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Abstract 
The focus of this dissertation is on safety improvement at intersections and presenting how 

Vehicle/Bicycle-to-Infrastructure Communications can be a potential countermeasure for crashes 

ÒÅÓÕÌÔÉÎÇ ÆÒÏÍ ÄÒÉÖÅÒÓȭ ÁÎÄ ÃÙÃÌÉÓÔÓȭ ÖÉÏÌÁÔÉÏÎÓ ÁÔ ÉÎÔÅÒÓÅÃÔÉÏÎÓȢ 4ÈÅ ÃÈÁÒÁÃÔÅÒÉÓÔÉÃÓ ɉÅȢÇȢȟ ÁÃÃÅÌÅÒÁÔÉÏÎ 

capabilities, etc.) of transportation modes affect the violation behavior. Therefore, the first building 

ÂÌÏÃË ÉÓ ÔÏ ÉÄÅÎÔÉÆÙ ÔÈÅ ÕÓÅÒÓȭ ÔÒÁÎÓÐÏÒÔÁÔÉÏÎ ÍÏÄÅȢ #ÏÎÓÅÑÕÅÎÔÌÙȟ ÈÁÖÉÎÇ ÔÈÅ ÍÏÄÅ ÉÎÆÏÒÍÁÔÉÏÎȟ ÔÈÅ 

second building block is to predict whether or not the user is going to violate. This step focuses on 

two different modes (i.e., driver violation prediction and cyclist violation prediction). Warnings can 

then be issued for users in potential danger to react or for the infrastructure and vehicles so they 
can take appropriate actions to avoid or mitigate crashes.  

A smartphone application was developed to collect sensor data used to conduct the transportation 

mode recognition task. Driver violation prediction task at signalized intersections was conducted 

using observational and simulator data. Also, a naturalistic cycling experiment was designed for 

cyclist violation prediction task. Subsequently, cyclist violation behavior was investigated at both 

signalized and stop-controlled intersections. To build the prediction models in all the 

aforementioned tasks, various Artificial Intelligence techniques were adopted. K-fold Cross-

Validation as well as Out-of-Bag error was used for model selection and validation.  

Transportation mode recognition models contributed to high classification accuracies (e.g., up to 
98%). Thus, data obtained from the smartphone sensors were found to provide important information to 

distinguish between transportation modes. Driver violation (i.e., red light running) prediction models 

were resulted in high accuracies (i.e., up to 99.9%). Time to intersection (ὝὝὍ), distance to 

intersection (ὈὝὍ), the required deceleration parameter (ὙὈὖ), and velocity at the onset of a yellow 
light were among the most important factors in violation prediction. Based on logistic regression 

analysis, movement type and presence of other users were found as significant factors affecting the 

probability of red light violations by cyclists at signalized intersections. Also, presence of other road 

users and age were the significant factors affecting violations at stop-controlled intersections. In 

case of stop-controlled intersections, violation prediction models resulted in error rates of 0 to 10 

percent depending on how far from the intersection the prediction task is conducted. 
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Introduction  
According to National Highway Traffic Safety Administration (NHTSA) report, during 2012, more 

than 2.5 million intersection-related crashes occurred in the United States, of which 2,850 were 

fatal crashes and 680,000 were injurious crashes [1] . Specifically, statistics demonstrate that a large 

number of crashes occur at signalized intersections due to traffic violations, of which running red 

lights has been reported to be a serious issue. According to the Insurance Institute for Highway 

Safety (IIHS), 683 people were killed and an estimated 133,000 were injured in crashes in the 

United States during 2012 due to running red lights [2] . The AAA Foundation for Traffic Safety 

surveyed 2,000 United States residents aged 16 and older. The survey showed that approximately 

93% of drivers believe that running through a red light is unacceptable if it is possible to stop 

safely. However, one-third mentioned they ran through a red light during the past 30 days. This 

shows that, although drivers are generally aware of the dangers of this type of violation, they are 

likely to occasionally run a red light [3] . 

According to the FARS1 ÄÁÔÁÂÁÓÅȟ ÁÎ ÁÖÅÒÁÇÅ ÏÆ ÍÏÒÅ ÔÈÁÎ σπϷ ÏÆ ÃÙÃÌÉÓÔÓȭ ÆÁÔÁÌÉÔÉÅÓ ÈÁÓ ÏÃÃÕÒÒÅÄ ÁÔ 

intersections during the past 5 years (2008-20012). Failure to obey traffic signs, signals, or officer 

was reported as the forth common factor (10.6%) leading to fatalities. However, no more details 

were provided in FARS regarding vehicle-bicycle crash types. The following two studies provided 

more details on bicycle-vehicle crash types: Crash data from 2005 to 2009 in North Carolina 

showed that 43.5 percent of the crashes that involved bicyclists occurred at intersections [4] . 

3ÉÍÉÌÁÒÌÙȟ ÆÒÏÍ ÁÎ ÏÌÄÅÒ ɉÅÁÒÌÙ ρωωπȭÓɊ ÂÕÔ ÍÏÒÅ ÃÏÍÐÒÅÈÅÎÓÉÖÅ ɉ$ÁÔÁ ÆÒÏÍ ÓÉØ 53 ÓÔÁÔÅÓɊ ÓÔÕÄÙȟ 

almost half of the bicycle-motor vehicle crashes took place at intersections [5] . This research was a 

Federal Highway Administration (FHWA) research study that was conducted by the University of 

North Carolina Highway Safety Research Center. The data set used in this study was a sample of 

crash data obtained from six US states. More specifically, the following crash types were recognized 

for the bicycle related crashes that occurred at intersections as shown in Table 1 [4, 6]. As 

demonstrated by statistics, bicycle safety at intersections has been a serious issue. Further, the 

growing number of bicycle commuters makes the problem even more important; from 2000 to 

2011, bicycle commuting rates in the US increased: by 80 percent in large Bicycle Friendly Cities 

(BFCs), by 32 percent in non-BFCs, and by the national average of 47 percent [7] . 

 

Table 1 Bicycle Crash Types at intersections 

Crash Type 
NC state (2005-2009) 3ÉØ 53 ÓÔÁÔÅÓ ɉÅÁÒÌÙ ρωωπȭÓɊ 

Percent of all vehicle-bicycle crashes 
Motorist drive out : Sign-Controlled Intersection 9.7% 9.3% 
Bicyclist ride out : Sign-Controlled Intersection 7.9% 9.7% 
Bicyclist ride out : Signalized Intersection 4.7% 7.1% 
Motorist drive out: Signalized Intersection 2.6% 2% 

 

The focus of this dissertation is on safety improvement at intersections and presenting how 

Vehicle/Bicycle-to-Infrastructure Communications can be a potential countermeasure for crashes 

ÒÅÓÕÌÔÉÎÇ ÆÒÏÍ ÄÒÉÖÅÒÓȭ ÁÎÄ ÃÙÃÌÉÓÔÓȭ ÖÉÏÌÁÔÉÏÎÓ ÁÔ ÉÎÔÅÒÓÅÃÔÉÏÎÓȢ 4ÈÅ ÔÒÁÎÓÐÏÒÔÁÔÉÏÎ ÍÏÄÅ 

                                                           
1
 FATALITY ANALYSIS REPORTING SYSTEM (FARS) ENCYCLOPEDIA 



Ch. 1 - Introduction  

3 | P a g e 

 

characteristics such as acceleration/deceleration capabilities, physical shape, etc. affect the 

ÖÉÏÌÁÔÉÏÎ ÂÅÈÁÖÉÏÒȢ 4ÈÅÒÅÆÏÒÅȟ ÔÈÅ ÆÉÒÓÔ ÂÕÉÌÄÉÎÇ ÂÌÏÃË ÉÓ ÔÏ ÉÄÅÎÔÉÆÙ ÔÈÅ ÕÓÅÒÓȭ ÔÒÁÎÓÐÏÒÔÁÔÉÏÎ ÍÏÄÅȢ 

In case an individual is using an instrumented mode (e.g., a vehicle equipped with devices capable 

of sending transportation mode information), the mode information can be easily obtained. 

However, it will take years that all vehicles will be instrumented with such equipment. Also, for 

some transportation modes such as bicycles and pedestrians it may not be possible to instrument 

all bikes or any pedestrians. Most individuals, however, have their cell phone with them all the time. 

Another advantage of smartphones over on-board units is that when using on-board units, the GPS 

requires a warm-up time that leads to not having valid GPS data for the start of the trips (usually 

more than 5-10 minutes), but smartphones do not require that (i.e., warm-up time is usually less 

than one minute). Thus, transportation mode recognition task using cell phones is considered as an 

important task. Consequently, having the mode information, the second building block is to predict 

whether or not the user is going to violate. In other words, violation prediction models need to be 

developed for each transportation mode. This step in the dissertation focuses on two different 

modes (i.e., driver violation prediction and cyclist violation prediction). Warnings can then be 

issued for users in potential danger to react or for the infrastructure and vehicles so they can take 

appropriate actions to avoid or mitigate crashes.  

Figure 1 presents a flowchart that shows the two building blocks, the required variables, data 

sources, and how they are connected. The first row presents the two building blocks, namely 

transportation mode recognition and violation prediction. The violation prediction in this 

dissertation only focuses on two modes as indicated in red color (i.e. passenger cars & bicycles). 

The required variables as shown in the second row of this figure, how they are created, and how 

they are selected are discussed for each task in the corresponding chapter. The third row in this 

figure presents different data sources that can be adopted to obtain the required variables. The data 

sources that are written in red represent the sources used in this dissertation. For implementation 

testing in real world conditions, only the smartphones and onboard equipment are desirable 

because in case a potential crash is predicted, warnings can only be sent to the smartphones and on 

board equipment (i.e., warnings cannot be sent when data are collected through video cameras. 

Also, simulators are not applicable). Moreover, simulator data may not reflect the natural user 

behavior. However, simulators are needed for testing certain scenarios in which users might be in 

dangerous situations or when examining factors such as age, gender, using cell phones.  

Smartphones, nowadays, are equipped with powerful sensors such as GPS, accelerometer, 

gyroscope, light sensors, temperature sensors, etc. Having such powerful sensors all embedded in a 

small device carried in everyday life activities has enabled researchers to investigate new research 
areas. The advantages of these smart devices include ubiquity, ability to send and receive data 

through various ways (e.g. Wi-Fi/cellular network/Bluetooth),  providing alerts, and 

storing/processing data. Furthermore, smartphones will soon be equipped such that they will be 

capable of sending/receiving DSRC2. Therefore, to appreciate the value of smartphones, for the 

mode recognition task, data were obtained from smartphones. The detailed explanation of the data, 

how different factors were created and selected are presented in the corresponding chapter. 

Further, for the driver violation prediction task, observational data (i.e. through video cameras) and 

simulator data were adopted. For the cyclist violation behavior, a naturalistic cycling data collection 

method (i.e., through on board equipment) was used. Detailed explanations regarding data 
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collection, what factors were included, how different factors were created and selected are 

discussed in the corresponding chapters.  

 

Figure 1 Relationship between different parts: building blocks, variables, and data sources 

Problem Statement 

For different  reasons (e.g. distraction, judgment, etc.), drivers and cyclists clearly fail to obey traffic 

rules at both signalized and sign-controlled intersections. Hence the problem is how to 

prevent/mitigate these intersection-related crashes. The failure to comply need to be identified 

before they occur so actions can be taken to alleviate the consequences. To better understand the 

problem, it can be divided into two sub-problems. Thus, the following research questions are 

expected to be answered throughout the dissertation. 

1. What is the transportation mode of the road user? 

2. When approaching an intersection, how can we predict whether the driver/cyclist  is going 

to violate the red light or stop sign? 

It should be noted that in this dissertation, the driver violation prediction was conducted at 

signalized intersections and the cyclist violation prediction was conducted at sign-controlled 

intersections. Similar procedures can be followed to conduct driver violation prediction at stop 

signs and cyclist violation prediction task at signalized intersections.  

 

Building Block 1 

Transportation mode 
recognition task  

Building Block 2 

Violation prediction task 
for the mode identified  
(passenger cars & bicycles)  

Required variables 

ÁAcceleration along different 
axes, 
ÁSpeed, 
ÁGyroscope variables (i.e., 

Roll, Pitch, Yaw), 
ÁAnd other variables.  

Data can be obtained through 

ÁSmartphones  
ÁOnboard equipment  
ÁVideo cameras 

Data can be obtained through 

ÁSmartphones  
ÁOnboard equipment  
ÁVideo cameras 
ÁSimulators  

Required variables 

ÁTime to intersection at the yellow 
onset, 
ÁAcceleration at the yellow ons et, 
ÁSpeed at the yellow onset,  
ÁMax(speed) over a monitoring 

period,  
ÁAnd other variables.  

Building  
Blocks 

Required 
Variables  

Data 
Sources 
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Research plans 

In order to answer the research questions, the research plans in this dissertation include the 

following: 

1. Collect transportation mode data from different users when using various transportation 

modes through a smartphone application. 

2. Develop a model to identify  the transportation mode using smart phone data. 

3. Analyze pre-collected observational passenger car data of different drivers to assess their 

violation behavior when approaching a signalized intersection. 

4. Develop a model to predict if a driver is going to violate a red light using observational and 

data simulator data. 

5. Design a naturalistic cycling experiment and collect bicycle data for different riders to 

assess their behavior when approaching intersections. 

6. Analyze naturalistic cycling data to assess cyclist violation behavior when approaching 

signalized intersections and sign-controlled intersections. 

7. Asses the applicability of the collected bicycle naturalistic data to develop cyclist violation 

prediction models at sign-controlled intersections. 

8. Identify significant factors to predict violations at intersections. 

Dissertation layout 

The manuscript format was used for this dissertation for which a brief description of each chapter 

is presented below. 

Chapter 1 - Introduction:  this chapter gives an introduction, states the problem, and summarizes 

the research objectives. It also provides the proposal layout. 

Chapter 2 - Model Development: this chapter shows how the problem is divided into three main 

tasks (i.e., transportation mode recognition, driver violation prediction, and cyclist violation 

prediction) and visually presents and discusses each part for which models were developed. These 

tasks are all sub-sections of the model development chapter. However, instead of having sub-

chapters for these tasks and making a long single chapter for model development, four standalone 

chapters are provided.  

Chapter 3 ɀ Transportation Mode Recognition: this chapter includes three papers, co-authored by 

Dr. Hesham Rakha, aiming at developing models to recognize the mode of transportation using data 

from smartphone sensors. 

Chapter 4 - Driver Violation Prediction: this chapter presents three papers, co-authored by Dr. 

Hesham Rakha and Dr. Thomas Dingus, which use observational data from a signalized intersection 

as well as simulator data to develop models for predicting Red Light Running (RLR) violations. 
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Chapter 5 - Bicycle Naturalistic Data Collection: this chapter contains a paper, co-authored by Dr. 

Hesham Rakha and Dr. Thomas Dingus, which explains the naturalistic data collection procedure 

for bicycles. 

Chapter 6 - Cyclist Violation Prediction: this chapter includes a paper, co-authored by Dr. Hesham 

Rakha and Dr. Thomas Dingus, which concentrates on analyzing the bicycle naturalistic data to 

assess cyclist violation behavior and to evaluate the capability of developing violation prediction 

models for cyclists. 

Chapter 7 - Conclusions and Future recommendations: this chapter presents the conclusions and 

future recommendations. 
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Model Development 
In order to prevent/mitigate intersection -related crashes that involve bicycles, violations (by both 

driver and rider) at intersections need to be identified before they occur, so appropriate warnings 

can be issued to the users in potential danger or to the infrastructure and consequently appropriate 

actions can be taken. 3ÅÖÅÒÁÌ ÆÁÃÔÏÒÓ ÉÎÆÌÕÅÎÃÅ ÔÈÅ ÄÒÉÖÅÒÓȭ/ridersȭ behavior when approaching 

intersections. These include the vehicle/bicycle  speed [1] , Time to Intersection (TTI) [1] , Distance 

to Intersection (DTI) [1] , age [2, 3], gender [3, 4], direction of travel [3, 5], presence of other road 

users [2, 3, 5], helmet use [6] , and etc. The driver-related factors (e.g. age, gender) are more difficult 

to obtain in practice. On the other hand, kinetic factors (e.g. speed, acceleration) can be obtained by 

monitoring the movement of vehicles through video cameras installed on the infrastructure or 

through on-board devices installed on the vehicles. Hence, the problem of interest is to develop 

models to predict violations using kinetic information of individual bicycles/vehicles. 

Identifying three main modules 

To construct the models, the problem was divided into three main parts: (1) Transportation Mode 

Recognition (2) Driver Violation prediction (3) Cyclist Violation Prediction. The goal is to first 

identify the mode of transportation. Subsequently, violation prediction  is conducted for the drivers 

and the cyclists. Figures 1 through 4 visually presents how these models perform. Figure 2 

illustrates a situation in which three road users (shown as green, blue, and yellow arrows) are 

approaching a sign-controlled or signalized intersection. At this point, the transportation modes of 

the users are unknown. 

 

Figure 2 Road users approaching a sign-controlled or signalized intersection 
 

As these users approach the intersection, at a desired Time To Intersection (TTI) or Distance To 

Intersection (DTI), transportation mode recognition starts as shown in Figure 3, which obtains 

sensor information such as accelerometer and gyroscope from the user for a short period of time. 



Ch. 2 - Model Development 

9 | P a g e 

 

#ÏÎÓÅÑÕÅÎÔÌÙȟ ÔÈÅ ÕÓÅÒÓȭ ÍÏÄÅÓ ÏÆ ÔÒÁÎÓÐÏÒÔ ÁÒÅ ÉÄÅÎÔÉÆÉÅÄ ÁÓ ÓÈÏ×Î ÉÎ Figure 4 and subsequently, 

violation prediction starts.  

 

Figure 3 Transportation mode recognition starts at a specific point 
 

The time period required to recognize the transportation mode is shown in Figure 4, which is a 

short timestamp. However, this task can be undertaken further away from the intersection and as 

the user becomes closer to the intersection, the model would check a number of times to make sure 

the user has not changed his/h er mode and to increase the reliability of the mode recognition. 

Changing modes may occur specially when there is a bus station or a bike share station near the 

intersection. 

 

Figure 4 Violation prediction starts after transportation modes are detected 
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After the transportation mode is identified, the violation prediction is conducted for the mode 

identified . The focus of this dissertation is on the bicycle and the car modes. Hence, the capability of 

developing violation prediction models for only these two modes will be assessed. in order to carry 

out the prediction, a time window as shown in Figure 5 is selected, which gathers information such 

as speed, accelerometer, TTI at onset of yellow, and etc. from which the violation prediction models 

are developed. 

 

Figure 5 Safety messages can be sent to users and or infrastructure after violations are predicted 

Once the prediction task is made, users in potential danger as well as the infrastructure can be 

notified to take appropriate actions with the aim of reducing/mitigating crashes. 

In the next four chapters, the three main tasks (i.e., transportation mode recognition, driver 

violation prediction, cyclist violation prediction) that w ere visually shown in this chapter are 

presented.  
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Abstract  

Identifying the transportation mode can offer several advantages in different fields of transportation 

engineering such as transportation planning and intelligent transportation systems which lead to a broad 

range of environmental and safety applications. Support vector machine, as a supervised learning method, 

is adopted in this paper to develop a multi-class classifier to distinguish between different transportation 

modes including driving a car, riding a bicycle, taking a bus, walking, and running. Data from different 

mobile phone sensors were trained and tested to evaluate the model. Sensors from which the data were 

obtained include accelerometer, gyroscope, rotation vector, and Global Positioning System (GPS). A 

Gaussian kernel was applied as part of the classifier and unlike some ambiguity seen in the literature, a 

complete model selection is conducted. A small window size of one second was considered, so the model 

can be useful in a broader range of applications. For the first time, the data from gyroscope and rotation 

vector sensors were used in experiments based on individual sensor data. The study showed that such data 

can contribute to high classification rates. It was found that including attributes that have similar behavior 

among different modes can negatively impacts the classification rates. When using multiple sensors, high 

average overall accuracies of 98.86% and 97.89% were achieved with and without using the GPS data, 

respectively. These results offer improvements compared to what is reported in the literature. The bus 

mode was the most difficult mode to differentiate due to some similarities to the car and the bike mode 

data. 
 

Keywords: transportation mode; support vector machine; mobile phone sensor data; machine learning 
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Introduction  

Recognizing different types of physical activities using sensor data has been a recent research topic that 

has received considerable attention [1, 2]. Transportation mode classification can be considered as an 

activity recognition task in which data from smartphone sensors carried by users are utilized to infer what 

transportation mode the individuals are using. Micro-electromechanical systems (MEMS), such as 

accelerometers and gyroscopes are embedded in most smartphone devices [3] from which the data can be 

obtained at high frequencies. Smartphones, nowadays, are equipped with powerful sensors such as GPS, 

accelerometer, gyroscope, light sensors, temperature sensors, etc. Having such powerful sensors all 

embedded in a small device carried in everyday life activities has enabled researchers to investigate new 

research areas. Other advantages of these smart devices are their ubiquity, their ability to send and receive 

data through Wi-Fi/cellular network/Bluetooth, to provide alerts, and store data as well as to process the 

data [4]. 

The knowledge of individualsô mode of transport can facilitate some tasks and also can be 

adopted in several applications. Knowing the mode of transportation is an essential part of urban 

transportation planning, which is usually investigated through questionnaires/travel diaries/telephone 

interviews [4, 5] .This traditional way of surveying is usually expensive, erroneous, limited to a 

specific area, and does not incorporate the latest information [6]. As an environmental application, 

the carbon footprint as well as the amount of calories burnt of individuals can be determined by 

obtaining the mode of transport. Other applications include providing users with real-time 

information using the knowledge of speed and transport mode from the users as probes [4, 7], 

Providing individuals with customized advertisements and messages based on the transportation 

mode they are using [4], physical activity and health monitoring, tracking the hazard exposure and 

assessing the environmental impact of oneôs activities, and profile based recruitment for distributed 

data gathering [8].  

Many studies have used GPS for classification purposes. However, several limitations are 

associated with the use of GPS sensors. These limitations include: GPS information is not available 

in shielded areas (e.g. tunnels) and the GPS signals may be lost especially at high dense locations 

which results in inaccurate position information. Moreover, the GPS sensor consumes significant 

power that sometimes users turn it off to save the battery [6, 7]. This paper focuses on developing a 

classifier using the support vector machine method and data obtained from smartphone sensors 

including accelerometer, gyroscope, rotation vector, and GPS data. Consideration of multiple sensors 

is beneficial in that even without using GPS the transportation modes can be identified. The unique 

contributions of this research effort are: 

1. Exploiting data from sensors other than those used in the literature including gyroscope and 

rotation vector data, 

2. Increasing the prediction accuracies with almost real-time prediction (time window of one 

second), and  

3. Developing a complete model selection procedure of support vector machine using Gaussian 

kernels. 

The remainder of the paper is organized in the following five sections. Relevant literature is 

reviewed in the next section followed by the data collection section. Subsequently, the development 

of the proposed model is discussed using support vector machine techniques. Subsequently, the 

results of the study are presented and finally the conclusions of the study are presented. 

Relevant work  

Table 2 presents a summary of past studies focusing on identifying transportation modes. Almost all 

studies used data from GPS sensors that have the aforementioned drawbacks. Also, all studies took 

advantage of Artificial Intelligence (AI) tools such as Fuzzy Expert Systems as in [9] Decision Trees as in 
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[4-8, 10], Bayesian Networks as in [4, 10], Random Forests as in [4], Naïve Bayesian techniques as in [4, 

8], Neural Networks as in [11, 12], and Support Vector Machine (SVM) techniques as in [8, 10, 13-16], 

of which the Decision Tree and SVM methods were used the most. To improve the model performance 

some other techniques were also combined with machine learning methods such as Discrete Hidden 

Markov Models as in [8] and Bootstrap aggregating as in [17]. Other than AI tools, statistical methods 

were also applied such as the Random Subspace Method by [18]. Some studies have used additional 

information from GIS maps as in [4, 9, 19, 20]. However, GIS data is not always available, and also this 

approach may not be suitable for real-time applications because it mostly relies on the knowledge of the 

entire trip with respect to the GIS features such as bus stops, subway entrances, and rail lines. 

The Decision Tree method was identified as the best method by [8, 10] compared to some other 

methods including SVM. However, when applying SVM, several factors can greatly influence the model 

performance, which have not been considered in previous work. For example, a linear kernel was used in 

[8, 10] as part of the method, but generally for a certain type of problems and depending on the size of the 

available data and features, SVM can produce better results with more advanced kernels such as Gaussian 

kernel. Also, when applying Gaussian kernel, it was shown that if complete model selection is conducted 

with Gaussian there is no need to consider the linear kernel [21]. It is also unclear whether feature scaling 

and regularization were adopted in the most studies using SVM. Feature scaling is used to normalize the 

range of different features (or attributes), which leads to higher model performance and training speed and 

the regularization is incorporated into the model to deal with the issue of over-fitting (high variance). 

Gaussian kernel was only used in three studies; however, [14] did not conduct the complete model 

selection. In other words, constant values for the regularization parameter and the Gaussian parameter 

were used. It appears that [15] did not consider regularization parameter, and also they mentioned that 

Gaussian parameter should be optimized, but the optimized value was not reported. [16] reported the best 

regularization parameter (or cost parameter) to be 3, but the method by which they obtained this value is 

unclear. In addition, the value of Gaussian parameter they applied is not stated. 

Depending on the application of interest, different window sizes have been used for predicting the 

mode of transport. For example, [12] found that longer monitoring durations lead to higher accuracy. 

Intuitively, the bigger the window size the easier the prediction becomes since with bigger window sizes 

more information is available. If the application is only a survey for demand analysis the window size can 

be as large as trip duration, whereas if the application provides real-time information for environmental or 

some transit applications, then smaller window sizes are more desirable. The size should be as small as 

possible for some safety applications (e.g. crash prevention/mitigation). A study [13] used 200-meter and 

150-second segments in their experiment. Whereas another study [6] used 10-second time windows to 

separate walking from non-walking segments and then applied a maximum size of 2 minutes. Other than 

the window size, the overlaps of two consecutive windows have also been considered. Reference [7] 

obtained the best window size and overlap to be 10.24 seconds and 50%, respectively. The entire trip 

duration appears to be considered in [5, 9, 11, 16, 20]. 

Table 2 presents different classes, the data, and the overall accuracy of the prediction models for 

different studies; however, the overall accuracy was not reported in some of them for which the averages 

of the reported values are considered in here. Also, it should be noted that, high classification rates were 

achieved for some of the classes (not all), as such, accuracy of 98% and 92% were obtained by [18] for 

bicycle and walk classes, respectively. Also, the reported values by [12] are for a 10-minute window size 

and one ping every 2-minutes. The studies showed higher accuracies were achieved by increasing these 

two parameters. 

Higher accuracies are achieved by increasing the window size as shown in [12]. Since the focus 

of the present study is on small window sizes, in order to ensure a fair comparison of the various studies 

only those with window sizes less than a minute are considered, as summarized in Table 3. Thus, the 

application would include a broader range of applications such as environmental and safety applications. 
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Table 2 Summary of Past Efforts 
Studies Classes Data Window Size Accuracy Studies Classes Data source Window Size Accuracy 

[13] 1- Car 
2- Walk 
3- Bus 
4- Bike 

1- GPS  200-meter and 150-
second segments 

83.6 [7] 1- Bus 
2- Metro 
3- Walk 
4- Bicycle 
5- Train 
6- Car 
7- Still 
8- 
Motorcycle 

1-Accelerometer rate 
of 25 Hz 
 

10.24 seconds , 
50% overlap 

82.14 

[6] 1- Walk 
2- Bike 
3- Motorcycle 
4- Car  
5- Bus 
6- Tram 
7- above 
train 
8- subway 

1- GPS  
3- Accelerometer data 

10-second / maximum of 
2 minutes 

75.8 [11] 1- car 
2- bus 
3- walk 

1- GPS data Entire trip 91.23 

[19] 1- walk 
2- car 
3- bus 
4- subway 
5- commuter rail 

1- GPS-based travel 
survey  
2- GIS data from local 
agencies  

Developed rules to 
identify trip segments 

82.6 [12] 1- Car 
highway 
2- Car 
arterial 
3- Bus 
arterial 
4- streetcar  
5- walk 

1- GPS logger 1/5/10/15/20 
minutes 

82.2 

[4] 1- car 
2- bus 
3- aboveground 
train 
4- walking 
5- bike 
6- stationary  

1- GPS  
2- GIS  

30 seconds 93.5 [14] 1- walk 
2- bike 
3- run 
4- car 
5- train 
6- bus 

1- Accelerometer  5 seconds , 50% 
overlap 

93.88 

[8] 1- stationary 
2- walk 
3- run 
4- bike 
5- motorized 
transport 

1- GPS 
2- Accelerometer 

1 second 93.6 [22] 1- Walk 
2- jog/run 
3- bike 
4- inline 
skating 
5- car 

1-GPS  
2-Accelerometer 

Entire trip 97.7 

[9] 1- Stationary 
2- Walk 
3- Car 
4- Train 
5- Tram 
6- Underground 
7- Bicycle 
8- Bus 
9- Ferry 
10- Sail boat 
11 - Aircraft 

1- GPS 
2- GIS 

Entire trip 91.6 [16] 1- walk 
2- Car 
3- Train 
4- Bicycle 
5- Bus 
6- Tube 

1- GPS Entire trip 88 

[18] 1- Walk 
2- Car 
3- Train 
4- Tram 
5- Metro 
6- Bicycle 
7- Bus 
8- Motorcycle 

1- GPS 
2- Accelerometer 

>20 seconds 61.75 
/78.8 

[15] 1- Car 
2- Train 
3- 
Pedestrian 

1-Accelerometer 4 seconds ï 50% 
overlap 

96.9 / 
97.3 

 the overall accuracy not reported. Here, the average of the reported recall values are used 

 the overall accuracy not reported. Here, the average of the reported precision values are used 

 it appears that the reported accuracy is for the first four classes 

 the overall accuracy not reported. Here, the average of the reported recall values are used. Also first value is for when 8 classes are considered 

and the second value is for when 6 classes are considered, meaning that classes 3, 4, and 5 are combined as a single class 

 96.9 obtained with the time window of 4 seconds / 97.3 obtained considering ten consecutive windows that leads to window size of 40 seconds 
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Other than the window size, several factors are shown in Table 3 that also influence the model 

performance as follows: 

(1) Number of classes: as the number of classes increases, class differentiation becomes more 

difficult. 

(2) Use of accelerometer/GPS/GIS data: the level of model dependency on different sources of data 

is considered as an important factor. Less dependent models are more desirable as they can be 

applicable even with limited sources of data. In this case, sensors such as accelerometers and 

gyroscopes are more reliable since their data are available most of the time.  

(3) Ability to distinguish between motorized classes: as different motorized classes have similar 

characteristics such as speed and acceleration, a model capable of differentiating between these 

modes is of great value. For example, distinguishing the bus mode from the car mode is 

significantly more difficult than discriminating walking from driving. 

(4) Sensor positioning: it shows how realistic the experiments are conducted. Positioning the devices 

at certain locations increases the prediction accuracy because the movements can be monitored in 

more detail, but may not reflect realistic behavior. Some of the studies required that the 

participants attach sensors/smartphones to different parts of their body.  

 

The highest reported accuracy of 96.9% is achieved by [15] with a window size of 4 seconds. In 

this approach only accelerometer data were used and they did not rely on GPS and GIS data. Their 

method is capable of differentiating between motorized modes (car and train) and no specific sensor 

positioning was applied. Nevertheless, they only considered three classes. The second best accuracy is 

obtained by [14]. They also used accelerometer data without relying on GPS/GIS data. However, 

although different motorized modes were mentioned in the paper, it seems that the reported accuracies 

show only one motorized mode. Also, subjects in their study were asked to keep their device in their 

pocket of the non-dominant hip while collecting data which is more realistic compared to attaching 

sensors to the body, but still does not reflect a complete realistic behavior. [8] reported the accuracy of 

93.6 which is ranked third in the table. They applied the lowest window size throughout the literature. 

However, their approach was dependent on data from GPS sensors. Moreover, different motorized classes 

were not considered. 

 
Table 3 Key Features of Studies using a Time Window Less than a Minute 

Study 
Number of 

classes 
accelerometer GPS GIS 

Different 
motorized 

positioning 
Window size 
(seconds) 

Overall Accuracy 
(%) 

[4] 6 no yes yes yes 
Not specific 
requirements 

30 93.5 

[8] 4 yes yes no no 
Not specific 
requirements 

1 93.6 

[7] 8 yes no no yes 
Not specific 
requirements 

10.24 82.14 

[14] 4 yes no no no 
In pocket of non-

dominant hip 
5 93.88 

[15] 3 yes no no yes 
Not specific 
requirements 

4 96.9 

[18] 8/6 yes yes no yes 
Not specific 
requirements 

>20 61.75/78.8 

 

Data collection and preprocessing  

A smartphone application was developed for the purpose of data collection. To collect the data, the 

transportation mode should be selected before starting the logging process, and then the application stores 

the data coming from smartphoneôs sensors including GPS, Accelerometer, Gyroscope, and Rotation 

Vector at the highest possible frequency. In order to ensure that the data are gathered at identical sampling 

rates linear interpolation was applied to the data similar to [7] to produce continuous data sets and finally 

the data were re-sampled at the desired rate (rate of 100 Hz was applied). Data collection was carried out 
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by three individuals using two different android phones (i.e. Galaxy Nexus and Nexus 4). A total of 7 

hours of data were stored and used for training and testing purposes. The data in minutes were comprised 

of about 50, 20, 270, 15, and 70 for Car, Bus, Bike, Run, and Walk modes, respectively. 
 

Model development  

SVM is known as a large margin classifier, which means when classifying data, it determines the best 

possible decision boundary that provides the largest possible gap between classes. This characteristic 

contributes to a higher confidence in solving classification problems. To implement SVM, the LibSVM 

library of SVMs was applied. For multiclass classification, considering Ὤ classes, LibSVM applies one-

against-one method in which ὬὬ ρȾς binary models are built. Among these, LibSVM chooses the 

parameters that achieve the highest overall performance. Another well-known method is called one-

against-all which is more intuitive and has similar performance. However, LibSVM takes advantage of 

one-against-one because of its shorter training time. Using the LibSVM package, a data set can be trained 

to build a prediction model for classification, and then evaluate the model by testing it on another data set 

[23]. 

To construct the model, the following factors are taken into account: using a Gaussian kernel with 

complete model selection, which entails consideration of the regularization parameter and the Gaussian 

parameter, applying feature scaling, and examining several features. The accuracy is obtained using three 

metrics, namely: overall accuracy, precision and recall. These three metrics are used for model evaluation. 

The entire data set is divided into two groups; one for training and the other for testing or evaluating how 

well the model is performing. The overall accuracy is calculated by dividing the total number of correct 

predictions by the total number of test data. The recall is calculated by dividing the total number of true 

positives by the total number of actual positives. The precision is computed by dividing the total number 

of true positives by the total number of predicted positives. 

Equation 1 presents the SVM formulation to solve the classification problem and the associated 

constraints are shown in Equation 2 and Equation 3 [24]. The objective function is comprised of two 

terms: minimizing the first term is basically equivalent to maximizing the margin between classes, and the 

second term consists of an error term multiplied by the regularization (penalty) parameter denoted by ὅ. 

The ὅ parameter should be determined to provide the relative importance between the two terms. 

Equation 2 ensures that margin of at least 1 exist with consideration of some violations. The value of 1 

was resulted from normalizing ύ. Equation 3 restricts the data points to the points that have positive 

errors. 

 

 ÍÉÎ
ȟȟ

ρ

ς
ύ ύ ὅ ‚  Equation 1 

 Subject to:  

 ώ ύ‰ὼ ὦ ρ ‚ ȟὲ ρȟȣȟὔ Equation 2 

 ‚ π ȟὲ ρȟȣȟὔ Equation 3 

 
Where,  

ύ  Parameters to define decision boundary between classes 

ὅ Regularization (or penalty) parameter 

‚ Error parameter to denote margin violation  

ὦ Intercept associated with decision boundaries 

‰ὼ  Function to transform data from X space into some Z space 
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Kernels are functions that are adopted to create the features based on the provided attributes in a 

higher maybe infinite dimensional ὤ space. So, basically, for a function ‰ὼ  that transfers data from ὢ 

space into the higher dimensional ὤ space, the kernel corresponds to the vector inner products in the ὤ 

space. Different types of kernels exist such as linear kernel, polynomial kernels, and Gaussian kernel. 

Linear kernel, as applied in [8, 10], is the basic mode which means no kernels are actually taken into 

account. In other words, vector inner product as appears in the dual formulation of the problem are 

considered without transforming data into another space. According to our data size and attribute size, 

Gaussian kernel was believed to be the most appropriate kernel [25], and as noted earlier, if a complete 

model selection is carried out, there is no need to test the linear kernel because the results obtained from 

the Gaussina kernel include the results obtained from the linear kernel. In fact, when using Gaussian 

kernel, If „ ᴼЊ and ὅ ὅ„  where ὅ  is fixed then the SVM classifier behaves like an SVM 

classifier with a linear kernel with regularization parameter ὅ  [21]. In this paper, the ‰ὼ  function 

which corresponds to the Gaussian kernel has an infinite dimensional space. The formulation of the 

Gaussian kernel is shown in Equation 4. 

 

 ὑὼȟὼᴂ Ὡὼὴ
ᴁὼ ὼᴂᴁ

ς„
 Equation 4 

 
Where,  

ὼȟὼᴂ  n-dimensional vectors 

ᴁὼ ὼᴂᴁ Euclidean distance between vectors ὼȟὼᴂ 
„ Gaussian parameter  

 

n-dimensional vectors are basically vectors of attributes. In other words, each vector is an 

instance of the available data consisting of different attributes. For example, an instance of the training 

dataset with only time and acceleration data is a 4-dimentional vector as shown in Equation 5 below. 

 

 ὼὸὶὥὭὲὼρ
ὸὶὥὭὲȟὼς

ὸὶὥὭὲȟὼσ
ὸὶὥὭὲȟὼτ

ὸὶὥὭὲ ὸȟὥȟὥȟὥ  Equation 5 

 
Where,  

ὸ The timestamp at which the data are stored 

ὥȟὥȟὥ Accelerations along the ὼȟώȟᾀ axes 

 

Attribute Selection  

At first glance, the velocity seems to be a feature by which transportation modes can be easily identified. 

However, traffic conditions and weather conditions can greatly influence the speed in a way that similar 

speed values are observed from different modes. Also, driving on local roads and riding on bicycle on the 

same routes may have similar velocities [17]. 

Features are basically generated by the kernel function using the training data set. In other words, 

every single data point is used by the kernel function to create a new feature. Different data attributes 

(also called features/indicators) such as speed, acceleration, etc. are introduced to the model for feature 

creation. Attributes are basically used to differentiate between transportation modes.  

Some attributes are considered to be basic/traditional attributes (e.g. mean speed), which are more 

intuitive to be influential and are widely used in the literature and some are considered to be more 

advanced attributes (e.g. heading change rate) as presented by [13]. Some methods have been applied to 

select the most relevant attributes to use such as ANOVA tests used in [16], correlation based feature 

selection (CFS) used in [8], and Chi Squared and Information gain methods applied in [4]. A similar 

approach to what [15] applied was used in our study. While preprocessing the data [15], for each time 
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window, computed the standard deviation, the maximum value, the norm, and the number of sign changes 

of the cumulative acceleration values (ὥ ὥ ὥ Ὣ) , where ὥȟὥȟὥ are accelerations along the 

ὼȟώȟᾀ axes and Ὣ is the gravitational acceleration. The total acceleration values of each time window 

( ὥ ὥ ὥ Ὣ) were also used to create sets of attributes, and finally the combination of all sets 

of attributes was also examined. In this paper, however, instead of adding acceleration values, individual 

values were considered to account for the individual effects. The total acceleration was also included 

without gravity acceleration because the linear acceleration sensor was used from which the gravity force 

is already excluded. A similar procedure was applied to data obtained from the gyroscope, rotation vector, 

and GPS sensors. To see the effects of individual sensors, the set of attributes computed for each sensor 

was examined by itself and finally the entire sets of attributes were examined. Table 4 presents the sets of 

attributes. 

 

Table 4 sets of attributes from different sensors 

set 1 - Accelerometer set 2 - Gyroscope set 3 - Rotation Vector set 4 - GPS 

ὥ Ὣ ὶὺ ὺӶ 

ὥ Ὣ ὶὺ ὶὥὲὫὩὺ 

ὥ Ὣ ὶὺ ίὸὨὺὺ 

ὥ ὥ ὥ  Ὣ Ὣ Ὣ  ὶὺ ὶὺ ὶὺ Ὥήὶὺ 

ὶὥὲὫὩὥ  ὶὥὲὫὩὫ  ὶὥὲὫὩὶὺ  

ὶὥὲὫὩὥ  ὶὥὲὫὩὫ  ὶὥὲὫὩὶὺ  

ὶὥὲὫὩὥ  ὶὥὲὫὩὫ  ὶὥὲὫὩὶὺ  

ίὸὨὺὥ  ίὸὨὺὫ  ίὸὨὺὶὺ  

ίὸὨὺὥ  ίὸὨὺὫ  ίὸὨὺὶὺ  

ίὸὨὺὥ  ίὸὨὺὫ  ίὸὨὺὶὺ  

Ὥήὶὥ  ὭήὶὫ  Ὥήὶὶὺ  

Ὥήὶὥ  ὭήὶὫ  Ὥήὶὶὺ  

Ὥήὶὥ  ὭήὶὫ  Ὥήὶὶὺ  

ὲόάὦὩὶ έὪ ίὭὫὲ ὧὬὥὲὫὩίὥ  ὲόάὦὩὶ έὪ ίὭὫὲ ὧὬὥὲὫὩίὫ  ὲόάὦὩὶ έὪ ίὭὫὲ ὧὬὥὲὫὩίὶὺ  

ὲόάὦὩὶ έὪ ίὭὫὲ ὧὬὥὲὫὩίὥ  ὲόάὦὩὶ έὪ ίὭὫὲ ὧὬὥὲὫὩίὫ  ὲόάὦὩὶ έὪ ίὭὫὲ ὧὬὥὲὫὩίὶὺ  

ὲόάὦὩὶ έὪ ίὭὫὲ ὧὬὥὲὫὩίὥ  ὲόάὦὩὶ έὪ ίὭὫὲ ὧὬὥὲὫὩίὫ  ὲόάὦὩὶ έὪ ίὭὫὲ ὧὬὥὲὫὩίὶὺ  

 

Results 

The data gathered were divided into a training set (70 percent of the data) and a testing set (30 percent of 

the data). The distinction between the training and testing set was conducted randomly across all five 

modes of travel. Six scenarios were assessed based on the set of attributes used. Table 5 presents the 

overall accuracy as well as other key factors associated with each scenario. These results are obtained for 

the testing set. Scenarios 1 through 4 accounts for attributes obtained from the accelerometer, gyroscope, 

rotation vector, and GPS sensors, respectively, and evaluate the individual sensor effects. Scenario 5 and 

6 reflect combined effects of using multiple sensors. Scenario 6 uses data from all sensors, while scenario 

5 uses accelerometer, gyroscope, and rotation vector sensors excluding the data from the GPS sensor.  

Scenario 6 clearly achieved the best accuracy while scenario 5 also reached accuracies close to 

scenario 6. The advantage of scenario 5 is that it does not rely on data from the GPS sensor and thus 

requires less power since considerable battery usage is associated with GPS sensors. For these 

preliminary results, constant values of 1 and 0.01 are considered for the regularization and the Gaussian 

parameter, respectively. 
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Table 5 overall accuracy and key points of different scenarios, constant values of regularization and Gaussian 
parameters considered 

Scenarios attributes 
Number of 

classes 

Accelerometer/ 
gyroscope / rotation 

vector 
GPS GIS 

Different 
motorized 

Positioning 
Window size 
(seconds) 

Overall 
Accuracy 

1 set 1 5 yes no no yes 
No specific 

requirements 
1 83.46 

2 set 2 5 yes no no yes 
No specific 

requirements 
1 80.45 

3 set 3 5 yes no no yes 
No specific 

requirements 
1 75.02 

4 set 4 5 yes yes no yes 
No specific 

requirements 
1 83.40 

5 set 1,2,3 5 yes no no yes 
No specific 

requirements 
1 88.66 

6 
set 

1,2,3,4 
5 yes yes no yes 

No specific 
requirements 

1 93.92 

 

Even higher accuracies were achieved by conducting the complete model selection. In order to 

complete the model selection, the regularization parameter (parameter ὧ) as well as the Gaussian 

parameter should be optimized. The Gaussian kernel formulation used in libSVM is slightly different 

from Equation 4; in their formulation, the parameter Ὣὥάάὥ was used instead of . Figure 6 presents 

contour plots that illustrate how different values of the regularization (ὧ) and the Gaussian (Ὣὥάάὥ) 
parameters impact the performance of the models used in scenario 5 and 6, respectively. The optimal 

values for Ὣὥάάὥȟὧ were found to be (0.63, 63.1) and (0.4, 63.1) for scenarios 5 and 6 that led to the 

high overall accuracies of 98.23% and 98.78%, respectively. Parameter ὧ deals with the issues of over 

fitting and under fitting. Choosing a too large/too small value for the regularization parameter results in 

under fitting/over fitting. In other words, the model will suffer from high bias if too small values of the 

regularization parameter are applied, and on the other hand, if too large values of the regularization 

parameter are used the model will suffer from high variances. The Gaussian parameter also impacts bias 

and variance seen in the model. With small values of Ὣὥάάὥ (or large values of „), features can vary 

more smoothly leading to higher bias and lower variance. Also, when using large values of Ὣὥάάὥ, 
features can vary less smoothly which results in lower bias and higher variance.  

 

 
(a) Scenario 5 



Ch. 3 - Transportation Mode Recognition 
 

23 | P a g e 

 

 
(b) Scenario 6 

Figure 6: Impacts of the Regularization and the Gaussian Parameters on Model Accuracy for Scenarios 5 and 
Scenario 6 

 

Table 6 presents confusion matrices for scenarios 5 and 6, which shows the classification rates 

(i.e. true positives and true negatives in percentage based on actual values) for each mode as well as the 

misclassification rates (i.e. false positives and false negatives in percentage based on actual values). Since 

true positives are reported in percentages based on actual values, they are essentially the recall values. 

The highest recall of more than 99% was obtained for the bike mode in both scenarios. Moreover, the 

model predicts the other modes with high recalls. However, the lowest accuracy, as expected, was for the 

bus mode. In scenario 5, more than 7% of the time the bus mode were misclassified as bike and car 

modes. In scenario 6, more than 7% of the time the bus mode was misclassified as the car mode, which 

was the highest misclassification rate. Similarly, high precision accuracies of different modes show that 

the models performed very well. 

 

Table 6 Confusion matrices in percentage for scenarios 5 and 6 

Scenario 5 
Actual  

Scenario 6 
Actual  

Bike Car Walk Run Bus Precision Bike Car Walk Run Bus Precision 

P
re

d
ic

te
d 

Bike 99.30 0.50 4.47 0.52 3.56 98.63 

P
re

d
ic

te
d 

Bike 99.68 0.37 1.35 1.04 1.62 99.48 

Car 0.06 98.38 0.00 0.00 3.88 98.13 Car 0.00 97.63 0.00 0.00 7.77 97.02 

Walk 0.60 0.25 95.45 1.04 0.97 96.84 Walk 0.28 0.00 98.40 1.56 0.65 98.40 

Run 0.00 0.00 0.00 98.44 0.32 99.47 Run 0.00 0.00 0.00 97.40 0.32 99.47 

Bus 0.04 0.87 0.08 0.00 91.26 96.58 Bus 0.04 2.00 0.25 0.00 89.64 92.95 

 Recall 99.30 98.38 95.45 98.44 91.26   Recall 99.68 97.63 98.40 97.40 89.64  

 

The features used in scenario 5 were a subset of features used in scenario 6. When using 

additional information obtained from the GPS sensor (as in scenario 6) the recall values of the walk and 

run modes increased by more than 3%. In addition, the recall value of the bus mode improved by slightly 

more than 1% and there were minor improvements in the recall values of the bike and the car modes (less 

than 1%). These changes make sense since the additional features, which are all speed related variables, 

are better indicators for distinguishing between the walk and run mode from the other modes due to the 

obvious speed differences, but they may not be good indicators to distinguish between the bus and car 

modes due to their similar speeds. It should be noted that in general, the improvement obtained by 

including the GPS data was not significant (1.78% change in average recall value and almost no change in 

average precision value). 
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The entire training and testing procedures were conducted ten more times using the optimal 

values obtained from the model selection task for scenarios 5 and 6 to show the robustness of the model. 

In this case 70 percent of the data were used for training and the remaining 30 percent were used for 

testing procedures. These 70 and 30 percent were randomly selected for each of the repetitions. Standard 

deviation or the recall values is applied as an indicator to show how the accuracies vary in different runs 

as shown in Table 7. Small values of standard deviation show that the models in both scenarios are 

extremely robust. 

 

Table 7 Robustness of the Developed Model 

 
Scenario 5 

  
Scenario 6 

 

 
Bike Car Walk Run Bus Average 

 
Bike Car Walk Run Bus Average 

base 99.30 98.38 95.45 98.44 91.26 96.57 
 

99.68 97.63 98.40 97.40 89.64 96.55 

1 99.22 96.88 95.03 96.88 89.64 95.53 
 

99.56 96.00 98.65 97.92 91.26 96.68 

2 99.18 97.75 94.95 92.71 89.97 94.91 
 

99.74 96.88 98.90 99.48 92.23 97.45 

3 99.18 97.63 96.29 94.79 89.00 95.38 
 

99.64 98.50 98.90 97.92 91.26 97.24 

4 98.98 97.00 95.20 93.75 90.29 95.04 
 

99.60 97.63 98.99 98.44 91.91 97.31 

5 98.74 96.75 95.96 96.88 86.73 95.01 
 

99.72 99.72 99.16 98.44 90.29 97.46 

6 99.12 98.38 96.29 95.31 89.32 95.68 
 

99.62 98.13 98.48 97.92 87.06 96.24 

7 99.00 96.75 95.70 92.71 89.64 94.76 
 

99.56 97.38 98.23 97.92 90.94 96.80 

8 98.98 97.00 95.11 92.19 87.06 94.07 
 

99.50 98.25 99.33 97.92 90.94 97.19 

9 99.30 98.38 95.45 98.44 91.26 96.57 
 

99.58 97.63 98.90 98.44 89.64 96.84 

10 99.20 96.63 96.97 93.75 89.32 95.17 
 

99.64 97.75 98.65 97.40 89.97 96.68 

Average 99.11 97.41 95.67 95.08 89.41 95.34 
 

99.62 97.77 98.78 98.11 90.47 96.99 

Standard Deviation 0.17 0.71 0.64 2.29 1.45 0.65 
 

0.07 0.94 0.33 0.58 1.42 0.40 

 

Higher accuracies were obtained when comparing the present study with similar studies as listed 

in Table 3. The study carried out by [8] was considered to be the most similar research effort for the sake 

of a fair comparison since their study was the only one that chose a one-second time window as done in 

our study. This comparison is shown in Table 8. Also, only scenario 5 is presented in this table to show 

that even without using data from the GPS sensor, a higher accuracy was achieved. Furthermore, as 

mentioned earlier, [8] did not consider differentiating between motorized modes and their method also 

relied on GPS data. Other than the accelerometer, the present study took advantage of data from the 

gyroscope and rotation vector sensors. It should be noted that they used a larger dataset collected from 16 

users. A larger dataset probably include more variability and thus more difficult to distinguish between 

modes. The higher accuracies obtained in this paper might be due to having less data from only three 

users. However, it might be due to conducting a complete model selection or examining a large number of 

features in this paper or both. 
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Table 8 Comparison with the Most Relevant Study 

studies 
Number of 

classes 
Accelerometer/ gyroscope / 

rotation vector 
GPS GIS 

Different 
motorized 

positioning 
Window size 
(seconds) 

Overall 
Accuracy 

[8] 4 yes yes no no 
Not specific 
requirements 

1 93.60 

Present 
Study 

5 yes no no yes 
Not specific 
requirements 

1 95.34 

 

Conclusions  

A classifier was developed using the support vector machine learning technique to identify different 

transportation modes including bike, car, walk, run, and bus. To train and test the classifier, data were 

obtained from smartphone sensors such as accelerometer, gyroscope, rotation vector, and GPS sensors. 

This effort is the first application to use gyroscope and the rotation vector sensors for the purpose of 

transportation mode classification. Individual experiments showed that both of them are significant 

indicators for distinguishing different modes. A Gaussian kernel was applied to create features from 

different sets of attributes coming from different sensors. When using multiple sensors simultaneously, a 

complete model selection was conducted to obtain the optimal regularization parameter and the optimal 

Gaussian parameter resulting in very accurate and extremely robust models. A time window of one 

second was chosen, so the model can fit in a broader range of applications. Comparing to the only study 

in which a time window of one second was used, higher accuracies were achieved. The focus of the future 

work will be on error analysis to identify any patterns that lead to misclassifications, and then to 

incorporate that knowledge into the prediction model for obtaining even higher accuracies. 

 

Acknowledgements  

This research effort was funded by the Mid-Atlantic University Transportation Center (MAUTC) and the 

Connected Vehicle Initiative UTC (CVI-UTC). 

 

References 

[1] Bao, L. and S.S. Intille, Activity recognition from user-annotated acceleration data, in Pervasive 
Computing, Proceedings, A. Ferscha and F. Mattern, Editors. 2004. p. 1-17. 

[2] Kwapisz, J.R., G.M. Weiss, and S.A. Moore, Activity recognition using cell phone accelerometers. 
SIGKDD Explor. Newsl., 2011. 12(2): p. 74-82. 

[3] Susi, M., V. Renaudin, and G. Lachapelle, Motion Mode Recognition and Step Detection 
Algorithms for Mobile Phone Users. Sensors, 2013. 13(2): p. 1539-62. 

[4] Stenneth, L., et al. Transportation mode detection using mobile phones and GIS information. in 
19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 
ACM SIGSPATIAL GIS 2011, November 1, 2011 - November 4, 2011. 2011. Chicago, IL, United 
states: Association for Computing Machinery. 

[5] Yu, X., et al. Transportation activity analysis using smartphones. in Consumer Communications 
and Networking Conference (CCNC), 2012 IEEE. 2012. 

[6] Widhalm, P., P. Nitsche, and N. Brandie. Transport mode detection with realistic Smartphone 
sensor data. in 2012 21st International Conference on Pattern Recognition (ICPR 2012), 11-15 
Nov. 2012. 2012. Piscataway, NJ, USA: IEEE. 

[7] Manzoni, V., et al., Transportation mode identification and real-time CO2 emission estimation 
using smartphones. 2010, Technical report, Massachusetts Institute of Technology, Cambridge. 



Ch. 3 - Transportation Mode Recognition 
 

26 | P a g e 

 

[8] Reddy, S., et al., Using Mobile Phones to Determine Transportation Modes. Acm Transactions on 
Sensor Networks, 2010. 6(2). 

[9] Biljecki, F., H. Ledoux, and P. van Oosterom, Transportation mode-based segmentation and 
classification of movement trajectories. International Journal of Geographical Information 
Science, 2013. 27(2): p. 385-407. 

[10] Zheng, Y., et al., Learning transportation mode from raw gps data for geographic applications on 
the web, in Proceedings of the 17th international conference on World Wide Web. 2008, ACM: 
Beijing, China. p. 247-256. 

[11] Gonzalez, P.A., et al., Automating mode detection for travel behaviour analysis by using global 
positioning systems-enabled mobile phones and neural networks. Iet Intelligent Transport 
Systems, 2010. 4(1): p. 37-49. 

[12] Byon, Y.J., B. Abdulhai, and A. Shalaby, Real-Time Transportation Mode Detection via Tracking 
Global Positioning System Mobile Devices. Journal of Intelligent Transportation Systems, 2009. 
13(4): p. 161-170. 

[13] Zhang, L., M. Qiang, and G. Yang, Mobility transportation mode detection based on trajectory 
segment. Journal of Computational Information Systems, 2013. 9(8): p. 3279-3286. 

[14] Nham, B., K. Siangliulue, and S. Yeung, Predicting mode of transport from iphone accelerometer 
data. 2008, Tech. report, Stanford Univ. 

[15] Nick, T., et al. Classifying means of transportation using mobile sensor data. in Neural Networks 
(IJCNN), The 2010 International Joint Conference on. 2010. IEEE. 

[16] Bolbol, A., et al., Inferring hybrid transportation modes from sparse GPS data using a moving 
window SVM classification. Computers, Environment and Urban Systems, 2012. 

[17] Zheng, Y., et al., Understanding transportation modes based on GPS data for web applications. 
ACM Transactions on the Web (TWEB), 2010. 4(1): p. 1. 

[18] Nitsche, P., et al., A strategy on how to utilize smartphones for automatically reconstructing trips 
in travel surveys. Procedia-Social and Behavioral Sciences, 2012. 48: p. 1033-1046. 

[19] Gong, H., et al., A GPS/GIS method for travel mode detection in New York City. Computers, 
Environment and Urban Systems, 2012. 36(2): p. 131-139. 

[20] Lester, J., et al., MobileSense-Sensing modes of transportation in studies of the built 
environment. UrbanSense08, 2008: p. 46-50. 

[21] Keerthi, S.S. and C.-J. Lin, Asymptotic behaviors of support vector machines with Gaussian kernel. 
Neural computation, 2003. 15(7): p. 1667-1689. 

[22] Troped, P.J., et al., Prediction of activity mode with global positioning system and accelerometer 
data. Medicine and Science in Sports and Exercise, 2008. 40(5): p. 972-978. 

[23] Chang, C.-C. and C.-J. Lin, LIBSVM: a library for support vector machines. ACM Transactions on 
Intelligent Systems and Technology (TIST), 2011. 2(3): p. 27. 

[24] Hsu, C.-W. and C.-J. Lin, A comparison of methods for multiclass support vector machines. Neural 
Networks, IEEE Transactions on, 2002. 13(2): p. 415-425. 

[25] Hsu, C.-W., C.-C. Chang, and C.-J. Lin, A practical guide to support vector classification. 2003. 

 



Ch. 3 - Transportation Mode Recognition 
 

27 | P a g e 

 

  

Abstract  

The paper adopts different supervised learning methods from 

the field of machine learning to develop multi-class classifiers to 

distinguish between different transportation modes including 

driving a car, riding a bicycle, taking a bus, walking, and 

running. Methods that were used include K-Nearest Neighbor 

(KNN), Support Vector Machines (SVMs), and tree-based models 

that comprise a single Decision Tree (DT), Bagging (Bag), and 

Random Forest (RF) methods. For training and validating 

purposes, data were obtained from smartphone sensors including 

the accelerometer, gyroscope, and rotation vector sensors. K-fold 

Cross-Validation as well as Out-of-Bag error was used for model 

selection and validation. Several features were created from 

which a subset was identified through minimum Redundancy 

Maximum Relevance (mRMR) method as the most 

representative features. Data obtained from the smartphone 

sensors were found to have important information to distinguish 

between transportation modes. The performance of different 

methods were evaluated and compared to each other. The 

Random Forest (RF) and Support Vector Machine (SVM) 

methods were found to perform the best. Feature importance of 

different features was determined for the Random Forest model. 

 
Index TermsðCellular phone sensor data, machine learning 

algorithms, transportation mode recognition. 

 

Introduction  

ISTINGUISHING between different types of physical 

activities using sensor data has been a recent research 

topic that has received considerable attention [1, 2]. 

Transportation mode detection can be considered as an 

activity recognition task in which data from smartphone 

sensors carried by users are utilized to infer what 

transportation mode the individuals have used. Micro-

electromechanical systems (MEMS), such as accelerometers 
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and gyroscopes are embedded in most smartphone devices [3] 

from which the data can be obtained at high frequencies. 

Smartphones, nowadays, are equipped with powerful sensors 

such as GPS, accelerometer, gyroscope, light sensors, etc. 

Having such powerful sensors all embedded in a small device 

carried in everyday life activities has enabled researchers to 

investigate new research areas. The advantages of these smart 

devices include ubiquity, ability to send and receive data 

through various ways (e.g. Wi-Fi/cellular network/Bluetooth), 

and storing/processing data [4]. 

The knowledge of individualsô mode of transport can 

facilitate some tasks and also can be adopted in several 

applications as follows: 

1) Knowing the mode of transportation is an essential part 

of urban transportation planning, which is usually 

investigated through questionnaires/travel diaries/ 

telephone interviews [4, 5]. This traditional way of 

surveying is usually expensive, erroneous, limited to a 

specific area, and not so up-to-date [6].  

2) As environmental applications, the carbon footprint as 

well as the amount of calories burnt of individuals can be 

determined by obtaining the mode of transport. Also, 

physical activities and health can be monitored, the 

hazard exposure can be tracked, and the environmental 

impacts of oneôs activities can be assessed [7]. 

3) Other applications include providing users with real-time 

information using the knowledge of speed and transport 

mode from the users as probes [4, 8], providing 

individuals with customized advertisements and 

messages based on the transportation mode they are 

using [4].  

Many studies have used Global Positioning System (GPS) 

data for classification purposes. However, several limitations 

are associated with the use of GPS sensors. These limitations 

include: GPS information is not available in shielded areas 

(e.g. tunnels) and the GPS signals may be lost especially in 

high dense locations, which results in inaccurate position 

information. Moreover, the GPS sensor consumes significant 

power that sometimes users turn it off to save the battery [6, 

8]. This paper focuses on developing detection models using 

machine learning techniques and data obtained from 

smartphone sensors including accelerometer, gyroscope, and 

rotation vector, without GPS data. Consideration of multiple 
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sensors is beneficial in that even without using GPS, the 

transportation modes can be identified. 

The present research demonstrates how to apply several 

machine learning techniques, including: K-Nearest Neighbor 

(KNN), Support Vector Machines (SVMs), and tree-based 

models that comprise a single Decision Tree (DT), Bagging 

(Bag), and Random Forest (RF) methods to identify 

transportation modes using data obtained from smartphone 

sensors. The data include acceleration extracted from the 

accelerometer sensor, rate of device rotation extracted from 

the gyroscope sensor, and deviceôs orientation extracted from 

the rotation vector sensor; all these were extracted around 

different coordinate axes; more details on feature selection are 

presented in sections ñdata collection, preprocessing, and 

feature extractionò on page 4 and ñfeature selectionò on page 

6. Previous studies lacked adequate simultaneous 

consideration of several factors, whereas this study is unique 

in that it comprehensively and simultaneously considers all 

these factors to obtain a naturalistic data which better reflects 

real world situations. To the best of our knowledge, items 4, 5, 

6, and 8 (listed below) have not been considered in the past 

literature. To summarize, these factors include: 

1) The research considered both motorized (car and bus) 

and non-motorized modes of travel (bike, walk and run). 

2) The research did not require that the travelers maintain a 

fixed location for their phone as was done in other 

studies (e.g. phone must be in the travelerôs pocket). 

3) The research did not use data from GPS sensors because 

GPS sensors can deplete the phone battery and the signal 

may be lost in urban areas. 

4) The research made use of data from gyroscope and 

rotation vector sensors, which was never used in 

previous transportation mode detection studies. Some 

features were created based on data from these two 

sensors. 

5) The research considered motorized travel (car and bus) 

on different road types with different speed limits (e.g. 

15, 25, 35, 45, and 65 mph speed limits). This wide 

range of speeds was selected to ensure that the 

algorithms developed would be robust to different travel 

conditions. 

6) The data collection required travelers to collect bus, car, 

and bike data along routes where they had to stop at 

different intersections and thus data included data in 

traffic jam conditions. 

7) The research considered all common machine learning 

procedures in the development of the models, namely; 

complete model selection, regularization (applied when 

using SVM), feature selection, and feature scaling 

(applied when using SVM and KNN). 

8) The research created a large number of features from 

which the most representative features were selected for 

model development. More details about the examined 

features are presented in sections ñdata collection, 

preprocessing, and feature extractionò on page 4 and 

ñfeature selectionò on page 6. 

9) The research identified the features based on statistical 

measures of dispersion as well as derivatives to obtain 

variations over the time window of interest and 

consequently incorporated this knowledge (i.e. feature 

time dependency) into the models. 

Some of the study challenges included: (1) Data 

synchronization; since it was not possible to store the data 

from different sensors at specific times and thus data were 

resampled at a desired frequency, (2) High frequency of data; 

due to having data at very high frequencies. Many data points 

were available even in small time window sizes. 

Consequently, using statistical measures of dispersion, raw 

data values were replaced with those measures corresponding 

to the time window of interest, (3) High computations; 

optimizing the parameters of different models in the model 

selection task, required high computations and thus to alleviate 

this problem, statistical measures of dispersion were replaced 

with all the data points within the time window of interest to 

decrease the number of data points. In addition, the mRMR 

feature selection method was employed to select the most 

representative features before developing different models. A 

characteristic of this method was that it was independent of 

the models and it was not required to carry out the feature 

selection task for each model; hence it was conducted only 

once, and (4) Data noise; a preprocessing task was conducted 

for noise reduction.  

 The remainder of the paper is organized in the following 

sections: Relevant literature is reviewed in the next section 

followed by the data collection section. Subsequently, it is 

shown how the detection models were developed. 

Subsequently, the results of the study are presented and finally 

the conclusions of the study are presented.  

Relevant work  

Almost all studies used data from GPS sensors that have the 

aforementioned drawbacks. Also, they took advantage of 

Artificial Intelligence (AI) tools such as Fuzzy Expert Systems 

as in [9], Decision Trees as in [4-8, 10], Bayesian Networks as 

in [4, 10], Random Forests as in [4], Naïve Bayesian 

techniques as in [4, 7], Neural Networks as in [11, 12], and 

Support Vector Machine (SVM) techniques as in [7, 10, 13-

16], of which the Decision Tree and SVM methods were used 

the most. To improve the model performance, other 

techniques were also combined with machine learning 

methods such as Discrete Hidden Markov Models as in [7] 

and Bootstrap aggregating as in [17]. Other than AI tools, 

statistical methods were also applied such as the Random 

Subspace Method in [18]. Some studies have used additional 

information from Geographic Information System (GIS) maps 

as in [4, 9, 19, 20]. However, GIS data is not always available, 

and also this approach may not be suitable for real-time 

applications because it mostly relies on the knowledge of the 

entire trip with respect to the GIS features such as bus stops, 

subway entrances, and rail lines. 

The Decision Tree method was identified as the best 

method in [7, 10] compared to other methods including SVM. 

However, in developing the models, several factors need to be 
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considered to obtain the best possible model performance. It 

appears that similar studies lack at least one of the following:  

Á Conducting a complete model selection 

Á Considering regularization 

Á Using feature selection methods 

Á Considering feature scaling 

A complete model selection is equivalent to incorporating 

all the tuning parameters in order to obtain the best detection 

accuracy. Regularization is included in the model to deal with 

the issue of over-fitting (high variance). Feature selection 

methods are adopted to use the most representative features. 

Feature scaling is applied to normalize the range of different 

features (or attributes), which leads to higher model 

performance and training speed. However,  it should be noted 

that in general not all these factors are always required. For 

example, selecting features based on intuition or expert 

knowledge may lead to as good results as using a feature 

selection method. It is also possible that these factors specially 

feature scaling (since it is a simple procedure) were part of the 

software package that was used in their work, but the authors 

were not clear whether the factors were applied or they just 

did not emphasize or focus on the importance of these factors. 

Nevertheless, these are important factors to be considered 

when solving machine learning problems. 

Depending on the application of interest, different time 

window sizes have been used for detecting the mode of travel. 

For example, [12] found that longer monitoring durations lead 

to higher accuracy. Intuitively, the bigger the time window 

size the easier the detection becomes since with bigger 

window sizes more information is available. If the application 

is a survey for demand analysis the time window size can be 

as large as trip duration, whereas if the application provides 

real-time information for environmental or some transit 

applications, then smaller time window sizes are more 

desirable. The size should be as small as possible for some 

safety applications (e.g. crash prevention). An earlier study 

[13] used 200-meter and 150-second segments in their 

experiment. Whereas another study [6] used 10-second time 

windows to separate walking from non-walking segments and 

then applied a maximum size of 2 minutes. Other than the 

time window size, the overlaps of two consecutive windows 

have also been considered. Reference [8] obtained the best 

time window size and overlap to be 10.24 seconds and 50%, 

respectively. The entire trip duration appears to be considered 

in [5, 9, 11, 16, 20]. Higher accuracies are achieved by 

increasing the time window size as shown in [12]. However, 

the focus of this study is on small time window sizes, so the 

developed models have the potential to be used in a broader 

range of applications such as environmental and safety 

applications. 

Other than the time window size, several factors that also 

influence the model performance are as follows: 

1) Number of classes: as the number of classes increases, 

class differentiation becomes more difficult. 

2) Model dependency on data sources: Less dependent 

models are more desirable as they can be applicable 

even with limited sources of data. In this case, sensors 

such as accelerometers and gyroscopes are more 

reliable since their data are always available. Whereas, 

GPS, as mentioned earlier, has its own drawbacks. 

3) Ability to distinguish between motorized classes: as 

different motorized classes have similar characteristics 

such as speed and acceleration, a model capable of 

differentiating between these modes is of great value. 

For example, distinguishing the bus mode from the car 

mode is significantly more difficult than 

discriminating walking from driving. 

4) Sensor positioning: it shows how realistic the 

experiments are conducted. Positioning the devices in 

certain locations increases the detection accuracy 

because the movements monitored by the sensors 

show the movements of the transportation mode (or 

the person) they are attached to. However, it may not 

reflect realistic behavior of the travelers. Some of the 

studies required that the participants attach 

sensors/smartphones to different parts of their body.  

Different detection accuracies have been reported by 

different studies. Although in almost all of them including our 

previous work, comparisons were drawn between the 

accuracies obtained from their approaches with those of 

others, such comparisons were excluded in the present study 

because of two reasons. First, in different studies, models were 

developed on different data sets. Second, several factors can 

affect model performance (e.g. time window size, number of 

classes, etc.). Here are some examples: Excluding those 

studies that assumed the time window size to be the entire trip, 

the highest reported accuracy of 96.9% was achieved by [15] 

with a time window size of 4 seconds. In their approach, they 

only used accelerometer data and did not rely on GPS and GIS 

data. Their method was capable of differentiating between 

motorized modes (car and train) and no specific sensor 

positioning was applied. Nevertheless, they only considered 

three classes. The second best accuracy was obtained by [14]. 

They also used accelerometer data without relying on 

GPS/GIS data. However, although different motorized modes 

were mentioned in the paper, it seems that the reported 

accuracies show only one motorized mode. Also, subjects in 

their study were asked to keep their device in their pocket of 

the non-dominant hip while collecting data which is more 

realistic compared to attaching sensors to the body, but still 

does not reflect a complete realistic behavior. An accuracy of 

93.6% was reported by [7]. They applied the lowest time 

window size throughout the literature which is one second. 

However, their approach was dependent on data from GPS 

sensors. Further, different motorized classes were not 

considered. 

Data collection, preprocessing and feature 

extraction  

A smartphone application was developed for the purpose of 

data collection. The application stores the data coming from 

smartphone sensors including GPS, Accelerometer, 

Gyroscope, and Rotation Vector at the highest possible 
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frequency. To collect the data, ten employees at Virginia Tech 

Transportation Institute (VTTI) were asked to carry a 

smartphone (two devices were used: a Galaxy Nexus and a 

Nexus 4) with the application installed on it on multiple trips. 

They were asked to select the travel mode they intend to use 

before starting the logging process, and then using the 

application buttons they were able to start and stop data 

logging. Although smartphones can be carried in other places, 

to make sure the data collection is less dependent on the 

sensor positioning, the travelers were asked to carry the 

smartphone in different positions that they normally do such 

as in pocket, in palm, in backpack, and different places inside 

car (e.g. on front right seat, coffee holder alongside of the 

driver) as they reported after the data collection. However, the 

amount of time that was spent for different positions were 

unknown since the participants were not asked to collect data 

in a particular position for a certain amount of time and the 

reason was to make the data collection as natural as possible. 

Data collection was conducted on different workdays (Mon 

through Fri) during working hours (8 AM to 6 PM) on 

different road types with different speed limits (i.e. car mode 

on roads with 15, 25, 35, 45, and 65 mph; bus mode on roads 

with 15, 25, 35, and 45 mph; bike mode on roads with 15, 25, 

and 35 mph) in Blacksburg, Virginia. Thirty minutes worth of 

data for each mode per person were collected. The original 

data frequency was about 25 Hz (for accelerometer, 

gyroscope, and rotation vector sensors), but the data from 

different sensors were not synchronized. Thus, in order to 

ensure that the data were gathered at identical sampling rates, 

linear interpolation was first applied to the data similar to [8] 

to produce continuous data sets and then the data were re-

sampled at the desired rate (rate of 100 Hz was applied). Since 

the original frequency of 25 Hz was not a constant rate (i.e. a 

constant frequency was not possible to set for collecting data), 

the choice of 100 was made to make sure no information is 

lost. Furthermore, a low pass filter was used for noise 

reduction. In total, 25 hours of data (30 minutes per mode per 

person) were stored and used for training and testing purposes. 

In other words, total of ten travelers collected 30 minutes of 

data for each mode that equals (30x10x5)/60 = 25 hours. 

Some features are considered to be basic/traditional features 

(e.g. mean speed, mean acceleration), which are more intuitive 

to be influential and were widely used in the literature and 

some are considered to be more advanced features (e.g. 

heading change rate) as presented by [13]. In our previous 

work [21], we used approximately 60 features that we created 

from the sensor data, mostly based on some statistical 

measures of dispersion. In the present study, we created a set 

of features that include those 60 features with some 

modifications. First, a feature should have a meaningful 

relationship to the transportation modes. Therefore, absolute 

values of the rotation vector sensor are excluded from the 

feature set because the absolute values correspond to the 

deviceôs orientation and are unrelated to the transportation 

modes. Second, since a time window is being monitored, other 

features that can describe variations in time were created to 

incorporate the featuresô time dependency (e.g. based on 

derivatives). Also, spectral entropy was added, which can be 

used  as a measure to show the peaky spots of a distribution 

[22]. Peaky spots are important since this measure can be 

different for different transportation modes. Intuitively, an 

abrupt braking (which in reflected in the accelerometer data) 

in a car mode is peakier than in the bike mode. A High value 

of spectral entropy for a distribution shows that the 

distribution is somewhat flat. Conversely, the spectral entropy 

decreases when the distribution becomes less flat [23]. In 

addition, the data from the sensors were treated as signals, 

consequently, the energy of the signal within the time window 

of interest was added to the feature set [24]. Also, the data 

from the GPS were excluded to only focus on the scenario 

where no GPS data are available. To summarize, using the 

data from different sensors and for each time window, Table 9 

shows the measures that were used to create the feature set. 

Other than the ñspectral entropyò and ñenergyò that was 

mentioned above, other measure include: ÍÅÁÎ (or average), 

ÍÁØ (maximum), ÍÉÎ (minimum), ÖÁÒ (variance), ÓÔÄ 

(standard deviation), ÒÁÎÇÅ, ÉÑÒ (interquartile range), and 

ÓÉÇÎ#ÈÁÎÇÅ (number of times the sign of a feature changes 

over the time window). Also in this table, Ø represents the 

data array for the É feature (e.g. acceleration) from the time 

window Ô. Also, Ø represent the derivative of Ø. A total of 

165 features were created: out of the 18 measures presented in 

Table 9, all the 18 measures were applied to each of the 

sensor values; 7 measures were applied to rotation vector 

sensor values; 16 measures were applied to the summation 

values from accelerometer and gyroscope sensors (e.g. 

ά ὥ ὥ ὥ ); 4 measures were applied to 

the summation values from rotation vector sensor. As a result, 

the total number of features reached 18*6+7*3+16*2+4*1 = 

165 features. 

 

Table 9 MEASURES USED TO CREATE FEATURES 
No. Measure No. Measure 

1 άὩὥὲὼ  10 ίὴὩὧὸὶὥὰὉὲὸὶέὴώὼ  

2 άὥὼὼ  11 άὩὥὲὼ  

3 άὭὲὼ  12 άὥὼὼ  

4 ὺὥὶὼ  13 άὭὲὼ  

5 ίὸὨ ὼ  14 ὺὥὶὼ  

6 ὶὥὲὫὩὼ  15 ίὸὨ ὼ  

7 Ὥήὶὼ  16 ὶὥὲὫὩὼ  

8 ίὭὫὲὅὬὥὲὫὩὼ  17 Ὥήὶὼ  

9 ὩὲὩὶὫώὼ  18 ίὭὫὲὅὬὥὲὫὩὼ  

Model development  

Three methods were considered to construct the detection 

models. Support Vector Machine (SVM) and Decision Tree 

have been used in most of the literature to classify 

transportation modes, and some papers found the Decision 

Tree to be the best method. Consequently, tree-based models 
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(single Decision Tree, Bagging, and Random Forest) and 

SVM were selected for model construction. In addition, the K-

Nearest Neighbor (KNN) method was considered for the 

purpose of comparison given that it is a simple technique. 

Several methods were adopted in the model development 

process; maximum dependency minimum redundancy 

(mRMR) for feature selection, K-fold Cross- Validation for 

model selection, and Scaling for normalization. To conduct 

feature scaling, the feature values were normalized to be 

within the range of [-1, 1] (Scaling was conducted only when 

applying SVM and KNN).    

K-Nearest Neighbor (KNN) 

A simple yet effective method, namely the K-Nearest 

Neighbor (KNN), which has been applied to numerous 

classification and regression problems in different fields, was 

adopted to identify transportation modes. For each test 

observation (ὢ ) that includes different features (such as 

ὼ), this method first identifies the ὑ nearest train 

observations (ὢ ) in the training data set to the test 

observation and stores them in the ὔ  set. Taking the majority 

vote of the classes for the K nearest points identifies the class 

of the test observation. Calculating the average in the Equation 

6 is equivalent to taking the majority vote in the case of 

classification (versus regression). ώ  and ώ  are the 

response (or target) values corresponding to the observations 

ὢ  and ὢ , respectively. ὑ is a tuning parameter that 

needs to be determined [25]. 

 

ώ
ρ

ὑ
ώ

ᶰ

 6 

Support Vector Machines (SVMs) 

SVM is known as a large margin classifier, which means 

when classifying data, it determines the best possible decision 

boundary that provides the largest possible gap between 

classes. This characteristic contributes to a higher confidence 

in solving classification problems. To construct the SVM 

model, the following factors are taken into account: using a 

Gaussian kernel with complete model selection (which entails 

consideration of the regularization parameter and the Gaussian 

parameter), and applying feature scaling. 

Equation 7 presents the SVM formulation to solve the 

classification problem and the associated constraints are 

shown in Equations 8 and 9 [26]. The objective function is 

composed of two terms: minimizing the first term is basically 

equivalent to maximizing the margin between classes, and the 

second term consists of an error term multiplied by the 

regularization (penalty) parameter denoted by #. The # 
parameter should be determined to provide the relative 

importance between the two terms. Equation 8 ensures that 

margin of at least 1 exists with consideration of some 

violations. The value of 1 was resulted from normalizing ύ. 

Equation 9 restricts the data points to the points that have 

positive errors. 

 

ÍÉÎ
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Subject to:  

ώ
ὲ
ύὝ‰ὼὲ ὦ ρ ‚

ὲ
 ȟὲ ρȟȣȟὔ 8 

‚
ὲ
π ȟὲ ρȟȣȟὔ 9 

 
Where,  

ύ  
Parameters to define decision boundary between 

classes 

ὅ Regularization (or penalty) parameter 

‚
ὲ
 Error parameter to denote margin violation  

ὦ Intercept associated with decision boundaries 

‰ὼ  
Function to transform data from X space into 

some Z space 

ώ
ὲ
  Target value for the ὲ  observation 

 

SVM applies the function ‰Ȣ to transform data from the 

current n-dimensional ὢ space into a higher dimensional ὤ 

space in which the decision boundaries between classes are 

easier to identify. This transformation could be 

computationally very expensive; consequently, to solve the 

problem, the SVM only needs to obtain vector inner products 

in the space of interest. Hence, SVM takes advantage of some 

functions known as Kernels that return the vector inner 

product in the desired Z space. Different types of kernels exist 

such as linear kernel, polynomial kernels, and Gaussian 

kernel. Linear kernel, as applied in [7, 10], is the basic mode 

which means no kernels are actually taken into account. In 

other words, vector inner product as appears in the dual 

formulation of the problem is considered without transforming 

data into another space. For a certain type of problems, SVM 

can produce better results with more advanced kernels such as 

Gaussian kernel. According to our data size and number of 

features, Gaussian kernel was believed to be the most 

appropriate kernel [27]. Also, if a complete model selection is 

carried out, there is no need to test the linear kernel because 

the results obtained from the Gaussian kernel include the 

results obtained from the linear kernel [28]. In this paper, the 

‰ὼ  function corresponds to the Gaussian kernel. The 

formulation of the Gaussian kernel is shown in Equation 10. 

When using this type of kernel, the tuning parameters are the 

Gaussian parameter „ and the regularization parameter ὅ 

that should be determined to obtain the best possible detection 

performance. 

 

ὑὼȟὼᴂ Ὡὼὴ
ᴁὼ ὼᴂᴁ

ς„
 10 

Where,  

ὼȟὼᴂ  n-dimensional vectors 

ᴁὼ ὼᴂᴁ Euclidean distance between vectors ὼȟὼᴂ 

„ Gaussian parameter  

 

Two approaches were examined: (1) Developing a single 
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SVM model using the entire dataset, (2) Developing an 

ensemble of SVM models using a smaller data set for each 

model. Similar to the idea behind the Bag approach, instead of 

developing a single SVM model, a series of SVM models was 

developed and the final result was determined based on the 

majority vote obtained from the SVM models. A number of 

studies have considered taking advantage of an ensemble of 

SVMs [29, 30]. As the number of observations in the training 

dataset (Î) increases the training time increases with the power 

of two (Î) [31]. Thus, if the data set is sufficiently large 

developing a number of SVM models using a subset of data 

can be faster than developing a single SVM model using the 

entire data. 

Tree based models 

1) Decision Tree 
Decision Trees were introduced for classification and 

regression problems in the mid-80s [32]. These approaches 

have several advantages; among all, they are easy to explain 

and interpret, they reflect the human decision making process, 

they can be graphically displayed, and there is no need to 

create dummy variables for qualitative predictors. However, as 

the tree becomes larger, it may over-fit the data and show poor 

performance on the test data set. Consequently, some 

strategies are used in the R and CART software to construct a 

large tree using recursive binary splitting and then pruning 

back to obtain a good sub-tree. This approach is known as 

Cost Complexity Pruning or Weakest Link Pruning. In the 

Recursive binary splitting method, a root node is the starting 

point where a predictor (feature) needs to be selected with a 

cut point to split the data into two parts or nodes. This 

procedure of selecting a feature and splitting is carried out 

successively to grow the tree. Different criteria can be used to 

choose the best split at each node, including: classification 

error rate, Gini index, and Cross-Entropy. In practice the two 

latter methods result in better performance. Consequently, 

Cross-Entropy was used in this study. Having + classes, at 

each node Í which receives .  observations ØȟÙ  from 

its parent node, Cross-Entropy can be obtained through 

Equation 11 [33]. 
 

╟▓
□■▫▌╟▓
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where,  

ὖ   Proportion of class Ὧ observations in node ά 

ὖ  

ρ

ὔ
Ὅώ Ὧ 

ώ  Target value of ὲ  observation in node ά 

Ὅώ Ὧ 1 if  ώ Ὧ , and 0 otherwise 

 

2) Bagging 
Bagging or Bootstrap aggregating method, introduced in 

1996 [34], takes advantage of aggregating results from 

different models to reduce the variance. The 

detection/prediction results of different models constructed on 

different training sets can be averaged. However, in practice, 

we usually have only one training set. Instead, bootstrapped 

training data (Pseudo training sets) can be obtained by taking 

repeated samples from a single training set [35] and a tree 

model can be constructed for each. Afterwards, the average 

performance of all models represents the overall performance, 

which is called Bagging or Bootstrap aggregation. There is no 

need for pruning of trees as the variance is reduced by 

averaging. Averaging is equivalent to taking a majority vote 

for classification problems, which is the case in the present 

study. The detection/prediction for a single data point  Ø is 

obtained by averaging (taking a majority vote) the detections 

resulted from all bootstrapped samples as shown in Equation 

12. The trees can be as large as possible, thus the only 

parameter to be determined is the number of trees. 
 

◐╫╪▌● ║
◐╫●

║

╫
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where,  

◐╫╪▌●  Target value resulted from averaging 

◐╫●  
Detected target value for observation ● in 

bootstrap sample ╫ 

║  Total bootstrap samples 

 

3) Random Forest 
Similar to the Bagging method, the random forest method, 

as proposed in 2001 [36], creates an ensemble of trees and the 

result is obtained based on the majority votes. One issue 

relating to the Bagging is that the trees can be very similar 

since all the features are used to construct each tree; 

consequently, the trees can be highly correlated. To tackle this 

problem random forest restricts the number of features by 

randomly selecting a subset of features to grow each tree. The 

parameters to be determined are the number of features to use 

and the number of trees. Interestingly, in Random Forest and 

also Bagging approaches, adding more trees does not lead to 

over-fitting, but at some point not much benefit is gained by 

including more trees [33]. 

Feature Selection 

Feature selection is considered to be a critical task as it can 

reduce the dimensionality of the problem, reduce the noise, 

identify more important predictors, and lead to more 

interpretable features [37].  

Some methods have been applied to select the most relevant 

features to use such as ANOVA tests used in [16], correlation 

based feature selection (CFS) used in [7], and Chi Squared and 

Information gain methods applied in [4]. Using mutual 

information or some statistical tests to select the top-ranked 

features may not be sufficient as the selected features could be 

highly correlated among themselves [37, 38]. In other words, 

not much benefit is gained by combining highly correlated 

features. In the present study, the selection of the most 

representative features entailed using the minimum 

redundancy maximum relevance (mRMR) approach. This 

approach was used to deal with this issue; when selecting the 
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ὼ feature from the feature set M, assuming set Ὂ has the 

already selected features, the goal is to simultaneously 

maximize the relevance between the feature and the target 

class (i.e. ὼȟὧ) as shown in Equation 13 and to minimize the 

redundancy between that feature and the already selected 

features (i.e. ὼȟὼ) as shown in Equation 14 [37]. Hence, 

using mRMR all the features that were created were ranked to 

choose the most useful ones; the top 80 features were selected 

out of the entire 165 features. The number 80 was chosen by 

experimenting different values. In other words, it was desired 

to achieve a good level of detection accuracy and at the same 

time to exclude less useful features. 
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where, 

ὓὍὼȟώ  Mutual Information of ὼ and ώ 
ὼ  The feature to be examined 

ὼ  A previously selected feature  

ὓ  Set of all features 

Ὂ  Set of the selected features 

c Target class 

 

K-fold Cross-Validation 

The K-fold cross-validation is a powerful technique to 

estimate the detection/prediction error. Consequently, it is 

used to select the best model and to determine the model 

parameters. The idea is to randomly divide the data of ὲ 
observations into ὑ approximately equal parts or folds 

(Ὂȟ ὊȟȣȟὊ) with ὲ observations in each fold. 

Subsequently, the data of the first fold are set aside as the 

validation data set, and the data of the remaining ὑ ρ folds 

are used as the training data set to construct a model. The 

same procedure is conducted ὑ times, each time a different 

validation data set is chosen. The performance of each model 

is evaluated on the corresponding validation set and the 

average detection error is obtained over the ὑ models as 

shown in Equation 15. The special case is when the number of 

folds is exactly the same as the number of observations; this is 

called Leave-One-Out Cross-Validation (LOOCV). LOOCV 

requires high computations as it needs to construct the model 

n times which in this case is the number of observations. Also, 

since only one observation is left out at each k stage, the 

training sets are almost the same for each model and thus the 

estimates are highly correlated, consequently, the average over 

K folds can have high variance. In practice, the best choice for 

the number of folds is 5 or 10 [39, 40]. 
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ὲ
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Where, 

Ὁὶὶ Ὅώ ώ ὲϳ
ᶰ

 

ὲ  Number of observations 

ὲ  Number of observations in Ὧ  fold 

Ὂ  Set of observations in Ὧ  fold 

ώ  Actual target value 

ώ  Detected target value 

Ὅώ ώ   1 if ώ ώ , and 0 otherwise 

Results 

Using mRMR, 80 features were selected as the most 

relevant features, which were used to construct the models. 

The performance of each model was quantified using different 

metrics depending on the model, namely: misclassification 

error obtained from 5-fold Cross-Validation and Out-Of-Bag 

error. Cross-Validation, as mentioned earlier, is a good 

technique to estimate the detection/prediction errors. Out-Of-

Bag error is an accurate estimate of the errors suitable for 

Bagging and Random Forest that is almost identical to the 

Cross-Validation accuracy [33]. Moreover, in developing 

different models, 30% of the data were set aside to obtain a 

test error, and the remaining 70% were used as the training set 

for model development. Subsequently, Confusion matrices 

were obtained for each model, which shows the classification 

rates, misclassification rates, recall, and precision values. The 

recall measure is calculated by dividing the total number of 

true positives by the total number of actual positives. The 

Precision measure is computed by dividing the total number of 

true positives by the total number of predicted positives. 

Finally the models were compared to each other using 

different performance measures such as F-Score, Youdenôs 

index, and the discriminant power that will be presented in the 

ñmodel comparisonò section.  

KNN Model 

The KNN model using 5-fold Cross-Validation was 

implemented using the R software [41] and the class 

package [42]. The only tuning parameter in the KNN method 

is the number of K neighbors. Figure 7 shows the 

misclassification error obtained from a 5-fold Cross-

Validation (applied in the training set) of 25 runs for different 

numbers of neighbors. The highest accuracy was achieved 

when K was 7 resulting in an error rate of 8.8% (accuracy of 

91.2%). The confusion matrix of the KNN model including 

the Recall and Precision values is shown in Table 10.  
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Figure 7 Impact of number of neighbors on model 

misclassification error 
 

 

Table 10 CONFUSION MATRIX - KNN MODEL 

KNN 
Actual  

Bike Car Walk Run Bus Precision 

P
re

d
ic

te
d Bike 93.31 2.33 2.30 0.99 2.96 91.72 

Car 2.73 84.07 0.77 0.38 11.74 84.32 

Walk 2.37 0.20 96.51 1.50 0.25 95.72 

Run 0.07 0.00 0.15 97.00 0.05 99.71 

Bus 1.51 13.40 0.27 0.13 85.01 84.69 

 Recall 93.31 84.07 96.51 97.00 85.01  

 

SVM Model 

In implementing the SVM, the LibSVM library of SVMs was 

used. For multiclass classification, considering Ὤ classes, 

LibSVM applies one-against-one method in which ὬὬ
ρȾς binary models are built. Among these, LibSVM chooses 

the parameters that achieve the highest overall performance. 

Another well-known method is called one-against-all which is 

more intuitive and has similar performance. However, 

LibSVM takes advantage of one-against-one because of its 

shorter training time. [43]. Furthermore, 5-fold Cross-

Validation was used for model development and assessment.  

 

Single SVM 

The 5-fold Cross-Validation was applied on the training set to 

develop a single SVM model. In order to conduct a complete 

model selection, the regularization parameter (Ã) as well as the 

Gaussian parameter (ʎ) should be optimized. The Gaussian 

kernel formulation used in libSVM [43] is slightly different 

from Equation 10; in their formulation, the parameter ÇÁÍÍÁ 

was used instead of . Figure 8 presents a contour plot that 

illustrates how different values of the regularization (Ã) and 

the Gaussian (ÇÁÍÍÁ) parameters impact the performance of 

the SVM model. The optimal values for ÇÁÍÍÁȟÃ were 

found to be (2.828, 512) that led to the overall accuracy of 

94.62%. Parameters Ã and ʎ (or ÇÁÍÍÁ) deals with the issues 

of over-fitting and under-fitting which is a bias-variance 

tradeoff. Detailed information regarding the bias-variance 

tradeoff can be found in [29]. Table 11 presents the confusion 

matrix for the SVM model. 

 

 
Figure 8 Impacts of regularization and Gaussian 

parameters on model Accuracy 
 

 

Table 11 CONFUSION MATRIX - SVM MODEL 

SVM 
Actual  

Bike Car Walk Run Bus Precision 

P
re

d
ic

te
d Bike 95.11 0.89 1.69 0.45 0.94 96.28 

Car 0.96 93.58 0.18 0.15 6.90 91.74 

Walk 1.89 0.28 97.11 1.34 0.55 95.79 

Run 0.37 0.15 0.77 97.55 0.17 98.50 

Bus 1.66 5.10 0.26 0.50 91.44 92.42 

 Recall 95.11 93.58 97.11 97.55 91.44  

 

Ensemble of SVMs (E.SVM) 

For the ensemble of SVM models, the 5-fold cross 

validation was adopted in a slightly different fashion: the 

training set (70% part) was divided into 5 folds; one fold was 

set aside as the validation set, and about 25% of the remaining 

4 folds were used to train the first SVM model. Similarly, 25% 

of the 4 folds was sampled (bootstrap sample; sampling with 

replacement) to train the second SVM model. The procedure 

continues until 200 models were constructed. In addition, trial 

and error was used to pick model parameters ÇÁÍÍÁȟÃ for 

each SVM model. The average of these 200 models was 

validated with the data fold that was set aside. All these steps 

were carried out 5 times, each time with a different data fold 

as the validation set. Averaging the results of the five folds 

represented the cross validation results of the ensemble of 

SVM models. This method led to an overall accuracy of 

94.41%. The confusion matrix corresponding for this approach 

is shown in Table 12. 
 

Table 12 CONFUSION MATRIX ɀ ENSEMBLE OF SVM 
MODELS 

Ensemble of SVMs 
Actual  

Bike Car Walk Run Bus Precision 

P
re

d
ic

te
d Bike 95.63 0.68 1.71 0.56 1.08 96.07 

Car 0.83 91.72 0.13 0.15 7.75 91.04 

Walk 1.60 0.48 97.16 1.27 0.74 95.91 

Run 0.46 0.30 0.75 97.82 0.32 98.12 

Bus 1.48 6.83 0.25 0.20 90.11 91.25 

 Recall 95.63 91.72 97.16 97.82 90.11  

 

Tree-based models 

Decision Tree (DT) 

The decision tree method was implemented in the R 

software along with two packages (ñtreeò and ñmaptreeò 

packages) for tree analysis [41, 44, 45]. The resultant single 
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tree was a very large tree with 48 terminal nodes with an 

overall accuracy of 87.27%. Table 13 shows the confusion 

matrix of the decision tree model. 

 
 

Table 13 CONFUSION MATRIX - DECISION TREE MODEL 

Decision Tree 
Actual  

Bike Car Walk Run Bus Precision 

P
re

d
ic

te
d Bike 85.32 1.78 5.21 0.85 3.07 88.96 

Car 1.39 79.30 0.26 0.14 12.14 85.03 

Walk 8.65 0.10 91.99 2.87 0.13 88.54 

Run 0.40 0.00 1.17 95.30 0.00 98.32 

Bus 4.24 18.83 1.36 0.85 84.65 76.92 

 Recall 85.32 79.30 91.99 95.30 84.65  

 

Since the tree is very large, Cost Complexity Pruning was 

applied to prune the tree from 48 terminal nodes to 24 without 

much loss in performance. Table 14 shows the confusion 

matrix of the pruned tree resulted in 86.3% overall accuracy. 

This model was called DT.P to abbreviate the model title of 

the pruned decision tree. 

 
 

Table 14 confusion matrix - Pruned Decision Tree model 
Decision Tree - 

Pruned 

Actual  

Bike Car Walk Run Bus Precision 

P
re

d
ic

te
d Bike 84.37 3.12 5.87 1.38 4.02 85.79 

Car 0.61 78.50 0.33 0.05 12.77 85.07 

Walk 9.80 0.07 90.44 2.85 0.10 87.42 

Run 0.53 0.00 2.30 95.12 0.00 97.04 

Bus 4.69 18.31 1.06 0.59 83.11 77.02 

 Recall 84.37 78.50 90.44 95.12 83.11  

 

Because the tree was big to illustrate, the tree was pruned 

again to reduce the number of terminal nodes to 9 just for 

illustration purposes, as illustrated in Figure 9. In this case the 

accuracy of the model is 82.1%. 

 
Figure 9 Illustration of a single Decision Tree 

 

Bagging (Bag) and Random Forest (RF) models 

In implementing the Bagging and Random Forest methods, 

the R software and the package ñRandomForestò were used, 

respectively [41, 46]. These two methods were examined 

together since the Bagging is in fact a special case of a random 

forest when the number of selected features equals the total 

number of features. As mentioned before, adding more trees 

will not cause over-fitting. However, a sufficient number of 

trees are needed. Figure 10 shows a series of Random Forest 

models with different number of trees, from 1 to 500, using 5 

features for each tree. After approximately 200 trees, no 

benefit is gained by including more trees. Thus, to apply these 

approaches, 400 trees were used, which is a sufficiently large 

number. On the far left of the diagram, when the number of 

trees is 1, it is equivalent to having a single decision tree. 

 
Figure 10 Impact of number of trees on the 

misclassification error 
 

For the random forest method, other than the number of 

trees, the number of features needs to be determined as well. 

Figure 11 shows a series of random forest models with 

different number of features for each tree. Since a total of 80 

features were used (as identified by mRMR), a total of 80 

random forest models were constructed to find the best 

number of features to use. The far right of the figure shows the 

results of the Bagging approach, where all the 80 features 

were used. The minimum error rate was obtained with 12-25 

features in use. The model with 12 features was selected as the 

best model since a less complex model with less features is 

always more disirable. The Confusion matrix for the bagging 

and the best random forest models are shown in Table 15 and 

Table 16. The overal accuracy of the best random forest 

model and the bagging model, obtained from 5-fold Cross-

Validation, were 95.1% and 94.4% respectively. 

 

 
Figure 11 Impact of number of features on the 

misclassification error 
 

Table 15 CONFUSION MATRIX - RANDOM FOREST 

Random Forest 
Actual  

Bike Car Walk Run Bus Precision 
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P
re

d
ic

te
d Bike 95.47 1.46 2.63 0.97 2.29 93.06 

Car 0.37 93.84 0.12 0.05 4.47 94.93 

Walk 2.93 0.13 96.23 1.59 0.12 95.24 

Run 0.03 0.00 0.40 96.81 0.00 99.55 

Bus 1.19 4.57 0.63 0.58 93.12 93.02 

 Recall 95.47 93.84 96.23 96.81 93.12  

 
 

Table 16 CONFUSION MATRIX - BAGGING 

Bagging 
Actual  

Bike Car Walk Run Bus Precision 

P
re

d
ic

te
d Bike 94.63 1.48 2.81 1.00 2.34 92.75 

Car 0.48 92.64 0.12 0.03 5.08 94.18 

Walk 3.43 0.13 95.95 1.63 0.22 94.62 

Run 0.03 0.00 0.58 96.79 0.02 99.34 

Bus 1.42 5.74 0.55 0.54 92.34 91.76 

 Recall 94.63 92.64 95.95 96.79 92.34  

 

Feature Importance 

As was mentioned earlier, a total of 80 features were 

identified as the most relevant features by mRMR method. 

Figure 12 shows the actual importance of the best 20 features 

associated to the best random forest model. The importance of 

the features were assessed based on two measures: (1) Mean 

Decrease Accuracy that shows how the detection accuracy is 

decreased if a feature was excluded, averaged over all trees, 

and normalized by the standard deviation of the differences in 

accuracy and (2) Mean Decrease Gini that shows how a single 

feature contributed to decrease the Gini index over all the 

trees. Table 17 shows the feature names in the order of 

importance. Since the two measures determine the feature 

importance in different ways the identified features by the two 

measures are different. While both measures have been used 

in the literature, there have been arguments concerning the 

preference for one measure over another. It is recommended 

that the first method (i.e. Mean Decrease Accuracy) is more 

suitable for causal interpretations. More details about the 

arguments and some contradictions regarding these measures 

can be found in [47]. 

 

 
Figure 12 Feature importance for two different measures 

  

Table 17 IMPORTANT FEATURES 
No. Feature Name No. Feature Name 

1 ίὴὩὧὸὶὥὰὉὲὸὶέὴώὥ  11 άὩὥὲὥ  

2 ὶὥὲὫὩὥ  12 Ὥήὶὥ  

3 άὥὼὥ  13 ὺὥὶὫ  

4 άὥὼὫ  14 άὭὲὥ  

5 άὭὲὫ  15 ὶὥὲὫὩὥ  

6 ὶὥὲὫὩὫ  16 ὩὲὩὶὫώὥ  

7 ίὴὩὧὸὶὥὰὉὲὸὶέὴώὥ  17 ὶὥὲὫὩὫ  

8 άὥὼὥ  18 άὩὥὲὫ  

9 άὩὥὲὫ  19 ίὸὨὥ  

10 άὭὲὥ  20 ίὴὩὧὸὶὥὰὉὲὸὶέὴώὫ  

 

Model Comparison 

The performance of the models was evaluated using four 

metrics, namely: the overall accuracy, the F-Score, Youdenôs 

index, and the Discriminant Power (DP). The overall accuracy 

is calculated by dividing the total number of correct detections 

by the total number of test data. The F-Score is a combined 

measure of the Recall and the Precision. The Youdenôs index 

is a measure to assess the ability of a model to avoid failure. 

The discriminant power shows how well a model 

discriminates between different classes by summarizing 

sensitivity and specificity of the model; the model is a poor 

discriminant if DP <1, limited if DP <2, fair if DP <3, good ï 

in other cases. The sensitivity and specificity assess model 

performance on a single class, and are equivalent to the recall. 

By definition, assuming two classes (positive and negative) 

sensitivity is exactly the same as the Recall measure. 

Specificity is also the same metric but for the negative class. 
Figure 13 illustrates a visual comparison between the models 

using different performance measures. 

 

Feature Combination 

An effort was made to develop a new additional feature 

which is a combination of other features. This was carried out 

by combining two approaches; a Meta heuristic approach 

called Simulated Annealing (SA) [48] and the Random Forest 

techniques. The new feature was created by multiplying other 

features; SA was adopted to select the best features to 

combine. The steps of this approach are as follows: 

1. Define an initial solution: two random features were 

selected and placed in a set called CF. These features were 

combined (by multiplying by each other) to create a new 

feature. Subsequently, a RF model was developed using the 

previously used features (i.e. 80 features) and the newly 

defined feature to obtain the error rate for this initial solution. 

2. Choose the algorithmôs settings: trial and error was 

carried out to determine these algorithm parameters.  

ü Initial temperature (ὸ ); (The term 

ñtemperatureò is basically a control parameter which 

affects the probability of accepting or rejecting new 

solutions.) 

ü Final temperature (ὸ ) and stopping criteria 

ü Number of iterations at each temperature (ὓ ) 
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ü Cooling schedule 

After several trials, 5, 0.1, 15, and 0.8 were chosen as the 

ὸ , ὸ , ὓ , and the temperature reduction multiplier, 

respectively. 

3. Repeat until stopping criteria are met  

ü Repeat until n=ὓ , (n is a counter, starting from 0) 

¶ Generate a new solution: the new solution is 

generated by either randomly removing an 

already selected feature in the CF set or randomly 

adding a new feature to the CF set. Thereafter, the 

new feature is updated by multiplying all the 

features in the CF set. 

¶ Calculate Ў, the relative difference between the 

new and current error rates  

¶ If ЎÒ0, the new solution is accepted, otherwise, 
the new solution can still be accepted with the 

probability of Å
Ў

 

¶ n = n+1 

ü Decrease the temperature according to the cooling 

schedule: the temperature was decreased by 

multiplying the temperature value to 0.8 at each 

stage. Each stage corresponds to ὓ  iterations. 

The error rate obtained by this approach was 4.7% which 

shows a very small improvement comparing to the results that 

was previously obtained by the RF model (i.e. 4.9%). The 

results showed that combining different features did not 

enhance the RF model significantly. The error could be 

attributed to having very similar data for different modes; cars, 

buses, and bicycles waiting at a traffic light; a traveler 

collecting the run mode may have stopped just a bit to catch 

their breath or stopped at a traffic light or a stop sign, which 

would be similar to the walk mode; a bus and a car travelling 

on the same road with very similar kinetic variables such as 

speed and acceleration. 

Conclusions 

Different classifiers were developed using machine learning 

techniques to identify different transportation modes including 

bike, car, walk, run, and bus. In training and testing the 

classifier, data were obtained from smartphone sensors such as 

accelerometer, gyroscope, and rotation vector which were 

found to have important information for the purpose of mode 

recognition. A time window of one second was chosen, so the 

model can fit in a broader range of applications. For each 

method, parameters that needed to be optimized were 

examined to conduct a complete model selection. K-fold 

Cross-Validation and Out-Of-Bag error were used for model 

evaluations. Also, some performance measures such as the F-

Score, Youdenôs index, and Discriminant Power were applied 

to assess model performances on the individual modes. 

Considering misclassification rates, the car and bus modes 

were the most difficult ones to distinguish, as would be 

expected. Even using more complex models such as SVM and 

RF, the car mode was misclassified as the bus mode in about 

4-6% of the time. The Random Forest method was found to 

produce the best overall performance. However, for specific 

modes (i.e. walk and Run), the SVM outperformed the RF 

method. Several features were created and examined; among 

which 80 features were identified using the mRMR method as 

the most relevant feature. Other than some statistical measures 

of dispersion (e.g. range, max, var etc.), spectral entropy and 

energy were among the most important features. The focus of 

the future work will be on error analysis to identify any 

patterns that lead to misclassifications, and then to incorporate 

that knowledge into detection models for obtaining even 

higher detection accuracies. 

Some recommendations for future directions that applies to 

this and similar research problems include: adding more data, 

applying approaches to examine the data as a sequence, 

considering more transportation modes (e.g. metro), and 

conducting error analysis
3
 to gain some insights about where 

different models fail to correctly classify the data and 

consequently incorporate that knowledge into the models to 

enhance the detection performance. 

 

 

 

 
Figure 13 Model comparison results 

 

                                                           
3
 See appendix A and B for error analysis 
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Abstract  

This study focuses on adopting machine learning techniques in a distributed learning approach to develop 

transportation mode detection models. When applying machine learning methods, the goal is to build 

models developed based on some data that includes a number of observations. Each observation contains 

a response (s) which is the dependent variable or the target value and an instance which contains some 

predictors or independent variables. In the case of transportation mode detection problem, the response is 

categorical (i.e. Car, Bus, Walk, etc.) and therefore it is considered as a classification problem. The goal is 

to classify transportation modes in a distributed approach (local level) and compare it to the detection 

models developed in a centralized manner (global level). In most transportation related problems, the data 

come from human subjects, which makes the prediction (or detection) more difficult due to the disparities 

between humansô behavior. Therefore, this paper employs a distributed learning approach in which 

detection models are developed for each individual instead of developing a single model for the entire 

data as is conducted in centralized systems. The number of models in the distributed approach is equal to 

the number of human subjects in the study who collected the data. As machine learning methods, support 

vector machine (SVM) and random forest (RF) were employed. Moreover, cross validation and out of bag 

error were applied to measure the performance of the models. Based on the data used in this study, it was 

found the distributed learning approach contributes to more accurate models compared to the centralized 

approach.  

 

Keywords: distributed learning; support vector machine; random forest; machine learning; transportation 

mode recognition 

  



Ch. 3 - Transportation Mode Recognition 
 

 

43 | P a g e 

 

Introduction  

When dealing with Machine Learning problems in a centralized approach, the traditional way is to collect 

some relevant data and develop a single model based on the entire data. However, the data can be divided 

and different models can be developed on different parts of the data. Having a distributed system rather 

than a centralized system has been an active research topic in the computer science field, but other fields 

also have shown interest in adopting distributed approaches. There are several reasons why a distributed 

approach can be beneficial to the centralized approach as follows [1-4]. 

1. Dealing with a large amount of data in a centralized system is too difficult to be handled.  

2. Data sources may be physically from different locations, and therefore too expensive to be 

directed to a centralized system 

3. Sometimes the data from various sources cannot be shared due to privacy, security, and data 

ownership issues  

4. Sometimes it is more efficient to have learning activities in parallel 

In such conditions, a desired approach is to design a knowledge acquisition system that can 

analyze parts of the data wherever available and then the analysis results can be transmitted if needed. In 

other words, the knowledge can be acquired from different data parts and if required the results can be 

aggregated [3, 4]. Furthermore, specifically in the transportation domain, recent methods of data 

collection such as probe vehicles have been proposed to collect traffic data as a cost-effective alternative 

way compared to the more traditional ways such as loop detectors and video cameras [5]. In fact the 

combination of the traditional data collection methods (on-road sensors) with these new methods (on-

board sensors) provide high quality data sets to be utilized [6]. In the new methods, instead of the 

infrastructure (e.g. loop detector, video cameras, etc.), individuals (e.g. probe vehicles, smartphones, etc.) 

collect the data. As a result, using these methods, there is an opportunity to analyze the data for each 

individual in a distributed manner and if required the analysis results can be aggregated.  

Distributed data collection has been applied in several studies. In the Mobile century project [5], 

the feasibility of a traffic monitoring system for freeways by adopting GPS-enabled mobile phones was 

evaluated. In the Mobile Millennium study [7], arterial traffic conditions were estimated using GPS-

enabled devices by applying statistical models. While these and other similar studies have been using a 

distributed data collection method, the data analysis has been conducted in a centralized system. In other 

words, each vehicle is equipped with mobile phones or GPS throughout the road network and transmits 

data (e.g. speed, location, etc.) to a central location where the data are processed and different inferences 

can be drawn such as travel time prediction, alternative routes, and etc. [6]. In the present study, other 

than collecting data in a distributed manner, a distributed data analysis or learning is adopted. 

The paper is organized as follows. The first section presents an overview of the past studies on 

transportation mode detection as the example problem used to investigate the distributed learning 

approach. The second section formulates the distributed learning problem. The data collection process is 

presented in the third section. In the fourth section, the model development is explained. Finally, the 

results that draw a comparison between the distributed and centralized approach, are presented in the fifth 

section followed by the sixth section in which the conclusion is given. 

Transportation mode recognition  

Recognizing different types of physical activities using sensor data has been a recent research topic that 

has received considerable attention [8, 9]. Transportation mode detection can be considered as an activity 

recognition task in which data from smartphone sensors carried by users are utilized to infer what 

transportation mode the individuals have used. Micro-electromechanical systems (MEMS), such as 

accelerometers and gyroscopes are embedded in most smartphone devices [10] from which the data can 

be obtained at high frequencies. Smartphones, nowadays, are equipped with powerful sensors such as 

GPS, accelerometer, gyroscope, light sensors, temperature sensors, etc. Having such powerful sensors all 
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embedded in a small device carried in everyday life activities has enabled researchers to investigate new 

research areas. Other advantages of these smart devices are their ubiquity, their ability to send and receive 

data through Wi-Fi/cellular network/Bluetooth, and store data as well as to process the data [11]. 

The knowledge of individualsô mode of transport can facilitate some tasks and also can be 

adopted in several applications. Knowing the mode of transportation is an essential part of urban 

transportation planning, which is usually investigated through questionnaires/travel diaries/telephone 

interviews [11]. This traditional way of surveying is usually expensive, erroneous, limited to a 

specific area, and not so up-to-date [12]. As an environmental application, the carbon footprint as 

well as the amount of calories burnt of individuals can be determined by obtaining the mode of 

transport. Other applications include providing users with real-time information using the knowledge 

of speed and transport mode from the users as probes [11, 13], Providing individuals with customized 

advertisements and messages based on the transportation mode they are using [11], physical activity 

and health monitoring, tracking the hazard exposure and assessing the environmental impact of oneôs 

activities, and profile based recruitment for distributed data gathering [14]. 

Many studies have used GPS for classification purposes. However, several limitations are 

associated with the use of GPS sensors. These limitations include: GPS information is not available 

in shielded areas (e.g. tunnels) and the GPS signals may be lost especially at high dense locations 

which results in inaccurate position information. Moreover, the GPS sensor consumes significant 

power that sometimes users turn it off to save the battery [13]. Almost all studies used data from GPS 

sensors that have the aforementioned drawbacks. Also, all studies took advantage of Artificial 

Intelligence (AI) tools such as K-Nearest Neighbor as in [15], Decision Trees as in [11, 13-15], Bayesian 

Networks as in [11, 16], Random Forests as in [11, 15], Naïve Bayesian techniques as in [11, 14], Neural 

Networks as in [17], and Support Vector Machine (SVM) techniques as in [14-16, 18], of which the 

Decision Tree and SVM methods were used the most. Some studies have used additional information 

from GIS maps as in [11, 19].However, GIS data is not always available, and also this approach may not 

be suitable for real-time applications because it mostly relies on the knowledge of the entire trip with 

respect to the GIS features such as bus stops, subway entrances, and rail lines. 

The Decision Tree method was identified as the best method by [14, 16] compared to some other 

methods including SVM. However, when applying SVM, several factors can greatly influence the model 

performance, which have not been considered in their studies. For example, a linear kernel was used in 

[14, 16] as part of the method, but generally for a certain type of problems and depending on the size of 

the available data and features, SVM can produce better results with more advanced kernels such as 

Gaussian kernel. Also, when applying Gaussian kernel, it was shown that if complete model selection is 

conducted with Gaussian there is no need to consider the linear kernel [20]. It is also unclear whether 

feature scaling and regularization were adopted in the most studies using SVM. Feature scaling is used to 

normalize the range of different features (or attributes), which leads to higher model performance and 

training speed and the regularization is incorporated into the model to deal with the issue of over-fitting 

(high variance). 

Depending on the application of interest, different window sizes have been used for predicting the 

mode of transport. For example, [21] found that longer monitoring durations lead to higher accuracy. 

Intuitively, the bigger the window size the easier the prediction becomes since with bigger window sizes 

more information is available. If the application is only a survey for demand analysis the window size can 

be as large as trip duration, whereas if the application provides real-time information for environmental or 

some transit applications, then smaller window sizes are more desirable. The size should be as small as 

possible for some safety applications (e.g. crash prevention/mitigation). The time window in our previous 

works [15, 18] as well as the present study was assumed to be one second so that the potential application 

would include a broader range of applications such as environmental and safety applications. Other than 

the window size, other factors also influence the model performance as follows. 
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(5) Number of classes: as the number of classes increases, class differentiation becomes more 

difficult. 

(6) Use of accelerometer/GPS/GIS data: the level of model dependency on different sources of data 

is considered as an important factor. Less dependent models are more desirable as they can be 

applicable even with limited sources of data. In this case, sensors such as accelerometers and 

gyroscopes are more reliable since their data are always available.  

(7) Ability  to distinguish between motorized classes: as different motorized classes have similar 

characteristics such as speed and acceleration, a model capable of differentiating between these 

modes is of great value. For example, distinguishing the bus mode from the car mode is 

significantly more difficult than discriminating walking from driving. 

(8) Sensor positioning: it shows how realistic the experiments are conducted. Positioning the devices 

at certain locations increases the prediction accuracy because the movements can be monitored in 

more detail, but may not reflect realistic behavior. Some of the studies required that the 

participants attach sensors/smartphones to different parts of their body.  

 

Distr ibuted learning in Transportation  

In predicting or estimating different measures, attributes, and/or behavior in the transportation science, in 

order to apply machine learning techniques, prediction/detection models are developed based on some 

data that include a number of observations. Each observation contains a response (s) (i.e. the different 

measures such as travel time, transportation mode, crash probability) which is the dependent variable or 

the target value and an instance which contains some predictors or independent variables. The predictors 

are specific to each problem but examples are vehicle speed, vehicle type, vehicle acceleration, signal 

setting, and etc. In terms of the general concept, a part of the data is used for training and a part is set 

aside for testing and validating (well-known techniques can be applied such as Cross Validation). The 

goal in the centralized approach is to develop a single model to predict or estimate the responses based on 

the data instances. An example from our previous works [15, 18] is used to show how a centralized 

approach is applied compared to the distributed approach. The example is recognizing transportation 

modes based on the data from smartphone sensors as explained above. In the transportation mode 

detection problem, the response or the dependent variable is the transportation mode (e.g. Bike, Bus, Car, 

and etc.) and the data instance includes the predictors (also called attributes, features, and independent 

variables) such as acceleration that were obtained from the smartphone sensors (e.g. accelerometer, 

gyroscope, etc.). 

Although the distributed data collection has been adopted in some studies, not much research has 

been conducted on distributed learning or analysis in the transportation domain. In this approach, different 

models are developed for different individuals. In other words, instead of using the entire data to develop 

a single prediction model, a model is developed for each individual based on the data collected from that 

specific individual. The resultant prediction models are expected to be more accurate. Three important 

factors have motivated us to apply the distributed learning approach. First, as mentioned earlier, 

sometimes the available data set is very big and sometime it is physically difficult or impossible to handle 

them in a centralized system. Second, new methods of collecting data (e.g. via smartphones), as explained 

earlier, have enabled researchers to collect the data in a distributed manner. In addition, thanks to the 

technology development, recent handheld devices have the capability of analyzing the data as well as 

collecting them. Third, in most transportation related problems, the data come from human subjects, 

which makes the prediction more difficult due to the disparities between humansô behavior. Some studies 

try to account for more predictors to describe the differences between humans (e.g. age, sex), but it is 

more difficult in practice to obtain such data. Also, even two similar human subjects may behave much 

differently (e.g. aggressive vs. conservative driving). In the distributed learning approach, the developed 






























































































































































































































