Experiments

- A custom built friction setup is used to measure the friction vs displacement of the strips
- A translational actuator pulls a steel sled (mass 190g, length 100mm, and width 10mm), the nose of which secures the end of the extensible strip
- Different strip materials and substrates were used, e.g. elastomer-coated fabric, braided elastic strip, glass, and tape
- The intrinsic friction force was obtained by rigidly adhering the strips to the sled

Shear Lag Model

\[f = f_E + f_{ks} \]

Intrinsic friction responses of two contact surfaces

\[f_E = \begin{cases} \frac{6}{\pi^2} \frac{G}{t} & 0 \leq \Delta \leq \Delta_s \\ \frac{8}{\pi^2} \frac{G}{t} & \Delta_s < \Delta \leq \Delta_a \\ \frac{8}{\pi^2} \frac{G}{t} & \Delta_a < \Delta \leq \Delta_b \\ \end{cases} \]

Comparison of friction force vs displacement response of an elastic strip with two fabric sides in contact with steel on the top and glass on the bottom

\[\Delta = \frac{\Delta}{L} \]

Displacement of different points and development of slippage zone across the length of a strip. The least-square fits (dash lines) confirm the formation of transition and slip zones

Conclusions

- Effective stiffness has a profound effect on both static and kinetic friction of extensible strips
- There are three distinct regions along the length of the strip, namely no-slip, transition, and slip zones
- The static friction decreases with effective stiffness whereas the kinetic friction increases by decreasing the effective stiffness
- An extended shear lag model is developed to predict the frictional response of extensible strips
- The analysis resembles that obtained when shear lag theory is applied to lap shear joints experiencing adhesive layer plasticity

Acknowledgement

The authors would like to thank the Macromolecules and Interfaces Institute (MII) at Virginia Tech for travel support of ARM, and the Biomedical Engineering and Mechanics (BEAM) Department for use of equipment