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Abstract

The primary objective of this paper is to revisit and make a case for
the merits of R.A. Fisher’s objections to the decision-theoretic framing of
frequentist inference. It is argued that this framing is congruent with the
Bayesian but incongruent with the frequentist inference. It provides the
Bayesian approach with a theory of optimal inference, but it misrepresents
the theory of optimal frequentist inference by framing inferences solely in
terms of the universal quantifier ‘for all values of θ in Θ’, denoted by
∀θ∈Θ. This framing is at odds with the primary objective of model-
based frequentist inference, which is to learn from data about the true
value θ∗; the one that gave rise to the particular data. The frequentist
approach relies on factual (estimation, prediction), as well as hypothetical
(testing) reasoning, both of which revolve around the existential quantifier
∃θ∗∈Θ. The paper calls into question the appropriateness of admissibility
and reassesses Stein’s paradox as it relates to the capacity of frequentist
estimators to pinpoint θ∗. The paper also compares and contrasts loss-
based errors with traditional frequentist errors, such as coverage, type
I and II; the former are attached to θ, but the latter to the inference
procedure itself.

Key words: decision theoretic framing; Bayesian vs. Frequentist
inference; Stein’s paradox; James-Stein estimator; loss functions; admis-
sibility; error probabilities; risk functions
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1 Introduction

Wald’s (1950) decision-theoretic framework is widely viewed as providing a
broad enough perspective to accommodate and compare the frequentist and
Bayesian approaches to inference, despite their well-known differences. It is
perceived as offering a neutral framing of inference that brings into focus their
common features and tones down their differences; see Berger (1985), Robert
(2001), O’Hagan (1994).

Historically, Wald (1939) proposed the original variant of the decision-theoretic
framework with a view to unify Neyman’s (1937) rendering of frequentist inter-
val estimation and testing:

“The problem in this formulation is very general. It contains the problems of
testing hypotheses and of statistical estimation treated in the literature.” (p. 340)

Among the frequentist pioneers, Jerzy Neyman accepted enthusiastically this
broader perspective, primarily because the concepts of decision rules and action
spaces seemed to provide a better framing for his behavioristic interpretation
of Neyman-Pearson (N-P) testing based on the accept/reject rules; see Ney-
man (1952; 1971). Neyman’s attitude towards Wald’s (1950) framing was also
adopted wholeheartedly by some of his most influential students/colleagues at
Berkeley, including Lehmann (1959) and LeCam (1986). In a foreword of a
collection of Neyman’s early papers, his students/editors described the Wald’s
framing as (Neyman, 1967, p. vii):

“A natural but far reaching extension of their [N-P formulation] scope can be
found in Abraham Wald’s theory of statistical decision functions.”

At the other end of the argument, R. A. Fisher (1955) rejected Wald’s fram-
ing on the grounds that it seriously distorts his rendering of frequentist statistics:
“The attempt to reinterpret the common tests of significance used in scientific re-
search as though they constituted some kind of acceptance procedure and led to
‘decisions’ in Wald’s sense, originated in several misapprehensions and has led, ap-
parently, to several more.” (p. 69)

With a few exceptions, such as Cox (1958), Tukey (1960) and Birnbaum
(1977), Fisher’s (1955) viewpoint has been inadequately discussed and evalu-
ated by the subsequent statistics literature. The primary aim of this paper is to
revisit Fisher’s minority view by taking a closer look at the decision-theoretic
framework with a view to re-evaluate the claim that it provides a neutral frame-
work for comparing the frequentist and Bayesian approaches. It is argued that
Fisher’s view that the decision theoretic framing is germane to ”acceptance sam-
pling”, but misrepresents frequentist inference, is not without merit. The key
argument of the discussion that follows is that the decision-theoretic notions of
loss function and admissibility are congruent with the Bayesian approach, but
incongruent with both the primary objective and the underlying reasoning of
the frequentist approach.

Section 2 introduces the basic elements of the decision theoretic set-up with
a view to bring out its links to the Bayesian and frequentist approaches, calling
into question the conventional wisdom concerning its neutrality. Section 3 takes
a closer look at the Bayesian approach and argues that had the decision-theoretic
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apparatus not exist, Bayesians would have been forced to invent it in order to
establish a theory of optimal Bayesian inference. Section 4 discusses critically
the notions of loss functions and admissibility, focusing primarily on their role
in giving rise to Stein’s paradox and their incompatibility with the frequentist
approach. It is argued that the frequentist dimension of the notions of a loss
function and admissibility is more apparent than real. Section 5 makes a case
that the decision-theoretic framework misrepresents both the primary objective
and the underlying reasoning of the frequentist approach. Section 6 revisits
the notion of a loss function and its dependence on ‘information other than the
data’. It is argued that loss-based errors are both different and incompatible
with the traditional frequentist errors because they are attached to the unknown
parameters instead of the inference procedures themselves.

2 The decision theoretic set-up
2.1 Basic elements of the decision-theoretic framing

The current decision-theoretic set-up has three basic elements.
1. A prespecified (parametric) statistical model Mθ(x), generically specified

by:
Mθ(x)={f(x; θ), θ∈Θ}, x∈Rn

X , for θ∈Θ⊂R
m, m≪n, (1)

where f(x; θ) denotes the (joint) distribution of the sample X:=(X1, ..., Xn), R
n
X

denotes the sample space and Θ the parameter space. This model represents the
stochastic mechanism assumed to have given rise to data x0:=(x1, ..., xn).

2. A decision space D containing all mappings d(.): R
n
X → A, where A

denotes the set of all actions available to the statistician.

3. A loss function L(., .): [D × Θ] → R, representing the numerical loss if
the statistician takes action a∈A when the state of nature is θ∈Θ; see Ferguson
(1967), Berger (1985), Wasserman (2004).

The basic idea is that, when the decision-maker selects action a, he/she does
not know the ‘true’ state of nature, represented by θ

∗. However, contingent on
each action a∈A, the decision-maker ‘knows’ the losses (gains, utilities) resulting
from different choices (d, θ)∈[D × Θ]. The decision-maker observes data x0,
which provides some information about θ

∗, and then maps each x∈Rn
X to a

certain action a∈A guided solely by L(d, θ).

2.2 The original Wald framing

It is important to bring out the fact that the original Wald (1939) framing
was much narrower than the above (1-3) rendering, due to its aim to formalize
the Neyman-Pearson (N-P) approach; see Ferguson (1976). What were the key
differences?

(i) The decision (action) space D was defined exclusively in terms of subsets
of the parameter space Θ. For estimation D:={θ : θ∈Θ} is the set of all single-
ton points of Θ and for testing D:= (Θ0,Θ1), the null and alternative regions,
respectively.
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(ii) The original loss (weight) was a zero-positive function, with zero loss at
θ=θ∗:

L0−c(θ, θ̂(X))=

{
0 if θ̂(X) = θ∗

cθ>0 if θ̂(X)=θ 6=θ∗, θ∈Θ,
(2)

where θ∗ is the true value of θ in Θ. For the discussion that follows it is important
to note that (2) is non-operational in practice because θ∗ is unknown.

The more general framing, introduced by Wald (1947; 1950) and broadened
by Le Cam (1955), extended the scope of the original set-up by generalizing the
notions of loss functions and decision spaces. In what follows it is argued that
these extensions created serious incompatibilities with both the objective and
the underlying reasoning of frequentist inference.

In addition, it is both of historical and methodological interest to note that
Wald (1939) introduced the notion of a prior distribution π(θ), ∀θ∈Θ, into
the original decision-theoretic machinery reluctantly, and justified it on being a
useful tool for proving certain theorems:

“The situation regarding the introduction of an a priori probability distribution
of θ is entirely different. First, the objection can be made against it, as Neyman
has pointed out, that θ is merely an unknown constant and not a variate, hence it
makes no sense to speak of the probability distribution of θ. Second, even if we
may assume that θ is a variate, we have in general no possibility of determining the
distribution of θ and any assumptions regarding this distribution are of hypothetical
character. The reason why we introduce here a hypothetical probability distribution
of θ is simply that it proves to be useful in deducing certain theorems and in the
calculation of the best system of regions of acceptance.” (p. 302)

He was also the first to highlight the extreme relativism of the decision-
theoretic notion of ‘optimality’ with respect a particular loss function:

“The ”best” system of regions of acceptance ... will depend only on the weight
function of the errors.” (p. 302) [emphasis added]

2.3 A shared neutral framework?

The frequentist, Bayesian and the decision-theoretic approaches share the notion
of a statistical model by viewing data x0:=(x1, ..., xn) as a realization of a sample
X:=(X1, ..., Xn) from (1).

The key differences between the three approaches are:
(a) the frequentist approach relies exclusively on Mθ(x),
(b) the Bayesian approach adds a prior distribution, π(θ), ∀θ∈Θ (for all

θ∈Θ),
(c) the decision-theoretic framing revolves around a loss (gain or utility)

function:
L(d(x), θ), ∀θ∈Θ, ∀x∈Rn

X .

The loss function is often assumed to be an even, differentiable and convex
function of (d(x)−θ), and can take numerous functional forms; see Wasserman
(2004), Robert (2001), Bansal (2007) inter alia.

The claim that the decision-theoretic perspective provides a neutral ground
is often justified on account of the loss function being a function of the sample
and parameter spaces via the two universal quantifiers:
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(i) ‘∀x∈Rn
X ’, associated with the distribution of the sample:

frequentist: f(x; θ), ∀x∈Rn
X ,

(ii) ‘∀θ∈Θ’ associated with the posterior distribution:

Bayesian: π(θ|x0)=
π(θ)·f(x0|θ)∫

θ∈Θ
π(θ)·f(x0|θ)dθ , ∀θ∈Θ.

The idea is that allowing for all values of x in R
n
X goes beyond the Bayesian

perspective, which relies exclusively on a single point x0. What is not obvious
is whether that is sufficient to do justice to the frequentist approach. A closer
scrutiny suggests that frequentist inference is misrepresented by the way both
quantifiers are used in the decision-theoretic framing of inference.

First, the quantifier ∀x∈Rn
X plays a minor role since its only relevance is in

defining the expectation for transforming a loss function, say L(θ, θ̂(x)), into a
risk function:

R(θ, θ̂)=EX

[
L(θ, θ̂(X))

]
=
∫
x∈R

n

X

L(θ, θ̂(x))f(x; θ)dx, ∀θ∈Θ. (3)

This is the only place where the underlying statistical model Mθ(x) enters the
decision-theoretic framing. Hence, from this perspective the only relevant part
of the behavior of θ̂(X) is how it affects the risk for different values of θ in
Θ. This undermines the pivotal role of the quantifier ∀x∈Rn

X in determining
the theory of optimal frequentist inference. For that the distribution of the
sample, f(x; θ), ∀x∈Rn

X , takes center stage since the sampling distribution of
any statistic Yn=g(X) (estimator, test, predictor) is derived via:

F (y; θ):=P(Yn≤y; θ)=

∫ ∫
· · ·

∫

︸ ︷︷ ︸
{x: g(x)≤t; x∈R

n

X
}

f(x; θ)dx.
(4)

The relevant error probabilities that calibrate the optimality of frequentist pro-
cedures are defined in terms of (4).

Second, the decision-theoretic notion of optimality revolves around the uni-
versal quantifier ‘∀θ∈Θ’, rendering it congruent with the Bayesian but incon-
gruent with the frequentist approach. To be more specific, since different risk
functions often intersect over Θ, an optimal rule is usually selected after the risk
function is reduced to a scalar. Two such choices of relevant risk are:

Maximum risk: Rmax(θ̂)=sup
θ∈Θ

R(θ, θ̂),

Bayes risk: RB(θ̂)=
∫
θ∈ΘR(θ, θ̂)π(θ)dθ.

(5)

Hence, an obvious way to choose among different rules is to find the one that
minimizes the relevant risk with respect to all possible estimates θ̃(x). In the
case of (5), this gives rise to two corresponding decision rules:

Minimax rule: inf
θ̃(x)

Rmax(θ̂)= inf
θ̃(x)

[sup
θ∈Θ

R(θ, θ̂)],

Bayes rule: inf
θ̃(x)

RB(θ̂)= inf
θ̃(x)

∫
θ∈Θ

R(θ, θ̂)π(θ)dθ.
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In this sense, a decision or a Bayes rule θ̂ will be considered optimal when it
minimizes the relevant risk, no matter what the true state of nature θ∗ happens
to be. This constitutes a key caveat that is often ignored in discussions of these
approaches. When viewed as a game against Nature, the decision maker selects
action a from A, irrespective of what value θ∗ Nature has chosen. That is, θ∗

plays no role in selecting the optimal rules since the latter have nothing to do
with the true value θ∗ of θ. To avoid any misreading of this line of reasoning,
it is important to emphasize that ‘the true value θ∗’ is shorthand for saying
that ‘data x0 constitute a typical realization of the sample X with distribution
f(x; θ∗)’; see Spanos and Mayo (2015). This should be contrasted with the
notion of optimality in frequentist inference that gives θ∗ center stage, in the
sense that it evaluates the capacity of the inference procedure to inform the
modeler about θ∗; no other value is relevant. According to Reid (2015):

“A statistical model is a family of probability distributions [Mθ(x)], the central
problem of statistical inference being to identify which member of the family [θ∗]
generated the data of interest.” (p. 418)

3 The Bayesian approach

To shed further light on the affinity between the decision-theoretic framework
and the Bayesian approach, let us take a closer look at the latter.

3.1 Bayesian inference and its primary objective

A key argument in favor of the Bayesian approach is often its simplicity in the
sense that all forms of inference revolve around a single function, the poste-
rior distribution: π(θ|x0)∝π(θ)·f(x0|θ), ∀θ∈Θ. This, however, is only half the
story. The other half is how the posterior distribution is utilized to yield ‘opti-
mal’ inferences. The issue of optimality, however, is intrinsically related to what
the primary objective of Bayesian inference is.

An outsider looking at Bayesian approach would surmise that its primary ob-
jective is to yield ‘the probabilistic ranking’ (ordering) of all values of θ in Θ. The
modeling begins with an a priori probabilistic ranking based on π(θ), ∀θ∈Θ,
which is revised after observing x0 to derive π(θ|x0), ∀θ∈Θ; hence the key
role of the quantifier ∀θ∈Θ. Indeed, O’Hagan’s (1994) argues that the revised
probabilistic ranking is the inference:

“Having obtained the posterior density π(θ|x0), the final step of the Bayesian
method is to derive from it suitable inference statements. The most usual inference
question is this: After seeing the data x0, what do we now know about the parameter
θ. The only answer to this question is to present the entire posterior distribution.”
(p. 6)

In light of that, the question that naturally arises is: what does the revised
probabilistic ranking, based on π(θ|x0), ∀θ∈Θ, convey about the underlying
data generating mechanism in (1), assumed to have given rise to data x0? That
is, what does this ranking have to do with learning about the ‘true’ value θ

∗?
It is not obvious why the highest ranked value θ̃(x0) (mode) or some other
feature of the posterior distribution pinpoints θ

∗ better than any other value.
As mentioned above, θ∗ plays no role in selecting the optimal rule, since the
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latter revolves exclusively around the relevant risk. In contrast, learning from
data x0 about the unique value θ

∗ makes perfectly good sense in frequentist
inference since θ is viewed as an unknown constant that gave rise to x0. This
issue highlights the key built-in tension between the frequentist and Bayesian
approaches.

If the primary objective of Bayesian inference is not the revised probabilis-
tic ranking of all θ∈Θ, what is it? The answer is that the decision-theoretic
perspective came in to refocus and append to Bayesian inference. O’Hagan,
echoing earlier views by Lindley (1965) and Tiao and Box (1975) in contrasting
frequentist (classical) inferences with Bayesian inferences, argues:

“Classical inference theory is very concerned with constructing good inference
rules. The primary concern of Bayesian inference, ..., is entirely different. The
objective is to extract information concerning θ from the posterior distribution,
and to present it helpfully via effective summaries. There are two criteria in this
process. The first is to identify interesting features of the posterior distribution.
... The second criterion is good communication. Summaries should be chosen to
convey clearly and succinctly all the features of interest. ... In Bayesian terms,
therefore, a good inference is one which contributes effectively to appropriating the
information about θ which is conveyed by the posterior distribution.” (p. 14)

Clearly, O’Hagan’s attempt to define what is a ‘good’ Bayesian inference
begs the question: what does constitute ‘effective appropriation of information
about θ’ mean, apart from the probabilistic ranking? Putting that aside, in
his attempt to defend his stance that the entire posterior distribution is the
inference, O’Hagan argues that criteria for ‘optimal’ Bayesian inferences are
only parasitical on the Bayesian approach and enter the picture via the decision
theoretic perspective:

“... a study of decision theory has two potential benefits. First, it provides
a link to classical inference. It thereby shows to what extent classical estimators,
confidence intervals and hypotheses tests can be given a Bayesian interpretation or
motivation. Second, it helps identify suitable summaries to give Bayesian answers
to stylized inference questions which classical theory addresses.” (p. 14)

Both of the above mentioned potential benefits to the Bayesian approach,
are misleading for two reasons. First, the link between the decision-theoretic
and the classical (frequentist) inference is fraught with misleading definitions
and unclarities with respect to the reasoning and objectives of the latter. For
instance, the quantifier ‘∀θ∈Θ’ used to define ‘optimal’ estimators with respect
to particular loss functions is at odds with frequentist inference. Second, the
claim concerning Bayesian answers to frequentist questions of interest is mis-
placed because the former provides no real answers to the frequentist primary
question of interest which pertains to learning about θ∗. A Bayes rule offers very
little, if anything, relevant in learning what the value θ∗ that gave rise to x0 is.
Let us unpack this answer in more detail.

Substituting the risk function in (3) into the Bayes risk in (5), one can show
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that:
RB(θ̂) =

∫
θ∈Θ

(∫
x∈R

n

X

L(θ, θ̂(x))f(x; θ)dx
)
π(θ)dθ=

=
∫
x∈R

n

X

∫
θ∈Θ L(θ, θ̂(x))f(x|θ)π(θ)dθdx=

=
∫
x∈R

n

X

{∫
θ∈Θ

L(θ, θ̂(x))π(θ|x)dθ
}
m(x)dx,

(6)

where m(x)=
∫
θ∈Θ

f(x; θ)dθ; see Bansal (2007). The second and third equalities
presume that one can reverse the order of integration (a technical issue), and
treat f(x; θ) as the joint distribution of X and θ so that:

f(x; θ)=f(x|θ)π(θ)=π(θ|x)m(x).

The latter raises a number of questionable hand-waving moves because it mud-
dies the distinction between x, a generic value of Rn

X , and the particular value
x0; see Spanos (2015). In light of (6), a Bayesian estimate is ‘optimal’ relative

to a particular loss function L(θ̂(X), θ), when it minimizes RB(θ̂). This makes
it clear that what constitutes an ‘optimal’ Bayesian estimate is primarily deter-
mined by L(θ̂(X), θ) (Schervish, 1995):

(i) when L2(θ̂, θ)=(θ̂ − θ)2 the Bayes estimate θ̂ is the mean of π(θ|x0),

(ii) when L1(θ̃, θ)=|θ̃ − θ| the Bayes estimate θ̃ is the median of π(θ|x0),

(iii) when L0−1(θ, θ)=δ(θ, θ)=

{
0 for

∣∣θ−θ
∣∣ < ε

1 for
∣∣θ−θ

∣∣ ≥ ε
, for ε>0, the Bayes esti-

mate θ is the mode of π(θ|x0).

In practice, the most widely used loss function is the square:

L2(θ̂(X); θ)=(θ̂(X)− θ)2, ∀θ∈Θ,

whose risk function is the decision-theoretic Mean Square Error (MSE1):

R(θ, θ̂)=E(θ̂(X)−θ)2=MSE1(θ̂(X); θ), ∀θ∈Θ. (7)

Surprising, however, this definition of the MSE, denoted by MSE1, is different
from the frequentist MSE, which is defined by:

MSE(θ̂n(X); θ∗)=E(θ̂n(X)−θ∗)2. (8)

The key difference is that (8) is defined at the point θ=θ∗, as opposed to ∀θ∈Θ.
Unfortunately, statistics textbooks adopt one of the two definitions of the MSE
– either at θ=θ∗ or ∀θ∈Θ – and ignore (or seem unaware) of the other. At first
sight, his difference might appear pedantic, but it turns out that it has very
serious implications for the relevant theory of optimality for the frequentist vs.
Bayesian inference procedures. Indeed, reliance on ∀θ∈Θ undermines completely
the relevance of admissibility in frequentist inference.

Admissibility. An estimator θ̃(X) is inadmissible if there exists another

estimator θ̂(X) such that:

R(θ, θ̂) ≤ R(θ, θ̃), ∀θ∈Θ, (9)

and the strict inequality (<) holds for at least one value of θ. Otherwise, θ̃(X)

is said to be admissible with respect to the loss function L(θ, θ̂).
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3.2 The duality between loss functions and priors

The built-in affinity between the decision-theoretic set-up and Bayesian infer-
ence is cemented by a duality result between loss functions and prior distribu-
tions; see Robert (2001). This duality stems from the fact that minimizing the
Bayes risk:

RB(θ̂)=
∫
θ∈Θ

R(θ̂, θ)π(θ)dθ,
is equivalent to minimizing the integral:∫

θ∈Θ
L(θ̂(X), θ)π(θ|x)dθ.

This result brings out two important features of Bayesian inference. First,
it confirms the minor role played by the quantifier x∈Rn

X in both Bayesian
and decision-theoretic optimality theory of inference. Second, it indicates that
L(θ, θ̂) and π(θ) are perfect substitutes with respect to any weight function
w(θ)>0, ∀θ∈Θ, in the derivation of Bayes rules. Modifying the loss function or
the prior yields the same result:

“... the problem of estimating θ with a modified (weighted) loss function is
identical to the problem with a simple loss but with modified hyperparameters of
the prior distribution while the form of the prior distribution does not change.”
(Srivastava et al., 2014, p. 522)

This implies that in practice a Bayesian could derive a particular Bayes
estimate by attaching the weight to the loss function or to the prior distribution
depending on which derivation is easier; see Bansal (2007), Srivastava et al.
(2014).

3.3 Bayes rule and admissibility

As argued in the sequel, it should come as no surprise to learn that Bayes rules
dominate all other rules when admissibility is given center stage.

A Bayes rule θ̂B(X) with respect to a prior distribution π(θ) is:

(i) Admissible, under certain regularity conditions, including when θ̂B(X) is
unique up to equivalence relative to the same risk function.

(ii) Minimax when R(θ, θ̂B)=c<∞.

(iii) An admissible estimate θ̂(X) is either Bayes θ̂B(X) or the limit of a
sequence of Bayes rules; see Wasserman (2004), Srivastava et al. (2014).

These results have been used as evidence for the superiority of the Bayesian
perspective, and led to the intimation that an effective way to generate optimal
frequentist procedures is to find the Bayes solution using a reasonable prior and
then examine their frequentist properties to see whether it is satisfactory from
the latter viewpoint; see Rubin (1984), Gelman et al (2004).

Even if one were to agree that Bayes rules and admissible estimators largely
coincide, the importance of such a result hinges on the appropriateness of ad-
missibility for frequentist estimators.

4 Loss functions and admissibility revisited

The claim to be discussed in this section is that the notions of a ‘loss func-
tion’ and ‘admissibility’ are incompatible with the optimal theory of frequentist
estimation largely framed by Fisher; see Savage (1976).
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4.1 Admissibility as a minimal property

The following example is used to call into question the notion of a loss function
and the associated property of admissibility for optimal frequentist estimators.

Example. In the context of the simple Normal model:

Xk ∽ NIID(θ, 1), k=1, 2, ..., n, for n > 2, (10)

let us use the decision-theoretic notion of MSE1 in (7) to compare two estimators
of θ:

(i) the Maximum Likelihood Estimator (MLE): Xn=
1
n

∑n

k=1 Xk,

(ii) the ‘crystalball’ estimator: θcb=7405926, ∀x∈Rn
X .

When compared on admissibility grounds, both estimators are admissible, and
thus equally acceptable. Common sense, however, suggests that if a particular
criterion of optimality cannot distinguish between Xn [a strongly consistent,
unbiased, fully efficient and sufficient estimator] and θcb, an arbitrarily chosen
real number that ignores the data altogether, is not much of a minimal property.

A moment’s reflection suggests that the inappropriateness of admissibility
stems from its reliance on the quantifier ‘∀θ∈Θ’. The admissibility of θcb arises
from the fact that for certain values of θ close to θcb, say θ∈(θcb± λ√

n
), for

0<λ<1, θcb is ‘better’ than Xn on MSE1 grounds:

MSE1(Xn; θ)=
1
n
> MSE1(θcb; θ) ≤ λ2

n
for θ∈(θcb± λ√

n
). (11)

Given that the primary objective of a frequentist estimator is to pin-point θ∗,
the result in (11) seems totally irrelevant as a gauge of its capacity to achieve
that!

This example indicates that admissibility is totally ineffective as a minimal
property because it does not filter out θcb, the worst possible estimator! Instead,
it excludes potentially good estimators like the sample median; see Cox and
Hinkley (1974). This highlights the ‘extreme relativism’ of admissibility to

the particular loss function, L2(θ̂(X); θ), in this case. For the absolute loss

function L1(θ̂(X); θ)=|θ̂(X)− θ|, however, the sample median would have been
the optimal estimator. What determines which loss function is appropriate in
particular cases?

Despite his wholehearted embrace of the decision-theoretic framing, Lehmann
(1984) warned statisticians about the perils of arbitrary loss functions:

“It is argued that the choice of a loss function, while less crucial than that of the
model, exerts an important influence on the nature of the solution of a statistical
decision problem, and that an arbitrary choice such as squared error may be baldly
misleading as to the relative desirability of the competing procedures.” (p. 425)

A strong case can be made that the key minimal property (necessary but not
sufficient) for frequentist estimation is consistency, an extension of the Law of
Large Numbers to estimators. For instance, consistency would have eliminated
both θ̃ and θcb from consideration; they are both inconsistent. This makes
intuitive sense because if an estimator θ̂(X) cannot pinpoint θ∗ with an infinite
data information, it should be considered impertinent. In contrast, there is
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nothing in the notion of admissibility that advances learning from data about
θ∗.

Further to relative (to particular loss functions) efficiency being a dubious
property for frequentist estimators, the pertinent measure of finite sample pre-
cision for frequentist estimators is full efficiency, which is defined relative to the
assumed statistical model (1), and not some arbitrary loss function based on
information other than the data.

4.2 Stein’s paradox and admissibility

The quintessential example that has bolstered the appeal of the Bayesian claims
concerning admissibility is the James-Stein estimator (Efron and Morris, 1973),
that gave rise to an extensive literature on shrinkage estimators ; see Saleh
(2006).

Let X:=(X1, X2, ..., Xm) be independent sample from a Normal distribution:

Xk ∽ NI(θk, σ
2), k=1, 2, ...,m, (12)

where σ2 is known. Using the notation θ:=(θ1, θ2, ..., θm) and Im:=diag(1, 1, ..., 1),
this can be denoted by:

X ∽ N(θ, σ2Im).

Find an optimal estimator θ̂(X) of θ with respect to the square ‘overall’ loss
function:

L2(θ, θ̂(X))=(‖θ̂(X)−θ‖2)=∑m

k=1(θ̂k(X)−θk)2. (13)

Stein (1956) astounded the statistical world by showing that for m=2 the Least-

Squares (LS) estimator θ̂LS(X)=X is admissible, but for m > 2 θ̂LS(X) is
inadmissible. Indeed, James and Stein (1961) were able to come up with a
nonlinear estimator:

θ̂JS(X)=
(
1− (m−2)σ2

‖X‖2

)
X, (14)

that became known as the James-Stein estimator, which dominates θ̂LS(X)=X
in MSE1 terms by demonstrating that:

MSE1(θ̂JS(X); θ) < MSE1(θ̂LS(X); θ), ∀θ∈Rm. (15)

It turns out that θ̂JM (X) is also inadmissible for m > 2 and dominated by the
modified James-Stein estimator that is admissible:

θ̂
+

JS(X)=
(
1− (m−2)σ2

‖X‖2

)+

X,

where (z)
+
=max(0, z); see Wasserman (2004).

The traditional interpretation of this result is that for the Normal, Indepen-
dent model in (12), the James–Stein estimator (14) of θ:=(θ1, θ2, ..., θm), for
m > 2, reduces the overall MSE1 in (13). This result seems to imply that one
will ‘do better’ (in overall MSE1 terms) by using a combined nonlinear (shrink-
age) estimator, instead of estimating these means separately. What is surprising
about this result is that there is no statistical reason (due to independence) to
connect the inferences pertaining to the different individual means, and yet the
obvious estimator (LS) is inadmissible.

As argued next, this result calls into question the appropriateness of the
notion of admissibility with respect to a particular loss function, and not the
judiciousness of frequentist estimation.
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5 Frequentist inference and learning from data

The objectives and underlying reasoning of frequentist inference are inade-
quately discussed in the statistics literature. As a result some of its key dif-
ferences with Bayesian inference remain beclouded.

5.1 Frequentist approach: primary objective and reason-

ing

All forms of parametric frequentist inference begin with a prespecified statis-
tical model Mθ(x)={f(x; θ), θ∈Θ}, x∈Rn

X . This model is chosen from the
set of all possible models that could have given rise to data x0:=(x1, ..., xn),
by selecting the probabilistic structure for the underlying stochastic process
{Xt, t∈N:=(1, 2, ..., n, ...)} in such a way so as to render the observed data x0

a ‘typical’ realization thereof. In light of the fact that each value of θ∈Θ rep-
resents a different element of the family of models represented by Mθ(x), the
primary objective of frequentist inference is to learn from data about the ‘true’
model:

M∗(x)={f(x; θ∗)}, x∈Rn
X , (16)

where θ
∗ denotes the true value of θ in Θ. The ‘typicality’ is testable vis-a-vis

the data x0 using misspecification testing; see Spanos(2006).
The frequentist approach relies on two modes of reasoning for inference

purposes:

Factual (estimation, prediction): f(x; θ∗), ∀x∈Rn
X ,

Hypothetical (hypothesis testing): f(x; θ0), f(x; θ1), ∀x∈Rn
X ,

where θ∗ denotes the true value of θ in Θ, and θi, i=0, 1 denote hypothesized
values of θ associated with the hypotheses, H0: θ0∈Θ0, H1: θ1∈Θ1, where Θ0

and Θ1 constitute a partition of Θ.
A frequentist estimator θ̂ aims to pin-point θ∗, and its optimality is evaluated

by how effectively it achieves that. Similarly, a test statistic usually compares a
good estimator θ̂ of θ with a prespecified value θ0, but behind θ̂ is the value θ∗

assumed to have generated data x0. Hence, the hypothetical reasoning is used
in testing to learn about θ∗, and has nothing to do with all possible values of θ
in Θ.

This contradicts misleading claims by Bayesian textbooks (Robert, 2001, p.
61):

“The frequentist paradigm relies on this criterion [risk function] to compare
estimators and, if possible, to select the best estimator, the reasoning being that
estimators are evaluated on their long-run performance for all possible values of the
parameter θ.”
Contrary to this claim, the only relevant value of θ in evaluating the ‘optimality’
of θ̂ is θ∗. Such misleading claims stem from an apparent confusion between the
existential and universal quantifiers in framing certain inferential assertions.

The existence of θ∗ can be formally defined using the existential quantifier:

∃θ∗∈Θ : there exists a θ∗∈Θ such that.
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This introduces a potential conflict between the existential and the universal
quantifier ‘∀θ∈Θ’ because neither the decision theoretic nor the Bayesian ap-
proach explicitly invoke θ∗. Decision-theoretic and Bayesian rules are considered
optimal when they minimize the expected loss ∀θ∈Θ, no matter what θ∗ hap-
pens to be. How different the two quantifiers are, can be demonstrated using
elementary logic. The logical connective for negation (¬) can be used to define
the following equivalence relationships between the two quantifiers:

(i) ∃θ∗∈Θ ⇐⇒ ¬∀θ/∈Θ, (ii) ∀θ∈Θ ⇐⇒ ¬∃θ∗ /∈Θ
Given that (i)-(ii) involve double negations, the two quantifiers could not be
further apart.

At first sight the quantifier ∀θ∈Θ seems rather innocuous and natural in
the context of statistical inference. It seems intuitively obvious that one should
care about the behavior of an estimator θ̂ for all possible values of θ. This is
misleading intuition, however, since the behavior of θ̂, for all θ∈Θ, although
relevant, is not what determines how effective a frequentist estimator is at pin-
pointing θ∗; what matters is its behavior around θ∗. Assessing its effectiveness
calls for evaluating (deductively) the sampling distribution of θ̂ under θ=θ∗, or
hypothetical values θ0 and θ1, and not for all possible values of θ in Θ. Let’s
unpack the details of this claim.

5.2 Frequentist estimation

The underlying reasoning for frequentist estimation is factual , in the sense the
optimality of an estimator is appraised in terms of its generic capacity of θ̂n(X)
to zero-in on (pinpoint) the true value θ∗, whatever the sample realization
X=x0. Optimal properties like consistency, unbiasedness, full efficiency, suf-
ficiency, etc., calibrate this generic capacity using its sampling distribution of
θ̂n(X) evaluated under θ=θ∗i.e., in terms of f(θ̂n(x); θ

∗), for x∈Rn
X . For in-

stance, strong consistency asserts that as n → ∞, θ̂n(X) will zero-in on θ∗

almost surely:
P( lim

n→∞
θ̂n(X)=θ∗)=1.

Similarly, unbiasedness asserts that the sampling distribution of θ̂n(X) has a
mean equal to θ∗ :

E(θ̂n(X))=θ∗.

In this sense both of these optimal properties are defined at the point θ=θ∗. This
is achieved by using factual reasoning, i.e. evaluating the sampling distribution
of θ̂n(X) under the true state of nature (θ=θ∗), without having to know θ∗. This
is in contrast to using loss functions, such as (2), which are defined in terms of
θ∗ but are rendered non-operational without knowing θ∗.

Example. In the case of the simple Normal model in (10) the point es-
timator, Xn is consistent, unbiased, fully efficient, sufficient, with a sampling
distribution:

Xn ∽ N(θ, 1
n
). (17)

What is not usually explicitly stated is that the evaluation of that distribution
is factual, i.e. θ=θ∗, and should formally denoted by:

Xn
θ=θ∗

∽ N(θ∗, 1
n
).
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When Xn is standardized, it yields the pivotal function:

d(X;θ):=
√
n
(
Xn − θ∗

) θ=θ∗

∽ N(0, 1), (18)

whose distribution only holds for the true θ∗, and no other value. This provides
the basis for constructing a (1−α) Confidence Interval (CI):

P

(
Xm − cα

2
( 1√

n
) ≤ θ ≤ Xn + cα

2
( 1√

n
); θ=θ∗

)
=1−α, (19)

which asserts that the random interval [Xn−cα

2
( s√

n
), Xn+cα

2
( s√

n
)], will cover

(overlay) the true mean θ∗, whatever that happens to be, with probability (1−α),
or equivalently, the error of coverage is α. Hence, frequentist estimation the
coverage error probability depends only on the sampling distribution of Xn and
is attached to random interval for all values θ 6=θ∗ without requiring one to know
θ∗.

The evaluation at θ=θ∗ calls into question the decision-theoretic definition
of unbiasedness:

E(θ̂n(X))=θ, ∀θ∈Θ,

for frequentist estimation since this assertion makes no sense for all values θ
in Θ, but does make sense when defined at θ=θ∗. Similarly, the appropriate
frequentist definition of the MSE for an estimator, initially proposed by Fisher
(1920), is defined at the point θ=θ∗:

MSE(θ̂n(X); θ∗)=E(θ̂n(X)−θ∗)2, for θ∗ in Θ. (20)

Indeed, the well-known decomposition:

MSE(θ̂(X); θ∗)=V ar(θ̂(X))+[E(θ̂n(X))−θ∗]2, for θ∗ in Θ, (21)

is meaningful only when defined at the point θ=θ∗(true mean) since by definition:

V ar(θ̂(X))=E[θ̂n(X)−θm]2, θm=E(θ̂n(X))

Bias(θ̂n(X); θ∗)=E(θ̂n(X))−θ∗,
(22)

and thus, the variance and the bias involve only two values of θ in Θ, θm and
θ∗, and when θm=θ∗ the estimator is unbiased. This implies that the apparent
affinity between the MSE1 defined in (7) and the variance of an estimator is
more apparent than real because the latter makes frequentist sense only when
θm=E(θ̂n(X)) is a single point.

5.3 James-Stein estimator from a frequentist perspective

For a proper frequentist evaluation of the above James-Stein result, it is im-
portant to bring out the conflict between the overall MSE (13) and the factual
reasoning underlying frequentist estimation. From the latter perspective, the
James-Stein estimator raises several issues of concern.

First, both the Least-Squares θ̂LS(X) and the James-Stein θ̂JS(X) estima-
tors are inconsistent estimators of θ since the underlying model suffers from the
incidental parameter problem: there is essentially one observation (Xk) for each
unknown parameter (θk), and as m → ∞ the number of unknown parameters
increases at the same rate. To bring out the futility of comparing these two
estimators more clearly, consider the following simpler example.
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Example. Let X:=(X1, X2, ..., Xn) be a sample from the simple Normal

model in (10). Comparing the two estimators θ̂1=Xn, θ̂2=
1
2 (X1+Xn) and

inferring that θ̂2 is relatively more efficient than θ̂1 relative to a square loss
function, i.e.

MSE(θ̂2(X); θ)=1 < MSE(θ̂1(X); θ)= 1
2 , ∀θ∈R,

is totally uninteresting because both estimators are inconsistent!
Second, to be able to discuss the role of admissibility in the Stein (1956)

result, we need to consider a consistent James-Stein estimator, by extending
the original data to a panel (longitudinal) data where the sample is:
Xt:=(X1t, X2t, ..., Xmt), t=1, 2, ..., n. In this case the consistent Least-Squares
and James-Stein estimators are:

θ̂LS(X)=
(
X1, X2, ..., Xm

)
, where Xk=

1
n

n∑
t=1

Xkt, k=1, 2, ...,m,

θ̂
+

JS(X)=
(
1− (m−2)σ2

‖X‖2

)+

X, where X:=
(
X1, X2, ..., Xm

)
.

This enables us to evaluate the notion of ‘relatively better’ more objectively.
Admissibility relative to the overall loss function in (13) introduces a trade-

off between the accuracy of the estimators for individual parameters θ:=(θ1, θ2, ..., θm)
and the ‘overall’ expected loss. The question is: ‘In what sense the overall MSE
among a group of mean estimates provides a better measure of ‘error’ in learn-
ing about the true values θ∗:=(θ∗1, θ

∗
2, ..., θ

∗
m)?’ The short answer is: it doesn’t.

Indeed, the overall MSE will be irrelevant when the primary objective of estima-
tion is to learn from data about θ∗. This is because the particular loss function
penalizes the estimator’s capacity to pin-point θ∗ by trading an increase in bias
for a decrease in the overall MSE in (13), when the latter is misleadingly evalu-
ated over all θ in Θ:=R

m. That is, the James-Stein estimator flouts the primary
objective of pin-pointing θ

∗ in favor of reducing the overall MSE ∀θ∈Θ.
In summary, the above discussion suggests that there is nothing paradoxical

about Stein’s (1956) original result. What is problematic is not the least-squares
estimator, but the choice of ‘better’ in terms of admissibility relative to an overall
MSE in evaluating the accuracy of the estimators of θ.

5.4 Frequentist hypothesis testing

Another frequentist inference procedure one can employ to learn from data
about θ∗ is hypothesis testing, where the question posed is whether θ∗ is close
enough to some prespecified value θ0. In contrast to estimation, the reasoning
underlying frequentist testing is hypothetical in nature.

5.4.1 Legitimate frequentist error probabilities

For testing the hypotheses:

H0: θ ≤ θ0 vs. H1: θ > θ0, where θ0 is a prespecified value,

one utilizes the same sampling distribution Xn ∽N(θ, 1
n
), but transforms the

pivot d(X;θ):=
√
n
(
Xn−θ∗

)
into the test statistic by replacing θ∗ with the pre-

specified value θ0, yielding d(X):=
√
n
(
Xn−θ0

)
. However, instead of evaluating
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it under the factual θ=θ∗, it is now evaluated under various hypothetical sce-
narios associated with H0 and H1 to yield two types of (hypothetical) sampling
distributions:

(I) d(X):=
√
n
(
Xn − θ0

) θ=θ0

∽ N(0, 1),

(II) d(X):=
√
n
(
Xn−θ0

) θ=θ1

∽ N(δ1, 1), δ1=
√
n (θ1−θ0) for θ1 > θ0.

In both cases (I)-(II) the underlying reasoning is hypothetical in the sense that
the factual in (18) is replaced by hypothesized values of θ, and the test statistic
d(X) provides a standardized distance between the hypothesized values (θ0 or
θ1) and θ∗ the true θ, assumed to underlie the generation of the data x0, yield-
ing d(x0). Using the sampling distribution in (I) one can define the following
legitimate error probabilities:

significance level: P(d(X) > cα;H0) = α,

p-value: P(d(X) > d(x0);H0)=p(x0).
(23)

Using the sampling distribution in (II) one can define:

type II error prob.: P(d(X)≤cα; θ=θ1)=β(θ1), for θ1>θ0,

power: P(d(X)>cα; θ=θ1)=̺(θ1), for θ1>θ0.
(24)

It can be shown that the test Tα, defined by the test statistic d(X) and the
rejection region C1(α)={x :d(x) > cα}, constitutes a Uniformly Most Powerful
(UMP) test for significance level α; see Lehmann (1959). The type I [II] error
probability is associated with test Tα erroneously rejecting [accepting] H0. The
type I and II error probabilities evaluate the generic capacity [whatever the
sample realization x∈Rn] of a test to reach correct inferences. Contrary to
Bayesian claims, these error probabilities have nothing to do with the temporal
or the physical dimension of the long-run metaphor associated with repeated
samples. The relevant feature of the long-run metaphor is the repeatability
(in principle) of the DGM represented by Mθ(x); this feature can be easily
operationalized using computer simulation; see Spanos (2013).

The key difference between the significance level α and the p-value is that
the former is a pre-data and the latter a post-data error probability. Indeed, the
p-value can be viewed as the smallest significance level α at which H0 would
have been rejected with data x0. The legitimacy of post-data error probabil-
ities underlying the hypothetical reasoning can be used to go beyond the N-P
accept/reject rules and provide an evidential interpretation pertaining to the
discrepancy γ from the null warranted by data x0; see Mayo and Spanos (2006).

Despite the fact that frequentist testing uses hypothetical reasoning, its main
objective is also to learn from data about the true modelM∗(x)={f(x; θ∗)}, x∈Rn

X .
This is because a test statistic like d(X):=

√
n
(
Xn−θ0

)
constitutes nothing more

than a scaled distance between θ∗ [the value behind the generation of xn], and
a hypothesized value θ0, with θ∗ being replaced by its ‘best’ estimator Xn.

6 Revisiting loss and risk functions

The above discussion raises serious questions about the role of loss functions
and admissibility in evaluating learning from data x0 about θ∗. In particular:
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(i) What does the extraneous information concerning costs associated with
different parameter values have to do with learning about θ∗?

(ii) In what sense is an inconsistent but relatively (to a particular loss func-
tion) efficient an ‘optimal’ estimator for learning about θ∗?

(iii) Why is the overall MSE more important than learning from data about
the true values of θ∗?

6.1 Where do loss functions come from?

A closer scrutiny of the decision-theoretic set up reveals that the loss function
needs to invoke ‘information from sources other than the data’, which is usually
not readily available. Indeed, such information is available in very restrictive
situations, such as acceptance sampling in quality control. In light of that,
a proper understanding of the intended scope of statistical inference calls for
distinguishing the special cases where the loss function is part and parcel of the
available substantive information from those that no such information is either
relevant or available.

Tiao and Box (1975), p. 624, reiterated Fisher’s (1935) distinction:
“Now it is undoubtedly true that on the one hand that situations exist where

the loss function is at least approximately known (for example certain problems in
business) and sampling inspection are of this sort. ... On the other hand, a vast
number of inferential problems occur, particularly in the analysis of scientific data,
where there is no way of knowing in advance to what use the results of research will
subsequently be put.”

Cox (1978), p. 45, went further and questioned this framing even in cases
where the inference might involve a decision:
“The reasons that the detailed techniques [decision-theoretic] seem of fairly limited
applicability, even when a fairly clear cut decision element is involved, may be (i)
that, except in such fields as control theory and acceptance sampling, a major
contribution of statistical technique is in presenting the evidence in incisive form for
discussion, rather than in providing mechanical presentation for the final decision.
This is especially the case when a single major decision is involved. (ii) The central
difficulty may be in formulating the elements required for the quantitative analysis,
rather than in combining these elements via a decision rule.”

Another important aspect of using loss functions in inference is that in prac-
tice they seem to be an add-on to the inference itself since they bring to the
problem the information other than the data. In particular, the same statistical
inference problem can give rise to very different decisions/actions depending
on one’s loss function. To illustrate that consider an example from Chatterjee
(2002):

“... consider the case of a new drug whose effects are studied by a research
scientist attached to the laboratory of a pharmaceutical company. The conclusion
of the study may have different bearings on the action to be taken by (a) the
scientist whose line of further investigation would depend on it, (b) the company
whose business decisions would determined by it, and (c) the Government whose
policies as to health care, drug control, etc. would take shape on that basis.” (p.
72)
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In practice, each one of these different agents is likely to have a very different
loss function, but their inferences have a common denominator: the scientific
evidence which relating to the true θ that stems solely from the observed data?

Finally, the extreme relativism of loss function optimality renders decision-
theoretic and Bayes rules highly vulnerable to abuse. In practice, one can justify
any estimator as optimal, however lame in terms of other criteria, by selecting
the ”appropriate” loss function.

Example. Consider a manufacturer of high precision bolts and nuts who has
information that the buyer only checks the first and last box for quality control
when accepting an order. This suggests that to minimize losses, stemming from
the return of its products as defective, an appropriate loss function might be:

L(X; θ)= ([(X1+Xn)/2]− θ)
2
, θ∈(0, 1). (25)

The ‘optimal’ estimator relative to (25) is θ̃=(X1+Xn)/2, but θ̃ is a terrible
estimator for pinpointing θ∗ because it is inconsistent!

6.2 Loss functions vs. inherent distance functions
The notion of a loss function stemming from ‘information other than the data’
raises another source of potential conflict. This stems from the fact that within
each statistical model Mθ(x) there exists an inherent statistical distance func-
tion, often relating to the log-likelihood and the score function, and hence stem-
ming from information contained in the data; see Casella and Berger (2002).

It is well-known that when the distribution underlying Mθ(x) is Normal,
the inherent distance function for comparing estimators of the mean (θ) is the
square:

ND(θ̂n(X); θ∗)=(θ̂n(X)− θ∗)2.
On the other hand, when the distribution is Laplace the relevant statistical
distance function is the Absolute Distance (see Shao, 2003):

AD(θ̂n(X); θ∗) = |θ̂n(X)− θ∗|.
Similarly, when the distribution underlying Mθ(x) is Uniform, the inherent
distance function is:

SUP (θ̂n(X); θ∗) = sup
x∈R

n

X

|θ̂n(x) − θ∗|.

A key feature of all these distance functions is that they are defined at the point
θ=θ∗ and not for all θ in Θ, as the traditional loss functions.

The question that naturally arises is when it might make sense to ignore
these inherent distance functions and compare estimators using an externally
given loss function. The key difference between the two is that any assumptions
that comprise the likelihood function are testable vis-a-vis the data, but those
underlying the loss function are not. Moreover, the likelihood function gives
rise to a ‘global’ notion of optimality, known as full efficiency defined at θ=θ

∗

in terms of Fisher’s information:

CR(θ∗)=I
−1
n (θ∗), In(θ

∗):=E
(
−∂2 lnL(θ)

∂θ∂θ⊤

)
.

What is an optimal estimator depends only on the information contained in the
statistical model Mθ(x). This contrasts with admissibility which is a property
defined in terms of ‘local’ optimality relative to a loss function based on outside
information and evaluated ∀θ∈Rm.
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6.3 Decisions vs. inferences

The above discussion brings out the crucial distinction between a ‘decision’ and
an ‘inference’ stemming from data x0.

Even beforeWald (1939) introduced the decision-theoretic perspective, Fisher
(1935) perceptively argued:

“In the field of pure research no assessment of the cost of wrong conclusions,
or of delay in arriving at more correct conclusions can conceivably be more than a
pretence, and in any case such an assessment would be inadmissible and irrelevant
in judging the state of the scientific evidence.” (pp. 25-26)

Tukey (1960) echoed Fisher’s view by contrasting decisions vs. inferences:
“Like any other human endeavor, science involves many decisions, but it pro-

gresses by the building up of a fairly well established body of knowledge. This body
grows by the reaching of conclusions – by acts whose essential characteristics differ
widely from the making of decisions. Conclusions are established with careful re-
gard to evidence, but without regard to consequences of specific actions in specific
circumstances.” (p. 425)

Tukey also recognized how decision theory distorts frequentist testing by
replacing error probabilities with losses and costs:

“Wald’s decision theory ... has given up fixed probability of errors of the first
kind, and has focused on gains, losses or regrets.” (p. 433)

Hacking (1965) brought out the key difference between an ‘inference pertain-
ing to evidence’ for or against a hypothesis, and a ‘decision to do something’ as
a result of an inference:

“... to conclude that an hypothesis is best supported is, apparently, to decide
that the hypothesis in question is best supported. Hence it is a decision like any
other. But this inference is fallacious. Deciding that something is the case differs
from deciding to do something. ... Hence deciding to do something falls squarely in
the province of decision theory, but deciding that something is the case does not.”
(p. 31)

This issue was elaborated upon by Birnbaum (1977), p. 19:
“Two contrasting interpretations of the decision concept are formulated: behav-

ioral, applicable to ‘decisions’ in a concrete literal sense as in acceptance sampling;
andevidential, applicable to ‘decisions’ such as ’reject H0’ in a research context, where
the pattern and strength of statistical evidence concerning statistical hypotheses is
of central interest.”

6.4 Acceptance sampling vs. learning from data

Let us bring out the key features of a situation where the above decision-
theoretic set up makes perfectly good sense. This is the situation Fisher (1955)
called acceptance sampling, such as an industrial production process where the
objective is quality control, i.e. to make a decision pertaining to shipping sub-
standard products (e.g. nuts and bolts) to a buyer using the expected loss/gain
as the ultimate criterion.

In an acceptance sampling context, the MSE(θ̂(X); θ), or some other risk
function, are relevant because they evaluate genuine losses associated with a
decision related to the choice of an estimate θ̂(x0), say the cost of the observed
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percentage of defective products, but that has nothing to do with type I and II
error probabilities.

Acceptance sampling differs from a scientific enquiry in two crucial respects:
[a] The primary aim is to use statistical rules to guide actions astutely, e.g.

use θ̂(x0) in order to minimize the expected loss associated with “a decision”,
and

[b] The sagacity of all actions is determined by the respective ‘losses’ stem-
ming from “relevant information other than the data” (Cox and Hinkley, 1974,
p. 251).

The key difference between acceptance sampling and a scientific inquiry is
that the primary objective of the latter is not to minimize expected loss (costs,
utility) associated with different values of θ∈Θ, but to use data x0 to learn
about the ‘true’ model (16). The two situations are drastically different mainly
because the key notion of a ‘true θ’ calls into question the above acceptance
sampling set up. Indeed, the loss function being defined ‘∀θ∈Θ’, will penalize
θ
∗, since there is no reason to believe that the lowest ranked θ would coincide

with θ
∗, unless by accident.

Consider the case where acceptance sampling resembles hypothesis testing in
so far as final products are randomly selected for inspection during the produc-
tion process. In such a situation the main objective can be viewed as operational-
izing the probabilities of false acceptance/rejection with a view to minimize the
expected losses. The conventional wisdom has been that this situation is similar
enough to Neyman-Pearson (N-P) testing to render the latter as the appropriate
framing for the decision to ship this particular batch or not. However, a closer
look at some of the examples used to illustrate such a situation (Silvey, 1975),
reveals that the decisions are driven exclusively by the risk function and not
by any quest to learn from data about the true θ

∗. For instance, N-P way of
addressing the trade-off between the two types of error probabilities, fixing α to
a small value and seek a test that minimizes the type II error probability, seems
utterly irrelevant in such a context. One can easily think of a loss function
where the ‘optimal’ trade-off calls for a much larger type I than type II error
probability.

In light of the above discussion, what is different in acceptance sampling is
that:

[c] The trade-off between the two types of error probabilities is determined
by the risk function itself, and not by any attempt to learn from data about θ∗.
Indeed, this learning is deliberately undermined by certain loss function such as
the overall MSE (13) that favor biased estimators of the James-Stein type.

Given the crucial differences in [a]-[c], one can make a strong case that the
objectives and the underlying reasoning of acceptance sampling are drastically
different from those pertaining to learning from data in a scientific context.

6.5 Is expected loss a legitimate frequentist error?

The key question is whether expected loss is a legitimate frequentist error like
bias, MSE and the type I-II error. ‘What do these legitimate frequentist errors
have in common?’
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First, they stem directly from the statistical model Mθ(x) since the un-
derlying sampling distributions of estimators, test statistics and predictors are
derived exclusively from the distribution of the sample f(x; θ) via (4). In this
sense, the relevant error probabilities are directly related to statistical infor-
mation pertaining to the data as summarized by the statistical model Mθ(x)
itself.

Second, they are attached to a particular frequentist inference procedure as
they relate to a relevant inferential claim. These error probabilities calibrate
the effectiveness of inference procedures in learning from data about the true
statistical model M∗(x)={f(x; θ∗)}, x∈Rn

X .
In light of these features, the question is: ‘in what sense a risk function could

potentially represent relevant frequentist errors?’ That argument that the risk
function represents legitimate frequentist errors because it is derived by taking
expectations with respect to f(x; θ), x∈Rn

X (Robert (2001), is misguided for
two reasons.

(a) The relevant errors in estimation, including the bias E(θ̂n(X))−θ∗ and

MSE E(θ̂n(X)−θ∗)2, are evaluated with respect to f(x; θ∗), x∈Rn
X , by invoking

factual reasoning (θ∗ is assumed to be the state of Nature). Wald’s (1939)
original loss function in (2) represents an interesting case because it is defined
in terms of θ∗, which renders it non-operational when evaluated for all θ in Θ,
since θ∗ is unknown in practice. In contrast, the errors associated with the bias
and MSE are rendered operational by the factual reasoning fashioned to forgo
knowing θ∗.

(b) The expected losses stemming from the risk function R(θ, θ̂) are attached
to particular values of θ in Θ. Such an assignment is in direct conflict with all the
above legitimate error probabilities that are attached to the inference procedure
itself, and never to the particular values of θ in Θ. The expected loss assigned
to each value of θ in Θ has nothing to do with learning from data about θ∗.
Indeed, the risk function will penalize a procedure for pin-pointing θ∗ since the
latter is unknown in practice. This is in direct conflict with the main objective
of frequentist estimation but in sync with ‘acceptance sampling’, where the
objective of the inference has everything to do with expected losses.

7 Summary and conclusions

The paper makes a case for Fisher’s (1935; 1955) assertions concerning the ap-
propriateness of the decision-theoretic framing for ‘acceptance sampling’ and its
inappropriateness for frequentist inference. A closer look at this framing reveals
that it is congruent with the Bayesian approach because provides it with a the-
ory of optimal inference. Decision-theoretic and Bayesian rules are considered
optimal when they minimize the expected loss for all possible values of θ [∀θ∈Θ],
irrespective of what the true value θ∗ happens to be. In contrast, the theory
of optimal frequentist inference revolves around the true value θ∗, since it de-
pends entirely on the capacity of the procedure to pinpoint θ∗. The frequentist
approach relies on factual (estimation, prediction), as well as hypothetical (test-
ing) reasoning, both of which revolve around the existential quantifier ∃θ∗∈Θ.
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The inappropriateness of the quantifier ∀θ∈Θ calls into question the relevance
of admissibility as a minimal property for frequentist estimators. A strong case
can be made that the relevant minimal property for frequentist estimators is
consistency. In addition, full efficiency provides the relevant measure of an es-
timator’s finite sample efficiency (accuracy) in pinpointing θ∗. Both of these
properties stem from the underlying statistical model Mθ(x), in contrast to
admissibility which relies on loss functions based on information other than the
data.

It is argued that Stein’s (1956) result stems from the fact that admissibility
introduces a trade-off between the accuracy of the estimator in pinpointing θ

∗

and the ‘overall’ expected loss. That is, the James-Stein estimator achieves
a higher overall MSE by blunting the capacity of a frequentist estimator to
pinpoint θ∗. Why would a frequentist care about the overall MSE defined for all
θ in Θ? After all, expected losses are not legitimate errors similar to bias and
MSE (when properly defined), as well as coverage, type I and II errors. The
latter are attached to the frequentist procedures themselves to calibrate their
capacity to achieve learning from data about θ

∗. In contrast, expected losses
are assigned to different values of θ in Θ, using information other than the data.
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