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Edge Debonding in Peeling of a
Thin Flexible Plate From an
Elastomer Layer: A Cohesive
Zone Model Analysis
A cohesive zone modeling (CZM) approach with a bilinear traction-separation relation is
used to study the peeling of a thin overhanging plate from the edge of an incompressible
elastomeric layer bonded firmly to a stationary rigid base. The deformations are approxi-
mated as plane strain and the materials are assumed to be linearly elastic, homogeneous,
and isotropic. Furthermore, governing equations for the elastomer deformations are sim-
plified using the lubrication theory approximations, and those of the plate with the
Kirchhoff–Love theory. It is found that the peeling is governed by a single nondimen-
sional number defined in terms of the interfacial strength, the interface fracture energy,
the plate bending rigidity, the elastomer shear modulus, and the elastomeric layer thick-
ness. An increase in this nondimensional number monotonically increases the CZ size
ahead of the debond tip, and the pull-off force transitions from a fracture energy to
strength dominated regime. This finding is supported by the results of the boundary value
problem numerically studied using the finite element method. Results reported herein
could guide elastomeric adhesive design for load capacity and may help ascertain test
configurations for extracting the strength and the fracture energy of an interface from
test data. [DOI: 10.1115/1.4034988]
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Introduction

The understanding of parameters that control and affect
adhesive/interfacial debonding of sandwiched elastomeric layers
is critical in numerous applications such as fabrication of soft oph-
thalmic lenses, optimizing transfer printing processes, ensuring
durability of sealants, designing laminated safety glasses and bio-
mimetic adhesives, as well as restricting fouling of barnacles on
ship hulls. The mechanics of interfacial debonding of elastomer
interlayers, especially the collective role played by the geometric
and the material parameters, and the interfacial adhesion has been
a subject of considerable interest for a long time.

Here, we analyze a prototype problem, namely, the peeling off
of an overhanging flexible plate from an elastomer layer bonded
firmly to a stationary rigid base. Previous studies on similar prob-
lems [1–4] that focused not necessarily on elastomer interlayers
recognized the importance of the collective role of the flexural
rigidity (Dp) of the plate, and Young’s modulus ðEÞ and the thick-
ness ðhÞ of the interlayer on the elastomer deformations and on
the pull-off force required for peeling. For example, Bikerman [3]
treated the interlayer as a Winkler elastic foundation, used a criti-
cal peel stress (Tc) as the debonding criterion, and found that the
pull-off force per unit plate width (Pc) was given by Pc �
TcðDph=EÞ1=4

where ðDph=EÞ1=4
quantifies the length scale of the

peel stress oscillations decaying along the peeling direction. The
coupling of a linear elastic fracture mechanics (LEFM) approach
with the Winkler foundation analysis [5] predicts that Pc �
ðDph=EÞ1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GcE=h

p
where Gc is the fracture energy of the inter-

face. These studies approximated deformations of the interlayer as
uniaxial stretching of independent strands (effective Poisson’s
ratio of zero). This assumption becomes especially erroneous for

nearly incompressible elastomers. The state of hydrostatic stress
in the interlayer causes the displacement of an elastomer point to
scale with the Laplacian of the hydrostatic stress [6,8].

As illustrated by Dillard [6] for a general loading of a plate sup-
ported on an elastomeric foundation and by Lefebvre et al. [7] for
a double cantilever beam (DCB) specimen containing an elasto-
meric interlayer, and extended by Ghatak et al. [8] for the varia-
tion of the peel stress in the peeling direction, stresses in the
elastomeric foundation significantly deviate from that predicted
by the Winkler solution due to the constraint of incompressibility.
For incompressible elastomers, the governing differential equation
becomes sixth order (rather than the conventional uncoupled
fourth order for Winkler foundations) that results in exaggerated
oscillations in displacements and peel stresses.

Ghatak et al. [8] employed an LEFM approach to correlate the
reaction force and the debond length to the fracture energy of the
interface and the geometric and material parameters. Their analy-
sis yielded a much slower decay of the oscillatory peel stress char-

acterized by the length scale ðDph3=EÞ1=6
as opposed to

ðDph=EÞ1=4
predicted by the Winkler solution and resulted in the

scaling of the pull-off force as Pc � ðDp=EÞ1=3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GcE=h

p
. The

LEFM approach uses the fracture energy, Gc, as the measure of
the adhesion integrity. This represents the energy required for an
existing debond to grow by a unit area and tacitly treats the
debond tip as a mathematical point. This approach usually breaks
down in large-scale bridging problems [9] in which there is a
finite-size zone holding tractions in the wake of the debond, as
seen, for example, during fibrillation of pressure-sensitive adhe-
sives (PSA) or in fiber bridging in composites.

An approach suitable for large-scale bridging problems [9] is
using the cohesive zone model (CZM). It employs a traction-
separation (TS) relation to phenomenologically model debonding
when two adjoining surfaces are separated. This allows debonding
to nucleate and propagate when the interface is stressed and the
appropriate criteria are satisfied. The often used TS relations
[10–12] involve two significant parameters: the fracture energy,
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Gc, and the interfacial strength, Tc, to characterize the interfacial
interaction, though other metrics are sometimes explicitly given.
By using these two parameters, the CZM approach bridges the
gap between a strength-based criterion and the fracture energy-
based LEFM approach to model failure/debonding. For cohesive
cracking in a medium of Young’s modulus E� and characteristic
length l, Bao and Suo [9] pointed out that in the CZM approach
the nondimensional group T2

c l=GcE� governs the transition from
large-scale bridging (large process zone, strength driven, LEFM
not valid) to small-scale bridging conditions (small process zone,
fracture energy driven, LEFM applicable).

Tang and Hui [13] analyzed the debonding of a rigid cylindrical
punch of radius a from an elastic interlayer of Young’s modulus E
using a Dugdale-type TS relation and showed that the single non-

dimensional number v ¼ ðT2
c a=EGcÞgða=hÞ dictates the size of the

process zone (CZ) where G is a function of a/h. With CZ size
monotonically decreasing with v, the global response transitions
from a strength (Tc) dominated regime to an energy (Gc) domi-

nated regime. The pull-off force scales as
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GcE=a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=gða=hÞ

p
in

the energy dominated region (v� 1), and equals pa2Tc in the
strength dominated region.

The CZM has been widely applied to analyze splitting of two
adherends [14–20] in a double cantilever beam (DCB) configura-
tion. In these investigations, the effective interaction between two
adherends is modeled by smeared traction-separation relations with-
out separate consideration of the compliance of the adhesive layer
and the interfacial debonding between the adhesive and the adher-
end. Therefore, it is not obvious how the modulus and the thickness
of the adhesive layer, the interfacial adhesion, and the deformability
of the adherends affect the mechanics of adhesive/interfacial
debonding. Some investigators [3,5] included the effect of the adhe-
sive compliance by setting the Winkler foundation stiffness equal to
the modulus to thickness ratio of the adhesive. However, a Winkler
foundation approach, as discussed earlier, is unsuitable when analyz-
ing peeling from an elastomeric layer [6,8].

With the goal of simulating interfacial damage/debonding dur-
ing displacement-controlled peeling of an overhanging plate from

an elastomeric layer bonded to a rigid base, a TS relation is con-
sidered here for the elastomer/plate interface. We use a semi-
analytical method to find the evolution of damage and debonding
as vertical displacement is gradually increased at the edge of the
overhang. The approximate formulation is built on earlier works
of Dillard [6] and Ghatak et al. [8] for modeling the elastomeric
foundation. The key contribution of this work is the consideration
of the CZM at the plate/interlayer interface.

Problem Description and Analysis

The problem exhibited in Fig. 1(a) consists of a flexible plate
adhered to an elastomer layer (interlayer) that is firmly bonded to
a stationary rigid base so that debonding can occur only at the
plate/elastomer interface when a monotonically increasing vertical
displacement dA is applied at point A of the plate edge. This con-
figuration is the same as the asymmetric wedge test configuration
used by Ghatak et al. [8] and is often referred to as a small angle
peel test [21]. Plane strain bending deformations of the system are
described and analyzed by using a rectangular Cartesian coordi-
nate system, xyz, with origin at the moving debond tip as shown in
Fig. 1(a). The origin of the fixed rectangular Cartesian coordinate
system ~xyz is at the corner point G depicted in Fig. 1(a). It is tac-
itly assumed that the system extends to infinity in the y-direction
and deformations of the plate and the elastomer layer in the xz -
plane are analyzed.

Deformations of the Plate. Plane strain deformations of the
thin flexible plate are assumed to be governed by the
Kirchhoff–Love plate theory [22] for infinitesimal deformations
with the y-displacements set equal to zero. Bending is assumed to
be the dominant deformation mode of the plate3.

K4wp ¼ �T=Dp (1)

Here, Kn ¼ dn=dxn, and wp is the vertical displacement of a point
in the plate, T is the normal traction acting on the plate, and Dp ¼
Ept3=12ð1� �2

pÞ is the plate flexural rigidity in terms of its thick-
ness t, Young’s modulus Ep, and Poisson’s ratio �p.

Plate/Elastomer Interface. Following previous works [13,24],
we assume that damage/debonding is triggered only by the peel
stress at the plate/elastomer interface, i.e., the interface is much
stronger in the axial than in the normal direction. For equally weak
adhesion in both directions at the two interfaces, one interface will
have a shearing/peeling bias dictated by the asymmetry due to the
adherend stiffness mismatch. Therefore, even with our simplifying
assumption, global results such as the strength or the effective inter-
action between the flexible plate and the rigid base would depend
upon this asymmetry. This is not analyzed in the present work.

The interaction is assumed to be characterized by a bilinear TS
relation depicted in Fig. 2 and described by Eq. (2).

T ¼
Ked ð0 � d � dcÞ
Ksðdf � dÞ ðdc � d � df Þ
0 ðdf � dÞ

8>><
>>:

(2)

Here, Ke is the slope of the portion OM of the TS curve and
Ks ¼ Tc=ðdf � dcÞ, where Tc is the maximum normal traction sup-
ported by the interface. The point M ðdc;TcÞ signifies the initiation
of damage (softening) and the point N ðdf ; 0Þ the onset of debond-
ing. The energy release rate at the initiation of debonding equals
area of the triangle OMN, i.e.,Fig. 1 Sketch of (a) the problem studied, and (b) various zones

near the debond tip B after it has moved in the ~x direction by
the distance a2a0. Also, schematically plotted are variations of
the peel stress (normal traction) and the corresponding contact
opening (displacement jump) along the ~x -axis. (Color is avail-
able in the online version).

3The classical short beam effect dictated by the ratio a0=t may affect the
compliance of the beam due to shear deformations of the flexible adherend. The
minimum value of a0=t used for demonstrating the model predictions is 2, which is
expected to underestimate the plate compliance by 25% [23].
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Gc ¼ Tcdf =2 (3)

The initial slope Ke in Eq. (2) is assigned a large enough value
to not influence the debond initiation and propagation at the plate/
elastomer layer interface. For the present problem, we also assume
that it satisfies the inequality given after Eq. (18). Because of
monotonically increasing displacement dA applied at point A, no
unloading at any point of the interface is expected to occur prior
to the initiation of debonding there.

It is anticipated that a CZ will develop near the corner G in Fig.
1(a) followed by debonding there. The subsequent propagation of
the debond with a CZ at its front and the associated distribution of
the interfacial peel stress and the separation at the interface are
schematically illustrated in Fig. 1(b).

Deformations of the Elastomeric Layer. Plane strain defor-
mations of the homogeneous, incompressible, isotropic, and line-
arly elastic elastomer layer with the body and the inertia forces
neglected are governed by

px ¼ lðuxx þ uzzÞ; pz ¼ lðwxx þ wzzÞ (4)

ux þ wz ¼ 0 (5)

where p is the hydrostatic pressure not determined by the
deformations, l (¼ E/3, where E is Young’s modulus) is the shear
modulus, u and w are the displacement components in the x- and
the z-directions, respectively, px ¼ ð@p=@xÞ, and Eq. (5) expresses
the incompressibility constraint. The following boundary condi-
tions for the elastomer layer are presumed:

uðx; 0Þ ¼ wðx; 0Þ ¼ 0; uðx; hÞ ¼ 0 for x � 0 (6)

�pðx; hÞ þ l
@w

@z
ðx; hÞ ¼ 0 for � ða� a0Þ � x < 0

That is, the elastomer particles are firmly bonded to the stationary
rigid base, there is no slip at the elastomer/plate interface, and horizon-
tal displacements of the plate particles are negligible, and the
debonded surface of the elastomeric layer has null traction. The addi-
tional boundary condition for the upper surface z ¼ h; x > 0 of the
interlayer as well as those on the free surface ~x¼ 0 will be stated
below.

It should be noted that the problem studied here is not equiva-
lent to a DCB problem with an adhesive layer of thickness 2h
since the horizontal displacements of the interlayer particles on
the surface z ¼ 0 are set equal to zero.

Approximate Solution of the Governing Equations. Using
assumptions analogous to those made in the classical lubrication
theory [25] for thin films, i.e., juzzj � juxxj, and pz ¼ 0, Eq. (4)
simplifies to

px ¼ luzz; pz ¼ 0 (7)

When employing the lubrication theory, deformations cannot be
accurately predicted over a length of order h from the left edge
[25]. Nevertheless, we use these assumptions for simplicity. In the
approximate solution sought here, the boundary condition of null
traction on the left edge ~x¼ 0 is not satisfied. Similar assumptions
were used by Ghatak et al. [8] in their LEFM analysis of this
problem.

Integrating Eqs. (5) and (7) and using boundary conditions (6)
gives

u x; zð Þ ¼
1

2l
dp

dx
z2 � hzð Þ;w x; zð Þ ¼ �

1

2l
d2p

dx2

z3

3
� h

z2

2

� �
(8)

The vertical displacement, wf , of points on the elastomer top sur-
face is given by

w x; hð Þ ¼ wf xð Þ ¼ h3

12l
d2p

dx2
(9)

The normal stress, rzzðx; zÞ ¼ �pðxÞ þ l@w=@z, at the elastomer
top surface becomes rzzðx; hÞ ¼ �pðxÞ. The continuity of normal
traction across the elastomer/plate interface implies that p ¼
�TðdÞ where

d ¼ wp � wf (10)

is the separation/opening at an interfacial point. Substitution for
wp from Eq. (10) and for wf from Eq. (9) into Eq. (1) results in the
following sixth order ordinary differential equation (ODE) for T.

�K6T þ 12l
h3

K4dþ 1

Dp
T

� �
¼ 0 (11)

Substitution for T in terms of d from Eq. (2) into Eq. (11) gives a
sixth order ODE in d, which is solved under the pertinent bound-
ary conditions. In principle, any TS relation can be used and the
resulting nonlinear ODE can be numerically solved using, for
example, a shooting method.

Corresponding to the three relations in Eq. (2) that hold,
respectively, in the free/debonded zone ð�a � x � 0; d � df Þ, the
CZ ð0 � x � d; dc � d < df Þ and the bonded zone
ðd � x <1; d � dcÞ, three ODEs from Eq. (11) are deduced;
these zones are shown in Fig. 1(b). The variables are nondimen-
sionalized (normalized) as X ¼ xb; and D ¼ d=df where
b ¼ ð12l=Dph3Þ1=6

, i.e., we have used different length scales to
normalize the x-axis and the transverse opening displacement, d.
The nondimensional debond length, a (A ¼ ab), and the CZ size,
d (D ¼ db), are denoted by A and D, respectively. The three
ODEs and their solutions are listed below.

Debonded/free region ð�A � X � 0Þ: Since T ¼ 0, Eq. (11)
becomes

K4D ¼ 0 (12)

where K¼ d/dX. The solution of Eq. (12) is

DðXÞ ¼ D1X3 þ D2X2 þ D3X þ D4 (13)

where D1; :::;D4 are integration constants. The same notation with
different numeric subscripts will be used below for other integra-
tion constants.

Cohesive zone ð0 � X � DÞ: Now Eq. (2)2 holds, and Eq. (11)
reduces to

ðK6 þ g2
s K

4 � 1ÞDþ 1 ¼ 0 (14)

where gs ¼ ð12l=Ksh
3Þ1=2b�1. The solution of Eq. (14) depends

on the roots of the characteristic cubic equation,
ðK2Þ3 þ g2

s ðK2Þ2 � 1 ¼ 0. The three roots for K2 are real and dis-
tinct if gs > gc

sð¼ ð27=4Þ1=6Þ; they are real and at least two are

Fig. 2 A bilinear TS relation
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equal if gs ¼ gc
s , and one root is real and the other two are com-

plex conjugates otherwise. Listed below are the general solutions
of Eq. (14) for these three cases:

Case I : gs < gc
s

DðXÞ ¼ D5e�pX þ D6epX þ e�qXðD7 cos ðqXÞ þ D8 sin ðqXÞÞ
þeqXðD9 cos ðrXÞ þ D10 sin ðrXÞÞ þ 1

(15)

Case II : gs ¼ gc
s

DðXÞ ¼ D5e�pX þ D6epX þ ðD7 cos ðqXÞ þ D8 sin ðqXÞÞ
þXðD9 cos ðrXÞ þ D10 sin ðrXÞÞ þ 1

(16)

Case III : gs > gc
s

DðXÞ ¼ D5e�pX þ D6epX þ ðD7 cos ðqXÞ þ D8 sin ðqXÞÞ
þðD9 cos ðrXÞ þ D10 sin ðrXÞÞ þ 1

(17)

Here p, q, and r are found from roots of the characteristic cubic
equation. Note that constants D5; :::;D10 appearing in Eqs.
(15)–(17) may have different values.

Bonded/Elastic zone ðD � X � 1Þ: Using Eq. (2)1, Eq. (11)
becomes

ðK6 � ge
2K4 � 1ÞD ¼ 0 (18)

where ge ¼ ð12l=Keh3Þ1=2b�1. For ge
2 � 1, and assuming that

K4D is finite, Eq. (18) reduces to the ODE, ðK6 � 1ÞD ¼ 0, which
was analyzed in Refs. [6] and [8] that considered perfect bonding at
the interface. Note that ge

2 � 1 can be satisfied by assigning a very
large value to Ke. The general solution of Eq. (18) for ge

2 � 1 is

D Xð Þ ¼ D11e�X þ D12eX

þ e�
X
2 D13 cos

ffiffiffi
3
p

2
X

� �
þ D14 sin

ffiffiffi
3
p

2
X

� �� �

þ e
X
2 D15 cos

ffiffiffi
3
p

2
X

� �
þ D16 sin

ffiffiffi
3
p

2
X

� �� �
(19)

A noteworthy feature of the governing Eqs. (14) and (18) is that it
has both sixth order and fourth order derivatives. The former
arises due to deformations of the elastomeric layer and the latter
due to the interfacial normal tractions exerted on the plate by the
interface acting as a Winkler foundation.

Boundary conditions for evaluating constants in Eqs. (13)–(19).
The 16 integration constants appearing in Eqs. (13)–(19), the size
D of the CZ, and either the separation DB at point B prior to the
initiation of debonding or the length A during propagation of the
debonded region are determined from the following
18 conditions.

The bending moment vanishes at the left end where the vertical
displacement is prescribed. Thus,

Dð�AÞ ¼ DA;D
00ð�AÞ ¼ 0 (20)

Here and below, we have used the notation D0 ¼ dD /dX. The con-
tinuity of the plate deflection (wp), the slope (w0p), the bending
moment (�wp

00), the shear force (�wp
000), and the normal traction

(�wp
0000) at points B and C shown in Fig. 1(b) gives the following

ten conditions at these points where superscripts þ and � denote,
respectively, the locations just on the right and just on the left side
of a point.

At point B :

Dð0�Þ ¼ Dð0þÞ þ g�2
s D00ð0þÞ;D0ð0�Þ ¼ D0ð0þÞ þ g�2

s D000ð0þÞ;D00ð0�Þ ¼ D00ð0þÞ þ g�2
s D0000ð0þÞ;

D000ð0�Þ ¼ D000ð0þÞ þ g�2
s D00000ð0þÞ;D0000ð0�Þ ¼ D0000ð0þÞ þ g�2

s D000000ð0þÞ
(21)

At point C:

DðD�Þ þ g�2
s D00ðD�Þ ¼ DðDþÞ � ge

�2D00ðDþÞ;D0ðD�Þ þ g�2
s D000ðD�Þ ¼ D0ðDþÞ � ge

�2D000ðDþÞ;
D00ðD�Þ þ g�2

s D0000ðD�Þ ¼ D00ðDþÞ � ge
�2D0000ðDþÞ;D000ðD�Þ þ g�2

s D00000ðD�Þ ¼ D000ðDþÞ � ge
�2D00000ðDþÞ

D0000ðD�Þ þ g�2
s D000000ðD�Þ ¼ D0000ðDþÞ � ge

�2D000000ðDþÞ
(22)

The relative vertical displacements at these points can be written as

Dð0�Þ ¼ DB and DðDþÞ ¼ Dc (23)

with DB ¼ 1 after debonding initiates at point G. Until then, DB is
treated as a variable with length A of the traction-free portion known.
The nondimensional contact opening Dc at point C equals Tc=Ke.

The assumption of zero relative separation at points far away
from point C can be stated as

Lim
X!1

D ¼ 0 (24)

Finally, the overall equilibrium requires that the reaction (or the
shear) force, pA, at point A, equal the total restoring force exerted
by the elastomeric interlayer on the flexible plate. From the
Kirchhoff–Love plate theory, one gets pA ¼ Dwp

000ð�aÞ

¼ Dpb
3df D

000ð�AÞ. It equals the peel stress integrated over the
interface, i.e., b�1

Ð1
0

TðdÞdX. Thus

1

Dpb
4df

ð1
0

T dð ÞdX ¼ D000 �Að Þ (25)

The decay condition (24) implies that constants D12;D15;D16

must be zero. Equation (20) gives Eq. (26) upon eliminating D2,
and Eq. (1) is used to reduce Eqs. (25) to (27).

2D1A3 � D3Aþ DB � DA ¼ 0 (26)

g�2
s D� g�2

s

ðD

0

DdX þ ge
�2

ð1
D

DdX � 6D1 ¼ 0 (27)
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Constants D1,…, D14 are found in terms of A and D by simultane-
ously solving algebraic equations resulting from conditions (21)–(23)
using the software MATHEMATICA [26]. Equation (27) is simplified by
substituting for D from Eqs. (15)–(17) and (19). By using the func-
tion FINDROOT, the transcendental Eqs. (26) and (27) are then
numerically solved for DB and D until DB ¼ 1, i.e., for the initiation
phase, and for A and D for the propagation phase.

Results and Discussion

Prior to discussing the results, we note that the problem has the
following independent parameters:

elastomer : h; l; �

plate : Ep; �p; t

interface : Gc; df ¼ 2Gc=Tc;Ke

initial free region : a0

loading : dA

Because of assuming the interlayer to be perfectly incompressible,
i.e., � ¼ 0:5, we have ten independent variables. By using l and h
to nondimensionalize the remaining variables, we get the follow-
ing eight nondimensional parameters that govern the behavior of
the system:

a;/;DA;Tc=l;Keh=E;A0; a0=t; vp

where a ¼ ðDp=lh3Þ1=3
, A0 ¼ a0b, / ¼ T2

c h=EGc, and

b�1 ¼ ð12l=Dph3Þ�1=6
. The length scale b�1 is related to the

deformability of the interlayer [6,8] relative to that of the flexible
plate, a represents the geometric confinement [27] and equals the
ratio of the bending stiffness of the plate to that of the interlayer,
and / is an adhesion parameter that dictates the CZ size [9,27].

Because of using the approximations in our formulation, the CZ

size ðDÞ and the length ðAÞ depend on DA and the parameter gs¼

ð12l=Ksh
3Þ1=2b�1	3:238

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGcl=T2

c ÞðDp=lh6Þ1=3
q

	1:87
ffiffiffiffiffiffiffiffi
a=/

p
appearing in Eq. (14). Thus, a and / govern the response through gs.
The effects of ge appearing in Eq. (18) and Dc are assumed to be neg-
ligible since ge�gs and DC�DB when Keh=E�1. Here the effect
of the following three variables on the solution has been studied.

gs;DA;A0

The values of parameters used in the numerical simulations are
listed in Table 1.

Unless otherwise mentioned, the results are computed for A0 ¼
2 and gs ¼ 2. Evolutions of the plate deflection, Wp ¼ wp=df , and
the nondimensional peel stress, T=Tc, are plotted in Fig. 3 as

functions of the global horizontal distance measured from point G
shown in Fig. 1(a). The negative values of ~X ¼ b~x correspond to
points on the traction free overhanging portion of the plate. As
expected for the bending of a plate on an elastomer foundation,
the plate deflection exhibits decaying oscillatory distribution. The
computed deflection profile agrees well with that reported by Gha-
tak et al. [8] and with that numerically computed using the finite
element method (FEM) [27]. Plots of the spatial distribution of
the peel stress exhibited in Fig. 3(b) reveal that with continued
loading, a CZ develops and the peel stress reduces to zero at the
initial debond tip, i.e., ~X ¼ 0, at a critical value, DA0 ¼ 3:1, of
the applied nondimensional displacement. The comparison of the
predicted peel stress distributions with the solution of Ghatak

Table 1 List of values of parameters used in the FE simulations used for comparison exhibited in Fig. 4.

Plate Elastomer Interface

Dimensionless parameters a0 (mm) t (mm) Ep (MPa) �p E (MPa) h (lm) Tc (MPa) Gc (N/m) Ke (N/mm3)

A0 ¼ 2

gs ¼ 2

DA ¼ 4

2 1 1201.5 0.3 15 817 0.04 0.029 106

A0 ¼ 2

gs ¼ 1:5
DA ¼ 4

2 6.33 873.4

A0 ¼ 3

gs ¼ 2:25

DA ¼ 4

2.83 21.36 817

Fig. 3 For three values of the nondimensional applied dis-
placement, DA, distributions of the nondimensional (a) plate
deflection and (b) peel stress (T=Tc ) on the global horizontal
axis ~X 5 b~x . For DA 5 4:0, the three regions around a debond
are marked in (b).
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et al. [8] is exhibited in Fig. 4(a) for the propagating debond at
DA ¼ 4:0. Whereas the debond tip in their work is the point where
the peel stress is the maximum, it is the point of zero peel stress in
our analysis. The point with the maximum peel stress, T=Tc ¼ 1,
in the present work is the tip of the CZ, with the value of Tc

regarded as an intrinsic property of the pair of interacting materi-
als. The presently predicted peel stress distribution at DA ¼ 4:0
agrees reasonably well with that computed using the FEM [27]
with the FEM predicting 0.6% smaller traction-free length A and
24% smaller CZ length D than that given by the current approxi-
mate analysis. These differences are possibly due to using the
lubrication theory, neglecting shearing deformations of the plate
and other approximations made in the present work. For example,
deformations computed with the FEM reveal that at DA ¼ 4:0, the
values of uxx and uzz at the point (x¼ location of predicted damage
tip,z ¼ h=2) are �0.00069 and �0.00096, respectively. Thus, the
lubrication theory approximation, juxxj � juzzj, is inappropriate.
However, as shown below, the presently computed pull-off force
agrees well with that found from the solution of the plane strain
problem equations using the FEM over a broad range of values of
gs. As suggested by an anonymous reviewer, we compare in Figs.
4(b) and 4(c) our results with those computed using the FEM and
Ghatak et al.’s [8] solution for gs¼ 1.5 and 2.25. While our analy-
sis captures the oscillatory feature of the peel stress distributions,
the CZ size is overestimated. As mentioned previously, this may
be partly due to neglecting the shear deformations of the plate.

The computed dimensionless length A as a function of the
applied displacement DA and predictions of the LEFM analysis
with [8] and without [28] the interlayer deformability accounted
for are exhibited in Fig. 5. For a deformable interlayer, the length
A can be found from4

D2
A ¼

g�2
s A4

9X Að Þ
where

X Að Þ ¼ 8A4 12þ 46Aþ 72A2 þ 56A3 þ 21A4 þ 3A5ð Þ
3 6þ 12Aþ 9A2 þ 2A3ð Þ3

(28)

In the limit of a relatively rigid interlayer or a very pliable plate
(A� 1), Eq. (28) reduces to Obreimoff’s [28] result D2

A ¼
g�2

s A4=9 in terms of the current nondimensional variables. As can
be observed from Fig. 5, the debond length at a given applied
edge displacement is overpredicted if the deformability of the
interlayer is neglected. Our results predict even smaller debond
length at a given applied edge displacement due to the considera-
tion of the CZ at the debond tip (B) and a constant peak stress at
the damage tip (C).

Evolutions of the CZ size, the opening at the debond tip, and
the slope of the plate at the debond tip as functions of the applied
edge displacement are exhibited in Fig. 6. The dashed lines in
these plots correspond to the damage growth at the corner point G
until debonding occurs there and the solid lines with the subse-
quent propagation phase. Each dashed line intersects the corre-
sponding solid one when DB ¼ 1 at point G. One can observe that
the CZ size increases with the applied edge displacement until
debonding ensues at point B. During the propagation phase, the
CZ size slowly decreases. This trend was also noted in Refs. [19]
and [20] for softening interactions involved in a DCB geometry
and in the context of cohesive cracking [29]. The slow decrease in
the CZ size during propagation agrees with the observation that
the slope at the debond tip (B) increases while the plate deflection
stays constant.

The maximum CZ size ðD0Þ at the onset of debonding is plotted
in Fig. 7(a) as a function of gs for three values of the initial over-
hang length, A0, and as a function of A0 for two values of gs. One
can see that D0 increases (decreases) with an increase in gs (A0),

Fig. 4 Comparisons of predicted peel stresses from present
work with those predicted by the LEFM [8] solution and com-
puted using the FEM [27]. The nondimensional input parame-
ters are listed in the insets.

Fig. 5 Nondimensional traction-free length as a function of the
applied nondimensional displacement

Fig. 6 Nondimensional CZ size, the plate deflection at the
debond tip, and the plate slope at the debond tip versus the
nondimensional applied displacement. The dashed lines repre-
sent results prior to the initiation of debonding.

4Equation (28) has been reported to have been derived from the energy
minimization approach [8]. However, starting from the load-displacement relation

derived in their approach and using � @
@A

� Ð DA

0
PAdDA

�
¼ g2

s =2, one obtains

XðAÞ ¼ 4A4ð2þ 3Aþ A2Þ=ð6þ 12Aþ 9A2 þ 2A3Þ2 that slightly differs from that
given in Eq. (28).
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although dependence on A0 is much weaker than that on gs.

Recalling that gs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGcl=T2

c ÞðDp=lh6Þ1=3
q

, the former is attrib-

uted to an increase in the cohesive length Gcl=T2
c relative to the

length ðDp=lh6Þ1=3
arising from the material and the system

geometry. An interesting finding regarding the dependence of the
CZ size on gs is that the CZ size becomes vanishingly small at
gs <� 1:3. Arguing that the length of the CZ phenomenologically
represents the fingering zone [30,31] observed in peeling experi-
ments, the aforementioned finding is reminiscent of the reported
observation [31,32] that the fingerlike zones are physically dis-
cernible only beyond a finite value of the geometric confinement

parameter ðDp=lh3Þ1=3
. The slow decrease of the CZ size with the

debond length is similar to the dependence of the near-tip tensile

zone size ( ~D) on the length (A) predicted by Ghatak et al.’s [8]
LEFM analysis and exhibited in Fig. 7(b).

The dimensionless load–displacement (LD) relation from
Ghatak et al.’s [8] analysis is given by PA ¼ 6DA=
ð6þ 12Aþ 9A2 þ 2A3Þ, which for a rigid interlayer reduces to

PA ¼ 3DA=A3. The LD curves predicted in the present study are
plotted and compared with the LEFM results in Fig. 8 for two val-
ues of gs ¼ 2 and 1.4, and for two initial overhang lengths A0 ¼ 2
and 5. In these plots, the dotted and the dashed portions are used
to represent results prior to debonding initiation, and the solid
lines are for the subsequent propagation phase. The dotted

segment o-a (labeling included only in the A0 ¼ 2 plot) corre-
sponds to the phase when the peel stress at the corner B traces the
segment OM of the TS relation. It is shown in Appendix that
the LD relation for the portion o-a satisfies PA ¼
6DA=ð3Aþ 6A2 þ 2A3Þ. The dashed segment a-b corresponds to
the formation of the CZ near corner G and the peel stress at the cor-
ner tracing the portion MN of the TS relation. This causes the kink
observed in the initial rising part o-a-b of the LD curve. The seg-
ment b-c corresponds to the propagation phase in which the load
decreases with increasing displacement in a similar fashion

(PA / DA
�1=2) as that in the LEFM results. The offset of the curve

b-c from the LEFM curves is attributed to the additional compliance
induced by the interfacial softening effect resulting in a smaller
debond length at a given applied displacement (recall Fig. 5). The
offset is found to be larger at gs ¼ 1:4 despite the CZ size being
much smaller than that at gs ¼ 2. This seems to contradict at first
sight the expectation that the results will converge to the LEFM
results for vanishing CZ sizes. In order to understand the reasons for
this difference, we revisit Ghatak et al.’s [8] solution (see Appendix)
to find the expected solution for vanishingly small CZ size. In order
to limit the damage/debond tip peel stress to Tc, we modify their

debond tip boundary condition to W0000ð0þÞ ¼ �g2
s . This gives the

following relation between the load, the applied edge displacement,

and the length A: PA¼ð3DA=ð9þ12Aþ6A2þ A3ÞÞþð1=g2
s Þð3ð2þ

AÞ=ð9þ12Aþ 6A2þA3ÞÞ. For very long traction-free lengths, A�1,

we get PA¼ð3DA=A3Þþðj3=A2g2
s j). The second term accounts for

the debond tip peel stress tracing the path MN of the TS relation
over a vanishingly small length near the debond tip and causes the
aforementioned offset in the LD curve. One notes that the offset
term will be negligible for sufficiently large values A dictated by the
value of gs.

The maximum values of PA (pull-off force) are plotted on a
log–log scale in Fig. 9 as a function of gs for A0 ¼ 2:83 and

Fig. 7 (a) The CZ size at debond initiation versus gs for three
values of the initial overhang length A0 (solid lines) and versus
A0 for two values of gs (dashed lines) and (b) peel stress distri-
bution at DA 5 4:0 and the size of the tensile region near the
debond tip as a function of the debond length given by Ghatak
et al.’s [8] solution

Fig. 8 Nondimensional load versus the applied nondimen-
sional displacement for (a) gs 5 1:4 and (b) gs 5 2. The dotted
line (oa) and the dashed line (ab) represent results, respec-
tively, prior to the initiation of damage and between damage ini-
tiation and debonding initiation. The solids portion (bc) are for
debond propagation.

Journal of Applied Mechanics FEBRUARY 2017, Vol. 84 / 021003-7

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 11/05/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use


