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Abstract

A wheeled ground robot was designed and built for better understanding of the challenges involved in utilization of accelerometer-
based intelligent tires for mobility improvements. Since robot traction forces depend on the surface type and the friction associated with
the tire-road interaction, the measured acceleration signals were used for terrain classification and surface characterization. To accom-
plish this, the robot was instrumented with appropriate sensors (a tri-axial accelerometer attached to the tire innerliner, a single axis
accelerometer attached to the robot chassis and wheel speed sensors) and a data acquisition system. Wheel slip was measured accurately
using encoders attached to driven and non-driven wheels. A fuzzy logic algorithm was developed and used for terrain classification. This
algorithm uses the power of the acceleration signal and wheel slip ratio as inputs and classifies all different surfaces into four main cat-
egories; asphalt, concrete, grass, and sand. The performance of the algorithm was evaluated using experimental data and good agree-
ments were observed between the surface types and estimated ones.
� 2017 ISTVS. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Terrain classification and characterization are the most
challenging issues associated with vehicle mobility and
more specifically with the mobility of small ground robots.
Once the terrain is identified, the robot can adapt to this
new surface condition through the onboard traction con-
trol system.

Terrain analysis can be classified into two major cate-
gories, first terrain classification, aims at associating terrain
with well-defined categories, such as asphalt, concrete,
gravel and sand. Second, terrain characterization which is
determination of the terrain characteristics such as rough-
ness, friction potential, etc. (Ojeda et al., 2006).

Different types of sensors are used in terrain classifica-
tion. Based on the sensor types, all of the studies in this
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field are divided into two main categories; the uses of con-
tact sensors and non-contact sensors. In the studies with
the contact sensors, characteristics like signal vibration fre-
quency are used to classify the surface. Park et al. (2012)
designed a mobile robot and using the data from the tire
sensors. They developed a method to extract the terrain
features. Brooks et al. (2005) used a robot with an
accelerometer on its chassis. They used the vibration mea-
surement of the chassis to classify the surfaces. Weiss et al.
(2006) attached an accelerometer to the vehicle body to
measure the vibrations in the direction perpendicular to
the ground. Then, they used fast furrier transform (FFT)
and power spectral density (PSD) to train a Support Vector
Machine (SVM) algorithm to classify the surfaces. They
also compared different approaches in vibration based ter-
rain classification (Weiss et al., 2007). DuPont et al. (2005,
2008b, 2008a) attached an accelerometer to the body of an
unmanned ground vehicle (UGV). Using the dominant
vibration frequency of the UGV’s body, they trained a
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Fig. 1. The six-wheel robot.

Fig. 2. Acceleration sensors used in the robot: (a) tri-axial accelerometer
attached to the tire inner liner, (b) single axis accelerometer attached to the
robot’s chassis.
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Neural Network (NN) to identify the terrain. Collins et al.
(2008) presented a vibration-based terrain classification
algorithm for a UGV by mapping the vibration outputs
to the terrain inputs using the Autonomous Guided Vehicle
(AGV) vibration transfer function.

Non-contact sensors studies mostly used optical, sonar
or acoustic sensors for terrain classification/characteriza
tion purpose. Manduchi et al. (2005) used two sensor sys-
tems; a color stereo camera and a single axis Laser Detec-
tion and ranging (LADAR) that complement each other.
Using stereo range measurements, they developed a
color-based classification system to classify the detected
terrains (Bellutta et al., 2000; Castano et al., 2001;
Talukder et al., 2002). Larson et al. (2004) used a single
camera and developed a new terrain classification tech-
nique. Vandapel et al. (2004) used a rover with a 3-D
LADAR for terrain classification. Lee et al. (2011) used a
Charge Coupled Device (CCD) camera; they extracted col-
ors and textures from sensor data and classified the sur-
faces. Lu et al. (2011) used a laser stripe-based structured
light sensor, which already has infrared camera component
that allows sensing at night without external lightening, to
sense the terrain directly. Their classification does not rely
on color measurement, which can be distorted due to
weather conditions and illumination. Their method was
based on spatial frequency from range data and texture
from camera data. Many studies have used a combination
of contact and non-contact sensors for terrain classifica-
tion. Ojeda et al. (2006) used a small robot for terrain clas-
sification purposes. Using a gyro with build in
accelerometer attached to the robot’s chassis, wheel enco-
der, microphone, infrared sensor and ultra-sonic range sen-
sor, they developed an algorithm to classify different
terrain to commonly known classes like gravel, sand and
asphalt.

Also, much research has been conducted to characterize
different terrains (Bekker, 1956, 1960; Bekker et al., 1969).
Howard and Seraji (2001) used a mobile robot with a
vision system and used an Artificial Neural Network
(ANN) for real time terrain characterization. Cuong
et al. (2014) designed a test rig and used it to measure
the vertical damping ratio of tire-soil system using free-
vibration logarithmic decay method.

In this study, a six-wheel small ground robot was
designed and built to classify different surfaces. The robot
was equipped with intelligent tire to monitor the interac-
tion between the tire and different terrains. Using accurate
encoders, attached to the driven and non-driven wheels of
the robot, wheel slip was calculated accurately. Analyzing
the sensors data for different speeds on different surfaces,
a Fuzzy Logic algorithm was developed to classify different
terrains into four main categories; asphalt, sand, concrete,
and grass. The rest of this paper is structured as follows.
Different parts of the robot and its data collecting system
and speed controller algorithm are introduced in Section 2.
The fuzzy logic based terrain classification algorithm is
explained -in Section 3. Results and discussion is presented
in Section 4 follows by conclusions in Section 5.

2. Robot design

An all-terrain mobile robot platform (ATR) was
designed and built in this study. The chassis base is
14.2500 wide � 17.2500 long, which are surrounded by 2.1300



Fig. 3. Schematic of the robot and data collecting system.

Fig. 4. The robot’s speed control algorithm.

Table 1
Specification of the fuzzy algorithm, used in this study.

Definition of AND Min, lA\BðxÞ = minðlAðxÞ; lBðxÞÞ
Definition of OR Max, lA[BðxÞ = maxðlAðxÞ;lBðxÞÞ
Implication method Mamdani, truth value = minðf aðxÞ; f bðxÞÞ
Defuzzification method Centroid, Decision ¼

R
s
ylðuÞdyR
s
lðuÞdy , which lðuÞ is the result of the rules were added together

Fig. 5. The terrain classification fuzzy diagram.
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height sidewalls. The chassis provides the options for 4WD
and 6WD robot platform and provides enough space for
the wheel shafts to be coupled directly to the motors. Four
24 V brushed permanent magnet DC motors with plane-
tary gearbox from Shayang Ye Industrial Company (sup-
plied by supper droid robots) were used. Based on the
information that was provided by Supper Droid, the rated
speed for the motors is 285 RPM, the rated torque is
11 kgf-cm and the reduction ratio is 1:12. Each motor
has a dual channel/quadrature encoder with 900 pulses



Fig. 6. Power spectral density of the acceleration data on different surfaces.

Fig. 7. Slip-time, calculated from the speed of driven and non-driven wheels on different surfaces.

Table 2
Design of experiment for surface classifi-
cation study.

Surface type Wheel speed (rpm)

Asphalt 30, 50, 70, 90
Concrete 30, 50, 70, 90
Grass 30, 50, 70, 90
Soil 30, 50, 70, 90

Fig. 8. Power of acceleration signal for diff
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per revolution, mounted to the tail shaft of the motor for
speed control purposes (Shayang et al., 2000). The com-
pleted robot is shown in Fig. 1.

Two RAPCON platforms form ZELTOM, which offer a
seamless interface between physical plants and Matlab/
Simulink for implementation of different control algo-
rithms in real-time, were used to control the motors. Each
of RAPCON platforms has two channels to communicate
and control two DC motors simultaneously and provides
the means for real time operation with sampling rate up
erent wheel speed on different surfaces.



Fig. 9. Mean of slip ratio for different wheel velocities on different surfaces.
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to 15.2 kHz. In order to control the motion of each wheel
separately, two RAPCON Platforms were used at the same
time. Also two 20 cell (24 V- DC, 4500 mA h) rechargeable
NiHM battery packs were used for each of the motor con-
trollers. This provides the required energy for the robot to
operate for a minimum of one hour at the highest speed on
a concrete road surface.

Six pneumatic tires were used under the robot; four of
them are directly attached to the motors and the middle
ones roll freely. The tires are 10 in. in diameter and 4 in.
wide, which are rated at 30 psi with the maximum load
capacity of 300 lb. Since the robot has sensors inside the
right front and left rear tires, slip ring was used to transmit
the electrical signal from the rotating wheel to stationary
data acquisition system and vice versa. A SRA-73683 slip
ring with 6 input-output circuits from Moog was used.
The inner bore for this slip ring was 0.500, made it possible
to be mounted on the wheel shaft. The maximum speed for
this slip ring is 120 RPM and the maximum voltage is
120 V (Moog Components Group, 2012).As was men-
tioned before, the robot was designed for terrain classifica
tion/identification. For this purpose, the robot was instru-
mented with many sensors which are explained briefly next.
The intelligent tire technology was developed at the Center
for Tire Research (CenTiRe) and was utilized for this pro-
ject (Singh et al., 2013, 2012; Khaleghian et al., 2016). A
3023A5 Tri-axial accelerometer from Dytran was fixed
inside the robot’s tire using a rubber patch, shown in
Fig. 2a, to monitor the vibration of the contact patch in
three directions. The sensitivity of the tri-axial accelerome-
ter is 10 mv/g and its measuring range is ±500 g.

A Dytran 3225F1 single axis accelerometer, with the
sensitivity of 10 mv/g and the measuring range of �500 g,
was attached to the chassis in order to monitor the dynam-
ics of the robot in vertical direction. The single axes
accelerometer is shown in Fig. 2b. To power the accelerom-
eter, Dytran Model 4116 signal conditioner/amplifier was
used.

To measure the angular speed and the slip of the wheel
accurately, two model 15S encoders, with the accuracy of
10,000 pulses per revolution, from Encoder Product Com-
pany were attached to a driven and un-driven wheel of the
robot externally. The slip ratio was calculated as follows
(Gustafsson, 1997):

s ¼ xwrw�vw
vw

during braking

s ¼ xwrw�vw
xwrw

during accelerating
ð1Þ

where xw is the angular speed of driven wheel, rw is the
effective radius of the wheel and vw is the longitudinal speed
of the robot, calculated as xrw, where x is the angular
speed of un-driven wheel.

2.1. Data acquisition system

NI USB 6218 data acquisition system was used to collect
data from all of the sensors. This is a 16-bit, 250 kS/s USB
devices with 32 analog inputs and 8 digital inputs and two
32-bit counters. The accelerometers were connected to the
analog input channels and the encoders were attached to
the counter/timer pins of this device. It measures a number
of time-related quantities, counting events or totalizing,
and monitoring position with quadrature encoders. A data
collecting routine was developed using LabVIEW to collect
the time synchronized data of all sensors with the same
sample rate, 1000 Hz, for this study. Fig. 3 shows the sche-
matic of the robot and data collecting system.

2.2. Speed control algorithm

RAPCON platform was used to control the motors,
which works perfectly with Matlab/Simulink real-time
toolbox. A simple PID controller was designed in Mat-
lab/Simulink, shown in Fig. 4, to control the speed of each
wheel separately, which uses the encoder signal of the
motors as the feedback. The PID parameters were tuned
by trial and error to achieve the best performance in both
high and low speed.

3. Methodology

In this study a Fuzzy logic algorithm was developed and
used to classify different terrains. Fuzzy logic is an exten-
sion of Boolean logic by Zadeh (1999) and Hájek (1998)
which provides a very valuable flexibility for reasoning.



Fig. 10. Fuzzy set selected for: (a) input variable ‘‘wheel velocity”, (b) input variable ‘‘power of acceleration”, (c) input variable ‘‘wheel slip” and (d)
output variable ‘‘surface type”.
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Fig. 11. Fuzzy rules defined for terrain classification purpose base on collected data.

Fig. 12. The surface viewer of terrain classification algorithm.

Table 3
Design of experiment for surface classifi-
cation study.

Surface type Wheel speed (rpm)

Asphalt 40, 60, 80
Concrete 40, 60, 80
Grass 40, 60, 80
Soil 40, 60, 80
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The shape of membership functions was chosen arbitrary
using the result of statistical analysis or by following the
advice of the expert and can be assigned as sigmoid, Gaus-
sian, hyperbolic, exponential, tangent or any other desired
forms.

The definitions of operators on fuzzy sets, the method of
implication, and the defuzzification method are not always
the same in Fuzzy logic systems and can be chosen based
on the problem. The specification of the Fuzzy Logic algo-
rithm used for this study is shown in Table 1, in which the
membership function of a fuzzy set A is shown as lA(x).

The Fuzzy logic system used for this study is shown in
Fig. 5. Using the robot’s wheel velocity, mean of wheel slip
ratio at the beginning of the motion and energy (power) of
radial acceleration (from the accelerometer embedded to
the tire inner liner) as inputs; the surfaces are classified into
four categories: Grass, sand, asphalt and concrete.

The energy (power) of a signal xðtÞ is calculated as
follows:

Esc ¼ hxðtÞ; xðtÞi ¼
Z 1

�1
jxðtÞj2dt ð2Þ

Esd ¼ hxðtÞ; xðtÞi ¼
X1
�1

jxðtÞj2dt ð3Þ

where Esc;Esd are the energy of continuous-time and
discrete- time signal xðtÞ respectively. The wheel slip ratio
is calculated using Eq. (1).

The six-wheeled ground robot was used to develop a
fuzzy logic based surface classification algorithm. It was



Fig. 13. The output of terrain classification algorithm for validation set.

Fig. 14. Sample intelligent tire based traction controller algorithm.
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observed that the power of the acceleration signal, acquired
from the interaction between the robot’s tire and different
surfaces is different (mainly) for the frequencies below
20 Hz. Fig. 6 shows the power spectral density of the accel-
eration signal for the same sample commanded speed on
different surfaces (calculated using pwelch command in
Matlab).

Also, the slip ratio at the beginning of the motion, cal-
culated from the velocity of driven and non-driven wheels
in specific commanded velocity, is the other parameter
which changes on different surfaces and is used to classify
different surfaces. Fig. 7 depicts wheel slip ratio on different
surfaces for the same sample commanded speed. As it is
observed, these two parameters give a powerful tool to dis-
tinguish between different surfaces in specific commanded
speeds.

4. Results and discussion

To classify different surfaces, an experiment was
designed with four different longitudinal speeds on four dif-
ferent surfaces, concrete, asphalt, grass and soil. Results
were used to define the fuzzy rules. Table 2 shows the
design of experiment for this study.

Power of acceleration signal and the mean values of slip
ratio at the beginning of motion for different robot wheel
speed are shown in Figs. 8 and 9 respectively.

These two parameters, power of radial component of
acceleration signal (below 20 Hz) and the mean of the slip
ratio value at the beginning of the motion, along with
robot’s wheel velocity are considered as the inputs of the
fuzzy algorithm and the surface type is the output, Mam-
dani was used as the implication method.

The fuzzification was done using the collected data;
Fig. 10 shows the fuzzy sets selected for the inputs and
the output of this fuzzy system.

Fig. 11 shows the list of fuzzy rules used for this study
and the decision making process for a specific case. Fuzzy
rules were defined based on the collected data. For
instance, for the wheel speed of 30, the power of the signal
on the asphalt was 0.0169 and the maximum slip ratio was
0.06 so the following fuzzy rule was defined:
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If the speed is ‘‘low” and the power is ‘‘high” and the slip

is ‘‘low” then the surface is ‘‘asphalt”

The surface viewer of terrain classification algorithm is
shown in Fig. 12 that shows that power of the radial com-
ponent of acceleration signal reaches its highest values on
asphalt and its lowest values on grass. This was predictable,
since the vibration of the tire, caused by the contact
between the tire and the road, is damped on surfaces with
softer texture. Also, power of radial vibration is higher
when the robot’s speed is increased.

In order to validate the terrain classification algorithm,
another experiment is designed with three different com-
manded speeds (rather than the ones were used to terrain
the algorithm) on each of the surfaces; the data of five tire
revolutions was used to calculate the power of acceleration
signal. Table 3 shows design of experiment to validate the
algorithm.

The output of proposed fuzzy logic based terrain classi-
fication algorithm for the validation set is shown in Fig. 13,
the borders of surface types are based on the membership
function that was presented in Fig. 10d. The wheel velocity,
the power of radial acceleration signal (below 20 Hz) for
five tire revolutions and the mean value of slip ratio at
the beginning of the motion were used as the inputs. As
it is observed, the algorithm successfully identified the sur-
faces for different velocities.

Once the surface was identified based on the optimum
value of slip ratio on each surface, a desired traction con-
troller can be designed for the robot, a sample algorithm
for this purpose is shown in Fig. 14.

5. Conclusion

Identification of the surface that the UGV (unmanned
ground vehicle) is running on is the key to design a more
efficient controller for this type of vehicle. Once the surface
is identified, the appropriate traction and stability control
strategies can be selected which leads to improved mobility
of UGVs. Intelligent tire, a tri axial accelerometer embed-
ded to the tire innerliner, can be used as a tool to identify
different surfaces based on monitoring the interaction
between the tire and the road.

To study the application of intelligent tire on the mobil-
ity of UGV’s, a six-wheel ground robot was designed and
built. The robot was instrumented with appropriate sen-
sors; two high resolution encoders (10,000 pulses per revo-
lution) are attached to one of the driven and a non-driven
wheel of the robot in order to measure the wheel slip ratio.
Also, there is a tri-axial accelerometer inside the tire to cap-
ture the tire vibration caused by the tire-road contact.

Testing the robot on different surfaces, it was observed
that the power of the radial component of acceleration sig-
nal, from the accelerometer inside the tire is different on
different surfaces (especially for the frequencies below
20 Hz). Also, the values of slip ratio at the beginning of
motion (with same final speed) were different; the higher
the friction of the surface, the lower the value of slip ratio.
A fuzzy logic based terrain classification algorithm was
developed, using the power of the radial component of
acceleration signal from intelligent tire, the mean value of
slip at the beginning of the motion and wheel speed as
the inputs, the surfaces were classified into four different
categories: asphalt, concrete, soil and grass.

To develop the algorithm an experiment was designed
with four different speeds and the fuzzy rules was extracted
based on the test results. To test the accuracy of the algo-
rithm another set of data with three different speeds, rather
than the ones were used to develop the algorithm, was
used. In all the cases the proposed algorithm identified
the surface correctly and the algorithm was validated.
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