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Application of approximate matrix factorization

to high order linearly implicit Runge-Kutta

methods

Hong Zhang∗ Adrian Sandu† Paul Tranquilli‡

Abstract

Linearly implicit Runge-Kutta methods with approximate matrix fac-
torization can solve efficiently large systems of differential equations that
have a stiff linear part, e.g. reaction-diffusion systems. However, the use
of approximate factorization usually leads to loss of accuracy, which makes
it attractive only for low order time integration schemes. This paper dis-
cusses the application of approximate matrix factorization with high order
methods; an inexpensive correction procedure applied to each stage allows
to retain the high order of the underlying linearly implicit Runge-Kutta
scheme. The accuracy and stability of the methods are studied. Numeri-
cal experiments on reaction-diffusion type problems of different sizes and
with different degrees of stiffness illustrate the efficiency of the proposed
approach.

1 Introduction

A frequently used approach to solve partial differential equations (PDEs) is the
method of lines, where the spatial derivative terms are discretized first using
techniques such as finite differences, finite volumes or finite elements, and then
integrating the resulting system of ordinary differential equations (ODEs) in
time. Discretization of PDEs with linear terms in space leads to a semi-linear
ODE system of the form

y′ = F (y, t) =  L y + f(y, t) , y ∈ R
N (1)

where  L is a spatial linear operator and f(y, t) is nonlinear. We consider the case
where the linear term has a fast characteristic time scale and the nonlinear term
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has a slow characteristic time scale. Due to the Courant-Friedrichs-Levy (CFL)
condition, the step size of an explicit time integrator is restricted by the fastest
time scale. To alleviate the time step constraint imposed by the stiff linear term
with a reasonably low computational cost, linearly implicit methods (particular
cases of implicit-explicit methods) treat the stiff linear term implicitly while the
nonlinear term explicitly.

Various families of linearly implicit integration methods have been proposed
and successfully applied to solve PDEs with linear dispersion and dissipation
[11, 8, 3, 2]. Fully implicit schemes solve at each step a linear system where the
matrix involves the Jacobian of the right hand side function. Efficient schemes
specialized in the solution of (1) such as linearly implicit methods use only the
part of the Jacobian associated with the stiff linear term, resulting in linear
systems of the form

(I− h γ  L) x = ℓ, x, ℓ ∈ R
N , (2)

where h is the step size, γ is a parameter of the integration scheme, and the
right hand side ℓ is determined by the method.

The matrix  L is usually sparse but has a large bandwidth, especially when
high order spatial discretization schemes are applied. Consequently the LU
factorization of the matrix in (2) can be very costly in large scale problems.
One approach to increase efficiency is to apply iterative solvers to (2), as in [17],
but there are associated challenges related to preconditioning and convergence.

An alternative approach to increase the computational efficiency is approxi-
mate matrix factorization (AMF). Assuming that the matrix is a sum of simpler
matrices

 L =
R∑

r=1

 Lr (3)

AMF replaces the system matrix (2) with a product of simpler, and easier to
factorize, matrices

I− h γ  L ≈ I− h γ  ̃L =

R∏

r=1

(I− h γ  Lr) . (4)

The approximation formula (4) defines implicitly the matrix  ̃L as

 ̃L =  L +

R∑

k=2

(−hγ)k−1
∑

1≤i1<i2<···<ik≤R

 Li1  Li2 . . .  Lik . (5)

For example, consider  L to be the discrete two-dimensional Laplace operator.
It can be written in the form (3) where  L1 and  L2 correspond to the derivatives
along the x direction and y direction, respectively. The AMF approximation
corresponds to the alternating directions factorization [14, 16]

I− h γ  ̃L := (I− h γ  L1) (I− h γ  L2)
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where
 ̃L =  L − h γ  L1  L2. (6)

The idea of using AMF to speed up calculations in implicit time integration
has appeared multiple times in the literature. Sandu [18] discussed a family
of methods named ELADI, which are Rosenbrock-W schemes that make use
of AMF to speed up calculations. The order of the resulting discretization re-
mains unchanged since Rosenbrock-W schemes can accommodate any Jacobian
approximation. Houwen et al. provided a survey for AMF methods applied in
the context of several different linear integration schemes, and provide stabil-
ity results for such schemes [19]. The discussion is limited to methods of low
order, two and three, presumably due to the inaccurate nature of the AMF
approximation. Gonzalez [10] proposed a way to apply AMF-refinements to
second-order and third-order Rosenbrock-type methods for solving advection-
diffusion-reaction PDEs. But their methods are limited to the low or medium
precision level, and no generalization to higher order is supplied. In [5] Beck
et al. compared the efficiency of AMF versus Krylov based approaches to the
solution of linear systems in the context of Newton iterations arising in Radau
[13] and Peer [6] integration methods. These methods avoid the issue of order
degradation, through the use of integration schemes in which the Jacobian of
the spatial discretization does not appear explicitly. They conclude that AMF
methods are extremely efficient, particularly when low accuracy solutions are
sought. Berzins et al. [7, 1] presented a method for solving the linear system
in a Newton iteration arising from several classes of time integration methods
including theta methods, backward differential formulas, and implicit-explicit
(IMEX) multistep methods. They performed and analysis of the error arising
from operator splitting and provided a method to control timesteps such as to
guarantee Newton convergence when using AMF. Since AMF is only used to
speed up the solution of the nonlinear equations, the error does not affect the
order of accuracy at the time stepping level. Calvo and Gerisch [9] applied
AMF to a form of linearly implicit Runge-Kutta (LIRK) methods that avoids
the computation of matrix-vector products. First order of convergence is ob-
tained by using a third-order LIRK method, and improved to second order by
adding a correction to the solution at each time step.

None of the existing methods that take advantage of AMF can provide highly
accurate results and there is still room for improvement in efficiency. The goal
of this work is to achieve high accuracy while maintaining a low computational
cost. The focus is on using AMF with linearly implicit Runge-Kutta methods of
high order. The main contribution of this paper is to account for the inherent
inaccuracy of AMF through low cost refinements of the stage values and to
recover the accuracy of the underlying time discretization.

The remainder of this paper is organized as follows. Section 2 introduces
LIRK methods and the existing approaches to apply AMF. Section 3 presents
a new strategy to incorporate AMF by using an inexpensive stage refinement
procedure. An error analysis explains how this strategy solves the accuracy
degradation issue that affects existing approaches. Stability issues are also in-
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vestigated. Section 4 reports numerical rests for a variety of test problems of
different dimensions and different degrees of stiffness, and illustrates the conver-
gence behavior and efficiency of the approach. Conclusions are drawn in Section
5.

2 Linearly implicit Runge-Kutta methods

A general linearly implicit Runge-Kutta (LIRK) scheme proposed by Calvo, de
Frutos, and Novo [8] is obtained by applying the IMEX Runge-Kutta methods
[4, 15]

Yi = yn + h
i−1∑

j=1

ai,j f(Yj) + h
i∑

j=1

âi,j g(Yj), (7a)

yn+1 = yn + h
s∑

j=1

bj f(Yj) + h
s∑

j=1

b̂j g(Yj), (7b)

to solve (1) where the stiff component is linear, g(y) :=  Ly:

(I− h âi,i  L) Yi = ℓi := yn + h

i−1∑

j=1

ai,j f(Yj) + h

i−1∑

j=1

âi,j  LYj , (8a)

yn+1 = yn + h

s∑

j=1

bj f(Yj) + h

s∑

j=1

b̂j  LYj . (8b)

Order conditions for LIRK methods are derived in [8], and simplifications of
the IMEX Runge-Kutta conditions are possible due to the special form of the
nonlinear term.

The coefficients âi,i in practical methods are chosen to be equal to the same
value γ for computational efficiency, as this allows to reuse the same LU factor-
ization in all stages. A linear transformation of variables allows for a reformu-
lation of the stage equations (8a) in a form that avoids explicit multiplications
by the matrix  L

(I− h γ  L) Ui = yn +

i−1∑

j=1

âi,j − ai,j
γ

Yj + h

i−1∑

j=1

ai,j F (Yj), (9a)

Yi = Ui −

i−1∑

j=1

âi,j − ai,j
γ

Yj . (9b)

Moreover, it is convenient to choose pairs of methods with the same weights
bj = b̂j in which case the next step solution (8b) is

yn+1 = yn + h

s∑

j=1

bj F (Yj). (9c)
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Calvo and Gerisch [9] studied the use of LIRK methods with AMF. The

approximation is obtained by replacing I− hγ  L with I− hγ  ̃L in (9a), or equiv-

alently, by using the matrix  ̃L instead of  L in (8)

(
I− h γ  ̃L

)
Ỹi = yn + h

i−1∑

j=1

ai,j f(Ỹj) + h

i−1∑

j=1

âi,j  ̃L Ỹj ,

ỹn+1 = yn + h

s∑

j=1

bj f(Ỹj) + h

s∑

j=1

b̂j  ̃L Ỹj .

It can also be regarded as a direct application of the LIRK method (8) to solve
the perturbed ODE system

ỹ′ =  ̃L ỹ + f(ỹ) = F (ỹ) − h γ
(

 L −  ̃L
)
ỹ (10)

instead of the original system (1). The first-order behavior of this approach has
been explained in [9] by the fact that the perturbation added in (10) changes
the solution over one time step by O(h2).

To recover second order Calvo and Gerisch [9] apply corrections to the nu-
merical solution obtained by LIRK with AMF. One such correction has the
form

yn+1 = ỹn+1 + h2 γ
(
I− h γ  ̃L

)−1 (
 L −  ̃L

)
yn . (11)

The matrix inverse in the correction term uses the same LU factorization as the
solution. The presence of the matrix inverse in the correction term ensures the
linear stability of the new solution (11). It is also noted in [9] that “regaining
order three using corrections similar to (11) is not feasible with a computational
cost comparable with the cost of recovering order two”.

3 LIRK-AMF methods with stage refinement

We consider a different way to incorporate AMF into LIRK methods, which
forms the basis of all approaches presented in this paper. In order to keep the
right-hand side of the original ODE system (1), we only approximate I − h γ  L

with I− h γ  ̃L when computing the Runge-Kutta stages:

(
I− h γ  ̃L

)
Ỹi = ℓ̃i := yn + h

i−1∑

j=1

ai,j f(Ỹj) + h
i−1∑

j=1

âi,j  L Ỹj , (12a)

ỹn+1 = yn + h
s∑

j=1

bj f(Ỹj) + h
s∑

j=1

b̂j  L Ỹj . (12b)

Thus the new method uses an inexact Jacobian for the implicit part in the LIRK
scheme. The change of the left hand side in (12a) will affect the solution, and
a correction is needed to restore accuracy.
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Consider the solution of the original stage equation (8a)

(I− h γ  L) Yi − ℓi = 0

by simplified Newton iterations of the form:

Y
(k)
i = Y

(k−1)
i −

(
I− h γ  ̃L

)−1

·
(

(I− h γ  L) Y
(k−1)
i − ℓi

)
. (13)

For example, the direct solution is:

Y
(0)
i =

(
I− h γ  ̃L

)−1

ℓi,

and the solution after one refinement iteration is:

Y
(1)
i = Y

(0)
i −

(
I− h γ  ̃L

)−1

·
(

(I− h γ  L) Y
(0)
i − ℓi

)
(14)

= Y
(0)
i −

(
I− h γ  ̃L

)−1

·
(
h γ  ̃L − h γ  L

)
Y

(0)
i .

Next we analyze the linear system solution errors and investigate how this
errors propagate to affect the solution at the next step.

3.1 Error analysis

Consider the exact stage solution

Yi = (I− h γ  L)−1 ℓi.

The linear system solution error after k iterations is defined as

ε
(k)
i = Y

(k)
i − Yi.

From (13) we obtain

ε
(k)
i = ε

(k−1)
i −

(
I− h γ  ̃L

)−1

· (I− h γ  L) ε
(k−1)
i (15a)

=
(
I− h γ  ̃L

)−1

·
(
I− h γ  ̃L − (I− h γ  L)

)
ε
(k−1)
i (15b)

= −
(
I− h γ  ̃L

)−1

·
(
h γ  ̃L − h γ  L

)
ε
(k−1)
i . (15c)

Nonstiff or moderately stiff case. In the nonstiff or moderately stiff case
we have ‖h Li‖ = O(h), therefore ‖  ̃L −  L‖ = O(h) and

∥∥∥∥
(
I− h γ  ̃L

)−1

·
(
h γ  ̃L − h γ  L

)∥∥∥∥ = O
(
h2

)
.

Consequently from (15c) the error decrease is
∥∥∥ε(k+1)

i

∥∥∥ = O(h2)
∥∥∥ε(k)i

∥∥∥ ⇒
∥∥∥ε(k)i

∥∥∥ = O
(
h2k+2

)
.
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Highly stiff case. For the highly stiff case ‖h Li‖ ≫ 1. We make the assump-
tion that, for any h there exists 0 < ρ(h) < 1 such that the following matrix
norm is uniformly bounded for any step size smaller than h:

∥∥∥∥
(
I− h γ  ̃L

)−1

·
(
h γ  ̃L − h γ  L

)∥∥∥∥ ≤ ρ(h) < 1 , ∀h : 0 ≤ h ≤ h.

In the highly stiff case the error decrease equation (15c) leads to
∥∥∥ε(k)i

∥∥∥ = ρ
∥∥∥ε(k−1)

i

∥∥∥ ⇒
∥∥∥ε(k)i

∥∥∥ = ρk ε
(0)
i .

We expect that the convergence rate will decrease with increasing step sizes,
i.e., ρ(h) → 1 when h → ∞.

Example 3.1 (Dimensional splitting of the discrete diffusion operator on a
Cartesian grid). Consider the two-dimensional diffusion operator with periodic
boundary conditions on a domain of size LX×LY . It is discretized on an M×N
grid of size ∆x, ∆y. We perform a dimensional splitting. The error equation
(15c) can be written as

(I− h γ  L1) (I− h γ  L2) ε
(k)
i = (h γ  L1) (h γ  L2) ε

(k−1)
i . (16)

Consider the discrete frequencies

−
M

2
≤ m ≤

M

2
− 1, −

N

2
≤ n ≤

N

2
− 1, m̃ =

2πm

LX
, ñ =

2πn

LY
.

A discrete Fourier transform applied to (16) gives the following error equation
for each spatial mode (m,n) of the error:

(1 + h γ m̃2)(1 + h γ ñ2) ε̂(k)m,n = (−h γ m̃2)(−h γ ñ2) ε̂(k−1)
m,n

Let

z1 =
h

∆x2

(
2πm

M

)2

, z2 =
h

∆y2

(
2πn

N

)2

.

The evolution of the mode (m,n) of the error is

ε̂(k+1)
m,n =

(γz1)(γz2)

(1 + γz1)(1 + γz2)
ε̂(k)m,n

The error amplification factor for the (m,n) mode is

Rm,n =
(γz1)(γz2)

(1 + γz1)(1 + γz2)
, |Rm,n| < 1, |Rm,n|

z1,z2→∞
−→ 1.

Therefore we expect that more iterations will be required for stiff problems. The
AMF with correction will work well for mildly stiff problems. It will work well
for stiff problems only when the solution is smooth, and the high order modes
are approaching zero. Similar conclusions are drawn for the three-way splitting
of a three dimensional diffusion problem

Rm,n.k =
(γz1)(γz2) + (γz1)(γz3) + (γz2)(γz3) + (γz1)(γz2)(γz3)

(1 + γz1)(1 + γz2)(1 + γz3)
.
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Remark 3.1. The accuracy analysis in Calvo and Gerisch’s paper [9] considers
the non-stiff case. For very stiff systems the correction term (11) is

h
(
I− h γ  ̃L

)−1 (
h γ  L − h γ  ̃L

)
yn = O(h)

and the remaining error term is O(h2), therefore the corrected solution is first
order.

3.2 Propagation of linear system errors

The computation of stage values via (12) and (13) propagates the linear system
errors from one stage to another. To account for the total error consider the
methods (8) and (12) and let

δYi = Ỹi − Yi. (17)

We assume that these errors are small. The exact stage equations (8a) read

(I− h γ  L) Yi = yn + h

i−1∑

j=1

ai,j f(Yj) + h

i−1∑

j=1

âi,j  LYj .

The AMF stage equations are solved inexactly and read

(I− h γ  L)
(
Ỹi − εi

)
= yn + h

i−1∑

j=1

ai,j f(Ỹj) + h
i−1∑

j=1

âi,j  L Ỹj ,

where εi is the error due to the simplified Newton approximation of the system
solution. Using (17) we express this in terms of the solution of the exact stages

(I− h γ  L) (Yi + δYi − εi) = yn + h

i−1∑

j=1

ai,j f(Yj + δYj)

+h
i−1∑

j=1

âi,j  L (Yj + δYj)

= yn + h

i−1∑

j=1

ai,j f(Yj) + h

i−1∑

j=1

âi,j  LYj

+h

i−1∑

j=1

ai,j f
′
j δYj + h

i−1∑

j=1

âi,j  L δYj ,

where we use the mean value theorem

f(Yj + δYj) − f(Yj) = f ′
j · δYj , f ′

j =

∫ 1

0

fy(Yj + s δYj) ds.
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The nonstiff/moderately stiff assumption about the nonlinear terms f implies
that these average Jacobians are of moderate size,

‖f ′
j‖ = O(1) , ∀ j . (18)

After subtracting the exact stage equations we are left with the error relation

δY =
(
I− h Â⊗  L − hA⊙ F ′

)−1 (
I− h Γ̂⊗  L

)
ε (19)

where Γ̂=diag(Â) and (A ⊙ F ′)i,j = ai,jf
′
j . For nonstiff or moderately stiff

problems ‖h L‖ = O(h), ‖hF ′‖ = O(h), and for small step sizes we have

‖δY ‖ = (1 + O(h)) ‖ε‖.

For highly stiff systems ‖h L‖ → ∞ and we have

δY =
(
Â⊗ ( L/‖ L‖)

)−1 (
Γ̂⊗ ( L/‖ L‖)

)
ε

therefore
‖δY ‖ = O(1) ‖ε‖.

In both the nonstiff and the stiff cases the stage error is of the size of the linear
system solution error.

From the exact step equation the error in the solution is

δyn+1 = h
s∑

j=1

bj f
′
j δYj + h

s∑

j=1

b̂j  L δYj .

Non-stiff or moderately stiff problems. In the non-stiff or moderately
stiff case where ‖ L‖ = O(1) we have

ε ∼ O
(
h2k+2

)
⇒ δY ∼ O

(
h2k+2

)
⇒ ‖ỹn+1 − yn+1‖ ∼ O

(
h2k+3

)
.

For k = 0 and k = 1 correction iterations we have the following results.

Theorem 3.1. If a LIRK method of order higher than 2 is applied to a nonstiff
or moderately stiff case of (1) with the AMF technique according to (12), then
the order of the method will reduce to second order.

Theorem 3.2. If a LIRK method of order 3 or 4 is applied to a nonstiff or
moderately stiff case of (1) with the AMF technique according to (12), and one
correction iteration (14) is applied to each stage value Yi, the order of the method
is the same as that of the original method.

Remark 3.2. Taking more iterations in the correction procedure may further
reduce the linear system solution errors.

Remark 3.3. Correspondingly two iterations of the correction procedure are
needed for a LIRK method of order 5 or 6 since k = 2 yields an error in the
solution of magnitude O

(
h7

)
. The idea can be extended to arbitrarily high order

methods.
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Very stiff problems. In the highly stiff case a more complex analysis based
on (19) is called for since ‖h L‖ can be large and ‖h L · δYj‖ can also become
large. We consider LIRK methods with a stiffly accurate implicit component
b̂i = âs,i. We have that

Ys = yn + h

i−1∑

j=1

as,j f(Yj) + h

s∑

j=1

âs,j  LYj ,

yn+1 = yn + h
s∑

j=1

bj f(Yj) + h
s∑

j=1

b̂j  LYj

= Ys + h

s∑

j=1

(bj − as,j) f(Yj).

The corresponding error equation

δyn+1 = δYs + h
s∑

j=1

(bj − as,j) f
′
j δYj

and the non-stiff condition (18) reveal that the error in the solution is of the
same size as the error in the linear solvers

‖ỹn+1 − yn+1‖ ∼ ‖δY ‖ ∼ ‖ε‖.

3.3 Stability considerations

Following Calvo and Gerisch [9] we perform stability analysis using the following
scalar test problem:

hf(y) = iwy, h L = z = z1 + z2, h ̃L = z1 + z2 − γz1z2. (20)

The LIRK method (8) applied to the test problem (20) gives:

yn+1 = R(z, iw) yn,

R(z, iw) = 1 + (iw b + zb̂)T
(
I− zÂ− iwA

)−1

1,

R(∞, iw) = 1 − b̂T Â−1 1.

The LIRK+AMF method (12) applied to the test problem (20) gives:

(1 − γz1)(1 − γz2) Ỹi = yn + iw

i−1∑

j=1

ai,j Ỹj + (z1 + z2)

i−1∑

j=1

âi,j Ỹj ,

(1 + γ2z1z2) Ỹi = yn + iw

i−1∑

j=1

ai,j Ỹj + (z1 + z2)

i∑

j=1

âi,j Ỹj ,

10



and therefore

Ỹi =
(

(1 + γ2z1z2)I− zÂ− iwA
)−1

1 yn,

ỹn+1 = yn + iw

s∑

j=1

bj Ỹj + (z1 + z2)

s∑

j=1

b̂j Ỹj .

Consequently, for very stiff linear components the overall scheme is weakly sta-
ble:

yn+1 = R(z1, z2, iw) yn,

R(z1, z2, iw) = 1 + (iw b + zb̂)T
(

(1 + γ2z1z2)I− zÂ− iwA
)−1

1,

R(∞,∞, iw) = 1.

For the scheme with one refinement step we have:

(1 − γz1) (1 − γz2) Y
(1)
i = 1 + iw

i−1∑

j=1

ai,j Ỹj + z
i−1∑

j=1

âi,j Ỹj ,

(
1 + γ2z1z2

)
Y

(1)
i = 1 + iw

i−1∑

j=1

ai,j Ỹj + z

i∑

j=1

âi,j Ỹj ,

(1 − γz1) (1 − γz2) Ỹi =
(
1 − γ (z1 + z2) + 2 γ2z1z2

)
Y

(1)
i ,

and therefore

τ =
1 − γ (z1 + z2) + 2 γ2z1z2

(1 − γz1) (1 − γz2) (1 + γ2z1z2)
,

Ỹ =
(
τ−1I− iwA− (z1 + z2) Â

)−1

1 yn,

ỹn+1 = yn +
(
iwb + zb̂

)T

·
(
τ−1I− iwA− (z1 + z2) Â

)−1

1 yn.

The corresponding stability function is

yn+1 = R(z1, z2, iw) yn,

R(z1, z2, iw) = 1 +
(
iwb + zb̂

)T

·
(
τ−1I− iwA− z Â

)−1

1,

R(∞,∞, iw) = 1.

We have that for very stiff components the scheme with one level of refinement is
weakly stable. The refinement does not improve the overall stability properties
of the scheme, only the accuracy. The correction step of Calvo and Gerisch [9]
leads to L-stable, first order methods for very stiff problems.
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4 Numerical experiments

We perform numerical experiments with the following methods:

• LIRK3(4): the original LIRK methods of orders three and four, respec-
tively, proposed by Calvo, de Frutos, and Novo [8]. The implicit parts are
L-stable and stiffly accurate;

• LIRK3(4)AMF: the LIRK methods using AMF as (12);

• LIRK3(4)AMFR1: the LIRK methods using AMF together with one
iteration refinement;

• LIRK3(4)AMFR2: the LIRK methods using AMF together with two
iterations refinement.

In all the experiments, the error is computed in the relative L2 norm as follows

E =
‖u− uref‖2
‖uref‖2

, (21)

where u is the numerical solution at the final time, and uref is the reference
solution at the same point obtained using Matlab’s ode15s solver with very
tight tolerances (AbsTol=RelTol=3 × 10−14).

4.1 An Allen-Cahn type problem

We use the PDE test problem of Allen-Cahn type from [9]:

ut = ∆u + u− u3 + f, (22)

where f is chosen to make the exact solution of the equation be

u(t, x, y) = et sin(πx) sin(πy).

The spatial domain is (x, y) ∈ [0, 1] × [0, 1] and the time interval is t ∈ [0, 1]
(units). The initial conditions and Dirichlet boundary conditions are calculated
from the exact solution.

The spatial discretization uses second order central finite differences of the
Laplacian on a uniform grid of size M ×M

(xi, yi) =

(
i

M + 1
,

j

M + 1

)
, i, j = 1, . . . ,M. (23)

In our tests we consider the case M = 59. The discrete solution elements
Uij(t) ≈ u(t, xi, yj) are ordered into a vector

z = (U11, U12, . . . , U1M , . . . , UM1, UM2, . . . , UMM )
T
.
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The resulting ODE system can then be written into the form (1) with the dis-
crete diffusion term being the linear part. The largest magnitude of the eigen-
values of the Jacobian for the diffusion term is approximately 2.88 × 104. The
discrete Laplacian operator  L =  Lx+  Ly is split into two matrices corresponding
to derivatives along x and y directions, respectively:

 Lx = DM ⊗ IM ,  Ly = IM ⊗DM , DM =




−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2




, (24)

where the symbol ⊗ denotes the tensor product and IM is an identity matrix of
dimension M ×M .

Figure 1(a) plots the convergence results for all the methods tested. As
expected, both LIRK3AMF and LIRK4AMF show second order, and give less
accurate results for the same time step than the underlying LIRK methods.
All the LIRK methods with AMF and refinement perform equally well as the
original LIRK methods; LIRK3AMFR1 produces slightly better results, and the
full order of the underlying LIRK methods has been recovered.

Figure 1(b) shows the corresponding work-precision diagrams. LIRK meth-
ods with AMF are not very competitive in terms of efficiency. One refinement
iteration improves LIRK3AMF and LIRK4AMF significantly. LIRK3AMFR1
and LIRK4AMFR1 are clearly the most efficient methods among the methods of
the same order. A second iteration does not improve accuracy, but spends com-
pute time, and makes LIRK3(4)AMFR2 schemes slightly less efficient. Calvo
and Gerisch’s approach [9] can achieve second order with AMF, and may only
be attractive for low accuracy requirements. The approach with stage refine-
ment proposed herein is competitive at all accuracy levels due to the recovery
of the full order and the addition of the relatively cheap refinement procedure.
It should be noted that the separation of  L into  Lx and  Ly in (24) allows for a
reduction of the large linear systems with 2M small ones of dimension M ×M ,
which can lead to considerable savings in the computational cost. The trick is
not used with this example simply for the sake of enabling a fair comparison
with the results in [9].

4.2 Brusselator problem

We next consider the two-dimensional Brusselator reaction-diffusion equation
[12, Sec. IV.10]

ut = 1 + u2v − (B + 1)u + α∆u, (25a)

vt = B u− u2v + α∆v, (25b)

where (x, y) ∈ [0, 1]2, t ∈ [0, 1.5], with the Neumann boundary conditions

∂u

∂n
= 0,

∂v

∂n
= 0.

13
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Figure 1: Results for the 2D Allen-Cahn type problem (22).

The problem is discretized with a second order central finite difference scheme
on a uniform mesh (23). The stiffness of this problem increases with the value of
α and number of grid points M . We test LIRK+AMF methods with or without
iterative corrections on two different cases.

Case 1. A nonstiff stiff case described by α = 0.001, B = 3 and the initial
conditions

u(x, y, 0) = 0.5 + y, v(x, y, 0) = 1 + 5x.

with M = 39 grid points used in each dimension. This gives an ODE system is
of dimension N = 3, 042.

Case 2. A stiff case, in which the settings follow [12, Sec. IV.10] where α =
0.1, B = 3.4, and the initial conditions are defined as

u(x, y, 0) = 22y(1 − y)3/2, v(x, y, 0) = 22x(1 − x)3/2.

We choose M = 127 for the three-way splitting test and M = 199 for the two-
way splitting test so that the resulting ODE systems are of size N = 31, 752 and
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N = 79, 202 respectively. The time varying Jacobian for the reaction term used
in the three-way splitting test makes the linearization challenging especially
when the problem is very stiff. For a large M , e.g. M = 150, the error caused
by the linearization leads to failure in solving the linear systems with direct
methods after a few time steps. So we select a relatively smaller value of M for
the three-way splitting test. The details on the splitting setup are given later
in this section.

Table 1 shows the dominant eigenvalues for these test cases which shed light
on the degree of stiffness. Note that the Jacobian matrix for the reaction term
has complex eigenvalues which makes this test problem more challenging than
the previous one.

After spatial discretization the PDE is turned into a semi-linear ODE system
of the form

z′ =  Ldif z︸ ︷︷ ︸
diffusion

+  Lrea(t) z︸ ︷︷ ︸
reaction

+R,

where z is the combined vector for the variables u and v,  Ldif and  Lrea(t) are
the Jacobian of the diffusion term and reaction term respectively, and R is the
rest of the terms such as boundary treatment. The diffusion term is stiff while
the reaction term is nonstiff. We first apply LIRK methods with the diffusion
treated implicitly and the other terms explicitly. Next we include the Jacobian
of the reaction terms in the linear part and apply a three-way splitting strategy.
The LU decompositions are performed per time step using sparse Gaussian
elimination in MATLAB.

Table 1: The dominant eigenvalues (largest in magnitude) of each component.

Case Lx Ly Lx + Ly Lrea(t0)

1 (M = 39) 1.28× 101 1.28 × 101 2.56× 101 1.05 × 101

2 (M = 127) 6.55× 103 6.55 × 103 1.31× 104 2.01 × 101

3 (M = 199) 1.60× 104 1.60 × 104 3.20× 104 2.01 × 101

Two-way splitting. A directional splitting is applied to the diffusion term
which is written as the sum of derivatives in the x-direction and y-direction,
 Ldif =  Lx +  Ly. See (24) for the structure of  Lx and Ly. This splitting allows to
reduce the linear algebra effort to solving 2M tridiagonal systems of dimension
M , all of which share the same matrix I−hγDM, and use reordered right-hand
sides.

Figure 2(a) shows the convergence plots of different methods for Case 1.
Both LIRK3AMF and LIRK4AMF give second order. With one refinement
iteration the results become as accurate as those of the original LIRK methods.
The largest allowable time steps are almost the same for all methods, implying
good stability properties of LIRK methods with AMF. Figure 2(b) presents the
corresponding work-precision diagrams. It can be seen that LIRK methods with
one refinement iteration yield the best efficiency. To achieve the same accuracy
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level, LIRK3AMFR1 is about 2.2 times faster than LIRK3 and LIRK4AMFR1
is about 1.6 times faster than LIRK4.
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Figure 2: Results for the 2D Brusselator system(25), Case 1, with M = 39. AMF
is applied with a two-way splitting of the Jacobian. 15, 20, 25, 50, 100, 200, 400
equal steps are used for the time integration of the system on the interval [0, 1].
The left-most points (highlighted by a circle) on each curve indicates the max-
imal allowable time steps.

Figure 3 shows the convergence and work-precision diagrams for different
methods for the large scale stiff case with M = 199. Generally LIRK methods
with AMF and two refinement iterations give more accurate results than those
with AMF and one refinement iteration. The refinement works well and recov-
ers the theoretical orders of the corresponding LIRK methods. The errors for
methods with two refinement iterations approach the LIRK results at a faster
rate than methods with just one refinement iteration. This differs from the
results of the first case, but is in line with the theoretical prediction. Another
notable advantage of the AMF technique is the gain in term of stability. If no
refinement is employed, the maximal time step size can be at least two times
larger than that allowed by the original LIRK methods for both third-order
and fourth-order schemes. However, the gain disappears or shrinks when the
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refinement procedure is added.
In the efficiency comparison, LIRK methods with AMF and two refinement

are the most effective for solutions more accurate than approximately 10−4.
LIRK methods with AMF provide a good compromise between accuracy and
speed since they can use a maximal allowable time step size that is at least
two times larger than LIRK methods, and run significantly faster than LIRK
methods.
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Figure 3: Results for the 2D Brusselator system (25), Case 2, with M = 199.
AMF is applied with a two-way splitting of the Jacobian. 400, 500, 600, 800,
1000, 1500, 2000, 4000, 8000 equal steps are used for the time integration of the
system on the interval [0, 1]. The left-most points (highlighted by a circle) on
each curve indicate the maximal allowable time steps.

Three-way splitting. We use a three-way splitting of the linear part

 L =  Lx +  Ly +  Lrea(t)

where the Jacobian of the reaction terms is treated implicitly.  Lrea(t) contains
four blocks, each of which is a diagonal matrix. It is updated at each time step.
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The linear system associated with I−hγ  Lrea can be reduced to M2 smaller
systems of dimension two which can be solved separately at each grid point. We
choose to solve the large sparse system directly as an explicit decoupling does
not lead to a clear performance gain for a serial implementation.

The results are shown in Figure 4, and 5. For Case 1, the refinement proce-
dure can successfully improve the order from 2 to the theoretical order. AMF
without refinement is not competitive in terms of efficiency, but AMF with re-
finement yields some performance gain for third-order schemes and comparable
results with LIRK methods for fourth-order schemes. This is due to the fact
that the system is relatively small and additional cost is brought in to solve the
linear system associated with  Lrea(t).

For the stiff case, the Jacobian for the implicit part  L makes the linear
system difficult to solve with direct methods. One LU decomposition of the
system may take over 5000 seconds. To improve the performance of LIRK
methods, we make use of the reordering algorithm symamd in MATLAB before
solving the linear systems. The reordering can also help reduce the bandwidth
of the sparse matrices as similar to purpose of the splitting schemes we used.

The convergence orders for the stiff case are very close to the two-way split-
ting test results. In terms of efficiency, there is still considerable performance
gain for AMF with refinement, especially for AMF with two refinement itera-
tions. The savings in CPU time may mainly come from reducing the big system
into multiple small systems, which is another advantage of the application of
AMF.

5 Conclusions

We have applied approximate matrix factorization to high order linearly implicit
Runge-Kutta methods for solving semi-linear systems of differential equations.
The factorization (splitting) error brought by AMF leads to severe order degra-
dation, especially for high order Runge-Kutta methods. The existing approach
to recover second order is based on correction applied to the next step solution
[9]. In this work the full order of the underlying methods is recovered by cor-
recting stage values via a refinement procedure based on the idea of simplified
Newton iterations.

We have performed error analysis for the linear system solutions with AMF,
and investigated how this errors affect the next step solution. In the non-stiff
and mildly stiff case the full order of the underlying method can be recovered
using a fixed, small number of refinement iterations. In the very stiff case
the number of iterations can be large since the convergence can deteriorate
with increasing stiffness. A stability analysis reveals that the stage refinement
procedure does not improve the overall stability of the LIRK+AMF method.
When AMF is used the resulting schemes are only weakly stable for very stiff
problems. Consequently, this application of AMF is attractive for mildly stiff
problems, but may not work well for very stiff systems.

Numerical experiments on a variety of test problems of different sizes and
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Figure 4: Results for the 2D Brusselator system (25), Case 1, with M = 39.
AMF is applied with a three-way splitting of the Jacobian. 15, 20, 25, 50,
100, 200, 400 equal steps are used for the time integration of the system on
the interval [0, 1]. The left-most points (highlighted by a circle) on each curve
indicates the maximal allowable time steps. The numbers inside the triangle
give the convergence order.

different degrees of stiffness validate the theoretical findings on the accuracy
and stability of high order linearly implicit Runge-Kutta methods when AMF
is used. The results also show that the proposed approach can improve the
efficiency of high order linearly implicit Runge-Kutta methods significantly and
thus is attractive for solving large scale mildly stiff systems such as diffusion-
reaction equations. Furthermore, our tests on the three-way splitting demon-
strate that our methods can also efficiently deal with problems where stiffness
comes from both diffusion and reaction terms. Though we considered LIRK
schemes up to order four, the general framework developed herein can be ap-
plied to higher order LIRK methods, and could be extended to study the use
of AMF with implicit-explicit multistep methods and implicit-explicit general
linear methods.

19



200 300 500 1000 2000 4000 8000
10

−8

10
−6

10
−4

10
−2

10
0

 2.7

 1.9

 3.3

 4.6

No. of steps

E
rr

or

 

 

LIRK3

LIRK3AMF

LIRK3AMFR1

LIRK3AMFR2

200 300 500 1000 2000 4000 8000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

 3.8

 2.0

 3.7

 5.1

No. of steps

E
rr

or

 

 

LIRK4

LIRK4AMF

LIRK4AMFR1

LIRK4AMFR2

(a) Temporal error vs. number of steps

10
0

10
1

10
2

10
3

10
4

10
−8

10
−6

10
−4

10
−2

10
0

CPU time [in sec]

E
rr

or

 

 

LIRK3

LIRK3AMF

LIRK3AMFR1

LIRK3AMFR2

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

CPU time [in sec]

E
rr

or

 

 

LIRK4

LIRK4AMF

LIRK4AMFR1

LIRK4AMFR2

(b) Temporal error vs. CPU time

Figure 5: Results for the 2D Brusselator system (25), Case 2, with M = 127.
AMF is applied with a three-way splitting of the Jacobian. 100, 200, 300, 400,
500, 1000, 2000, 4000, 8000 equal steps are used for the time integration of the
system on the interval [0, 1]. The left-most points (highlighted by a circle) on
each curve indicates the maximal allowable time steps.
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A LIRK methods

The coefficients of the LIRK3 method [8]:

0 0

γ 0 γ

1+γ
2 0 1−γ

2 γ

1 0 b2 b3 γ

0 b2 b3 γ

0 0

γ γ 0

1+γ
2

1−γ
2 − a32 a32 0

1 0 1 − a43 a43 0

0 b2 b3 γ

,

where b2 = − 3γ2

2 + 4γ − 1
4 and b3 = 3γ2

2 − 5γ + 5
4 . And the choice for the free

parameter is γ = 0.435866521508459 and a32 = 0.35.
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The coefficients of the LIRK4 method [8]:
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