
1

Collection Management Webpages
Final Report

 December 8, 2016

CS5604 Information Storage and Retrieval
Virginia Tech

Blacksburg, Virginia
Fall 2016

Submitted by
Dao, Tung tungdm@vt.edu

Wakeley, Christopher chrisiw@vt.edu

Weigang, Liu qfsdy@vt.edu

Instructor
Prof. Edward A. Fox

2

Abstract

The Collection Management Webpages (CMW) team is responsible for collecting, processing
and storing webpages from different sources including tweets from multiple collections and
contributors, such as those related to events and trends studied in local projects like
IDEAL/GETAR, and webpage archives collected by Pranav Nakate, Mohamed Farag, and
others. Thus, based on webpage sources, we divide our work into the three following deliverable
and manageable tasks. The first task is to fetch the webpages mentioned in the tweets that are
collected by the Collection Management Tweets (CMT) team. Those webpages are then stored in
WARC files, processed, and loaded into HBase. The second task is to run focused crawls for all
of the events mentioned in IDEAL/GETAR to collect relevant webpages. And similar to the first
task, we would then store the webpages into WARC files, process them, and load them into
HBase.

We also plan to achieve the third task which is similar to the first two, except that the webpages
are from archives collected by the people previously involved in the project. Since these tasks are
time-consuming and sensitive to real-time processing requirements, it is essential that our
approach be incremental, meaning that webpages need to be incrementally collected, processed,
and stored to HBase. We have conducted multiple experiments for the first, second, and third
tasks, on our local machines as well as the cluster. For the second task, we manually collected a
number of seed URLs of events, namely “South China Sea Disputes”, “USA President Election
2016”, and “South Korean President Protest”, to train the focused event crawler, and then ran the
trained model on a small number of URLs that are randomly generated as well as manually
collected. Encouragingly, these experiments ran successfully; however, we still have to work to
scale up the experimenting data to be systematically run on the cluster. The two main
components to be further improved and tested are the HBase data connector and handler, and the
focused event crawler.

While focusing on our own tasks, the CMW team works closely with other teams whose inputs
and outputs depend on our team. For example, the front-end (FE) team might use our results for
their front-end content. We discussed with the Classification (CLA) team to have some
agreements on filtering and noise reducing tasks. Also, we made sure that we would get the right
format URLs from the Collection Management Tweets (CMT) team. In addition, the other two
teams, Clustering and Topic Analysis (CTA) and SOLR, will use our team’s outputs for topic
analyzing and indexing, respectively. For instance, based on the SOLR team’s requests and
consensus, we have finalized a schema (i.e., specific fields of information) for a webpage to be
collected and stored.

In this final report, we report our CMW team’s overall results and progress. Essentially, this
report is a revised version of our three interim reports based on Dr. Fox’s and peer-reviewers’
comments. Besides to this revising, we continue reporting our ongoing work, challenges,
processes, evaluations, and plans.

3

Table of Contents

Abstract 2
Table of Figures 5
Table of Tables 6

1. Overview 7

2. Literature Review 8

3. Requirements and Tasks 8
3.1 HTML Fetching 8
3.2 WARC Files 9
3.3 HTML Parsing 9
3.4 Focused Crawler 9

4. System Design 10
4.1 Collaborators 10
4.2 Data Sources and Outputs 11
4.3 Processes 12
4.4 Webpage schema 13
4.5 HTML Fetching 15
4.7 WARC File Generation 16
4.8 WARC File Ingestion 16
4.9 HTML Parsing and Interaction with HBase 16

5. Project Plan and Schedule 17

6. Implementation and Experiments 18
6.1 Experiments with Focused Crawler 18

6.1.1 Settings and Input Data 19
6.1.2 Results 19
6.1.3 On-going Work 20

6.2 Interacting with HBase: Pig Script 24

7. User Manual 25
7.1 Webpage Parsing and Clean 26
7.2 Interaction with HBase 27
7.2.1 Load the webpage data into HBase 28

7.2.2 Load Input Urls Generated by Tweet Group(CMT) From HBase 29
7.3 HTML Fetching 31
7.4 WARC Generation 31

8. Developer's Manual 31
8.1 Task Assignment Table 32

4

8.2 Extending HTML Fetching 33
8.3 WARC Generation 34
8.4 WARC Ingestion 35

9. References 37

5

Table of Figures

Figure 1: System Pipeline 18
Figure 2: Event Focused Crawler Command Line 18
Figure 3: Configuration of Event Focused Crawler 19
Figure 4: Outputs of Event Focused Crawler 19
Figure 5: WARC Operation in Python 20
Figure 6: Load Data in Pig 21
Figure 7: Load Data in TSV File 21
Figure 8: Store Data into HBase with Pig 22
Figure 9: Load Data from A TSV File 23
Figure 10: Store Data into HBase 25
Figure 11: Webclean Script Demo 25
Figure 12: Charlie Hebdo Shooting Collection Clean Statistic 26
Figure 13: Sydney Hostage Crisis Collection Clean Statistic 26
Figure 14: Hagupit Typhoon Collection Clean Statistic 27
Figure 15: Interact with HBase using Pig Script Demo 27
Figure 16: Pig Script Loading Results 28
Figure 17: Interact with HBase using Pig Script Demo (Avro version) 28
Figure 18: Pig Script Loading Results (Avro version) 28
Figure 19: Pig Shell Command Sequence For Loading Urls from HBase 29
Figure 20: Processing Demo For Loading Urls from HBase 29
Figure 21: Spark Directory Structure 30
Figure 22: HTML Fetching Input 30
Figure 23: HTML Fetching Output 31

6

Table of Tables

Table 1: System Processes 12
Table 2: Webpage schema 13
Table 3: HTML Fetching Timings 15
Table 4: Webpage schema 17
Table 5: Task Assignment 32

7

1. Overview
In the previous section, we set out our team’s three main tasks that we would like to achieve
incrementally during the semester. The first thing we prioritized is learning and understanding
the techniques and tools for working with URLs, webpages and WARC files, because none of us
had any relevant background. Secondly, we started to learn and familiarize ourselves with new
related and required concepts and technologies, such as the HDFS file system [7], HBase
database [4], Hadoop [8], and web crawling and processing [9]. Tools that we have investigated
include, Heritrix and Nutch (i.e., open-source Java-based tools for crawling and archiving
webpages), Apache Pig (for saving and loading big data to HBase), and warcbase for managing
web archives on HBase.
In addition to researching and learning the essential relevant background, and cutting-edge
technologies, we also studied reports by students in previous semesters of the course. Especially,
we found Mohamed Farag’s dissertation [1] very useful in understanding the concepts and
technologies for event focused crawling. Also, previous reports in the past related to noise
reduction and Named Entity Recognition (NER) helped us build a basic understanding of
designing and coding our system. From the very beginning of the class, we have started building
the system incrementally by experimenting with a small data file that was assigned to our group
in the Hadoop cluster. For example, we could use JSoup [11] and MySQL [14] to build a simple
web crawler in Java, running successfully on a local machine. Such an example can be found
here [15]. In the first report, we stated that we would later plan to incrementally scale it up to
work on clusters (i.e., IDEAL/GETAR’s servers) [10]. In the second report, after multiple emails
exchanged with Mohamed Farag, we learned that we could reuse Mohamed Farag’s focused
crawling engine (possibly with some modification). Therefore, we decided to follow that
direction because his focused crawler is well designed and tested, saving us plenty of time and
effort. Nevertheless, due to the fact that Mohamed was refactoring his source code, we did not
have a chance to use it, and report its operation in the second report. Fortunately, the crawler
source code was finally handed to us a few days after the second report was submitted, and we
were able to run it on the efc2 server. Since then we have worked hard to have the focused
crawler run successfully with some small sample of data, at this point, on a local machine. Due
to some technical issues with the server’s privileges, we weren’t able to run the crawler on the
DLRL cluster initially. Fortunately, with Islam’s help, we fixed this issue and ran the crawler
successfully on efc2. Besides the webpage sources collected by the focused crawler, we also
considered other sources of webpages that were already collected and classified; one of which is
a cleaned and classified webpage archive about school shooting events collected by Pranav
Nakate in his independent study. Unfortunately, after contacting Pranav and Mohamed, we
learned that this collection can no longer be found.

Among many challenges that we have identified, focused crawling is one of them. The
complexity lies in the crawler’s correctness and performance, that is, we have to make sure that
only highly relevant webpages should be collected and the crawler should run fast, efficiently,
and incrementally because of the potential huge amount of webpage data. We are fortunate that
we could reuse Mohamed’s crawling engine, and so we were more confident than before that we
could handle this task successfully. Another challenge that Dr. Fox pointed out is the issue of
redundancy and recency of data. Specifically, it is possible that multiple URLs that are already in
HBase might correspond to the same webpage. Even in the case where a URL is repeated, we

8

have to make sure that each is fetched only once. The reason for this is that the webpages
corresponding to the URLs might be recently updated and just need to be fetched. To deal with
this problem, Dr. Fox suggested us to use available tools such as Heritrix [12] and Archive-It.
Since then we have been researching and doing some experiments with the tools to apply them in
our situation. In addition, we are consulting the relevant former groups to see if we can reuse any
existing code implementing the crawling component.

In the next section, we will discuss related work that is closely relevant to our team’s by
conducting a literature review.

2. Literature Review
We have found Mohamed Farag’s dissertation [1] and the report of the Collection Management
team of the Spring 2016 semester [2] the most useful in initially understanding our problem.

Mohamed Farag’s dissertation details the focused crawler we will be integrating with our web
page collection management system. The event model we will have to construct for each event
consists of a vector containing key terms, locations, and a date. The process of seed URL
selection is also outlined as grouping URLs by domain/source, sorting the domains by frequency
of URLs, and selecting the top k sources. URLs will be sourced from tweets classified by the
CLA team as relevant to a particular real world event, e.g., Hurricane Isaac. We will have to
perform this process for each event, and incrementally add seed URLs as URLs are aggregated
into HBase [4]. Other URLs and webpage sources that we have investigated include the set of 65
webpage collections [5] hosted by Archive-It [6].

The report of the Spring 2016 semester Collection Management group details the current column
families in HBase related to the web page collection. The full list of column headers can be
found in Table 1. Additionally, the user and developer manual sections will be useful in
evaluating their code that is responsible for URL expansion, duplicate removal, web page
fetching, and information extraction.

We have also found the course textbook [3] chapters 3, 10, 19, 20, and 21 relevant to our tasks of
focused crawling and noise reduction in the form of information extraction from web pages.

3. Requirements and Tasks

The following is a list of requirements and tasks that our final Webpage Collection Management
system must meet:

3.1 HTML Fetching

• Filter duplicate URLs across different collections produced by the Tweet Management team as
well as our own focused crawler runs. URLs will be read from the clean-tweet and webpage
column families in the class HBase table.

9

• Fetch the HTML content of URLs. This process should run incrementally and on the cluster
due to the time cost.
• Store the fetched HTML content in the webpage column family. This process must run on the
cluster and in a distributed manner due to memory limits on the cluster driver and the size of the
fetched HTML content.
• Add timestamps corresponding to the time the HTML content for URLs that are fetched to
accommodate re-fetching after an amount of time. This is done to preserve the freshness of the
webpage collections.

3.2 WARC Files
• Create a workflow that generates WARC files for webpages sourced from the focused crawler
and any URLs extracted from tweets.
• Save and document the generated WARC files as well as any other WARC file collections
newly built at Virginia Tech for eventual upload to the Internet Archive.
• Create a workflow for downloading WARC files hosted on archive-it.org, extracting the
information outlined in the HBase schema, and storing the results in HBase for future
classification.

3.3 HTML Parsing

• Evaluate the solution provided by the Spring 2016 Collection Management team that is
responsible for HTML parsing. This entails getting it to run, timing runs, and determining if it
can run incrementally.
• Augment or replace the existing solution to parse additional information outlined in the HBase
schema.
• For the webpages associated with the valid and expanded URLs, store the raw HTML, remove
the advertising content, banners and other such content from the HTML page and only keep the
clean text to be processed, and other relevant web page information. Store the cleaned webpage
in HBase.

3.4 Focused Crawler
• Install the focused crawler developed by Mohamed on the EFC2 machine.
• Perform focused crawler runs using our own topic models and seed URLs.
• Store the crawled URLs in HBase for HTML fetching.
• Evaluate the focused crawler for precision, recall, and F1 score. These metrics depend on
manually identifying a target number of pages sought by the focused crawler in advance.
Accordingly, since we may not know how many pages might relate to an event of interest, we
also will use the harvest ratio measure.
• Modify Mohamed’s focused crawler to generate WARC files and save the HTML content of
webpages in addition to the list of crawled URLs.
• Create a workflow for performing focused crawler runs asynchronously, and incrementally; e.g,
focused crawl climate change and shootings at the same time using different crawlers. Pause
each crawler as necessary due to resources or waiting for the pipeline of loading processed
webpages into HBase. Restart focused crawlers whenever enough new data has arrived.

10

4. System Design

Figure 1: System Pipeline

Figure 1 is a visual representation of our system flow. There are three sources of data:
collections of URLs produced by Mohamed’s focused crawler, WARC files hosted on the
Internet Archive, and the class HBase table. The individual components are explained in the
following sections.

4.1 Collaborators
CMT: The CMT team is responsible for populating the tweet column families in the class
HBase table. Our team will consume the “long-url” column, under the “clean-tweet”

11

column family, which consists of expanded URLs linked by tweets. For each URL in this
column, we will generate a WARC record to eventually be incorporated into a WARC file
of the corresponding collection, parse the information required by the webpage column
family as specified by the webpage column family schema (Table 2), and store the results
in HBase.

CLA: The CLA team is responsible for assigning classification labels to tweets and
storing them in the “classification-label” column under the “clean-tweet” column family.
For each URL, we process in the “long-url” column, if there are any classification labels
assigned, we will store a value of “1” in the “classification-tag” column found under the
“webpage” column family to indicate the webpage has been classified at some point in the
system. This information is required by the teams who consume the “webpage” column
family.

CTE/FE/SOLR: These teams will consume the information contained in the “webpage”
column family for their respective tasks. The webpage schema (Table 2) will serve as the
interface between our teams.

4.2 Data Sources and Outputs
HBase: As explained above in Section 4.1, our team will consume the “long-url” column,
under the “clean-tweet” column family. We will also store the raw HTML and processed
information specified in the webpage schema (Table 2) in the class HBase table. The
HBaseInteraction scripts found on Canvas will be used to store and read values from the
HBase table.

Mohamed’s focused crawler collections: Three output directories were made available
to us corresponding to three focused crawler runs. Each output directory contained the
clean text of 500 webpages and their respective URLs. Oddly, some of the clean text
records consisted of 404 error messages. We are not sure why these were included in the
output.

Internet Archive: There are 66 collections of WARC files containing a total of 323,706
webpages hosted at the following URL: https://archive-it.org/organizations/156

These collections were produced using the Heritrix web crawler and contain lots of noise.
We will create a workflow for downloading these collections and storing their contained
HTML in HBase. We will mark the corresponding “classification-tag” column as “0”
indicating these records require classification.

 In addition to using the Internet Archive as a source of webpages, our team is responsible
for generating and uploading WARC files for URLs linked by tweets, Mohamed’s focused
crawl collections, and the results of our own focused crawler runs.

12

4.3 Processes
Table 1: System Processes

Process Input Output Description Tools

HTML
Fetching

URLs from
HBase

HTML content
stored in HBase

Fetch the HTML
content of webpages
belonging to
corresponding URLs
populated in HBase

Spark

Scala

WARC file
generation:

URLs from
HBase,
Mohamed’s
focused crawler
runs, and our
own focused
crawler runs

WARC files This process
accomplishes two
goals: fetching
HTML of a URL,
and generating the
corresponding
WARC file.

Python

Uploading
WARC files:

WARC files our
team has
generated

Collections
hosted on
archive-it.org

Upload generated
WARC files to an
appropiate collection
on archive-it.org
corresponding to the
source of the WARC
file.

TBD

Downloading
WARC files
from IA:

WARC
collections
hosted on
archive-it.org

WARC files Collections can be
downloaded using
wget, collection
source must be
preserved.

Command
documented
at
https://webarchive.j
ira.com/wiki/displa
y/ARIH/Quick-
Start+for+Partners+
with+Access+to+a
+Unix+or+Cygwin
+Environment

Ingesting
WARC files
into HBase:

WARC files we
have generated
and WARC files
from archive-
it.org

Raw HTML
stored in the
“html” column in
HBase

warcbase can be
used to ingest
WARC file to a
table in HBase, pig
script used for
transferring HTML
to class HBase table

warcbase,

HBaseIntera
ction pig
script

Parsing HTML: Raw HTML
stored in the

Populated
“webpage”

Extraction involves
parsing HTML tree,

Code
documented

13

“html” column in
HBase

column family in
HBase

running SNER on
text, removing
profanity

in Section
7.3

Seed URL
selection:

URLs linked by
classified tweets

Set of seed
URLs to use as
input to focused
crawler

Sort URLs by
domain, pick sites
from top k most
frequent domains

Pig or
Python script

Focused
crawling:

Seed URLs Focused crawled
set of URLs

Involves
starting/stopping of
focused crawl runs

Documented
in Section
7.2

Cleaning
focused crawler
output:

Focused Crawled
URLs

Set of cleaned
URLs, (no 404
pages)

Clean the resulting
URLs of pages that
can’t be reached

Pig or
Python script

Table 1 serves as an overview of the processes our system is responsible for. The processes
highlighted in green have existing work to various degrees while processes in white required
novel solutions. Our approach and results of each process are explained in sections 4.5 - 4.9.

4.4 Webpage schema
The full class schema can be found at the following URL:
https://docs.google.com/document/d/1sXVyObmfCYmu0PAW2hHDtl4Z--
RIyXIRu0VJR9tfRVQ/edit

The schema for webpage information is outlined in Table 2 below. Blue HBase columns were
parsed by the Collection Management Team of previous semesters, while white HBase columns
indicate new information we are parsing this semester.

Table 2: Webpage schema

Column Description Example Stored Indexed Facet

webpage-id Unique identifier for the webpage 39997223 Yes id No

url URL of the corresponding webpage
http://www.bbc.com/news/world-
europe-15551998

Yes url_s No

14

collection-id number of the collection 651 No N/A No

collection-name name of the collection electricity Yes collection_name_s Yes

html raw HTML of web page [raw HTML text] No N/A No

tweet-ids
unique identifiers of the tweets that contains
the URL of this web page,

593392960886145024 No N/A No

language webpage’s main language en Yes language_s Yes

title extract title from the webpage
Student arrested after threatening
Virginia Tech Yik Yak post

Yes title_s No

author extract author from the webpage
Tom LoBianco and Pamela
Brown, CNN

Yes author_s Yes

created-time extract created-time from the webpage
Mon Apr 13 19:00:21
+0000 2015

Yes created_time_dt Yes

clean-text No N/A No

clean-text-profanity clean text with no profanity [clean HTML text] Yes text_t No

sub-urls sub urls in the webpage No sub_urls_s No

domain-name extract the domain name from the webpage http://www.fs.fed.us/ No N/A No

domain-location extract the country name from the webpage us Yes location_s Yes

organization-name
extract the organization name from the
webpage with the help of ©

Cable News Network Yes organization_s Yes

fetched-timestamp fetched time (readable)
Mon Apr 13 19:00:21
+0000 2015

No fetched_time_dt No

event a list of events in the webpage Hurricane Matthew; Flood YES events_s NO

classification-tag
identify whether the web page has been
previously classified or not

0 / 1 No N/A No

webpage_importance The importance value of each webpage [0 - 1] No w_importance_f No

15

4.5 HTML Fetching
The HTML fetching component of our system is responsible for taking URLs produced by the
focused crawler or URLs stored in HBase by the CMT team and fetching the HTML content of
the corresponding webpage. There is a significant time cost involved in retrieving the HTML of
a webpage due to several factors including DNS lookup, and geographical distance to the
webpage host. This time cost motivated the use of the DLRL cluster to run HTML fetching in
parallel. We could not find any existing tools for HTML fetching that ran in a distributed
manner such as an Apache Spark application or MapReduce job.

In developing our own distributed HTML fetching application, we turned to Apache Spark
because it provides a function for retrieving the HTML of a URL, something that would require
additional libraries if we were to write a MapReduce job. The final developed component can be
found in the “htmlFetching” folder of our included code, and its usage is explained in the User
Manual section. The component we developed takes a line delimited list of URLs in a text file
as input and reads them as a Spark Resilient Distributed Dataset. The HTML content is then
fetched in parallel. While ideally the Spark application would read URLs directly from our class
HBase table, bugs in the Spark methods to handle HBase reading as well as time constraints
prevented us from achieving this. The same goes for the output of the developed Spark
application, which in its current form is a string delimited text file of HTML content. An
example of the output is given in the User Manual.

Table 3 shows the runtime of the Spark application running on a single driver. We did not run
experiments on distributed runs of the Spark application due to time constraints; however, these
runtimes at least give some idea of the time required to fetch HTML on a single node.

In terms of future work, future teams should look into different methods of reading and writing
the URLs and HTML content directly into HBase. The Spark application should also use an
additional column in the “clean-tweet” column family consisting of a binary value corresponding
to whether or not the webpage of the contained URL has been fetched when compiling the list of
URLs to fetch in an incremental manner.

Table 3: HTML Fetching Timings

Number of URLs Spark job runtime
(seconds)

64 23.031

128 10.752

256 16.876

512 38.756

16

4.7 WARC File Generation
Web Archive (WARC) files are used by the Internet Archive to store information harvested
during web crawls. They are also commonly used as a format for hosting collections of
webpages. A WARC file contains set of archived WARC records where each record contains
the information for serving an individual resource of a website such as the index.html webpage,
or any individual embedded image or audio file of a website. The entire content of a website or
collection of webpages can be stored as a collection of WARC records archived in a single
WARC file [19].

There is a significant time cost involved in generating the WARC file required to mirror a single
website which varies in how content-rich a particular website is. The time to generate a WARC
file for a single webpsite is often on the scale of minutes.

There are many existing tools for generating WARC files; however, many of these tools are
implemented as web crawlers. While these tools can usually be set not to follow links, the web
crawling functionality is unneeded in the context of our system. Additionally, none of the
existing tools we found ran in parallel as a Spark application or otherwise. This motivated us to
write our own.

The developed application can be found in the “warcGeneration” folder of our included project
code and is explained in the User Manual section. We chose to implement the application as a
Python script because we could not find any already-installed libraries for either Spark or
MapReduce for generating WARC files; thus, the application is not distributed. Instead, the
Python script calls the shell command wget, a GNU package for retrieving web resources which
includes options for producing WARC files. Details of the script can be found in the Developer
Manual section.

4.8 WARC File Ingestion
Unfortunately, due to time constraints we did not focus on WARC file ingestion. However, there
is an existing tool called warcbase that takes a collection of WARC files as input and stores them
in HBase. Andrej Galad, a student in a previous semester of the class, modified this tool to run
on the DLRL cluster [18]. This tool stores the WARC information as a byte array in an HBase
table with a specific schema. Details on extending this work for tighter integration with the class
system as a whole can be found in the Developer Manual section.

4.9 HTML Parsing and Interaction with HBase
Because of the diversity of our sources of input, one of our workflows starts with URLs from the
CMT group that are stored in the HBase. These URLs need to be fetched to obtain the
corresponding HTML files. Then, the HTML files are processed and stored back to the HBase
table. This workflow requires interacting with HBase, the Internet, and the extracted HTML
files.
The first step is loading HTML data from the webpages column family from HBase which we
accomplished by using an Apache Pig script. Details about this work are discussed in the User
and Developer Manual.

17

Next, our workflow involves parsing and noise reduction. We have generated a Python script to
accomplish this and generate the data we need in .avro file format, an improvement from last
semester’s group.
Finally, we load the results back to HBase to complete the information storage part. Here, we
employ the Apache Pig script again which is discussed in the User Manual and Developer
Manual.

5. Project Plan and Schedule
Table 4: Webpage schema

Date Task Description

09/06 Installed Virtual Box: Downloaded and deployed Virtual Machine on our
own laptop or computer.

09/12 Connected the cluster successfully and read the instruction of the Tutorials
files

09/20 Came up with the overall architecture and submitted Interim Report 1

09/26 Implementing the short URLs expanding modules on Hadoop and evaluating
the efficiency of different tools packages.

10/03 Fetch a couple of URLs in HBase and loading the raw webpages back to
HBase

10/10 Choose the most appropriate tools (for example, BeautifulSoup) and utilize
them to clean the loaded webpages file (WARC file or directly textual file
from Mohamed’s code) and load them to HBase column.

10/11 Submit Interim Report 2

10/18 Implement the event focused crawling code from Mohamed and try to
improve it for our project tasks

10/24 Solve the timestamps adding issue

10/31 Collect the feedback from other groups and, time permitting, try to load
webpages from previous and other sources

11/01 Submit Interim Report 3

11/07 Get all additional implementation done and start running our code/tool on the
DLRL cluster

18

11/14 Keep running our code to collect webpages to HBase

12/01 & 12/06 Final project presentation

12/08 Submit Final project report & source code

6. Implementation and Experiments

6.1 Experiments with Focused Crawler
In this section, we will describe our experiments and their preliminary results involving the
focused crawler. For the sake of simplicity, we set the crawler to run on a small set of URLs with
a termination condition corresponding to the number of pages to crawl. This, however, does not
prevent us from scaling it up to run on a large amount of data incrementally and continuously on
the DLRL cluster later.

6.1.1 Settings and Input Data
In this experiment, we were interested in the event “South China Sea Disputes”, and we wanted
the crawler to search for the webpages that are relevant to the event. In order for the crawler to
achieve this goal, first we needed to prepare a training data set of seed urls of five webpages that
are as relevant to the event as possible. We did this by manually collecting URLs, and saving
them to an input text file called seed_urls.txt. Once trained, the crawler was ready to search for
and archive relevant webpages, given a small set of other seed URLs in a file called
mining_urls.txt. Both operations could be run with the following command (the -b parameter
means the algorithm for crawling is a baseline method):

Figure 2: Event Focused Crawler Command Line

 The crawler was configured as follows:

19

Figure 3: Configuration of Event Focused Crawler

6.1.2 Results
The crawler would output a ranked list of relevant URLs (URL - and its corresponding relevancy
score), as shown in the below figure.

Figure 4: Outputs of Event Focused Crawler

6.1.3 On-going Work
There are two main extensions needed to improve the crawler. Currently, the crawler saves the
relevant output webpages in a text file. Our goal from the beginning is to archive the collected
webpages in the form of WARC files as well as store their HTML content in HBase. Therefore,
we need to implement this feature for the crawler. This task can be done relatively easily in
Python with, for example, the WARC library and warcbase; or in Java with Heritrix. For
example, to write to a warc file, in Python we can do:

20

Figure 5: WARC Operation in Python

The second extension is to extract information fields (e.g., author, date, location, organization)
from a collected web page. Again, this feature can be easily implemented using the Stanford
NER framework, and/or Beautifulsoup.

Finally, the last work with this crawler is to run it on the DLRL cluster to collect and save
webpages to HBase.

6.2 Interacting with HBase: Pig Script

Apache Pig is a high-level platform for creating programs that run on Apache Hadoop. The
language for this platform is called Pig Latin. Pig can execute its Hadoop jobs in MapReduce,
Apache Tez, or Apache Spark. Pig Latin abstracts the programming from the Java MapReduce
idiom into a notation which makes MapReduce programming high level, similar to that of SQL
for RDBMSs. Pig Latin can be extended using User Defined Functions (UDFs) which the user
can write in Java, Python, JavaScript, Ruby or Groovy and then call directly from the language.
Due to those reasons, we chose Pig as the method to interact with HBase in our project. Our Pig
script for loading extracted data (in text form) looks like this:

21

./icleanedweb.pig

Figure 6: Load Data in Pig

/* Load TSV file */

Figure 7: Load Data in TSV File

22

/* Store data into HBase */

Figure 8: Store Data into HBase with Pig

The only part that needs to be filled by the user is the data file path, which we have underlined.
The bold text is the path for the HBase table we want to load the data into.
The above Pig script is used for loading a pure text data file into HBase, which works better for
explaining how a Pig script works. However, it ended up being ineffective and unstable to use
text data files because we used ‘\t’ and ‘\n’ to separate different raw records, which may be also
included in the raw content themselves.
Therefore we needed to go one step further and employ the .avro file format. The corresponding
Pig script uses the .avro file as input to load the data into HBase is shown below:

23

./avroload.pig

Figure 9: Load Data from A TSV File

24

/* Store data into HBase */

Figure 10: Store Data into HBase

Here, the data structure in the Pig script we define should be consistent with the .avro data file
structure we specified in the schema. If one wants to modify the data structure, he or she must
load into the HBase table, both the .avro schema (thus the Python extractor script) and the Pig
load data script should be changed to be consistent with each other.

25

7. User Manual

7.1 Webpage Parsing and Clean

To use the webpage clean code mentioned in the Developer Manual, for example we can just use
the command:

Figure 11: Webclean Script Demo

This is the example demo for using the webpage clean Python script: webclean3.py. Here, the
input file “charlie.txt” contains the URL list for the event Charlie Hebdo Shooting collection,
which comes from the previous research work done by Mohamed Magdy Gharib Farag, the file
“charlie_web” is the output text file that contains all the content needed in the webpage schema
table, which can then load the results into the HBase table directly using the Pig script in the
Developer Manual.

Because we were faced with multiple types of input from different sources such as URLs,
WARC files, text files or HTML files, we have different copies of Python scripts for different
inputs to avoid additional, manual, adjustment.

Since at this moment the DLRL cluster does not have included the Python libraries for parsing
and noise reduction (Such as Beautiful Soup or readability), this procedure is still acceptable.
While further improvement might make it possible to run those Python scripts on cluster
automatically, we can call all our separate webpage-clean Python scripts from another script to
make the decision of which script to employ according to the characteristics of the input data.
Due to time constraints, we haven’t complete this job.

Because the number of URLs the CMT group will provide, and our focused crawler will obtain
from the Internet is unpredictable at this moment, it seems hard to provide an exact estimation
about the size of the data set or the number of the documents we will have. If we purely predict
from the number of the events on our list, we may have about 26 large collections of documents
to be processed after we generate the code successfully.

Here is the simple effectiveness statistic estimation results for previous webpage clean
command:

26

Figure 12: Charlie Hebdo Shooting Collection Clean Statistics

Here we see clearly that our script has a total of 501 URLs, while 468 of them are successfully
fetched and cleaned. This experiment is done using an I Mac machine, therefore a large percent
of the unfetched URLs are due to the different SSL versions compatibility problem of IOS
system. This should not be a problem if we use a Linux machine to run our scripts or ultimately
when the scripts can be successfully runned in our cluster.

We also have the statistics results for other two test collections here:

Figure 13: Sydney Hostage Crisis Collection Clean Statistic

This is the webpage fetching and cleaning script results for the 2014 Sydney Hostage Crisis
event, which again comes from the focused crawler research collection by Mohamed Magdy
Gharib Farag. Here the input is still a URL list.

Figure 14: Hagupit Typhoon Collection Clean Statistic

This is the webpage fetching and cleaning script results for the 2014 Typhoon Hagupit which
again comes from the focused crawler research collection by Mohamed Magdy Gharib Farag.
Here the input is still URL list.

27

Here we clearly see that for our webpage clean script works fine as we expect it to be.

7.2 Interaction with HBase

7.2.1 Load the webpage data into HBase

To load data into HBase we decided to employ Apache Pig, as will be explained in details in the
Developer Manual section. Here we only show the demo of how to use the Pig script.
To fulfill this job we need only one line linux command like:

Figure 15: Interact with HBase using Pig Script Demo

Here for this demo since we haven’t uploaded our text data file (charlie_web) into HDFS, we
only need local mode for the Pig script (the keyword ‘local’ in the command line). If the input
data file is large, then we may need the Map Reduce mode and have to load the data files into
HDFS first. The second step can be done following the interaction with HBase tutorial in
Canvas, however, for the first step we should modify the correct path for the HDFS file and
choose the keyword ‘mapreduce’ rather than ‘local’.

If the loading process is successful, we can view the information in the terminal:

28

Figure 16: Pig Script Loading Results

Further if the data files are in .avro format, we then need another Pig script to load them into the
HBase.
Below we show the Pig script demo to load the .avro file into HBase using local mode, which in
some sense looks the same as the text file method. Here the content in the .avro file is not as
explicit as the text file, thus the effort needed for users (also developers) to debug the job if
errors occur will be harder than the text version.

 Figure 17: Interact with HBase using Pig Script Demo (Avro version)

Figure 18: Pig Script Loading Results (Avro version)

29

7.2.2 Load Input URLs Generated by Tweet Group (CMT) From HBase

To accomplish this job, we decided to employ the Apache Pig again. While instead of writing a
fixed Pig script to fulfill this job, we directly use the command line in the Pig shell to solve this
problem, since the data from the CMT group is not static results. It is incrementally updated day
by day thus this method is more flexible to deal with this situation.

Figure 19: Pig Shell Command Sequence for Loading URLs from HBase

Here we show the demo for how to run this process. In the three lines of commands shown in the
above graph, the first line means load the tweets’ URL, tweet collection ID and the tweet ID
associated with the URL; second one means we filter the results from first line by choosing the
collection ‘1’ and its URL searching results are not null; the third line just means we store the
filtered results into the current directory/003 in the HDFS.

Figure 20: Processing Demo for Loading URLs from HBase

Here is an interstage processing demo for the commands above in the Pig shell, we can make a
rough prediction that it needs about two hours for those commands to be run by the Pig shell.
The generated results should be a series of the text files that contain the URLs, the collection ID
of the tweets mentioned those results and those tweets’ ID, which are needed information for our
webpage cleaning and processing Python script to generate the final data that can be loaded back
into HBase.

7.3 HTML Fetching
The HTML fetching component is a Spark application and requires a specific directory structure
for installation and running shown below in Figure 21.

30

Figure 21: Spark Directory Structure

The input of the application is a text file of line delimited URLs, an example of which is shown
below in Figure 22. This file is stored in HDFS and is specified as an argument to the Spark job
command. Several example files are included in the project code.

Figure 22: HTML Fetching Input

The Spark application can be built using the command:
sbt package

To run the application, use the following command:
spark-submit --executor-memory 1G --driver-memory 1G target/scala-2.10/htmlfetch_2.10-1.0.jar inputURLs.txt

This command runs the application locally (not distributed) and allocates 1G of memory for the
driver. The output is stored in a folder named htmlFetchOut in the home directory of HDFS. A
screenshot of sample output is shown

31

Figure 23: HTML Fetching Output

7.4 WARC Generation
The WARC generation application was implemented as a Python script, and only requires an
installation of Python; thus, it can run on the head node of the DLRL cluster. The Python script
takes the same input as the HTML Fetching application described in section 7.5.

The script can be run using the following command:
python wgetWarc.py inputURLs.txt

The output WARC files are saved to a folder named warcOut.

8. Developer's Manual
The following table describes the set of tasks implied by the rest of this report and which group
member is responsible.

32

8.1 Task Assignment Table

Table 5: Task Assignment

Team
member
responsible

Task description Input to task Output of task Tools involved

Chris Load Pranav’s
collections into HBase
(Locate, extract schema
information, store in
HBase)

Pranav’s
collections of
classified
shooting web
pages (format
unknown)

Column families
in HBase
populated with
Pranav’s
collections

Python/Pig [17] -
extract schema
information

Pig - load results
into HBase

Load Mohamed’s
focused crawled
collections into HBase
(Locate, extract schema
information, store in
HBase)

Focused crawled
collection of web
pages (format
consists of
textual content of
each web page,
and any URLs
contained in the
web page)

Column families
in HBase
populated with
Mohamed’s
collections

Pig - load textual
information and
URLs into
HBase

Create workflow for
downloading
collections from the
Internet Archive

Collections of
WARC files
hosted on
archive-it.org

WARC files
stored on the
cluster

Unknown -
Contact
Mohamed to see
if this has been
done before

Create workflow for
storing WARC file
information into HBase

WARC files
stored on HBase

Populated HBase
tables

Warcbase [16]

Others?

Weigang

Short URLs expanding Short URLs from
HBase

Long URLs
reload into
HBase

Python package:
urllib, urllib2,
urlparse, httplib.
Java package:
org.apache.pig.b
ackend.hadoop.h
base

URLs duplication
elimination

Long URLs from
HBase

If it has been
fetched yet or

Java package:
pig.

33

not? Own algorithm
maybe.

Fetching the website
from the URLs
obtained from the CMT
group and create the
WARC files

Long URLs from
HBase

WARC files
associated with
the long URLs

 .
And Java
package: pig
(may also
needed)

Textual clean up for the
raw WARC files
directly obtain from the
URLs

Raw WARC
files

Cleaning WARC
files

Python package:
Beautifulsoup

Timestamp added Raw WARC
files?

Timestamps of
the
corresponding
webpage

MySQL?

Tung Tasks related to events
focused crawlers
(EFC). These include
getting Mohamed’s
EFC source code,
configure, setup,
modify, and eventually
make it run
incrementally on the
server efc2.

EFC source
code, efc2
server, selected
seed URLs,
Mohamed’s
dissertation
about focused
crawling

Relevant
extracted URLs,
cleaned and
classified
webpages,
possibly in
WARC format,
loaded in HBase

HBase, Java,
Python,
Warcbase, Pig,
MySQL, warc,

8.2 Extending HTML Fetching
The HTML fetching application can be extended in two ways: modifying the application to read
and write directly to HBase, and checking a new proposed column under the “clean-tweet”
column family when running the code incrementally.

An example of using the HBase libraries provided by Spark can be found at the following URL:
https://www.mapr.com/developercentral/code/loading-hbase-tables-spark#.WEo_JLIrLmg

This example loads the HBase table as an RDD, however, the CLA team this semester found
bugs with this method when running it on the DLRL cluster. Saurabh from the CLA team had
this to say on the matter:

34

Problem description - Reads from HBase run into problems when the result set (tweets)
numbers in the millions. The problems stem from the fact that a given Spark node can only load
a limited number of tweets in memory. The classification team ran into problems when it was
loading all the tweets from collection# 400, as it had more than 4 million tweets. The driver node
would crash or bail out with an OutOfMemory exception.

Solution - Best practices suggest that a blocked read be performed on HBase, and all the records
that are read as part of the blocked read should then be further processed in a parallel fashion to
perform the specific tasks as part of the team's project goals. Also, the classification team set the
block size to 5000 and the cache size to 1 for their actual experiments. The block size
corresponds to number of rows to be read, and cache size corresponds to the number of columns
read for each row. Please feel free to change this as per your requirement since the classification
team needed to just read the raw tweet. Keep in mind that once you have read a block, you
should make the call to get the next batch of results before 60 seconds, otherwise the scanner
times out and releases the handle to HBase. So, tuning the block and cache size to best fit your
requirements is important. It is also recommended that a block of data, once retrieved, is
immediately cached and repartitioned across the cluster before calling any action method on the
retrieved data. This results in better runtime performance as parallelism across the cluster comes
into effect.

The second point of extension, running the fetcher incrementally, can be accomplished by
passing an additional argument to the application corresponding to the number of webpages to
fetch. The application should then scan HBase for URLs whose corresponding “fetched” column
has a binary value of 0, add the URL to the input list, and mark the “fetched” field as 1, and
repeat this process until the input number of webpages has been reached. If the Spark-HBase
connection cannot be fixed, this would have to be implemented as a separate script that prepares
an input file to the HTML Fetch application.

8.3 WARC Generation
The WARC generation script uses wget, a GNU package for retrieving web resources, to
generate WARC files. The script calls wget as a shell command, thus wget needs to be installed.

The wget command used by the script is as follows:
wget --mirror --warc-file=out --html-extension -PwarcOut --convert-links -t 1 url

--mirror mirrors all resources required to serve the webpage as opposed to just generating a
WARC file for the index.html file.

--warc-file=out turns on WARC output and generates a WARC file with the specified file name

--html-extension appends “.html” to any HTML files downloaded

-P specifies the output directory, in this case a folder named “warcOut”

--convert-links changes the links in downloaded files to point to their corresponding local file

35

-t specifies the number of times to try a connection

The command argument “url” is the URL of the webpage.

8.4 WARC Ingestion
The version of warcbase modified by Andrej Galad can be found at the following URL:
https://github.com/VTUL/warcbase

The screenshot shown below in Figure 24 is of a file in the repository in the location:
warcbase/warcbase-hbase/src/main/java/org/warcbase/ingest/IngestFiles.java

Line 150 inserts the record into the HBase table. It is expected by the application that the HBase
table has a column for a key, date, byte array, and type. The key is generated by a function that
takes the URL of the webpage as input. The byte array is the corresponding bytes of an input
WARC file. In extending this work, the application could be modified to take a schema file, and
extract the corresponding information from the WARC file as opposed to writing its output as a
byte array.

Figure 24: warcbase Storage

36

9. Acknowledge
We would like to thank Dr. Edward Fox not only for giving us an amazing opportunity to take this
wonderful course, but also for his extremely helpful and insightful comments, and encouraging and
continuous support during the class. In addition, we are grateful to Mr. Mohamed Magdy, Mr. Sunshin
Lee, and Mr. Islam Harb for their valuable suggestions and technical supports throughout the project. Mr.
Magdy not only gave us access to his event focussed crawler but also helped resolve technical issues. Mr.
Lee provided us with very useful advices. Mr. Harb helped us resolve technical issues with setting up the
computing environment of the ef2 server for the crawler. We are also thankful to the other teams, CLA,
CMT, CTA, FE and SOLR for their comments and collaborations. Finally, thanks go to NSF for support
through grants IIS-1319578 and 1619028.

37

9. References
[1] Mohamed Magdy Gharib Farag. 2016. Intelligent Event Focused Crawling. Virginia Tech,
Blacksburg, VA, USA. http://hdl.handle.net/10919/73035 (last accessed 10/11/2016)

[2] Yufeng Ma, and Dong Nan. 2016. Collection Management for IDEAL. Virginia Tech,
Blacksburg, VA, USA. http://hdl.handle.net/10919/70930 (last accessed 10/11/2016)

[3] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to
Information Retrieval. Cambridge University Press, New York, NY, USA.

[4] The Apache Software Foundation. HBase. http://hbase.apache.org/ (last accessed
10/11/2016)

[5] Events Archiving Collections. http://www.eventsarchive.org/node/18 (last accessed
10/11/2016)

[6] Archive-It Built at the Internet Archive. https://www.archive-it.org/ (last accessed
10/11/2016)

[7] SteveKallestad. 2014-02-21. Hadoop Distributed File System.
https://wiki.apache.org/hadoop/HDFS (last accessed 10/11/2016)

[8] The Apache Software Foundation. Hadoop. http://hadoop.apache.org/ (last accessed
10/11/2016)

[9] Wikipedia. Web Crawler. https://en.wikipedia.org/wiki/Web_crawler (last accessed
10/11/2016)
Creative Commons Attribution-ShareAlike License.

[10] Events Archiving Facilities: DLRL Hadoop Cluster. Virginia Tech, Blacksburg, VA, USA.
http://www.eventsarchive.org/node/12 (last accessed 10/11/2016)

[11] Jonathan Hedley 2009-2016. jsoup HTML parser. https://jsoup.org/ (last accessed
10/11/2016)

[12] Internet Archive. 2003-2011. About Heritrix. http://crawler.archive.org/index.html (last
accessed 10/11/2016)

38

[13] Wikipedia. Web ARChive. https://en.wikipedia.org/wiki/Web_ARChive (last accessed
10/11/2016)
Creative Commons Attribution-ShareAlike License.

[14] Oracle Corporation. MySQL. https://www.mysql.com/ (last accessed 10/11/2016)

[15] Program Creek. How to make a Web crawler using Java. 2008.
http://www.programcreek.com/2012/12/how-to-make-a-web-crawler-using-java/ (last accessed
10/11/2016)

[17] The Apache Software Foundation. Pig. https://pig.apache.org/ (last accessed 10/11/2016)

[18] Andrej Galad. 2016. VTUL/warcabse. Virginia Tech, Blacksburg, VA, USA.
https://github.com/VTUL/warcbase (last accessed 10/11/2016)

[19] Stephen Merity. April 2, 2014. Navigating the WARC file format. Common Crawl.
http://commoncrawl.org/2014/navigating-the-warc-file-format (last accessed 10/11/2016)

