodes, microbial pathogens and insect larvae with different invasion and feeding strategies (Maron, 1998; Wardle, 2006; Rasmann and Agrawal, 2008). Allocation of defense phytochemicals to the epidermis or root tips appears to be important in inhibiting penetration of pathogens at early stages of infection and whereas their accumulation in the vascular tissue seems to be important for example in defending against phloem feeding insects such as root aphids. Here we showed that the degradation of arabidiol produces basal levels of DMNT and arabidonol derivatives primarily in the root pericycle. Upon activation of the JA signaling pathway, the degradation of arabidiol was enhanced in almost all cell types in the root meristem and elongation zones; however, this was not the case in the root differentiation zone, where the expression of the CYP705A1 protein remained restricted to the pericycle. Combined with our bioassays in this study, we postulate that DMNT might be involved in defending newly emerged root cells in the meristematic and elongation zones against pathogen penetration, and in the vascular tissue upon possible successful pathogen propagation in the root tissue. Further studies are required to evaluate cell type specific expression of genes involved in the modification of arabidonol under normal growth condition and pathogen attack and establish a correlation between organization of the arabidiol catabolism products and their potential bioactivity. Additionally since arabidonol derivatives are found in root exudates we postulate that these phytochemicals might play a role in plant interaction with root attacking organism in the rhizosphere acting as a potential defense compound in rhizosphere. Whether
detection of these metabolites in root exudates is mediated via specific or non-specific transport processes should be further evaluated in details.

Evolution of DMNT Formation in *Arabidopsis*

Our study has shown that DMNT in Arabidopsis is produced specifically by the P450 enzyme CYP705A1 in roots and not by the leaf-specific homoterpene synthase CYP82G1. Whereas CYP705A1 is only found in *Brassicaceae*, the taxonomic distribution of the CYP82 members for most cases overlaps with the occurrence of homoterpenes in various plant families (Nelson et al., 2008). Although no CYP82 member has been identified in monocots they are yet capable of producing homoterpenes (Tholl et al., 2011) (Figure 1.1). We predict that in monocots a P450 presumably from a different family might be involved in homoterpene formation though the nature of the substrate it is not clear.

The arabidiol synthase (*ABDS*) gene is localized on chromosome 4 as part of a gene cluster with a second triterpene synthase (*BARS*), several *Brassicaceae*-specific P450s in CYP702 and CYP705 families including CYP705A1, and three glucosyltransferases. Recently, several functional operon-like gene clusters have been described in maize, oat, *Arabidopsis*, and rice plants (Osborn and Field, 2009). The formation of metabolic gene clusters in specialized metabolism is suggested to enhance gene regulation and reduce possible cytotoxic effects of intermediates (Osborn, 2010). Plant gene clusters are most likely assembled by recruitment of genes from somewhere else in the genome via gene duplication, neofunctionalization, and genome reorganization (Field and Osborn, 2008; Swaminathan et al., 2009). Based on our genome synteny analysis it is evident that one oxidosqualene cyclase gene along with CYP705 members have been recruited to a genomic region with several CYP702, acyltransferase and
glycosyltransferase in the common ancestor of \textit{A. thaliana} and \textit{A. lyrata}. Subsequent gene duplication and neofunctionalization of the oxidosqualene cyclase and CYP705 members has resulted in metabolic diversification and evolution of an alternative pathway for volatile DMNT in \textit{Arabidopsis} roots. Whether other genes residing on the gene cluster can modify arabidiol catabolism metabolites awaits further thorough biochemical and molecular investigations. It is somewhat remarkable that there seems to be a strict tissue-specific metabolic difference in \textit{Arabidopsis} in the formation of homoterpenes, since TMTT and DMNT are produced by two different pathways above and belowground without overlap in the enzymatic machineries. The reason for the evolution of this distinct metabolic separation remains elusive but it might indicate tissue-dependent “micro-environments” that facilitate metabolic pathway evolution under particular selective pressures. It should be noted that CYP82G1 and the geranyllinalool synthase TPS04 are co-expressed in leaves to produce TMTT under stress conditions. However, these genes are not part of a cluster in contrast to \textit{ABDS} and \textit{CYP705A1}, which raises questions about the plasticity or stringency of gene cluster evolution.

Production of DMNT by the degradation of arabidiol presents, to our knowledge, the first biochemical and molecular characterization of volatile terpene formation from a C\textsubscript{30} precursor. Few other examples are known to date for the production of volatile breakdown products from large precursors. As an example formation of the irones the violet fragrance from dried rhizomes of certain sword lily species is via degradation of iridal triterpenes (Jaenicke and Marner, 1990). Another example for the breakdown of large precursors into volatile terpene products is the formation of apocarotenoids from carotenoid precursors (Winterhalter and Rouseff, 2001). For example, \textit{β}-ionone, \textit{β}-damascenone and dihydroactinidiolide are volatile carotenoid derivatives found in the scent of flowers such as \textit{Rosa hybrid} (rose), or \textit{Freesia hybrida}, or in fruit and
vegetable aroma such as *Averrhoa carambola* (starfruit) or *Lycopersicon esculentum* (tomato) (Winterhalter and Rouseff, 2001). Additionally, as novel plant hormones, strigolactones are derived from carotenoid degradation. The compounds can inhibit shoot branching by interfering with auxin transport (Beveridge et al., 2000). Strigolactones are also involved in plant signaling to promote branching of mycorrhizal fungi (Akiyama et al., 2005) and induce seed germination of parasitic plants (Bouwmeester et al., 2003; Akiyama and Hayashi, 2006) in the rhizosphere. Our discovery of arabidiol as a precursor of volatile DMNT and non-volatile arabidonol, which undergoes further modifications *in planta* highly resembles carotenoid catabolic pathways which similarly produced volatiles and non-volatiles from a large precursor. The concept of making functional small molecules by the catabolism of larger precursor compounds, which do or may have other roles, represents an efficient way to produce functional units at different stages of a metabolic cycle and suggests that the role of catabolic reactions in regulating plant development or plant-environment interactions might have been underestimated. In our case, further experiments should be developed to study the role of arabidonol derivatives in plant-organismal interaction in the rhizosphere and evaluate their effect on plant developmental processes.

