Investigating Violation Behavior at Intersections using Intelligent
Transportation Systems: A Feasibility Analysis on Vehicle/Bicycle
Infrastructure Communications as a Potential Countermeasure

_to -
By

Arash Jahangiri

Dissertation submitted to the faculy of the Virginia Polytechnic Institute and State

University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
In

Civil Engineering

Thomas Dingus
Hesham Rakha
Zachary Doeraph
Ihab EFShawarby

July21, 2015, Blacksburg VA

Keywords: Intersection safety, driver/cyclist violation predictiortransportation mode recognition,
machine learning

Copyright© 2015, Arash Jahangiri



Investigating Violation Behavior at Intersections using Intelligent
Transportation Systems: A F easibility Analysis on Vehicle/Bicycle -to-
Infrastructure Communications as a Potential Countermeasure

Arash Jahangiri

Abstract

The focus of this dissertation is on safety improvement at intersections and presenting how
Vehicle/Bicycle-to-Infrastructure Communications can be a potential countermeasure for crashes
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capabilities, etc.) of transportation modes affect the violation behavior. Therefore, tHast building
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second building block is to predict whether or not the user is going to violate. This step focuses on
two different modes (i.e., driver viohtion prediction and cyclist violation prediction). Warnings can
then be issued for users in potential danger to react or for the infrastructure and vehicles so they
can take appropriate actions to avoid or mitigate crashes.

A smartphone application was @veloped to collect sensor data used to conduct the transportation
mode recognition task. Driver violation prediction task at signalized intersections was conducted
using observational and simulator data.Also, a naturalistic cycling experiment was designed for
cyclist violation prediction task. Subsequentlycyclist violation behavior was investigated at both
signalized and stopcontrolled intersections. To build the prediction models in all the
aforementioned tasks, various Airificial Intelligence techniques were adopted. K-fold Cross
Validation as well as Oubf-Bag error was used for model selection and validation.

Transportation mode recognition models contributed to high classification accuracies (e.g., up to
98%). Thus,data obtained from the smartpte sensors were found to provide important information to
distinguish between transportation modesver violation (i.e., red light running) prediction models
were resulted in high accuracies (i.e., up to 99.9%). Time to intersectioriY('Y,alistance to
intersection (O "YQhe required deceleration parameter Y ‘O i andvelocity at the onset ofa yellow
light were among the most important factors in violation prediction.Based on logistic regression
analysis, novement type and presence of other s were found as significant factors affecting the
probability of red light violations by cyclists at signalized intersections. Also, presence of other road
users and age were the significant factors affecting violations at stogcontrolled intersections. In
case of stopcontrolled intersections, violation prediction models resulted in error rates of 0 to 10
percent depending on how far from the intersection the prediction task is conducted.
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Ch. 1- Introduction

Introduction

According to National Highway Traffic Safety Administration (NHTSA) report, during 2012, more
than 2.5 million intersection-related crashes occurred in the United States, of which 2,850 were
fatal crashes and 680,000 were injurious crashed]. Specifically, statistics demonstrate that a large
number of crashes occur at signalized intersections due to traffic violations, of which running red
lights has been reported to be a serious issue. According to the Insurance Institute for Highway
Safety (IIHS), 683 people were killed and an estimated 133,000 were im@d in crashes in the
United States during 2012 due to running red light§2]. The AAA Foundation for Traffic Safety
surveyed 2,000 United States residents &gl 16 and older. The survey showed that approximately
93% of drivers believe that running through a red light is unacceptable if it is possible to stop
safely. However, onehird mentioned they ran through a red light during the past 30 days. This
shows that, although drivers are generally aware of the dangers of this type of violation, they are
likely to occasionally run a red light[3].

Accordingto the FARSAAOAAAOAR AT AOAOACA T &£ i1 OA OEAT onb |
intersections during the past 5 yearg2008-20012). Failure to obey traffic signs, signals, or officer

was reported as the forth common factor (10.6%) leading to fatalities. However, no more details

were provided in FARS regarding vehickbicycle crash types. The following two studies provided

more details on bicyclevehicle crash types:Crash data from 2005 to 209 in North Carolina

showed that 43.5 percent of the crasheshat involved bicyclists occurred at intersections[4].

3EIi ET Aol uh EOI T AT 1T1AAO jAAOI U pwwnddq AOO 11 OA
almost half of the bicyclemotor vehicle crashes took placat intersections [5]. This researchwas a

Federal Highway Administration (FHWA) research study that was conducted ke University of

North Carolina Highway Safety Research Center. The data set used in this study was a sample of

crash data obtained from six US stateMore specifically, the following crash types were recognized

for the bicycle related crashes that occurred aintersections as shown inTable 1 [4, 6]. As
demonstrated by statistics, bicycle safety at intersections has been a serious issue. Further, the

growing number of bicycle commuters makes the problem even more importanfrom 2000 to

2011, bicycle commuting rates in the US increased: by 80 percent in large Bicycle Friendly Cities

(BFCs), by 32 percent in nofBFCs, and by the national average of 47 percdii .

Table 1 Bicycle CrashTypes at intersections

NC state(2005-2009) [3E®@ 53 OOAOA
Crash Type Percent of all vehiclebicycle crashes
Motorist drive out : SignControlled Intersection 9.7% 9.3%
Bicyclist ride out : SignControlled Intersection 7.9% 9.7%
Bicyclist ride out : Signalized Intersection 4.7% 7.1%
Motorist drive out: Signalized Intersection 2.6% 2%

The focus of this dissertation is on safety improvement at inteesctions and presenting how
Vehicle/Bicycle-to-Infrastructure Communications can be a potential countermeasure for crashes

OAOOI OET ¢ »A&OT i AOEOAOOS AT A AUAI EOOOG OETIAOQEIT

! FATALITY ANALYSIS REPORTING SYSTEM (FARSYENTPEDIA
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Ch. 1- Introduction

characteristics such as acceleration/decelation capabilities, physical shape, etc. affect the
OET 1 ACET1T AAREAOET 08 4EAOAZEI OAh OEA EEOOO AOQEI AET C
In case an individual is using an instrumented mode (e.g., a vehicle equipped with devices capable
of sending transportation mode information), the mode information can be easily obtained.
However, it will take years that all vehicles will be instrumented with such equipment. Also, for
some transportation modes such as bicycles and pedestrians it may no¢ possible to instrument

all bikes or any pedestrians. Most individuals, however, have their cell phone with them all the time.
Another advantage of smartphones over o#board units is that when using onboard units, the GPS
requires a warm-up time that leads to not having valid GP8ata for the start of the trips (usually
more than 510 minutes), but smartphones do not require that (i.e., warnup time is usually less
than one minute).Thus, transportation mode recognition task using cell phones is consided as an
important task. Consequently, having the mode information, the second building block is to predict
whether or not the user is going to violate. In other words, violation prediction models need to be
developed for each transportation mode. This &p in the dissertation focuses on two different
modes (i.e., driver violation prediction and cyclist violation prediction). Vrnings canthen be
issued for users in potential danger to react or for the infrastructure and vehicles so they can take
appropriate actions to avoid or mitigate crashes.

Figure 1 presents a flowchart that showsthe two building blocks, the required variables, data
sources, and how they are connectedThe first row presents the two building blocks, namely
transportation mode recognition and violation prediction. The violation prediction in this
dissertation only focuses on two modes as indicated in red color (i.e. passenger cars & bicycles).
The required variables as shown in the second row of this figure olw they are created, and how
they are selected are discussed for each task in the corresponding chapter. The third row in this
figure presents different data sourceshat can be adopted to obtain the required variablesThe data
sources that are written inred represent the sources used in this dissertationFor implementation
testing in real world conditions, only the smartphones and onboard equipment are desirable
because in case a potential crash is predicted, warnings canly be sent to the smartphonesand on
board equipment (i.e., warnings cannot be sent when data are collected through video cameras.
Also, simulators are not applicable) Moreover, simulator data may not reflect the natural user
behavior. However, simulators are needed for testing ceria scenarios in which users might be in
dangerous situationsor when examining factors such as age, gender, using cell phones

Smartphones, nowadays, are equipped with powerful sensors such as GPS, accelerometer,
gyroscope, light sensors, temperature sewss, etc. Having such powerful sensors all embedded in a
small device carried in everyday life activities has enabled researchers to investigate new research
areas. The advantages of these smart devices include ubiquity, ability to send and receive data
through various ways (e.g. Wri/cellular network/Bluetooth), providing alerts, and
storing/processing data. Furthermore, smartphones will soon be equipped such that they will be
capable of sending/receiving DSRC Therefore, to appreciate the value of smashones, for the
mode recognition task, data were obtained from smartphones. The detailed explanation of the data,
how different factors were created and selected are presented in the corresponding chapter.
Further, for the driver violation prediction task, observational data (i.e. through video cameras) and
simulator data were adopted. For the cyclist violation behavior, a naturalistic cycling data collection
method (i.e., through on board equipment) was used. Detailed explanations regarding data

2 Dedicated Short Range Communications
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collection, what factors were included, how different factors were created and selected are
discussed in the corresponding chapters.

_____________________________________________________

(passenger cars & bicycles)

| Building Block 1 . buidingBlock? !
Buiding | | Transportation mode ) > Violation prediction task
Blocks | recognition task for the mode identified :

4 N
\
] Required variables Required variables k
: AAcceleration along different ATime to intersection at the yellow |
. | axes, onset, |
Required ASpeed, AAcceleration at the yellow ons et, |
Variables | AGyroscope variables (i.e., ASpeed at the yellow onset, !
: Roll, Pitch, Yaw), AMax(speed) over a monitoring .
' | AAnd other variables. _period, _ :
I AANd other variables. !
\\\ _ //
oA i
o 1
i W% Datacan beobtained through i
Data | AOnboard equipment ASmsrthones_ |
Sources ! AVideo cameras AOnboard equipment !
, AVideo cameras !
| ASimulators !
N ’

N e o o o o o - - - - - - - - - - - ———————

Figure 1 Relationship between different parts: building blocks, variables, and data sources

Problem Satement

For different reasons (e.g. distractionjudgment, etc.), divers and cyclists clearly fail to obey traffic
rules at both signalized and sigrcontrolled intersections. Hence the problem is how to
prevent/mitigate these intersection-related crashes The failure to comply need to be identified
before they occur so actions can be taken to alleviate the consequences. To better understand the
problem, it can be divided into two sub-problems. Thus, the following research questions are
expected to be answeredhroughout the dissertation.

1. What is the transportation mode of theroad user?

2. When approaching an intersection, howan wepredict whether the driver/cyclist is going
to violate thered light or stop sigrn?

It should be noted that in this dissertation, tke driver violation prediction was conducted at
signalized intersections and the cyclist violation prediction was conducted at sigocontrolled
intersections. Similar procedures can be followed to conduct driver violation prediction at stop
signs and cyclistviolation prediction task at signalized intersections.
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Researchplans

In order to answer the research questions, theesearch plans in this dissertationinclude the
following:

1. Collect transportation mode datafrom different users when using various trangortation
modesthrough a smartphone application

2. Develop a model tadentify the transportation mode using smart phone data

3. Analyze precollected observational passenger cadata of different drivers to assess their
violation behavior when approaching asignalized intersection.

4. Develop a model to predict if a driver is going to violate a red lighising observational and
data simulator data.

5. Design anaturalistic cycling experiment and collect bicycledata for different riders to
assess their behavior wha approaching intersections.

6. Analyze naturalistic cycling data to assess cyclist violation behavior when approaching
signalized intersections and sigrcontrolled intersections.

7. Asses the applicability of the collected bicycle naturalistic data toevelop cyclist violation
prediction modelsat sign-controlled intersections.

8. Identify significant factors to predict violations at intersections

Dissertation layout

The manuscript format was used for this dissertation for which a brief description of each chapter
is presented below.

Chapter 1- Introduction: this chapter gives an introduction, states the problem, and summarizes
the research objectives. It also provides the proposal layout.

Chapter2 - Model Development:this chapter shows how the problem is divide into three main
tasks (i.e., transportation mode recognition, driver violation prediction, and cyclist violation
prediction) and visually presents and discusses each part for which models were developétiese
tasks are all subsections of the model devimpment chapter. However, instead of having sub
chapters for these tasks and making a long single chapter for model development, four standalone
chapters are provided.

Chapter 3 z Transportation Mode Recognition: this chapter includesthree papers, ceauthored by
Dr. Hesham Rakha, aiming at developing models to recognize the mode of transportation using data
from smartphone sensors.

Chapter 4 - Driver Violation Prediction: this chapter presentsthree papers, coauthored by Dr.
Hesham Rakha and Dr. Thomdsingus, whichuse observationaldata from a signalized intersection
as well as simulator datao develop models for predictingRed Light Running (RLR) violations.
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Chapter5 - Bicycle Naturalistic Data Collectionthis chapter contains a paper, ceauthored by Dr.

Hesham Rakha and Dr. Thomas Dingus, whiexplains the naturalistic data collection procedure
for bicycles.

Chapter6 - Cyclist Violation Prediction:this chapter includes a paper, ceauthored by Dr. Hesham

Rakha and Dr. Thomas Dingus, whicboncentrates on analyzing the bicycle naturalistic data to
assesscyclist violation behavior and to evaluatethe capability of developing violation prediction
models for cyclists

Chapter 7 - Conclusions and Future recommendationsthis chapter presents the conclsions and

future recommendations.
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Model Development

In order to prevent/mitigate intersection -related crashesthat involve bicycles violations (by both
driver and rider) at intersections need to be identified before they occur, so appropriate warnings
can be issuedo the users in potential danger or to the infrastructure and consequently appropriate
actions can be taken3 AOAOAT AEAAOT OO0 FKide&Ebreravioh WherOdppgroachiE OA OO 8
intersections. These includethe vehicle/bicycle speed[1], Time to Intersection (TTI)[1], Distance
to Intersection (DTI) [1], age[2, 3], gender[3, 4], direction of travel [3, 5], presence of other rod
users[2, 3, 5], helmet usd6], and etc.The driver-related factors (.9 agegender) are more difficult
to obtain in practice. On the other hand, kinetic factorsgg. speed, acceleration) can be obtained by
monitoring the movement of vehicles through video cameras installed on the infrastructure or
through on-board devices installed on the vehicles. Hence, the probleni imterest is to develop
models to predict violations using kinetic information of individual bicyclesvehicles.

Identifying three main modules

To construct the modes, the problem was divided into three main parts: (1) Transportation Mode
Recognition (2) Driver Violation prediction (3) Cyclist Violation Prediction. The goal is to first
identify the mode of transportation. Subsequentlyyiolation prediction is conducted for the drivers
and the cyclists. Figures 1 through 4 visually presents how these modelperform. Figure 2
illustrates a situation in which three road users (shown as green, blue, and yellow arrows) are
approaching a signacontrolled or signalized intersection.At this point, the transportation modes of
the users areunknown.

c-¢

Figure 2 Road usersapproachinga signcontrolled or signalized intersection

As these users approach the intersection, at a desired Time To Intersection (TTI) or Distance To
Intersection (DTI), transportation mode recoqition starts as shown in Figure 3, which obtains
sensor information such as accelerometer and gyroscope from the user for a short period of time
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#7117 OANOAT O1 UR OEA OOAOOB8 11 AAO Fighe 4adikibeaubnyd AOA E
violation prediction starts.

Transportation Mode I
Recognition Starts

Do§

Selected Time or Distance
to Intersection

Figure 3 Transportation mode recognition starts at a specific point

The time period required to recognize the transportation mode is shown irFigure 4, which isa
short timestamp. However, this task can be undertaken further away from the intersection and as
the user becomes closer to the intersection, the model would check a number of times to make sure
the user has not changal his/h er mode and to increase the reliability of the mode recognition
Changing modes may occur specially when there is a bus station or a bike share station near the

intersection.
E’iolation Prediction Stana

Transportation Mode I''me Needed to Identify
Detected! Mode of Transport

Figure 4 Violation prediction starts after transportation modes are detected
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After the transportation mode is identified, the violation prediction is conducted forthe mode
identified. The focus of this dissertation is on the bicycle and the car modes. Hence, the capability of
developing violation prediction models for only these two modes will be assessed. in order to carry
out the prediction, a time window as shown inFigure 5 is selected, which gathers information such

as speed, accelerometer, TTI at onset of yellow, and dtom which the violation prediction models

are developed.

Ready to Send Safety messaoes
to Users / Infrastructure

™

Ag
%

[Violalions Predicted! ] [ Needed 5 ]

Figure 5 Safety messages can be sent to users and or infrastructure after violations are predicted
Once the prediction task is made, users in potential danger as well as thdrastructure can be

notified to take appropriate actions with the aim of reducing/mitigating crashes.

In the next four chapters, the three main tasks (i.e., transportation mode recognition, driver
violation prediction, cyclist violation prediction) that were visually shown in this chapter are
presented.

References

[1] Gates, T.J., et aAnalysis of driver behavior in dilemma zones at signalized intersections.
Transportation Research Record: Journal of the Transportation RbsBaard, 2007203Q(1):

p. 2939.

[2] Wu, C., L. Yao, and K. ZhaFie redlight running behavior of electric bike riders and cyclists at
urban intersections in China: an observational stédyident Analysis & Prevention, 2042:

p. 186192.

[3] Jomson, M.,etal2 K& R2 OeO0fAada AyFNAy3IAS |G NBR fA3IKGa
reasons for red light infringemerAccident Analysis & Prevention, 2058: p. 840847.

[4] Johnson, M., J. Charlton, and J. Ox@®clists and red lightsa study of the behaviour of
commuter cyclist in Melbournén Australasian Road Safety Research, Policing and Education
Conference, Adelaid2008.

[5] Johnson, M., et alRiding through red lights: The rate, characteristics and risk factors ef non
complant urban commuter cyclistéccident Analysis & Prevention, 20438(1): p. 323328.

10| Page



Ch. 2- Model Development

[6] Pai, GW. and RC. Jou/ & Of A -HightautninylEeRaviours: An examination of daking,
opportunistic, and lawobeying behaviour#ccident Analysis & Prewton, 2014.62: p. 191
198.

11| Page



Chapter3: Transportation
Mode Recognition

(Paperl accepted toTransportation Research Board 93rd Annual Meeting, 2004
(Paper2 published in: IEEE Transactions on Intelligent Transportation Systems)

(Paper3acceptedto: ITS World Congress 2015)

12| Page



Ch. 3- Transportation Mode Recognition

Developing a Support Vector Machine (SVM) Classifier for Transportation
Mode Identification using Mobile Phone Sensor Data

Arash Jahangiri
Center for Sustainable Mobility, Virginia Tech Transportation Institute
3500 Transprtation Research Plaza, Blacksburg, VA 24061

E-mail: arashj@vt.edu
Phone: (540) 200561

Hesham Rakha (corresponding author)
Center for Sustainable Mobility, Virginia Tech Transportation Institute
3500 Transportatio Research Plaza, Blacksburg, VA 24061
E-mail: HRakha@vtti.vt.edu
Phone: (540) 231505

Word count: 5,002 + 2,000 (1 Figures + 7 Tables) = 7,002

Submitted for presentation at th€“@8nnud Meeting of the Transportation Research Board and
publication in thelransportation Research Record

13| Page


mailto:arashj@vt.edu
mailto:HRakha@vtti.vt.edu

Ch. 3- Transportation Mode Recognition

Abstract

Identifying the transportation mode can offer several advantages in different fields of transportation
engineering such as transportation plagrand intelligent transportation systems which lead to a broad
range of environmental and safety applications. Support vector machine, as a supervised learning method,
is adopted in this paper to develop a mdldiss classifier to distinguish betweeffatient transportation

modes including driving a car, riding a bicycle, taking a bus, walking, and running. Data from different
mobile phone sensors were trained and tested to evaluate the model. Sensors from which the data were
obtained include accelerotee, gyroscope, rotation vector, and Global Positioning System (GPS). A
Gaussian kernel was applied as part of the classifier and unlike some ambiguity seen in the literature, a
complete model selection is conducted. A small window size of one secondngideced, so the model

can be useful in a broader range of applications. For the first time, the data from gyroscope and rotation
vector sensors were used in experiments based on individual sensor data. The study showed that such data
can contribute to lgh classificationrates. It was found that including attributes that have similar behavior
among different modes can negatively impactsctassificationrates. When using multiple sensors, high
average overall accuracies of 98.86% and 97.89% were adhigtre and without using the GPS data,
respectively. These results offer improvements compared to what is reported in the literature. The bus
mode was the most difficult mode to differentiate due to some similarities to the car and the bike mode
data.

Keywords: transportation mode; support vector machine; mobile phone sensor data; machine learning
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Introduction

Recognizing different types of physical activities using sensor data has been a recent research topic that
has received considerable attentfdn 2]. Transportation modelassfication can be considered as an
activity recognition task in which data from smartphone sensors carried by users are utilized to infer what
transportation mode the individualre using Micro-electromechanical systems (MEMS), such as
accelerometers argyroscopes are embedded in most smartphone dd8icEem which the data can be
obtained at high frequencies. Smartphones, nowadays, are equipped with powerful sensors such as GPS,
accelerometer, gyroscope, light sensors, temperature sensors, etc. Having such pomgenfsl adle
embedded in a small device carried in everyday life activities has enabled researchers to investigate new
research areas. Other advantages of these smart devices are their ubiquity, their ability to send and receive
data through WFi/cellular nework/Bluetooth,to provide alertsand store data as well as to process the
data[4].

The knowledge of individual s mode of trans,|
adopted in several applications. Knowing the mode of transportation is an essential part of urban
transportation plaring, which is usually investigated through questionnaires/travel diaries/telephone
interviews [4, 5] .This traditional way of surveying is usually expensive, erroneous, limited to a
specific area, andoes not incporate the latest informatidé]. As an environmental application,
the carbon footprint as well as the amount of calories burnt of individuals can be determined by
obtaining the mode of transport. Other applications include providing users withinreal
information using the knowledge of speed and transport mode from the users as[#rofjes
Providing individuals wth customized advertisements and messages based on the transportation
mode they are usin@], physical activity and health monitoring, tracking the hazard exposure and
assessing the environment al i mpact of oneds act
data gatheringg].

Many studies have used GPS for classification purposes. However, several limitations are
associated with the use of GP&hsors. These limitations include: GPS information is not available
in shielded areas (e.g. tunnels) and the GPS signals may be lost especially at high dense locations
which results in inaccurate position information. Moreover, the GPS sensor consunifgsastgn
power that sometimes users turn it off to save the bd@er]. Thispaper focuses on developing a
classifier using the support vector machine method and data obtained from smartphone sensors
including accelerometer, gyroscope, rotation vector, and GPS data. Consideration of multiple sensors
is beneficial in that even witlut using GPS the transportation modes can be identified. The unique
contributions of this research effort are:

1. Exploiting data from sensors other than those used in the literature including gyroscope and
rotation vector data,

2. Increasing the prediction as@cies with almost redime prediction (time window of one
second), and

3. Developing a complete model selection procedure of support vector machine using Gaussian
kernels.

The remainder of the paper is organized in the following five sections. Relaeaatulie is
reviewed in the next section followed by the data collection section. Subsequently, the development
of the proposed model is discussed using support vector machine techniques. Subsequently, the
results of the study are presented and finallycthreclusions of the study are presented.

Relevant work

Table2 presents a summary of past studies focusing on identifying transportation modes. Almost all
studies used data from GPS sensors that have the aforementioned drawisackall studies took
advantage of Artificial Intelligence (Al) tools such as Fuzzy Expert Systemq@jsDecision Trees as in
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[4-8, 10] Bayesian Networks as |4, 10], Random Forests as [#], Naive Bayesian technigues ag4n

8], Neural Networks as ifiL1, 12] and Support Vector Machine (SVM) techniques a8jr0, 1316],

of which the Decision Tree and SVM methods were used the mosinprove the model performance
some other techniggs were also combined with machine learning methods su€lisasete Hidden
Markov Models as ii8] and Bootstrap agggating as iff17]. Other than Al tools, statistical methods
were also applied such as tRandom Subspace Methday [18]. Some studies have used additional
information from GIS maps as [4, 9, 19, 20] However, GIS data is not always available, and also this
approach may not be suitable for réale applications because it mostly relies on the knowledge of the
entire trip with respect to the GIS features such as bus stops, subway entrances, and rail lines.

The Decision Tree method was identified as the best meth@l h{] compared to somether
methods including SVM. However, when applying SVM, several factors can greatly influence the model
performance, which have not been considergaréwious work For example, a linear kernel was used in
[8, 10] as part of the method, but genérdibr a certain type of problems and depending on the size of the
available data and features, SVM can produce better results with more advanced kernels such as Gaussian
kernel. Also, when applying Gaussian kernel, it was shown that if complete modtibseie conducted
with Gaussian there is no need to consider the linear K@Htellt is also unclear whether feature scaling
and regularization were adopted in the most studies using SVM. Feature scaling is used to normalize the
range of different features (or attributes), which leads to higher model performance and training speed and
the regularization is incorporated into the model to deal with the issue ofittiver (high variance).
Gaussian kernel was only used in three isjdhowever[14] did not conduct the complete model
selection. In other words, constant values for the regularization paraametehe Gaussian parameter
were used. It appears tHab] did not consider regularization parameter, and also they mentioned that
Gaussian parameter should be optimized, but the optimized value was md¢p6] reported the best
regularization parameter (or cost parameter) to be 3, but the method by which they obtained this value is
unclear. In addition, the valug# Gaussian parameter they applied is not stated.

Depending on the application of interest, different window sizes have been used for predicting the
mode of transport. For examplg,2] found that longer monitoring durations lead to higher accuracy.
Intuitively, the bigger the window sizbe easier the prediction becomes since with bigger window sizes
more information is available. If the application is only a survey for demand analysis the window size can
be as large as trip duration, whereas if the application providemeainformaion for environmental or
some transit applications, then smaller window sizes are more desirable. The size should be as small as
possible for some safety applications (e.g. crash prevention/mitigation). A[$8]dysed 20@meter and
150-second segments in their experiment. Whereas another [§judged 16second time windows to
separate walking from newalking segments and then applied a maximum size of 2tasin®@ther than
the window size, the overlaps of two consecutive windows have also been considered. Rfference
obtained the best window size and overlap to be 10.24 seconds and 50%, respectively. The entire trip
duration appears to be considerebin9, 11, 16, 2Q]

Table2 presents different classes, the data, and the overall accuracy of the prediction models for
different studies; however, the overall accuracy was not reported in some of them fothehéverages
of the reported values are considered in here. Also, it should be noted thafabgjficationrates were
achieved for some of the classes (not all), as such, accuracy of 98% and 92% were ob{diggfbby
bicycle and walk classes, respectively. Also, the reported valugpgre for a 1@minute window size
and one ping every-tinutes. The studies showed higher accuracies were adhigvimcreasing these
two parameters.

Higher accuracies are achieved by increasing the window size as shfiMh iSince the focus
of the present study is on small window sizes, in order to ensure a fair comparison of the various studies
only those with window sizes less than a minute @nsidered, as summarizedTiable3. Thus, the
application would include a broader range of applications such as environmental and safety applications.
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Table2 Summary of Past Efforts

StudieClasses Data Window Size AccuracyStudielClasses |Datasource Window Size  |Accurac
[13] |1-Car 1-GPS 200meter and 150 (83.6 [7] 1-Bus 1-Accelerometer r§10.24 seconds , (82.14
2-Walk second segments 2-Metro  |of 25 Hz 50% overlap
3-Bus 3 Walk
4- Bike 4- Bicycle
5-Train
6- Car
7- Still
8
Motorcycle
[6] 1- Walk 1-GPS 10second / maximuf|75.8 [11] |1-car 1- GPS data Entire trip 91.23
2-Bike 3- Accelerometer d2 minutes 2-bus
3- Motorcycle 3-walk
4- Car
5 Bus
6- Tram
7-above
train
8 subway
[19] [1-walk 1- GPShased trave|Developed rules to [82.6 [12] [1-Car 1- GPS logger 1/5/10/15/20 82.2
2-car suvey identify trip segment highway minutes
3-bus 2-GIS data from lo| 2-Car
4- subway agencies arterial
5-commuter rg 3-Bus
arterial
4- streetcal|
5 walk
[4] 1-car 1-GPS 30 seconds 93.5 [14] |1-walk 1- Accedrometer |5 seconds , 50%(93.88
2-bus 2-GIS 2- bike overlap
3-abovegroun 3-run
tran 4- car
4-walking 5-train
5 bike 6-bus
6- stationary
[8] 1- stationary |1- GPS 1 second 93.6 [22] |1-walk [1-GPS Entire trip 97.7
2-walk 2- Accelerometer 2-jog/run [2-Accelerometer
3-run 3-bike
4- bike 4-inline
5 motorized skating
transport 5-car
[9] 1- Stationary |1- GPS Entire trip 91.6 [16] |1-walk 1-GPS Entire trip 38
2-Walk 2-GIS 2-Car
3-Car 3-Train
4- Train 4- Bicycle
5 Tram 5-Bus
6- Undergroun 6- Tube
7-Bicycle
8 Bus
9 Ferry
10 Sail boat
11- Aircraft
[18] [1-Walk 1-GPS >20 seconds 61.75 |[15] |1-Car 1-Accelerometer |4 seconds50% (96.9 /
2-Car 2- Accelerometer /78.8 2-Train overlap 97.3
3-Train 3
4- Tram Pedestrian
5-Metro
6- Bicycle
7-Bus
8 Motorcycle

the overall accuracy not reported. Here, the average of the reported recall values are used
the overall accuracy not reported. Here, the average of the reported precision values are used
it appears that the reported accuracy is for the firstdlasses

the overall accuracy not reported. Here, the average of the reported recall values are used. Also first value is fétassherafaonsidered
and the second value is for when 6 classes are considered, meaning that classes 3, 4, antibat@sansingle class
96.9 obtained with the time window of 4 seconds / 97.3 obtained considering ten consecutive windows that leads to waid®ssizends
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Other than the window size, several factors are showirabie3 that also influencehie model
performance as follows:

(1) Number of classes: as the number of classes increases, class differentiation becomes more
difficult.

(2) Use of accelerometer/GPS/GIS data: the level of model dependency on different sources of data
is corsidered as an important factor. Less dependent models are more desirable as they can be
applicable even with limited sources of data. In this case, sensors such as accelerometers and
gyroscopes are more reliable since their data are avaiteigeof theitne.

(3) Ability to distinguish between motorized classes: as different motorized classes have similar
characteristics such as speed and acceleration, a model capable of differentiating between these
modes is of great value. For example, distinguishing the rbode from the car mode is
significantly more difficult than discriminating walking from driving.

(4) Sensor positioning: it shows how realistic the experiments are conducted. Positioning the devices
at certain locations increases the prediction accuracyubedhe movements can be monitored in
more detail, but may not reflect realistic behavior. Some of the studies required that the
participants attach sensors/smartphones to different parts of their body.

The highest reported accuracy of 96.9% is achidyed 5] with a window size of 4 seconds. In
this approach only accelerometer data were used and they did not rely on GPS and GIS data. Their
method is capable of differentiating between motorized modes (chtrain) and no specific sensor
positioning was applied. Nevertheless, they only considered three classes. The second best accuracy is
obtained by[14]. They also used accelerometer data without relying on GPS/GIS data. However,
although different motorized modes were mentioned in the paper, it seems that the reported accuracies
show only one motorized mode. Also, subjects in teaidy were asked to keep their device in their
pocket of the nowlominant hip while collecting data which is more realistic compared to attaching
sensors to the body, but still does not reflect a complete realistic beH8Vimported the accuracy of
93.6 which is ranked third in the table. They applied the lowest window size throughout the literature.
However, theilmpproach was dependent on data from GPS sensors. Moreover, different motorized classes
were not considered.

Table 3 Key Features of Studies using a Time Window Less than a Minute

Number of Diffeent T Window size Overall Accuracy
Study classes accelerometer GPS GIS motorized positioning (seconds) (%)
Not specific
[4] 6 no yes yes yes requirements 30 93.5
Not speaifi
[8] 4 yes yes no no requirements 1 93.6
[7] 8 yes no no yes Not §peC|f|c 10.24 82.14
requirements
In pocket of non
[14] 4 yes no no no dominant hip 5 93.88
Not specific
[15] 3 yes no no yes requirements 4 96.9
[18] 8/6 yes yes no yes Not 'SpECIfIC >20 61.75/78.8
requirements

Data collection and preprocessing

A smartphone application was developed for the purpose of data collection. To collect the data, the
transportation mode should be selected before starting the logging procabsenaiing application stores

the data coming from smartphoneds sensors includ
Vector at the highest possible frequency. In order to ensure that the data are gathered at identical sampling
rates linear interpoten was applied to the data similar[#j to produce continuous data sets and finally

the data were reampled at the desired rate (rate of 100 Hz was applied). Data collection was carried out
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by three individuals using two different android phones (i.e. Galaxy Nexuslaxus 4). A total of 7
hours of data were stored and used for training and testing purposes. The data in minutes were comprised
of about 50, 20, 270, 15, and 70 for Car, Bus, Bike, Run, and Walk modes, respectively.

Model development

SVM is known as a lge margin classifier, which means when classifying data, it determines the best
possible decision boundary that provides the largest possible gap between classes. This characteristic
contributes to a higher confidence in solving classification problemanplement SVM, the LibSVM

library of SVMs was applied. For multiclass classification, considéfdatasses, LibSVM applies one
againstone method in whiclQ'Q p 7¢ binary models are built. Among these, LibSVM chooses the
parameters that achieve the highest overall performance. Anothekneelh method is called one
againstall which is more intuitiveand has similar performance. However, LibSVM takes advantage of
oneagainstone because of its shorter training time. Using the LibSVM package, a data set can be trained
to build a prediction model for classification, and then evaluate the model by éstimanother data set

[23].

To construct the model, the following factors are taken into account: using a Gaussian kernel with
complete model selection, whi@ntails consideration of the regularization parameter and the Gaussian
parameter, applying feature scaling, and examining several features. The accuracy is obtained using three
metrics, namely: overall accuracy, precision and recall. These three rastricsed for model evaluation.

The entire data set is divided into two groups; one for training and the other for testing or evaluating how
well the model is performing. The overall accuracy is calculated by dividing the total number of correct
predictionsby the total number of test data. The recall is calculated by dividing the total number of true
positives by the total number of actual positives. The precision is computed by dividing the total number
of true positives by the total number of predictedijpees.

Equationl presents the SVM formulation to solve the classification problem and the associated
constraints are shown iBquation2 and Equation3 [24]. The objective function is comprised of two
terms: minimizing the first term is basically equivalent to maximizing the margin between classes, and the
second term consists of an error term multiplied by thelagization (penalty) parameter denoteddby
The 6 parameter should be determined to provide the relative importance between the two terms.
Equation2 ensures that margin of at least 1 exist with consideration of some violations. The value of 1
was resulted from normaing 0. Equation3 restricts the data points to the points that have positive
errors.

i E TEO o 6 Equationl
AR C
Subject to:
W0 %  p , B pBO Equation2
e pMB M Equation3
Where,
0 Parameters to define decision boundary between classes
0 Regularization (or penalty) parameter
, Error parameteto denote margin violation
© Intercept associated with decision boundaries
%0 0 Function to transform data from X space into some Z space
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Kernels are functions that are adopted to create the features based on the provided attributes in a
higher maybe infinite dimensionédl space. So, basically, for a functitfacy that transfers data frod
space into the higher dimensiomakpace, the kernel corresponds to the vector inner products it the
space. Different types of kernels exsstch as linear kernel, polynomial kernels, and Gaussian kernel.
Linear kernel, as applied i8, 10], is the basic mode which means no kernels are actually taken into
account. In other words, vector inner product as appears in the dual formulatio® foblem are
considered without transforming data into another space. According to our data size and attribute size,
Gaussian kernel was believed to be the most appropriate k2bhednd as noted earlier, if a complete
model selection is carried out, there is no need to test the linear kernel because the results obtained from
the Gaussina kernel include the results obtained from the linear kernel. Inviigct, using Gaussian
kernel, If, © Hband® 0O , where0 is fixed then the SVM classifier behaves like an SVM
classifier with a linear kernel with regularization parameéter{21]. In this paper, théo function
which corresponds tché Gaussian kernel has an infinite dimensional space. The formulation of the
Gaussian kernel is shown Eguationd.

U oo Qwn Ci Equation4
Where,
ofuee n-dimensioml vectors
A OBE Euclidean distance between vectahsse

Gaussian parameter

n-dimensional vectors are basically vectors of attributes. In other words, each vector is an
instance of the available data consisting of different attributes. Fampéeaan instance of the training
dataset with only time and acceleration data isdaentional vector as shown Eguation5 below.

GO0t G R AR R G0 G ) e Equations
Where,
o] The timestamp at which the data are stored
@ hd hod Accelerations along théhuhi axes

Attribute Selection

At first glance, the velocity seems to be a featoy which transportation modes can be easily identified.
However, traffic conditions and weather conditions can greatly influence the speed in a way that similar
speed values are observed from different modes. Also, driving on local roads and ridieyctendm the

same routes may have similar veloci{i&g].

Features are basically generated by the kernel function using the training data set. In other words,
every single data point is used by the kernel function ¢atera new feature. Different data attributes
(also called features/indicators) such as speed, acceleration, etc. are introduced to the model for feature
creation. Attributes are basically used to differentiate between transportation modes.

Some attribute are considered to be basic/traditional attributes (e.g. mean speed), which are more
intuitive to be influential and are widely used in the literature and some are considered to be more
advanced attributes (e.g. heading change rate) as preserteg].lfyome methods have been applied to
select the most relevant attributes to use such as ANOVA tests ufEgl,icorrelation based feature
selection (CFS) used i8], and Chi Squared and Infortian gain methods applied i@]. A similar
approach to whaftl5] applied was used in our study. While preprocessing the[tialafor each time
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window, computed the standard deviation, the maximuoreyahe norm, and the number of sign changes
of the cumulative acceleration values ( @ @ "Q, where® hid hid are accelerations along the
ofufir axes andQis the gravitational acceleration. The total acceleration values of each time window

(@ () () "Q) were also used taeate sets of attributes, and finally the combination of all sets

of attributes was also examined. In this paper, however, instead of adding acceleration values, individual
values were considered to account for the individual effects. The total accelevasoalso included
without gravity acceleration because the linear acceleration sensor was used from which the gravity force
is already excluded. A similar procedure was applied to data obtained from the gyroscope, rotation vector,
and GPS sensors. To gbe effects of individual sensors, the set of attributes computed for each sensor
was examined by itself and finally the entire sets of attributes were examai#d4 presents the sets of
attributes.

Table 4 sets of attributes from different sensors

set 1- Accelerometer set 2 Gyroscope set 3 Rotation Vector set 4 GPS
@ Q i or
@ Q i i ®e MQ
@ Q i0 i 00U
(AT R} Q. Q io 10 10 Qo
i ®E 'QQ i Wt QO i w¢ Qo
i e QQ i ®& "W i ®& QO
i ®E 'QQ i Wt "QQ i ®& QA
i 0QV i 00w ioQb v
i 0QY i 00w i 0QuW
i 0QY [ Ne.0) i 0 QW
Qb Yol e} Qi 0
n o gl o] Qni o
Qb Yol e} Qi O
£ 6 4 QO QM@ E QB £ 6 6 OON QM@ QWi £ 64 GON QM E QDD
£ 6 & QN QW E QI £ 0 G QX Qe QI £ 0 G OO Q@ E QDI
£ 6 4 OO QW E QI £ 6 6 GO Q6@ E QWi £ 64 GO QM@ E QDD
Results

Thedata gathered were divided into a training set (70 percent of the data) and a testing set (30 percent of
the data). The distinction between the training and testing set was conducted randomly across all five
modes of travel. Six scenarios were assesseedbais the set of attributes usd@dble5 presents the
overall accuracy as well as other key factors associated with each scenario. These results are obtained for
the testing set. Scenarios 1 through 4 accounts for attributesezbfeom the accelerometer, gyroscope,
rotation vector, and GPS sensors, respectively, and evaluate the individual sensor effects. Scenario 5 and
6 reflect combined effects of using multiple sensors. Scenario 6 uses data from all sensors, while scenario
5 uses accelerometer, gyroscope, and rotation vector sensors excluding the data from the GPS sensor.
Scenario 6 clearly achieved the best accuracy while scenario 5 also reached accuracies close to
scenario 6. The advantage of scenario 5 is that it doeselyobn data from the GPS sensor and thus
requires less power since considerable battery usage is associated with GPS sensors. For these
preliminary results, constant values of 1 and 0.01 are considered for the regularization and the Gaussian
parameter,aspectively.
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Table5 overall accuracy and key points of different scenarios, constant values of regularization and Gaussian

parameters considered
Accelerometer/

. . Number of B Different N Window size Overall
Scenarios| attributes classes gyrosc\?ep::(i 0/rrotatlon GPS GIS motorized Positioning (seconds) Accuracy

No specific

1 setl 5 yes no no yes requirements 1 83.46
No specific

2 set 2 5 yes no no yes requirements 1 80.45
No specific

3 set 3 5 yes no no yes requirements 1 75.02

4 set4 5 yes yes no yes No §peC|f|c 1 83.40

requirements

No specific

5 set1,2,3 5 yes no no yes requirements 1 88.66
set No specific

6 1234 5 yes yes no yes requirements 1 93.92

Even higher accuracies were achieved by conducting the complete modgbisele order to
complete the model selection, the regularization parameter (paramjetes well as the Gaussian
parameter should be optimized. The Gaussian kernel formulation used in libSVM is slightly different

from Equation4; in their formulation, the paramet&® & G wias used instead ef—. Figure6 presents

contour plots that illustrate how different values of the regularizatiprarfd the GaussianQc & &) &
parameters impact ¢hperformance of the models used in scenario 5 and 6, respectively. The optimal
values for "Q¢) & ohdb were found to be (0.63, 63.1) and (0.4, 63.1) for scenarios 5 and 6 that led to the
high overall accuracies of 98.23% and 98.78%, respectivelymeeaodeals with the issues of over

fitting and under fitting. Choosing a too large/too small value for the regularization parameter results in
under fitting/over fitting. In other words, the model will suffer from high bias if too small values of the
regularization parameter are applied, and on the other hand, if too large values of the regularization
parameter are used the model will suffer from high variances. The Gaussian parameter also impacts bias
and variance seen in the model. With small valde®® & & (@ large values of ), features can vary

more smoothly leading to higher bias and lower variance. Also, when using large val(es dft,
features can vary less smoothly which results in lower bias and higher variance.

05
log{gamma)

(a) Scenario 5
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log(c)

e 25 2 15 A 05 0 05 1
log{gamma)

(b) Scenario 6
Figure 6: Impacts of the Regularization and the Gaussian Parameters on Model Accuracy for Scenarios 5 and
Scenario 6

Table6 presents confusion matrices for scenarios 5 and 6, which showtads#icationrates
(i.e. true positives and true negatives in percentage based on actual values) for each mode as well as the
misclassification rates (i.e. false positives and false negatives in percentage based on actual values). Since
true positives @& reported in percentages based on actual values, they are essentially the recall values.
The highest recall of more than 99% was obtained for the bike mode in both scenarios. Moreover, the
model predicts the other modes with high recalls. However, tiresloaccuracy, as expected, was for the
bus mode. In scenario 5, more than 7% of the time the bus mode were misclassified as bike and car
modes. In scenario 6, more than 7% of the time the bus mode was misclassified as the car mode, which
was the highest isclassification rate. Similarly, high precision accuracies of different modes show that
the models performed very well.

Table 6 Confusion matrices in percentage for scenarios 5 and 6

) Actual ) Actual
Scenario§ o Scenarioq .
Bike Ca Walk Run Bus | Precision Bike Car Walk Run Bus | Precision
Bike | 99.30 0.50 4.47 052 3.56 98.63 Bike | 99.68 0.37 135 1.04 1.62 99.48
@ Car | 0.06 9838 0.00 0.00 3.88 98.13 g Car | 0.00 97.63 0.00 0.00 7.77 97.02
? Walk | 0.60 0.25 9545 1.04 0.97 96.84 g Walk | 0.28 0.00 9840 1.56 0.65 98.40
o Run | 0.00 0.00 0.00 98.44 0.32 99.47 O Run | 0.00 0.00 0.00 97.40 0.32 99.47
Bus | 0.04 0.87 0.08 0.00 9126 96.58 Bus | 0.04 2.00 0.25 0.00 89.64| 9295
Recall| 9930 98.38 95.45 98.44 91.26 Recall| 99.68 9763 98.40 97.40 89.64

The features used in scenario 5 were a subset of features used in scenario 6. When using
additional information obtained from the GPS sensor (as in scenario 6) the recall values of the walk and
run modes increased by more than 3&eaddition, the recall value of the bus mode improved by slightly
more than 1% and there were minor improvements in the recall values of the bike and the car modes (less
than 1%). These changes make sense since the additional features, which are edlatpdedhriables,
are better indicators for distinguishing between the walk and run mode from the other modes due to the
obvious speed differences, but they may not be good indicators to distinguish between the bus and car
modes due to their similar speedt should be noted that in general, the improvement obtained by
including the GPS data was not significant (1.78% change in average recall value and almost no change in
average precision value).
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The entire training and testing procedures were conduetednore times using the optimal
values obtained from the model selection task for scenarios 5 and 6 to show the robustness of the model.
In this case 70 percent of the data were used for training and the remaining 30 percent were used for
testing procedws. These 70 and 30 percent were randomly selected for each of the repetitions. Standard
deviation or the recall values is applied as an indicator to show how the accuracies vary in different runs
as shown inTable7. Small valuesof standard deviation show that the models in both scenarios are
extremely robust.

Table7 Robustness of the Developed Model

Scenario 5 Scenario 6
Bike Car Walk Run Bus Average Bike Car Walk Run Bus Average
base 99.30 98.83 9545 98.44 91.26| 96.57 99.68 97.63 98.40 97.40 89.64| 96.55
1 99.22 96.88 95.03 96.88 89.64| 95.53 99.56 96.00 98.65 97.92 91.26| 96.68
2 99.18 97.75 94.95 92.71 89.97| 94.91 99.74 96.88 98.90 99.48 92.23| 97.45
3 99.18 97.63 96.29 94.79 89.00| 95.38 99.64 98.50 98.90 97.92 91.26| 97.24
4 98.98 97.00 95.20 93.75 90.29| 95.04 99.60 97.63 98.99 9844 9191| 97.31
5 98.74 96.75 95.96 96.88 86.73| 95.01 99.72 99.72 99.16 98.44 90.29| 97.46
6 99.12 98.38 96.29 95.31 89.32| 95.68 99.62 98.13 9848 97.92 87.06| 96.24
7 99.00 96.75 95.70 92.71 89.64| 94.76 99.56 97.38 98.23 97.92 90.94| 96.80
8 98.98 97.00 95.11 92.19 87.06| 94.07 99.50 98.25 99.33 97.92 90.94| 97.19
9 99.30 98.38 95.45 98.44 91.26| 96.57 99.58 97.63 98.90 98.44 89.64| 96.84
10 99.20 96.63 96.97 93.75 89.32| 95.17 99.64 97.75 98.65 97.40 89.97| 96.68
Average 99.11 97.41 95.67 95.08 89.41 95.34 99.62 97.77 98.78 98.11 90.47 96.99
Standard Deviatioj] 0.17 0.71 0.64 229 1.45 0.65 0.07 094 033 058 142 0.40

Higher accuracies were obtained whemparing the present study with similar studies as listed

in Table3. The study carried out 48] was considered to be the most similar research effort for the sake

of a fair comparison since their study was the only one that chosesecord time window as done in

our study. This comparison is shownTiable8. Also, only scenario 5 is presented in this table to show

that even without using data from the GPS sensor, a higher accuracy was achieved. Furthermore, as
mentioned earlier8] did not consider differentiating between motorized modes and their method also
relied on GPS data. Other than the accelerometer, the present study took advantage of data from the
gyroscope and rotain vector sensors. It should be noted that they used a larger dataset collected from 16
users.A larger dataset probably include more variability and thus more difficult to distinguish between
modes. The higher accuracies obtained in this paper mightdeodhaving less data from only three

users. However, it might be due to conducting a complete model selection or examining a large number of
features in this paper both
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Table8 Comparison with the Most Relevant Study

studies Number of Accelerom_eter/ gyroscope g g lefer_ent positioning Window size Overall
classes rotation vector motorized (seconds) Accuracy
[8] 4 yes yes no no Not _specmc 1 93.60
requirements
Present Notspecific
Study 5 yes no . no yes requirements 1 95.34
Conclusions

A classifier was developed using the support vector machine learning technique to identify different
transportation modes including bike, car, walk, run, and bus. To train and test the classifier, data were
obtaned from smartphone sensors such as accelerometer, gyroscope, rotation vector, and GPS sensors.
This effort is the first application to use gyroscope and the rotation vector sensors for the purpose of
transportation modelassification Individual experirents showed that both of them are significant
indicators for distinguishing different modes. A Gaussian kernel was applied to create features from
different sets of attributes coming from different sensors. When using multiple sensors simultaneously, a
conplete model selection was conducted to obtain the optimal regularization parameter and the optimal
Gaussian parameter resulting in very accurate and extremely robust models. A time window of one
second was chosen, so the model can fit in a broader ramgplafations. Comparing to the only study

in which a time window of one second was used, higher accuracies were achieved. The focus of the future
work will be on error analysis to identify any patterns that lead to misclassifications, and then to
incorpoite that knowledge into the prediction model for obtaining even higher accuracies.
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and gyroscopes are embedded in most smartphone d3jces
from which the data can be obtained at high frequencies.
Abstract Smartphones, nowadays, are equipped with powerful sensors
The paper adopts different supervised learning methods from Such as GPS, accelerometer, gyroscope, “.ght Sensors, _etc.
the field of machine learning to develop multiclass classifiers to Hav!ng ,SUCh powerfu! sen.sp'rs all embedded in a small device
distinguish between different transportation modes including Carried in everyday life aivities has enabled researchers to
driving a car, riding a bicycle, taking a bus, walking, and investigate new research areas. The advantages of these smart
running. Methods that were used include KNearest Neighbor devices include ubiquity, ability to send and receive data

(KNN), Support Vector Machines (SVMs), and treebased models  through various ways (e.g. VFi/cellular network/Bluetooth),
that comprise a single Decision Tree (DT), Bagging (Bag), and 5nq storing/processing dd#.

Random Forest (RF) methods. For training and validating ) . .
purposes, data were obtained from smartphone sensors including -I_—_h e knowl edge rmode of traldspm_?t icanu a | s
the accelerometer, gyroscope, and ration vector sensors. Kfold  iacilitate some tasks and also can be adopted in several

Cross-Validation as well as Outof-Bag error was used for model ~applications as follows:

selection and validation. Several features were created from 1) Knowing the mode of transportation is an essential part
which a subset was identified through minimum Redundancy of urban transportation planning, which is usually
Maximum ~ Relevance (mRMR) method as the most investigated  through —questionnaires/traveliarigs/

representative features. Data obtained from the smartphone - : . o
sensors were found to have important information to distinguish telephone  interviewg4, 5] This traditional way of

between transportation modes. The performance of different surveying is usually expensive, erroneous, limited to a
methods were evaluated and compared to each other. The specific area, and not so-tp-date[6].

Random Forest (RF) ad Support Vector Machine (SVM) 2) As environmental applications, therlban footprint as
methods were found to perform the best. Feature importance of well as the amount of calories burnt of individuals can be
different features was determined for the Random Forest model. determined by obtaining the mode of transport. Also,

physical activities and health can be monitored, the
hazard exposure can be tracked, and the environmental
i mpact s toifies camb®e GssessEq.

3) Other applications include providing users with féale

Index Terms® Cellular phone sensor data, machine learning
algorithms, transportation mode recognition.

Introduction information using the knowledge of speed and transport
mode from the users as probé¢4, 8], providing
ISTINGUISHING between different types of physical individuals with customized advertisements and
activities using sensor data has been a recent research messages based on the transportation mode they are
topic that has received considerable attentifin 2]. using[4].

Transportation mode detection can be considered as amMany studies have used GlobalsRimning System (GPS)
activity recognition tak in which data from smartphonedata for classification purposes. However, several limitations
sensors carried by users are utilized to infer whatre associated with the use of GPS sensors. These limitations
transportation mode the individuals have used. Micrdnclude: GPS information is not available in shielded areas
electromechanical systems (MEMS), such as accelerometgssy. tunnels) and the GPS signals may be lsgedally in
high dense locations, which results in inaccurate position

"  ubmitted Mav 11 2014, Thi . o i X information. Moreover, the GPS sensor consumes significant

e ousert s My L, 2004 1 ok v uppored 1 vt ower that sometimes users turn i of o save the baltery

UTC), the MidtAtlantic University Transportation Center (MAUTCpicithe  8]. This paper focuses on developing detection models using

TranLIVE University Transportation Center. machine learning techniqgues and data obtained from
A. Jahangiri and H. A. Rakha are with the Center for Sustainable MObi"t)émirtphone sensors including accelerometer, gyroscope, and

Virginia Tech Transportation Institute, 3500 Transportation Research Plaza, . . . . .
Blacksburg, VA 24061 USA (mail: arashj@vt.edu; hraki@utti.vt.edu). rotation vector, without GPS data. Consideration of multiple
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sensors is beneficial in that even without using GPS, the measures of dispersion as well as derivatives to obtain

transportation modes can be identified. variations over the time window of interest and
The present research demonstrates hovapply several consequently incorporated this knowledge (i.e. feature
machine learning techniques, including:N¢€arest Neighbor time dependency) into the models.

(KNN), Support Vector Machines (SVMs), and tiessed Some of the study challenges included: (1) taDa
models that comprise a single Decision Tree (DT), Baggirgynchronization; since it was not possible to store the data
(Bag), and Random Forest (RF) methods to identiffom different sensors at specific times and thus data were
transportation modesising data obtained from smartphoneesampled at a desired frequency, (2) High frequency of data;
sensors. The data include acceleration extracted from ttiee to having data at very high frequencies. Many data points
accelerometer sensor, rate of device rotation extracted framere avdable even in small time window sizes.
the gyroscope sensor, and dCensaquenrtly, susing istatistinal mdasures of dispéersioa,crawe d
the rotation vector sensor; all thesere extracted around data values were replaced with those measures corresponding
different coordinate axes; more details on feature selection @oe the time window of interest, (3) High computations;
presented i n sections fi d a t optimizing the patametersnof diffgrentededs io the smadeln g
feature extractiono on pa g eselettiorataskl requifee kigh computatore arel thtisitoalfeviateo n
6. Previous studies lacked adequate simultaneotlds problem, statistical measures of dispersion were replaced
consideration of several factors, whereas this study is uniquéh all the data points within the time window of interest to
in that it comprehensively and simultaneously considers alecrease the number of data points. In addittbe mRMR
these factors to obtain a naturalistic data which better refledeature selection method was employed to select the most
real world situations. To the best of our knowledge, items 4, Egpresentative features before developing different models. A
6, and 8 (listed below) have not been considered in the pas@aracteristic of this method was that it was independent of
literature. To summarize, these factors include: the models and it was not required to carry out the feature
1) The research considered both motorized (car and bus®letion task for each model; hence it was conducted only
and noamotorized modes of travel (bike, walk and run). once, and (4) Data noise; a preprocessing task was conducted
2) The research did not require that thevelers maintain a for noise reduction.
fixed location for their phone as was done in other The remainder of the paper is organized in the following
studies (e.g. phone must skctons: Relevantditeratura ig eeVieavedodirs thepnext keetior) .
3) The research did not use data from GPS sensors becaiadewed by the data collection section. Subsequently, it is
GPS sensors can deplete the phone battery and the sighedwn how the detection models were developed.
may be lost in than areas. Subsequently, the results of the study are presented and finally
4) The research made use of data from gyroscope atiek conclusions of the study are presented.
rotation vector sensors, which was never used in
previous transportation mode detection studies. Some Relevant work

features were created based on data from these two )
Sensors. Almost all studies usedata from GPS sensors that have the

5) The research considered motorizeavel (car and bus) afo_rgr_nentiont_ad drawbacks. Also, they took advantage of
on different road types with different speed limits (e.g_Arn.ﬂmaI Intel_llgence (Al) tools such as Fuzzy Expert Systems
15, 25, 35, 45, and 65 mph speed limits). This wid@Ss in[9], Decision Trees as [d-8, 10],_ Bayeswm Networks_ as
range of speeds was selected to ensure that the[4 10l Random Forests as ifd], Naive Bayesian

algorithms developed would be robust to different travdfChniques as i, 7], Neural Networks as ifi1, 12] and
conditions. Support Vector Machine (SVM) techniques agin 10, 13

6) The daa collection required travelers to collect bus, cart6h Of which the Decision Tree and SVM methods were used

and bike data along routes where they had to stop the most. To improve the model performance, other
different intersections and thus data included data ffchniques were also combined witachine learning
traffic jam conditions. methods such as Discrete Hidden Markov Models af/in

7) The research considered all common machine Iearniﬁt{?d_ B_ootstrap aggregating as [W]' Other than Al tools,
procedures in the avelopment of the models, namely;s atistical methods were also #pd such as the Random

complete model selection, regularization (applied Whe_ﬁubspace Method i[18]. Some studies have used additional

using SVM), feature selection, and feature Sca”ng]formation from Geographic Information System (GIS) maps
(applied when using SVM and KNN). as in[4, 9, 19 20]. However, GIS data is not always available,

8) The research created a large number of features frgtid @ISO this approach may not be suitable for-trew
which the most representativeatures were selected for aPplications because it mostly relies on the knowledge of the
model development. More details about the examinddntire trip with respect to the GIS features such as bus stops,
features are presented pUgwayenirances amgiklinesy 454 3 collecti on,
preprocessing, and feat ur éne Pecion Tree;method wasqidenfified, as the best, 4
ifeature selectiond on p arg]eg]odén[_?, 10] compared to other matls including SVM.

9) The research identified the features dzh®n statistical TOWeVer, in developing the models, several factors need to be
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considered to obtain the best possible model performance. It such as accelerometers and gyroscopes are more

appears that similar studies lack at least one of the following: reliable since their data are alygaavailable. Whereas,

A Conducting a complete model selection GPS, as mentioned earlier, has its own drawbacks.

A Considerig regularization 3) Ability to distinguish between motorized classas:

A Using feature selection methods different motorized classes have similar characteristics

A Considering feature scaling such as speed and acceleration, a model capable of

A complete model selection is equivalent to incorporating differentiating betwee these modes is of great value.

all the tuning parameters in order to obtain the best detection For example, distinguishing the bus mode from the car
accuracy. Regularization is included in the model to dethl mode is significantly more difficult than
the issue of ovefitting (high variance). Feature selection discriminating walking from driving.
methods are adopted to use the most representative featuresq) Sensor positioning:it shows how realistic the
Feature scaling is applied to normalize the range of different experiments are conducted. Positioning degices in
features (or attributes), which leads to higher model certain locations increases the detection accuracy
performanceand training SDEEd. Howeverit should be noted because the movements monitored by the sensors
that in general not all these factors are aiWE\yS required. For show the movements of the transporta‘[ion mode (or
example, selecting features based on intuition or expert the person) they are attached to. However, it may not
knowledge may lead to as good results as using a feature  reflect realistic behavior of the travele@ome of the
selection method. It is algmwssible that these factors specially studies required that the participants attach

feature scaling (since it is a simple procedure) were part of the  sensors/smartphones to different parts of their body.
software package that was used in their work, but the authorifferent detection accuracies have been reported by
were not clear whether the factors were applied or they jugftferent studies. Although in almost all of them including our
did not emphaSize or focus time importance of these faCtorS.previous Work, Comparim were drawn between the
Nevertheless, these are important factors to be considetg@uracies obtained from their approaches with those of
when solving machine learning problems. others, such comparisons were excluded in the present study
Depending on the application of interest, different tim@ecause of two reasons. First, in different studies, models were
window sizes have been used for detecting the mode of trav(gaévebped on different data sets. Second, seVactdrs can
For example[12] found that longer monitoring durations lead affect model performance (e.g. time window size, number of
to higher accuracy. Intuitively, the bigger the time windowg|asses, etc.). Here are some examples: Excluding those
size the easier the detection becomes since with bigagidies that assumed the time window size to be the entire trip,
window sizes more information is available. If the applicatioghe highest reported accuracy of 96.9% was achievedJy
is a survey for demand analysis thedimindow size can be wjth a time window size of 4 seconds. In their approach, they
as large as trip duration, whereas if the application providggly used accelerometer data and did not rely on GPS and GIS
reattime information for environmental or some tranSiidata_ Their method was capable of differentiating between
applications, then smaller time window sizes are mof@otorized modes car and train) and no specific sensor
desirable. The size should be as small as possible for Sopitioning was applied. Nevertheless, they only considered
sdety applications (e.g. crash prevention). An earlier studree classes. The second best accuracy was obtairféd]by
[13] used 20@meter and 15@econd segments in their They also used accelerometer data without relying on
experiment. Whereas another styéy used 1@second time GPS/GIS data. However, although different motorized modes
windows to separate walking from navalking segments and were mentioned in the paper, it seems that the reported
then applied a maximum size of 2 minutesh@tthan the accuracies show only one motorized modesoAlsubjects in
time window size, the overlaps of two consecutive windowgeir study were asked to keep their device in their pocket of
have also been considered. Referef8jeobtained the best the nondominant hip while collecting data which is more
time window size and overlap to be 10.24 seconds and 50Palistic compared to attaching sensors to the body, but still
respectively. The entire trip duration appears to be considergges not reflect a complete realistic behavior. An acyucd
in [5, 9, 11, 16, 20Q] Higher accuracies are achieved byy3.69% was reported bf7]. They applied the lowest time
increasing the time window size as showr{i@]. However, window size throughout the literature which is one second.
the focus of this Study is on small time window Sizes, SO t%wever’ their approach was dependent on data from GPS

developed models have the potential to be used in a broagghsors. Further, different motorizedasses were not
range of applications such as environmental and safepgnsidered.

applications.
_ Other than the time window size, several factors that also pgta collection, preprocessing and feature
influence the model performance are as follows:
1) Number of classess the number of classes increases,
class differentiation becomesore difficult. A smartphone application was developed for the purpose of
2) Model dependency on data sourcésss dependent data collection. The application stores the data coming from
models are more desirable as they can be applicalsimartphone sensors including GPS, Accelerometer,
even with limited sources of data. In this case, sensoByrosope, and Rotation Vector at the highest possible

extraction
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frequency. To collect the data, ten employees at Virginia Tederivatives). Also, spectral entropy was added, which can be
Transportation Institute (VTTI) were asked to carry ased as a measure to show the peaky spots of a distribution
smartphone (two devices were used: a Galaxy Nexus and22]. Peaky spots are important since this measure can be
Nexus 4) with the application irdted on it on multiple trips. different for different transportation modes. Intuitively, an
They were asked to select the travel mode they intend to w#upt braking (which in rédcted in the accelerometer data)
before starting the logging process, and then using tirea car mode is peakier than in the bike mode. A High value
application buttons they were able to start and stop daih spectral entropy for a distribution shows that the
logging. Although smartphones can be carried heoplaces, distribution is somewhat flat. Conversely, the spectral entropy
to make sure the data collection is less dependent on thecreases when the distribution becomes st [23]. In
sensor positioning, the travelers were asked to carry thddition, the data from the sensors were treated as signals,
smartphone in different positions that they normally do suaonsequently, the energy of the signal witthe time window

as in pocket, in palm, in backpack, and different places insidé interest was added to the feature [2]. Also, the data

car (e.g. on front right seat, coffee holder alongside of thieom the GPS were excluded to only focus on the scenario
driver) as they reported after the data collection. However, thdere no GPS data are available. To summarize, using the
amount of time that was spent for different positions wergaa from different sensors and for each time winddable9
unknown since the participants were not asked to collect dafigows the measures that were used to create the feature set.
in a partizlar position for a certain amount of time and theyt h e r t han t he fispectral entr
reason was to make the data collection as natural as possigientioned above, other measure included A(br aveage),

Data collection was conducted on different workdays (Mop A g{maximum), i E T (minimum), © A Quariance), © O A
through Fri) during working hours (8 AM to 6 PM) on(standard deviation)O A T, AN @terquartile range), and
different rogd types with differé speed limits (i.e. car mode £ ¢ T # Enimberfof times the sign of a feature changes
on roads with 15, 25, 35, 45, and 65 mph; bus mode on roggy the time window). Also in this tabl€ represents the

with 15, 25, 35, and 45 mph; bike mode on roads with 15, 23,15 array fortie E feature (e.g. acceleration) from the time
and 35 mph) in Blacksburg, Virginia. Thirty minutes worth of . A -

o window O Also, @ represent the derivative @. A total of
data for each mode per person were colteclhe original

data frequency was about 25 Hz (for acceleromet 165 features were created: out of the 18 measures presented in

gyroscope, and rotation vector sensors), but the data frité?ble 9, all the 18 measures were applieai each of the

different sensors were not synchronized. Thus, in order §§NSOr values; 7 measures were applied to rotation vector

ensure that the data were gathered at identical sampling raf&)sor values; 16 measures were applied to the summation

linear interpolation was first applied to the data similajgp Vvalues from accelerometer and gyroscope sensors (e.g.
to produce continuous data sets and then the data were ge © & & ); 4 measures were applied to

sampled at the desired rate (rate of 100 Hz was applied). Si?ﬁg summation values from rotation vector sensor. As a result
the original frequency of 25 Hz was not a constant rate (i'e'tﬁie total number of features reached 18*6+7*3+i6*2+4*1 _ '
constant frequecy was not possible to set for collecting data)l 5 features
the choice of 100 was made to make sure no information é )

lost. Furthermore, a low pass filter was used for noise

reduction. In total, 25 hours of data (30 minutes per mode et Tabled MEASURES USED TO CREATE FEATURES

person) were stored and uded training and testing purposes: 0. M'ea§u‘r‘e No. !\Aga§ur7e‘ —
In other words, total of ten travelers collected 30 minutes of O(wa 10 ', 'n ?ff)o  wadE o
data for each mode that equals (30x10x5)/60 = 25 hours. 2 Gow 1 aQwe
Some features are considered to be basic/traditional feature§ & Q&b 12 & o
(e.g. mean sp_eed, mean acce_leration)chv!are more intuitive 40O 13 4 0%
to be influential and were widely used in the literature and o o
some are considered to be more advanced features (e.g | © @ 14 vow
heading change rate) as presented[18]. In our previous 6 1wt Qe 5 i 0'®
work [21], we used approximately 60 features that we (_:r(?ated7 Qf @ 16 1 Ot Q0
from the sensor daf mostly based on some statistical L o
measures of dispersion. In the present study, we created a s& | Qa@é an 17 e

of features that include those 60 features with some9 Q& Qi dQ® 18 i Q@é O
modifications. First, a feature should have a meaningfti
relationship to the transportation modes. Thee absolute
values of the rotation vector sensor are excluded from the
feature set because the absolute values correspond to th&hree methods we considered to construct the detection
deviceds orientation and amadelsuSupperl \ectos achine (SYM) and Decigion rpeo r t
modes. Second, since a time window is being monitored, otHgave been used in most of the literature to classify
features that can describe variations in time were createdttansportation modes, and some papers found the Decision
incorporate the features6 Treetnde the dgstemeithas.nConsequendly-tigeed modals e d
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(single Decision Tree, Bagging, and Random Forest) amdsitive errors.
SVM were selected for model construction. In addition, the K

Nearest Neighbor (KNN) method was considered for the 6

purpose of comparison given that it is a simple techniqug. E 1 p N 6 . 7
Several methods we adopted in the model developmen'ﬂ”"‘h C o ‘

process; maximum dependency minimum redundanubject to:

(mRMR) for feature selection, Hold Cross Validation for @ 0 %oy P, ke ph8 R 8

&) :
model selection, and Scaling for normalization. To conduct nfe  of8 9
feature scaling, the feature values were normalizecdbdo ¢
within the range of-fL, 1] (Scaling was conducted only whenWhere

applying SVM and KNN). o Parameters to define decision boundary betwe

K-Nearest Neighbor (KNN) classes
0 Regularization (or penalty) parameter

Error parameter to denote margin violation

Intercept associated with decision boundaries
Function to transform data from X space into
some Z space

Target value for thé observation

A simple yet effective method, namely the-N€arest
Neighbor (KNN), which has been applied to numerousf
classification and regression probleingdifferent fields, was
adopted to identify transportation modes. For each te%tw
observation ¢ ) that includes different features (such as.

@), this method first identifies thed nearest train

observations ¢ ) in the training data set to the test gy\ applies the functiofe8 to transform data from the
observation and stores them in the set. Taking the majority current Rdimensionalé spa@ into a higher dimensionab
vote of the classes for the K nearest pOintS identifies the Cl%ce in which the decision boundaries between classes are
of the test observation. Calculating the average in the Equatigfisier to identify. This transformation could be
6 is equivalent to taking the majority vote in the case afomputationally very expensive; consequently, to solve the
classification (versus regressiorth and @ are the problem, the SVM only needs to obtain vector inner praduct
response (or target) values corresponding to the observatidméhe space of interest. Hence, SVM takes advantage of some
o and® , respectiely. U is a tuning parameter that functions known as Kernels that return the vector inner
needs to be determing2s]. product in the desired Z space. Different types of kernels exist
such as linear kernel, polynomial kernels, and Gaussian
kernel. Linear krnel, as applied ifi, 10], is the basic mode

&) g &) 6 which means no kernels are actually taken into accdant.
N other words, vector inner product as appears in the dual
) formulation of the problem is considered without transforming
Suppat Vector Machines (SVMs) data into another space. For a certain type of problems, SVM

SVM is known as a large margin classifier, which mean@an produce better results with more advanced kernels such as
when classifying data, it determines the best possible decisigaussian kemel. According to our data size and number of
boundary that provides the largest possible gap betwet@@tures, Gaussian kernel was believed to be the most
classes. This characteristic contributes to a highefidence appropriate kerngR7]. Also, if a complete model selection is
in solving classification problems. To construct the SVMarried out, there is no need to test the linear kernel because
model, the following factors are taken into account: using the results obtained from the Gaussian kernel include the
Gaussian kernel with complete model selection (which entallgsults obtained from the linear kerii28]. In this paper, the
consideration of the regularization parameter and the Gaussféarfo  function corresponds to the Gaussian kernel. The
paraneter), and applying feature scaling. formulation of the Gaussian kernel is shown in Equafifn

Equation 7 presents the SVM formulation to solve theWhen using this type of kernel, the tuning parameters are the
classification problem and the associated constraints dg@ussian parametey and the regularization parametér
shown in Equation8 and 9 [26]. The objective function is that should be determined to obtain the best possible detection

composed of two terms: minimizing the first term is basicallperformance.
equivalent to maximizing the margin between classes, and the

second term consists of an error term multiplied by thg iftee Qan AL GHE 10
regularization (penalty) parameter denoted #y The # Cn

parameter should be detgned to provide the relative Where,

importance between the two terms. Equat®ensures that fuee n-dimensional vectors

margin of at least 1 exists with consideration of som@& G Euclidean distance between vectaftee
violations. The value of 1 was resulted from normalizing = Gaussian parameter

E tion9 tricts the dat ints to th ints that h . . .
quation s restricts the cata points fo the points that have Two approachesvere examined: (1) Developing a single
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SVM model using the entire dataset, (2) Devaeigpan different trainingsets can be averaged. However, in practice,
ensemble of SVM models using a smaller data set for easle usually have only one training set. Instead, bootstrapped
model. Similar to the idea behind the Bag approach, insteadtadining data (Pseudo training sets) can be obtained by taking
developing a single SVM model, a series of SVM models waspeated samples from a single training [8&] and a tree
developed and the final result was determined based on thedel can be constructed for each. Afterwards, the average
majority voe obtained from the SVM models. A number ofperformance of all models represents the overall performance,
studies have considered taking advantage of an ensemblenbfch is called Bagging or Bootstrap aggation. There is no
SVMs [29, 30] As the number of observations in the trainingieed for pruning of trees as the variance is reduced by
dataset() increases the training time increases with the powaveraging. Averaging is equivalent to taking a majority vote
of two (I ) [31]. Thus, if the data set is sufiently large for classification problems, which is the case in the present
developing a number of SVM models using a subset of dagtudy. The detection/prediction for a single data po@is

can be faster than developing a single SVM model using thbtained by averaging (taking a majority vote) the detections
entire data. resulted from all bootstrapped samples as shown in Equation
12. The trees can be as large as possible, thus the only

Tree based models L
parameter to be determined is the numberesfs.

1) Decision Tree
Decision Trees were introduced for classification and I

regression problems in thaid-80s [32]. These approaches ipe (e 12
have several advantages; among all, they are easyplairex ” i

and interpret, they reflect the human decision making procegg)ere,

they can be graphically displayed, and there is no need ¢g+|® Target value resulted from averaging
create dummy variables for qualitative predictors. However, as Detected target value for observati®in

the tree becomes larger, it may ofiethe data and show poor t bootstrap samph

performance on the test data set. Consequently, sorfie Total bootstrap samples

strategies are used in the R and CART software to construct a

large tree using recursive binary splitting and then pruning) RandomForest

back to obtain a good stitee. This approach is known as Similar to the Bagging method, the random forest method,
Cost Complexity Pruninggr Weakest Link Pruning. In the as proposed in 200B6], creates an ensemble of trees and the
Recursive binary splitting method, a root node is the startingsult is obtained based on the majority votes. One issue
point where a predictor (feature) needs to be selected withredating to the Bagging is that the trees can be very similar
cut point to split the data into two parts or nodes. Thisince all the features are used to construct each tree;
procedure of selecting a feature andit8pg is carried out consequently, the trees can be highly correlated. To tackle this
successively to grow the tree. Different criteria can be usedpooblem random forest restricts the number of features by
choose the best split at each node, including: classificatiomndomly selecting a subset of features to grow each tree. The
error rate, Gini index, and Cre&stropy. In practice the two parameters to be determined are the number of features to use
latter methods result in better performan&onsequently, and the nmber of trees. Interestingly, in Random Forest and
CrossEntropy was used in this study. Havirgclasses, at also Bagging approaches, adding more trees does not lead to
each nodd which receives observations@ AJ from overfitting, but at some point not much benefit is gained by
its parent node, Crod€sntropy can be obtained throughincluding more treef33].

Equationl1[33]. Feature Selection

L Featureselection is considered to be a critical taskt@sun

”’ﬁ m o E 11 reduce the dimensionality of the problem, reduce the noise,

- identify more important predictors, and lead to more
where, interpretable featurg87].
0 Proportion of clas®observations in nod@ Sorre methods have been applied to select the most relevant
. P o 0 features to use such as ANOVA tests usefd &, correlation
v 0 based feature selection (CFS) usefVinand Chi Squared and

, o . Information gain médtods applied in[4]. Using mutual
() Target value of  observation in nodé

information or some statistical tests to select theramiked
features may not be sufficient as the selected features could be
highly correlated among themselvi@&¥, 38] In other words,

2) Bagging not much benefit is gained by combining highly correlated
Bagging or Bootstrap aggregating method, introduced ®atures. In the preserstudy, the selection of the most
1996 [34], takes advantage of aggregating results froepresentative features entailed using the minimum
different models to reduce the variance. Theedundancy maximum relevance (mMRMR) approach. This
detection/prediction results of different models constructed @pproach was used to deal with this issue; when selecting the

W Q  1if ¢ Q and 0 otherwise
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w feature from the feature set M, assuming §has the ol i o Gji
already selected features, the goal is to simultaneously "
maximize the relevance between the feature and the target Number of observations
class (i.exwh) as shown in Equatioh3 and to minimize the £ Number of observations iR fold
redundancy between that feature and tiready selected © Set of observations i@ fold
features (i.e.wh®) as shown in Equatiod4 [37]. Hence, © Actual target value

W Detected target value

using MRMR all the features that wereatszl were ranked to
choose the most useful ones; the top 80 features were sele
out of the entire 165 features. The number 80 was chosen by
experimenting different values. In other words, it was desired

to achieve a good level of detection accuracy @nthe same Using mRMR, 80 features were selected as the most

c%’ﬂ w lifw ,and 0 otherwise

Results

time to exclude less useful features. relevant features, which were used to construct the model
The performance of each model was quantified using different
Ni A @) "Qbho 13 metrics depending on the model, namely: misclassification
.. p 5 error obtained from #old CrossValidation and OutOf-Bag
I'Elg= 0 'Gbhod 14 error. Crossv/alidation, as mentioned earlier, is a good
¥R N technique to estiate the detection/prediction errors. it
where, Bag error is an accurate estimate of the errors suitable for
0 "Qiho Mutual Information of wandw Bagging and Random Forest that is almost identical to the
W The feature to be examined CrossValidation accuracy[33]. Moreover, in developing
W A previously selected feature different models, 30% of the data were set aside to mlatai
0 Set of all features test error, and the remaining 70% were used as the training set
O Set of the selected features for model development. Subsequently, Confusion matrices
c Target class were obtained for each model, which shows the classification

rates, misclassification rates, recall, and precision valtles.
K-fold CrossValidation recal measure is calculated by dividing the total ngmber of
true positives by the total number of actual positives. The
The K-fold crossvalidation is a powerful technique to precision measure is computed by dividing the total number of
estmate the detection/prediction error. Consequently, it igue positives by the total number of predicted positives.
used to select the best model and to determine the moggially the modelswere compared to each other using

parameters. The idea is to randomly divide the data& of different performance measures suchFasScor e, Youd e
observations intou approximately equal parts or foldsindex, and the discriminant power that will be presented in the
(GO hO) with &  observations in each fold. imodel comparisond section

Subsequently, the data of the first fold are set aside as the

validation data set, and the data of the remaiing p folds KNN Model

are used as the training data set to construct a model. Th&he KNN model using Hold CrossValidation was
same procedure is conductédtimes, each time a different implemented usg the R software[41] and the clas
validation data set is chosen. The performance of each mogatkagd42]. The only tuning parameter in the KNN method
is evaluated on the corresponding validation set and the the number of K neighborsFigure 7 shows the
average detection error is obtained over themodels as misclassificabn error obtained from a -®ld Cross
shown in Equatiord5. The special case is when the number o¥/alidation (applied in the training set) of 25 runs for different
folds is exactly the same as the number of observations; thisignbers of neighbors. The highest accuracy was achieved
called LeaveOneOut CrossValidation (LOOCV). LOOCV when K was 7 resulting in an error rate of 8.8% (accuracy of
requires high computations as it needs to construct the mo8é&l2%). The confusion matrix of ghKNN model including

n times which in this case is the numioé observations. Also, the Recall and Precision values is showi @blel10.

since only one observation is left out at edclstage, the

training sets are almost the same for each model and thus the

estimates are highly correlated, consequently, the average over

K folds can have high variance. In practitiee best choice for

the number of folds is 5 or 189, 40]

€ ..
0w —0Ol1 1 15
£

Where,
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(o]
B 94.4
utJ § - 94.2
S © |o 5
= 1) 93.8
8 o o o 93.4
E, 9 o co0?® ° 93.2
= o - o o0 93
d g o °° -%.5 0 0.5 1 1.5 2 2.5
T T T T T Log(gamma)
5 10 15 20 25 Figure 8 Impacts of regularization and Gaussian
_ parameters on model Accuracy
Number of neighbours (K)
Figure 7 Impact of number of neighbors on model
misclassification error Table11 CONFUSION MATRPSVM MODEL
Actual
SVM Bike Car Walk Run Bus | Precision
Table 10 CONFUSION MATRPKNN MODEL = Bike [ 9511 089 169 045 0.94 96.28
KNN Actual 8 Car | 096 9358 018 0.15 6.90 91.74
Bike Car Walk Run Bus | Precision T Wak | 189 028 9711 134 055 95.79
= Bike 09331 233 230 099 296 91.72 g Run 0.37 0.5 0.77 9755 0.17 98.50
% Car | 273 84.07 077 0.38 11.74| 8432 Bus | 166 510 0.26 050 9144| 9242
g Walk 237 020 9651 150 0.25 95.72 Recall | 95.11 93.58 97.11 97.55 91.44
& Run [ 007 000 015 97.00 0.05 99.71
Bus 151 1340 0.27 0.13 85.01 84.69 Ensemble of SVMs (ESVM)
Recall | 93.31 84.07 96.51 97.00 85.01 For the ensemble of SVM models, thefold cross
validation was adopted in a slightly difent fashion: the
SVM Model training set (70% part) was divided into 5 folds; one fold was

] ) ) ) set aside as the validation set, and about 25% of the remaining
In implementing the SVM, the LibSVM library of SVMs was 4 ¢5|ds were used to train the first SVM model. Similarly, 25%
used. For multiclass classification, consideriifg classes, of the 4 folds was sampled (bootstrap sampaengling with
LibSVM applies oneagainsione method in whichQ0 replacement) to train the second SVM model. The procedure

p 7¢ binary models are bwlt. Amon_g these, LibSVM Chooset‘?ontinues until 200 models were constructed. In addition, trial
the parameters that achieve the highest overall performance,

Another weltknown method is called oregainstall which is andherg:/eras l:jsﬁd _ﬁ] pick model pfart&fl]metélzszgol |MPC\ijII‘
more intuitive and has similar performance. However ¢ model. € average of these Models was

LibSVM takes advantage of omsainstone because of its validatedwith the data fold that was set aside. All these steps
shorter training time.[43]. Furthermore, Hold Cross were carried out 5 times, each time with a different data fold

Validation was used for model development and assessmen@S the validation set. Averaging the results of the five folds
represented the cross validation results of the ensemble of

Single SVM SVM models. Thé method led to an overall accuracy of
The 5fold CrossValidation was applied on the trainingtge  94.41%. The confusion matrix corresponding for this approach
develop a single SVM model. In order to conduct a complete shown inTablel2.

model selection, the regularization paramefiaé well as the

Gaussian parametef)( should be optimized. The Gaussian Table12 CONFUSION MATRIXENSEMBLE OF SVM

kernel formulation used in libSVM43] is slightly different MODELS

from Equationl0; in their formulation, the paramet@A I | Ag combie of VM ke car Av(\:/gfliil o Bus | precison
was used instead ef-. Figure8 presents a contour~plot that = ke 563 068 171 05 108 907
illustrates how different values of the regularizatié) §nd & Car 0.83 91.72 013 015 7.75| 91.04
the GaussianG A | ) parameters impact the performance of 3 Walk 160 048 9716 127 074 | 95091
the SVM model. The optimal values fo€ Al hAAwere & Run | 046 030 075 9782 032 9812
found to ke (2.828, 512) that led to the overall accuracy of Bus | 148 683 025 020 9011 91.25

Recall [ 9563 91.72 97.16 97.82 90.11

94.62%. ParametedsandA (or C A | 1) deals with the issues
of overfitting and undeffitting which is a biasvariance
tradeoff. Detailed information regarding the biasiance Treebased models
tradeoff can be found ij29]. Tablell presents the confusion
matrix for the SVM model.

Decision Tree (DT)

The decision tree method was implemented in the R
software along with two packa
packages) for tree analygél, 44, 45] The resultant single
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tree was a very large tree with 48 terminal nodes with deatures for each tree. After approximately 200 trees, no
overall accuracy of 87.27%lable 13 shows the confusion benefit is gained by including more trees. Thus, to apply these
matrix of the decision tree model.

Table 13 CONFUSION MATRPOECISION TREE MODEL =

approaches, 400 trees were used, whichggfficiently large
number. On the far left of the diagram, when the number of
trees is 1, it is equivalent to having a single decision tree.

Decision Tree Actual ” % v Test Error
Bike Car Walk Run  Bus | Precision e LK > Out of Bag Error
- Bike [ 8532 178 521 085 3.07 ]| 88.96 E & | &K
€ car | 139 7930 026 014 1214| 85.03 €l | |
S Wak | 865 010 9199 287 013 | 8854 8§ s L
& Run | 040 000 117 9530 0.0 | 9832 Z '
Bus | 424 1883 136 085 8465| 76.92 g 8 4
Recall | 85.32 79.30 91.99 95.30 84.65 £
8 4
Since the tree is very large, Cost Complexity Pruning we ~ ° S R e e

applied to prune the tree from 48 terminal nodes to 24 witho

T T T T T T
0 100 200 300 400 500

much loss in performancelable 14 shows the confusion

matrix of the pruned tree resulted in 86.3% overall accuracy.
This model was called DT.P to abbreviate the model title of

the pruned decision tree.

Number of Trees
Figure 10 Impact of number of trees on the
misclassification error

For the random forésmethod, other than the number of

Table 14 confusion matrix - Pruned Decsion Tree model trees, the number of features needs to be determined as well.

Figure 11 shows a series of random forest models with
Run Bus | Precision different number of features for each tree. Since a total of 80

138 402 | 8579  features were sed (as identified by mRMR), a total of 80

random forest models were constructed to find the best
number of features to use. The far right of the figure shows the
059 8311 77.02 results of the Bagging approach, where all the 80 features

Decision Tree Actual
Pruned Bike Car Walk
- Bike 84.37 3.12 587
% Car 0.61 7850 0.33 0.05 12.77| 85.07
S Walk 9.80 0.07 90.44 285 0.10 87.42
& Run 053 000 230 9512 0.00 97.04
Bus 469 1831 1.06
Recall 84.37 7850 90.44 95.12 83.11 were used. The minimum error rat@s obtained with 125

features in use. The model with 12 features was selected as the

Because the tree was big to illustrate, the tree was prungest model since a less complex model with less features is
again to reduce the number of terminal nodes to 9 just falways more disirable. The Confusion matrix for the bagging
illustration purposes, as illustratedFigure9. In this case the and the best random forest models are showiginle15 and
accuracy of the model is 82.1%.

Table 16. The overal accuracy of the best random forest

V76 <> 0.069767 model and the bagging model, obtained froffold Cross
o 0 0 .
R . Validation, were 95.1% and 94.4% respectively.
V38 <> 3.16545e-005 V15 <= 27208 [9] o
°
&= ¢ A (o M| ]
2 2 V31<>721.08 [6] V14 <> 52177 4 e i © TestError
12605 obs —_— 13007 obs @ 0“ X Out of Bag Error
2 3 V62 <>295 1 g | !
1161 obs 11892 obs o
5 5 1 3

10170 obs
5

2

3252 obs 1272 obs

Figure 9 lllustration of a single Decision Tree

Bagging (Bag) and Random Forest (RF) models

1760 obs15321 obs

Misclassification Error
0.060
]

0.055

0.050
|

In implementing the Bagging and Random Forest methoc : ‘ . . ‘
the R software andtheackage FfARandomFo 0 20 40 60 80
respectively[41, 46] These two methods were examinec Number of Features
together since the Bagging is in fact a spexadale of a random Figure 11 Impact of number of features on the
forest when the number of selected features equals the total misclassification error

number of features. As mentioned before, adding more trees
will not cause ovefitting. However, a sufficient number of ___Table15 CONFUSION MATRPRANDOM FOREST

Actual

trees are needeffigurel10 shows a series of Random Forest Random Fores Bike  Car

Walk  Run

Bus | Precision

models with different number of trees, from 1 to 500, using 5
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5 Bke [0547 146 263 097 229 | 9306 Table17 IMPORTANT FEATURES
g Car | 037 9384 012 005 447 ) 94.93 No. Feature Name No. Feature Name
P o fzmoomowm o oon) w2 NG Toeere i dnoe
a i e ' ' il ' 2 i &0 12 ORd
Bus | 1.19 457 063 058 93.12| 93.02 2 W 13 oo
Recall | 95.47 03.84 96.23 96.81 93.12 a o L WIQ
4 Gaa 14 G
5 40 15 1 Ot Qo
Table16 CONFUSION MATRPBAGGING 6 i Oe& WQ 16 Q¢ Qi W
Baoai Actual 7 i l’]'Q(I)c‘)‘l nade o1 17 i & "QQ
agging . . e o
Bike Car Walk Run Bus | Precision 8 a & 18 L ROXAX?)
= Bike | 9463 148 281 100 234 | 9275 O O
L  car | 048 9264 012 003 508 | 9418 20 g%gn ;g : Eg&bi 580k b
S Walk [ 343 013 9595 163 022 | 9462
£ Run [ 003 000 058 9679 002 | 99.34
Bus | 1.42 574 055 054 9234| 9176 Model C .
Recall | 94.63 92.64 95% 96.79 92.34 odel L.omparison

The performance of the models was evaluated using four
metrics, namely: the overall accuracy, th&FE or e, Youd e
Feature Importance index, and the Discriminant Power (DP). The overall accuracy

As was mentioned earlier, a total of 80 features weilis calculated by dividing the total number of correct detections
identified as the most relevant features by mRMR methoby the total number of test data. TheS€ore is a combined
Figurel2 shows the actual importance of the best 20 feature3¢ asur e of the Recal |l aindgx t he
associated to the lesindom forest model. The importance ofiS a measure to assess the ability of a model to avoid failure.
the features were assessed based on two measures: (1) Mé¥h discriminant power shows how well a model
Decrease Accuracy that shows how the detection accuracydiscriminates between different classes by summarizing
decreased if a feature was excluded, averaged over all treg@)sitivity and specificity of the model; the model is a poor
and normalized by the standard dion of the differences in discriminant if DP <1)imited if DP <2, fair if DP <3, good
accuracy and (2) Mean Decrease Gini that shows how a sinijleother cases. The sensitivity and specificity assess model
feature contributed to decrease the Gini index over all tfgrformance on a single class, and are equivalent to the recall.
trees. Table 17 shows the feature names in the order opy definition, assuming two classes (positive and negative)
importance. Since the twmeasures determine the feature€NSitivity is exactly the sae as the Recall measure.
importance in different ways the identified features by the twgPeCifiCity is also the same metric but for the negative class.
measures are different. While both measures have been ubigurel3illustrates a visual comparison between the models
in the literature, there have been arguments concerning #ging different performance measures.
preference for one measure over anotheis recommended

tha_lt the first method.(l.e. Mear_1 Decrease Accu_racy) IS MOf&, -+ ;re Combination
suitable for causal interpretations. More details about the N
arguments and some contradictions regarding these measuredn effort was madeot develop a new additional feature

can be found if47].
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Figure 12 Feature importance for two different measures
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which is a combination of other features. This was carried out
by combining two approaches; a Meta heuristic approach
called Simulated Annealing (SA48] and the Random Forest
techniques. The new feature was created by multiplying other
features; SA was adopted to select the best features to
combine. The steps of this approach are as follows:

1. Define an initial solution: twaandom features were
selected and placed in a set calleéd. These features were
combined (by multiplying by each other) to create a new
feature. Subsequently, a RF model was developed using the
previously used features (i.e. 80 features) and the newly
defined feature to obtain the error rate for this initial solution.

2. Choose the algorithmbés s e
carried out to determine these algorithm parameters.

0 Initial  temperature { ); (The term
itemperatureo is basically
affects the probability of accepting or rejecting new
solutions.)

0 Final temperatured ) and stopping criteria

U Number of iterations at each temperature)
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U Cooling schedule modes (i.e. walk and Run), the SVbutperformed the RF
After several trials, 5, 0.1, 15, and 0.8 were chosen as theethod. Several features were created and examined; among

0 ,0 , 0 , and the temperature reduction multiplierwhich 80 features were identified using the mMRMR method as
respectively. the most relevant feature. Other than some statistical measures
3. Repeat until stopping criteria are met of dispersion (e.g. range, max, var etc.), spectrabpy and

i

Repeat until n& , (nisa counter, starting from 0) energy wereamong the most important featur@sie focus of

9 Generate a new solution: the new solution |§he future work will be on error anaIySiS to |dent|fy any

generated by either randomly removing arPatterns thatlead to misclassifications, and then to incorporate

already selected feature in the CF set or randomifjat knowledge into detection models for obtaining even
adding a new feature to the CF set. Thereatfter, tthégherdetection accuracies.

new feature is updated by multiplyingll the Some recommendations for future directions that applies to
features in the CF set. this and similar research problems include: adding more data,
1 CalculateV, the relative difference between the@PPlying approaches to examine the data as a sequence,
new and current error rates considering more transportation modes (e.g. metro), and
1 900, the new sol uti oncONGuetingerog anglysidogain sgrpeinsights ahout where
the new solution can still be accepted with thdlifferent models fail to correctly classify the data and
- ¥ consequently incorporate that knowledge into the models to
probability ofA enhance the detection performance.
T n=n+l

U Decrease the temperature according to thdirmpo

schedule: the temperature was decreased |I- 7 o S
multiplying the temperature value to 0.8 at eafl - = T = |
stage. Each stage corresponds taiterations. o | ] F-Score
The error rate obtained by this approach was 4.7% which | « | Models
shows a very small improvement comparing to tisellts that | g gﬁ”
was previously obtained by the RF model (i.e. 4.9%). The | I = DTP
results showed that combining different features did not B RF
enhance the RF model significantly. The error could be o =4
attributed to having very similar data for different modes; car B ESVMs
buses, andicycles waiting at a traffic light; a traveler = P—
collecting the run mode may have stopped just a bit to catch Car Bike Walk Run Bus
their breath or stopped at a traffic light or a stop sign, which = _
would be similar to the walk mode; a bus and a car travelling i 3 —
on the same road thi very similar kinetic variables suchas | 3 1 [] - | e = Index
speed and acceleration. 2 T H Models
2 O KN
Conclusions sz s
Different classifiers were developed using machine learnjiro | E SZQ
techniques to identify different transportation modes includin® o=
bike, car, walk, run, and bus. In training and testthg | 3 - “-- '

classifier, data were obtained from smartphone sensors suct c

ar
recognition. A time window of one second was chosen, soft © 7
model can it in a broader range of applications. For eag|

ar

o

Bike Walk Run Bus

accelerometer, gyroscope, and rotation vector which we ™ 7]
found to have important information for the purpose of mad Dis;:’iv";;f:ant
Models

- @ KNN

method, parameters that needed to be optimized we® @ DT

examined to conduct a complete model selectiorfol& mfild

CrossValidation and OuDf-Bag error were used for model = - B Bag

evaluations. Also, some performance meassueh as the-F - E_\Q\",MS

Scor e, Youdends index, and| e~ ppl i ¢

to assess model performances on the individual modt c Bike Walk Run Bus

Considering misclassification rates, the car and bus modes Figure 13 Model comparison results

were the most difficult ones to distinguish, as would be

expected. Een using more complex models such as SVM and

RF, the car mode was misclassified as the bus mode in about

4-6% of the time. The Random Forest method was found to

produce the best overall performance. However, for specif:i(‘See appendix And Bfor error analysis
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Abstract

This study focuses on adopting machine learning techniques in a distributed learning approach to develop
transportation mode detection models. When applying machine learning methods, the goal is to build
models developd based on some data that includes a number of observations. Each observation contains
a response (s) which is the dependent variable or the target value and an instance which contains some
predictors or independent variables. In the case of transpartatide detection problem, the response is
categorical (i.e. Car, Bus, Walk, etc.) and therefore it is considered as a classification problem. The goal is
to classify transportation modes in a distributed approach (local level) and compare it to thendetecti
models developed in a centralized manner (global level). In most transportation related problems, the data
come from human subjects, which makes the prediction (or detection) more difficult due to the disparities
bet ween humansd b eipaperiemploys aTdistebutedf leamieg, apptofich in which
detection models are developed for each individual instead of developing a single model for the entire
data as is conducted in centralized systems. The number of models in the distributed appopsadtias

the number of human subjects in the study who collected the data. As machine learning methods, support
vector machine (SVM) and random forest (RF) were employed. Moreover, cross validation and out of bag
error were applied to measure the perfarogaof the models. Based on the data used in this study, it was
found the distributed learning approach contributes to more accurate models compared to the centralized
approach.

Keywords: distributed learning; support vector machine; random forest; madbarning; transportation
mode recognition
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Introduction

When dealing with Machine Learning problems in a centralized approach, the traditional way is to collect
some relevant data and develop a single model based on the entire data. However, dncbaadivided
and different models can be developed on different parts of the data. Having a distributed system rather
than a centralized system has been an active research topic in the computer science field, but other fields
also have shown interest id@pting distributed approaches. There are several reasons why a distributed
approach can be beneficial to the centralized approach as fplledys
1. Dealingwith a large amount of data in a centralized systenoiglifficult to be handled.
2. Datasources may be physically from different locations, and therefore too expensive to be
directed to a centralized system
3. Sometimeghe data from various sources cannot be shared due to privacy, security, and data
ownership isues
4. Sometimedt is more efficient to have learning activities in parallel

In such conditions, a desired approach is to design a knowledge acquisition system that can
analyze parts of the data wherever available and then the analysis results cambiéetainsieeded. In
other words, the knowledge can be acquired from different data parts and if required the results can be
aggregated[3, 4]. Furthermore, specifically in the transportation domain, recent methods of data
collection such as probe vehicles have been mexghbto collect traffic data as a cestective alternative
way compared to the more traditional ways such as loop detectors and video d&indragact the
combination of the traditional data collection methgolsroad sensors) with these new methods (on
board sensors) provide high quality data sets to be uti[@edin the new methods, instead of the
infrastructure (e.g. loop detector, video cameras, etc.), individuals (e.g. probesesichrtphones, etc.)
collect the data. As a result, using these methods, there is an opportunity to analyze the data for each
individual in a distributed manner and if required the analysis results can be aggregated.

Distributed data collection has beapplied in several studies. In the Mobile century prdglt
the feasibility of a traffic monitoring system for freeways by adopting-&Rghled mobile phones was
evaluated. In the Mobile Millennium study], arterial traffic conditions were estimated using GPS
enabled devices by applying statistical models. While these and other similar studies have been using a
distributed data collection method, the data analysis has been conducted in a centralized system. In other
words, each vehicle is equipped with mobile phones or GPS throughout the road network and transmits
data (e.g. speed, location, etc.) to a centralimcavhere the data are processed and different inferences
can be drawn such as travel time prediction, alternative routes, arjé]elo. the present study, other
than collecting data in a distributed manner, a distributed dalgsener learning is adopted.

The paper is organized as follows. The first section presents an overview of the past studies on
transportation mode detection as the example problem used to investigate the distributed learning
approach. The second sectiomnioilates the distributed learning problem. The data collection process is
presented in the third section. In the fourth section, the model development is explained. Finally, the
results that draw a comparison between the distributed and centralized hppregmesented in the fifth
section followed by the sixth section in which the conclusion is given.

Transportation mode recognition

Recognizing different types of physical activities using sensor data has been a recent research topic that
has received awiderable attentiof8, 9]. Transportation mode detection can be considered as an activity
recognition task in which data from smartphone sensors carried by users are utilized to infer what
transportation mode the individuals have used. Ma&eactromechanical systems (MEMS), such as
accelerometers and gyroscopes are embedded in most smartphone [d@yitesn which the data can

be obtained at high frequencies. Smartphones, nowadays, are equipped with powerful sensors such as
GPS, accelerometer, gyroscope, light sensors, temperature sensorsyiatg stieh powerful sensors all
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embedded in a small device carried in everyday life activities has enabled researchers to investigate new
research areas. Other advantages of these smart devices are their ubiquity, their ability to send and receive
data thragh WiFi/cellular network/Bluetooth, and store data as well as to process tHé Hata

The knowledge of indi vi dlitate kosné tasksoadcealsmwdan ber a n s |
adopted in several applications. Knowing the mode of transportation is an essential part of urban
transportatiorplanning, which is usually investigated through questionnaires/travel diaries/telephone
interviews [11]. This traditional way of surveying is usually expensive, erroneous, limited to a
specific area, and not so “ipdate[12]. As an environmental apgation, the carbon footprint as
well as the amount of calories burnt of individuals can be determined by obtaining the mode of
transport. Other applications include providing users withtiewd information using the knowledge
of speed and transport m®érom the users as proldédd, 13] Providing individuals with customized
advertisements and messages based on the transportation mode they 4id yghgsical activity
and health monitoring, tracking the hazarpexs ur e and assessing the envi
activities, and profile based recruitment for distributed data gathiddhg

Many studies have used GPS for classification purposes. However, several limitations are
asso@ted with the use of GPS sensors. These limitations include: GPS information is not available
in shielded areas (e.g. tunnels) and the GPS signals may be lost especially at high dense locations
which results in inaccurate positionformation Moreover, he GPS sensor consumes significant
power that sometimes users turn it off to save the bdtt8tyAlmost all studies sed data from GPS
sensors that have the aforementioned drawbacks. Also, all studies took advantage of Atrtificial
Intelligence (Al) tools such as-Kearest Neighbor as [d5], Decision Trees as {11, 1315], Bayesian
Networks as ifll, 16] Random Forests as|ibl, 15} Naive Bayesian techniques agid, 14} Neural
Networks as in17], and Support Vector Machine (SVM) techniques agl#16, 18] of which the
Decision Tree and SVM methods were used the most. Some studies have used additional information
from GIS maps as iff11, 19]However, GIS data is not always available, and thisoapproach may not
be suitable for reaime applications because it mostly relies on the knowledge of the entire trip with
respect to the GIS features such as bus stops, subway entrances, and rail lines.

The Decision Tree method was identified askibst method bjy14, 16]compared to some other
methods including SVM. However, when applying SVM, several factors can greatly influence the model
performance, which have not been considered in their studieexkomple, a linear kernel was used in
[14, 16]as part of the method, but generally for a certain type of problems and depending on the size of
the available data and features, SVM can produce better resultsnatth advanced kernels such as
Gaussian kernel. Also, when applying Gaussian kernel, it was shown that if complete model selection is
conducted with Gaussian there is no need to consider the linear ohel is also unclear wheén
feature scaling and regularization were adopted in the most studies using SVM. Feature scaling is used to
normalize the range of different features (or attributes), which leads to higher model performance and
training speed and the regularization isoiporated into the model to deal with the issue of -dittmg
(high variance).

Depending on the application of interest, different window sizes have been used for predicting the
mode of transport. For examplR1] found that longer monitoring durations lead to higher accuracy.
Intuitively, the bigger the window size the easier the prediction becomes siinckigger window sizes
more information is available. If the application is only a survey for demand analysis the window size can
be as large as trip duration, whereas if the application provideBmeainformation for environmental or
some transit apations, then smaller window sizes are more desirable. The size should be as small as
possible for some safety applications (e.g. crash prevention/mitigation). The time window in our previous
works[15, 18]as well as the present study was assumed to be one second so that the potential application
would include a broader range of applications such as environmentafeity applications. Other than
the window size, other factoadso influence the model performance as follows.
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(5) Number of classes: as the number of classes increases, class differentiation becomes more
difficult.

(6) Use of accelerometer/GPS/GIS data: the Ie¥ehodel dependency on different sources of data
is consideredas an important factor. Less dependent models are more desirable as they can be
applicable even with limited sources of data. In this case, sensors such as accelerometers and
gyroscopes are me reliable since their data are always available.

(7) Ability to distinguish between motorized classes: as different motorized classes have similar
characteristics such as speed and acceleration, a model capable of differentiating between these
modes is of geat value. For example, distinguishing the bus mode from the car mode is
significantly more difficult than discriminating walking from driving.

(8) Sensompositioning it shows how realistic the experiments are conducted. Positioning the devices
at certain lgations increases the prediction accuracy because the movements can be monitored in
more detail, but may not reflect realistic behavior. Some of the studies required that the
participants attach sensors/smartphones to different parts of their body.

Distr ibuted learning in Transportation

In predicting or estimating different measures, attributes, and/or behavior in the transportation science, in
order to apply machine learning techniques, prediction/detection models are developed based on some
data that inlude a number of observations. Each observation contains a response (s) (i.e. the different
measures such as travel time, transportation mode, crash probability) which is the dependent variable or
the target value and an instance which contains somecfesdor independent variables. The predictors

are specific to each problem but examples are vehicle speed, vehicle type, vehicle acceleration, signal
setting, and etc. In terms of the general concept, a part of the data is used for training andsetpart is
aside for testing and validating (wédhown techniques can be applied such as Cross Validation). The
goal in the centralized approach is to develop a single model to predict or estimate the responses based on
the data instances. An example from oueviwus works[15, 18]is used to show how a centralized
approach is applied compared to the distributed approacheXdraple is recognizing transportation

modes based on the data from smartphone sensors as explained above. In the transportation mode
detection problem, the response or the dependent variable is the transportation mode (e.g. Bike, Bus, Car,
and etc.) andhe data instance includes the predictors (also called attributes, features, and independent
variables) such as acceleration that were obtained from the smartphone sensors (e.g. accelerometer,
gyroscope, etc.).

Although the distributed data collection haeh adopted in some studies, not much research has
been conducted on distributed learning or analysis in the transportation domain. In this approach, different
models are developed for different individuals. In other words, instead of theingtire datao develop
a single prediction model, a model is developed for each individual based on the data collected from that
specific individual. The resultant prediction models are expected to be more accurate. Three important
factors have motivated us to applige distributed learning approach. First, as mentioned earlier,
sometimes the available data set is very big and sometime it is physically difficult or impossible to handle
them in a centralized system. Second, new methods of collecting data (e.g. yénenes), as explained
earlier, have enabled researchers to collect the data in a distributed manner. In addition, thanks to the
technology development, recent handheld devices have the capability of analyzing the data as well as
collecting them. Third, irmost transportation related problems, the data come from human subjects,
whi ch makes the prediction more difficult due to
try to account for more predictors to describe the differences between h(srgnage, sex), but it is
more difficult in practice to obtain such data. Also, even two similar human subjects may behave much
differently (e.g. aggressive vs. conservative driving). In the distributed learning approach, the developed
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