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A Model for Hybrid Dynamic Beam Movement

with Specific Application to Wind Energy Units

Ramakanta Patra

Abstract

The aim of this thesis is to present a structural model for a wind turbine and its supporting
pylon, to analyze and simulate attendant vibration phenomena and to suggest and simulate an
appropriate control procedure. A wind turbine can be described as an elastic system consisting
of distributed parameter, beam and rod type, elements coupled to a rotating lumped mass
generator/turbine component at one end. We allow for both lateral and torsional movements
of the beam. Solution methods for related vibration and control problems are suggested and
analyzed. Results of computations for sample problems are presented. Applications of control
of structural vibrations in wind energy units using proof mass type actuators as part of the tip
mass are also analyzed.
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1 Introduction and Mathematical Formulation

1.1 Background

The objective of this research is to study a controlled wind turbine as a distributed parameter

system coupled to a tip mass, part of which is rotating, attached to the free end of the structure.

Non-technical background material may be found, e.g., in [10]. The beam is fixed at the ground

end, bends in two dimensions and, in addition, undergoes torsional motion. The ”head” element of

the structure, which houses a generating unit, etc., is modeled as a mass attached to the free end

of the beam which includes the wind fan as a rotating component. At different levels of realism the

rotating mass may be interpreted as rigid unit, or the blades may be individually modeled within,

e.g., a narrow beam aeroelastic framework. The first approach is pursued in this work.

Control action to counteract variable wind strength with attendant variable fan rotation is studied

and controlled model studies are undertaken via extensive computer simulation.

There is a considerable body of scientific literature pertinent to our study. The mathematical

history relevant to the present project goes back to the early studies of elastic beam vibrations in

the 1960’s and 1970’s [13], [12], [9]. Literally hundreds of papers have appeared since , covering

numerous aspects of the subject. In the 1980’s NASA’s Spacecraft Control Laboratory Experiment,

acronym SCOLE, which concerned an antenna connected to the space shuttle by a flexible beam

structure led to many contributions in the area of elastic beams with a connected tip mass.

1.2 A Hybrid Structure; Energy Expressions

Structurally, a wind energy unit can be considered as a distributed system consisting of a beam with

torsion in R3. We consider this to be a right handed system with the logitudinal, x, axis of the

beam extending in the vertical direction with the beam clamped rigidly to the ground at x = 0. At

the free end, x = L, a lumped parameter system representing a generator head and wind turbine,

is rigidly attached to the beam, which represents the supporting pylon for the assembly. The y axis

is transverse to the axis of the fan when at rest and the z axis measures the longitudinal direction

of the fan axis and the angle θ is measured in the standard positive direction in the y, z plane. We

consider the motion of the beam with the projection of the beam displacement onto the x, y plane

represented by a smooth function y(x, t) and the corresponding projection on to the x, z plane by

z(x, t). We will denote the torsional displacement in the y, z positive direction about the x-axis by

θ(x, t).

We assume a prismatic Euler-Bernoulli beam model [1], [7] which is symmetric with respect to
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the y and z axes and we denote it’s stiffness coefficients by ky, kz , kθ. Then the potential energy

integrals coming from the lateral movements of the beam are

ky

2

∫ L

0

(
∂2y

∂x2

)2

dx,
kz

2

∫ L

0

(
∂2z

∂x2

)2

dx, (1.1)

and the potential energy coming from the angular rotation about the x axis is

kθ

2

∫ L

0

(
∂2θ

∂x2

)2

dx, (1.2)

[5], [15] where

y = y(x, t), z = z(x, t)

and θ = θ(x, t). The sum of these three expressions is the total beam elastic potential energy which

we denote by VB .

Assuming the beam has mass density MB per unit length and the moment of inertia per unit

length IB about the x axis, the kinetic energy integrals are

MB

2

∫ L

0

(
∂2y

∂x2

)2

dx,
MB

2

∫ L

0

(
∂2z

∂x2

)2

dx,
IB
2

∫ L

0

(
∂2θ

∂x2

)2

dx, (1.3)

From now on, in order to simplify notation, we will frequently use . to represent the t partial

derivative and ’ to represent the x partial derivative; viz.: ẏ(x, t), y′ (x, t) etc..

In this research work we assume that the beam is rigidly fixed on the ground end and that

the overall motion is sufficiently small in order that we may ignore any translational motion of the

head in the x (vertical) direction. However, we will denote the translational motions in the y and

z directions by Y (t) and Z(t) respectively. We will denote the rotational motions of the generator

head in the x, y and x, z planes by Φ(t), Ψ(t) and Θ(t) respectively.

Now we can formulate the kinetic energy of the generator head, not including the wind fan, as

follows

TH ≡ MH

2
Ẏ (t)2 +

MH

2
Ż(t)2 +

Ixz

2
Φ̇(t)2 +

Ixy

2
Ψ̇(t)2 +

Iyz

2
Θ̇(t)2, (1.4)

where MH is the mass of the generator head,Ixy is the moment of inertia of the generator head

about the z - axis, Iyz is the moment of intertia of the generator head about the x - axis and Ixz is

the moment of inertia about the y - axis.

From the model’s physical setting we can deduce the boundary conditions at the two ends of the

beam. At the ground level where the beam is rigidly fixed, i.e., at x = 0, the boundary conditions

of the beam are

y(0, t) = z(0, t) = θ(0, t) = 0. (1.5)
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At the free end of the beam we assume that the generator head is rigidly attached to the beam at

x = L. So the first order boundary conditions at x = L are

y(L, t) = Y (t), z(L, t) = Z(t), θ(L, t) = Θ(t),
∂y

∂x
(L, t) = Φ(t),

∂z

∂x
(L, t) = Ψ(t). (1.6)

We assume the wind fan rotates about an axis passing through the center of mass of the generator

head. The fan hub is located D > 0 units from the center of mass in the positive z direction when

at rest.

In order to obtain the energy terms for the wind fan we introduce a new Ξ = (ξ, η, ζ) coordinate

system, with the origin at the free end point of the moving beam, which translates and rotates with

the free end point of the beam so that the free end point of the beam is always at rest with respect

to that system of coordinates. We do some elementary computations as follows in order to obtain

the change of coordinate relationship between the X, Y, Z and the ξ, η, ζ beam coordinates. For this

we proceed as follows. The transformation matrix for θ rotation, which is the counter clock-wise

rotation around the x axis, is



1 0 0
0 cos(Θ) cos(90 + Θ)
0 cos(90 − Θ) cos(Θ)


 =




1 0 0
0 cos(Θ) − sin(Θ)
0 sin(Θ) cos(Θ)


 .

Then the transformation matrix for the φ rotation, which is the counter clock-wise rotation around

the z axis, is 


cos(Φ) − sin(Φ) 0
sin(Φ) cos(Φ) 0

0 0 1


 .

Finally, the transformation matrix for the ψ counter clock-wise rotation around the y axis is:



cos(Ψ) 0 − sin(Ψ)
0 1 0

sin(Ψ) 0 cos(Ψ)


 .

Thus the final transformation is



1 0 0
0 cos(Θ) − sin(Θ)
0 sin(Θ) cos(Θ)






cos(Φ) − sin(Φ) 0
sin(Φ) cos(Φ) 0

0 0 1






cos(Ψ) 0 − sin(Ψ)
0 1 0

sin(Ψ) 0 cos(Ψ)


 (1.7)

Assuming the angular movements are very small and multiplying the matrices we obtain the coor-

dinate transformation


x
y
z


 =




L
Y (t)
Z(t)


 +




1 −Φ −Ψ
Φ 1 −Θ
Ψ Θ 1





ξ
η
ζ


 .

We will, for convenience, treat the rotating element as a disk of radius D. Any arbitrary point

p on the disk has a polar representation with radius r ≤ D and angle α, that angle measured in the
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positive direction of the ζ, η plane, at nominal time t = 0. Let the angular rotation rate be ω(t).

Then at time t we have

ξ(t) = r cos(α + ω(t)), η(t) = r sin(α+ ω(t)), ζ(t) = D.

In the inertial x, y, z plane we then have, for the cartesian coordinates of a point X(t) lying on the

rotating fan, suppressing the argument t,

X(t) =



x
y
z


 =




L
Y (t)
Z(t)


+




1 −Φ −Ψ
Φ 1 −Θ
Ψ Θ 1





ξ
η
ζ


 (1.8)

Using polar representation of the ccoordinates of the points we have

X(t) =



x
y
z


 =




L
Y (t)
Z(t)


+




1 −Φ −Ψ
Φ 1 −Θ
Ψ Θ 1





r cos(α+ ω)
r sin(α+ ω)

D




=




L+ r cos(α + ω) − r sin(α+ ω)Φ −DΨ

Y (t) + r cos(α+ ω)Φ + r sin(α+ ω)Φ −DΘ

Z(t) + r cos(α + ω)Ψ + r sin(α+ ω)Θ +D


 . (1.9)

Holding α fixed, identifying Φ with sin Φ, 1 with cos Φ and using trigonometric identities, then

differentiating with respect to t , we have to first order, continuing to suppress the arguments (L, t),

Ẋ(α, r, t) =




−r sin(α+ ω + Φ)
(
ω̇ + Φ̇

)
− D Ψ̇

Ẏ + r cos(α+ ω + Φ)
(
ω̇ + Φ̇

)
−D Θ̇

Ż − ω̇r sin(α+ ω) Ψ + r cos(α+ ω) Ψ̇ + ω̇r cos(α+ ω) Θ + r sin(α+ ω) Θ̇


 .

(1.10)

In order to compute the fan kinetic energy

1
2

∫ D

0

m(r)
∫ 2π

0

‖Ẋ(α, r, t)‖2 dα r dr,

where m(r) is the fan mass density per unit disc area (assumed independent of α) and D is the

fan radius, we first compute the inner, α, integral, using the orthonormality of 1
/2π, sin(α + ω)/π,

cos(α+ ω)/π over the interval 0 ≤ α ≤ 2π, and then do the outer integral with the result

∫ 2π

0

∥∥∥Ẋ(α, r, t)
∥∥∥

2

dα = 2π
[
D2 Ψ̇2 +

(
Ẏ −D Θ̇

)2

+ Ż2

]
+

+ π r2
[
2
(
ω̇ + Φ̇

)2

+
(

Θ̇ − ω̇Ψ
)2

+
(
ω̇Θ + Ψ̇

)2
]
.

Thus the kinetic energy of the fan is

TF ≡
MF

2

[
D2
(

Ψ̇
)2

+
(
Ẏ −D Θ̇

)2

+
(
Ż
)2
]

+
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+
IF
2

[
2
(
ω̇ + Φ̇

)2

+
(

Θ̇ − ω̇Ψ
)2

+
(
ω̇Θ + Ψ̇

)2
]
. (1.11)

where MF is the mass of the fan and IF is its moment of inertia about its center. All variables

shown are assumed small except for ω̇.

In order to work entirely with small variables to obtain a linearized system we let

ω̇ = σ + ˙δω,

where σ denotes the (constant) nominal steady state fan rotation rate and ˙δω denotes presumed

small variations of the rotation rate about the value σ. Then, renaming ˙δω as ω̇ again, (1.11)

becomes

TF ≡ MF

2

[
D2
(

Ψ̇
)2

+
(
Ẏ −D Θ̇

)2

+
(
Ż
)2
]

+

+
IF
2

[
2
(
σ + ω̇ + Φ̇

)2

+
(

Θ̇ − (σ + ω̇) Ψ
)2

+
(

(σ + ω̇) Θ + Ψ̇
)2
]
. (1.12)

In the second line here we retain only terms which are quadratic in the small variables; cubic and

higher terms are simply discarded and linear and constant terms in the velocities disappear when

Hamilton’s principle is invoked. Thus

2
(
σ + ω̇ + Φ̇

)2

→ 2
(
ω̇ + Φ̇

)2

,
(

Θ̇ − (σ + ω̇) Ψ
)2

→
(

Θ̇ − σΨ
)2

,

(
(σ + ω̇) Θ + Ψ̇

)2

→
(
σΘ + Ψ̇

)2

.

Then we can replace (1.12) by

TF = TR + Tσ =
MF

2

[
D2
(

Ψ̇
)2

+
(
Ẏ −D Θ̇

)2

+
(
Ż
)2
]

+

+
IF
2

[
2
(
ω̇ + Φ̇

)2

+
(

Θ̇ − σΨ
)2

+
(
σΘ + Ψ̇

)2
]
, (1.13)

TR denoting terms independent of σ and Tσ denoting those terms which involve σ.

Introducing the vector

Q(t)∗ = (Y (t) Φ(t) Z(t) Ψ(t) Θ(t) ω(t) ) , (1.14)

the kinetic energies due to rigid body motion of the generator head and fan can be expressed as

quadratic forms in Q̇(t):

TH = Q̇∗TH Q̇; TH = diag
(
MH

2
,
Ixz

2
,
MH

2
,
Ixy

2
,
Iyz

2
, 0
)
,

TR = Q̇∗TR Q̇; TR =




MF

2 0 0 0 −MF D
2 0

0 0 0 0 0 0
0 0 MF

2 0 0 0
0 0 0 MF D2

2 0 0
−MF D

2 0 0 0 MF D2

2 0
0 0 0 0 0 0



.
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Finally, we have the rotational kinetic energy of the fan expressed in the form

Tσ = Q̇∗Tσ,1 Q̇ + Q̇∗Tσ,2Q + Q∗Tσ,3Q,

where

Tσ,1 =
If
2




0 0 0 0 0 0
0 2 0 0 0 2
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 2 0 0 0 2



,

Tσ,2 =
IF
2

diag
(

0, 0, 0,
(

0 2σ
−2σ 0

)
, 0
)

Tσ,3 =
IF
2

diag
(
0, 0, 0, σ2, σ2, 0

)
.

Combining T = TH + TR + Tσ, 1 we have

T =




MH

2 + MF

2 0 0 0 −MF D
2 0

0 Ixz

2 + IF 0 0 0 IF

0 0 MH

2 + Mf

2 0 0 0
0 0 0 Ixy

2 + MF D2

2 + IF

2 0 0
−MF D

2 0 0 0 Iyz

2 + MF D2

2 + IF

2 0
0 IF 0 0 0 IF



.

1.3 Equations of Motion

It is straightforward to verify that Hamilton’s principle leads to equations of motion of the combined

generator head and fan, with F as in (1.14), take the form

T Q̈ + 2 Tσ,2 Q̇ − Tσ,3 Q + F = 0. (1.15)

It is worthwhile to note that if we make the change of independent variable τ = σ t, continuing

to treat σ as constant, then with Tσ, 2 = σT2, Tσ, 3 = σ2 T3, the matrices T2, T3, are independent

of σ and (1.15) becomes

T
d2Q

dτ2
+ 2 T2

dQ

dτ
− T3 Q +

F

σ2
= 0. (1.16)

This allows us to see that when σ is large the motions of the system are dominated by those of the

homogeneous systems obtained from (1.16) by eliminating the last term, F/σ2. This homogeneous

system can be tentatively identified as the limit system as σ → ∞, though further analysis will be

required to confirm this identification.

The first order system corresponding to (1.15) can be written as

d

dt

(
Q
Q̇

)
=
(

O I
T−1Tσ,3 −2 T−1Tσ,2

)(
Q
Q̇

)
+
(

0
F

)
. (1.17)
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The components Φ and ω are uncoupled from the other components as far as the homogeneous

version of this system is concerned but Y and Φ are coupled through their connection, via boundary

conditions as noted below, to y(x, t).

The overall Lagrangian, including the generator head, fan and supporting beam pylon, can now

be taken to be

L ≡ (Tσ + TR + TH) + (TB − VB) ≡ L1 + L2,

L1 and L2 involving, respectively, Q(t) and q(x, t), where Q(t) is given by (1.14) and

q(x, t) =
(
y(x, t), z(x, t), θ(x, t)

)∗
.

We have already applied Hamilton’s principle to L1 to obtain the equations for Q(t) shown above.

When we apply Hamilton’s principle to L2, i.e.,

d

dt

∂L2

∂q̇
− ∂L2

∂q
= 0,

with L2 = TB − VB ,

VB =
∫ L

0

[
ky

2

(
∂ 2y

∂x 2
(x, t)

)2

+
kz

2

(
∂ 2z

∂x 2
(x, t)

)2

dx +
kθ

2

(
∂θ

∂x
(x, t)

)2
]
dx, (1.18)

TB =
∫ L

0

[
MB

2

(
∂y

∂t
(x, t)

)2

+
MB

2

(
∂z

∂t
(x, t)

)2

+
IB
2

(
∂ θ

∂t
(x, t)

)2
]
dx, (1.19)

we readily obtain the partial differential equations

MB
∂ 2y

∂t 2
+

∂ 2

∂x 2

(
ky

∂ 2y

∂x 2

)
= 0, (1.20)

MB
∂ 2z

∂t 2
+

∂ 2

∂x 2

(
kz

∂ 2z

∂x 2

)
= 0, (1.21)

IB
∂ 2θ

∂t 2
− ∂

∂x

(
kθ
∂θ

∂x

)
= 0, (1.22)

with the boundary conditions (1.5), (1.6). Further, the force/torque vector F in (1.15), (1.16) and

(1.17) has components

F ∗ =
(
FY , FΦ, FZ , FΨ, FΘ, Fω

)
,

where, in the absence of exogenous effects such as wind gusts, etc.,

FY = ky
∂3y

∂x3
(L, t), FΦ = − ky

∂2y

∂x2
(L, t),

FZ = kz
∂3z

∂x3
(L, t), FΨ = − kz

∂2z

∂x2
, FΘ = − kθ

∂θ

∂x
(L, t). (1.23)

The final component, Fω, is zero until we consider varying wind torque, generator resistance, etc.

We could clearly modify the forces (1.23) to include other effects such as damping, etc.
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2 Adding Proofmass Actuators

A proof mass actuator, in the configuration which we will consider here, consists of an added mass,

attached to the generator head, free to move along a channel, or ”tube”, in response to experienced

acceleration from the motion of the generator head but also subject to restoring and frictional forces,

the latter serving as an energy dissipator of the overall system.

2.1 Structure

We confine attention to proofmass actuators acting parallel to the y, z plane, along a line passing

through the x−axis at x = L + ` in the direction corresponding to a unit vector U = (0, Uy, Uz).

We assume the guiding mechanism has mass Mg > 0 which, for simplicity, we assume located at

(L + `, 0, 0) in the equilibrium configuration. The proofmass, with mass Mp, has, in operation,

respective first order y and z coordinates

Y (t) + ` sin(Φ(t)) + p(t)Uy ≈ Y (t) + `Φ(t) + p(t)Uy,

Z(t) + ` sin(Ψ(t)) + p(t)Uz ≈ Z(t) + `Ψ(t) + p(t)Uz,

where p(t) denotes the displacement of the proof mass along its guiding channel. The corresponding

velocity components, with an overdot ˙(symbol) indicating the t derivative, are then

Ẏ (t) + ` Φ̇(t) + ṗ(t)Uy, Ż(t) + `Φ̇(t) + ṗ(t)Uz .

Thus the added kinetic energy term is

1
2
Mp

(
Ẏ (t)2 + Ż(t)2

)
+

1
2
Mp

((
Ẏ (t) + `Φ̇(t) + ṗ(t)Uy

)2

+
(
Ż(t) + `Ψ̇(t) + ṗ(t)Uz

)2
)

Additionally a term 1
2kpp(t)2, where kp is the assumed stiffness coefficient for the proofmass restoring

mechanism, is added to the potential energy and an energy and an energy dissipation term −γṗ(t)2,
where γis the proofmass coefficient of friction, is included.

The Q coordinates Y,Φ, Z,Θ, ω, are augmented with p to form a seven dimensional vector which

we will call Qp. The added kinetic energy takes the form 1
2Q

∗
pTpQp, where

Tp = m




Mg +Mp `(Mg +Mp) 0 0 0 0 MpUy

`(Mg +Mp) `2(Mg +Mp) 0 0 0 0 `MpUy

0 0 (Mg +Mp) `(Mg +Mp) 0 0 MpUz

0 0 `(Mg +Mp) `2(Mg +Mp) 0 0 `MpUz

0 0 0 0 0 0 0
0 0 0 0 0 0 0

MpUy `MpUy MpUz `MpUz 0 0 Mp




(2.24)
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The complete T matrix is then formed by adding a seventh column and seventh row of zeroes to the

original T shown in (1.10), then adding (2.24) to the result. The change in the V matrix for the

potential energy simply involves adding a zero row and a zero column to what we have discussed

earlier, then placing kp in the 7, 7 position. The complete system of equations is then obtained in

the same manner as we have described in the previous section.

2.2 Tuning

The physical parameters of the proof mass actuator, as described here, must be carefully chosen, i.e.,

tuned, for effective vibration suppression in a multifrequency environment. At the time of completion

of this thesis no theory fully adequate for use with our model has been developed. Related studies

for simpler structures exist in the literature. The reader is referred to [6], [2] and [11] for studies

carried out in relation to substantially simpler structures.
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3 Splines

An important part of this thesis is computer simulation of the model presented in the previous sec-

tions. This clearly involves replacement of the partial differential equations modeling the supporting

pylon by suitable discrete counterparts. Here we have elected to use spline based approximations,

for which we now provide an introduction.

3.1 Introduction to Splines

Spline methods are designed to avoid the difficulties encountered when one tries to use a single

polynomial to interpolate a large number of data points which occur naturally in continuous, infinite

dimensional, systems. A response to this problem is to use piecewise polynomials. Historically, the

design and construction of airplanes and ships involved the use of mechanical analogs. A method

extensively used is to approximate a smooth path joining specified points was to take a thin, flexible

metal strip, called a ”spline” and bend it around pegs set at the required points. The resulting curves

were traced out and used in the design. The curves that were traced out came to be known as splines.

The most widely used splines involve piecewise cubic polynomials, but there is an extensive theory

of splines involving piecewise polynomials of all orders.

3.2 Cubic Splines

Cubic splines use piecewise third-order polynomials which interpolate or approximate data at

a set of k values of the independent variables, called nodes. The function values, derivatives and

second derivatives of cubic splines are continuous over the whole domain. To see that we can

require this in the interpolation context, let us assume that we have n data points represented

by((x1, y1), (x2, y2), · · · , (xn, yn)). Then we have n− 1 intervals and, on each subinterval, four con-

stants to determine a cubic polynomial on that interval. This provides us with 4(n− 1) unknowns.

At each xk the data yk must be matched, giving us n equations. In addition there are n− 2 values

xk,k = 2, 3, · · · , n − 1, at which we must have continuity of the spline function and its first and

second derivatives. this gives us 3(n− 2) more equations. So, altogether, we have 4n− 6 equations

for 4n − 4 unknowns. As we have indicated previously we obtain the remaining two equations by

specifying the value of either the function or one of its first and second derivatives at each of the

two end points of the interval. If, for example, the second derivative is set equal to zero at x1 and

xn we obtain what are called the ”natural splines”. The calculation of the coefficients of the cubic

polynomial on each subinterval is simplified by a suitable choice of the algebraic representation of

the equations. In general, one does not require the spacing between x values to be equal. If this is

required we obtain what are called ”cardinal splines”.
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We let hi = xi+1 − xi. We look for a spline function of the form

S(x) =





P1(x), x1 ≤ x ≤ x2,
Pi(x), xi ≤ x ≤ xi+1

Pn−1(x), xn−1 ≤ x ≤ xn

For i = 1, · · · , n− 1, we write

Pi(x) = ai−1
(xi+1 − x)3

6hi
+ ai

(x − xi)3

6hi
+ bi(xi+1 − x) + ci(x− xi).

This form of the cubic is motivated by the fact that the second derivative of the polynomials on the

adjacent subintervals must be equal at the common node between the two subintervals. Using the

definition of the hi, we can follow that P
′′

i (xi+1) = ai and that P
′′

i+1(xi+1) = ai also. Thus the

form of expression for Pi(x)ensures that the second derivatives are continuous at the interior nodes.

Next we integrate

Pn
i = ai−1

(xi+1 − x)
hi

+ ai
(x− xi)
hi

twice and using the conditions that Pi(xi) = yi and Pi(xi+1) = yi+1 we determine the values for

the coefficients bi and ci and we can write the expression in the following form:

Pi(x) = ai−1
(xi+1 − x)3

6hi
+ ai

(x − xi)3

6hi

[
yi −

ai−1h
2
i

6

]
(xi+1 − x)

6hi
+
[
yi+1 −

aih
2
i

6

]
(x− xi)
hi

.

Now since the first derivatives of Pi and Pi+1 must agree at xi+1 we deduce that

hi

6
ai−1 +

hi + hi+1

3
ai +

hi+1

6
ai+1 =

yi+2 − yi+1

hi+1
− yi+1 − yi

hi
, i = 1, · · · , n− 2.

We now have n − 2 equations and n unknowns. Even though we have many choices of specifying

additional conditions, for a natural cubic spline we will assign a0 = an−1 = 0; i.e., the second

derivative is zero at the end points x1 and xn. It is clear now that we have just enough conditions

to just identify the system. The values of bi and ci where i = 1, · · · , n− 1 may be expressed in the

following form

bi =
yi

hi
− ai−1hi

6
, ci =

yi+1

hi
− aihi

6
.

3.3 Numerical Example for Cubic Splines

We consider the data points (−2, 4), (−1,−1), (0, 2), (1, 1) and (2, 8). We take hi = 1 for all

intervals and we use the boundary conditions a0 = a4 = 0 for a natural cubic spline. Now the

equations for a1, a2, and a3 are as follows:

i = 1 :
a0

6
+

2a1

3
+
a2

6
= (y3 − y2) − (y2 − y1);

i = 2 :
a1

6
+

2a2

3
+
a3

6
= (y4 − y3) − (y3 − y2);
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i = 3 :
a2

6
+

2a3

3
+
a4

6
= (y5 − y4) − (y4 − y3);

After substituting the values for a0, a4, and yi(i = 1, · · · , 5) and simplifying we obtain

4a1 + a2 = 48

a1 + 4a2 + a3 = −24

a2 + 4a3 = 48

This gives us the tridiagonal system



4 1 0
1 4 1
0 1 4





a1

a2

a3


 =




48
−24
48


 .

We solve this system to obtain a1 = 15.42, a2 = −13.71, a3 = 15.42. Then we solve for the bi
and we obtain

b1 = y1 −
a0

6
= 4, b2 = y2 −

a1

6
= −3.57, b3 = y3 −

a2

6
= 4.28, b4 = y4 −

a3

6
= −1.57,

and for the ci we obtain

c1 = y2 −
a1

6
= −3.57, c2 = y3 −

a2

6
= 4.28, c3 = y4 −

a3

6
= −1.57, c4 = y5 −

a4

6
= 8.

Now we have identified all the coefficients of the system and we can express the cubic spline from

the following final simplification [3].

S(x) =





2.57(x+ 2)3 − 4(x+ 1) − 3.57(x+ 2),−2 ≤ x ≤ −1,

−2.57x3 − 2.29(x+ 1)3 + 3.57x+ 4.29(x+ 1),−1 ≤ x ≤ 0,

−2.29(1− x)3 + 2.57x3 + 4.29(1 − x) − 1.57x, 0 ≤ x ≤ 1,

2.57(2− x)3 − 1.57(2 − x) + 8(x− 1), 1 ≤ x ≤ 2

3.4 Cubic B-Splines

B-Splines, or Basis Splines are a generalization of the notion of a Bėzier curve. Such functions

have very minimal support with respect to the degree, smoothness and domain partition while

interpolating any given function. Cubic B-Splines are compactly supported cubic splines forming a

basis for the vector space of general cubic splines. Normally, as we have seen earlier, we define cubic

splines by an expression similar to

b3k3 =
1

ik−1

∫ x

tk−2

b2k−1(t)dt− 1
ik

∫ x

tk−1

b2k(t)dt,

where

ik =
∫ tk−2

tk−1

b2k(t)dt, ik−1 =
∫ tk+1

tk−2

b2k−1(t)dt.
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The support of b3k(x) will then be [tk−2, tk+2]. Now we set b3k(x) = α(x − tk−2)3 on the domain

[tk−2, tk−1]. Then at tk−1 we have the value of the first and second derivative with respect to tk−1

to be 3α(tk−1 − tk−2)2, 6α(tk−1 − tk−2) To match these, on [tk−1, tk], we must have, approximating

with Taylor’s series,

b3k = α(tk−1 − tk−2)3 + 3α(tk−1 − tk−2)2(x− tk−1) + 3α(tk−1 − tk−2)(x− tk−1)2 + β(x − tk−1)3

Now on [tk+1, tk+2] we take b3k(x) = δ(x − tk−1)3. Obviously, the first and second derivatives are

−3δ(tk+2 − x)2, 6δ(tk+2 − x). To match these values at tk+1 we define, on [tk, tk+1],

b3k(x) = δ(tk+1 − tk)3 − 3δ(tk+2 − x)2(tk+1 − x) + 6δ(tk+2 − x)(tk+1 − x)2 + γ(tk+1 − x)3

Then at x = tk, the value, the first and the second derivatives must agree. This would give us the

following three equations

α(tk−1 − tk−2)3 + 3α(tk−1 − tk−2)2(tk − tk−1) + 3α(tk−1 − tk−2)(tk − tk−1)2 + β(tk − tk−1)3

= δ(tk+2 − tk+1)3 + 3δ(tk+2 − tk+1)2(tk+1 − tk) + 3δ(tk+2 − tk+1)(tk+1 − tk)2 +γ(tk+1 − tk)3 (3.25)

3α(tk−1 − tk−2)2 + 6α(tk−1 − tk−2)(tk − tk−1) + 3β(tk − tk−1)2

= −3δ(tk+2 − tk+1)2 − 6δ(tk+2 − tk+1)(tk+1 − tk) − 3γ(tk+1 − tk)2 (3.26)

6α(tk−1 − tk−2) + 6β(tk − tk−1) = 6δ(tk+2 − tk+1) + 6γ(tk+1 − tk) (3.27)

The above three equations can be solved for just three variables in order to just identify the system.

The remaining variables can then be adjusted to according to the desired amplitude of b3k, ı.e. the

value of tk. Assuming we have equally spaced knots with h = 1, we have the conditions

tk+1 − tk = k = tk+2 − tk+1,

etc. Thus

6αh+ 6βh = 6δh+ 6γh⇒ α+ β = δ + γ

3αh2 + 6αh2 + 3βh2 = −3δh2 − 6δh2 − 3γh2 ⇒ 9α+ 3β = −9δ − 3γ

6α+ 6β = 6δ + 6γ

We set α = δ, β = γ. It is obvious that the above choice of values satisfy our three spline equations

above and its easy to deduce that

α = −1
3
β, δ = −1

3
γ

Therefore, for any value of α the following relation is true

(α β δ γ ) = (α −3α −3α α ) .

Thus, for the spline function we have

b3k(x) = α(x− tk−2)3 = αh3 + 3αh2(x− tk−1) + 3αh(x− tk−1)2 − 3α(x− tk−1)3
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3.5 Numerical Example for Cubic B-Splines

On the interval 0 ≤ x ≤ 1 we define the ”knots” to be tk = .2k, k = 0, 1, 2, 3, 4, 5 and we define

the known y values to be y0 = 1, y1 = 3
2 , y2 = 5

2 , y3 = 1
2 , y4 = 3, y5 = 2. In order to determine

the spline representation of the function represented by the given set of yk points above the ”knot”

values can be immediately computed in the following manner.Assuming we take αh3 = 1, and the

spline function as

S(x) =
6∑

k=−1

ck b
3
k(x), (3.28)

on [tk−2, tk−1] we have the formula and the knot value at tk−2 :

b3k = (x− tk−2)3 =
1
h3

(0) = 0.

Similarly, the other knot values can be computed to have the respective values 1, 4, 1 and 0.

The support of b3k is [tk−2, tk+2] and is centered at tk,. In order for S(x), as given by (3.28), to

have the indicated values at the given knots tk it is clear that the ck should satisfy the following

system of 6 equations in 8 unknowns.




1 4 1 0 0 0 0 0
0 1 4 1 0 0 0 0
0 0 1 4 1 0 0 0
0 0 0 1 4 1 0 0
0 0 0 0 1 4 1 0
0 0 0 0 0 1 4 1







c−1

c0
c1
c2
c3
c4
c5
c6




=




1
3/2
5/2
1/2
3
2



, i.e., BC = F,

where B, C and F are as follows

B =




1 4 1 0 0 0 0 0
0 1 4 1 0 0 0 0
0 0 1 4 1 0 0 0
0 0 0 1 4 1 0 0
0 0 0 0 1 4 1 0
0 0 0 0 0 1 4 1



, C =




c−1

c0
c1
c2
c3
c4
c5
c6




, F =




1
3/2
5/2
1/2
3
2



.

We let C = B∗D and solve BB∗D = F to obtain

D =




.0544
−.0230
.2048
−.1589
.2151
.0243



, C = B∗D =




.0544

.1946

.1670

.6372
−.2157
.7258
.3125
.0243




.
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Following our assumption of αh3 = 1 the values of the cubic B-Spline at the points kh
4 are readily

seen to be ([14], [8])
(

0, 1
64 ,

1
8 ,

27
64 , 1, 121

64 ,
23
8 ,

235
64 , 4, 235

64 , · · · , 1
64 , 0

)
≡ β

which has a total of 17 entries which are symmetric about 4. We can use these values to plot S(x)

on a grid finer than that corresponding to the tk.
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4 Spline Representation of the Dynamic Beam

Here we indicate how cubic and piecewise linear splines can be used to discretize the partial differ-

ential equations modeling the supporting pylon for our structure.

4.1 Spline Approximation of Partial Differential Equations

As an effort to discretize the model developed above, we begin with the cubic spline treatment of

of the second order partial differential equation for the torsional displacement θ(x, t) of the sup-

porting beam pylon. We begin this treatment by considering torsional displacement θτ (x) due to

a distributed torque τ(x) along with the boundary conditions θτ (0) = 0, θτ (L) = Θ. In this case

θτ (x) is known to be solution of

min

∫ L

0

(
1
2
kθ(x)

(
dθ

dx
(x)
)2

− τ(x)θ(x)

)
dx (4.29)

subject to the boundary conditions mentioned above. The minimum is taken over the set of functions

θ(x) having square integrable derivatives on [0, L].

Let us assume kθ(x) ≡ kθ to be constant. Approximate the treatment of the above problem

via cubic splines involves replacement of the set of functions θ(x) just described by the much more

restricted set of ”natural” cubic spline functions θ̂(x),i.e., cubic splines whose second derivatives

vanish at x = 0 and x = L. Assuming a partition

0 = x0 < x2 · · · < xn−1 < xn = L

of the interval [0, L] with equally spaced knots of uniform separation h = xk −xk−1, k = 1, 2, · · · , n
θ̂(x) is taken to be a natural cubic spline function with knots xk, k = 1, 2, · · · , n−1, further satisfying

the conditions

θ̂(0) = 0, θ̂(L) = Θ. (4.30)

We approximate the continuous torque τ(x) by a second order, i.e.,piecewise linear, spline τ̂(x) with

τ̂ (0) = τ̂ (L) = 0 and specified values at xk, k = 1, 2, · · · , n− 1. Then one considers the discretized

version of (4.29):

min

∫ L

0


1

2
kθ

(
dθ̂

dx
(x)

)2

− τ̂(x)θ̂(x)


 dx (4.31)

In order to obtain necessary conditions for a minimum we introduce a small variation θ̂(x) →
θ̂(x) + δθ(x), where δθ(x) a natural cubic spline with δθ(0) = δθ(L) = 0. The first order variation

in (4.31) is readily seen to be
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∫ L

0



(

1
2
kθ
dθ̂

dx
(x)

dδθ

dx
(x)

)2

− τ̂ (x)δ̂θ(x)


 dx (4.32)

Integrating the first term in the integrand by parts (4.32) becomes

−
∫ L

0

(
kθ

(
d2θ̂

dx2
(x) + τ̂

)
δθ(x)dx + kθ

dθ̂

dx
(x)δθ(x)

)
dx (4.33)

Since δθ(0) = δθ(L) = 0 the boundary terms in (4.33) disappear. Then, in order for (4.33) to

vanish for all δθ(x) as has been indicated , it is both necessary and sufficient that

kθ
∂2θ̂

∂x2
(x) + τ̂(x) = 0, x ∈ [0, L] (4.34)

Since both terms on the left are second order splines vanishing at x = 0 and x = L they are

completely and uniquely determined by their values at the knots xk, k = 1, 2, · · · , n−1. We conclude

that (4.34) is equivalent to

kθ
∂2θ̂

∂x2
(xk) + τ̂(xk) ≡ 0, k = 1, 2, · · · , n− 1 (4.35)

These equations, together with (4.31), constitute the natural spline ”collocation” method for ap-

proximate solution of the minimization problem (4.29) for a given distributed torque τ(x). The

corresponding approximation method for solution of (reference)is obtained by replacing τ(x) with

inertial torque corresponding to the torsional acceleration term

IB
∂2θ̂

∂t2
(xk , t) − kθ

∂2θ̂

∂x2
(xk, t) = 0, (4.36)

again used together with (4.31). The partial derivatives ∂2θ̂
∂t2 (xk, t) are, of course, readily computed

from the natural cubic spline form of θ̂(x, t). The torque acting at x = xn = L is then −kθ
∂θ̂
∂x (L, t)

which results in the third equation of motion being replaced by

FΘ = −kθ
∂θ̂

∂x
(L, t); (4.37)

where the partial derivative ∂θ̂
∂x(L, t) is readily computed from the form of θ̂(x).

An alternative to the above, which serves in part to motivate the approach we have taken in

the sequel,is to take θ̂(x) to be second order, piecewise linear, spline instead of a natural spline.

The computations that follow proceed much as above except that the torque τ(x) is represented by

discrete values τk, k = 1, 2, · · · , n− 1, and (4.32) is replaced by

min

(∫ L

0

1
2
kθ

(
dθ̂

dx
(x)

)
dx− h

n−1∑

k = 1

τk θ̂(xk)

)
(4.38)
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and the variation (4.33)becomes

min

(∫ L

0

kθ
dθ̂

dx
(x)

dδθ

dx
(x)dx − h

n−1∑

k = 1

τkδθ(xk)

)
(4.39)

Integrating by parts on each interval (xk−1, xk), k = 1, 2, · · · , n−1 and using the fact that ∂2θ̂
∂x2 ≡ 0

we obtain ∫ L

0

kθ
dθ̂

dx
(x)

dδθ

dx
dx = kθ

n∑

k=1

dθ̂

dx
(x)δθ(x) (4.40)

= kθ

n∑

k = 1

(
dθ̂

dx
(xk− )δθ(xk− ) − dθ̂

dx
(xk−1+ )δθ(xk−1+ )

)

= kθ

n−1∑

k=1

θ̂(xk) − θ̂(xk−1)
h

(δθ(xk) − δθ(xk−1)) .

Using the fact that δθ(0) = δθ(L) = 0 and re-ordering the summation the above becomes

−kθ

n∑

k=1

θ̂(xk+1) − 2θ̂(xk) + θ̂(xk−1)
h

δθ(xk) = 0.

So that setting the variation (4.39) equal to zero yields

−kθ

n∑

k=1

θ̂(xk+1) − 2θ̂(xk) + θ̂(xk−1)
h

δθ(xk) + τk = 0, .

Since this must be true for all δθ(xk) we obtain the equations

θ̂(xk+1) − 2θ̂(xk) + θ̂(xk−1)
h

+ τk = 0 k = 1, 2, · · · , n− 1.

In application to the time dependent wave equation the τk are replaced by the inertial torques

−hIB ∂2 θ̂
∂x2 (xk , t) and the collocation method based on linear splines becomes

IB
∂2θ̂

∂x2
(xk , t) −

θ̂(xk+1) − 2θ̂(xk) + θ̂(xk−1)
h2

= 0, k = 1, 2, · · · , k = 1, 2, · · · , n− 1. (4.41)

Finally, we discretize the Euler - Bernoulli beam equations (1.20), (1.21) by using cubic splines.

Since the Euler-Bernoulli beam equations and the asssociated boundary conditions are identical it

will be sufficient to consider (1.20). We begin this analysis with the static problem for constant ky

again. The problem boils down to the following when we incorporate the boundary conditions

ky
∂4y

∂x4
= f(x), y(0) =

dy

dx
(0) = 0, y(L) = Y, y′(L) = Φ (4.42)

These equations are combined with necessary conditions for the problem

min

∫ L

0

(
ky

2

(
d2y

dx2

)2

− f(x)y(x)

)
dx
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over an appropriate set of functions y(x), f(x) being an applied force function. The related cubic

spline function method restricts the set of admissible functions to cubic splines (not just ”natural”

cubic splines) ŷ(x) on the interval [0, L] which satisfy the same boundary conditions as shown in

(4.42) and have knots at the points xk, k = 1, 2, · · · , n− 1, as discussed earlier. Then the modified

minimization problem is

min

{∫ L

0

ky

2

(
d2ŷ

dx2
(x)
)2

dx− h

n−1∑

k=1

fkŷ(xk)

}
(4.43)

for discrete lateral force values fk, k = 1, 2, · · · , n−1. Considering a variation ŷ(x) → ŷ(x)+δy(x),

where δy(x) is a cubic spline with δy(0) = δy(L) = 0, dδy
dx (0) = dδy

dx (L) = 0, we obtain the

variation of the integral in (4.43)in the form

ky

∫ L

0

d2ŷ

dx2
(x)

d2δy

dx2
(x)dx.

Integrating by parts and taking account of the boundary conditions on δy(x) the variation of the

integral becomes

−ky

∫ L

0

d3ŷ

dx3
(x)

dδy

dx
(x)dx = −ky

n−1∑

k=1

∫ xk

xk−1

d3ŷ

dx3
(x)

dδy

dx
(x)dx (4.44)

Now we apply integration by parts separately to each integral on the right hand side of (4.44) and

use d4ŷ
dx4 (x) ≡ 0 on each interval (xk−1, xk) to see that

ky

∫ xk

xk−1

d3ŷ

dx3
(x)

dδy

dx
(x)dx = ky

(
d3ŷ

dx3
(xk)δy(xk) −

d3ŷ

dx3
(xk−1)δy(xk−1)

)

Going back through (4.43) and (4.44), rearranging the sum in the latter, the necessary condition for

solution of the former is
n−1∑

k=1

(
ky

(
d3ŷ

dx3
(xk+) − d3ŷ

dx3
(xk−)

)
− hfk

)
δy(xk) = 0, k = 1, 2, · · · , n− 1

Since the variations δy(xk), k = 1, 2, · · · , n− 1, are independent we conclude that

ky

(
d3ŷ

dx3
(xk+) − d3ŷ

dx3
(xk−)

)
− hfk = 0, k = 1, 2, · · · , n− 1. (4.45)

The formula (4.45) then constitutes the cubic spline collocation method for solution of (4.42). For

the time dependant problem we replace the fk by the discretized inertial forces −MB
d2

dt2 (xk) to

obtain the differential equations which constitute the cubic spline collocation method for (1.20),

(1.21):

MB
d2

dt2
(xk, t) +

ky

h

(
d3ŷ

dx3
(xk+, t) − d3ŷ

dx3
(xk−, t)

)
= 0, k = 1, 2, · · · , n− 1. (4.46)

The relevant boundary conditions on y(x, t) are shown in (4.42). The terms in (reference) due to

coupling of y(x, t) with Y (t) and Φ(t) are

FY (t) = ky
d3y

dx3
(L, t), FΦ(t) = −ky

d2y

dx2
(L, t). (4.47)
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4.2 Computation of Derivatives

The method (4.41) can be implemented directly because the second time derivative of the approx-

imate solution is given directly in terms of the discretized state. This is not the case for the two

methods based on cubic splines where x derivatives of the spline representation of the current state

must be computed. We will treat the problem of derivative computation for (4.37) and (4.46) in

that order. Some of this material is common to the two cases; we use ŷ as the dependent variable

in that part of the discussion. We extend the set of partition points by defining

xk = kh, k = −1, 0, 1, · · · , n, n+ 1,

n + 3 points in all. This is a purely mathematical device with no implications for extension of the

physical system being modeled. For each such value of k we denote the cubic B-spline centered at

xk with uniform knot separation h by b3k(x) and we normalize in a way so that the successive knot

values are 0, 1, 4, 1, 0. We suppress the t variable for now and assume the representation

ŷ(x) =
n+1∑

k=−1

ckb
3
k(x). (4.48)

We denote the n + 3−dimensional vectors whose components are ck by C. Arising from the inter-

polation and zero order boundary conditions we have n+ 1 equations

ck−1 + 4ck + ck+1 = ŷk, k = −1, 0, 1, · · · , n. (4.49)

In order to identify the system we should have two more independent conditions to solve for C.

In the particular case of (4.37), where the independent variable is θ̂ there are no further boundary

conditions and the further two conditions arise from the requirement that θ̂(x) should be a natural

cubic spline, i.e.,
d2θ̂

dx2
(0) =

d2θ̂

dx2
(L) = 0.

Since the knot values of the second derivatives for the cubic splines as specified are 0, 6
h2 ,− 12

h2 ,
6
h2 , 0,

the two additional equations in this case can be taken to be (after dividing by 6)

1
h2
c−1 −

2
h2
c0 +

1
h2
c1 = 0,

1
h2
cn−1 −

2
h2
cn +

1
h2
cn+1 = 0 (4.50)

As shown, e.g., in [8][KinChen], the joint system (4.49), (with ŷ replaced by θ̂) (4.50) is uniquely

solvable, giving C in the form

C = C Θ̂ +DΘ, (4.51)

where C is an (n+3)× (n−1) matrix, Θ̂ is the n−1−dimensional vector whose components are the

θ̂k, k = 1, 2, · · · , n−1., D is an n+3−dimensional vector and Θ is the (scalar) rotational component
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of the generator head in the y, z plane as introduced earlier. Once C,D have been obtained we have

the second derivatives needed in (4.37) in the form

∂2θ̂

∂x2
(xk) =

6
h2
ck−1 −

12
h2
ck +

6
h2
ck+1, k = 1, 2, · · · , n− 1,

which in view of (4.51), gives these second derivatives in terms of Θ̂ and Θ.

To calculate the differences of third derivatives needed in (4.46) we note that the third derivatives

of b3k(x) are constant on subintervals (xj−1, xj) and have the values

d3

dx3
b3k(x) =





0, x ∈ (xj−1, xj), j ≤ k − 2,
6/h3, x ∈ (xk−2, xk−1),
−18/h3, x ∈ (xk−1, xk),
18/h3, x ∈ (xk , xk+1),

−6/h3, x ∈ (xk+1, xk+2),
0, x ∈ (xj−1, xj), j ≥ k + 3.

Accordingly, then, we have

1
h

(
d3

dx3
b3k(xj) − d3

dx3
b3k(xj−1)

)
=





6/h4, j ≤ k − 2,
−24/h4, j = k − 1,

36/h4, j = k
−24/h4, j = k + 1,

6/h4, j = k + 2.

(4.52)

Assuming the representation (4.48) we can see from (4.52) that, for k = 1, 2, · · · , n− 1,

1
h

(
d3

dx3
ŷ(xk+) −

d3

dx3
ŷ(xk − 1)

)
=

1
h4

(6ck−2 − 24ck−1 + 36ck − 24ck+1 + 6ck+2). (4.53)

We express ck in terms of the ŷj , Y and Φ much as in the earlier case and we continue to have

(4.49), which brings the value of Y for k = n. However, in this case the natural spline equations

(4.50) do not apply; instead the first derivatives are specified at x = 0,  L. From this we can deduce

that

d3

dx3
b3k(xj) =





0, j = k − 2,
3/h, j = k − 1,

0, j = k,
−3/h, j = k + 1,

0, j = k + 2

Therefore, the boundary conditions dŷ
dx(0) = 0, dŷ

dx(L) = Φ correspond to the conditions

3
h

(c1 − c−1) = 0,
3
h

(cn+1 − cn−1) = Φ.

These replace (4.50) and together with (4.49), which now includes the condition ŷ(L) = Y, we have

a total of n + 3 equations again. These equations are solvable to give, instead of (4.51), a vector

equation of the form

C = C̃Ŷ + D̃Y + ẼΦ, (4.54)

where C, as before, is an (n + 3)−dimensional vector, C̃ is an (n + 3) × (n − 1) matrix, Ŷ is the

(n − 1)−dimensional vector whose components are the ŷk and D̃, Ẽ, are (n + 3)−dimensional
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vectors. The components ck, k = −1, 0, 1, · · · , n, n+ 1, of C are thereby determined. Substituted

into (4.53) and then into (4.46) we then have the cubic spline collocation method for the elastic

beam with our boundary conditions.

Before we end this section, it is worthwhile to note that it is not absolutely necessary to represent

cubic, or other, splines in terms of B-splines; the latter is primarily advantageous as a cure for ill-

conditioning in high dimensional (n large) computations. Where this is not a problem , typically

the case where n, the number of subintervals of [0, L], is modest, one may also express cubic spline

functions s(x), x ∈ [xk−1, xk], as

s(x) = ak + bk(x− xk−1) +
ck
2

(x− xk−1)2 +
dk

6
(x− xk−1)3, (4.55)

using 4n coefficients ak, bk, ck, dk, k = 1, 2, · · · , n. Assuming equal subintervals of length h = L/n,

the consistency conditions become, for k = 1, 2, · · · , n− 1,

ak+1 = ak + bkh+
ck
2
h2 +

dk

6
h3,

bk+1 = bk + ckh+
dk

2
h2,

ck+1 = ck + dkh,

a total of 3n− 3 linear equations. The interpolation requirements for given y0, y1, · · · , yn are

ak = yk−1, k = 1, 2, · · · .n− 1, an + bnh+
cn
2
h2 +

dn

6
h3 = yn,

altogether n+ 1 linear equations for a total now of 4n− 2. The remaining two conditions depend on

the problem at hand. For natural cubic splines one uses

d2s

dx2
(0) = c1 = 0,

d2s

dx2
(L) = cn + dnh = 0,

and the spline function s(x) is then completely determined. For application to our Euler- Bernoulli

beam equations with clamped end points one would, instead, use

ds

dx
(0) = b1 = 0,

ds

dx
(L) = bn + cnh+

dn

2
h2 = 0.

Clearly, the expression of derivatives of s(x) at the knots xk is considerably simpler via this approach;

the second derivatives of s(x) at the internal knots are directly expressed as

d2(s)
dx2

(xk) = ck+1, k = 1, 2, · · · , n− 1.

4.3 Solving the Approximating ODEs

Let us denote by W the total system vector consisting of the yk, zk, θk, k = 1, 2, · · · , n − 1,

arising from spline modeling of the beam structure as well as the components Y,Φ, Z,Ψ,Θ and ω
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together with the corresponding velocities of these 3(n − 1) + 6 components. Whatever method

is used for discretization with respect to the x variable, as described in the previous section, the

resulting spatially discretized system will be a first order linear system of dimension 6(n − 1) + 12

taking the form
dW

dt
= AW, t ≥ 0,

wherein A is a (6(n− 1) + 12)× (6(n− 1) + 12) matrix. In order to carry out a computer simulation

this system of linear differential equations, continuous in time, must be replaced by a timewise

discrete system. In our system we have chosen to use a modified trapezoidal rule for this purpose.

We will suppose initial data vector W0 given at t = t0 = 0. We subdivide the interval t > 0 into

subintervals of equal step length g. Approximations Wk to the solution W at t = tk are generated

by the implicit formula.

Wk+1 = Wk + gA (αWk + βWk+1), k = 1, 2, · · · .

where α, β are positive numbers with α+ β = 1. The standard trapezoidal method corresponds to

α = β = 1/2. After the necessary algebraic manipulation we obtain the explicit formula

Wk+1 = (I − βgA)−1(I + αgA)Wk ≡ M(α, β)Wk, k = 0, 1, 2, · · · .

From the matrix spectral mapping theorem for matrices [4], if for l = 1, 2, · · · , 6(n − 1) + 12 the

eigenvalues of the matrix A are λl (for simplicity we assume there is a basis of eigenvectors), then

the corresponding eigenvalues of M(α, β) are

µl =
1 + αgλl

1 − βgλl
, l = 1, 2, · · · , 6(n− 1) + 12.

For purely imaginary λl = iνl as arise from our system in the stable instances, we readily find that

|µl| =

√
1 + α2g2ν2

l

1 + β2g2ν2
l

, l = 1, 2, · · · , 6(n− 1) + 12.

Clearly, we have |µl| = 1 for all l just in case α = β = 1/2. This corresponds to the stability

of the numerical method for the case of the standard trapezoidal rule. For numerical reasons,

however, in practice it is usually best to use a value of β just a little larger than α; we have used

α = .4999999, β = .5000001 in our computations as outlined in the next section.
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5 Computer Simulation Results

The model developed in §1 and §2 was coded for computer simulation and studied extensively

during the development of this thesis. The Matlab(R) program used for the simulation allowed

user specification of n, the number of subintervals of [0, L] used in cubic spline representation, and

the various structural parameters. After extensive experimentation it was determined that n = 4

provided sufficient structural flexibility in analysis of the supporting pylon. This allowed use of the

alternate spline representation (4.55) without encountering any ill-conditioning problems or loss of

accuracy.

The structural parameters used in this study were

ky = 10; kz = 10; kθ = 10;

MB = 1; MH = 2; MF = 2;

Ix y = 1; Ix z = 1; Iy z = 1;

IB = 1;

IF = 2; L = 10; D = 1.

In addition there is the nominal wind fan rotation speed parameter σ whose variation corresponds

to the different operational conditions; we will indicate the specification of σ as appropriate in the

sequel.

With these parameter values a series of careful simulations has shown that the critical value

of σ is approximately σ1 ≡ 1.07926. For σ < σ1 all eigenvalues of the overall system are either

0 or purely imaginary; solution trajectories are bounded in terms of initial data. It is clearly not
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Figure 1: Ψ vs Θ trajectory for σ = 1.
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feasible to show the complete trajectory for a system of dimension 6(n− 1) + 12 or larger. Since we

are interested primarily in possible oscillations of the fan axis about equilibrium we have selected

the angles Ψ(t) and Θ(t) for display. We begin with σ = 1 < σ1. Here with purely imaginary
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Figure 2: Extended Ψ vs Θ trajectory for σ = 1.

system eigenvalues we display the bounded time behavior of these variables, for given small initial

system data, in Figures 1 and 2, the latter figure simply showing a longer time interval than the

first. The semi-chaotic appearance of the trajectories in Figure 2 is accounted for by the influence of

coupling to the elastic pylon structure which vibrates with a large number of modes in a wide range

of frequencies. In Figure 3 we show the eigenvalues for the case n = 4, σ = 1 discussed above.
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Figure 3: Eigenvalues for σ = 1
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Figure 4: Enlarged view of spectrum near origin.

Next we move on to a slightly higher value of σ, very close to the critical frequency σ1. We plot

over a much longer time interval and we obtain Figure 5. Then going on to σ = 1.08 we obtain

the spiral pattern shown in Figure 4. This is clearly unrealistic from a physical point of view as,

continued, it would imply an unbounded state.
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Figure 5: Ψ vs Θ trajectory for critical value of σ.

As we increase σ above the critical value eigenvalues with non-zero real part begin to appear. In

the present case these appear in pairs, as shown in Figure 6
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Figure 6: Eigenvalues for super-critical value σ = 1.08.

As a consequence trajectories now become unbounded as we see in Figure 7. This is, of course,

unphysical and requires some remediation.
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Figure 7: Ψ vs Θ trajectory for super-critical value σ = 1.08.

In practice elastic structures have linear restoring forces only for displacements of very small mag-

nitude. From a potential energy form 1
2 X

∗AX one derives a linear restoring force −∇
(

1
2 X

∗AX
)

=
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−AX . Physical realism leads one to assume that the actual restoring force depends in a nonlinear

manner on X that can be approximated via a potential energy form

1
2
X∗AX +

ε

4
(X∗AX)2

from which one obtains a restoring force

−∇
(

1
2
X∗AX +

ε

4
(X∗AX)2

)
= −AX − ε (X∗AX) AX.

For small values of ε this modification of the restoring force can be expected to dominate for mod-

erate to large values of ‖X‖ and prevent a linearly unstable system from generating unbounded

trajectories. In the work reported here this procedure was applied to the elastic beam restoring

forces.

Using ε = .0001 and the system whose Θ, Ψ trajectories for ε = 0 (linear system) are shown in

Figure 7 we obtain the trajectories shown in Figure 8.
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Figure 8 : Ψ vs Θ trajectory for super-critical value σ = 1.08;

nonlinear restoring force added.

This is a classic precession plot, showing that the fan axis motion is composed of two cyclical

parts with different frequencies. If we increase to σ = 1.25 the effect is stronger, as shown in Figure

9. Increasing to σ = 1.4 we obtain a “crown” pattern as shown in Figure 10, corresponding to a

very violent precessional motion. Note in all of these cases the “tail” part of the trajectory, showing
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a small initial state moving out to the larger quasi-steady state precessional trajectory.
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Figure 9 : Ψ vs Θ trajectory for super-critical value σ = 1.25;

nonlinear restoring force added.
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Figure 10 : Ψ vs Θ trajectory for super-critical value σ = 1.4;

nonlinear restoring force added.
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It is clear that the precessional motion associated with larger values of σ and assumed nonlinear

restoring forces poses, in an actual physical situation, real dangers to the structural integrity of the

wind energy system under study. In order to remedy this situation it is necessary to introduce active

controls into the modeled system. Taking the physical circumstances into account it will be clear that

it is not feasible to apply such control forces directly from an external source. Thus proof mass actua-

tors are introduce as described in §2. The mode of actuation studied here corresponds to a proof mass

actuator acting in the Z direction with its axis passing through the center of mass of the generator

head unit. The actuator is applied to the system whose uncontrolled motion is shown in Figure 8, cor-

responding to σ = 1.08. The result for a time interval of intermediate length is shown in Figure 11.
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Figure 11 : Ψ vs Θ trajectory for super-critical value σ = 1.08;

nonlinear restoring force added; proofmass actuator applied.

A related study, extending over a longer interval, is shown in Figure 12. In both of these instances

the system enters the nonlinear domain before the actuator takes full effect. Then the nonlinear

vibrations are damped out and the system returns to the intermediate linear region and begins slow

decay toward the zero equilibrium.

Proof mass actuators need to be carefully tuned, by selection of the relevant parameters de-

scribed in §2, for optimal damping performance. The procedures currently available for this tun-

ing exercise are generally valid for a single vibrational frequency, or a small number of such fre-

quencies, and are generally developed for a linear structure. In Figure 13 we show log |f | for

f the discrete Fourier transform of the Ψ trajectory corresponding to Figure 12. The upward

peaks in this plot are located at abscissae which correspond to frequencies present in the signal.

It is clear that there are many of these in this case. Future work connected with our modeled

structure thus needs to be directed toward accommodating a large number of vibrational frequen-
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cies in a nonlinear context. Relevant mathematical tools remain to be developed for this task.
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Figure 12 : Another Ψ vs Θ trajectory for super-critical value σ = 1.08;

nonlinear restoring force added; proofmass actuator applied.
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Figure 13 : log |f | , f the discrete Fourier transform of Ψ(t) as in Figure 12.
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6 Concluding Remarks

The major contribution of this study is the design of a model of a controlled wind turbine as

a distributed parameter system using classical mechanics. We have allowed for both lateral and

torsional motion in the supporting pylon and the generator unit was modeled as a lumped (finite

dimensional) system coupled to the free end of the beam. We computed the potential and kinetic

energy integrals of the beam and the fan using classical mechanics and added them to obtain the

total energy integrals of the system while translating the fan energy integrals into the coordinate

system of the beam. Then to develop a model of the combined structural and rotational motion of

the fan coupled with the supporting pylon we used Hamiltonian principles and developed a hybrid

system of ordinary and partial differential equations.

The use of proof mass actuators at the top of the generator head is proposed to function as

an external vibration control mechanism. We have noted that the requisite tuning of proof mass

actuators in order to suppress multi-frequency vibrations is a process not fully developed at the

present time. The need for additional studies in this area is clearly indicated.

Instead of solving the coupled PDE/ODE system to obtain a closed form solution - an unrealistic

goal in view of the high dimensionality involved - a numerical method was developed using cubic

B-splines for the continuous supporting pylon structure. The model was realized by using cubic

spline approximation, translating the continuous physical model to a discrete system. We used

MATLAB(R) for our simulations. With extensive experimentation based on n = 4 spline subinter-

vals we verified that discretization provided sufficient structural flexibility for analysis of the pylon

without encountering serious problems of inaccuracy or ill-conditioning. Our work demonstrates

that the model is well represented by using cubic B-Splines and compares favorably to established

conclusions of related physical experiments.

The simulations undertaken and the resulting vibration diagrams that we have included show that

precession type vibrational instabilities result at high fan rotation rates when nonlinear restoring

forces are included in the model and that proof mass actuators show promise for mitigating the

effects of such instabilities, especially if appropriated tuning methods can be developed.
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