
Computational Science Laboratory
Technical Report CSL-TR-00-2013

February 3, 2015

Elias D. Nino, Adrian Sandu and Jeffrey
Anderson

“An Efficient Implementation of the
Ensemble Kalman Filter Based on an
Iterative Sherman-Morrison Formula”

Cite as: Elias D. Nino-Ruiz, Adrian Sandu, Jeffrey Anderson, “An efficient implementation of the ensemble Kalman filter based on

an iterative ShermanMorrison formula”,Statistics and Computing, ISSN:0960-3174, PP: 1–17, Feb 2014.

Computational Science Laboratory
Computer Science Department

Virginia Polytechnic Institute and State University
Blacksburg, VA 24060
Phone: (540)-231-2193

Fax: (540)-231-6075
Email: enino@vt.edu,sandu@cs.vt.edu

Web: http://csl.cs.vt.edu

.

ar
X

iv
:1

30
2.

38
76

v2
 [

cs
.N

A
]

 1
 F

eb
 2

01
5

http://csl.cs.vt.edu

An Efficient Implementation of the Ensemble
Kalman Filter Based on an Iterative

Sherman-Morrison Formula

Elias D. Nino†, Adrian Sandu†, and Jeffrey Anderson‡
†Computational Science Laboratory, Department of Computer Science

Virginia Polytechnic Institute and State University
Blacksburg, VA 24060, USA

enino@vt.edu, sandu@cs.vt.edu
‡Data Assimilation Research Section

Institute for Mathematics Applied to Geosciences
National Center for Atmospheric Research

Boulder, CO 80307-3000
jla@ucar.edu

Contents

1 Introduction 2

2 Formulation of the EnKF 3
2.1 Efficient implementations of the analysis step 5

3 Iterative Implementation of the EnKF Analysis Step 7
3.1 An iterative Sherman-Morrison formula for matrix inversion 13

3.1.1 Inflation aspects . 17
3.1.2 Localization aspects . 17

3.2 Computational complexity . 18
3.3 Stability Analysis . 22
3.4 Pivoting . 24
3.5 Parallel implementation . 24

1

4 Experimental Results 27
4.1 Experimental setting . 27
4.2 Lorenz-96 model (Nens ∼ Nobs) . 28
4.3 Quasi-geostrophic model (Nobs � Nens) 34

5 Conclusions and Future Work 44

Abstract

We present a practical implementation of the ensemble Kalman (EnKF) fil-
ter based on an iterative Sherman-Morrison formula. The new direct method
exploits the special structure of the ensemble-estimated error covariance matri-
ces in order to efficiently solve the linear systems involved in the analysis step
of the EnKF. The computational complexity of the proposed implementation is
equivalent to that of the best EnKF implementations available in the literature
when the number of observations is much larger than the number of ensem-
ble members. Even when this condition is not fulfilled, the proposed method
is expected to perform well since it does not employ matrix decompositions.
Moreover, the proposed method provides the best theoretical complexity when
compared to generic formulations of matrix inversion based on the Sherman
Morrison formula. The stability analysis of the proposed method is carried
out and a pivoting strategy is discussed in order to reduce the accumulation
of round-off errors without increasing the computational effort. A parallel
implementation is discussed as well. Computational experiments carried out
using the Lorenz 96 and then oceanic quasi-geostrophic models reveal that the
proposed algorithm yields the same accuracy as other EnKF implementations,
but is considerably faster.

Keywords: Ensemble Kalman filter, Matrix Inversion, Sherman-Morrison For-
mula, Matrix Decomposition

1 Introduction

The ensemble Kalman filter (EnKF) is a well-established, sequential Monte Carlo
method to estimate the state and parameters of non-linear, large dynamical models
[10] such as those found in atmospheric [22], oil reservoir [9], and oceanic [14] simu-
lations. The popularity of EnKF owes to its simple conceptual formulation and the
relative ease implementation [8]. EnKF represents the error statistics by an ensem-
ble of model states, and the evolution of error statistics is obtained implicitly via
the time evolution of the ensemble during the forecast step. In the analysis step,

2

information from the model and the measurements is combined in order to obtain
an improved estimate of the true vector state. This process is repeated over the ob-
served time period. In typical data assimilation applications, the dimension of state
space (number of variables) ranges between O(107) and O(109), and the dimension
of the observation space between O(105) and O(107). Consequently, the dimension
of the linear systems solved during the analysis step is very large, and the compu-
tational cost considerable. In order to address this challenge we propose an efficient
implementation of the EnKF analysis step based on an iterative application of the
Sherman-Morrison formula.

The paper is structured as follows. Section 2 discusses the conceptual formula-
tion of the EnKF and several efficient implementations available in the literature.
Section 3 presents the novel implementation of the EnKF based on iterative Sherman-
Morrison formula, in which the special structure of the measurements error covari-
ance matrix is exploited. Computational cost and stability analyses are carried out
for this approach, and pivoting and parallelization ideas are discussed. Section 4
reports numerical results of the proposed algorithm applied to the Lorenz 96 and
quasi-geostrophic models. Conclusions are presented in Section 5.

2 Formulation of the EnKF

EnKF consists of two steps: the forecast and the analysis. An EnKF cycle starts
with the matrix XB ∈ Rnstate×nens whose columns xB

i ∈ Rnstate×1 form an ensemble of
model states, all corresponding to the same model time tcurrent:

XB =
(
xB
1 ,x

B
2 , . . . ,x

B
nens

)
∈ Rnstate×nens .

Typically xB
i is an ensemble of model forecasts. Here nstate is the size of the model

state vector, and nens is the number of ensemble members. Each ensemble member
xB
i differs from the true state of the system xtrue ∈ Rnstate×1, and we denote by
ξi ∈ Rnstate×1 the corresponding error. The statistics of the ensemble of states is
consistent with the background probability distribution.

The ensemble mean xB ∈ Rnstate×1 and the ensemble covariance matrix PB ∈
R

nstate×nstate can be written as follows:

xB =
1

nens

nens∑
i=1

xB
i =

1

nens

(
XB · 1nstate×1

)
∈ Rnstate×1, (1a)

X
B

= xB ⊗ 1T
nens×1 ∈ R

nstate×nens , (1b)

PB =
1

nens − 1
·
(
XB −X

B
)
·
(
XB −X

B
)T

+ Q ∈ Rnstate×nstate . (1c)

3

Here 1nens×1 ∈ Rnens×1 is a vector whose entries are all equal one. Q is the covariance
matrix of model errors. In the typical case where XB is an ensemble of model
forecasts, the explicit addition of the matrix Q to the covariance formula is not
necessary. Instead, the effect of model errors can be accounted for by adding random
vectors ξi ∼ N (0,Q) to model states: xB

i ← xB
i + ξi. Prior to any measurement, the

forecast step provides the best estimation to the true vector state xtrue [28].
The vector of observations y ∈ Rnobs×1 is available at tcurrent, where nobs is the

number of data points. The observations are related to the model state by the
relation

y = H x + v

where H ∈ Rnobs×nstate is the observation operator which maps the model space
state into the observed space, and v ∼ N (0,R) is a vector of observation errors,
accounting for both instrument and representativeness errors.

In order to account for observation errors one forms the matrix Y ∈ Rnobs×nens

whose columns yi ∈ Rnobs×1 are perturbed measurements [15]:

Y = (y + υ1,y + υ2, . . . ,y + υnens)

= (y1,y2, . . . ,ynens) ∈ Rnobs×nens ,

The vectors υi ∈ Rnobs×1 represent errors in the data, and are drawn from a normal
distribution υi ∼ N (0,R). We denote

Υ = (υ1, υ2, . . . , υnens) ∈ Rnobs×nens ,

and the ensemble representation of the measurements error covariance matrix is

R =
1

nobs − 1
·
(
Υ ·ΥT

)
∈ Rnobs×nobs .

The EnKF analysis step produces an ensemble of improved estimates (analyses)
XA ∈ Rnstate×nens by applying the Kalman filter to each of the background ensemble
members:

XA = XB + K ·
(
Y −H ·XB

)
∈ Rnstate×nens , (2a)

K = PB ·HT ·
(
H ·PB ·HT + R

)−1 ∈ Rnstate×nobs , (2b)

where the matrix K ∈ Rnstate×nobs is the Kalman gain and quantifies the contribution
of the background–observations difference to the analysis.

4

The EnKF forecast step uses the dynamical model operator M to evolve each
member of the ensemble XA from the current time tcurrent to the next time tnext
where observations are available:

XB(tnext) =Mtcurrent→tnext

(
XA(tcurrent)

)
∈ Rnstate×nens . (3)

The forecast ensemble XB is the background for the new EnKF cycle at tnext. The
analysis and forecast steps are repeated.

2.1 Efficient implementations of the analysis step

From equations (2a)–(2b) the analysis step can be written as

XA = XB + PB ·HT · Z , (4)

where Z ∈ Rnobs×nens is the solution of the following linear system:(
H ·PB ·HT + R

)︸ ︷︷ ︸
W∈Rnobs×nobs

·Z =
(
Y −H ·XB

)
∈ Rnobs×nens . (5)

A direct solution of this linear system can be obtained using the Cholesky decomposi-
tion for matrix inversion [17, 26, 31]. While this is a numerically stable and accurate
approach [12, 21, 27], its application to (5) leads to the following complexity [19] of
the analysis step:

O
(
n3
obs + n2

obs · nens + nobs · n2
ens + nstate · n2

ens

)
. (6)

This is an acceptable complexity for a large number of degrees of freedom (nstate),
but not for a large number of observations (nobs). An alternative is to solve (5), and
the overall analysis step, using Singular Value Decomposition (SVD) based methods.
Those methods exploit the special structure of the data error covariance matrix R,
which is often (block) diagonal and can be easily factorized:

R = diag (R1,R2, . . . ,RNblock
) , with Rk ∈ RNk×Nk , 1 ≤ k ≤ Nblock ,

where Nblock is the number of blocks in the matrix R and:

nobs =

Nblock∑
k=1

Nk .

The matrix R is a covariance matrix, and in practice it is always positive definite.

5

The observation operator H ∈ Rnobs×nstate is sparse or can be applied efficiently
to a state vector. Then, when R is diagonal, we can express the system matrix (5)
as follows:

Ŝ =
(
XB −X

B
)
∈ Rnstate×nens ,

W =
√

R ·
[

1

nens − 1
·
√

R−1 ·H · Ŝ ·
(
H · Ŝ

)T
·
√

R−1 + I

]
·
√

R . (7)

Employ the singular value decomposition
√

R−1 ·H · Ŝ = U ·Σ ·VT ∈ Rnobs×nens , (8)

where U ∈ Rnobs×nobs and V ∈ Rnens×nens are orthogonal square matrices, and Σ =
diag(σ1, σ2, . . . , σnens) ∈ Rnobs×nens is the diagonal matrix holding the singular values
of W ∈ Rnobs×nobs . The linear system (5) can be written as follows [19]:[√

R ·U ·
(

Σ2

nens − 1
+ I

)
·UT ·

√
R

]
· Z =

(
Y −H ·XB

)
∈ Rnobs×nens , (9)

which yields the solution:

Z =
√

R−1 ·U · diag

{(
σ2
i

nens − 1
+ 1

)−1}
·UT ·

√
R−1 ·

(
Y −H ·XB

)
. (10)

The overall complexity of the analysis step

O
(
n2
ens · nobs + n3

ens + nstate · n2
ens

)
(11)

is suitable for large nstate and nobs, assuming nens remains small. Many algorithms in
the literature employ SVD (9) for the solution of the linear system (5) [8]. The
analysis step is written in terms of the solution (10) in order to minimize the
number of matrix computations. Due to this, the solution of the linear system
and the improvement of the forecast ensemble are performed as a single step. The
ensemble adjustment Kalman filter (EAKF) and the ensemble transform Kalman
filter (ETKF) are based on this idea [29]. Other efficient implementations of the
ensemble Kalman filter make use of SVD decompositions in order to derive pseudo-
inverses, furthermore; these algorithms compute the inverse in the nens-dimensional
ensemble space rather than nobs-dimensional measurement space. Thus, in practice,
when nobs � nens, those algorithms exhibit a good performance. All these methods
have the overall complexity (number of long operations) given in (11).

6

A different approach is to employ iterative methods for solving the linear system
(5), for instance the conjugate gradient method [6, 7, 13, 25] for nens right-hand sides.
However, each iteration costs O (n2

ens · nobs), therefore iterative methods do not seem
to be competitive for the solution of (5).

The well-established EnKF implementations presented above employ a Cholesky
or SVD decomposition, which require considerable computational effort. The next
section discusses an efficient implementation of the ensemble Kalman filter which
does not require any decomposition prior to the solution of the linear system (5).

3 Iterative Implementation of the EnKF Analysis

Step

We make the assumptions [19, 29] that, in practice:

• The data error covariance matrix R has a simple structure (e.g., is block diag-
onal).

• The observation operator H is sparse or can be applied efficiently.

• The variables nobs and nstate are very large.

Moreover, we consider the following situations:

• In many real applications of the EnKF nobs � nens, and the number of variables
ranges between O(107) and O(109).

• When many computational resources are available or when the number of com-
ponents in the model state is relatively small (nstate ∼ O(105), the number of
ensemble members can be increased considerably in order to provide more ac-
curate statistics. In this case nobs ∼ nens.

Taking into in account the previous assumptions, we now derive the implemen-
tation of the EnKF. We define the matrix of member deviations S ∈ Rnstate×nens as
follows:

S =
1√

nens − 1
·
(
xB
1 − xB,xB

2 − xB, . . . ,xB
nens
− xB

)
∈ Rnstate×nens , (12)

which allows to write the ensemble covariance matrix as

PB = S · ST ∈ Rnstate×nstate . (13)

7

By replacing equation (13) in (5), the linear system solved during the analysis step
is written as follows:

D = Y −H ·XB ∈ Rnobs×nens , (14a)

V = H · S ∈ Rnobs×nens , (14b)(
R + V ·VT

)
· Z = D ∈ Rnobs×nens . (14c)

Note that

W = R + V ·VT = R +
nens∑
i=1

vi · vT
i

can be computed recursively via the sequence of matrices W(k) ∈ Rnobs×nobs :

W(0) = R,

W(k) = R +
k∑

i=1

vi · vT
i = W(k−1) + vk · vT

k , 1 ≤ k ≤ nens ,

therefore

W = W(nens) = R +
nens∑
i=1

vi · vT
i = W(nens−1) + vnens · vT

nens
. (15)

By replacing equation (15) in (14c) we obtain:(
W(Nens−1) + vnens · vT

nens

)
· Z = D . (16)

Theorem 3 shows that the matrix (15) is non-singular. The linear system (16) can
be solved by making use again of the Sherman-Morrison formula [11]:

(A + L ·M ·N)−1 = A−1 −A−1 · L ·
(
M−1 + N ·A · L

)−1 ·N ·A−1 (17)

with A =
[
W(nens−1)

]−1
, L = 1, M = vNens and N = vT

Nens. The solution of (16) is
computed as follows:

Z = F(nens) − g(nens) ·
(
1 + vT

nens
· g(nens)

)−1 · vT
nens
· F(nens) ∈ Rnobs×nens , (18)

where F(nens) ∈ Rnobs×nens and g(nens) ∈ Rnobs×nens are given by the solution of the
following linear systems:

W(nens−1) · F(nens) = D ∈ Rnobs×nens , (19a)

8

W(nens−1) · g(nens) = vnens ∈ Rnobs×1 . (19b)

Note that (19a) can be written as follows:

W(nens−1) · f (nens)
i = di ∈ Rnobs×1 , 1 ≤ i ≤ nens , (20)

where f
(nens)
i ∈ Rnobs×1 and di ∈ Rnobs×1 are the i-th columns of the matrices F(nens)

and D, respectively. Following (18), the i-th column of the matrix Z is given by:

zi = f
(nens)
i − g(nens) ·

(
1 + vT

nens
· g(nens)

)−1 · vT
nens
· f (nens)

i ∈ Rnobs×1 . (21)

By equation (21), the computation of Z involves the solution of the linear systems
(19b) and (20). We apply the Sherman-Morrison formula (17) again. The solution
of the linear system (20) can be obtained as follows:

f
(nens)
i = f

(nens−1)
i − g(nens−1) ·

(
1 + vT

nens−1 · g
(nens−1)

)−1 ·
·vT

nens−1 · f
(nens−1)
i , (22)

where f
(nens−1)
i ∈ Rnobs×1 and g(nens−1) ∈ Rnobs×1 are the solutions of the following

linear systems, respectively:

W(nens−2) · f (nens−1)
i = di ∈ Rnobs×1,

W(nens−2) · g(nens−1) = vnens−1 ∈ Rnobs×1.

The linear system (19b) can be solved similarly. Note that the solution of each
linear system involves the computation of two new linear systems, derived from the
matrix sequence (15). each of the new linear systems can be solved by applying
recursively the Sherman-Morrison formula. For simplicity we denote by f and g the
solutions of the new linear systems in each recursively application of the Sherman-
Morrison formula. We have that:

W(nens) · Z = D ,[
W(nens)

]−1 · di =
[
W(nens−1)

]−1 · di︸ ︷︷ ︸
f

−
[
W(nens−1)

]−1 · vnens︸ ︷︷ ︸
g

·

1 + vT
nens
·
[
W(nens−1)

]−1 · vnens︸ ︷︷ ︸
g

−1

9

· vT
nens
·
[
W(nens−1)

]−1 · di︸ ︷︷ ︸
f

∈ Rnobs×1, 1 ≤ i ≤ nens

[
W(nens−1)

]−1 · di =
[
W(nens−2)

]−1 · di︸ ︷︷ ︸
f

−
[
W(nens−2)

]−1 · vnens−1︸ ︷︷ ︸
g

·

1 + vT
nens−1 ·

[
W(nens−2)

]−1 · vnens−1︸ ︷︷ ︸
g

−1

· vT
nens
·
[
W(nens−2)

]−1 · di︸ ︷︷ ︸
f

∈ Rnobs×1, 1 ≤ i ≤ nens

[
W(nens−1)

]−1 · vnens =
[
W(nens−2)

]−1 · vnens︸ ︷︷ ︸
f

−
[
W(nens−2)

]−1 · vnens−1︸ ︷︷ ︸
g

·

1 + vT
nens−1 ·

[
W(nens−2)

]−1 · vnens−1︸ ︷︷ ︸
g

−1

· vT
nens−1 ·

[
W(nens−2)

]−1 · vnens−1︸ ︷︷ ︸
f

∈ Rnobs×1,

... =
...[

W(k)
]−1 · x =

[
W(k−1)]−1 · x︸ ︷︷ ︸

f

−
[
W(k−1)]−1 · vk︸ ︷︷ ︸

g

·

1 + vT
k ·
[
W(k−1)]−1 · vk︸ ︷︷ ︸

g

−1

· vT
k ·
[
W(k−1)]−1 · x︸ ︷︷ ︸

f

∈ Rnobs×1,

[
W(k−1)]−1 · x =

[
W(k−2)]−1 · x︸ ︷︷ ︸

f

−
[
W(k−2)]−1 · vk−1︸ ︷︷ ︸

g

·

1 + vT
k−1 ·

[
W(k−2)]−1 · vk−1︸ ︷︷ ︸

g

−1

10

· vT
k−1 ·

[
W(k−1)]−1 · x︸ ︷︷ ︸

f

∈ Rnobs×1,

[
W(k−1)]−1 · vk =

[
W(k−2)]−1 · vk︸ ︷︷ ︸

f

−
[
W(k−2)]−1 · vk−1︸ ︷︷ ︸

g

·

1 + vT
k−1 ·

[
W(k−2)]−1 · vk−1︸ ︷︷ ︸

g

−1

· vT
k−1 ·

[
W(k−2)]−1 · vk︸ ︷︷ ︸

f

∈ Rnobs×1,

... =
...

[
W(1)

]−1 · x =
[
W(0)

]−1 · x︸ ︷︷ ︸
f

−
[
W(0)

]−1 · v1︸ ︷︷ ︸
g

·

1 + vT
1 ·
[
W(0)

]−1 · v1︸ ︷︷ ︸
g

−1

· vT
1 ·
[
W(0)

]−1 · x︸ ︷︷ ︸
f

,

[
W(0)

]−1 · x = R−1 · x ∈ Rnobs×1,[
W(0)

]−1 · v1 = R−1 · v1 ∈ Rnobs×1,

where x ∈ Rnobs×1 can be either, a column of matrix D ∈ Rnobs×nens or V ∈
R

nobs×nens .
We note that:

• The computation of
[
W(k)

]−1 · x involves the solution of the linear systems

W(k−1) · f = x and W(k−1) · g = vk.

• Since the recursion is based on the sequence of matrices defined in (15), the
base case is the linear system R−1 ·x in which the matrix R is (block) diagonal.

From the previous analysis we derive a recursive Sherman-Morrison formula as
follows. Define

S (x, k) =

z = R−1 · x , for k = 0 ,

f = S (x, k− 1) ;

g = S (vk, k− 1) , for 1 ≤ k ≤ nens ,

z = f − g ·
(
1 + vT

k · g
)−1 · vT

k · f ;

(23)

11

where x ∈ Rnobs×1. the columns of Z ∈ Rnobs×nens are computed as follows:

zi = S (di,nens) ∈ Rnobs×1 , 1 ≤ i ≤ nens.

The recursive the computations performed by S (•) can be represented as a tree
in which the solution z ∈ Rnobs×1 of each node depends on the computations of its
left (f ∈ Rnobs×1) and right (g ∈ Rnobs×1) children (i.e., on the solutions of two
linear systems). Figure 1 illustrates the derivation of linear systems in order to solve
W(nens) · z = d for nens = 3 and d ∈ {d1,d2,d3}, d ∈ Rnobs×1.

Figure 1: The recursive Sherman-Morrison formula (S (•)) applied to solve the linear
system W(3) ·Z = D ∈ Rnobs×3. Here d is any column of matrix D ∈ Rnobs×3. Dashed
nodes represent repeated computations.

We see that S (•) solves multiple times identical linear systems. For instance,
the repeated computations performed in order to solve W(3) · Z = D ∈ Rnobs×3

are represented in Figure 1 as dashed nodes. There, for instance, the linear system
R · g = v1 is solved four times in the last level. The total number of linear systems
to solve is O(nens · 2nens), i.e., it increases exponentially with regard to the number
of ensemble members if identical computations are not avoided. Next subsection
discusses how to achieve this and obtain an efficient implementation of the recursive
Sherman-Morrison formula.

12

3.1 An iterative Sherman-Morrison formula for matrix in-
version

In order to avoid identical computations in Figure 1 we can solve the linear systems
from the last level of the tree up to the root level. We denote by U ∈ Rnobs×nens and
Z ∈ Rnobs×nens the matrices holding partial results of the computations with regard
to V and D, respectively.

Level 0 can be computed as follows without any repeated effort:

U(0) =
(
R−1 · v1,R

−1 · v2,R
−1 · v3

)
=

([
W(0)

]−1 · v1,
[
W(0)

]−1 · v2,
[
W(0)

]−1 · v3

)
=

(
u
(0)
1 ,u

(0)
2 ,u

(0)
3

)
,

Z(0) =
(
R−1 · d1,R

−1 · d2,R
−1 · d3

)
=

([
W(0)

]−1 · d1,
[
W(0)

]−1 · d2,
[
W(0)

]−1 · d3

)
=

(
z
(0)
1 , z

(0)
2 , z

(0)
3

)
.

We make use of the Sherman-Morrison formula (17) and compute level 1 as follows:

h(1) = u
(0)
1 ·

1

1 + vT
1 · [W(0)]

−1 · v1

= u
(0)
1 ·

1

1 + vT
1 · u

(0)
1

,

U(1) =
(
u
(0)
1 ,u

(0)
2 − h(1) ·

(
vT
1 · u

(0)
2

)
,u

(0)
3 − h(1) ·

(
vT
1 · u

(0)
3

))
=

([
W(0)

]−1 · v1,
[
W(1)

]−1 · v2,
[
W(1)

]−1 · v3

)
=

(
u
(1)
1 ,u

(1)
2 ,u

(1)
3

)
,

Z(1) =
(
z
(0)
1 − h(1) ·

(
vT
1 · z

(0)
1

)
, z

(0)
2 − h(1) ·

(
vT
1 · z

(0)
2

)
, z

(0)
3 − h(1) ·

(
vT
1 · z

(0)
3

))
=

([
W(1)

]−1 · d1,
[
W(1)

]−1 · d2,
[
W(1)

]−1 · d3

)
=

(
z
(1)
1 , z

(1)
2 , z

(1)
3

)
.

Note that u
(0)
1 has not been updated since it is not needed in the computations of the

next levels. Similarly, the computations at level 2 make use of the Sherman-Morrison

13

formula (17):

h(2) = u
(1)
2 ·

1

1 + vT
2 · [W(1)]

−1 · v2

= u
(1)
2 ·

1

1 + vT
2 · u

(1)
2

,

U(2) =
(
u
(1)
1 ,u

(1)
2 ,u

(1)
3 − h(1) ·

(
vT
1 · u

(1)
3

))
=

([
W(0)

]−1 · v1,
[
W(1)

]−1 · v2,
[
W(2)

]−1 · v3

)
=

(
u
(2)
1 ,u

(2)
2 ,u

(2)
3

)
,

Z(2) =
(
z
(1)
1 − h(2) ·

(
vT
2 · z

(1)
1

)
, z

(1)
2 − h(2) ·

(
vT
2 · z

(1)
2

)
, z

(1)
3 − h(2) ·

(
vT
2 · z

(1)
3

))
=

([
W(2)

]−1 · d1,
[
W(2)

]−1 · d2,
[
W(2)

]−1 · d3

)
=

(
z
(2)
1 , z

(2)
2 , z

(2)
3

)
.

The vectors u
(1)
1 and u

(1)
2 are not required for the computations of level 3, and they

are not updated. Making use of the Sherman-Morrison formula (17) once again, the
root level is computed as follows:

h(3) = u
(1)
3 ·

1

1 + vT
3 ·W(1)−1 · v3

Z(3) =
(
z
(2)
1 − h(2) ·

(
vT
3 · z

(2)
1

)
, z

(2)
2 − h(2) ·

(
vT
3 · z

(2)
2

)
, z

(2)
3 − h(2) ·

(
vT
3 · z

(2)
3

))
=

([
W(3)

]−1 · d1,
[
W(3)

]−1 · d2,
[
W(3)

]−1 · d3

)
=

[
W(3)

]−1 ·D .

The computations performed by this iteration are shown in Figure 2.

14

Figure 2: Necessary computations for the solution of W(3) · Z = D ∈ Rnobs×3 using
the recursive Sherman-Morrison formula. This iterative version avoids all redundant
computations.

Some key features of the iteration are highlighted next.

• The number of iterations is nens.

• At level 0 matrices Z(0) and U(0) are computed as follows:

Z(0) = R−1 ·D ∈ Rnobs×nens ,

U(0) = R−1 ·V ∈ Rnobs×nens .

• The matrix W(k) ∈ Rnobs×nobs is never stored in memory. It can be represented
implicitly by matrix V ∈ Rnobs×nens . This implicit representation realizes con-
siderable memory savings, especially when nobs � nens.

• At iteration k, only the columns u
(k)
i with k < i ≤ nens are updated.

In summary, the solution of the linear system (16) is obtained by the following

15

iteration:

Level 0 :

{
Z(0) = R−1 ·D
U(0) = R−1 ·V ,

Level 1 :

h(1) =

(
1 + vT

1 · u
(0)
1

)−1
u
(0)
1

Z(1) = Z(0) − h(1) ·
(
vT
1 · Z(0)

)
u
(1)
i = u

(0)
i − h(1) ·

(
vT
1 · u

(0)
i

)
, i = 2, . . . ,nens

,

...

Level k :

h(k) =

(
1 + vT

k · u
(k−1)
k

)−1
u
(k−1)
k

Z(k) = Z(k−1) − h(k) ·
(
vT
k · Z(k−1))

u
(k)
i = u

(k−1)
i − h(k) ·

(
vT
k · u

(k−1)
i

)
, i = k + 1, . . . ,nens

,

...

Level nens :

{
h(nens) =

(
1 + vT

nens
· u(nens−1)

nens

)−1
u
(nens−1)
nens

Z = Z(nens) = Z(nens−1) − h(nens) ·
(
vT
nens
· Z(nens−1)

) .

Since the matrix R has a simple structure its inverse is easy to obtain. In the case
of R (block) diagonal:

R−1 = diag
(
R−11,R

−1
2, . . . ,R

−1
Nblock

)
∈ Rnobs×nobs ,

and in general, under the assumptions done (R is easy to decompose), the computa-
tions Z(0) = R−1 ·D ∈ Rnobs×nens and U(0) = R−1 ·V ∈ Rnobs×nens can be performed
with no more than O(n2

ens · nobs) long operations.
Putting it all together, we define the iterative Sherman-Morrison formula S? (R,V,D)

as follows:

• Step 1. Compute the matrices Z(0) ∈ Rnobs×nens and U(0) ∈ Rnobs×nens as
follows:

Z(0) = R−1 ·D, (24a)

U(0) = R−1 ·V, (24b)

where R−1 is computed according to its special structure.

16

• Step 2. For k = 1 to nens compute:

h(k) =
(

1 + vT
k · u

(k−1)
k

)−1
u
(k−1)
k ∈ Rnobs×1, (25a)

Z(k) = Z(k−1) − h(k) ·
(
vT
k · Z(k−1)) ∈ Rnobs×nens , (25b)

u
(k)
i = u

(k−1)
i − h(k) ·

(
vT
k · u

(k−1)
i

)
∈ Rnobs×1, k + 1 ≤ i ≤ nens. (25c)

We now use the iterative Sherman-Morrison formula in the analysis step to obtain
an efficient implementation of the Ensemble Kalman filter (SMEnKF). This filter is
as follows. The background ensemble states XB are obtained from the forecast step
(3), the ensemble mean xB is given by (1a), and the ensemble deviations form the
mean S are given by (12). The analysis is obtained as follows:

D = Y −H
(
XB
)
∈ Rnobs×nens ,

V = H (S) ∈ Rnobs×nens ,

Z = S? (R,V,D) ∈ Rnobs×nens ,

XA = XB + S ·VT · Z ∈ Rnstate×nens ,

where the function H (G) ∈ Rnobs×nens is an efficient implementation of the observa-
tion operator applied to several state vectors, represented by G ∈ Rnstate×nens .

3.1.1 Inflation aspects

Inflation increases periodically the ensemble spread, such as to compensate for the
small ensemble size, to simulate the existence of model errors, and to avoid filter
divergence [16]. All the inflation techniques applied in traditional EnKF can be
used, virtually without modification, in the context of SMEnKF. For example, after
the forecast step, one can increase the spread of the ensemble

xi ← xB
i + α (xi − xB

i) , 1 ≤ i ≤ nens ,

such as the ensemble covariance PB is increased by a factor α2 [30].

3.1.2 Localization aspects

Using (2b), the analysis step can be written as follows:

XA = XB + ∆XB

∆XB = S ·VT · Z
= PB ·HT ·

(
H ·PB ·HT + R

)−1
D ∈ Rnstate×nens

≈ PB
L ·HT ·

(
H ·PB

L ·HT + R
)−1

D ∈ Rnstate×nens . (26)

17

Localization techniques are explained in detail in [3]. Localization replaces the en-
semble based PB by a matrix PB

L = ρ ◦PB in (26), where ρ is a localization matrix
and ◦ represents the Schur product.

Clearly localization in the form (26) requires the full covariance matrix, and
cannot be applied in the context of the iterative Sherman-Morrison implementation.
Applying SMEnKF with a single data point yi leads to a correction ∆XB

{i}, which

can be localized by multiplication with a diagonal matrix ∆̂{i} that scales down
components with the negative exponential of their distance to the observation i
location, and sets them to zero if outside the radius of influence:

∆XB
{i} = ∆̂{i} · S ·VT · Z{i}

This can be applied in succession for all data points to obtain a fully localized
solution.

We discuss next a general approach to perform partial localization. Let xi be an
individual component of the state vector and yj an individual observation. Define the
impact factor δi,j ∈ [0, 1] of the information in yj on the state point xi. For example,
one can use a correlation length, and a radius about the measurement location outside
which the impact factor is zero. Define the influence matrix ∆ = (δi,j) ∈ Rnstate×nobs ,
and replace (26) with the following partial localization formula

∆XB ≈ PB
L ·HT ·

(
H ·PB ·HT + R

)−1
d` ∈ Rnstate×nens

= ∆ ◦
(
S ·VT

)
· Z .

The (i, `)-th entry contains the i-th component the correction vector for the `-th
ensemble member and reads

∆XB
i,` =

nens∑
k=1

Si,k

nobs∑
j=1

δi,j Vk,j Zj,` , 1 ≤ i ≤ nstate , 1 ≤ ` ≤ nens . (27)

The components of the correction matrix (27) are independent of one another, and
can be evaluated in parallel after the system solution Z has been computed.

3.2 Computational complexity

In the complexity analysis of the iterative Sherman-Morrison formula we count only
the long operations (multiplications and divisions). Moreover, as discussed before,
we make the assumptions presented in [19, 29], namely, the data error covariance
matrix R ∈nobs×nobs is inexpensive to decompose, and the observation operator H can

18

be applied efficiently to any vector. We now analyze each each step of the iterative
Sherman-Morrison formula when R is diagonal, the extension to nondiagonal data
error covariance matrices is inmediate.

In the first step (24) each row i of matrices D ∈ Rnobs×nens and V ∈ Rnobs×nens

is divided by the corresponding component ri ∈ Rnobs in order to obtain Z(0) ∈
R

nobs×nens and U(0) ∈ Rnobs×nens respectively. This yields to nobs ·nens number of long
operation for each matrix, therefore:

Tstep1 (nens,nobs) = 2 · nobs · nens. (28)

In the second step (25) we compute the vector h(k) ∈ Rnobs (25a), and the matrices
Z(k) ∈ Rnobs×nens (25b) and U(k) ∈ Rnobs×nens (25c). The number of long operations
for each of one are as follows:

h(k) =

nobs︷ ︸︸ ︷
u
(k−1)
k · 1

1 + vT
k · u

(k−1)
k︸ ︷︷ ︸

nobs

,

Z(k) = Z(k−1) −

nens·nobs︷ ︸︸ ︷
h(k) ·

vT
k · Z(k−1)︸ ︷︷ ︸
nens·nobs

 ,

u
(k)
i = u

(k−1)
i −

nobs︷ ︸︸ ︷
h(k) ·

vT
k · u

(k−1)
i︸ ︷︷ ︸

nobs

 .

Since the second step (25) is performed nens times, the number of long operations
can be expressed as:

Tstep2 (nens,nobs) =
nens∑
k=1

2 · nobs︸ ︷︷ ︸
h(k)

+ 2 · nobs · nens︸ ︷︷ ︸
Z(k)

+

u
(k)
j︷ ︸︸ ︷

k−1∑
j=1

(2 · nobs)

= 2 · nens · nobs + 2 · n2

ens · nobs +
nens∑
k=1

(k− 1) · 2 · nobs

= 3 · n2
ens · nobs + nens · nobs . (29)

19

Consequently, from (28)–(29), we have

TSMF (nens,nobs) = 2 · nobs · nens︸ ︷︷ ︸
Tstep1(nens,nobs)

+ 3 · n2
ens · nobs + nens · nobs︸ ︷︷ ︸

Tstep2(nens,nobs)

= 3 · (n2
ens · nobs + nens · nobs) ,

which yields a complexity of

O
(
n2
ens · nobs

)
. (30)

Note that when R is not diagonal, under the assumptions done, the computations
(24) of Z(0) and U(0) can be efficiently performed in O(nobs ·n2

ens) long operations; the
overall effort becomes 3 · (n2

ens · nobs + n2
ens · nobs). This leads to the same complexity

(30) for R diagonal, block diagonal, or in general easy to decompose.
The overall complexity of the analysis step for the iterative formula

XA = XB + S ·

O(n2
ens·nobs)︷ ︸︸ ︷

VT · Z︸︷︷︸
O(n2

ens·nobs)︸ ︷︷ ︸
O(n2

ens·nstate)

is:

O
(
n2
ens · nobs + n2

ens · nstate

)
, (31)

The complexity of the proposed implementation of the EnKF is equivalent to the
upper bounds os the methods described in [29], as detailed in the Table 1. The term
n3
ens does not appear in the upper-bound of the proposed method even when R is

not diagonal. This term can affect the performance of the EnKF when nens ∼ nobs.

Analysis method Computational cost
Direct [29] O (n2

ens · nobs + n3
ens + n2

ens · nstate)
Serial [4] (for each observation) O (nens · nobs + nens · nobs · nstate)
ETKF [2] O (n2

ens · nobs + n3
ens + n2

ens · nstate)
EAKF [2] O (n2

ens · nobs + n3
ens + n2

ens · nstate)
Proposed EnKF Implementation O (n2

ens · nobs + n2
ens · nstate)

Table 1: Summary of computational costs of the analysis steps for several ensemble
filters. The costs are functions of the ensemble size nens, number of observations nobs

and state dimension nstate.

20

Maponi [20] proposed a general approach based on the Sherman Morrison formula
to solve linear systems. The application of this generic algorithm to (16) leads to
an increased computational cost as the special structure of the system (and special
structure of R) are not exploited. The generic algorithm applied to EnKF analysis

W(nens)zi = di ∈ Rnobs , for 1 ≤ i ≤ nens , (32)

uses the decomposition [20, Remark 1]:

W(nens) = W(0) +

nobs∑
i=1

ui · vT
i ,

where W(0) = diag (w1, w2, . . . , wnobs
) ∈ Rnobs×nobs is a diagonal matrix holding the

diagonal entries of W(nens), ui is the i-th column of U = W(nens) −W(0) ∈ Rnobs×nobs

and vi = ei is the i-th element of the canonical basis in Rnobs . Thus, according to
[20, Corollary 4], each linear system (32) can be solved with O(n3

obs) long operations,
leading to a total of

O
(
nens · n3

obs

)
.

Therefore the computational cost of the analysis step is:

O
(
nens · n3

obs + nens · nstate

)
, (33)

which is larger than the computational cost of our proposed EnKF implementation
when either nobs � nens or nens ∼ nobs. Moreover, according to [20, Theorem 3],
when nobs � nens, the solution of linear system (32) can be computed with no more
than O(n2

ens · nobs + n2
ens) long operations. The resulting computational cost of the

analysis step is:

O
(
n3
ens · nobs + n3

ens + nens · nstate

)
,

which is similar to the computational costs of the ETKF and EAKF methods when
nobs � nens. In this case, it is unclear how to construct the matrix U ∈ Rnobs×nens

according to Maponi’s method; U can not be chosen as we propose since W(0)

must be diagonal and V differs from our definition in (14b). In addition, Maponi’s
algorithm requires the explicit representation in memory of the matrix W(nens), which,
in practice, is O(107×107) dimensional. In contradistinction, W(nens) is not required
explicitly in memory by our iterative Sherman Morrison formula.

Lastly, the stability conditions of Maponi’s method are not discussed in [20].
Furthermore, the sequence of matrices W(k) are not proved to be non-singular, which
is crucial for the well-performance of that method. On the contrary, the stability
analysis of the iterative Sherman Morrison formula is discussed in the next section.

21

3.3 Stability Analysis

The solution of the linear system (5) by the iterative Sherman Morrison formula

yields the next sequence of matrices during the computation of
[
W(nens)

]−1
:[

W(0)
]−1

= R−1[
W(1)

]−1
= R−1 − 1

γk
· u(0)

1 · vT
1 ·R−1 =

(
I− 1

γk
· u(0)

1 · vT
1

)[
W(0)

]−1
...[

W(k)
]−1

=

(
I− 1

γk
· u(k−1)

k · vT
k

)[
W(k−1)]−1

where

γk = 1 + vT
k · u

(k−1)
k ∈ R , for 1 ≤ k ≤ nens.

The following situations may affect the proposed method:

• If any step produces γk = 0, then subsequent steps cannot proceed.

• Round-off errors can be considerably amplified if γk ≈ 0 (numerical instability).

• If any matrix W(k) in the sequence:{
W(0),W(1), . . . ,W(nens)

}
, (34)

is singular, the algorithm cannot proceed.

We now show that the positive definiteness of the covariance matrix R is a suffi-
cient in order to guarantee the stability of the iterative Sherman Morrison formula.

Theorem 1. Assume that R is positive definite with ξT Rξ ≥ α ‖ξ‖2 for any ξ ∈
Rnobs. Then all matrices W(k) are positive definite with ξT W(k)ξ ≥ α ‖ξ‖2 for any
ξ ∈ Rnobs.

Proof. First, W(0) = R is positive definite. Next, we proceed by finite induction
and assume that W(k−1) is positive definite with ξT W(k−1)ξ ≥ α ‖ξ‖2. From (16) we
have that:

W(k) = W(k−1) + vk · vT
k ,

22

and therefore W(k) is also positive definite:

ξT W(k) ξ = ξT W(k−1) ξ︸ ︷︷ ︸
≥α ‖ξ‖2

+
(
ξT vk

)2︸ ︷︷ ︸
≥0

≥ α ‖ξ‖2 ∀ ξ ∈ Rn
obs .

Theorem 2. Assume that R is positive definite. The sequence of values γk generated
by the algorithm are strictly greater than one for all 1 ≤ k ≤ nens.

Proof. By the iterative Sherman Morrison formula, the common computations (u
(k)
k+1)

are given by:

u
(0)
1 = R−1 · v1 =

[
W(0)

]−1 · v1

u
(1)
2 =

(
I− 1

γ1
· u(0)

1 · vT
1

)
·
[
W(0)

]−1
︸ ︷︷ ︸

[W(1)]
−1

·v2 =
[
W(1)

]−1 · v2

...

u
(k)
k+1 =

(
I− 1

γk
· u(k−1)

k · vT
k

)
·
[
W(k−1)]−1︸ ︷︷ ︸

[W(k)]
−1

·vk+1 =
[
W(k)

]−1 · vk+1 (35)

Since W(k−1) is positive definite we have:

γk = 1 + vT
k · u

(k−1)
k = 1 + vT

k ·
[
W(k−1)]−1 · vk︸ ︷︷ ︸

>0

> 1 ,

consequently γk > 1 for all 1 ≤ k ≤ nens − 1.

We have the following direct corollary of Theorem 1.

Theorem 3. Assume that R is positive definite. At iteration k, the linear system:

W(k) · Z(k) = D , (36)

has a unique solution, for 1 ≤ k ≤ nens.

23

3.4 Pivoting

Theorem 2 shows that γk values cannot be near zero. Due to this, we expect that
the round-off errors will not increase considerably during an iteration of the iterative
Sherman Morrison formula since:

1

γk
∈ (0 , 1) .

The following pivoting strategy can be (optionally) applied in order to further
decrease round-off error accumulation. It consists of interchanging the columns of
matrices V and U(k−1) such that the pair (vj,u

(k−1)
j) maximizes γk. Formally, at

iteration k, prior the matrix computations (25), we look for a column index ik such
that:

ik = arg max
i

{∣∣∣1 + vT
i · u

(k−1)
i

∣∣∣ , k ≤ i ≤ nens

}
, (37)

and then, the columns k and ik are interchanged in matrices V and U(k−1).
The iterative Sherman Morrison formula with pivoting gives the next computa-

tional cost:

TPIV
SMF (nens,nobs) = 3 · (n2

ens · nobs + nens · nobs)︸ ︷︷ ︸
TSMF(nens,nobs)

+
nens∑
k=1

k∑
i=1

nobs︸ ︷︷ ︸
(37)︸ ︷︷ ︸

Pivoting

,

=
7

2
·
(
n2
ens · nobs + nens · nobs

)
which yields to:

TPIV
SMF (nens,nobs) ∈ O

(
n2
ens · nobs

)
,

from which we can conclude that seeking the maximum value of γk according to (37)
does not increase the computational cost of the iterative Sherman Morrison formula.
Consequently, the overall complexity in the analysis step remains bounded by (31).

3.5 Parallel implementation

In this section we discuss an efficient parallel implementation of the iterative Sherman-
Morrison formula. Since the algorithm (24)–(25) can be applied individually to each

24

column of the matrices Z(0) ∈ Rnobs×nens and U(0) ∈ Rnobs×nens , there are 2nens com-
putations that can be performed in parallel. We define the matrix G(0) ∈ Rnobs×2·nens

holding the columns of V ∈ Rnobs×nens and D ∈ Rnobs×nens as follows:

G(0) = [V,D] = [v1,v2, . . . ,vnens ,d1,d2, . . . ,dnens] , (38)

=
[
g
(0)
1 , . . . ,g

(0)
nens ,g

(0)
nens+1, . . . ,g

(0)
2·nens

]
∈ Rnobs×2·nens ,

Let N0
proc be the number of available processors at the initial time. The number of

operations per processor is

C0
p =

2 · nens

N0
proc

.

The matrix (38) can be written as

G(0) =
[
B

(0)
1 ,B

(0)
2 , . . . ,B

(0)
Nt

proc

]
,

where the blocks B
(0)
i ∈ Rnobs×C0

p are

B
(0)
i =

[
g
(0)

(i−1)C0
p+1,g

(0)

(i−1)C0
p+2, . . .g

(0)

iC0
p

]
∈ Rnobs×C0

p for 1 ≤ i ≤ N0
proc,

The parallel, first step (24) of the iterative Sherman-Morrison formula is implemented
as an update over the blocks:

B
(1)
i = R−1 ·B(0)

i ∈ Rnobs×C0
p , for all 1 ≤ i ≤ N0

proc ,

which yields

G(1) =
[
R−1 ·B(0)

1 ,R−1 ·B(0)
2 , . . . ,R−1 ·B(0)

N0
proc

]
=

[
B

(1)
1 ,B

(1)
2 , . . . ,B

(1)

N0
proc

]
=

g
(1)
1 , . . . ,g

(1)
nens︸ ︷︷ ︸

U(0)

,g
(1)
nens+1, . . . ,g

(1)
2·nens︸ ︷︷ ︸

Z(0)

=

[
u
(0)
1 ,u

(0)
2 , . . . ,u

(0)
nens ,Z

(0)
]

(39)

The second step (25) of the iterative Sherman-Morrison formula consists of a
sequence of updates applied to the matrices Z(0) and U(0). Such matrices are repre-
sented by the columns of matrix G(1). Thus, consider the computation of level one,
each column of the matrix G(1) can be updated as follows:

g
(2)
i = g

(1)
i − g

(1)
1 ·

(
1 + vT

1 · g
(1)
1

)−1
·
(
vT
1 · g

(1)
i

)
∈ Rnobs×1 , 2 ≤ i ≤ 2 · nens .

25

Similarly to the first step, the computations can be grouped in blocks

B
(1)
i =

[
g
(1)

(i−1)C1
p+2,g

(1)

(i−1)C1
p+3, . . .g

(1)

iC1
p+1

]
∈ Rnobs×C1

p , for 1 ≤ i ≤ N1
proc,

and distributed over the processors:

B
(2)
i = B

(1)
i − g

(1)
1 ·

(
1 + vT

1 · g
(1)
1

)−1
·
(
vT
1 ·B

(1)
i

)
∈ Rnobs×C1

p , for all 1 ≤ i ≤ N1
proc .

Note that g
(1)
1 (u

(0)
1) is not updated since it is not required in subsequent computa-

tions. Thus, for the matrix G(2)

G(2) =
[
g
(1)
1 ,g

(2)
2 ,g

(2)
3 , . . . ,g

(2)
2·nens

]
,

the next common computation is g
(2)
2 (u

(1)
2), and for the same reasons, this vector is

not updated.
In general, at time step t, 1 ≤ t ≤ nens, the first t columns of the matrix G(t) are

not included in the update process:

G(t) =
[
g
(1)
1 ,g

(2)
2 , . . . ,g

(t−1)
t−1 ,g

(t)
t ,g

(t)
t+1, . . . ,g

(t)
2·nens

]
,

The parallel computation of (25) at time step t is performed as follows:

• Compute the number of computation units (columns of matrix G(t) ∈ Rnobs×nens)
per processor:

Ct
p =

2 · nens − t

Nt
proc

.

• Perform the update in parallel over the blocks:

B
(t)
i = B

(t)
i − g

(t)
t ·

(
1 + vT

t · g
(t)
t

)−1
·
(
vT
t ·B

(t)
i

)
∈ Rnobs×Ct

p , for all 1 ≤ i ≤ Nt
proc ,

where

B
(t)
i =

[
g
(1)

(i−1)C1
p+1+t,g

(1)

(i−1)C1
p+2+t, . . .g

(1)

iC1
p+t

]
∈ Rnobs×Ct

p .

26

This parallel implementation of the iterative Sherman Morrison formula leads to
the complexity:

TPAR
SMF(nobs,nens) = O

(
C0

p · nobs

)︸ ︷︷ ︸
step1

+
nens∑
t=1

O
(
Ct

p · nobs

)︸ ︷︷ ︸
step2

.

Notice, when the number of processors at time 0 ≤ t ≤ nens is Nt
proc = 2nens − t

then Ct
p = 1. Hence, the corresponding computational cost of the analysis step is

bounded by:

O(nobs · nens + nstate · nens) ,

therefore, when the number of observations is large enough relative to the number of
ensemble members, this parallel approach of the iterative Sherman-Morrison formula
exhibits a linear behavior, making this implementation attractive.

4 Experimental Results

In this section several computation tests are conducted in order to assess the accuracy
and running time of the EnKF based on iterative Sherman Morrison formula.

4.1 Experimental setting

The Sherman-Morrison EnKF implementation as well as the EnKF implementations
based on Cholesky and SVD are coded in Fortran 90. The Cholesky and SVD
decompositions use functions from the LAPACK library [1] as follows:

• The matrix W ∈ Rnobs×nobs is built using DSYRK as follows:

W(nens) = α ·V ·VT + β ·R ∈ Rnobs×nobs , with α =
1

nens − 1
, β = 1.0 .

• The functions DPOTRF and DPOTRI are used to compute the Cholesky de-
composition of matrix W ∈ Rnobs×nobs .

• The SVD decomposition is performed tby the DGESVD function.

27

In order to measure the quality of the solutions we employ the following perfor-
mance metrics. The Elapsed Time (ET) measures the overall simulation time for a
method ∗. This metric is defined as follows:

ET(∗) = Forecast∗ + Analysis∗ (40)

Where Forecast∗ and Analysis∗ are the running time for the overall forecast and
analysis steps respectively.

The Root Mean Square Error (RMSE) is defined as follows:

ε (∗) = RMSE =
1

Nsteps

·

(
Nsteps∑
t=1

RSEt

)
where Nsteps is the number of time steps and RSEt is the Root Square Error at time
t defined as follows:

RSEt =

√
1

nstate

·
(
xtrue
t − xC

t

)T · (xtrue
t − xC

t

)
where xtrue

t is the true vector state at time t, and xC
t can be either the ensemble mean

in the forecast xB or analysis xA at time t. As can be seen the RMSE measures in
average the distance between a reference solution (xtrue

t) and the given solution (xC
t).

The EnKF implementations are tested on two systems: the Lorenz 96 model
[18] representing the atmosphere, and a quasi-geostrophic model [5] representing the
ocean. They define the model operators (M) in the EnKF experiments. To compare
the performance of different EnKF implementations we measure the elapsed times
and the accuracy of analyses for different values of nobs and nens.

4.2 Lorenz-96 model (Nens ∼ Nobs)

The Lorenz 96 model is described by the following system of ordinary differential
equations [18]:

dxi

dt
=

(x2 − xnstate−1) · xnstate − x1 + F for i = 1

(xi+1 − xi−2) · xi−1 − xi + F for 2 ≤ i ≤ nstate − 1

(x1 − xnstate−2) · xnstate−1 − xnstate + F for i = nstate

, (41)

which has been heuristically formulated in order to take into in account properties
of global atmospheric models such as the advection, dissipation and forcing. This

28

model exhibits extended chaos with an external forcing value (F = 8), when the
solution is in the form of moving waves. For this reason, the model is adequate to
perform basic studies of predictability.

The test assesses how the efficiency of the EnKF implementations depend on the
input parameters nobs and nens when nobs ∼ nens (the number of observations and
ensemble members are relatively close). The experimental setting is described below.

• One time unit of the Lorenz 96 model corresponds to five days of the atmo-
sphere. The observations are made over 500 days (100 time units).

• The background error is assumed to be 5%, i.e., the initial ensemble mean’s
deviation from the reference solution is drawn from a normal distribution whose
standard deviation is 5% of the reference value.

• The external forcing is set to F = 8.0.

• The dimensions of the model state are nstate ∈ {500, 1000, 3000, 5000}. While
the typical dimension for the Lorenz-96 model is nstate = 40, we scale the
system up to assess the performance of different implementations.

• The number of observations equals the number of states, nobs = nstate. Due to
this, the analysis step involves large linear systems of size W ∈ Rnstate×nstate .

• The number of ensemble members nens depends on the size of the state vector
as shown in Table 2.

• At each time t, the synthetic observations are constructed as follows:

yt = xtrue
t + υt ∈ Rnstate (42)

since the number of observations and variables of the vector state are the same.
υt belongs to a normal distribution with zero mean and covariance matrix

R = diag
{

0.012
}
∈ Rnstate×nstate ,

as is usual in practice. The errors are replicated for each compared, EnKF
implementation. Due to this, the same data errors are hold for all tests.

• The assimilation window is five model days.

29

• The localization (27) is applied using the influence factors

δi,j = exp

(
−min{i, j}

nstate

)
∈ Rnstate×nens

where min{i, j} is the minimum distance between the indexes i and j of the
vector state; this distance accounts for the periodic boundary conditions in
(41).

The RMSE results are shown in Table 3. All methods provide virtually identi-
cal analyses. As expected, the analysis improves when the size of the ensemble is
increased.

Nstate Nens

500 {200,250,300,350,400}
1000 {400,450,500,550,600}
3000 {900,950,1000,1050,1100}
5000 {1500,1550,1600}

Table 2: Number of ensemble members nens with respect to the dimension of the
vector state nstate.

30

Nstate/Nobs Step Nens EnKFSher EnKFChol EnKFSVD

500/500

Forecast

200 0.006491846885685 0.006491846885685 0.006491846885685
250 0.003089844737585 0.003089844737585 0.003089844737585
300 0.001923620680204 0.001923620680204 0.001923620680204
350 0.001501324727984 0.001501324727984 0.001501324727984
400 0.001238879857327 0.001238879857327 0.001238879857327

Analysis

200 0.005406046859821 0.005406046859821 0.005406046859821
250 0.002577923867043 0.002577923867043 0.002577923867043
300 0.001595214779293 0.001595214779293 0.001595214779293
350 0.001239247824936 0.001239247824936 0.001239247824936
400 0.001019599347515 0.001019599347515 0.001019599347515

1000/1000

Forecast

400 0.004416601672762 0.004416601672762 0.004416601672762
450 0.002808556499338 0.002808556499338 0.002808556499338
500 0.002256025116209 0.002256025116209 0.002256025116209
550 0.001827747641793 0.001827747641793 0.001827747641793
600 0.001561032221877 0.001561032221877 0.001561032221877

Analysis

400 0.003643849246395 0.003643849246395 0.003643849246395
450 0.002320171220995 0.002320171220995 0.002320171220995
500 0.001863322297334 0.001863322297334 0.001863322297334
550 0.001503808242092 0.001503808242092 0.001503808242092
600 0.001281928557481 0.001281928557481 0.001281928557481

3000/3000

Forecast

900 0.009439626047886 0.009439626047886 0.009439626047886
950 0.007199551317193 0.007199551317193 0.007199551317193
1000 0.005410752525373 0.005410752525373 0.005410752525373
1050 0.004299142614958 0.004299142614958 0.004299142614958
1100 0.003476460994219 0.003476460994219 0.003476460994219

Analysis

900 0.007957954481050 0.007957954481050 0.007957954481050
950 0.006074278547494 0.006074278547494 0.006074278547494
1000 0.004552394986586 0.004552394986586 0.004552394986586
1050 0.003597428757064 0.003597428757064 0.003597428757064
1100 0.002902565379165 0.002902565379165 0.002902565379165

5000/5000

Forecast
1500 0.007678111830765 0.007678111830765 0.007678111830765
1550 0.006378636076218 0.006378636076218 0.006378636076218
1600 0.005608079561230 0.005608079561230 0.005608079561230

Analysis
1500 0.006490749509210 0.006490749509210 0.006490749509210
1550 0.005389012789042 0.005389012789042 0.005389012789042
1600 0.004728980886456 0.004728980886456 0.004728980886456

Table 3: RMSE for the Lorenz-96 model with different number of states. When the
number of ensemble members is increased the estimation of the true vector state is
improved. All EnKF implementations provide virtually identical results.

31

R
M

S
E
(X

A
)

0 50 100
0

2

4

6

8x 10
−3

(a) Sherman

0 50 100
0

2

4

6

8x 10
−3

(b) Cholesky

0 50 100
0

2

4

6

8x 10
−3

(c) SVD

Figure 3: Analysis RMSE for the Lorenz model with 500 of vari-
ables. Different curves correspond to different numbers of ensemble members:
200(+), 250(−), 300(�), 350(−−) and 400(.). When the number of ensemble mem-
bers is increased the analysis is improved.

Figures 3 and 4 show the RMSE decrease over the assimilation window for nstate =
500 and 1000, respectively. When the number of ensemble members is increased the
analysis errors are smaller, as expected. There is no significant difference in results
between different implementations of the EnKF.

R
M

S
E
(X

A
)

0 50 100
1

2

3

4

5x 10
−3

(a) Sherman

0 50 100
1

2

3

4

5x 10
−3

(b) Cholesky

0 50 100
1

2

3

4

5x 10
−3

(c) SVD

Figure 4: Analysis RMSE for the Lorenz model with 1000 of vari-
ables. Different curves correspond to different numbers of ensemble members:
200(+), 250(−), 300(�), 350(−−) and 400(.). When the number of ensemble mem-
bers is increased the analysis is improved.

The ET results are shown in Table 4. The Cholesky decomposition is the most
efficient for a small number of observations and states. When the number of obser-
vations is increased, the relative performance of Cholesky deteriorates, as expected
from the complexity results presented in Section 1. The Cholesky decomposition
solution of the linear system (5) is not suitable when the number of observations is
large. The SVD implementation exhibits a good performance for a small number

32

of ensemble members and observations. However, the ET of the SVD implemen-
tation grows faster than that of the Cholesky implementation when the number
of ensemble and/or observations are increased, due to the term n3

ens ∼ n3
obs in its

complexity formula. Tthe EnKF implementation based on SVD is not suitable for
a large number of observations or a large number of ensemble members. Finally,
the Sherman-Morrison implementation has the best performance for a large number
of observations and states. This implementation is suitable for a large number of
observations. Since the term n3

ens does not appear in the cost upper-bound of the
iterative-Sherman implementation, when nens ∼ nobs, the proposed implementation
will exhibit a better performance than those implementations presented in [2, 4, 29]
since they are upper-bounded by (11) (see table 1).

Nobs/Nstate Nens EnKFSher EnKFChol EnKFSVD

500/500

200 46.5 s 36.9 s 66.3 s
250 72.1 s 45.1 s 91.4 s
300 103.5 s 54.2 s 118.9 s
350 140.8 s 64.4 s 138.8 s
400 183.6 s 75.4 s 174.5 s

1000/1000

400 377.6 s 327.4 s 687.1 s
450 500.1 s 364.6 s 715.9 s
500 601.7 s 403.5 s 877.3 s
550 731.8 s 462.4 s 1038.3 s
600 873.2 s 492.4 s 1199.3 s

3000/3000

900 1.7 h 2.3 h 3.8 h
950 2.1 h 2.4 h 3.9 h

1000 2.2 h 2.5 h 4.1 h
1050 2.4 h 2.7 h 4.4 h
1100 2.6 h 2.8 h 4.8 h

5000/5000
1500 8.1 h 11.0 h 17.3 h
1550 8.8 h 11.2 h 17.8 h
1600 9.2 h 11.5 h 19.9 h

Table 4: Computational times for the Lorenz model assimilation performed with dif-
ferent EnKF implementations. The Cholesky decomposition is the most efficient for
a small number of observations and states. The Sherman-Morrison implementation
is the bet for a large number of observations and states.

33

4.3 Quasi-geostrophic model (Nobs � Nens)

The Earth’s ocean has a complex flow system influenced by the rotation of the Earth,
the density stratification due to temperature and salinity, as well as other factors.
The quasi-geostrophic (QG) model is a simple model which mimics the real behavior
of the ocean. It is defined by the following partial differential equations [5]:

∂q

∂t
+ r · J (ψ, q) + β · ∂ψ

∂x
= −rkb · ζ + rkh · ∇2ζ − rkh2 · ∇4ζ

+ sin (2 · π · y)︸ ︷︷ ︸
External Force

, (43)

where

J (ψ, q) =
∂q

∂x
· ∂ψ
∂y
− ∂q

∂y
· ∂ψ
∂x

, (44)

q = ζ−F·ψ is the potential vorticity, ψ is the stream function, F is the Froud number,
ζ = ∇2ψ is the relative vorticity, r is a sort of the Rossby number, rkb is the bottom
friction, rkh is the horizontal friction and rhk2 is the biharmonic horizontal friction
and x and y represent the horizontal and vertical components of the space.

Moreover, q and ψ are related to one another through an elliptic operator [24]:

q = ∇̃2ψ, (45)

which yields

∇̃−2q = ψ , (46)

where

∇̃2 =
∂2

∂x2
+

∂2

∂y2
.

This elliptic property reflects the assumption that the flow is geostrophically
balanced in the horizontal direction, and hydrostatically balanced in the vertical
direction.

The QG experiment studies the behavior of EnKF implementations when nobs �
nens (the number of observations is much larger than the number of ensemble mem-
bers) as is usually the case in practice. Moreover, this scenario is more difficult than
the previous one (the Lorenz model): large model-errors are considered in the initial
ensemble members. Besides, data is available every 10 time units.

34

We consider three different grids, denoted QGNM, where the number of hori-
zontal and vertical grid points are N and M, respectively. Specifically, we employ
in experiments QG33 (small instance), QG65 (medium instance) and QG129 (large
instance). The horizontal and vertical dimensions of the grid are denoted by Lx

and Ly respectively. These instances and the corresponding parameter values are
summarized in Table 5.

Instance Lx Ly N M rkb rkh rkh2 β r
QG33 0.4 0.4 33 33 10−6 10−7 2× 10−12 1.0 10−5

QG65 1.0 1.0 65 65 10−6 10−7 2× 10−12 1.0 10−5

QG129 1.0 1.0 129 129 10−6 10−7 2× 10−12 1.0 10−5

Table 5: Parameter values for the QG model instances considered. Lx and Ly repre-
sent the horizontal and vertical grid sizes, and N and M are the number of horizontal
and vertical grid points, respectively.

The experimental settings are described below.

• There are 1200 time steps, each of one representing 1.27 days in the ocean.

• The vorticity of the ocean at each grid point provides a component of the vector
state.

• The computation of the stream function is done through the solution of the
Helmholtz [23] function according to the elliptic property (46).

• Homogeneous Dirichlet boundary conditions are assumed. Due to this, the
boundaries of the grid are not mapped into the state vector, and nstate =
(N− 2) · (M− 2).

• The initial ensemble members are constructed as follows:

xB
i = xtrue + εBi ·

(
1

nstate

·
nstate∑
k=1

∣∣xtrue
k

∣∣)
︸ ︷︷ ︸

C

∈ Rnstate×1 , for 1 ≤ i ≤ nens ,

where εB is drawn from a Normal distribution with zero mean and covariance
matrix

Q = diag
{

STD2
ens

}
∈ Rnstate×nstate .

35

For testing purposes, three values are assumed for the standard deviation of
model errors (STDens): 2.5, 5.0 and 7.5. Notice the large dispersion of the initial
ensemble members, which can make difficult the convergence of any filter since
the huge spread out of the initial ensemble members with respect to the typical
value C.

• The number of observation per simulation, for each size (nstate) of the model
state , is defined as follows:

nobs = Pobs · nstate,

where Pobs is the percentage of components observed from the model state.
The values given to Pobs are 50%, 70% and 90%. Those, measurements are
taken every 10 time units and they are constructed as shown in equation (42).
Notice, there are 120 analysis steps out of 1200 time steps (10% of the total
simulation time).

• For the time evolution of the model, zero boundary conditions are assumed
and the boundaries are not included onto the ensemble representation. Due to
this, the dimension of the vector state nstate = (N− 2) · (M− 2).

• For each instance we consider simulations with nens ∈ {20, 60, 100} ensemble
members. The number of ensemble members is one to two orders of magnitude
smaller than the total number of observations.

The RSME values for analysis errors for the QG33, QG65 and QG129 instances
are shown in Tables 6, 8 and 10, respectively. The results depend on the number
of ensemble members (nens), the number of observations (nobs), and the deviation of
the initial ensemble mean (STDens). The RSME is quantifiess errors in the stream
function ψ, whose values are computed through the relation (46). In terms of accu-
racy there is no significant difference between different EnKF implementations. As
expected, when the error in the initial ensemble is increased, the accuracy in the
analysis decreases. The error does not show an exponential growth, even when the
number of components in the model state (nstate) is much larger than the number
of ensemble members (e.g., for the QG129 instance). When the number of ensemble
members is increased, the analysis error is decreased. This is illustrated by the snap-
shots of the QG33 simulation over 1200 time steps presented in Figure 5. There, we
can clearly see that the ensemble of size 100 provides a better estimation (xB) to the
true state of the model (xtrue) than the ensembles of sizes 20 and 60. Additionally,
the number of observations plays an important role in the estimation of the true

36

model state when the size of the vector state is much larger than the number of
ensemble members.

The ET values for the QG33, QG65 and QG129 simulations are shown in Tables
6, 8 and 10, respectively. The time is expressed in seconds (s) if it is below 30
minutes, and otherwise is expressed in minutes (min) and hours (h). The Cholesky
implementation shows good performance when the number of observations is small.
From Table 7 (the blocks where the number of observations are 480, 672 and 864) we
see that the Cholesky implementation performance is more sensitive to the number of
observations than to the number of ensemble members. This EnKF implementation
is not suitable for a large number of observations. For instance, the Cholesky elapsed
time for the QG129 instance is not presented since each simulation takes more than
4 days in order to be completed.

The SVD implementation shows a better relative performance than for the Lorenz
96 test, since the number of ensemble members is small with respect to the number
of observations. For example, for the QG33 instance, the SVD implementation shows
a better performance than Cholesky when the number of observations and ensemble
members are small. In addition, when the size of vector state is increased, the SVD
implementation shows a better performance than Cholesky. This agrees with the
computational complexity upper bounds presented in Section 1. As is expected, the
performance of the SVD based methods is better than the Cholesky implementations
when the number of observations is much larger than the number of the ensemble
members.

The Sherman-Morrison implementation shows the best performance among the
compared methods. This is true even when the number of observations is much
larger than the number of ensemble members, as seen in Table 11. The results of
both test cases (the quasigeostrophic and Lorenz models) lead to the conclusion
that the performance of the iterative-Sherman implementation is not sensitive to the
increase in the number of observations, making it attractive for implementation with
large-scale observational systems.

37

Nens Nobs STDens EnKFSher EnKFChol EnKFSVD

20

480
2.5 1.71348538× 10−4 1.71348538× 10−4 1.71348538× 10−4

5.0 3.42503478× 10−4 3.42503478× 10−4 3.42503478× 10−4

7.5 5.13685273× 10−4 5.13685273× 10−4 5.13685273× 10−4

672
2.5 1.68916683× 10−4 1.68916683× 10−4 1.68916683× 10−4

5.0 3.37557073× 10−4 3.37557073× 10−4 3.37557073× 10−4

7.5 5.06204927× 10−4 5.06204927× 10−4 5.06204927× 10−4

864
2.5 1.68758284× 10−4 1.68758284× 10−4 1.68758284× 10−4

5.0 3.37604000× 10−4 3.37604000× 10−4 3.37604000× 10−4

7.5 5.06437992× 10−4 5.06437992× 10−4 5.06437992× 10−4

60

480
2.5 1.71410180× 10−4 1.71410180× 10−4 1.71410180× 10−4

5.0 3.43004244× 10−4 3.43004244× 10−4 3.43004244× 10−4

7.5 5.14603943× 10−4 5.14603943× 10−4 5.14603943× 10−4

672
2.5 1.64430970× 10−4 1.64430970× 10−4 1.64430970× 10−4

5.0 3.29692664× 10−4 3.29692664× 10−4 3.29692664× 10−4

7.5 4.94948120× 10−4 4.94948120× 10−4 4.94948120× 10−4

864
2.5 1.64737541× 10−4 1.64737541× 10−4 1.64737541× 10−4

5.0 3.29861914× 10−4 3.29861914× 10−4 3.29861914× 10−4

7.5 4.94925540× 10−4 4.94925540× 10−4 4.94925540× 10−4

100

480
2.5 1.62358824× 10−4 1.62358824× 10−4 1.62358824× 10−4

5.0 3.23304631× 10−4 3.23304631× 10−4 3.23304631× 10−4

7.5 4.84328422× 10−4 4.84328422× 10−4 4.84328422× 10−4

672
2.5 1.54859388× 10−4 1.54859388× 10−4 1.54859388× 10−4

5.0 3.10925745× 10−4 3.10925745× 10−4 3.10925745× 10−4

7.5 4.66772642× 10−4 4.66772642× 10−4 4.66772642× 10−4

864
2.5 1.44950729× 10−4 1.44950729× 10−4 1.44950729× 10−4

5.0 2.90313729× 10−4 2.90313729× 10−4 2.90313729× 10−4

7.5 4.35737112× 10−4 4.35737112× 10−4 4.35737112× 10−4

Table 6: Analysis RMSE for different EnKF implementations applied to the QG33
instance. All methods give similar results. When the number of ensemble and/or
observations is increased, the analysis accuracy is improved.

38

xtrue
t xA

t , nens = 20 xA
t , nens = 60 xA

t , nens = 100
t

=
0

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4
t

=
23

9

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

t
=

47
8

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

t
=

71
7

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

t
=

95
6

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

t
=

11
95

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Figure 5: Snapshots of the QG33 simulation for nens = 20,60 and 100 members, at
the time steps t = 0, 239, 478, 717, 956 and 1195 (out of 1200). As expected, when
the number of ensemble members is increased the estimation of the true state (xtrue)
is improved (the RMSE is decreased).

39

Nens Nobs STDens EnKFSher EnKFChol EnKFSVD

20

480
2.5 17.6 s 33.4 s 24.7 s
5.0 17.2 s 32.8 s 25.3 s
7.5 17.3 s 33.1 s 28.6 s

672
2.5 17.9 s 61.9 s 39.4 s
5.0 17.7 s 62.9 s 49.3 s
7.5 17.8 s 62.1 s 37.6 s

864
2.5 17.8 s 113.7 s 57.9 s
5.0 18.2 s 116.3 s 79.7 s
7.5 18.1 s 118.4 s 61.2 s

60

480
2.5 42.9 s 57.8 s 63.7 s
5.0 42.9 s 57.5 s 62.9 s
7.5 42.8 s 57.8 s 58.3 s

672
2.5 44.3 s 90.3 s 142.3 s
5.0 44.5 s 89.8 s 92.3 s
7.5 44.5 s 90.3 s 91.3 s

864
2.5 46.8 s 150.6 s 187.3 s
5.0 46.6 s 156.7 s 144.8 s
7.5 46.5 s 154.3 s 200.9 s

100

480
2.5 72.3 s 83.2 s 102.0 s
5.0 72.4 s 83.2 s 96.8 s
7.5 72.6 s 83.4 s 94.4 s

672
2.5 77.8 s 118.9 s 140.2 s
5.0 77.8 s 119.5 s 166.8 s
7.5 77.1 s 120.1 s 216.4 s

864
2.5 82.8 s 209.1 s 412.9 s
5.0 83.2 s 212.7 s 289.7 s
7.5 82.7 s 202.6 s 304.6 s

Table 7: Computational times for several EnKF implementations applied to the
QG33 instance. Different numbers of ensemble members and numbers of observations
are considered.

40

Nens Nobs STDens EnKFSher EnKFChol EnKFSVD

20

1984
2.5 2.38730154× 10−4 2.38730154× 10−4 2.38730154× 10−4

5.0 4.77366714× 10−4 4.77366714× 10−4 4.77366714× 10−4

7.5 7.16006328× 10−4 7.16006328× 10−4 7.16006328× 10−4

2778
2.5 2.38650829× 10−4 2.38650829× 10−4 2.38650829× 10−4

5.0 4.77195277× 10−4 4.77195277× 10−4 4.77195277× 10−4

7.5 7.15744082× 10−4 7.15744082× 10−4 7.15744082× 10−4

3572
2.5 2.38731447× 10−4 2.38731447× 10−4 2.38731447× 10−4

5.0 4.77279065× 10−4 4.77279065× 10−4 4.77279065× 10−4

7.5 7.15829932× 10−4 7.15829932× 10−4 7.15829932× 10−4

60

1984
2.5 2.34788461× 10−4 2.34788461× 10−4 2.34788461× 10−4

5.0 4.69640125× 10−4 4.69640125× 10−4 4.69640125× 10−4

7.5 7.04505865× 10−4 7.04505865× 10−4 7.04505865× 10−4

2778
2.5 2.34427724× 10−4 2.34427724× 10−4 2.34427724× 10−4

5.0 4.68838293× 10−4 4.68838293× 10−4 4.68838293× 10−4

7.5 7.03254635× 10−4 7.03254635× 10−4 7.03254635× 10−4

3572
2.5 2.34303497× 10−4 2.34303497× 10−4 2.34303497× 10−4

5.0 4.68673565× 10−4 4.68673565× 10−4 4.68673565× 10−4

7.5 7.03046901× 10−4 7.03046901× 10−4 7.03046901× 10−4

100

1984
2.5 2.37123911× 10−4 2.37123911× 10−4 2.37123911× 10−4

5.0 4.74051478× 10−4 4.74051478× 10−4 4.74051478× 10−4

7.5 7.10951271× 10−4 7.10951271× 10−4 7.10951271× 10−4

2778
2.5 2.34083117× 10−4 2.34083117× 10−4 2.34083117× 10−4

5.0 4.68257831× 10−4 4.68257831× 10−4 4.68257831× 10−4

7.5 7.02424460× 10−4 7.02424460× 10−4 7.02424460× 10−4

3572
2.5 2.32378928× 10−4 2.32378928× 10−4 2.32378928× 10−4

5.0 4.64697670× 10−4 4.64697670× 10−4 4.64697670× 10−4

7.5 6.97023351× 10−4 6.97023351× 10−4 6.97023351× 10−4

Table 8: Analysis RMSE for different EnKF implementations applied to the QG65
instance. All methods give similar results.

41

Nens Nobs STDens EnKFSher EnKFChol EnKFSVD

20

1984
2.5 71.5 s 44.9 min 454.7 s
5.0 70.6 s 33.4 min 429.3 s
7.5 70.3 s 45.4 min 360.6 s

2778
2.5 71.0 s 1.8 h 831.1 s
5.0 73.2 s 1.3 h 735.7 s
7.5 71.9 s 1.4 h 795.8 s

3572
2.5 72.2 s 3.8 h 1602.5 s
5.0 74.3 s 3.3 h 1112.3 s
7.5 72.2 s 3.0 h 771.5 s

60

1984
2.5 179.0 s 45.0 min 1215.7 s
5.0 179.5 s 55.3 min 1235.6 s
7.5 178.4 s 51.9 min 1066.7 s

2778
2.5 190.6 s 2.4 h 1463.3 s
5.0 188.3 s 1.9 h 39.4 min
7.5 189.7 s 2.5 h 32.4 min

3572
2.5 202.6 s 4.1 h 1.2 h
5.0 198.9 s 2.9 h 1.1 h
7.5 201.9 s 4.3 h 1.0 h

100

1984
2.5 313.8 s 52.4 min 37.2 min
5.0 314.3 s 40.1 min 33.2 min
7.5 309.6 s 58.4 min 37.9 min

2778
2.5 346.9 s 1.7 h 1.1 h
5.0 342.9 s 1.7 h 1.0 h
7.5 340.7 s 2.9 h 1.1 h

3572
2.5 373.9 s 4.8 h 1.6 h
5.0 378.3 s 4.0 h 1.8 h
7.5 383.7 s 5.1 h 1.3 h

Table 9: Computational times for several EnKF implementations applied to the
QG65 instance. Different numbers of ensemble members and numbers of observations
are considered.

42

Nens Nobs STDens EnKFSher EnKFSVD

20

8064
2.5 9.92105438× 10−5 9.92105438× 10−5

5.0 1.98414661× 10−4 1.98414661× 10−4

7.5 2.97618537× 10−4 2.97618537× 10−4

11290
2.5 9.90045121× 10−5 9.90045121× 10−5

5.0 1.97996616× 10−4 1.97996616× 10−4

7.5 2.96988644× 10−4 2.96988644× 10−4

14516
2.5 9.87990386× 10−5 9.87990386× 10−5

5.0 1.97591049× 10−4 1.97591049× 10−4

7.5 2.96383002× 10−4 2.96383002× 10−4

60

8064
2.5 9.74245572× 10−5 9.74245572× 10−5

5.0 1.94820830× 10−4 1.94820830× 10−4

7.5 2.92217500× 10−4 2.92217500× 10−4

11290
2.5 9.63593685× 10−5 9.63593685× 10−5

5.0 1.92682256× 10−4 1.92682256× 10−4

7.5 2.89005780× 10−4 2.89005780× 10−4

14516
2.5 9.67669396× 10−5 9.67669396× 10−5

5.0 1.93545013× 10−4 1.93545013× 10−4

7.5 2.90322987× 10−4 2.90322987× 10−4

100

8064
2.5 9.56333807× 10−5 9.56333807× 10−5

5.0 1.91331921× 10−4 1.91331921× 10−4

7.5 2.87027307× 10−4 2.87027307× 10−4

11290
2.5 9.49419202× 10−5 9.49419202× 10−5

5.0 1.89929524× 10−4 1.89929524× 10−4

7.5 2.84918006× 10−4 2.84918006× 10−4

14516
2.5 9.47165868× 10−5 9.47165868× 10−5

5.0 1.89427095× 10−4 1.89427095× 10−4

7.5 2.84137686× 10−4 2.84137686× 10−4

Table 10: Analysis RMSE for different EnKF implementations applied to the QG129
instance. All methods give similar results.

43

Nens Nobs STDens EnKFSher EnKFSVD

20

8064
5 289.9 s 1.8 h

5.0 293.5 s 1.4 h
7.5 286.8 s 1.9 h

11290
5 303.2 s 2.2 h

5.0 302.2 s 2.0 h
7.5 303.5 s 2.9 h

14516
5 315.7 s 4.5 h

5.0 308.1 s 3.8 h
7.5 309.1 s 3.7 h

60

8064
5 764.8 s 4.1 h

5.0 795.9 s 3.2 h
7.5 764.7 s 3.9 h

11290
5 838.0 s 6.3 h

5.0 832.6 s 5.4 h
7.5 817.7 s 6.7 h

14516
5 910.7 s 9.9 h

5.0 899.9 s 9.3 h
7.5 864.8 s 11.2 h

100

8064
5 1381.5 s 5.3 h

5.0 1360.3 s 5.2 h
7.5 1397.9 s 5.9 h

11290
5 1492.4 s 10.3 h

5.0 1494.5 s 8.9 h
7.5 1506.6 s 6.7 h

14516
5 1624.8 s 13.7 h

5.0 1634.9 s 12.9 h
7.5 1664.2 s 14.9 h

Table 11: Computational times for several EnKF implementations applied to the
QG129 instance. Different numbers of ensemble members and numbers of observa-
tions are considered.

5 Conclusions and Future Work

We propose a novel implementation of the EnKF based on an iterative application of
the Sherman-Morrison formula. The algorithm exploits the special structure of the
background error covariance matrix projected onto the observation space. The com-
putational complexity of the new approach is equivalent to that of the best EnKF
implementations available in the literature. Nevertheless, the performance (elapsed
time) of most of the existing methods is strongly dependent from the condition
nobs � nens (the number of observations is large compared to the ensemble size); the
performance of the new approach is not affected by this condition. In addition, the

44

term n3
ens is not presented in the upper-bound of the effort of the proposed method,

which leads to better performance when the number of observations and of ensemble
members are of similar magnitude (nobs ∼ nens). A sufficient condition for the stabil-
ity of the proposed method is the non-singularity of the data error covariance matrix,
which, in practice, is always the case. In addition, a pivoting strategy is developed
in order to reduce round-off error propagation without increasing the computational
effort of the proposed method. The computational cost of this algorithm provides
a better theoretical performance than other generic formulations of matrix inversion
based on the Sherman Morrison formula available in the literature. To assess the ac-
curacy and performance of the proposed implementation two standard test problems
have been employed, namely, the Lorenz 96 and the quasi-geostrophic models. All
EnKF implementations tested (Cholesky, SVD, Sherman-Morrison) provide virtu-
ally identical analyses. However, the proposed Sherman-Morrison approach is much
faster than the others even when the number of observations is large with respect
to the number of ensemble members (nobs � nens). The parallel version of the new
algorithm has a theoretical complexity that grows only linearly with the number
of observations, and is therefore well suited for implementation in large scale data
assimilation systems.

Acknowledgment

This work has been supported in part by NSF through awards NSF OCI-8670904397,
NSF CCF-0916493, NSF DMS-0915047, NSF CMMI-1130667, NSF CCF-1218454,
AFOSR FA9550-12-1-0293-DEF, AFOSR 12-2640-06, and by the Computational Sci-
ence Laboratory at Virginia Tech.

References

[1] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz,
S. Hammerling, J. Demmel, C. Bischof, and D. Sorensen. Lapack: A portable
linear algebra library for high-performance computers. In Proceedings of the
1990 ACM/IEEE conference on Supercomputing, Supercomputing 90, pages 2–
11, Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.

[2] J. L. Anderson. An Ensemble Adjustment Kalman Filter for Data Assimilation.
Monthly Weather Review, 2001.

45

[3] J. L. Anderson. Exploring the need for localization in ensemble data assimilation
using a hierarchical ensemble filter. Physica D: Nonlinear Phenomena, 230(1–
2):99 – 111, 2007.

[4] J. L. Anderson and N. Collins. Scalable Implementations of Ensemble Filter Al-
gorithms for Data Assimilation. Journal of Atmospheric & Oceanic Technology,
2007.

[5] X. Carton and R. Baraille. Data Assimilation in Quasi-geostrophic Ocean Mod-
els. In OCEANS 94. Oceans Engineering for Today’s Technology and Tomor-
row’s Preservation. Proceedings, volume 3, pages III/337 –III/346 vol.3, sep
1994.

[6] A. Cohen. Rate of Convergence of Several Conjugate Gradient Algorithms.
SIAM Journal on Numerical Analysis, 9(2):248–259, 1972.

[7] S. Eisenstat. Efficient Implementation of a Class of Preconditioned Conju-
gate Gradient Methods. SIAM Journal on Scientific and Statistical Computing,
2(1):1–4, 1981.

[8] G. Evensen. Data Assimilation: The Ensemble Kalman Filter, chapter 14, pages
210–237. Springer, 2009.

[9] G. Evensen. Estimation in an oil reservoir simulator. In Data Assimilation,
pages 263–272. Springer Berlin Heidelberg, 2009.

[10] G. Evensen. The Ensemble Kalman Filter for Combined State and Parameter
Estimation. Control Systems, IEEE, 29(3):83 –104, june 2009.

[11] A. M. Fraser. Appendix A: Formulas for Matrices and Gaussians, chapter 7,
pages 117–120. SIAM, 2008.

[12] P. Gill, M. Saunders, and J. Shinnerl. On the Stability of Cholesky Factorization
for Symmetric Quasidefinite Systems. SIAM Journal on Matrix Analysis and
Applications, 17(1):35–46, 1996.

[13] G. Golub and D. OLeary. Some History of the Conjugate Gradient and Lanczos
Algorithms: 1948-1976. SIAM Review, 31(1):50–102, 1989.

[14] V. Haugen, G. Naevdal, L. J. Natvik, G. Evensen, A. Berg, and K. Flornes.
History Matching Using the Ensemble Kalman Filter on a North Sea Field
Case. SPE Journal, 13:382–391, 2008.

46

[15] A. Kovalenko, T. Mannseth, and G. Nævdal. Error Estimate for the Ensemble
Kalman Filter Analysis Step. SIAM Journal on Matrix Analysis and Applica-
tions, 32(4):1275–1287, 2011.

[16] H. Li, E. Kalnay, and T. Miyoshi. Simultaneous Estimation of Covariance In-
flation and Observation Errors within an Ensemble Kalman Filter. Quarterly
Journal of the Royal Meteorological Society, 135(639):523–533, 2009.

[17] C. Lin and J. More. Incomplete Cholesky Factorizations with Limited Memory.
SIAM Journal on Scientific Computing, 21(1):24–45, 1999.

[18] E. N. Lorenz and K. A. Emanuel. Optimal sites for supplementary weather ob-
servations: Simulation with a small model. Journal of the Atmospheric Sciences,
1998.

[19] J. Mandel. Efficient Implementation of the Ensemble Kalman Filter . Technical
report, University of Colorado at Denver and Health Sciences Center, 2006.

[20] P. Maponi. The solution of linear systems by using the sherman–morrison for-
mula. Linear Algebra and its Applications, 420(2–3):276 – 294, 2007.

[21] J. Meinguet. Refined Error Analyses of Cholesky Factorization. SIAM Journal
on Numerical Analysis, 20(6):1243–1250, 1983.

[22] E. Ott, B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza,
E. Kalnay, D. J. Patil, and J. A. Yorke. A Local Ensemble Kalman Filter for
Atmospheric Data Assimilation. Tellus A, 56(5):415–428, 2004.

[23] K. Otto and E. Larsson. Iterative Solution of the Helmholtz Equation by a
Second-Order Method. SIAM Journal on Matrix Analysis and Applications,
21(1):209–229, 1999.

[24] J. Pedlosky. Geophysical Fluids Dynamics. Springer-Verlag, New York Heidel-
berg, 1996.

[25] J. Reid. The Use of Conjugate Gradients for Systems of Linear Equations
Possessing Property A. SIAM Journal on Numerical Analysis, 9(2):325–332,
1972.

[26] R. Schnabel and E. Eskow. A New Modified Cholesky Factorization. SIAM
Journal on Scientific and Statistical Computing, 11(6):1136–1158, 1990.

47

[27] M. Stewart and P. Van Dooren. Stability Issues in the Factorization of Struc-
tured Matrices. SIAM Journal on Matrix Analysis and Applications, 18(1):104–
118, 1997.

[28] A. Suarez, R. Heather Dawn, W. Dustan, and M. Coniglio. Comparison Of
Ensemble Kalman Filter–based Forecasts to Traditional Ensemble and Deter-
ministic Forecasts for a Case Study of Banded Snow. Weather and Forecasting,
27:85–105, 2012.

[29] M. K. Tippett, J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker.
Ensemble Square Root Filters. Monthly Weather Review, 2003.

[30] G. Wu, X. Zheng, and Y. Li. Inflation Adjustment on Error Covariance Matrix of
Ensemble Kalman Filter. In Multimedia Technology (ICMT), 2011 International
Conference on, pages 2160 –2163, july 2011.

[31] J. Xia and M. Gu. Robust Approximate Cholesky Factorization of Rank-
Structured Symmetric Positive Definite Matrices. SIAM Journal on Matrix
Analysis and Applications, 31(5):2899–2920, 2010.

48

	1 Introduction
	2 Formulation of the EnKF
	2.1 Efficient implementations of the analysis step

	3 Iterative Implementation of the EnKF Analysis Step
	3.1 An iterative Sherman-Morrison formula for matrix inversion
	3.1.1 Inflation aspects
	3.1.2 Localization aspects

	3.2 Computational complexity
	3.3 Stability Analysis
	3.4 Pivoting
	3.5 Parallel implementation

	4 Experimental Results
	4.1 Experimental setting
	4.2 Lorenz-96 model (Nens Nobs)
	4.3 Quasi-geostrophic model (Nobs Nens)

	5 Conclusions and Future Work

