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Modeling and Measuring Affordability as Fitness 
 

George Burleigh Keller 

 

Abstract 
 
Affordability of products and services is an economic benefit that should accrue to 

consumers, whether they are corporations, government agencies or individuals. This 

concept of affordability goes beyond conventional wisdom that considers affordability as 

the ability to pay the price of a product or service. This dissertation defines and explores 

a broader concept of affordability – one of fitness to perform at the level of quality 

required by the consumer, to perform at that level whenever the product or service is 

used, and to do so with minimum consumption of resources. This concept of affordability 

is applied to technological systems by using the complexity sciences concept of fitness as 

the metaphor for technological systems’ fitness. During a system design evolution, the 

specific design outcome is determined by that set of design search paths followed – it is 

path dependent. Dynamic mechanisms create, dictate and maintain path dependence. 

Initial conditions define the start and direction of a path. During subsequent design steps, 

positive feedback influences the designer to continue on that path. This dissertation 

describes underlying mechanisms that create, dictate and maintain path dependence; 

discusses the effects of path dependence on system design and system affordability; 

models these effects using system dynamics modeling; and suggests actions to address its 

effects. This dissertation also addresses several types of fitness landscapes, and suggests 

that the Data Envelopment Analysis (DEA) solution space is a form of fitness landscape 

suitable for evaluating the efficiency, and thus the fitness, of research and development 

(R&D) projects. It describes the use of DEA to evaluate and select Department of 

Defense (D0D) R&D projects as a new application of DEA.  
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1. Introduction 

1.1 Affordability in Context 

Conventional wisdom and usage regards affordability as a cost characteristic of a product 

or service that determines a purchaser’s ability to pay its price. The term frequently 

appears in advertisements as a desirable feature of many products and services such as 

affordable housing, affordable automobiles, or affordable health plans. But while 

dictionaries and other reference documents define afford and affordable, they do not 

define affordability, and if affordability is acknowledged, it is described in the context of 

ability to afford something. Those references tend to reinforce the conventional wisdom 

and usage of the term.  

In contrast, this dissertation addresses affordability in a much broader and deeper context 

than ability to pay the price of a product or service. Here, affordability is considered an 

economic benefit that accrues to customers in the same context that return on investment 

is an economic benefit that accrues to producers. To that end, this dissertation leverages a 

precise definition of affordability, with a process for modeling affordability as fitness, to 

develop and support the conjecture that affordability is the benefit that accrues to 

consumers, and to determine how industrial and systems engineering approaches can be 

used to design, develop and produce affordable products and systems. The dissertation 

also identifies specific industrial and systems engineering approaches that can quantify 

and measure affordability. 

As a result, this dissertation details new contributions to the Industrial and Systems 

Engineering literature. The overall contribution is a unified approach for systematically 

developing a broad range of affordable products or improving their affordability; and a 

consistent, effective method for quantifying, measuring and assessing affordability. This 

dissertation covers gaps in the complexity, systems engineering, performance 

measurement and system dynamics literatures with respect to designing, developing and 

producing affordable products and systems that have not been addressed before. Within 
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this context the dissertation features three essays, each of which is a chapter in the 

dissertation that contributes something different and unique. 

Essay 1 provides a conceptualization of affordability as fitness. It presents the concept of 

fitness for biological systems, which is used to develop the concept of fitness for 

technological systems. This includes the development of fitness functions used to 

characterize and quantify affordability as fitness. Within this context, it describes the use 

of fitness landscapes to represent that fitness. It incorporates the fitness landscape 

framework, to introduce the concept of path dependence as an important issue that needs 

to be addressed within the systems engineering design process to enhance affordability. 

Within that same framework, this essay suggests that data envelopment analysis (DEA) is 

an appropriate approach to quantify fitness and consequently affordability.  

Essay 2 extends Sterman’s system dynamics representation of path dependence by 

applying it to the conceptual, preliminary and detailed design phases of the systems 

engineering process. The essay uses this model to explore specific relationships between 

systems design activities and positive and negative feedback that exist within each of the 

three systems design phases. It offers strategies, techniques and insights that decision-

makers can use to analyze the incidence and effects of path dependence during each 

systems design phase and to make associated policy decisions. It suggests that decision-

makers should focus on interventions to determine initial design directions involving 

technologies and exemplar products, to evaluate feedback regarding design and test 

quality, and to explore alternative paths during the design process that may resolve 

impending design issues such as lock-in to inferior or costly designs or offer a more 

affordable end product. Thus essay 2 provides new approaches to product and service 

design and development that can be incorporated in systems engineering courses and the 

supporting literature. 

Essay 3 addresses what has heretofore been a significant gap: the ability to measure 

affordability. It provides a mapping between the efficiency literature and the fitness 

landscapes. It argues that the production axioms in production theory do not violate key 

characteristics of fitness landscapes regarding input and output correspondence, 

closedness and convexity. The essay describes an innovative application of DEA as it 
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relates to affordability. This application shows that the DEA output of relative efficiency 

is a measure of relative fitness, and thus affordability, of projects being evaluated; and 

indicates that DEA accelerates the evaluation process, reduces potential evaluator bias, 

and increases the probability that affordable projects will be selected. 

1.2 Background of Research 

In the mid-1990s the Department of Defense (DoD) established the requirement for 

weapon system acquisition officials to review new system affordability at specific 

acquisition milestones. But affordability was not precisely defined at the DoD level and it 

largely was left up to the military services to determine how to make systems affordable. 

In response to the DoD requirement to review new system affordability during 

acquisition milestone reviews, the Assistant Secretary of the Navy for Research and 

Development challenged the Office of Naval Research (ONR) in 1995 to initiate an 

approach to develop affordable Navy systems. In response to this challenge and with the 

approval and support of the Deputy Chief of Naval Research, the ONR Industrial 

Programs Department initiated an Affordability Science research program. The objective 

was to establish a foundation for Affordability Science by defining affordability, 

launching research and development efforts to develop affordability concepts, 

technologies and methods, and by characterizing affordability as a major benefit that 

accrues to the customer
1
. Visits to prominent academic institutions helped establish the 

foundations of an interdisciplinary science and contributed to structuring the 

Affordability Science program. Subsequently, ONR funded the Affordability 

Measurement and Prediction Program (AMPP) to develop Affordability Science
2
. Over 

80 affordability measurement and prediction projects were funded and conducted by 

principal investigators from the academic, industrial, consulting and government 

communities. 

                                                        
1
 The Affordability Science program was established in 1995 under the leadership of Dr. David Moran, the 

ONR Code 362 Director. For over 10 years, the author was a major contributor to the development of the 
program and conducted much of the research described in this dissertation. 
2
 The program was established under the direction and management of Ms. Katherine Drew, a member of 

the affordability research team and the ONR Industrial Programs Department. 
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While this author conducted AMPP studies of processes that complex adaptive systems 

use to increase their fitness, and the results of these studies indicated methods for 

improving the affordability of complex technological systems, the problem remains that a 

unified approach to systematically develop a broad range of affordable products or 

improve their affordability is lacking. Furthermore, a consistent, effective method for 

quantifying, measuring and assessing affordability has not been developed. The recent 

research and unique contributions reflected in this dissertation were motivated by those 

unfulfilled objectives when the AMPP was terminated in 2006. This dissertation has at 

least partially filled those remaining gaps by describing a unified approach to develop 

affordable products or improve their affordability, and by developing a consistent, 

effective method for quantifying, measuring and assessing affordability.  

1.3 Organization of Dissertation 

The main body of the dissertation is organized into three chapters that contain the three 

essays described above. Chapter 2 lays the groundwork for a unified approach to 

measuring and assessing affordability. It establishes a baseline of affordability 

definitions, concepts and descriptions; discusses modeling affordability as system fitness; 

develops affordability fitness functions; explores the impact of path dependence during 

systems engineering and methods to maximize affordability by leveraging path 

dependence benefits; and briefly describes how fitness can be modeled, measured and 

analyzed using DEA.  

Chapter 3 describes and characterizes details of path dependence, expanding on its 

introduction in chapter two and using systems engineering terminology. After discussing 

the path dependence phenomenon, it employs a conceptual model to explain the dynamic 

sequence of path dependent design and feedback events during system development. It 

describes elements of the systems engineering design process that affect path dependence 

and shows how path dependence can influence the outcomes of that design process. It 

concludes with interventions for overcoming the negative effects of path dependence and 

for taking advantage of its positive effects using some of the methods discussed in 

Chapter 2. 
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Chapter 4 focuses on measuring affordability as fitness. It describes fitness landscapes 

that were introduced in Chapter 2, and explores the use of these fitness landscapes to 

quantify and measure technological system fitness of technological systems. It describes 

DEA principles and the use of the DEA model to evaluate technological efficiency using 

fitness functions developed in Chapter 2. It investigates the possibility that the DEA 

solution space can be mapped into a fitness landscape and, if fitness landscapes can allow 

for the existence of production axioms, these fitness landscapes can be evaluated using 

DEA. Chapter 4 includes a case study, where DEA is used to rank the relative fitness of 

U. S. Department of Defense corrosion research and development projects submitted 

annually for selection and funding. This last chapter in the main body of the dissertation 

also presents a mathematical formulation for measuring fitness that can be a useful 

alternative to DEA. 

The conclusions and recommendations in Chapter 5 offer a number of opportunities for 

further investigation into methods to develop affordable new systems and improve the 

fitness of existing systems. Likewise, new research into the use of DEA and other fitness 

landscapes to improve and measure fitness can add substantial contributions to the 

engineering state of the art. The results of the research performed in conjunction with this 

dissertation and the unique contributions to the profession documented herein could also 

be valuable in expanding the Virginia Tech industrial and systems engineering 

curriculum and adding course content to existing industrial and system engineering 

courses. 
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2. Modeling and Measuring Affordability as Fitness 

 

Abstract 

In this paper we expand to a broader concept of affordability – one of fitness to perform 

at the level of quality required by the consumer, to perform at that level whenever the 

product or service is used, and to do so with minimum consumption of resources. We 

conceive this concept of affordability for technological systems by using the complexity 

sciences concept of fitness as the metaphor for technological systems’ fitness. This 

representation of affordability as fitness allows for analytical methods that facilitate the 

development of affordable products and services and for the quantification and 

measurement of affordability. As examples we discuss the existence and impact of path 

dependence in the design and development of affordable products and services and 

illustrate the use of an approach grounded in production theory (data envelopment 

analysis) as a framework to measure technological system fitness. 

 

Key words: 

Affordability; fitness; systems engineering; fitness landscapes: fitness functions; 

coevolution; coadaptation; path dependence; lock-in; data envelopment analysis. 
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2.1 Introduction 

Consumers are the ultimate decision-makers during the acquisition of products or 

services. These consumers, who range from organizations as large as the Department of 

Defense to units as small as families and single individuals, must choose what they are 

going to purchase and determine how much they are willing to pay. On the other hand, 

producers, who are primarily dedicated to maximizing economic benefits that result from 

the sales of goods and services, must choose what well-established methods they will use 

to achieve desired economic returns, and which approaches they will use to measure 

them. So questions arise as to which economic benefits should accrue to consumers as a 

result of these sales transactions, how these benefits can be achieved, and how consumer 

benefits could be measured.  

The Department of Defense (DoD), in the mid-1990s, may have answered the question 

regarding what benefits accrue to the customer when, as arguably the largest customer in 

the nation, they required weapon system acquisition officials to review new system 

affordability at specific acquisition milestones. But affordability was never precisely 

defined at the DoD level and it largely was left up to the military services to determine 

how to make systems affordable. Since then, affordability has been more precisely 

defined, concepts and approaches have been developed, and measurement and prediction 

methods have been conceived and analyzed [1].  

The primary objective of this paper is to introduce a broader concept of affordability – 

one of fitness to perform at the level of quality required by the consumer, to perform at 

that level whenever the product or service is used, and to do so with minimum 

consumption of resources. In order to support this broader concept of affordability we 

develop and support the conjecture that affordability is the benefit that accrues to 

consumers, describe how systems engineering methods are available to design, develop 

and produce affordable products and systems, and identify systems engineering analytical 

methods that can quantify and measure affordability. In particular this paper argues that 

affordability can be modeled as system fitness, that the complexity sciences [2] provide a 

conceptual basis for modeling affordability as fitness, that the complexity sciences’ 

concept of path dependence [3] can be applied to the systems engineering process [4] for 
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the design and development of affordable systems, and that data envelopment analysis [5] 

is a viable approach for modeling, measuring and analyzing affordability.  

The author builds the case for modeling affordability as fitness from the foundation 

established by authors such as Kauffman, Holland, Arthur, Frenken and Altenberg. The 

results of their research and development of complex adaptive system behavior and 

fitness, conceptualization of fitness landscapes and path dependence, and use of fitness 

landscapes to assess and improve biological and technological fitness are applied by the 

author to the problem of developing a unified approach to developing and improving 

product affordability, and to quantifying and measuring the affordability of technological 

systems.  

2.1.1 Background and Context 

In 1995, when the DoD established the requirement to review new system affordability 

during acquisition milestone reviews, the Assistant Secretary of the Navy for Research 

and Development challenged the Office of Naval Research (ONR) to initiate an approach 

to develop affordable Navy systems. In response to this challenge, and with the approval 

and support of the Deputy Chief of Naval Research, Dr. David Moran of the ONR 

Industrial Programs Department initiated an Affordability Science research program. This 

program established a foundation for Affordability Science by defining affordability, 

launching research and development efforts to develop affordability concepts, 

technologies and methods, and characterizing affordability as a major benefit that accrues 

to the customer
3
. The idea that affordability is a benefit that accrues to the customer 

became an underlying principle. The ONR Affordability Science program identified 

affordability disciplines, technologies and methods; integrated them into a body of 

knowledge that characterized the affordability of goods and services; quantified these 

characteristics; and presented a roadmap for achieving product affordability. It also 

focused on measuring the affordability of existing products and predicting the 

downstream affordability of products being designed, developed or modified.  

                                                        
3
 The author was a major contributor to this initiative. 
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An Affordability Measurement and Prediction Program (AMPP) became the primary 

approach to develop Affordability Science.
4
 The AMPP, created in 1997 to develop a 

science for evaluating or predicting the current and future affordability of key Navy 

research and development (R&D) products and services, was a viable, productive 

research program for over eight years. The primary thrust of the AMPP was to develop 

advanced, science-based generic affordability trade-off approaches that transcended the 

conventional cost estimating practices. Over 80 affordability measurement and prediction 

projects were funded and conducted by nearly 20 principal investigators: principal 

investigators from the academic, industrial, consulting and government communities. 

One of these projects studied complexity sciences concepts, and some of the processes 

that complex adaptive systems use to increase their fitness. Complex adaptive systems 

are complex, self-organizing systems composed of agents that behave and interact 

according to internal rules, and adapt to environmental changes and other adaptive agents 

by changing these rules. [6] [7]. The results of the complex adaptive systems study 

suggested methods for improving the affordability of complex technological systems 

based on the characteristics and behavior of complex adaptive biological systems. 

The objectives of the AMPP were never fully realized, and the shortfalls in the program 

became primary objectives of this research. More specifically, the insights provided by 

the studies of complex adaptive systems concepts and behaviors stimulated the search for 

methods to model affordability as fitness and to develop the means to measure that 

fitness. The results of this search are documented in this essay.  

2.1.2 The Problem 

The AMPP produced a number of studies and methodologies that addressed two primary 

objectives. But the former project manager of the AMPP recently observed that, while 

some AMPP projects reflected effective methods to develop a specific genre of 

affordable products, the problem remains that a unified approach to systematically 

develop a broad range of affordable products or improve their affordability is lacking. 

Furthermore, a consistent, effective method for quantifying, measuring and assessing 

                                                        
4
 The program was established under the direction and management of Ms. Katherine Drew, a member of 

the affordability research team and the ONR Industrial Programs Department 
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affordability does not exist. [8] Thus, the major objective of this paper is to lay the 

groundwork for a unified approach to measuring and assessing affordability. 

This paper is organized in four sections to address this objective. Section 2.1 establishes a 

baseline of affordability definitions, concepts and descriptions. In this section, the 

question of what benefit accrues to the customer is presented. Section 2.2 discusses the 

primary conjecture that affordability can be modeled as system fitness. In this section, the 

foundation for developing a unified approach to affordability development and 

improvement is provided, and the idea that affordability is the benefit that accrues to the 

customer is reinforced. Section 3 discusses the conjecture that the design, development 

and engineering of affordable technological systems are path dependent processes. In this 

section we suggest a method for developing affordable products and summarize systems 

engineering methods that can be applied to maximizing affordability as a benefit that 

accrues to the customer. Section 4 addresses the conjecture that fitness can be modeled, 

measured and analyzed using data envelopment analysis (DEA) [5], which is a linear 

programming based approach grounded in microeconomic theory that computes the 

relative efficiency of alternatives based on the value of key input and output variables 

common to every alternative. In this case, the analysis of key affordability variables can 

be used to indicate the relative fitness of each alternative. Thus this approach potentially 

provides a method for quantifying, measuring and assessing affordability and reinforces 

the concept focused on the measurement of affordability as a benefit that accrues to the 

customer. 

2.2 Affordability and System Fitness 

2.2.1 Affordability Definition, Concepts and Description 

The basic affordability definition is derived from Webster’s definition of affordability 

and from the associated concepts of system fitness. Webster [9] defines affordability as 

the capacity to bear the consequences of implementing a decision without serious 

detriment. Conventional wisdom usually assumes these consequences to be financial 

costs. For example, the Department of Defense usually considers an affordable system as 

one that has acceptable life cycle costs [10]. Individual citizens often define an affordable 

automobile as one for which they have the means to pay its acquisition price. However, 



   

11 
 

institutions and individuals do not decide to acquire systems, products and services just 

for the privilege of spending money. They almost always impose conditions and 

constraints on these acquisitions, and these conditions and constraints are associated with 

how and when the system, product or service performs.  

From a practical standpoint, a decision-maker decides to acquire a system, product or 

service that will perform some required function. The decision-maker expects that 

system, product or service to perform at some minimum level of quality any time that it is 

needed. In the quality management world, one definition of quality is fitness for use [11]. 

Thus, system, product or service performance and availability are key fitness parameters 

of their affordability, along with the required resources (costs) that are associated with 

systems operations or the provision of products and services.  

The fact that decision-makers might expend resources to satisfy some requirement or 

desire, regardless of their ability to pay the purchase price, should raise serious questions 

regarding the ability to pay as the sole measure of affordability. Consider the following 

scenario in the context of Webster’s definition of affordability. A consumer decides to 

purchase a product for which he has three brands from which to choose. The first brand 

cannot perform at the minimum level of quality required by the consumer. The second 

brand cannot perform its function whenever the consumer requires its use. The third 

brand will require the consumer to spend unacceptable life cycle operating costs. In each 

case the product is not affordable according to Webster’s definition, regardless of the 

consumer’s ability to pay.  

Affordability is that characteristic of a product that enables decision-makers to procure it 

when they need it, use it to meet their performance requirements at a level of quality that 

they demand, use it whenever they need it over the expected life span of the product or 

service, and procure it for a reasonable cost that falls within their budget for all needed 

products or services. The above scenario and its consequences formed the foundation for 

this definition of affordability that was established at the beginning of the Affordability 

Science Program [12]. This remains the definition of affordability, and is used as such 

throughout the remainder of this paper. 
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The 2009 Naval S&T Strategic Plan [13] lists total ownership cost as one of thirteen S&T 

(Science and Technology) focus areas. On page 25, the plan states, “This focus area is 

dedicated to significantly increasing the affordability of current and future naval systems 

by reducing Total Ownership Cost while maintaining or improving system performance 

and platform availability to execute assigned missions.” Based on the above affordability 

definition and the Naval S&T Strategic Plan description, an affordable technological 

system can be described as one that performs at an optimum level to accomplish its 

purpose, remains available to perform when needed, and can be procured and operated 

within reasonable cost utility parameters. Achieving an optimum level of performance 

with respect to performance, availability and cost implies that improvement in each of the 

key affordability variables associated with these concepts increases affordability. Vectors 

of performance, availability and cost variables can represent affordability. But since an 

increase in cost results in lowered affordability, it is more practical to quantify cost in 

terms of resource conservation, which will increase affordability as resource conservation 

increases. For example, determining savings, cost avoidance or return on investment for a 

particular requirement would produce a resource conservation value for that requirement 

where an increase in that value reflects improvement. This definition is consistent with 

the definition used by the Affordability Science Program stated in the previous 

paragraph. These definitions, concepts and descriptions of affordability provide a 

framework for modeling affordability as product fitness for use, for developing 

affordable products, and for quantifying and measuring affordability. The next three 

sections address these three specific issues.  

2.2.2 Modeling Affordability as Fitness 

The overarching conjecture that the affordability of technological systems can be 

modeled in the same way as the fitness of natural systems [14] is an approach that 

heretofore has not been extensively pursued in the literature. Natural systems are 

complex adaptive biological systems that have the genetic capability to produce surviving 

offspring. Natural system fitness can be defined as the combined inherited characteristics 

that produce strength and usefulness in the offspring – the stronger and more useful, the 

greater the fitness [6]. An associated conjecture is that affordable technological systems 

are achieved when selected attributes of the systems dynamically co-evolve with the 
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attributes of interacting systems (including the environment), and this interaction causes 

the co-evolving systems to dynamically adapt to each other – a process Kauffman calls 

co-adaptation [14].
5

 These dynamics include self-organization, close coupling, and 

feedback with response, which are characteristics of what Sterman describes as dynamic 

complexity [15]. These conjectures raise several important questions associated with 

modeling affordability as fitness. Does natural system fitness provide a model of fitness 

that can be applied to affordability as defined? What schemata can be used to represent 

and analyze technological system fitness and thus affordability? Can product fitness be 

characterized by affordability fitness functions? [16] In this context, fitness functions are 

the system operating capabilities that feature quantifiable, key attributes that guide the 

search for increased fitness in a search space of optimal or near optimal affordability 

solutions. How can we select product attributes, associated with affordability fitness 

functions that contribute to product fitness? The review of the above questions and 

preliminary research regarding complex adaptive systems that we are documenting in this 

section provide some answers to these questions and some directions in which to pursue 

further research. 

If we revisit the AMPP affordability definition, availability implies that the system is not 

only sustainable
6

 but is adaptive to ensure readiness under changing conditions. 

Reasonable cost utility implies judicious use of scarce resources. If we observe the 

characteristics of a natural system, we find that it performs functions at an optimum level 

for survival and growth, it performs those functions when necessary, it consumes 

minimal resources to improve or maintain fitness, and it adapts to environmental changes. 

This metaphor implies that complex adaptive natural systems are inherently affordable 

and their characteristics could provide insights for the affordability of technological 

systems. Conceptually, we could describe affordable technological systems in the same 

terms as highly fit complex adaptive natural systems. If this is so, product affordability 

might be defined by technological system fitness, where fitness attributes associated with 

                                                        
5
 Webster defines coevolution as “evolution involving successive changes in two or more interdependent 

species that affect their interactions.”  
6
 Webster defines sustainable as capable of being sustained, in other words capable of resisting depletion 

or permanent damage. In the context of this paper, a sustainable system is one that can be used 
effectively for a prolonged time period.  
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specific technologies, materials or processes offer the best set of variables to be evaluated 

as affordability metrics. Furthermore, if we map the attributes of complex adaptive 

natural systems to affordable technological systems, we find striking life-cycle 

similarities [1]. For example, natural systems must overcome vulnerabilities during 

creation, achieve growth using available nutrients, sustain life using scarce nutrients, 

respond cyclically to a biological clock, achieve a robust survival structure, self-regulate, 

execute timely repairs to continue effective functioning, perform a useful ecological 

function, and procreate effectively to assure species survival. An adaptive technological 

system must overcome R&D vulnerabilities, be developed and implemented using 

available resources, sustain operation using scarce resources, respond to repeated 

operational cycles, self-regulate, undergo timely repair to continue effective operation, 

perform a useful ecological function, and be effectively modified for use as a next 

generation system.  

2.2.3 Improving Fitness 

The previous subsection suggests that characteristics of natural or complex adaptive 

systems might be useful models or metaphors for developing affordable technological 

systems. John Holland [6] describes complex adaptive systems as systems composed of 

interacting agents that adapt by changing their strategies as they accumulate experience. 

The product of this adaptation is often unusual, unexpected, and even miraculous 

characteristics and capabilities, a process Holland describes as emergence. He describes 

emergence as the application of a small number of rules or laws to a combination of 

simple building blocks in a system that produces higher-level systems of unexpected and 

unusual complexity [17]. In biological systems, adaptation enables an organism to 

achieve greater environmental fitness. Similarly, in technological systems, adaptation 

might enable these systems to effectively respond to dynamic changes in the operational 

environment. This suggests that complex adaptive systems, characterized by emergent 

qualities that enable them to achieve unexpected levels of fitness, could represent a model 

of fitness that can be applied to product affordability [17]. 

Dynamic changes in system fitness, such as improving performance while using fewer 

resources, can be depicted on fitness "landscapes" in order to analyze, improve and 
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measure resulting technological fitness and affordability. Metaphorically, these 

landscapes have peaks and valleys, and the fitness function variables define the 

dimensions of the landscape. In his book At Home in the Universe, Kauffman [14] 

describes a rugged fitness landscape as an ideal structure with which to pursue biological 

fitness. He observes that technological evolution can be depicted as a search on rugged 

landscapes. This description and observation suggest that biological evolution and fitness 

can be a metaphor for technical evolution and fitness – a metaphor that is pursued in 

detail in this paper. 

As Kauffman points out [14], systems increase fitness through searching the fitness 

landscape and hill climbing. Systems change their location on the fitness landscape by 

changing values of system traits or attributes. The shape of the fitness landscape has a 

significant effect on the ability of a system to search for and attain greater heights and 

thus improve its own fitness. Kauffman introduced the NK landscape model to represent 

the shape and degree of ruggedness of fitness landscapes, where N is the total number of 

system attributes and K is the number of individual attribute characteristics with which 

each of the N attributes is epistatically coupled (operationally linked). The term epistatic 

coupling, or epistasis, refers to coupling between genes, where the fitness of a gene 

located at a given place on a chromosome is affected by genes located at other places on 

the chromosome. In this case, it is used to describe the effect that system attributes could 

have on other system attributes. These fitness landscapes may be correlated, where peaks 

of similar altitude are grouped together, or random, where peaks of different altitudes are 

randomly distributed across the landscape. The degree of ruggedness (from correlated to 

random) depends on the values of N and K: increasing N reduces correlation and 

increasing K increases randomness and thus ruggedness. Correlation represents the 

proximity of landscape peaks to each other, so if K remains constant, fitness peaks are 

spread more widely across the landscape.  Ruggedness refers to the relative “altitude” of 

the peaks, so if N remains constant, the peaks become higher.  When both N and K 

increase, the decrease in correlation and increase in ruggedness configure the landscape 

in such a way as to make fitness increase, but the likelihood of finding rugged peaks less 

and less likely.  
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Kauffman associates the K parameter with the transition of dynamical systems from order 

to chaos, where K = 0 represents total order and K = N – 1 represents complete chaos.  

When K = 0, there is but one peak on the landscape and when K = N – 1 the landscape is 

totally random. Thus the landscape transitions from order to chaos, and the phase 

transition – a rather rapid shift from order to chaos – occurs at K = 10 according to 

Kauffman [14].  The transition zone is called the zone of complexity – a zone where “the 

very highest fitness occurs” at the edge of chaos.       

Kauffman also describes coupled landscapes where one fitness landscapes interacts with 

another fitness landscape. In The Origins of Order, Kauffman [18] describes co-evolution 

as a process of adaptive moves that deform these coupled NK landscapes of interacting 

systems. Each system’s fitness and fitness landscape depend on the other systems’ 

fitness. As co-evolving systems co-adapt, and the shape of a fitness landscape changes, 

the degree of fitness improvement or degradation in a particular system will be dictated 

by the ability of that system to alter existing attributes or generate new attributes that 

comply with the changing shape. If attribute changes enable the system to improve its 

position on the new landscape, the system becomes fitter.  

Technological systems can rapidly achieve high fitness through coevolution and 

coadaptation in the zone of complexity, where there is sufficient epistatic coupling to 

trigger new, novel, diverse varieties of goods and services and create niches for even 

more varieties [14]. This suggests that it would be useful to seek or create conditions 

conducive to achieving high fitness levels and to drive technological development to the 

edge of chaos to produce affordable customer products and services. Coevolutionary 

conditions and characteristics, including moderate epistatic coupling between developing 

technologies and their environment, could enable the development of new systems in the 

zone of complexity. So it appears that fitness landscapes are appropriate schemata to 

represent and analyze product fitness and thus product affordability. 

Frenken [2] points out that technology fitness landscapes are useful models upon which 

to conduct local search strategies for technological evolution. Such local search strategies 

outperform global search strategies because bounded rationality [2, 19] constrains the 

ability of designers and engineers to generate all possible solutions to complex 
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optimization problems, and economics constrain the ability to perform exhaustive global 

searches. Kaufmann’s NK landscape or Altenberg’s generalized NK landscape [20] are 

useful models upon which to conduct adaptive walks or hill climbing toward local peaks 

on the landscape, in order to increase technological fitness. Thus, an adaptive walk on a 

fitness landscape, where an attribute value is changed and the resulting product fitness 

evaluated at each step until maximum fitness is reached, can suggest affordable product 

designs. 

 

Figure 1. Fitness Landscapes with Two inputs and One Output 

Figure 1 shows a simple two-input, one-output fitness landscape, using Table 16 data in 

Appendix B. Figure 1a shows four vectors, OF1, OF2, OF3, and OF4 that correspond to 

DMUs AF01, AF07, NS08, and AR07. OF4 is the fittest vector since the radial distance 

of vector OF4 is the longest of the four vectors.
7
 The shortest vector, OF2, is the least fit.  

In Figure 1b, vectors OF1, OF2, OF3, and OF4 correspond to Table 16 DMUs AF01, 

AF07, NS08, and AR07. Figure 1b is an inverted landscape, since the highest fitness is 

associated with the lowest percent of funding and the shortest period of time.  Vector OF2 

is the shortest vector and has the highest fitness of the four vectors.  OF4 is the longest 

and therefore the least fit vector. 

Frenken suggests that exemplar technologies be used in the search to reduce the number 

of search paths required to achieve fitness. And he describes a function space search 

                                                        
7
 Vector length is computed as the hypotenuse of a right triangle Fn = (√     ) where a and b are the 

two inputs and Fn is the output. Figure 1a vector values are OF1 = 24.9, OF2 = 23.7, OF3 = 51.9, and OF4 = 

60.2. Figure 1b vector values are OF1 = 12.02, OF2 = 18.01, OF3 = 24.01, and OF4 = 30.00. 
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where specific preferences associated with the most important functions allow designers 

to narrow their focus to those input variables that have the most impact on the fitness of 

those functions [2]. These approaches support the limitation of such searches to the zone 

of complexity, and indicate the need for development of affordability fitness functions to 

aid in such limited searches. 

For example, the development of supersonic aircraft control systems was based on 

exemplar fly-by-wire and sensor-based control technologies. And the discovery that these 

aircraft performed best when they were slightly unstable (in the zone of complexity at the 

edge of chaos) led to a system that enhanced pilot performance by providing the 

assistance necessary to enable control of flight in the unstable regime [21].   

2.2.4 Fitness Functions 

Prior research [1], the definition of affordability, and the concept of affordability as 

fitness suggest that four fitness functions form the structure of an affordability fitness 

landscape, where key attributes related to these fitness functions are variables that are the 

dimensions of the fitness landscape. Thus the vectors formed by the key variables 

associated with each fitness function represent the affordability of the system being 

considered. The first fitness function is performance – the optimum activity to allow the 

system to achieve its reason for being, to increase its fitness, and to contribute to 

maintaining other fitness functions. The second fitness function is vitality – the 

propensity and activity to survive, to resist damage or destruction, and to remain 

sustainable by means of maintenance and damage repair. The third fitness function is 

adaptability – the ability and activity to change other fitness functions in response to co-

evolving systems in order to maintain or increase fitness. And the fourth fitness function 

is resource conservation – the ability and activity to constrain consumption of resources 

to only those resources necessary to maintain a required fitness level.  

A common consumer product, the household vacuum cleaner, can illustrate this concept 

of affordability as fitness and the use of fitness functions. In order to measure the 

affordability of a vacuum cleaner, a consumer selects those features that meet that 

customer’s needs and classifies them by affordability fitness function, such as shown in 

Table 1. For example, strength, reliability, durability, maintainability and safety are 
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features of the vitality fitness function that enables the vacuum cleaner to resist damage 

or destruction, and to remain sustainable. The importance of the features and fitness 

functions can be weighted after which the consumer ranks how well each feature 

contributes to the fitness function. The results are used to quantify the value of each 

fitness function, and those values are used to measure the affordability of each vacuum 

cleaner considered and rated by the consumer.  

 

Table 1. Features of Vacuum Cleaners Customers Could Care About 

The fitness functions in Table 1 are the dimensions of a vacuum cleaner generalized NK 

fitness landscape, where a fitness vector represents the combination of fitness function 

values associated with each specific product. A vector is a quantity with both magnitude 

and direction, and its location and value in the landscape is determined by its direction 

from where all dimensions intersect at their origin to its distance from each variable’s 

axis at that variable’s value [22]. A comparison of vector locations on the fitness 

landscape reveals the most affordable vacuum cleaner. The most affordable vector sum is  

    ∑              

 

   

               

where n = the number of brands, and P, V, A, and R are fitness function values. 

The generalized NK fitness landscape does not use the K parameter to indicate epistatic 

coupling, but does reflect epistatic coupling by mapping attribute characteristics to 

function characteristics as described in Chapter 4, Section 4.2.  Strength, reliability, 
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durability and power affect both performance and vitality fitness functions and the vector 

sum for each reflects this epistatic coupling.   

Vacuum cleaner manufacturers could traverse such a landscape in search of competing 

products that exceed their product’s fitness.  Those with similar attributes might feature 

exemplar technologies that would improve the fitness of their product.  The impact on 

overall product fitness by using new or exemplar technologies could be evaluated on the 

landscape and show the degree of improvement and relative fitness compared to 

competing products. 

Vector distance is one type of distance function that can be used to evaluate the 

affordability of competing alternatives such as vacuum cleaner brands. Other distance 

functions that might be used are the number of binary variables by which two strings 

(vectors in this case) differ, called hamming distance [23], and the correlation coefficient 

between vector values of a fitness landscape and rankings of products in publications 

such as Consumer Reports  [24, 35]. 

Vacuum cleaner product attributes can be represented on a fitness landscape where 

attribute traits are the dimensions of the landscape, and the attribute is a vector of these 

traits. Some of the features in Table 1 are attributes, and each of these attributes has traits 

or characteristics that dictate the quality or fitness of that attribute. Increasing or 

decreasing the value of a product trait changes the vector value (fitness) of the attribute. 

For example, one of the traits of vacuum cleaner suction is the efficiency of the motor 

that causes reverse airflow [25]. Increasing the reverse airflow increases suction and thus 

improves that attribute’s fitness. 

Kauffman [14] described the process of changing system fitness as the alteration of a 

system’s attributes. As described above, the degree to which a particular key fitness 

attribute contributes to each fitness function defines that attribute's location on the 

system's fitness landscape. The relative strength of a key fitness attribute may be affected 

by epistatic coupling with other key fitness attributes that could increase or decrease its 

strength. An attribute's contribution to system fitness need not be positive – a strong 

attribute could have a negative effect on one or more other key fitness attributes and 

reduce overall system fitness. And, since each attribute is likely to affect multiple fitness 
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functions, it is possible that a specific attribute could have a positive impact on one 

fitness function while having a negative impact on another. For example, a strong, 

powerful motor would increase vacuum cleaner suction and durability, which would 

improve performance and vitality. But the increase in weight would reduce 

maneuverability and design flexibility thus decreasing adaptability, and the added cost 

and weight would reduce resource conservation.  

Table 1 provides examples of epistatic coupling of vacuum cleaner features or attributes. 

Strength, reliability and durability are depicted as attributes for both performance and 

vitality fitness functions. The traits associated with these attributes affect the attributes in 

different ways. For example, a durable suction hose might increase its service life but the 

material that makes it durable might make it inflexible and reduce the airflow rate. The 

NK landscape was conceived to reflect this coupling between traits at the lowest level of 

detail, between attributes at the next higher level of detail, or between key fitness 

variables at the highest level of detail. The “N” in NK landscapes represents the number 

of traits, attributes or key fitness variables (as well as the number of dimensions of the 

fitness landscape), while the “K” reflects the average number of traits, attributes or key 

fitness variables epistatically coupled. In Table 1, K = 4, which is the average number of 

epistatic couplings between the attributes within the four functions. The effect of 

adjusting traits on coupled attributes or the effect of adjusting attributes on coupled key 

fitness variables can be evaluated on an NK landscape [2, 14, 18].  

Kauffman’s NK landscape has a limitation that is overcome by Altenberg’s generalized 

NK landscape. Altenberg’s model consists of N elements (key input variables) and F 

functions (key output variables), where Kaufman’s model requires the number of 

elements to equal the number of functions. In Altenberg’s model, a key input variable can 

influence any number of key output variables and a key output variable can be influenced 

by any number of key input variables. This means that the generalized NK landscape 

does not use the K epistatic coupling variable and that the number of elements does not 

have to equal the number of functions. This allows vectors of input variables associated 

with each function to be represented on a fitness landscape and to be used to evaluate the 

fitness of alternative technological systems or to improve the fitness of a specific system 
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[2, 20]. Altenberg’s model can be expressed mathematically as a vector for each function 

F: 

   ∑   

 

   

                       

where 

 n   number of elements N 

m   number of functions F 

                                           

                                               

      output vector of     

Kauffman also introduced the concept of coupled fitness landscapes, where a set of 

fitness landscapes is joined at the next higher level to reflect and assess coevolution and 

co-adaptation caused by the epistatic coupling of traits on one landscape with traits on the 

other landscape [14]. For example, those vacuum cleaner attributes that have an epistatic 

effect on other vacuum cleaner attributes would be the dimensions of a landscape to 

determine the value of key variables. But each of these coupled attributes would have its 

own fitness landscape, with vacuum cleaner traits associated with each attribute as the 

dimensions of those landscapes. Thus, a fitness landscape of various characteristics of 

residences and buildings using vacuum cleaners would be coupled with a vacuum cleaner 

fitness landscape, to evaluate how specific vacuum cleaner attributes interact with 

specific characteristics of those residences and buildings. The effects of epistatic coupling 

between traits would affect attributes, and the changes in those attributes would affect 

key variables with which each attribute is coupled. By analyzing these coupled effects, 

the design of a vacuum cleaner could be improved, or a decision-maker could analyze the 

resultant fitness of given vacuum cleaner configuration. The above mathematical 

formulation could be used to evaluate the impact of traits (input elements N) on attributes 

(output functions F) at one level of taxonomy and of attributes (input elements N) on key 

variables (F) at a higher level of taxonomy. Thus, the most affordable configuration could 

be expressed as: 
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The interactive process between traits, between attributes, or between the key fitness 

variables has been termed co-evolution. Technological systems co-evolve as the system 

attributes interact during design, development and operation. Kauffman [18] describes 

co-evolution as a process of adaptive moves that deform the coupled NK landscapes of 

the interacting systems. In other words, changing an epistatically coupled trait will affect 

each of the attributes with which that trait is associated. That will change the position of 

the key variable vector associated with those attributes, thus “deforming” the landscape 

of key variables. At the same time, the vector of each attribute is changed, deforming 

each attribute’s landscape. So each system’s fitness and fitness landscape depend on the 

other systems’ fitness. As co-evolving systems co-adapt, and the shape of a fitness 

landscape changes, the degree of fitness improvement or degradation in a particular 

system will be dictated by the ability of that system to alter existing attributes or generate 

new attributes that comply with the changing shape. If attribute changes enable the 

system to improve its position on the new landscape, the system becomes fitter.  

Thus, co-evolution and co-adaptation are dynamic processes characteristic of evolving 

biological and technological systems. Biological systems do that naturally. But 

technological systems depend on some intervention to stimulate co-evolution and account 

for the consequences of co-adaption. This is a key concept in the design and development 

of products that can be used to develop more affordable products, such as better vacuum 

cleaners. 

Methods for applying and evaluating key attributes are addressed in the two sections that 

follow. Although methods for identifying key attributes have been identified in working 

papers and reports during preliminary research [1], further research and experimentation 

with real products is needed to validate suggested analytical approaches or to develop 

new ones. 
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2.3 Developing Affordable Products 

The previous sections provide some clues regarding how complexity science concepts 

and approaches might be used to develop affordable products. The ONR AMPP program 

also fostered the development of many affordable products and services, some of which 

were based on complexity sciences principles. However, this paper focuses on one 

complexity science-based concept as an approach to develop affordable products – the 

path dependence phenomenon and its effect on designing and developing affordable 

systems. 

An important conjecture is that product fitness, or affordability, is influenced by path 

dependence during product development [2]. An associated conjecture is that path 

dependence can be used to positively influence and accelerate product fitness [26]. 

Products undergo development in a systems engineering technological evolution where 

the requirements are defined, the product is conceptualized and designed, and various 

stages of development are performed until a complete, functional product emerges. 

Sterman [15] defines path dependence as a system behavior pattern where small, random 

events in a system dominated by positive feedback determine the ultimate system state. 

Path dependence can produce positive or negative effects. Positive feedback can 

accelerate achievement of the most affordable design. But continuing along a path of 

positive feedbacks can cause the system designer to miss better solutions. So 

understanding the effects of path dependence, taking action to prevent its negative effects 

and taking advantage of its positive effects are essential in developing affordable 

products.  

This section describes the underlying mechanisms that create, dictate and maintain path 

dependence, discusses the effects of path dependence on product development, and 

suggests actions to address its impact on affordability. It addresses several questions 

raised by the conjectures stated in the previous paragraph and the description of path 

dependence. Specifically, it describes how path dependence affects product fitness during 

its technological evolution; how path dependence can be measured at selected points 

during the technological evolution; and how the understanding of path dependence can be 

used to improve product fitness. In addition, this section discusses the selection of the 
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technological development path prior to the onset of product development, and how it can 

be changed during the development process.  

During conceptual design, preliminary design and detailed design; the three phases of the 

systems engineering life cycle process that precede system production, operation and 

phase-out [4], the specific product design outcome is determined by that set of design 

search paths that were followed. In other words, the design process is path dependent. 

Dynamic mechanisms create, dictate and maintain path dependence. Initial conditions 

define the start and direction of a path. During subsequent design steps, positive feedback 

influences the designer to continue on that path. Frequently, the design gets “locked-in” 

due to unforeseen external conditions that eliminate other practical alternatives. 

Hypothetically, the shortest overall path length should be the most affordable in terms of 

system design, if the desired level of product fitness is achieved. If the system designer 

avoids obstacles and random diversions, copes with the possible effects of co-evolution, 

and chooses the best set of search directions, product affordability should be achieved in 

terms of each fitness function described in the previous section. Modeling, simulating and 

testing path dependence in a typical design path should reveal the relationship between 

path length, system design affordability, and consequently product fitness.  

During systems engineering and system design, metrics and mechanisms for providing 

feedback dictate the level and direction of path dependence. Requirements are derived 

from customer needs, and system level measures of effectiveness (MOEs) are established 

and quantified to evaluate how well each design alternative meets established 

requirements [4]. These MOEs must be legitimate and unambiguous because they will 

determine whether measurement feedback is positive or negative. Since product design 

co-evolves with product use and support, the product support infrastructure and product 

environment need to be identified and characterized since tradeoffs between product and 

support might change product attributes, and therefore fitness, as the landscape is 

reshaped. 

During preliminary design, accurate specification and accurate measurement are critical. 

Path dependence resulting from positive feedback during simulation and testing can 

positively or negatively influence design decisions. If the MOEs, simulations and test 
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methods are effective, design alternatives are likely to be accurately assessed and the 

correct design path indicated. However, if design assessments and tradeoffs are faulty, 

the wrong design path may be indicated – the designer may continue on a low fitness 

design path or erroneously take a new low fitness path. Successive positive feedbacks 

may mask the design’s ultimate low fitness until late in the preliminary design phase or 

even the detailed design phase. At that point, it may be too expensive to search for and 

find a higher fitness path and the design may essentially be locked-in.  

  

 

 

 

Figure 2. System Dynamics Model of Path Dependence During Systems Design [27] 

 
Figure 1 illustrates lock-in to a single technology in the design reinforcing loop from 

technology 1 design selected, to technology 1 design accepted, to good design added, to 

technology 1 good designs stock, to total number of designs, to proportion of technology 

1 designs, to probability of choosing technology 1, and back to technology 1 design 

selected. As long as positive feedback occurs throughout the reinforcing loop, there is a 

very high probability that technology 1 will continue to be selected. It also shows lock-in 

to cost and schedule as indicated by the red cost lock-in occurrence and schedule lock-in 

occurrence variables. If maximum allowed cost or schedule days are exceeded, lock-in 

will be flagged for management decision-making. 

In the detailed design phase, each product component features its own initial condition 

and path direction. So, the starting point and direction for a component development path 
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might reflect path dependence. Each in-process and completed item test presents an 

opportunity to evaluate the fitness of a product component. If the metrics and test 

methods are effective, the design is likely to be accurately assessed and the correct design 

path indicated. If the metrics and/or test methods are ineffective, the design may be 

erroneously accepted or rejected. If the error is detected far up the technological 

development path, it may be difficult and costly to trace the error to its source and even 

more costly and time consuming to change the path. Undesirable lock-in might occur if 

negative feedback dictates a new path that is prohibitively expensive, or a technology that 

is not sufficiently developed or supported. However, lock-in due to overwhelming high 

fidelity, positive feedback is desirable since the right technological path was selected.  

The path dependent design process can be described as a process of hill climbing on an 

affordability fitness landscape. Before the climb commences, the systems designer 

chooses, often randomly, that starting point and design path that appear to offer the best 

chance of establishing a viable product design and of improving design fitness during the 

development process. The designer continues on that path as long as positive feedback 

indicates the correct design choice was made. For example, if functional test results of the 

motor selected for a new vacuum cleaner design are unacceptable, negative feedback 

indicates that progress is downhill, and the designer looks for and chooses a different 

path; perhaps a new motor. If feedback is positive, the designer continues on the same 

design path. If the vacuum cleaner motor as designed will not fit in the main vacuum 

cleaner housing, the designer encounters a design obstacle that dictates a change in 

direction or perhaps a retreat, so the designer also takes another path that incorporates a 

redesign. If a chance occurrence threatens the design, the designer may work around that 

threat or change direction. For example, if the design calls for some vacuum cleaner parts 

to be procured from a supplier, and that supplier goes out of business, the designer may 

have to change the vacuum cleaner design if the supplier is a sole source of the parts, or 

the designer may work around the problem by going to another supplier. In the latter 

case, the designer can stay on the same path. The further the designer travels along the 

design path, the higher he or she climbs, and the fewer the number of available upward 

paths. And, when a local peak is reached, there are no remaining upward paths. If the 

vacuum cleaner design has attained the desired level of affordability, hill climbing ceases 
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and the design is complete. The positive feedback relationships are shown in Figure 1, 

where design acceptance indicates that inspection or testing has passed, or the design is 

good because an obstacle or random occurrence does not threaten the design. A local 

peak is reached when the design process is completed. 

If the desired vacuum cleaner fitness is not achieved at that local peak, the designer must 

decide whether to accept the level of fitness achieved or look for a higher hill [2]. If it is 

too expensive to pursue another path, the design may be locked-in at this point. Or, if 

available technology will not support searching in other directions, the designer also may 

be forced to lock-in to this design. However, if further search is feasible, the designer 

might retrace the prior path and search for a new path to a higher hill and begin the 

upward climb to its peak. If the nearest higher hill is quite far though still visible, the 

designer may find a way (perhaps a new technology) to completely escape the path that 

led to the lower hill and jump to the base of that higher hill. For example, vacuum cleaner 

dirt containment bags have always had some drawbacks that decreased the overall fitness 

of vacuum cleaners. One manufacturer jumped off the design path at the turn of the 

century, and incorporated a new wind tunnel technology that enabled bagless vacuum 

cleaners [26]. That vacuum cleaner designer was able to climb a new path to the peak of 

that hill and achieve the desired fitness more quickly and easily, based on experiences 

while on the original path. When other manufacturers became aware of the technology, 

they started new bagless vacuum cleaner designs with the wind tunnel technology. So the 

jump to a new path broke the path dependence on traditional design for the original 

manufacturer of bagless vacuum cleaners and established a new starting point and 

direction for other manufacturers [28, 29]. 

This description of path dependence assumes a fixed landscape where the values of 

product fitness variables remain unchanged. But the development of each technological 

system affects other systems as they co-evolve, as described earlier in the vacuum cleaner 

selection example, and the shape of the fitness landscape changes. Available paths and 

local peaks shift causing changes in the points of highest system fitness and the ways to 

approach these points. Just when the product designer is about to reach a desired fitness 

level, a search along new or prior paths may be required due to co-evolution and the 

shifting fitness landscape. The new search might yield better fitness if higher peaks are 
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attainable, or produce lower fitness because the co-evolving system reduced the altitude 

of available peaks on the fitness landscape. The worst case could be lock-in to a low 

fitness design because the changing landscape has eliminated some paths, and the 

designer is trapped on a low fitness peak or in a low fitness basin from which there is no 

escape [14, 18]. Therefore, during the design process, the initial design, changes to that 

design, and the final result are all dictated by the set of search paths followed.  

The above description provides a foundation and structure for developing alternative 

strategies and techniques to address path dependence and its effects and to develop 

affordable products. The following interventions, derived from the process and impact of 

path dependence described in the literature, and from the results of system dynamics path 

dependence modeling, provide a framework for more detailed strategies in the context of 

this paper. They include the application of the system dynamics model illustrated based 

on Sterman’s system dynamics formulations [15].  

Model the complete path for a design phase to identify critical variables in the 

design path and assess the impact of positive and negative feedbacks at those and 

other points. 

1. Establish clear, measurable requirements and high fidelity metrics for evaluating 

system fitness along the design path. 

2. Choose initial conditions (including technologies and products) that will most likely 

positively influence the design path and produce desired system fitness.  

3. Plan for and get frequent feedback to assess system fitness along the design path. 

4. Quantitatively assess alternative paths when declining fitness or obstacles force a 

path change. 

5. Evaluate the effect of random external influences along the design path and attempt 

to reduce or eliminate adverse impacts if changing the design path reduces system 

fitness. 

6. Occasionally search the adjacent landscape and attempt to discover paths to higher 

peaks. 

A number of alternative modeling approaches and techniques might be used to implement 

these strategies. For example, Sterman [15] describes the use of causal loop diagrams 
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when analyzing the system dynamics of path dependence. This approach can characterize 

path dependent systems through identification of positive feedback loops that reinforce 

system fitness. It would be particularly useful for modeling the systems engineering 

conceptual, preliminary, and detailed design phases, to show the impact of path 

dependence on cost, schedule and design lock-in [27].  

Agent-based simulation [15] might indicate the best path sequence to pursue given a 

desired level of fitness to be achieved. It could be used to evaluate potential outcomes 

stemming from an array of initial conditions and to assess the effects of random external 

influences along the design path. Agent-based simulation is useful when the results of 

each of a series of sequential events are determined by rules that trigger specific agent 

responses to the range of possible inputs to each event. The agents are active elements in 

the complex adaptive design and development system whose behavior is determined by 

the rule set [6].  

Genetic algorithms [30] [6] present another approach for determining the best path to 

follow. Genetic algorithms may generate more effective alternate path directions, enable 

large jumps to new peaks on the landscape, and dynamically predict results. Systems 

engineers could use this approach to investigate the impact of using alternate or 

recombined technologies. 

Each of these modeling approaches has unique features that contribute to their usefulness 

in analyzing the path dependence problem. System dynamics models specify 

deterministic responses during each sequential event by formulations that transform 

values of specific inputs into values of specific outputs. They are structure-based top-

down macro-level continuous-flow models based on integral equations [31]. Agent based 

simulation models produce emergent responses at each sequential event, and those are 

enhanced by the ability of the model to change its rules in response to changing 

conditions. They are rule-based, bottom-up, micro-level, discrete flow models based on 

logic [31]. Both system dynamics and agent-based models can contain reinforcing and 

balancing loops that lead to non-linear trajectories. Genetic algorithms are biologically-

based models designed to generate improved processes and configurations by 

stochastically generating changes in the artificial genetic structure of those processes or 
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configurations at each sequential step, assessing if the change resulted in improvement or 

regression, retaining the changed process or configuration if the result was an 

improvement and repeating this approach until a desired level of fitness is attained. They 

are particularly useful for rapidly generating alternate configurations of developing 

products or systems and evaluating the fitness of each configuration using the process of 

hill climbing [14]. Thus, the choice of a model to analyze path dependence effects and 

implement effective strategies depends on the analytical objective and requires further in-

depth research when assessing system affordability. 

2.4 Quantifying and Measuring Affordability 

A major part of the problem stated earlier in this paper is the lack of a consistent method 

for quantifying, measuring and assessing affordability. The affordability conjecture 

associated with this problem is that relative affordability or fitness of system variants can 

be measured and evaluated using the data envelopment analysis (DEA) model, where 

each decision making unit (DMU) is a variant of the same conversion process 

distinguished by different values of one or more key product fitness attributes. An 

associated conjecture is that the DEA model’s solution space constitutes an NK fitness 

landscape. 

This section describes DEA fundamentals, addresses the characterization of the DEA 

model’s solution space (the production possibility set) as an NK fitness landscape, and 

suggests how the DEA model can be applied to evaluating product fitness. It addresses 

several questions raised by the conjectures stated in the previous paragraph and explores 

the potential use of DEA to measure and evaluate product fitness. Specifically, this 

section discusses the possibility that the DEA model solution space or the production 

possibility set can be represented in Altenberg’s generalized NK fitness landscape. It 

advances the idea that the relative efficiency of products can be equated to relative fitness 

of products. This section also describes how key product fitness attributes are 

conceptually equivalent to the key input and output variables evaluated by the DEA 

model. Finally in this section, we describe how DEA already has been used to evaluate 

product fitness.  
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Data envelopment analysis is a process used to determine the relative efficiency of any 

conversion process
8
, or more precisely, the relative efficiency of each instance of the 

same conversion process. Cooper, Seiford and Tone [32] describe DEA as a process that 

evaluates key input and output variables associated with decision making units (DMUs) 

to determine their technical efficiency. Each observed instance of a conversion process is 

termed a Decision Making Unit (DMU) and each DMU is evaluated as part of the 

aggregated collection of observed instances (DMUs) that depend on similar inputs and 

result in similar outputs. The analytic process is performed by selecting key input and 

output variables that affect the efficiency of all DMUs being evaluated, and using these 

variables in one of several available DEA models or identifying alternative formulations. 

DEA models use mathematical programming formulations to evaluate the efficiency of 

the set of outputs resulting from the conversion of a set of inputs for each DMU. The 

models compare the efficiency of each DMU with all other DMUs, and quantify this in 

terms of relative efficiency. The DEA models locate efficient DMUs on a production 

frontier of efficient DMUs, and locate inefficient DMUs inside that production frontier. 

The result of the analysis is an efficiency score, a performance target, a set of peers for 

each DMU, and a ranking of DMUs based on the relative efficiency score. Thus, data 

envelopment analysis is the process of determining and analyzing the efficiency of the set 

of DMUs on or enveloped by the production frontier [32]. 

Experimentation with the use of DEA to evaluate the fitness of R&D projects has 

indicated that DEA is a viable method for measuring and evaluating product fitness [33]. 

The DEA solution space can be envisioned as an n-dimensional landscape where the 

relative efficiencies of each DMU’s input and output vectors are points on the surface of 

the landscape. Efficient DMUs are located at the peaks of the landscape and a surface 

passing through those peaks represents the frontier of the landscape. The DEA solution 

space dimensions are associated with the number of key variables evaluated for each 

DMU. This appears similar to Altenberg’s generalized NK landscape [20], where N is the 

number of fitness attributes in the population being measured. Altenberg’s landscape 

                                                        
8
 A conversion process as used here refers to an integrated set of activities designed for repeated use to 

transform a prescribed set of specific inputs (resources) into a prescribed set of specific outputs 
(resources). 
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does not use K but rather uses input vectors associated with output functions to reflect 

epistatic coupling. In the DEA solution space, the attributes are the key input and output 

variables that contribute to the efficiency of the DMU. Each DMU’s input and output 

variables could be epistatically coupled, where one key input could affect more than one 

key output or a key output could be affected by more than one key input and thus 

contribute to the difference in relative efficiency of the DMUs based on the values of the 

input variables. Interestingly, specific DMUs on the frontier can be designated as peers 

for certain less efficient DMUs, and the less efficient ones made more efficient by 

adjusting the values of key input/output variables. This is similar to adjusting the values 

of the key variables on the NK landscape during the hill-climbing process to increase 

fitness. It is not yet clear if there is a correspondence between the DEA solution space 

and an NK landscape. The critical question is whether the DEA solution space can be 

used to evaluate the fitness of competing products or services, and thus their affordability 

[34]. 

The vacuum cleaner example introduced in Section 2 illustrates how DEA can be used to 

evaluate product fitness. Since it is difficult for a consumer to accurately rate the 

“goodness” of a significant number of vacuum cleaner features like those listed in Table 

1, unless each vacuum is “home tested” for a period sufficient to accurately rate each 

feature, consumers can use rating services such as Consumer Reports to provide unbiased 

ratings of vacuum cleaners. Such data are not always at the level of detail shown in Table 

1, but are often aggregated at a level that reflects a few key variables roughly associated 

with the affordability fitness functions. The data in Table 2, extracted from The March 

2009 Consumer Reports [35], lists ratings for the top 25 upright vacuum cleaners.  

DEA can use the data in Table 2 to measure the affordability of vacuum cleaners. The 

Consumer Reports’ (CR) variables, shown in the second row of the table, represent key 

vacuum cleaner fitness function variables that represent the combined value of vacuum 

cleaner features that contribute to that variable. For example, some of those features 

listed in Table 1, under performance fitness functions, contribute to each of the 

performance fitness function variables in Table 2. The CR scores are not intuitive with 

respect to the individual variable rankings, so the variables are possibly weighted to 

arrive at those results. The weighting scheme, if any, was not provided. 
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Table 2. Consumer Reports Ratings of top 25 Upright Vacuum Cleaners 

Table 3 shows the results of the data envelopment analysis of all 38 products listed in the 

March 2009 Consumer Reports upright vacuum cleaner ratings. The input variables used 

in the DEA model were the seven variables in Table 2 associated with the performance, 

vitality and adaptability fitness functions. The output variables were price and weight. 

The Charnes, Cooper, Rhodes input minimizing DEA model was used [5] because 

constant returns to scale were assumed and the objective was to reduce input values 

characterized in the resource consumption fitness function. Table 3 shows only the top 

25, as rated by data envelopment analysis efficiency. Fifteen products appear on both top 

25 lists – those highlighted in Table 3. Sixty percent of the products appear in both top 25 

lists as well as both top ten lists. Since the data envelopment analysis is unbiased and the 
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outcome of the analysis is relative fitness, [5] consumers can narrow their alternatives to 

a few competing products. Added techniques, such as cross efficiency evaluation, are 

available to further rank the efficient products and further narrow the alternatives. [34] 

While this analysis shows how DEA might be used to evaluate product fitness, and thus 

affordability, only the DEA model applied weights to the variables. So the scores do not 

reflect the weights used by CR in the consumer ratings to produce those scores. If those 

weights were known, the comparison between DEA ranks and CR ranks would have been 

different. In this case, the correlation coefficient between the DEA scores and CR scores 

is 0.02. Nevertheless, DEA appears to be a viable method for ranking product fitness and 

could very well produce better results than the CR ranking. 

 

Table 3. Results of Data Envelopment Analysis of Product Efficiency  

2.5. Conclusions 

Consumers throughout the value chain should be able to benefit from affordable products 

and services – purchases that perform at the level of quality required by the consumer, 

Product

DEA 

Score

CR 

Score Product

DEA 

Score

CR 

Score

Bissell Lift-off Revolution Turbo 1 57 Hoover Windtunnel Turbopower 0.73 73

Dyson DC07 All Floors Animal 1 60 Kenmore Progressive 0.69 71

Dyson DC24 Ball All Floors 1 57 Hoover Tempo Widepath 1 70

Eureka Altima 1 61 Hoover WindTunnel Bagged 0.87 68

Hoover Empower 1 62 Eureka Boss Smart Vac 0.77 68

Hoover Fold Away Widepath 1 48 Hoover WindTunnel Anniversary 0.74 67

Hoover Tempo Widepath 1 70 Riccar SupraLite RSL3 1 66

Riccar SupraLite RSL3 1 66 Riccar Supralite RSL4 1 63

Riccar Supralite RSL4 1 63 Hoover Empower 1 62

Panasonic Performance Plus Platinum 0.93 58 Dyson DC14 Complete Animal 0.69 62

Oreck XL Deluxe 0.90 51 Eureka Altima 1 61

Hoover WindTunnel Bagged 0.87 68 Bissell Momentum 0.87 61

Bissell Momentum 0.87 61 Bissell Pet Hair Eraser 0.74 61

Hoover Elite Rewind 0.84 50 Dyson DC07 All Floors Animal 1 60

Kenmore Stylite 0.80 50 Dyson DC18 Slim 0.72 60

Kenmore Premalite 0.78 56 Panasonic Performance Plus Platinum 0.93 58

Eureka Boss Smart Vac 0.77 68 Bissell Lift-off Revolution Turbo 1 57

Bissell Pet Hair Eraser 0.74 61 Dyson DC24 Ball All Floors 1 57

Hoover WindTunnel Anniversary 0.74 67 Kenmore Premalite 0.78 56

Hoover Windtunnel Turbopower 0.73 73 Eureka Capture 0.72 54

Dyson DC18 Slim 0.72 60 Oreck XL Deluxe 0.90 51

Eureka Capture 0.72 54 Hoover Elite Rewind 0.84 50

Kenmore Progressive 0.69 71 Kenmore Stylite 0.8 50

Dyson DC14 Complete Animal 0.69 62 Hoover Fold Away Widepath 1 48

Koblenz 0.67 39 Koblenz 0.67 39
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perform at that level whenever required during the useful life of that product or service, 

and do so with minimum consumption of material and financial resources. But despite 

over eight years of affordability science research, we lack a systematic approach to 

developing affordable systems; and we lack a consistent method for quantifying, 

measuring and assessing affordability that accommodates a system of non-linear input 

and output variables with various measurement units. This happened because, despite 

significant efforts to characterize, quantify and measure affordability, that objective was 

never fully achieved. 

This paper addresses these shortcomings by considering affordability as fitness of 

technological systems. It suggests that the characteristics and behaviors of natural 

systems can be used to provide insight into methods for developing desired 

characteristics and behaviors of technological systems that will make them affordable. 

The paper describes four fitness functions – performance, vitality, adaptability and 

resource conservation – functions that provide clues to developers, designers, engineers 

and manufacturers regarding product or service attributes that will render them more 

affordable. The paper also provides potential methods and modeling techniques for 

system designers and engineers to develop affordable products by analyzing the potential 

effects of path dependence on fitness attributes. We also demonstrate a possible effective 

method for measuring product fitness by using data envelopment analysis to evaluate the 

relative efficiency of key fitness attributes associated with affordability fitness functions. 

The broad impact of this research will be the ability to reap the benefits of more 

affordable products, both as an end customer, and as a producer who transforms materials 

received as a customer into products for consumption by customers in the value chain. 

The by-products should be better performing products with longer, uninterrupted service 

life that require fewer resources to produce and use.  

 

  



   

37 
 

References 

1. Keller, G.B., Modeling Affordability as Fitness, 2008, Virginia Tech System 

Performance Laboratory, Grado Department of Industrial and Systems 

Engineering (available upon request from author). 

2. Frenken, K., Innovation, evolution and complexity theory, 2006, Northampton, 

MA: Edward Elgar. 

3. Arthur, W.B., Increasing Returns and Path Dependence in the Economy, 1994, 

Ann Arbor: The University of Michigan Press. 

4. Blanchard, B.S. and W.J. Fabrycky, Systems engineering and analysis, 2006., 

Upper Saddle River, N.J.: Pearson Prentice Hall. 

5. Cooper, W.W., L.M. Seiford, and K. Tone, Introduction to Data Envelopment 

Analysis and Its Uses: With DEA-Solver Software and References, 2006: Springer 

Science and Business Media. 

6. Holland, J.H., Hidden Order, 1995, Reading, Massachusetts: Addison-Wesley 

Publishing Company. 

7. Waldrop, M.M., Complexity, 1992, New York: Simon & Shuster. 

8. Drew, K., 2011: Washington DC. 

9. in Webster’s Ninth New Collegiate Dictionary 1983, Merriam-Webster, Inc.: 

Springfield, Massachusetts. 

10. Defense Acquisition Guidebook, D.o. Defense, Editor 2011, Defense Acquisition 

University. 

11. Gyrna, F.M., R.C.H. Chua, and J.A. Defeo, Juran's Quality Planning & Analysis 

for Enterprise Quality, 2007, New York: McGraw-Hill. 

12. Keller, G.B., Affordability: Its Definition and Attributes, 1998, Virginia Tech 

System Performance Laboratory, Grado Department of Industrial and Systems 

Engineering (available upon request from author). 

13. Naval S&T Strategic Plan, D.o.t. Navy, Editor, 2007, Office of Naval Research. 

14. Kauffman, S., At Home in the Universe, 1995, New York: Oxford University 

Press. 

15. Sterman, J., Business dynamics : systems thinking and modeling for a complex 

world, 2000, Boston: Irwin/McGraw-Hill. 



   

38 
 

16. Harman, M. and J. Clark. Metrics are fitness functions too. in Software Metrics, 

2004. Proceedings. 10th International Symposium on. 2004. 

17. Holland, J.H., Emergence, 1998, Reading, Massachusetts: Addison-Wesley 

Publishing Company. 

18. Kauffman, S.A., The Origins of Order, 1993, New York: Oxford University 

Press. 

19. Arthur, W.B., Inductive Reasoning and Bounded Rationality, in American 

Economic Association Annual Meeting, 1994, American Economic Review. p. 

406-411. 

20. Altenberg, L., NK Fitness Landscapes, in The Handbook of Evolutionary 

Computing, D.F. T. Back, Z. Michaelwicz, Editor, 1997, Oxford University Press. 

21. Nordwall, B., U. S. F-14s to get digital controls. Aviation Week and Space 

Technology, 1996. 144(12). 

22. Hadley, G., Linear Algebra. Addison-Wesley Series in Mathematics, 1961, 

Reading, MA: Addison-Wesley. 

23. Kauffman, S.A., Investigations, 2000, New York: Oxford University Press. 

24. Freund, I.M.a.J., Probability and Statistics for Engineers, 1965, Englewood 

Cliffs, NJ: Prentice-Hall. 

25. 'FERRARI' IN A VACUUM CLEANER. IEE Review, 2003. 49(10): p. 52-52. 

26. Frenken, K., Fitness landscapes, heuristics and technological paradigms: A 

critique on random search models in evolutionary economics. AIP Conference 

Proceedings, 2001. 573(1): p. 558. 

27. Keller, G., Path Dependence in System Design, 2012, Virginia Tech: 

Woodbridge, VA. 

28. Robin, R., The Fantom menace. Canadian Business, 2001. 74(18). 

29. Create a holiday wind tunnel, in USA Today, 2008. 

30. Mitchell, M., An Introduction to Genetic Algorithms, 1996, Cambridge, 

Massachusetts: The MIT Press. 

31. Milling, N.S.a.P.M. Modeling the Forest or Modeling the Trees: A comparison of 

system dynamics and agent-based simulation. in 21st International Conference of 

The Systems Dynamics Society. 2003. New York, NY. 



   

39 
 

32. Cooper, W.W., -, Introduction to data envelopment analysis and its uses : with 

DEA-solver software and references, ed. L.M. Seiford, K. Tone, and W.W. 

Cooper. Vol. xxxiv, 354 p. :. 2006, New York :: Springer. 

33. Keller, G., Application of Data Envelopment Analysis to the Evaluation and 

Selection of Department of Defense Corrosion Prevention and Control Program 

R&D Projects, in Performance and Productivity Measurement and Evaluation, 

2006: Virginia Tech. 

34. Keller, G.B., Measuring Fitness of Projects, Products and Technologies Using 

Data Envelopment Analysis, 2012, Virginia Tech. 

35. Vacuums, in Consumer Reports, 2009. p. 39-41. 

36. Keller, G., Data Measurement, Applications and Issues Associated with Project 

Evaluation and Selection, in Independent Research Report, 2008, Virginia Tech. 

 

 

 

 

 

 

 

 

 

 
  



   

40 
 

3. Path Dependence in Systems Engineering: Affordability Implications 

 

Abstract 

 

During a system design evolution, the specific design outcome is determined by that set 

of design search paths followed – it is path dependent. Dynamic mechanisms create, 

dictate and maintain path dependence. Initial conditions define the start and direction of a 

path. During subsequent design steps, positive feedback influences the designer to 

continue on that path. Frequently, the design gets “locked-in” due to unforeseen external 

conditions that eliminate other practical alternatives. Path dependence can produce 

positive or negative effects. Positive feedback could accelerate achievement of the best 

design. But continuing along a path of positive feedbacks could cause the system 

designer to miss better solutions. This paper describes underlying mechanisms that 

create, dictate and maintain path dependence, discusses the effects of path dependence on 

system design and system affordability, and suggests actions to address its effects. 

System dynamics models of path dependence during concept design, preliminary design 

and detailed design depict the effects of path dependence on technology selection, cost, 

schedule, and lock-in, reinforcing the impact of path dependence and results of actions to 

address that impact. Effects of alpha and beta test errors, lock-in, and intentional 

excursions from the path are demonstrated.  

 

Key words: affordability, path dependence, initial conditions, positive feedback, lock-in, 

systems design 
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3.1 Introduction and Context 

Consumers are constantly pursuing better performing, more useful, higher quality 

products and services at a reasonable price. In other words, consumers continually seek 

new, affordable products and services, where affordability is defined as the characteristic 

of a product or service that enables it to perform at the level of quality demanded by the 

consumer, is available to perform whenever the consumer needs the use of the product or 

service, and can be procured and operated for a reasonable cost [1]. Although some new 

products may be so unique that they create their own market, many new, affordable 

products and services appear as variants or composites of prior products and services. 

Transformations from one product or service generation to the next can range from minor 

changes to major innovations. This transformation process is termed technological 

evolution. 

Technological evolution results from the interaction of consumers, engineers and 

producers that are the active agents in the overall process, and from the resulting flow of 

resources and information between these agents. In response to consumer feedback, 

engineers and producers use some set of performance rules to exchange resources and to 

produce new or improved products and services. The agents interact in dynamic 

sequences, patterns, and cycles of resource and information flow, sometimes producing 

startling results during technological evolution.  

Kauffman [2] describes these dynamic interactions and outcomes in At Home in the 

Universe. He points out that technological evolution, like biological evolution, features 

processes that operate in a co-evolutionary, co-adaptive environment,
9
[3] where networks 

of agents evolving in interacting systems can have a significant impact on the change in a 

particular product or service. While many products and services are slightly altered to 

adapt to a gradually changing environment, innovative new products and services also 

rapidly emerge to respond to significant shifts in consumer requirements. The nature of 

the transformations resulting from such agent-based interactions indicates that 

                                                        
9
 Coevolution is a process of adaptive moves by interacting systems, where each system affects the fitness 

of the other, and each system’s fitness depends on the other system’s fitness. During coevolution, each 
interacting system co-adapts to the effects of the other system by altering its existing attributes or 
generating new attributes. 
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technological evolution operates as a complex adaptive system seeking to increase 

system fitness.  

John Holland [4] describes complex adaptive systems as systems composed of interacting 

agents that adapt by changing their strategies as they accumulate experience. In 

biological systems, adaptation enables an organism to achieve greater environmental 

fitness. Similarly, in technological systems, adaptation enables the system to effectively 

respond to changes in the operational environment. As suggested in Chapter Two, 

complex adaptive systems provide a robust dynamic representation of fitness that can be 

applied to product affordability. So technological system fitness can be described as 

product or service affordability, and affordability can be modeled as system fitness [5].  

One of the key elements in developing and producing new, affordable products and 

services is the systems engineering process. An underlying phenomenon of the systems 

engineering process, one that affects product or service affordability, is a characteristic of 

complex adaptive systems called path dependence. Path dependence is a sequential 

system development characteristic where initial conditions, random events, and positive 

feedback all conspire to dictate the path taken to complete the development process [6]. 

Path dependence is evident in economic, political and biological development, and 

particularly in technological development. Since the role of systems engineers is to bring 

systems into existence through the technological development process [7], systems 

engineers need to recognize path dependence, its elements and its consequences. 

The objectives of this paper and the research described herein is to characterize path 

dependence in terms that system developers, designers, engineers, and decision-makers 

recognize and understand; and to describe approaches that can enhance the positive 

aspects of path dependence, and overcome or reduce the negative aspects. The paper 

begins with the background of path dependence to provide a point of departure for a 

further description of path dependence. Next, it explains a conceptual model of path 

dependence by describing the dynamic sequence of events that can take place during the 

development of a technological system. Following that, the paper describes elements of 

the systems engineering design process that affect path dependence and shows how path 

dependence can influence the outcomes of that design process. It concludes with 
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suggestions for overcoming the negative effects of path dependence and for taking 

advantage of the positive effects. 

Although the literature has associated path dependence with technological development, 

it has not explored the impact of path dependence on the systems engineering design 

process in detail. This paper describes the impact of path dependence on each systems 

engineering design phase and analyzes the influence of each element of conceptual, 

preliminary and detailed design on path dependence. In addition, it provides the first 

systems dynamic model, which, though elementary, provides a basis for significantly 

more detailed modeling.  

This paper explains undesirable design outcomes such as lock-in to lower quality designs 

and tendencies to continue on a less productive design path due to successive positive 

feedback that occur as a consequence of path dependence. The paper also offers systems 

engineering policies and strategies to take advantage of positive effects of path 

dependence and to recognize and avoid negative effects. Since path dependence is a 

complexity sciences phenomenon, this paper contributes new information to the 

complexity sciences literature.  

3.1.1 Background 

The literature addresses path dependence and its effects across many areas involving 

system development and growth. Sterman [6] devotes an entire chapter of his textbook 

Business Dynamics to path dependence. He defines path dependence as a system 

behavior pattern where small, random events in a system dominated by positive feedback 

determine the ultimate system state. Sterman [6] illustrates the process and explains the 

effects of path dependence, such as lock-in, associated with technology, business, and 

economics. 

O’Sullivan [8] claims that path dependence and positive feedback are useful metaphors 

generated by complexity science to describe system dynamics. He explains that path 

dependence defines a current system’s state as a function of prior states reinforced by 

positive feedback. Levin [9] reinforces that explanation by observing that all complex 

adaptive systems reflect path dependence during their development. His description of 

path dependence as a consequence of nonlinearity because of changing interactions 
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within systems, as they evolve, reinforces Sterman’s observation that non-linear functions 

should be used in modeling path dependence since linear models are restrictive with 

unrealistic assumptions[6].  

Arthur [10], a noted economist and complexity scientist, relates the dynamic effects of 

path dependence in the economy, pointing out that positive feedback magnifies the 

impact of small changes and often influences increasing economic returns. He observes 

that high-technology, knowledge-based products and systems generally enjoy increasing 

economic returns due to path dependence, and while resource intensive systems are not 

strongly affected by path dependence, they are usually constrained to diminishing 

economic returns. Arthur also observes that path dependence can produce some less 

desirable results such as lower competition; higher, unstable prices; fewer choices; and 

ultimately lock-in to a specific product or process. Arthur describes lock-in as the 

selection of one competing technology based on historical small events beyond the 

knowledge or control of a decision maker. This often begins as a random choice of that 

technology and a subsequent succession of those small events that increase the 

dominance of that technology. When support of and for the other competing technologies 

fades (and sometimes disappears), the decision maker is locked-in to the dominant 

technology.  

The literature specifically addresses path dependence as it relates to technological 

evolution and development. Gether’s [11] doctoral dissertation discusses technology 

choices under conditions of path dependence, feedback and nonlinearity. She points out 

that information obtained through modeling technological development must account for 

path dependence that could lock-in sub-optimal technology choices. She describes lock-

in as the selection of a dominant design where the cost of switching to another design is 

prohibitive. Metapati [12] asserts that the rate of technical innovation reflects the 

influence of path dependence. He traces the innovative development of the 

microprocessor and the effect path dependence had on its development. Wang [13] 

discusses the impact of path dependency on designing flexibility into physical systems. 

His doctoral dissertation includes methods to simplify the very complicated path 

dependence problem encountered while selecting options for systems design such as 

various configurations of a power converter.  
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Frenken [14] observes that interdependence among components in complex technological 

systems constrain the adaptive capabilities of those systems, which in turn constrains the 

paths available for the system to evolve. During system development, many changes to 

existing configurations may benefit part of the system but have negative consequences 

for the overall system – only a few changes usually benefit the entire system. The fact 

that these few successful changes depend on the precise configuration of the system 

indicates that such complex systems are very path dependent.  

Thus, the literature indicates that path dependence is found in virtually every developing 

system. Path dependence can produce beneficial results, but also it can create problems 

by limiting the perceived options available for creating new system designs or improving 

existing designs. This reinforces the idea that system designers, as well as systems 

engineers, need to recognize path dependence, understand the involvement of path 

dependence in technological evolution and development, take advantage of the positive 

results of path dependence, and take action to avoid its undesirable consequences. But the 

literature does not focus on specific dynamics of path dependence during the systems 

engineering design process, nor does it suggest approaches to avoid undesirable effects. 

The remainder of this paper remedies this gap in the literature by explaining the dynamics 

of path dependence that causes the behavior described by Frenken; exploring the systems 

engineering design process to pinpoint where system developers and decision-makers 

need to influence and assess path dependence; describing how a system dynamics model 

can be used to assess or predict the impact of path dependence on system development 

outcomes; and suggesting some methods for inducing or taking advantage of positive 

effects or avoiding negative effects of path dependence.  

3.2 The Conceptual Path Dependence Model 

Path dependence can be modeled by incorporating three complexity science-based 

concepts that help to explain path dependence and its effects. The first concept is that of 

system fitness. Webster [15] defines fitness as environmental adaptability so as to be 

capable of surviving, and describes fitness as suitability or special readiness for a 

particular use. In biological evolution, fitness reflects system survivability – the higher 

the fitness, the more likely the system will survive. It follows that system fitness during 
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technological evolution reflects a system’s suitability to fulfill its intended use – the 

higher the fitness, the more likely the system will effectively fulfill its purpose.  

The literature [6, 16, 17], the experience of many systems developers and engineers, and 

one’s intuition indicate that technological evolution follows a distinct path – a sequence 

of steps, each of which depends on the prior step. The relationship between this path 

dependence and system fitness can best be understood through the use of the second 

complexity science-based concept: that of fitness landscapes
10

. A systems engineer or 

designer might view technological evolution on such a fitness landscape, where increased 

fitness is achieved by metaphorically climbing to a higher point on the landscape.  

Kauffman [2] suggests that fitness of technological systems can best be modeled on a 

correlated landscape, where clusters of somewhat rugged peaks with varying altitudes 

represent different levels of fitness – the higher the peak, the greater the fitness. Figure 2 

illustrates such a correlated landscape. Before the climb commences, the systems 

designer chooses, often randomly, that starting point (A) and design path (red) which 

appear to offer the best chance of improving design fitness. The designer continues on 

that path as long as positive feedback indicates the correct design choice was made. 

Chapter 4 suggests methods for measuring fitness and thus receiving feedback during the 

systems engineering design process. If negative feedback indicates that progress is 

downhill, the designer looks for and chooses a different path. If the designer encounters a 

design obstacle that dictates a change in direction or perhaps a retreat (metaphorically a 

cliff or ravine), the designer also takes another path. If a chance occurrence threatens the 

design (metaphorically falling rocks), the designer may work around that threat or change 

direction. Note that the higher the designer climbs, the fewer the number of available 

upward paths. And, when a local peak is reached (B) there are no remaining upward 

paths, so at least a local optimum point is attained.  

                                                        
10

 A fitness landscape is a multi-dimensional, conceptual solution space where each important variable 
associated with objects being assessed for fitness defines a dimension of the landscape. The location of a 
radial vector of the fitness variables that emanates from the origin of the landscape defines an object’s 
position on the landscape. The landscape contains one or more hills and valleys defined by the location of 
all object vectors. The fittest object is located on the highest local hill and other less fit objects located on 
the hillsides or in the valleys. As the value of an object’s variables change, the vector’s location will 
change. Attempts to improve the fitness of an object on a fitness landscape are referred to as hill-
climbing.  
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Adapted from Path Dependence Briefing to the Office of Naval Research [18] 

  

Figure 3. Path Dependence in System Design on a Fitness Landscape 

Hill climbing is complete when the design reaches the desired level of system fitness. 

However, if the desired system fitness is not achieved at that local peak, the designer 

must decide whether to accept the level of fitness achieved or look for a higher hill. If it 

is too expensive to pursue another path, the design may be locked-in at this point. Or, if 

available technology will not support searching in other directions, the designer may be 

forced to lock-in to this design. However, if further search is feasible, the designer might 

retrace the prior path and search for a new path (yellow) to a higher hill and begin the 

upward climb to its peak (C). If the nearest higher hill is quite far though still visible, the 

designer may find a way (perhaps a new technology) to completely escape the path that 

led to the lower hill and jump to the base of that higher hill (D), a technique known as 

long-jump adaption. [2] The designer may be able to climb a new path (blue) more 

rapidly to the peak of that hill and more easily achieve the desired fitness based on the 

experiences encountered on the original path.  
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The complexity science-based concept of coevolution must be considered in this path 

dependence model. Kauffman [2, 3] describes coevolution as the interaction between 

systems as they simultaneously evolve. The development of each technological system 

affects the other as they coevolve. Kauffman points out that the shape of the fitness 

landscape changes as systems coevolve – available paths and local peaks shift causing 

changes in the points of highest system fitness and the ways to approach these points. Just 

when the system designer is about to reach a desired fitness level, a search along new or 

prior paths may be required due to coevolution and the shifting fitness landscape. The 

new search might yield better fitness if higher peaks are attainable, or produce lower 

fitness because the coevolving system reduced the altitude of available peaks on the 

fitness landscape. The worst case could be lock-in to a low fitness design because the 

changing landscape has eliminated some paths, and the designer is trapped on a low 

fitness peak or in a low fitness basin (E) from which there is no escape.  

So, during technological evolution, the specific outcome is dictated by the set of search 

paths followed – it is path dependent. And obviously, the shortest overall path length 

should be the most cost effective and efficient if the desired level of fitness is achieved. If 

the system designer avoids obstacles and random diversions, copes with the possible 

effects of coevolution, and chooses the best set of search directions, design efficiency and 

effectiveness can be achieved along with high system fitness. But in the world of systems 

engineering and system design, metrics and mechanisms for providing feedback dictate 

the level and direction of path dependence. This is true during conceptual design, 

preliminary design and detailed design: the three phases of systems engineering that 

precede system production, operation and phase-out [7]. 

3.3 Impact of Path Dependence on System Design  

The literature suggests that four conditions dictate the technological development path: 

the initial starting point and direction, small random events that occur during the 

technological evolution, coevolution of interacting systems, and positive feedback. Since 

the systems design process almost always features these four conditions, path dependence 

can be expected to have a significant effect on the design throughout the process.  
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3.3.1 Conceptual Design 

Conceptual design is the first phase in the technological evolution process. System 

requirements are derived from customer needs, and a concept of operations is developed 

to meet these requirements. This concept of operations describes primary mission 

activities along with associated maintenance and support activities. System level 

measures of effectiveness (MOEs) are established and quantified to evaluate how well 

each design alternative meets established requirements. A Systems Engineering 

Management Plan (SEMP) provides overall guidance and a Test and Evaluation Master 

Plan (TEMP) establishes tasks and schedules for performing design analysis and testing. 

Each design concept is evaluated as specified in the TEMP. At the end of the phase, the 

feasibility of each concept is assessed and the fittest concept is selected, established as a 

functional baseline, and documented in the top-level system specification [7, 19].  

Critical steps in the preliminary design sequence dictate the technological development 

path. Defining system requirements is very important, since measuring the wrong 

performance parameter is likely to place the design on the wrong path. Establishing 

legitimate, unambiguous system level MOEs is the most critical step, since design fitness 

will be evaluated using these MOEs, and they will determine whether feedback is 

positive or negative. Another important step is establishing support activities associated 

with mission activities. This frequently involves tradeoffs, and that implies that mission 

and support activities might coevolve during the concept design evolution and system 

fitness might vary as the landscape is reshaped.  

Path dependence can affect the conceptual design phase in several ways. A sub-optimal 

alternative could be chosen and a better alternative overlooked if positive feedback based 

on inappropriate requirements, poor MOEs, or coevolution indicates the selected 

alternative presented as the best design path. Similarly, the systems engineer could 

conclude that the entire concept is or is not feasible based on the same type of feedback 

errors such as erroneous performance data that indicate a similar operational system 

would or would not be an appropriate exemplar for the system being designed.   
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3.3.2 Preliminary Design 

Preliminary design begins with a functional analysis based on the system specification, 

and that leads to development of functional performance requirements. These 

requirements specifically address functional, performance and design needs. Performance 

and design factors, along with effectiveness requirements, are allocated to the specific 

functions to be performed. Effectiveness requirements are defined in terms of system 

level MOEs, physical or functional measures of performance (MOPs), and technical 

performance measures (TPMs). These performance measures are used in simulations and 

component or breadboard tests to evaluate functional design, judge alternative 

approaches and select the best system alternative. Life cycle cost estimates are developed 

in parallel with performance parameters. An updated SEMP and TEMP provide 

guidance, tasks, schedules and test methods for performing these evaluations. At phase 

end, the selected alternative becomes the allocated baseline shown in preliminary design 

documents such as development, process, product, and material specifications. [7, 19]  

Critical steps in the preliminary design sequence have more impact on the technological 

design path than in the conceptual design phase. It is important for functional 

requirements to reflect the design concept and “voice of the customer,” since variances 

likely will start the design on the wrong path. It is very important to establish clear, 

unambiguous performance and design requirements, for they become the basis for 

establishing system level, functional and technical performance measures. Measuring the 

wrong parameters will surely put the design on the wrong path. The most critical step is 

quantifying performance measurements. If MOEs, MOPs or TPMs do not accurately 

reflect performance goals, tradeoff decisions may be faulted; substandard performance 

accepted; or superior performance rejected. Such results could be particularly serious 

when evaluating Key Performance Parameters. It is important to update the TEMP and 

provide current details regarding test requirements and methods. Setting cost targets 

could also be important in avoiding early commitment to high detailed design and 

production phase costs.  

In the preliminary design phase, path dependence resulting from positive feedback during 

simulation and testing can positively or negatively influence design decisions. If MOEs, 

simulations and test methods are effective, design alternatives are likely to be accurately 
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assessed and the correct design path indicated. And a succession of accurate positive 

feedbacks can more quickly and cost-effectively produce the highest fitness design 

alternative. However, if design assessments and tradeoffs are faulty, the wrong design 

path may be indicated – the designer may continue on a low fitness design path or 

erroneously take a new low fitness path. Once a new path is chosen, successive positive 

feedbacks may mask the design’s ultimate low fitness until late in the preliminary design 

phase or even in the detailed design phase. At that point, it may be too expensive to 

search for and find a higher fitness path and the design may essentially be locked-in. 

While lock-in to the highest fitness design can be beneficial, unforeseen events such as 

unavailability of critical materials or failure to develop a new, key technology could force 

the systems engineer to lock into a lower fitness alternative.  

3.3.3 Detailed Design 

Detailed design is focused on design of the specific system or product selected during 

preliminary design. Allocated baseline documents provide the basis for developing and 

allocating design requirements to all system components, subassemblies, assemblies, 

subsystems and software, and for developing interface design requirements for 

integrating these configuration items. Designs reflecting these requirements are 

developed and implemented and a system prototype is created with which to evaluate 

system structure, performance and overall fitness. The TEMP is updated for this phase 

and specifies intensive testing at every design level. The general sequence of design, 

build, test and integrate is repeated throughout the phase to assess fitness at each level. 

Process, product and material specifications are updated throughout the phase with 

changes controlled through a configuration control board. Cost estimates are reviewed 

and updated and variances from prior estimates noted. The phase ends with a product 

baseline documented in the latest updates of the process, product and material 

specifications [7, 19].  

Critical steps affecting the technological development path during detailed design are 

heavily weighted toward design testing. One critical step is conversion of system 

functional, physical and design requirements into clear, traceable configuration item 

requirements. The next step is developing physical and functional designs that effectively 
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convert these requirements into real hardware and software that accomplish their purpose. 

Perhaps the most critical step is establishing test methods and metrics that truly measure 

the fitness of each configuration item, which means that the metrics must reflect the 

allocation of previously specified performance measures down to the configuration item 

level. The TEMP must be updated to reflect these methods and metrics and the sequence 

in which they are to be applied. It is also important to establish cost targets for the 

fabrication or development of configuration items.  

In the detailed design phase, the technological evolution path contains many more 

segments. Each component represents a starting point that features an initial condition 

and path direction. Designers must make that choice based on the design specification, 

and often rely on prior similar designs, previous experience, or shared knowledge to 

establish initial conditions and path direction. So the starting point and direction for a 

component development path might be path dependent. Each in-process and completed 

item test presents an opportunity to evaluate the fitness of a configuration item. If metrics 

and test methods are effective, the design is likely to be accurately assessed and the 

correct design path indicated. If metrics and/or test methods are ineffective, the design 

may be erroneously accepted or rejected. This error will roll up with integration at each 

level and continued positive feedback will compound the error until it is finally detected 

or mitigated. Mitigation might be accidental and never perceived, but if the error is 

detected far up the technological development path, it may be difficult and costly to trace 

the error to its source and even more costly and time consuming to change the path. 

Integration introduces coevolutionary effects that may amplify already high fitness or 

may interfere and reduce fitness. The further the design and integration progresses, the 

more vulnerable the design path becomes to lock-in. Undesirable lock-in might occur if 

negative feedback dictates a new path that is prohibitively expensive, or a technology that 

is not sufficiently developed or supported. However, lock-in due to overwhelming, high 

fidelity, positive feedback is desirable since the right technological path was selected.  
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3.4. Systems Design Model 

As stated above, the technological development path is a function of the initial starting 

point and direction, small random events that occur during the technological evolution, 

coevolution of interacting systems, and positive feedback. 

                

                                                          

A system dynamics model of path dependence during systems design was structured to 

quantitatively illustrate these effects. The products modeled for this phase are technology 

designs, which refer to technology development component, subassembly and assembly 

designs, including brass-board and advanced development units associated with the key 

functions and concepts evaluated in the concept development phase. The model 

accommodates two technologies, and, during each period, generates and assigns a 

technology design to one of the two technologies. The total number of technology 

designs to be developed during the model run is an exogenous variable. Figure 3 is a 

simplified version of the model showing key variables and relationships for generating 

designs for one of the two technologies.  

  

  

 

 
 
 
Figure 4. Causal Loop Diagram of Key Variables Used to Model Path Dependence 

in Systems Design 
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During each model period, the model generates and assigns a design to one of the two 

technologies. The assignment is made based on the probability of selecting a technology 

during each period. The non-linear Polya process is used to generate the probabilities of 

selection during each successive period. This model is adapted from Sterman’s non-linear 

Polya process formulation, which generates path dependent results [6]. The degree of 

path dependence is regulated by an exogenous “sensitivity to proportion” variable (not 

shown in Figure 2). The probability of selecting a specific technology design is based on 

the ratio of the previous selection of that technology to the total instances of technology 

selection. Generating a random uniform variable and comparing it to the probability of 

selection determines which technology design is selected. The initial technology is based 

on the initial “random draw” variable (initial condition). The model operates as follows. 

The “initial probability of selecting technology 1” variable is an exogenous variable that 

allows the user to define that initial condition for the “probability of choosing technology 

1” variable. The “initial technology 1 designs” variable is an exogenous variable that 

defines the initial value of the “technology 1 good designs” stock. That value is usually 

set at one for each technology, so if there are two technologies being modeled, the initial 

“proportion of technology 1 designs” will be 0.5. The “probability of choosing 

technology 1” variable during each succeeding period is a function of the “proportion of 

technology 1 designs” previously chosen.  

The design reinforcing loop begins with the “probability of choosing technology 1” as an 

input to the “technology 1 design selected” variable. Sterman’s formulation in the 

“technology 1 design selected” variable features random perturbations generated by an 

exponential function in order to make the probability of choosing that technology non-

linear. If that technology is selected, the design undergoes inspection and/or test with the 

result determined by the “technology 1 design accepted” variable. The probability of 

passing a design inspection and/or test is the “technology 1 failure probability” 

exogenous variable. Inspection and/or test are treated as a single event during each period 

in the model run. A random uniform variable is generated and compared to the 

probability of passing the inspection or test to determine if the design passed or failed. If 
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the design is accepted, there is a random probability that it was a false negative
11

 (random 

event), which is determined by the “good design 1 probability” exogenous variable. 

Another random uniform variable is generated and compared to the “good design 1 

probability” of not being a false negative. If it is a good design, it is added to the 

“technology 1 good designs” stock. If it is a false negative, it is added to the “technology 

1 false negative designs” stock, where it will await discovery as an unacceptable design 

then be added to the “design 1 rework” and placed in the “technology 1 good designs” 

stock after rework is completed. The addition of a design to the ““technology 1 good 

designs” stock increases the “proportion of technology 1 designs” variable, thus 

increasing the “probability of choosing technology 1” variable (positive feedback). If the 

result determined by the “technology 1 design accepted” variable is design failure, the 

“proportion of technology 1 designs” does not change (negative feedback). If the 

feedback is positive, a new design is added to one of the technologies. If the feedback is 

negative, the failed design is (nominally) re-entered into the process thus adding to the 

total number of designs to be processed.    

A rare external event called an extinction event (caused by coevolution) can also be 

randomly generated, and the result is to restart the entire technology design process. An 

extinction event might result from non-availability of critical resources or the decision to 

execute a long jump to an entirely new technology. The probability and period of 

occurrence of an extinction event are controlled by exogenous variables. If a rare 

extinction event is generated, the “extinction event” variable removes all designs in the 

“technology 1 good designs” stock. Feedback from the “technology 1 good designs” 

stock to the “total number of designs” variable and the “designs added each period” 

causes the model to start the process from the beginning.  

The model accumulates costs and schedule days required to complete the system design. 

Separate cost data are captured for technology design, for inspection and/or test, for 

redesign of failed units, and for rework. The cost accrued in each period of the model is 

generated by multiplying exogenous maximum cost variables for design, test, rework or 

                                                        
11

 A false negative, also known as a Type II error, is a condition where a design is accepted when, in fact, it 
is deficient and should have been rejected. 
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redesign by exogenous table values that define the percentage of maximum cost that 

applies to that period of the model run. The resulting costs are accrued in cumulative cost 

stocks. Schedule days expended to complete the design process are determined by 

multiplying an exogenous average days per design variable by a total designs selected 

stock. The model also reflects potential lock-in to designs by comparing maximum 

allowed days to total days expended and comparing maximum allowed costs to total 

cumulative cost. When the cost or schedule lock-in occurrence variable equals one, that 

point has been reached, though the model will continue to run until all designs are 

completed.  

The model run is completed when the number of completed designs (“total number of 

designs” variable) equals the total number of designs required (“total designs” variable). 

To evaluate the impact of initial conditions on path dependence, initiate another run after 

changing the exogenous “random seed input” variable while retaining the same values of 

other exogenous variables. Assess the effect of feedback on path dependence by changing 

the exogenous “technology failure probability” variables’ values while holding other 

exogenous variables constant. Evaluating the impact of random events is accomplished 

by changing exogenous “good design probability” variables’ values with other exogenous 

variables held constant. Coevolution effects on path dependence can be modeled using 

different exogenous extinction variables while retaining other exogenous variable values.   

The parameter values for the model runs are found in appendix A. The impact of path 

dependence on technology designs is reflected in Figure 4. This graph of 3 system 

dynamics model runs shows the rapid convergence to one technological path during 

systems design. It also shows varying numbers of designs despite holding selection 

probabilities, failure probabilities, and false negative probabilities constant. The only 

difference is the random number seed used to initiate the model runs.  
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Figure 4a. Initial Conditions 

 

Figure 4c. Random Events  

 

Figure 4e. Negative Feedback 

 
 

 

Figure 4b. Positive Feedback 

        

 

Figure 4d. Coevolution 

            

 

Figure 4f. One Technology Coevolution 

 

      

Figure 5. Path Dependence of three sets of technology designs with identical 

probabilities of selection and failure but different random number seeds 
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Figure 4a shows that the impact of initial conditions might cause a dominant technology 

to develop quickly, as in technologies 1B and 2B, or to not diverge from the other 

technology until later, as in technologies 1A and 2A. Note that technology 1 dominates in 

one case and technology 2 dominates in the other two cases, which means that the initial 

random seed (initial condition) changed random draws that affected technology 

dominance despite the same probabilities of selection, acceptance and good design. 

Figure 4b reveals that feedback from moderate failures changes technology 1B to a 

dominant technology and accelerates the dominance of technologies 1B and 1C. Figure 

4c is similar to 4a; except technology 1B has become dominant as in Figure 4b and all 

technologies accelerate path dependence at least somewhat. All three figures reflect 

fluctuations that are caused by test failures of false negative events, none of which affect 

a technology’s relative dominance or weakness. Figure 4d shows the effects of 

environmental influences with which the technologies coevolve. In this case, two 

extinction events (perhaps a total failure of a design approach and later a supplier going 

out of business) cause restarts of the design process, but no change in the dominant 

technologies, since rework designs are still in process thus increasing the probability of 

choosing the dominant technology. Figure 4e reflects results of one technology having a 

higher failure rate than the other. Technology crossover is affected by the number of 

good designs in the good design stock. Technology 1 dominated initially during Run C, 

but the high failure rate caused increased acceptance of technology 2 designs, and 

positive technology 2 feedback reinforced the upward trend of the technology 2 path.  In 

Runs A and B, technology 2 quickly dominated from initiation with less failures. This is 

shown graphically in Appendix A, Figure 13. Figure 4f also displays technology 

crossover, this time as a result of one technology suffering a 75% extinction event.  

However the result is counterintuitive – the weak technology crosses over and becomes 

the stronger one, though it is not completely dominant. Even though technology 2 

dominated good designs initially during Run A, the technology 1 extinction event was 

sufficient to change the proportion of each technology designs to slightly favor 

technology 1 and cause that technology to subsequently produce more designs than 

technology 2. The other technologies were less affected and no crossover occurred, 

though Run C showed similar effects as in Run A. This is shown graphically in Appendix 
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A, Figure 24. In any case, positive feedback at each step of the design process will cause 

the dominant technology to continue along its path. Additional figures with path 

dependence results are displayed in Appendix A-1.  

This model can be applied to real applications by entering the appropriate parameter 

values for exogenous variables such as probability of passing, percent of false negative 

test results, average rework delay, average time to perform rework, cost table, schedule 

table, maximum costs and schedules for design, redesign, test and inspection, rework, 

maximum allowed days, maximum allowed schedule, and total designs required. 

3.5. Strategies and Techniques to Address Path Dependence 

Systems engineers and designers need to employ strategies that take advantage of path 

dependence and offset potential shortcomings. The following interventions, derived from 

previously described descriptions of the impact of path dependence, provide a framework 

for more detailed strategies in the context of this paper. The listed strategies emerged 

from the path dependence research, the systems engineering literature and the preceding 

path dependence discussions.  They include the application of the system dynamics 

model illustrated above using Sterman’s system dynamics formulations [6]. 

Model the complete path for a design phase to identify critical variables in the design 

path and assess the impact of positive and negative feedbacks associated with those and 

other variables. For example, setting the average test failure rate lower than expected 

during one model run and higher than expected during another model run could indicate 

downstream points where lock-in might occur.  

1. Establish clear, measurable requirements and high fidelity metrics for evaluating 

system fitness along the design path. For example, inspection and test, quality, cost 

and schedule metrics are important in the model shown in the previous section. The 

impact of poor metrics can be modeled by increasing the test failure rate and/or the 

fraction of false negative test results and observing the increase in costs and schedule 

and number of design starts required. 

2. Choose initial conditions (including technologies and products) that will most 

likely positively influence the design path and produce desired system fitness. For 
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example in the model in the previous section, choice of technologies, as represented 

by initial probabilities of selection and initial good design stock levels, has a large 

impact on path dependence. Seek and choose dominant or exemplar technologies and 

designs for complex components and systems that have a significant impact on the 

function and affordability of the end product or service, and concentrate on making 

design improvements to simple components during the design process [16]. This can 

be modeled by using different test acceptance probabilities and false negative 

fractions for the two technologies and observing the number of technology 1 designs 

versus the number of technology 2 designs accepted. 

3. Plan for and get frequent feedback to assess system fitness along the design path. 

In the previous section, the model provides feedback after every inspection and/or test 

and when cost or schedule expended reaches critical levels. Quality levels are also 

indicated after every inspection and/or test. 

4. Quantitatively assess alternative paths when declining fitness or obstacles force a 

path change. Use the “long-jump” feature of the system dynamics model that is 

described in Section 2, or pursue a long jump during actual design in order to identify 

and evaluate alternate designs or technologies that are more affordable. Evaluating 

the alternative cost and benefit, in terms of avoiding negative effects of lock-in (or 

taking advantage of positive effects), could be accomplished by modeling. This 

feature is incorporated in the systems dynamic model described above – every design 

is tested or inspected. 

5. Evaluate the effect of random external influences along the design path and 

attempt to reduce or eliminate adverse impacts if changing the design path reduces 

system fitness. An example would be loss of a single source supplier of a critical 

product component. This is modeled in the previous section by a good design 

probability that generates false negatives that are random events and by extinction 

events with a very low probability of a technology becoming extinct and its designs 

being regenerated.  

6. Occasionally search the adjacent landscape and attempt to discover paths to 

higher peaks. This is a variance of the “long-jump” search, where the designer or 

engineer investigates new, exemplar or dominant technologies for applicability to the 
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product or service under development. Modeling the alternate technology could 

indicate if it is feasible to incorporate it in the current development. 

Strategy Model Parameters 

Model the complete path for a design phase Run 1: low test failure rates 

Run 2: high test failure rates 

Observe where lock-in can occur 

Establish clear, measurable requirements 

and high fidelity metrics 

Increase failure or false positive rates over 

a series of runs – observe cost, schedule 

and total design starts 

Choose initial conditions to positively 

influence design path and affordability 

Choose high failure rates or false positive 

rates for one technology, low for the other 

Observe difference in designs accepted 

Get frequent feedback on tests and 

inspections and quality levels 

Enter actual average failure values in 

model and observe predicted cost, 

schedule, and quality outcomes 

Assess alternate paths when fitness 

declines or obstacles appear 

Use extinction event parameters and actual 

failure data to create a “long jump” to a 

new start or different technology 

Evaluate effects or random events and 

external influences 

Increase false negative rates or use 

extinction event parameters to model such 

effects with predicted or real data 

Occasionally search the adjacent landscape 

for paths to higher peaks 

Model a new technology along with the 

current technology using actual values for 

all parameters and compare results 

Table 4.  Strategies and Related System Dynamics Model Parameters 

Mathematical tools and techniques, such as nonlinear probability theory, also might be 

used to predict the behavior of path dependent systems. The nonlinear Polya process [6, 

17] can be used to evaluate nonlinear path dependence using urn functions to statistically 

analyze and predict future outcomes of the path dependent process. The system dynamics 

model featured above uses the non-linear Polya process. The model can be used to 

evaluate a current design process anywhere in the design evolution by entering actual 

values of exogenous variables up to the current point, and continuing the model of the 

remaining design process using predicted values or probabilities of exogenous variables 

under various scenarios. 
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3.6 Conclusions 

Systems engineers and designers need to understand the underlying mechanisms that 

create, dictate and maintain path dependence, as well as the effects on system design and 

fitness. These mechanisms include impact of initial conditions, effects of continued 

positive feedback, and the phenomenon of lock-in. They need to recognize the 

advantages and disadvantages of lock-in: that lock-in can be an advantage if the design is 

locked-in due to high fidelity positive feedback or a disadvantage when lock-in caused by 

low fidelity feedback, and unacceptable cost or other conditions result in lower system 

fitness and system performance. Systems engineers, designers and managers need to 

employ effective strategies and methods to take advantage of positive effects of path 

dependence, and offset its potential negative effects.  

Future research challenges include refinement of the systems dynamics model to handle 

each systems engineering design phase separately and sequentially, improved methods 

for cost and schedule data accrual, ability to feedback quality levels to the inspection and 

test process to enable automatic adjustment of failure probabilities with accompanying 

cost increases, and development of more detailed and flexible extinction and long jump 

model events.  

On a broader scale, testing the improved model in various real-life system design 

situations using real data would further validate the approach. Likewise, applying the 

improved model to the strategies and techniques suggested above would establish the 

value of those strategies and techniques and help to better control the positive and 

negative impacts of path dependence. 
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4. Measuring Fitness of Projects, Products and Technologies Using Data 

Envelopment Analysis 

 

Abstract 

 

This paper explores the analogy between the fitness of technological systems and the 

fitness of complex adaptive biological systems, and suggests that fitness landscapes are 

an appropriate structure upon which to evaluate technological system affordability, or 

fitness, as well as to improve that fitness. It also suggests that the production possibility 

set in the data envelopment analysis solution space is a form of a fitness landscape that is 

suitable for evaluating the efficiency and thus the fitness of R&D projects. The paper 

describes the use of data envelopment analysis (DEA) to evaluate and select Department 

of Defense (DoD) research and development (R&D) projects as a new application of 

DEA. It analyzes the application of DEA models to evaluate and select DoD Corrosion 

Prevention and Control (CPC) project plans by ranking the efficiency of these projects 

using a minimal set of input and output fitness variables, Projects submitted for 

evaluation in 2005, 2006 and 2007 were evaluated using established selection criteria as 

input and output variables. The same projects were evaluated using a revised set of 

criteria that consisted of fitness function variables to assess the affordability of those 

projects. The paper also describes the subsequent application of the DEA project plan 

evaluation and selection methodology to the DoD Corrosion Prevention and Control 

Program corrosion R&D project selection process since 2007. The paper addresses 

Altenberg’s generalized NK fitness landscapes, explores the possibility that the 

production possibility set in the data envelopment analysis solution space is a fitness 

landscape, and discusses the possible use of DEA to evaluate fitness landscapes. An 

alternate formulation for measuring fitness when limited data is availability is also 

presented. 

Key words: Data envelopment analysis; project evaluation and selection; fitness; fitness 

landscapes complex adaptive systems; affordability. 
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4.1 Introduction 

The concept of fitness is widely used to describe the overall capability of a system to 

perform its primary functions. Biological systems depend on achieving and maintaining a 

level of fitness that enables them to survive – to avoid or defeat threats to their existence 

and to procreate [1] . Likewise, the ability of technological systems to effectively perform 

their intended functions is often defined by the quality management community as fitness 

for use. Since the 1980s, complexity scientists have been studying how complex adaptive 

systems – notably biological or natural systems – increase their fitness [2]. And engineers 

are beginning to use the results of those studies to seek innovative ways to increase the 

fitness of technological systems [3]. 

Establishing a baseline of existing fitness, and determining the degree to which fitness is 

increased (or decreased) as systems proceed through their life cycle, requires techniques 

to measure and quantify fitness. Fitness landscapes provide one method of portraying 

system fitness on n-dimensional spaces that provide a structure upon which to analyze 

and pursue increases in system fitness [3-5]. Several types of fitness landscapes have 

been developed and applied to the process of evaluating and increasing biological system 

fitness. The first objective of this paper is to explore the concept of using these 

landscapes to quantify and measure the fitness of technological systems. This is described 

in Section 2. 

Another approach to quantify and measure system fitness might be to use data 

envelopment analysis (DEA) to evaluate the relative efficiency of competing 

technological conversion processes [6]. Since Frenken [3] implies that technological 

fitness can refer to efficiency, it seems reasonable to investigate the possibility that DEA 

is a valid approach to quantify and measure fitness. The second objective of this paper is 

to describe DEA principles that lay the foundation for its use in measuring and evaluating 

technological system fitness. This is presented in Section 3. The third objective of this 

paper is to investigate the possibility that the production possibility set in the DEA 

solution space is a fitness landscape. If certain fitness landscapes such as Altenberg’s 

generalized NK landscape [7] conform to the fundamental production axioms [8], these 

fitness landscapes can represent a production possibility set. If so, DEA might be 
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considered a valid method for evaluating changes in technological fitness on such fitness 

landscapes. These concepts are presented in Section 4. As an illustration of the concepts 

presented in this paper, the Section 5 of the paper describes an application of DEA when 

quantifying and measuring fitness of technological systems. Specifically, it is used to 

rank the relative fitness of the U. S. Department of Defense corrosion research and 

development projects submitted annually for selection and funding [9]. Section 4.6 

presents an alternate formulation to measure affordability when there are insufficient data 

available to use DEA [10]. 

The primary scientific contribution of this paper is the ability to measure affordability in 

terms of product or system fitness. A corollary contribution is the potential for DEA to be 

used as a method for measuring fitness of a wide range of processes, products, services or 

systems associated with organizations, industries and technologies such as those listed in 

Section 1.1 – a capability that will require additional research, development and 

validation. 

4.1.1 Background 

Data envelopment analysis applications continue to expand as the theory and practice 

become more mature. Seiford [11] compiled a DEA cyber-bibliography of nearly 2800 

DEA articles and dissertations. Earlier DEA applications appear to have focused on 

social and economic issues, with other broad areas of application being added as the 

familiarity with, need for, and corresponding methods of performing DEA grew. Cooper, 

Seiford and Tone [12] reveal that DEA has been used to evaluate the performance of 

numerous organizations and processes, to assist in organizational benchmarking, to 

develop additional methods of exploiting data, and to offer new insights into processes 

that had been evaluated using other approaches. The following list of actual 

technologically oriented applications, generated from Seiford’s [11] DEA bibliography, 

was up to date as of 2005 and reflects many areas where DEA might be used to evaluate 

technological fitness. 

Commercial utilities - power systems, heating plants, water supply services, sanitation 

services, household energy, hazardous waste treatment; 
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Transportation and travel - airports, airlines, railroads, corporate travel management, 

urban transit, public transportation, municipal bus firms, highway accident sites, highway 

maintenance patrols, container port industries, road networks, ferry transportation; 

Communications and computing - computing, large-scale networks, software 

development, software maintenance, telecommunications, internet organizations; 

Product industries - production, manufacturing, supply chain management, technology 

selection, machinery, engineering design, building and construction, warehousing and 

distribution, building maintenance;  

Military - logistics, civil reserve air fleet, base maintenance, vehicle maintenance; 

Energy - oil refineries, surface coal mining, gas distribution, gas industry, electrical 

cooperatives. 

4.2 Fitness of Technological Systems 

The importance of measuring the fitness of projects, products, and technologies, in other 

words the fitness of technological systems, stems from the need to measure system 

affordability as described in Chapter 2. There, affordability is defined as that 

characteristic of a product that enables decision-makers to procure it when they need it, 

use it to meet their performance requirements at a level of quality that they demand, use 

it whenever they need it over the expected life span of the product or service, and procure 

it for a reasonable cost that falls within their budget for all needed products or services. 

Chapter 2 goes on to develop the concept of modeling affordability as fitness and thus 

equates the affordability of a technological system to its fitness. Chapter 2 also points out 

that the ability to measure affordability is a requirement that has not been met to date. 

This chapter responds to that need. 

Webster describes fitness in terms of “adaptability and sometimes special readiness for 

use,” and defines it as being adapted to and suitable for a purpose and capable of 

surviving in the environment [13]. In the quality management world, product fitness is 

termed fitness for use [14]. In natural systems, which are complex adaptive biological 

systems that have the genetic capability to produce surviving offspring, fitness is defined 

as the combined inherited characteristics that produce strength and usefulness in the 

offspring – the stronger and more useful, the greater the fitness [1]. This similarity 
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between technological and natural systems implies that the fitness of technological 

systems can be analyzed and measured in the same way as the fitness of natural systems 

[4].  

Conceptually, we can describe fit technological systems in the same terms as fit complex 

adaptive natural systems. If this is so, fitness attributes associated with specific 

technologies, materials or processes offer the best set of variables to be evaluated as 

affordability metrics. Furthermore, if we map the attributes of complex adaptive natural 

systems to fit technological systems, we find striking life-cycle similarities [15]. For 

example, natural systems must overcome vulnerabilities during creation, achieve growth 

using available nutrients, sustain life using scarce nutrients, respond cyclically to a 

biological clock, achieve a robust survival structure, self-regulate, execute timely repairs 

to continue effective functioning, perform a useful ecological function, and procreate 

effectively to assure species survival. A fit, adaptive technological system must overcome 

R&D vulnerabilities, be developed and implemented using available resources, sustain 

operation using scarce resources, respond to repeated operational cycles, self-regulate, 

undergo timely repair to continue effective operation, perform a useful ecological 

function, and be effectively modified for use as a next generation system. 

Dynamic changes in system fitness can be depicted on fitness "landscapes". These 

landscapes are used to analyze, improve and measure resulting technological fitness. 

Metaphorically, these landscapes have peaks and valleys, and technological fitness 

variables define the dimensions of the landscape. In his book At Home in the Universe, 

Kauffman [4] describes a rugged fitness landscape as an ideal structure with which to 

pursue biological fitness as a metaphor for product fitness. He suggests that technological 

evolution can be depicted as a search on rugged landscapes. As Kauffman points out, 

systems increase fitness through searching the fitness landscape and hill climbing. 

Systems change their location on the fitness landscape by changing values of system 

traits or attributes. The shape of the fitness landscape has a significant effect on the 

ability of a system to search for and attain greater heights and thus improve its own 

fitness. Kauffman introduced the NK landscape model to represent the shape and degree 

of ruggedness of fitness landscapes, where N is the total number of system attributes and 

K is the number of individual attribute characteristics with which each of the N attributes 
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is epistatically coupled (operationally linked). The term epistatic coupling, or epistasis, 

refers to coupling between genes, where the fitness of a gene located at a given place on a 

chromosome is affected by genes located at other places on the chromosome. In this case, 

it is used to describe the effect that system attributes could have on other system 

attributes. These fitness landscapes may be correlated, where peaks of similar altitude are 

grouped together, or random, where peaks of different altitudes are randomly distributed 

across the landscape. The degree of ruggedness (from correlated to random) depends on 

the values of N and K.  

Kauffman also describes coupled landscapes where a fitness landscape interacts with 

another fitness landscape. In The Origins of Order, Kauffman [5] describes co-evolution 

as a process of adaptive moves that deform the coupled NK landscapes of the interacting 

systems. Each system’s fitness and fitness landscape depend on the other systems’ 

fitness. As co-evolving systems co-adapt, and the shape of a fitness landscape changes, 

the degree of fitness improvement or degradation in a particular system will be dictated 

by the ability of that system to alter existing attributes or generate new attributes that 

comply with the changing shape. If attribute changes enable the system to improve its 

position on the new landscape, the system becomes fitter. So fitness landscapes appear to 

be appropriate schemata to represent and analyze product fitness. 

Frenken [3] points out that technology fitness landscapes are useful representations upon 

which to conduct local search strategies for technological evolution. Such local search 

strategies outperform global search strategies because bounded rationality [3, 16] 

constrains the ability of designers and engineers to generate all possible solutions to 

complex optimization problems, and economics constrain the ability to perform 

exhaustive global searches. Kaufmann’s NK landscape or Altenberg’s generalized NK 

landscape are useful models upon which to conduct adaptive walks or hill climbing 

toward local peaks on the landscape, in order to increase technological fitness. Thus, an 

adaptive walk on a fitness landscape, where an attribute value is changed and the 

resulting product fitness evaluated at each step until maximum fitness is reached, can 

suggest fit product designs. 
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Kauffman’s NK landscape has a limitation that is overcome by Altenberg’s generalized 

NK landscape. Altenberg’s model consists of N elements (key input variables) and F 

functions (key output variables), where Kaufman’s model requires the number of 

elements to equal the number of functions. In Altenberg’s model, the parameter K is 

eliminated.  Instead, each of the elements can influence any positive number of functions 

and each function can be influenced by any positive number of elements. The number of 

functions influenced by one specific element is called the pleiotropy of that element, and 

the number of elements influencing one specific function is called the polygeny of that 

function. 

 

Figure 6.  Pleiotropy–Polygeny Map of Elements and Functions 

Thus, the structure of epistatic relations between inputs and outputs is shown in the 

Figure 6 map, where each column reflects the pleiotropy vector associated with three 

elements (technical characteristics in production terms), and each row reflects a polygeny 

vector associated with two functions (service characteristics in production terms). The 

pleiotropy of technical characteristics 1 and 3 is one. The pleiotropy of technical 

characteristic 2 is two. And the polygeny of both service characteristics is two. 

 This avoids the use of the K parameter
12

, which is important if DEA is to be used to 

evaluate technological system fitness, since the number of inputs need not equal the 

number of outputs in DEA. However, all DEA input variables influence all DEA output 

                                                        
12

 Kauffman’s NK landscape is a special case of Altenberg’s generalized landscape where F equals N and 
each function’s polygeny equals K+1. 
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variables and all inputs are transformed into outputs through the production function F. 

Altenberg’s generalized landscape also allows vectors of input variables associated with 

each function to be represented on a fitness landscape and to be used to evaluate the 

fitness of alternative technological systems or to improve the fitness of a specific system 

[3]. The dimensions of the landscape are defined by the key variables that contribute to a 

system’s fitness and a vector’s position on the landscape at any particular time is 

determined by the key variable values at that time. If all key variables are independent, 

increasing the value of one will increase the value of the vector. However, variables are 

frequently interdependent, and increasing the value of one may decrease the value of 

another such that the value of the resultant vector may decrease; a concept also found in 

DEA, where inputs can be substituted along an isoquant as described in the next section. 

4.3 Data Envelopment Analysis (DEA) 

Data envelopment analysis is a process used to determine the efficiency of any 

production process. Each observed instance of a production process is termed a decision 

making unit (DMU) and each DMU is evaluated as part of the aggregated collection of 

observed instances (DMUs) that depend on similar inputs and result in similar outputs 

[6], 

DEA evaluates the performance of each DMU and quantifies this performance in terms 

of efficiency. The classic engineering definition of efficiency is the ratio of output to 

input, expressed as a decimal between 0 and 1, or as a percentage. Since production 

processes cannot produce more output than input, efficiency cannot exceed 1. DEA is 

concerned with technical efficiency, which typically involves quantities of inputs and 

outputs. However, DEA evaluates technical, allocative (cost minimizing), revenue 

maximizing, and profit maximizing efficiency. Triantis [17] describes the output 

increasing measure of technical efficiency as a measure of the maximum level of output 

possible from a bundle of inputs compared to the actual level of output from that bundle 

of inputs. Thus, if a set of DMUs associated with a specific production process (specific 

bundle of inputs) produce different levels of outputs, each DMU will have a technical 

efficiency determined by that DMU’s output, and that efficiency will depend on the 

values of the outputs produced from the input bundle. Those DMUs with the maximum 
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possible output level will be located on an isoquant of efficient DMUs called the 

production frontier, and those with less than maximum output will be located inside that 

production frontier – in other words enveloped by the frontier. The collection of all DMU 

outputs for a particular production process is termed the production possibility set. So 

data envelopment analysis is the process of determining and analyzing the efficiency of 

the production possibility set of DMUs on or enveloped by the production frontier.  

 

Figure 5 graphically presents the concept of technical efficiency where efficiency is 

considered from the input reducing perspective. The graph depicts two inputs and one 

output for each of three DMUs where the inputs represent the production possibility set. 

The two input values for each DMU are depicted on the horizontal and vertical axes. 

Points A, B, and C have equal DMU output values, with B and C as efficient DMUs 

located on the y0 isoquant (the production frontier), and A as an inefficient DMU, whose 

radial measure of technical efficiency is equal to the ratio of 0P divided by 0A, where P is 

the point on the radial from the origin of the graph to point A at which the radial 

intersects the production frontier. The distance between the intersection of the X2
A
 input 

value with the isoquant at A
ı 
and A, which is a non-radial measure of efficiency, indicates 

the amount by which the X1
A
 input needs to be decreased to make DMU A efficient, 

without changing the quantity of X2
A
. Likewise, the segment from A

ıı
 to A indicates the 

amount by which the X2
A 

input must be decreased to make DMU A efficient without 

changing the quantity of X1
A
. Note that point P lies on the isoquant and defines the radial 

set of values of X1
A
 and X2

A
 which could make DMU A as efficient as DMUs B and C. 

Point P lies between DMUs B and C and those DMUs are thus identified as the peers of 

DMU A [17]. 
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Figure 7. Efficiency with Two Inputs 

 

Figure 8. Efficiency with Two Outputs 

Figures 5 and 6 showed only one input with two outputs or two inputs with one output. 

However, DEA can deal with multiple inputs and/or outputs.  

Figure 6 represents technical efficiency from the output increasing point of view. The 

lines connecting the efficient DMUs B, C and D define the production frontier. One input 

provides two different outputs for each DMU. In this case, DMUs A and E are the 

inefficient DMUs. The radial efficiency of DMU A is determined by the ratio of the 

radial distance from the origin to DMU A divided by the radial distance from the origin 

to the intersection with the production frontier at A
ı
.). Likewise, the radial efficiency of 

DMU E is determined by the ratio of the radial distance from the origin to DMU E 

divided by the radial distance from the origin to the intersection with the production 

frontier at C. The peer set for DMU A is DMUs C and D, while DMU E has a single 
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peer, DMU C, since both lie on the same radial from the origin. The inefficient DMUs 

can be made efficient by changing the set of outputs to values that lie on the production 

frontier [17]. 

DEA uses mathematical and linear programming formulations to evaluate the efficiency 

of the set of outputs resulting from the conversion of a set of inputs for each DMU. More 

specifically, for DEA, efficiency is evaluated by dividing the sum of the weighted output 

variables by the sum of the weighted input variables for each DMU. Since technological 

systems can be thought of representations of the production process where inputs are 

transformed into outputs, DEA is an appropriate approach for measuring the efficiency of 

technological systems. 

The underlying mathematical programming takes the two forms of minimizing input or 

maximizing output formulations that are consistent with the input reducing and output 

increasing notions of efficiency. The following formulations are the envelopment 

formulations associated with the computation of efficiency for variable returns to scale 

technologies. The formulation for minimizing input is [17]:  

min           (1) 

  z 

 Subject to: 

  ∑            
  

                (2) 

∑           
  

                (3) 

∑      
         (4) 

And the formulation for maximizing output is [17] 

max           (5) 

  z 

 Subject to: 

∑           
  

                (6) 

 ∑            
  

                  (7) 

∑      
         (8) 

Where 

  n = number of DMUs 
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  t = number of outputs 

  m = number of inputs 

     output r produced by DMUj 

     input i used by DMUj 

    weight given to DMUj 

One of the unique features of DEA is its capacity to simultaneously process variables 

with different dimensional units and measurement scales
13

. In most applications, 

variables represented by interval scales are used [9].  

DEA has been used by the author to evaluate fitness of systems, but using DEA for 

improving fitness, has not been explored6. However, DEA identifies peer groups for 

inefficient DMUs – one or more DMUs that indicate how an inefficient DMU can be 

improved. Areas for improvement associated with each key variable are identified, and 

amount of potential improvement is quantified in terms of excess input to the DMU or 

shortage in output from the DMU [6]. These formulations can be compared to those in 

Section 4.6 of this paper.  

4.4 DEA Production Possibility Set as a Fitness Landscape 

The production possibility set or solution space in which DMUs are evaluated by DEA 

can be thought of as an n-dimensional landscape where the efficiency values are points 

on the surface of the landscape. Efficient DMUs are located at the peaks of the landscape 

and a surface passing through those peaks represents the frontier of the landscape. All 

non-efficient DMUs would be located on ridges or in valleys between the peaks and 

enveloped by the frontier, with their relative efficiency dictating their location on slopes 

or in valleys of the landscape. There are strong indications that the DEA solution space is 

a fitness landscape [3] and that it may even be an NK landscape with instances of 

epistatic coupling between traits of the key variables evaluated by the DEA model since it 

is assumed that each input affects each output. If the DEA solution space is a fitness 

                                                        
13

 Measurement scales include ratio, interval, ordinal and nominal scales. Ratio scales compare an 
attribute to a baseline, as in length. Interval scales quantify the difference between attributes, as in 
temperature. Ordinal scales define the order in which attributes are ranked from highest to lowest as in 
preferences. Nominal scales distinguish between attributes as in colors or numbered pages. However, the 
implication of using different scales in the DEA formulations is an open question in the literature. 
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landscape, it is an appropriate tool to evaluate the relative affordability of alternative 

technological systems designs [18]. 

The production possibility set is defined as the region enclosed by the boundary (frontier) 

of efficient DMUs and the DMUs at the extremities of the boundary [6]. Since the 

boundary is defined by the locus of output vectors of efficient DMUs, and the vectors of 

the inefficient DMUs are contained within the production possibility set boundary, the 

production possibility set is a vector space such as is found in fitness landscapes. In other 

words, it appears that the DEA solution space is a fitness landscape of output vectors that 

constitute the production possibility set – in fact that it is an NK landscape where every 

input affects every output. 

As shown in Chapter 2, Altenberg’s generalized NK model can be expressed 

mathematically as a vector for each function F, where F is an output from one or more 

inputs: 

   ∑   

 

   

                                                                      

where 

 n   number of elements N 

m   number of functions F 

                                           

                                               

      output vector of     

The DEA mathematical formulation for efficiency of a DMU contains two vectors as 

shown in the following formulation, where the numerator is the output vector and the 

denominator is an input vector. Each    is a weight applied to the output variables and 

each    is a weight applied to the input variables. In the DEA solution space, the bundle 

of output vectors constitutes the production possibility set.  
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Since the NK landscape formulation shows that the landscape contains output vectors 

produced by weighted input vectors, and it can be assumed that the DEA production 

possibility set of output vectors is contained in an NK type fitness landscape, it remains 

to be shown that an NK fitness landscape will indeed accommodate a production 

possibility set. Input vectors in the generalized NK landscape can represent the DEA 

input vectors, and output vectors in the NK landscape can represent DEA output vectors. 

DEA computes weights for each input and output variable to maximize each DMU’s 

opportunity to be efficient [6]. The generalized NK model also allows weighted input and 

output variables to indicate the importance of particular elements and functions [3]. 

Altenberg’s generalized NK landscape appears to be a technology landscape that reflects 

many features of the DEA production possibility set. If so, DEA might be useful in 

evaluating the fitness of technological systems that can be characterized on the 

generalized NK landscape. This means that the generalized NK landscape of input and 

output variables should have the same structure as the production possibility set or DEA 

solution space, and the generalized NK landscape must conform to the same production 

axioms that define the DEA production possibility set. 

The following production axioms [8] that apply to the DEA solution space can also apply 

to generalized NK fitness landscapes since these axioms do not violate general properties 

of those generalized NK fitness landscapes.  However, all inputs and outputs on the 

generalized fitness landscapes must be non-negative for the axioms to apply. These 

axioms are related to technology sets. The definition of a technology set for a specific 

production process is: 

              
 
     

 
                  

where x is a vector of inputs and y is a vector of outputs such that y can be produced from 

x. The output set P maps inputs     
 

 into subsets of outputs, for example      
 

 

   
 
  The output correspondence set P(x) for a specific technology is the set of all output 

vectors     
 

 that can be obtained from input vector     
 

. Conversely, the input set 

P(y) is the set of all input vectors     
 
 that can produce output vector     

 
  The 

axioms are as follows: 
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1a.             
 

 

Inactivity axiom: For all values of the input vectors x in the input space   
 

, the output 

correspondence of the vectors can be zero. Thus, any combination of inputs can produce 

no outputs if all output vector values are zero.  

1b.                  

No free lunch axiom: The output vectors are not a member of the output correspondence 

set if the input vectors are 0 and the output vectors are greater than zero. In other words, 

the output is from some input not in the input space. 

2a.                       

Weak input disposability axiom: If the output vectors are members of the output 

correspondence set and the weighting factor ( ) is greater than 1, then the output vectors 

are members of the output correspondence set of weighted input vectors. In other words, 

the output will be at least what it would be without the weighting factor. But if the 

weighting factor is less than 1, the output vectors are not a member of the output 

correspondence set. 

2b.         ̆     ̆         

Strong input disposability axiom: If the output vectors are members of the output 

correspondence set of original input vectors and the original input vector values are 

increased, the output vectors are members of the output correspondence set of increased 

input vectors. That means that the output must be at least what it was before the increase 

in input (from axiom 1a). 

3a.                          

Weak output disposability axiom: If the output vectors are members of the output 

correspondence set and an output weighting factor is a fraction between 0 and 1, then the 

fractional output vectors are members of the output correspondence set of input vectors. 

This means that subsequent outputs from the same inputs can be less than the initial 

outputs. 
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3b.             ̆     ̆       

Strong output disposability axiom: If the output vectors are members of the output 

correspondence set and a subsequent output is less than initial output, then the reduced 

output vectors are members of the output correspondence set. This means that subsequent 

outputs from an inefficient process can include waste that can be disposed of without 

added cost. 

4.      
 
      is a bounded set 

Scarcity axiom: If all input vectors are a set in the input space, then the output 

correspondence set of input variables is a bounded set. This means that finite amounts of 

input can produce only finite amounts of output. 

5.      
 
      is a closed set 

Closedness axiom: If all input vectors are a set in the input space, then the output 

correspondence set is a closed set. This means that if every vector    can be produced 

from inputs   , then x can produce y. This allows for the definition and existence of an 

isoquant. 

6.          
 

 
                   ̆       

Convexity axiom: For all input vectors that are members of the input correspondence set 

and contained in the input space, and   and  ̆ are each a series of inputs that can produce 

 , any weighted combination of   and  ̆ is a member of the input correspondence set. In 

other words, any weighted combination of two inputs can produce the same output. This 

means the resultant of the weighted combination is a convex set.  

Since it is assumed from the above that production axioms apply to the generalized NK 

fitness landscape, it implies that this landscape is equivalent to the DEA production 

possibility set solution space. This indicates that the DEA model can be used to evaluate 

the relative efficiency and therefore the fitness of technological systems whose input and 

output vectors populate a generalized NK fitness landscape. But the issue of the existence 

and effects of epistatic coupling require further research.  It may be that collaborative 

analysis of the same data in both the DEA model and the generalized NK fitness 

landscape can produce synergetic results, such that each enhances the other’s utility and 
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the combined output surpasses what each approach contributes. However, there are 

limitations in using DEA to evaluate efficiency and fitness since a minimum number of 

DMUs must be evaluated to provide sufficient discrimination among the DMUs.
14

 

The fact is that the DEA model has been used to evaluate relative efficiency of research 

and development projects, where efficiency is equated to fitness as suggested by Frenken 

[3], and thus relative efficiency is related to relative fitness. The next section describes a 

case study illustrating this capability. 

4.5 Case Study: R&D Project Evaluation Using DEA 

 4.5.1 Background  

Each fiscal year (FY), the United States Department of Defense (DoD) Corrosion 

Prevention and Control (CPC) Program solicits research and development (R&D) project 

plans that propose solutions to specific corrosion problems through new applications of 

existing technology or development of new technologies. As of December 2011, nearly 

500 project plans had been submitted for evaluation, selection and funding with about 

150 projects selected and funded for over $160 million since FY 2005. An evaluation 

team, composed of members of the DoD acquisition, technology and logistics 

community, performs the annual evaluation based on established criteria for adjudging 

the merits of each project. Some of these criteria are quantitative, such as return on 

investment (ROI), but a number of criteria are qualitative variables – basically measured 

on an ordinal scale subject to the judgment of the evaluators. In addition, the number of 

projects selected has been constrained by funding limitations.  

There were indications that the evaluation process could be improved. Variances in 

evaluator qualifications and availability and the biases often inherent in highly subjective 

evaluation processes could have resulted in inconsistent evaluation and selection. When 

combined with the number of subjective criteria and the considerable variance associated 

                                                        
14 Cooper et al [6] point out that the number of degrees of freedom is directly proportional to the 
number of DMUs and inversely proportional to the number of inputs and outputs. They suggest that 
n   max {m x s, 3(m + s)}, where n = number of DMUs, m = number of inputs and s = number of 
outputs. 
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with the nature and the application of projects, CPC project evaluation complexity was 

rapidly increasing.  

With this environment of subjectivity and complexity in mind, this case study describes 

an alternate method of project plan evaluation and selection that was designed to retain 

the basic CPC approach to evaluation, but to use techniques that account for project 

complexity and variances as well as evaluator competencies and biases. This method 

used DEA to generate scores that reflect the relative efficiency of each project compared 

to all evaluated projects. 

The use of DEA to evaluate DoD Corrosion Prevention and Control Program corrosion 

R&D projects originated as a research project for a graduate course in the design of 

performance management systems at Virginia Tech [10]. That project assumed that the 

selection of the best R&D projects within a constrained budget environment depends on a 

process that evaluates the performance projected for each project relative to the other 

projects being evaluated. The project also assumed that the input and output variables that 

are associated with affordability fitness functions [19] offer the best set of variables for 

evaluating the relative efficiency of each R&D project in a population of relatively 

homogeneous projects. 

Prior to developing a method for using DEA to assist in the evaluation of these corrosion 

R&D projects, the literature was reviewed to determine if DEA had been applied to the 

assessment of R&D projects. The review revealed that project evaluation had been 

conducted using DEA and indicated it would be appropriate for R&D project evaluation. 

Oral, Kettani and Lang [20] addressed R&D project evaluation methods in a multiple 

stakeholder environment. They pointed out that R&D project variables usually measure 

outcomes in dimensions that are not easily compared; evaluators are often stakeholders; 

and some evaluators may value some evaluation criteria differently than others. DEA 

helps overcome these inconsistencies by independently applying weights to criteria 

(variable) values, thus mitigating the problem of how to weigh the criteria. There is a 

requirement that the set of evaluation criteria be reasonable. Linton, Walsh and Morabito 

[21] described the most convenient measurement situation as one where R&D projects 

are evaluated with quantitative metrics that use the same unit of measure. They observed 
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that evaluation of R&D projects using the management science approach of quantitative 

metrics that use the same unit of measure oversimplifies the R&D project characteristics 

and potential and limits the utility of the evaluation. The DEA approach was considered 

superior to economic methods because it can measure efficiency among many projects 

characterized by high degrees of uncertainty, and can measure qualitative characteristics 

as well as quantitative ones. Green, Doyle and Cook [22] addressed the DEA 

measurement issue of ranking candidates that appear on the frontier by suggesting the use 

of a cross evaluation matrix. Eilat, Golany and Shtub [23] discussed the R&D project 

selection process in the government environment, where “measurement does not 

normally include profitability but does include multiple criteria with uncertain or 

subjective data.” Because qualitative and subjective measures become even more 

dominant and performance is measured by several incomparable outputs, they suggested 

combining DEA with the balanced scorecard (BSC) to select a project portfolio. 

Oral et al [20] suggested a set of input and output criteria suitable for applying DEA to 

R&D project evaluation and selection. While these criteria are derived for iron and steel 

industry projects, they are general enough to be translated into a set of variables for any 

R&D projects. Except for resource requirements, the variables they suggested are 

associated with output criteria. Cook and Green [24] felt the Charnes, Cooper and Rhodes 

model would be appropriate for project evaluation because they assumed projects reflect 

constant returns to scale, which is the property featured in that model. They also observed 

that if scale aspects should be accounted for, the Banker, Charnes and Cooper model 

should be used. Eilat et al [23] favored the CCR model as part of their DEA-BSC 

balanced scorecard model. They did not discuss the effects of returns to scale, but 

observed that the effects may be non-linear. Thus, the literature search confirmed that 

DEA is appropriate for evaluating and selecting a portfolio of R&D projects. None of the 

papers reviewed suggested the use of DEA to evaluate alternate sets of variables or to 

compare the results of already completed evaluation and selection by conventional 

methods (that use no mathematical, graphical or economic models) to the results that 

might have been obtained using DEA. These approaches differ from the research 

described in the following paragraphs in that affordability-based fitness function values 

were used in this research as key input and output variables, and fitness was equated to 
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efficiency to rank relative fitness (or affordability) of each research and development 

project submitted for evaluation.  

4.5.2 The DEA Approach  

Experimentation with the various DEA models led to the choice of a model considered 

most likely to produce the desired discrimination between submitted projects. The 

Banker, Charnes, Cooper variable returns to scale model, input reducing version (BCC-I) 

[6] was assumed to be the appropriate model based on assumed variable returns to scale. 

Later, the Charnes, Cooper, Rhodes (CCR) model [6] was employed as suggested by the 

literature, and produced better discrimination between submitted projects.  

Data for use in the DEA model was extracted for 212 project plans submitted over the 

three years from 2005 through 2007. These data were correlated with the existing 

evaluation process so the variables assessed by the evaluation team tracked with the 

variables assessed by the model. The one exception was the actual “scoring” by the 

evaluation team, which was translated into an acceptability index. This index was based 

on the data from spreadsheets produced and populated by the CPC evaluators during each 

of the three years’ evaluations. The affordability (fitness) -based evaluation process was 

also modeled using data from the project plans or evaluation spreadsheets. However, 

added fitness indices, based on available data, were created to quantify the breadth of 

applicability and specific benefits associated with each project. 

In order to perform the DEA of the evaluation of project plans, each project plan was 

designated as a Decision-Making Unit (DMU). Two sets of DEA variables were 

developed: one set to replicate the existing evaluation system using the criteria that had 

been used by the evaluation team for three years, and the other set to use fitness variables 

that reflected affordability-based criteria. Both set of criteria used the same input 

variables, but only one output variable was shared by both set of criteria. The set of input 

variables for both sets of criteria consisted of: 

Total funds required: The total dollars needed for project completion. This 

includes the labor, material, facilities, equipment and testing to complete the 

project and transfer the technology to the user community.  
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Percent OSD funded: The percent of total funds required to be provided by the 

DoD, since cost sharing between the DoD and military services is expected for 

each R&D project. 

Period of performance: The time that will be required (in months) to complete the 

proposed R&D project including research, testing and reporting of results.  

The output variables used to assess the existing evaluation system consisted of: 

Return on investment (a ratio scale variable): The projected ratio of discounted 

R&D project savings to investment over a specified period, using the Office of 

Management and Budget (OMB) guidelines and discount rates.  

Project acceptance index (an ordinal scale variable): An index of the relative 

acceptability of an R&D project as determined by evaluator assessment. 

The output variables used by the DEA model as fitness-based evaluation criteria 

consisted of:  

Project acceptance index (an ordinal scale variable): A representation of the 

projected probability of success of the proposed R&D project, as suggested by 

Oral, et al. 

Predicted savings: The discounted dollar savings expected over the useful life of 

the technology being developed.  

Expected service life: The extent of time (in years) that the technology being 

developed is expected to be useful until it is replaced by another better 

technology.  

Joint applicability index (an ordinal scale variable): The degree to which the R&D 

project technology could be used in applications beyond those proposed in the 

submitted project plan.  

Benefits index (an ordinal scale variable): An index of non-quantifiable benefits 

associated with readiness and safety.  

4.5.3 The DEA Evaluation Methodology  

Three years of project evaluation and selection data were available with which to analyze 

the efficiency of projects selected. Input data were collected from 212 R&D project plans 

submitted over the three-year period from fiscal year 2005 through 2007, and from 
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evaluation spreadsheets created and maintained by the author during the evaluations 

conducted during each fiscal year.  

Each year’s data were accrued in two homogenous groups – one group associated with 

facilities and infrastructure projects and the other group associated with weapon system 

and equipment projects.
15

 This provided data for DMU group sizes ranging from 24 

DMUs to 41 DMUs. Other groupings were considered, but the group sizes were too small 

for a reasonable DEA analysis. 

DEA efficiency scores were generated using the Baker, Charnes and Cooper (BCC) 

model in the DEA Solver software that accompanies the Cooper, Seiford and Tone [6] 

reference book. The input-decreasing model was used for the final set of runs after 

experimenting with both input decreasing (BCC-I) and output increasing (BCC-O) 

models. Three years of weapon systems data and three years of facilities and 

infrastructure data were run, using both current evaluation criteria and affordability-based 

criteria for a total of twelve data runs, using the BCC-I model. As expected, the DEA 

efficiency scores for the same DMUs varied substantially between the data runs using the 

current evaluation criteria and the runs using affordability-based evaluation criteria.  

The sensitivity of the DEA efficiency scores to the individual input and output variables 

was analyzed. Seventy-eight sensitivity runs were generated, where one variable was 

eliminated in each run. The results indicated that the DEA BCC-I model was sensitive to 

all variables. Results of the 12 DEA runs are shown in Table 4. Actual DMUs selected 

refers to the number of research and development projects actually selected and funded in 

each of the three fiscal years. 

The underlying assumption that DMUs on the DEA frontier constitute the set of 

benchmark DMUs for R&D project plan evaluation and selection is predicated on the 

number of DMUs in the evaluation set and the number of input and output variables used 

in the DEA computation. The minimum number of DMUs modeled in the set of runs was 

                                                        
15

 Infrastructure projects refer to projects associated with structures such as buildings, hangars and piers; 
facilities such as airfields naval stations, bases, and depots; and utilities such as pipelines, tanks and 
transmission lines. Weapon systems projects refer to projects associated with warfighting platforms such 
as army land vehicles, naval vessels, aircraft, and missiles; guns, launchers, sensors and other platform 
warfighting weaponry and equipment; and support equipment such as auxiliary power units, shop 
equipment and tools used in direct support and maintenance of platforms and weaponry. 
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24 and the maximum number of DMUs modeled was 41. The DEA Solver model 

accommodates a maximum of 50 DMUs, so the DEA Solver was not a limitation. Five 

variables were used in the current evaluation and selection system models, and eight 

variables were used in the proposed evaluation and selection system models. The lowest 

number of DMUs modeled equaled or exceeded the Cooper, Seiford and Tone [6] 

prescribed minimum of three times the number of input plus output variables. Thus the 

assumption that the DMUs on the frontier are efficient seems to be reasonable.  

 

Table 5. Results of Initial DEA Runs Evaluating Efficiency of Project Evaluation 

System 

This assumption is particularly important in evaluating the proposed R&D project plan 

evaluation and selection approach. In order to adequately evaluate the DEA efficiency 

scores and relate them, the benchmark DMUs (those on the DEA frontier) needed to be 

ranked, since available funding typically falls short of the needed funding for acceptable 

R&D projects. Cross-evaluation matrices were used to compute the average efficiency 

score of all DMUs when using the weights assigned to a specific DMU. Then, the 

average efficiency scores were used to rank those DMUs on the frontier.  

The first percentage in the in the Table 4 “% on Frontier Selected” column shows the 

percent of evaluator selected DMUs that would have been selected if DEA modeling 

replaced the current evaluation and selection process but retained the current criteria. The 

second in the Table 1 “% on Frontier Selected” column shows the percent of evaluator 

selected DMUs that would have been selected if DEA modeling used the fitness criteria. 

Detailed analysis revealed that the resulting ranking was quite different between the two 

sets of criteria, so under constrained funding conditions, where projects were funded in 

rank order until funds were exhausted, different DMUs would have been selected under 

the fitness-based selection approach. Note that when more weapon system project plans 
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were submitted for evaluation, a lower percentage of the DMUs were selected and funded 

under the current evaluation and selection method. This implies that using DEA 

evaluation might be more important as the number of project plans submitted increases, 

particularly since confidence in DEA efficiency scores increases with the number of 

DMUs evaluated. Notably, the percent of DMUs selected that are on the frontier dropped 

under the proposed evaluation method, primarily because the number of DMUs on the 

frontier increased.  

 4.5.4 Potential for Improving Efficiency of Specific Project Plans 

The DoD project evaluation study produced a significant amount of data that could be 

used to improve the efficiency of inefficient DMUs. Although this option was not 

pursued in the project evaluation study, the following tables reveal statistics that show 

that selected inefficient DMUs might have been made more efficient and perhaps 

approach operating targets if the technology associated with specific DMUs was deemed 

to be very important.  

  

Table 6. Number of Inefficient DMUs and Number of Associated Peers in Reference 

Sets 

Tables 5 and 6 combined show that every inefficient DMU had at least one peer. In fact, 

94 percent had more than one peer in the reference set. In the existing evaluation system, 

there were at least nine peers and in the proposed evaluation system there were at least 

eleven. This is a strong indication of a high number of DMUs on the production frontier.  

 

1 2 3 4 5 1 2 3 4 5

2005 41 27 0 10 12 3 2 41 15 0 2 4 6 3

2006 41 28 4 5 17 2 0 41 17 1 3 5 7 1

2007 35 22 2 9 4 5 2 35 17 0 5 6 3 3

2005 24 12 0 4 4 4 0 24 7 0 2 5 0 0

2006 37 27 3 6 4 10 4 37 15 1 3 1 6 4

2007 34 22 1 7 8 6 0 34 12 0 1 6 2 3

Weapon Systems 

and Equipment

Facilities and 

Infrastructure

Homogeneous 

Groups

Fiscal 

Year

Existing Evaluation System Fitness Evaluation System

Total 

DMUs

 In-efficient 

DMUs

Number of DMUs 

in Reference Set Total 

DMUs

 In-efficient 

DMUs

Number of DMUs 

in Reference Set
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Table 7. Number of Peers, Range and Average Number of Inefficient DMUs in 

Reference Sets 

Table 6 shows that efficient DMUs were in the reference set for a range of from one 

to 19 DMUs, with a mean of about 6.5 DMUs for the existing evaluation system and 

about 3.5 for the fitness evaluation system. Again, this is an indication of the large 

number of efficient DMUs. With better discrimination between DMUs, the number of 

peers would be expected to drop significantly and the size of the reference sets for 

inefficient DMUs expected to decrease. This should make it easier to analyze 

variables that could improve efficiency and better enable inefficient DMUs to reach 

operating targets. 

4.5.5 Overall Assessment of DEA Results 

The DEA efficiency scores located on the frontier correlated quite well with the R&D 

projects that were actually selected over the three evaluation cycles, considering the 

probability that the efficiency scores are better indications of true technical efficiency as 

compared to the subjective evaluation of the current evaluation process. Comparison of 

DEA efficiency scores under the fitness evaluation method to the R&D projects actually 

selected indicated substantial improvement in technical efficiency. These initial results 

led to a decision by DoD Corrosion Prevention and Control Program officials to continue 

the study and, if feasible, to use DEA in parallel with the existing evaluation method 

during the fiscal year 2008 project selection process.  

4.5.6 Validation and Verification.  

After completing the DoD project evaluation DEA analysis, it was concluded that the 

high percentage of DMUs on the frontier was a symptom of insufficient discrimination 
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between DMUs. This could be due to the number of variables, particularly in the 

proposed list of variables; possible interdependence between some variables; and the 

assumption that ordinal scale variables can be included in the DEA analysis. 

As described earlier, the initial case study DEA was run using the Banker-Charnes-

Cooper (BCC) model based on the assumption of variable returns to scale. The input-

decreasing version of the model (BCC–I) was selected since test runs indicated that 

version generated fewer projects on the frontier. While there was some correlation 

between the DEA results and the actual projects during the first set of data runs, the data 

did not strongly support the assumption that the DEA model would accurately replicate 

the existing evaluation process. One concern was the percent of projects on the frontier – 

it was higher than anticipated. Some variance was expected since evaluator judgment 

could have eliminated some good projects from being selected. But a general 

correspondence between the existing evaluation system results and DEA results using 

existing criteria was important in order to support the contention that DEA could provide 

even better results if affordability-based criteria were used for selection.  

In the set of data runs that evaluated project efficiency using fitness-based variables, 

some of the variables were part of the current criteria – in fact, all the input variables 

remained the same as in the first set of runs. But output variables had been changed to 

reflect affordability fitness parameters – savings, service life, benefits and joint 

applicability were added and ROI was removed because it was based on one input and 

two output variables. Again, results of the DEA model runs were not conclusive. A 

number of different projects were selected, which was expected, but the percent of 

projects on the frontier was quite high. The correlation between DEA selected projects 

and evaluator selected projects varied considerably and no strong conclusion could be 

reached regarding the value of using fitness-based evaluation factors. This was 

particularly troubling since there was no assurance that the DEA model selected 

reasonably replicated the evaluation process. 

These results raised questions regarding the choice of DEA model and the choice of 

variables for the fitness-based evaluation. Generally, given a limited number of DMUs 

(projects), fewer variables give better results including fewer DMUs on the frontier. 
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Likewise, the choice of model is sensitive to the characteristic returns to scale of the data 

being modeled. So the FY 2007 data were rerun using a different mix of fitness-based 

variables. ROI was added and total investment, savings, and service life were eliminated 

since they are used to compute ROI. A total of sixteen runs (eight for facilities and eight 

for weapon systems) were made for the comparison of evaluation parameters and models: 

the efficiency using the set of six fitness variables (including ROI) was compared to the 

set of eight fitness variables using the BCC-I, BCC-O (output increasing), CRR-I 

(Charnes-Cooper-Rhodes) and CRR-O models.  

The CRR-I and CRR-O models produced identical results in every case. This indicates 

that the data might reflect constant returns to scale, a conclusion cited previously in the 

literature review. The BCC-I model showed better results than the BCC-O model in all 

cases – there were fewer DMUs on the frontier. Most important, the CRR models 

produced significantly fewer DMUs on the frontier in all cases. And the six fitness 

variables (including ROI) produced fewer DMUs on the frontier than the eight fitness 

variables. The conclusion drawn from these runs was that the CCR-I model processing 

six fitness variables produces the best results in terms of number of DMUs on the frontier 

and thus better discrimination between projects. Based on this approach, the FY 2005 and 

FY 2006 data were run using the BCC-I and CRR-I models to compare the set of six 

fitness variables to the set of eight fitness variables. Also, FY 2005 facilities data were 

run using the BCC-O model to validate that BCC-I produced better results as shown in 

the FY 2007 data runs. The results of the FY 2005 and FY 2006 data runs confirmed the 

conclusions found in the FY 2007 runs. The CRR-I model using six fitness variables 

always produced the fewest number of DMUs on the frontier. 

Based on these findings, the BCC-I and CRR-I models were used to evaluate DEA results 

applied to the current selection process. Again, the CRR-I model produced better results 

in every case for all three fiscal year’s data. More important, the data correlated very well 

with actual project selection. A high percent of projects actually selected were on the 

DEA frontier or at the top of the DEA inefficient project rankings. Thus the DEA model 

quite accurately reflected the evaluation team evaluation and selection process. Likewise, 

the CRR-I six fitness variable output results were compared to the actual project 

selection. In every case there are as many or more efficient DMUs on the frontier when 
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fitness based criteria are used instead of the existing criteria. The number of efficient 

projects exceeded the number selected only twice – FY 2006 weapon systems and FY 

2007 facilities. And, in general, the selected projects were among the higher DEA ranked 

projects, though frequently in different order. These results are as expected – fitness-

based parameters should produce different ranking of projects and result in the choice of 

some different projects based on that ranking. Results of the final verification are shown 

in Appendix A-2.1. 

4.5.7 Real-life Application of DEA to Project Evaluation  

 In calendar year 2007, during the DoD Corrosion Prevention and Control corrosion R&D 

project evaluation and selection process for fiscal year 2008, the DEA model was run in 

parallel with the conventional evaluation process, with evaluators participating in the data 

generation process for the DEA model. The DEA efficiency rankings were used at times 

to resolve decisions regarding the selection of some projects. In calendar year 2008, 

during the evaluation and selection of the fiscal year 2009 projects, DEA efficiency was 

used as a primary evaluation method in support of the overall evaluation process. 

Decisions to select projects with lower efficiency rankings were made as exceptions to 

the DEA ranking order. A ranked list of projects to be selected if added funds became 

available was developed based on efficiency scores, and used later in the year to select a 

number of additional projects in the order of ranking. As a safety measure, already 

selected projects with lower rankings were also ranked, and would have been cancelled in 

reverse ranking order should funding have been decreased. The actual application of this 

approach has continued to be successful during project selection of FY2010, FY 2011 

and FY 2012 projects. The results of all five years are presented in Appendix A-2.2, 

where input variables, DEA results, and selection results are tabulated.  

Further improvements to the DEA evaluation process have increased its validity and 

value. For example, the project acceptance index variable has been replaced by a cost of 

corrosion variable that quantifies the impact the proposed project technology will have on 

corrosion costs associated with the type of system(s) affected by the proposed project. 

This is an interval variable based on extensive cost of corrosion studies that replaces an 
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ordinal scale variable, thus enhancing the discrimination of the DEA model in evaluating 

relative efficiency of all projects. 

 

Table 8. Genotype-Phenotype Map of Project Selection Elements and Functions 

 
Table 8 shows the epistatic relations between elements and functions of the DoD research 

and development project selection evaluation process.  Return on investment and benefits 

have a pleiotropy of 2, vitality and resource conservation have a polygeny of 2, and 

performance has a polygeny of 3.   

4.5.8 Impact on Decision-Making 

The objective of the research was to develop an effective R&D project evaluation process 

that virtually assures that the most efficient projects are selected given annual budget 

constraints. This objective implicitly affected decision-making. 

The decision as to which R&D projects should be selected as candidates for funding and 

implementation starts with selecting the projects with the best technical approach. This is 

equivalent to determining the technical efficiency of each project. DEA analysis provides 

that capability and virtually precludes the bias inherent in subjective types of evaluation. 

Ranking efficient projects using cross-evaluation scores can enhance subsequent decision 

regarding which projects should be funded. Thus decisions within budget constraints can 

be reached more easily. 

The process of providing useful feedback to organizations that submit R&D project plans 

depends on the availability of data that quantify shortfalls. Inefficient R&D projects are 

not only identified by the DEA models, but their improvement potential in respect to 

specific input and output variables can be identified. This enables decision-makers to 

determine whether to resubmit project proposals based on quantified data, but also 

Fitness Functions 

ROI Cost of 

Corrosion

Benefits Joint 

Use

% 

Funded

Perform 

Period Polygeny

Performance 3

Vitality 2

Adaptability 1

Resource Conversation 2

Pleiotropy 2 1 2 1 1 1

Key	Variables	(Elements)



   

 94 

enables them to improve the future project plan development and publication process. 

Inefficient project plan data also provide decision makers with data that enable them to 

assess the evaluation process variables and change evaluation criteria if necessary. 

4.6. Alternate Fitness Formulation 

Evaluating the affordability of competing technologies when selecting research and 

development projects for funding has been a problem at the Office of Naval Research 

(ONR) because there are very little technology data associated with affordability fitness 

functions with which to assess the affordability of competing technologies [10]. So using 

the current DEA affordability formulation is not feasible without modification.  

The approach to solving this problem is to develop a formulation that will assess fitness 

of competing technologies without using the DEA model to assess efficiency. An 

extension to this approach is to develop a formulation that transforms the data used in the 

technology affordability formulation for use on the DEA model if some affordability 

fitness function data are available. 

For each technology that might be evaluated for development in a research project, 

specific physical and functional attributes associated with that technology can be selected 

that make that technology fit for use in the product associated with the research project. 

ONR has data that can be used for this purpose. Each of these selected attributes can be 

associated with one or more of the affordability fitness functions. 

ONR employs scientists and engineers who are subject matter experts in the technologies 

used to develop research and development products. These subject matter experts know 

the degree to which physical and functional attributes of these technologies contribute to 

the fitness of that technology. The degree to which attributes contribute to each 

affordability fitness function is designated by an ordinal scale number from 0 to 5, where 

0 means no contribution and 5 means total contribution. Table 7 shows an ordinal scale 

that could be applied to the ranking of technology attribute contribution to an 

affordability fitness function. 
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Value Description 

5 Total Contribution to Fitness Function 

4 Strong Contribution to Fitness Function 

3 Good Contribution to Fitness Function 

2 Moderate Contribution to Fitness Function 

1 Little Contribution to Fitness Function 

0 No Contribution to Fitness Function 

Table 9. Scale Values for Assessing Contribution of Attributes to Fitness Functions 

Consider that the subject matter experts are provided t technology attribute importance 

matrices Qt such that each matrix is for one of t technologies and each matrix contains all 

subject matter expert rankings in rows i and columns j. The number of rows i corresponds 

to the number of attributes of each technology that the subject matter experts rate. The 

number of columns j is corresponds to the number of key variables that the subject matter 

experts address when rating each attribute kT. The subject matter experts complete each 

matrix Qt by entering ranking values from Table 1 in the appropriate matrix cell.  

Consider also that the subject matter experts and project managers are provided t attribute 

weight vectors At, such that each attribute weight vector contains k weights, where k 

equals the number of attributes associated with technology t. The sum of the k weights 

must equal 1. The subject matter experts and project managers collaborate to assign 

weights to each At that reflect the relative importance of each attribute i to the technology 

being evaluated.  

Furthermore, consider that the subject matter experts and project managers are provided 

an attribute weight vector W, such the attribute weight vector contains j weights, h of 

which are associated with key output variables and g of which are associated with key 

input variables. The sum of the h weights must equal 1 and the sum of the g weights must 

also equal 1. The subject matter experts and project managers collaborate to assign 

weights to vector W that reflect the relative importance of each key variable j to all 

technologies being evaluated. In the special case of one key variable for each of the four 

affordability fitness functions, h = 3 and j = 4. This means that the first three columns of 

vector W contain key output variable weights, and the fourth column contains the input 

variable weight that will equal 1 by definition. 
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Consider a set of computational vectors Mt for each technology t that contain the 

computations from which the fitness of each technology is determined. Each column j 

contains a normalized weighted sum of attribute values for each key variable with which 

that column is associated. The Mt vector is not necessary, but can be useful for tabulating 

the weighted contribution of each key variable to the fitness of each technology. The 

vector can also be used as a row in a table of fitness data for all technologies, and 

possibly as input to a DEA model.  

In order to compute fitness for a technology t, begin by determining   
 , which is the input 

variable segment of vector Mt and determines the combined sum of the weighted 

attributes in the              key input columns in matrix Qt. The formulation is: 

  
  ∑ ∑        

   

     

 

   

                               

So, for cells Mh+1 to Mg in vector M, the values are the jth result of the above equation, 

and they reflect the total combined weighted value of the values of each key input 

variable.  

Next, compute   
 , which is the output variable segment of vector Mt and determines the 

weighted sum of the weighted attributes in the h key output columns in matrix Qt. The 

formulation is: 

  
  ∑∑          

 

 

   

 

   

                              

Because combined output cannot exceed combined input, the sum of the weighted output 

variable values cannot exceed the sum of the weighted input variable values, so the 

output variable values are normalized by dividing the vector sum by the input vector sum. 

This formulation guarantees that:  

 ∑ ∑          
   

 
      

  ∑ ∑        
   
     

 
    

Since fitness has already been defined in terms of efficiency, fitness can be formulated as 

output over input: 
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∑ ∑        
 
   

 
   

 ∑ ∑         
   
     

 
   

                          

            ∑    

 

   

                                                   

 ∑     ∑      

   

     

                        

 

   

 

                                (16) 

The formulation (13) above should allow the introduction of actual variable values in the 

vector Mt cells. However, added investigation of the formulation is needed to insure that 

equation remains valid in the case of actual variable data or a mix of weighted ordinal 

scale data and interval scale data. The above formulations might be simplified if used to 

generate DEA model inputs, since the DEA model should account for the input-output 

inequality expressed in the above equation, and the normalizing factor could be 

eliminated. This possibility is also open to further investigation. 

The formulation presented is structured to discriminate between input variables by 

classifying them according to affordability fitness functions, and using the same ordinal 

scale to rate the relative importance of an attribute to a technology within that fitness 

function. If input values are already known based on past experience, this knowledge aids 

in discriminating between observations. But in the scenarios within which this 

formulation is expected to be used, the discrimination between observations will be a 

function of the ability of the subject matter experts’ abilities to accurately characterize the 

attributes of technologies or similar classifications in terms of the key fitness variables, 

and their association with the affordability fitness functions. If the formulation is 

sufficiently robust, lack of such discrimination will not have a major effect on results. 

And perhaps because this may be applied in the high risk-high payoff environment of 

research and development, discrimination between observations may not be a significant 

concern.  

The formulation itself is designed to characterize fitness in terms of efficiency, by 

comparing the accumulation of expected outputs to the combination of anticipated inputs, 
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which will produce those outputs. The formulation recognizes the fact that any physical 

process cannot produce more outputs than the inputs can generate, and contains those 

outputs’ values by allocating the output values of each variable in the ratio of total input 

variable value to maximum possible input variable value. That formulation is based on 

the concept that each input will contribute to an output in proportion to the importance of 

that output to the final product. From the economic viewpoint, it does not allow the 

process to provide increasing returns. 

The formulation simply provides an affordability metric that enables decision makers to 

determine which alternative or alternatives, from among a population of candidate 

alternatives, is likely to provide the best overall results in terms of affordability – that is 

in terms of performance, vitality, adaptability and resource conservation. The formulation 

is a management decision tool, the output of which can be used in conjunction with other 

management tools and processes to decide the direction of the technological path and 

areas in which to invest research and development money. Since there are indications that 

the formulation can handle actual data either completely, or in conjunction with expert 

opinion input, the formulation could be used during the production process to evaluate 

the affordability of the design at intervals throughout the process. In that regard, or in a 

wider area of application, the formulation could be useful in generating the input data set 

for use in a DEA model to assess production efficiency. 

4.6.1 Example of manual computation of fitness using above formulation 

Assume that two technologies, Technology A and Technology B, are being evaluated to 

determine which alternative is the most affordable to pursue. The attributes to be 

evaluated have been selected by subject matter experts. They have also determined the 

relative importance of each fitness function for all technologies being evaluated. Program 

managers and subject matter experts have determined the relative importance for each 

key attribute and applied appropriate weights, and the subject matter experts have scored 

the value of each attribute for each fitness function. The results are shown in the tables 8 

and 10, which reflect matrix QA and QB used as described above to assemble data for the 

above formulation. The weight row is vector W, the weight columns are vectors AA and 
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AB, and the total rows are vectors MA and MB. Output fitness function vectors are 

performance, vitality, and adaptability, and resources is the input vector. 

 

Table 10. QA matrix showing data input values and weights for Technology A 

Vector MA is the Total row in Table 9 below for the four fitness function vectors. The 

normalized MA vector sum of output vectors, used to compute fitness, is shown in the 

Total Output Normalized column. 

 

Table 11. QA matrix showing weighted fitness function values for Technology A 

 

The fitness as determined by the formulation above is: 

   
                

      
 

     

     
      

The same data tables are provided for technology B.  

Performance Vitality Adaptability Resources

Key Attribute Weight 0.46 0.28 0.26 1

A1 0.21 4 5 2 3

A2 0.18 3 2 2 2

A3 0.3 2 2 4 2

A4 0.17 0 3 3 3

A5 0.14 4 2 3 2

Technology A

Fitness Functions

Performance Vitality Adaptability Resources

Key Attribute Weight 0.46 0.28 0.26 1

A1 0.21 4 5 2 3

A2 0.18 3 2 2 2

A3 0.3 2 2 4 2

A4 0.17 0 3 3 3

A5 0.14 4 2 3 2

Total 1 1.168 0.784 0.757 2.380 1.138

Total Output 

NormalizedTechnology A

Fitness Functions
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Table 12. QB matrix showing data input values and weights for Technology B 

Vector MB is the Total row in Table 11 for the four fitness function vectors. The 

normalized MB vector sum of output vectors, used to compute fitness, is shown in the 

Total Output Normalized column. 

 

Table 13. QB matrix showing weighted fitness function values for Technology B 

 The fitness as determined by the formulation above is: 

   
              

     
 

     

      
     

The comparison shows that Technology A is more affordable than technology B.  

         

4.7 Conclusions  

This paper addresses three conjectures associated with affordability landscapes. The first 

conjecture is that a vector of key affordability fitness variables associated with a DMU 

represents a point in the production possibility set of all DMUs being evaluated. The 

second conjecture is that production axioms upon which performance evaluation 

modeling is based are positively characterized in the affordability production possibility 

set. The third conjecture is that a performance-based formulation, not based on DEA, can 

Performance Vitality Adaptability Resources

Key Attribute Weight 0.46 0.28 0.26 1

B1 0.32 0 2 2 4

B2 0.21 4 2 5 5

B3 0.25 1 5 0 2

B4 0.22 3 0 3 4

Technology B

Fitness Functions

Performance Vitality Adaptability Resources

Key Attribute Weight 0.46 0.28 0.26 1

B1 0.32 0 2 2 4

B2 0.21 4 2 5 5

B3 0.25 1 5 0 2

B4 0.22 3 0 3 4

Total 1 0.805 0.647 0.611 3.710 0.556

Total Output 

NormalizedTechnology B

Fitness Functions
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be developed that will optimize the fitness of a specific class of technological systems 

associated with research and development. 

The first conjecture is supported by both major topics discussed in the previous sections. 

It was shown that affordability fitness vectors associated with key affordability fitness 

functions define points in an affordability fitness landscape that depict the relative fitness 

of each production unit represented by each vector. Since the vectors represent finite 

values of affordability fitness, the isoquant of outermost vector values define the 

boundary of the solution space of all vectors and thus the space of all possible vector 

values, which is the production possibility set. The literature supports the concept that 

landscapes can depict the efficiency of units represented on the landscape and that such 

efficiency is a measure of fitness. The above examples demonstrate that affordability 

fitness vectors provide some evidence of the practicality of that concept. 

The affordability production possibility set conforms to each of the six production 

axioms, which supports first two conjectures. This conclusion also supports the use of 

DEA models in the evaluation of affordability-related DMUs and strengthens the author’s 

contention that the DEA solution space is a fitness landscape, since the literature shows 

that the DEA model conforms to the production axioms. 

Experimentation with actual use of DEA to evaluate the affordability of Department of 

Defense corrosion research and development projects showed DEA to be a viable method 

for assessing project fitness. The decision as to which R&D projects should be selected as 

candidates for funding and implementation starts with selecting the projects with the best 

technical approach. This is equivalent to determining the technical efficiency of each 

project. DEA analysis provided that capability and virtually precluded the bias inherent in 

subjective types of evaluation. Thus decisions regarding which projects to fund under 

budget constraints were reached more easily. 

The process of providing useful feedback to organizations that submit R&D project plans 

depends on the availability of data that quantifies shortfalls. Inefficient R&D projects are 

not only identified by the DEA models, but their improvement potential in respect to 

specific input and output variables can be identified. This enables decision-makers to 

determine whether to resubmit project proposals based on quantified data, but also 
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enables them to improve the future project plan development and publication process. 

Inefficient project plan data also provide decision makers with data that enable them to 

assess the evaluation process variables and change evaluation criteria if necessary. 

The third conjecture is supported by the formulation generated for this paper and the 

application of the formulation to a practical problem with realistic data. This formulation 

appears to have utility in areas where the affordability of production processes for which 

a specific set of inputs and outputs have not yet been applied is of interest, and there are 

little prior data available with which to evaluate the potential production process. This is 

especially important in the research and development community where expert opinion is 

the primary source of input data used to make management decisions regarding which 

technologies to fund in order to advance science and technology. 

Clearly there are unanswered questions that require further research. The actual utility of 

the alternative formulation needs to be verified in practice. Other transformations of 

output variable data that assure that output does not exceed input need to be developed, to 

accommodate interval scale data. In a broader sense, more research is needed in the area 

of fitness landscapes.  
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5. Conclusions and Recommendations 

5.1 Conclusions 

5.1.1 Modeling Affordability as Fitness 

Consumers throughout the value chain should be able to benefit from affordable products 

and services – purchases that perform at the level of quality required by the consumer, 

perform at that level whenever required during the useful life of that product or service, 

and do so with minimum consumption of material and financial resources. But despite 

over ten years of affordability science research at the Office of Naval Research, we still 

lack a systematic approach to developing affordable systems; and we lack a consistent 

method for quantifying, measuring and assessing affordability that accommodates a 

system of non-linear input and output variables with various measurement units. 

This dissertation addresses these shortcomings by modeling affordability as fitness of 

technological systems. It suggests that the characteristics and behaviors of natural 

systems can be used to provide insight into methods for developing desired 

characteristics and behaviors of technological systems that will make them affordable. 

The dissertation describes four fitness functions – performance, vitality, adaptability and 

resource conservation – functions that provide clues to developers, designers, engineers 

and manufacturers regarding product or service attributes that will render them more 

affordable. The dissertation also provides modeling techniques and strategies for system 

designers and engineers to develop affordable products by analyzing the potential effects 

of path dependence on fitness attributes. It also demonstrates a potentially effective 

method for measuring product fitness by using data envelopment analysis to evaluate the 

relative efficiency of key fitness attributes associated with affordability fitness functions.  

The broad impact of this research will be the ability to reap the benefits of more 

affordable products, both as an end customer, and as a producer who transforms materials 

received as a customer into products for consumption by customers in the value chain. 

The by-products should be better performing products with longer, uninterrupted service 

life that require fewer resources to produce and use.  
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5.1.2 Path Dependence 

Path dependence is not an external artifact of the systems design process, but an inherited 

characteristic of the design process itself. It provides a convenient structure to assess the 

fitness of a developing system at any point in its evolution and to choose successive paths 

that offer the best chance for achieving ultimate system fitness.  

The initial starting point and direction of the design path may be dictated by prior 

conditions, chosen based on prior experience and knowledge, or selected randomly. From 

that point on, each segment of the design path is normally a function of feedback 

regarding the fitness of the system along the path. If the feedback is positive, the path will 

continue in the direction specified by system requirements as interpreted by the systems 

engineer and designer. If the feedback is negative, a different path direction may be 

selected. High fidelity feedback provides reliable information with which to make 

confident design path decisions. Low fidelity feedback provides unreliable information 

that may lead systems engineers and designers to continue on the wrong path or choose a 

different path with lower fitness. Continued high fidelity positive feedback usually leads 

to quicker, more cost-effective results. Continued low fidelity feedback – positive or 

negative – leads to poor design decisions, excessive cost and possible termination of 

system development.  

While lock-in from path dependence has negative connotations, lock-in can be 

advantageous if the design is locked in due to high fidelity positive feedback. However, 

lock-in caused by low fidelity feedback and unacceptable cost or other conditions 

associated with recovery from design deficiencies will result in lower system fitness and 

sub-optimal system performance.  

Systems engineers and designers must understand the underlying mechanisms that create, 

dictate and maintain path dependence as well as the effects on system design and fitness. 

More important, systems engineers and designers need to employ effective strategies and 

methods to take advantage of positive effects of path dependence and offset its potential 

negative effects. Through understanding and effectively dealing with path dependence 

and its effects, systems engineers can conceive of, design, develop and produce products 
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and services with improved system fitness – products and services that are more 

affordable.  

The author modeled the system engineering design process to reinforce these points by 

graphically illustrating the effects of path dependence and lock-in. The model offers a 

potential method for analyzing and predicting real-life system design efforts. It could be 

useful for mapping a future systems design effort or to evaluate and make decisions 

regarding an effort already underway. Also, the model can be used to augment specific 

strategies to offset negative effects of path dependence and to take advantage of positive 

effects.  

Traditional systems engineering design alternatives are driven by requirements that are 

allocated among different system components, and designers keep track of an extensive 

array of attributes such as cost and performance. In contrast, value-driven design 

evaluates objective functions over the same set of extensive attributes. The models and 

approaches presented in this dissertation support the value-driven approach because they 

assess the effects of path dependence throughout the design evolution on the final product 

or service.  

5.1.3 Measuring Affordability Using DEA 

One of the major objectives of the research is to seek methods to quantify and measure 

affordability. The ONR Affordability Measurement and Prediction Program sought to 

achieve that objective. But while the AMPP efforts generated many effective methods for 

developing and producing affordable products, services and systems, the ability to 

measure affordability largely eluded the participants. AMPP efforts by this author to 

model affordability as fitness did not yield an effective method to measure affordability, 

but the complexity sciences and the study of fitness landscapes provided clues regarding 

where to search.  

This research indicates that fitness landscapes – particularly NK fitness landscapes – are 

viable constructs upon which to search for fitness of technological systems. They have 

been used by the complexity sciences community to assess and improve the fitness of 

complex adaptive systems, notably biological ones, and several authors suggest that NK 
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fitness landscapes can be used to assess and improve the fitness of technological systems. 

But specific methods for doing so needed to be developed.  

The introduction to data envelopment analyses provided this author with a potential 

approach to measuring technological fitness. DEA measures relative efficiency, and since 

efficiency has been equated to fitness, it offers a method to measure relative fitness. Since 

the usual reason for measuring affordability is to choose from among a number of 

alternatives, relative fitness is a very useful parameter. Experimentation with DEA to 

measure the efficiency, and thus fitness, of corrosion research and development projects 

submitted to the Department of Defense for selection and funding yielded positive 

results. This led to further experimentation with DEA and eventual establishment of DEA 

analysis as the first step in the final DoD corrosion project evaluation process. More 

important, it established DEA as a viable method for assessing technological fitness or 

affordability. 

Another DoD requirement, the need to select affordable technologies for development by 

the Office of Naval Research led to the author’s development of an alternate formulation 

to assess affordability, given little hard data. Experimentation with this method is needed 

to establish its utility in the research and development community and to see if the output 

of this formulation can form the input and output vectors of the DEA model.  

The need for much research and experimentation remains. While analysis indicates that 

NK fitness landscapes can accommodate the production possibility set, and that the DEA 

solution space is a generalized NK fitness landscape, associated implications regarding 

the impact of production functions, path dependence, and feedback need to be 

investigated and articulated. Nevertheless, the research and experimentation documented 

in this dissertation reflect a giant step in pursuit of more affordable technological systems 

and the ability to measure their fitness.  
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5.2 Recommendations 

5.2.1 Modeling Affordability as Fitness 

Industrial and systems engineers are often dedicated to maximizing the economic return 

on sales of goods and services produced by their employers. This raises several questions 

regarding the role of industrial and systems engineers in the broader community of both 

producers and consumers. Should industrial and systems engineers not only be concerned 

with benefits that accrue to producers, but also be concerned with benefits that accrue to 

customers in typical sales transactions? More specifically, should industrial and systems 

engineers have a role in maximizing benefits that accrue to the customers? And, since 

economic return to employers can be and is measured by industrial and systems 

engineers, can they also measure those benefits that accrue to the customers?  

This author feels that industrial and systems engineers need to understand affordability as 

it is characterized in this dissertation and be champions for consumers as well as for the 

producers who employ these engineers. The industrial and systems engineering 

curriculum at Virginia Tech and other engineering universities should include studies in 

the complexity sciences since complexity sciences can be related to all industrial and 

systems engineering disciplines and functions.  

A basic complexity sciences course for industrial and systems engineers could feature 

authors such as Kauffman, Frenken, Holland, Sterman, Waltrop and Arthur, who offer a 

rich background in complexity sciences, as do a host of others including Nobel Laureates 

Kenneth Arrow and Murray Gell-Mann. Frenken, for example, suggests practical 

approaches to applying and analyzing fitness landscapes and using bounded rationality to 

focus on exemplar systems as an initial condition of systems design.  

Engineering core courses should have affordability and fitness concepts woven into their 

course syllabus. Path dependence principles, impacts and strategies should appear in the 

Systems Engineering Process (ENGR 5004) course. Affordability concepts and tools can 

be integrated into the Macroergonomics (ISE 5694) course. The Research in the Design 

of Performance Measurement Systems (ISE 5144) course provided the basis for the 

experimentation in affordability fitness measurement, so affordability concepts and 

practical application would naturally fit in that syllabus. The Management of Quality and 
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Reliability (ISE 5124) course syllabus is also a natural place to feature affordability and 

fitness, particularly since quality is frequently defined as fitness for use. As a matter of 

fact, complexity sciences and affordability content was integrated into one presentation of 

that course in the 2010 fall semester. Two systems dynamics courses, Applied Systems 

Engineering (ENGR 5104) and Advanced Dynamic Modeling (ISE 6104), could also 

feature affordability, particularly emphasizing path dependence.  

On a broader scale, the concepts of affordability as fitness and of measuring 

technological fitness using DEA should be publicized through periodicals, articles and 

conference presentations.  Chapter two should be submitted as an essay to appropriate 

publications. 

5.2.2 Path Dependence 

The path dependence model presented in this dissertation is a simple model with minimal 

feedback and alternative paths. The model should be expanded to enable more detailed 

characterization and analysis of path dependence in the design of affordable systems. For 

example, use total design quality level feedback to adjust the inspection and test regimen; 

model extinction events so only one technology experiences extinction; and model the 

long jump to respond to quality feedback from either technology.  

It will also be useful to experiment with other simulation models, such as discrete event 

simulation, to evaluate how they can process the relationships, events and types of 

variables typical of path dependence networks.  

The strategies and techniques to use or mitigate the effects of path dependence suggested 

in the dissertation need to be thoroughly tested, particularly in regards to the use of the 

system dynamics path dependence model. If the model is expanded as suggested above, 

the impact of any changes need to be assessed, and the approach to engaging the model in 

support of strategies or techniques to use or mitigate the effects of path dependence need 

to be adjusted if necessary. 

 Chapter three should be submitted to appropriate journals for publication. 
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5.2.3 Measuring Affordability Using DEA 

The relationship between fitness landscapes, particularly the generalized NK fitness 

landscape; production axioms; the DEA production possibility set solution space; path 

dependence; and impact of feedback in landscapes and the production possibility set; all 

need to be addressed and analyzed. While there are strong indications that the DEA 

solution space is an NK fitness landscape, further investigation of this assumed 

correspondence is needed. Likewise, further investigation is warranted into the 

conclusion that the NK landscape conforms to production axioms and accommodates the 

production function, as defined by the production possibility set.  

While path dependence is, by definition, a characteristic of the NK fitness landscape as 

analysts traverse the landscape using random walks in search of higher system fitness, the 

use of DEA fitness measurement in the context of successive feedback and improvement 

on a path through the production possibility set is a concept requiring significant thought, 

experimentation, modeling and analysis. It is likely that such a pursuit would be a major 

undertaking, but positive results could be a major breakthrough in using DEA for 

measuring affordability as fitness as well as measuring fitness in the broader sense of 

complex adaptive systems fitness.  

At a more practical level, DEA assessment should be applied to other instances of project 

evaluation to substantiate the methods and conclusions featured in this dissertation. In 

this regard, alternate methods for assessing fitness using concepts such as those described 

in the last section of Chapter 4 should be pursued or validated to replace or support the 

use of DEA when a small number of DMUs constrain the use of DEA. 

Chapter four should be submitted to appropriate journals for publication. 
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Appendix A – Path Dependence 

 

A-1 Path Dependence in Design Model Description 

 

The systems design model of path dependence is designed to illustrate the nature of path 

dependence during the design phases of the systems engineering acquisition cycle, and to 

show the effects of path dependence during that phase. The units developed are 

technology design units, which refer to technology development component, 

subassembly and assembly designs. 

The model accommodates two technologies, and, during each period, generates and 

assigns a technology unit design to one of the two technologies. The total number of 

technology units to be designed and developed in each sub-phase during the model run is 

an exogenous variable. The process of assigning a technology unit design to a technology 

is to allocate the design based on the probability of selecting that technology.  

The non-linear Polya process is used to generate the probabilities of selection during each 

successive period. This model is adapted from Sterman’s non-linear Polya process 

formulation, which generates path dependent results. The degree of path dependence is 

regulated by an exogenous “sensitivity to proportion” variable. The probability of 

selecting a specific technology unit is based on the ratio of the previous selection of that 

type technology unit to the total instances of technology unit selection. Generating a 

random uniform variable and comparing it to the probability of selection make the actual 

selection. The probability of selection during each period is modified by random 

perturbations generated by an exponential function associated with the probability 

variable. The initial probability of selecting a technology unit is dictated by the 

exogenous “initial technology” variables, which define the initial values of the two 

technology unit stocks. Nominally, they each have one technology unit assigned to each 

stock, which dictates that the initial probability is 0.5 for each technology. However, if it 

is determined that one technology is dominant; more than one unit can be entered in the 

initial technology variable.  
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Every generated design is inspected or tested, where the probability of failure is an 

exogenous variable. A random uniform variable is generated and compared to the 

probability of failure to determine if the design is acceptable and can be added to the 

stock of good designs. However, before being added to the stock of good designs, the 

probability of the design acceptance being a false negative, also an exogenous variable, is 

compared to another random uniform variable, and if a false negative, the design is added 

to the false negative design stock rather than the stock of good designs. Designs in the 

false negative design stock are later “discovered” to be false negatives, added to the 

rework stock, and placed in the good design stock after rework is performed.  

The model also allows for one or more “extinction” events to be randomly generated. An 

extinction event is an event that stops the normal design development process and causes 

the process to start again from the beginning. An extinction event can be used to simulate 

a random occurrence such as non-availability of critical materials or loss of a sole source 

supplier. It can also simulate the result of a long jump to a better technology. An 

exogenous extinction switch controls the extinction event, exogenous lower and upper 

limits to the time period during which the event(s) will occur, and an exogenous 

maximum number of extinctions that can occur during a model run. 

The model accumulates costs and schedule days required to complete the design. 

Separate cost data are captured for unit design, for inspection and/or test, for redesign of 

failed units, and for rework of false negatives. The cost accrued is generated by 

multiplying exogenous maximum cost variables for design, test, rework or redesign by 

table values, which determine the percentage of maximum cost that applies to that period 

of the model run. The resulting costs are accrued in cumulative cost stocks. Total 

schedule days expended are computed by multiplying total designs accepted by an 

exogenous average time per design variable.  

The model run is completed when the total number of good designs for both technologies 

equals the “total designs” variable, which defines the number of accepted designs 

required. The model run can also end if the exogenous lock-in switch is on and either the 

number of schedule days or the cost exceeds the maximum allowed for either. Initiating 

another model run with the same values of exogenous variables is performed by changing 
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the exogenous “random number seed” variable. That variable will also change the value 

of the other random number seeds.  

The model variables of interest are the good technology design stocks, the cumulative 

costs and the total schedule days expended. Other interesting variables are the failure 

rates and the number of false negatives. By changing the exogenous random number seed 

variable, the path dependent nature of the process becomes apparent. Initial conditions 

and early selections dictate which technology will dominate during a specific model run, 

how much the detailed design will cost, how long it will take, and how extinction events 

will affect path dependence. 

 



 

 
 

 

A-2 System Dynamics Model Causal Loop Diagrams 

Figure 9.  Design, Development and Inspection or Test Activities 
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Figure 10.  Cost and Schedule Activities  
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A-3 System Dynamics Model Runs 

 
Table 14. Exogenous Variables Used in Model Runs 

 
The graphs on the following pages were produced using the following parameters. Runs were 

performed on Vensim DSSDP Software.  
 

 
  

Initial

Low Med. High Lockin Bias Low Med. High Lockin Bias Low Med. High

Changed Exogenous Variables Dataset IC FL FM FH FK FB RL RM RH RK RB CL CM CH

Technology 1 Failure Probability 0.05 0.1 0.3 0.5 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.3
Technology 2 Failure Probability 0.05 0.1 0.3 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.3

Good Design 1 Probability 1 1 1 1 1 1 0.9 0.7 0.5 0.5 0.5 0.9 0.8 0.7

Good Design 2 Probability 1 1 1 1 1 1 0.9 0.7 0.5 0.5 0.9 0.9 0.8 0.7

Extinction Switch 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Probability of Extinction 0 0 0 0 0 0 0 0 0 0 0 0.01 0.01 0.01

Extinction Lower Limit 0 0 0 0 0 0 0 0 0 0 0 0.01 0.01 0.55

Extinction Upper Limit 0 0 0 0 0 0 0 0 0 0 0 0.2 0.5 0.7

Max Extinctions 0 0 0 0 0 0 0 0 0 0 0 1 2 1

Lock-in Switch 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Random number seed                   1 1,485         

2 1,732         

3 1,614         

Fixed Exogenous Variables

Sensitivity to Proportion 7.00            

Initial Probability of Choosing 

Technology 1 0.50            

Total Designs 500             

Initial Technology 1 1                  

Initial Technology 2 1                  

Design 1 Discovery Delay 10               

Design 2 Discovery Delay 10               

Rework 1 Delay 4                  

Rework 2 Delay 4                  

Max Design Cost 20,000       

Max Test Cost 10,000       

Max Redesign Cost 25,000       

Max Rework Cost 25,000       

Average Days Per Design 1.6              

Maximum Days Allowed 1,000         

Maximum Allowed Cost 2,500,000 

CoevolutionFeedback Random Event
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A-4 Results of Model Runs Using Above Parameters 

 

Figure 11. Effect of Feedback from Low Test Failure Rate on Path Dependence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Effect of Feedback from Medium Test Failure Rate on Path Dependence 
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Figure 13. Effect of Feedback from High Test Failure Rate on Path Dependence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Effect of Feedback from High Failure Rate of One Technology on Path 

Dependence 
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Figure 15. Cause of Crossover in Figure 12  

 

 

 

 

 

 

 

 

 

 

 

 

 

Heavy lines show total good designs accepted during Run C.  Technology 1 dominated initially, but high failure rate 

caused increased acceptance of technology 2 designs, and positive technology 2 feedback reinforced the upward 

trend of the technology 2 path.  In Runs A and B, technology 2 quickly dominated from initiation with less failures. 

 

Figure 16. Effect of Feedback from Low Random Event Rate on Path Dependence 
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Figure 17. Effect of Feedback from Medium Random Event Rate on Path Dependence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Effect of Feedback from High Random Event Rate on Path Dependence 
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Figure 19. Effect of Feedback from High Random Event Rate of One Technology on Path 

Dependence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Effect of Coevolution with Combination of Low Failure & Low False Negative 

Rates on Path Dependence 
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Figure 21. Effect of Coevolution with Combination of Medium Failure & Low False 

Negative Rates on Path Dependence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Points Where Extinction Events on Low and Medium Combinations Occurred 

Causing Design Restart 
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Figure 23. Effect of Coevolution (Long Jump) with Combination of High Failure & Low 

False Negative Rates on Path Dependence 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 24. Points Where Long-Jump Events Occurred Causing Design Restart 
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Figure 25.  Effect of Coevolution on Path Dependence with 75% Extinction of Technology 1  

 
 

Figure 26. Cause of Crossover in Figure 23 

 
Heavy lines show total good designs accepted during Run A.  Even though technology 2 dominated good designs 

initially, the technology 1 extinction event was sufficient to change the proportion of each technology designs to 

slightly favor technology 1 and cause that technology to subsequently produce more designs than technology 2. The 

other technologies were less affected and no crossover occurred, though Run C showed similar effects as in Run A. 
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Figure 27. Effect of Feedback from High Test Failure Rate and Lock-in on Path 

Dependence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Effect of Feedback from High False Negative Rate and Lock-in on Path 

Dependence 
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Figure 29. Effect of Initial Conditions on Path Dependence 
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A-5 System Dynamics Model Documentation 

 

Development, Inspection/Test, and Extinction Activities 

 

Add Extinction Event=Extinction Event*Key Delay 

Units: Designs /period 

 Adds a generated extinction event to extinction count stock. 

 

Completed Rework 1=Design 1 Rework/Rework 1 Delay 

Units: Designs/period 

Technology 1 design rework completed and placed in Good Design stock 

 

Completed Rework 2=Design 2 Rework/Rework 2 Delay 

Units: Designs/period 

Technology 2 design rework completed and placed in Good Design stock 

 

Design 1 Discovery Delay=10 

Units: period 

Average number of periods it takes to discover a technology 1 false negative design 

 

Design 1 Failures=IF THEN ELSE (Technology 1 Design Selected = 1: AND: Technology 1 

Design Accepted = 0, 1, 0) 

Units: Designs/period 

Number of selected technology designs rejected during test or inspection that are added 

to stock of technology 1 designs failed - nothing is added if technology 1 is selected 

 

Design 1 Rework= INTEG (Rework 1 Added - Completed Rework 1, 0) 

Units: Designs 

Technology 1 Designs Awaiting Rework 

 

Design 2 Discovery Delay=10 

Units: period 

Average number of periods it takes to discover a technology 2 false negative design 

 

Design 2 Failures=IF THEN ELSE (Technology 2 Design Selected = 1: AND: Technology 2 

Design Accepted = 0, 1, 0) 

Units: Designs/period 

Number of selected technology designs rejected during test or inspected that are added to 

stock of technology 2 designs failed - nothing is added if technology 2 is selected 

 

Design 2 Rework= INTEG (Rework 2 Added - Completed Rework 2, 0) 

Units: Designs 

Technology 2 Designs Awaiting Rework 
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Design Delay=1 

Units: period 

Number of periods between new design generation 

 

Designs Added Each Period=IF THEN ELSE ("Lock-in Notice" = 0: AND: (Technology 1 Good 

Designs + Technology 2 Good Designs)/Design Delay < Total Designs/Design Delay, 1, 0) 

Units: Designs/period 

The number of designs chosen per period, equal to one in the traditional model. If the 

total number of designs chosen equals the maximum number of designs to be generated, 

or a lock-in notice is active, the number of designs chosen per period goes to 0. 

 

Event Delay=1 

Units: period 

Number of periods before extinction event added (always = 1) 

 

Extinction 1 Draw=IF THEN ELSE (Extinction Count <= Max Extinctions, RANDOM 

UNIFORM(0,1,(Random Seed Input + 4500)),1) 

Units: Dimensionless 

Random Number to compare to probability of extinction to determine if technology 1 

extinction will occur 

 

Extinction 2 Draw=IF THEN ELSE(Extinction Count <= Max Extinctions, RANDOM 

UNIFORM(0,1,(Random Seed Input + 3500)),1) 

Units: Dimensionless 

Random Number to compare to probability of extinction to determine if technology 2 

extinction will occur 

 

Extinction Count= INTEG (Add Extinction Event, 1) 

Units: Designs 

Total number of extinction events generated during model run regardless of maximum 

number of extinctions generated. Extinction events generated only between extinction 

limits. 

 

Extinction Delay=1 

Units: period 

Number of periods before extinction event takes place (always = 1) 

 

Extinction Event= IF THEN ELSE(Extinction Switch = 1 :AND: (Extinction Lower Limit * 

Total Designs < Total Number of Designs) :AND: (Extinction Upper Limit * Total Designs > 

Total Number of Designs), 1 , 0) 

Units: Dimensionless 

If the extinction switch is on, and the total number of designs generated to date lies 

between the extinction lower and upper limits, the extinction event = 1 and the extinction 

event can occur, otherwise it is 0 and it will not occur 
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Extinction Lower Limit=0.01 

Units: Dimensionless 

Percent of total number of designs after which an extinction event is allowed to be 

generated 

 

Extinction Switch=1 

Units: Dimensionless 

If = 1, extinction event can occur, if =0, extinction event cannot occur. 

 

Extinction Upper Limit=0.5 

Units: Dimensionless 

Percent of the number of total designs beyond which extinction events no longer are 

allowed to be generated 

 

False negative Design 1 Added=IF THEN ELSE (Technology 1 Design Accepted = 1, (1-Good 

Design 1 Added), 0) 

Units: Designs/period 

Number of false negative technology 1 designs added to the stock of false negative 

technology 1 designs if the technology 1 design is accepted, otherwise nothing is added 

 

False negative Design 2 Added=IF THEN ELSE (Technology 2 Design Accepted = 1, (1-Good 

Design 2 Added), 0) 

Units: Designs/period 

Number of false negative technology 2 designs added to the stock of false negative 

technology 2 designs if the technology 2 design is accepted, otherwise nothing is added 

 

FINAL TIME=IF THEN ELSE (Total Designs > Total Number of Designs, 2000, Total Designs) 

* Final Time Constant 

Units: period 

The final time for the simulation. 

 

Final Time Delay=1 

Units: period/Designs 

Number of designs delayed for final time to occur 

 

Good Design 1 Added=Technology 1 Design Accepted * IF THEN ELSE (Tech 1 Accept Draw 

<= Good Design 1 Probability, 1, 0) 

Units: Designs/period 

Number of good technology 1 designs plus reworked false negative technology 1 designs 

added to the stock of good technology 1 designs 

 

Good Design 1 Adjustment=IF THEN ELSE(Technology 1 Extinction/Extinction Delay = 1, 

(Technology 1 Good Designs* Percent Extinction/Extinction Delay) -1, 0) 

Units: Designs/period 

If extinction occurs, designated percent of good technology 1 designs are removed from 

the stock and design sequence continues with remaining designs (if any) 
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Good Design 1 Probability=0.9 

Units: Dimensionless 

Fraction of accepted technology 1 designs that do not have false negative test or 

inspection results 

 

Good Design 2 Added=Technology 2 Design Accepted * IF THEN ELSE (Tech 2 Accept Draw 

<= Good Design 2 Probability, 1, 0) 

Units: Designs/period 

Number of good technology 2 designs plus reworked false negative technology 2 designs 

added to the stock of good technology 2 designs 

 

Good Design 2 Adjustment=IF THEN ELSE(Technology 2 Extinction/Extinction Delay = 1, 

(Technology 2 Good Designs* Percent Extinction/Extinction Delay) -1, 0) 

Units: Designs/period 

If extinction occurs, designated percent of good technology 1 designs are removed from 

the stock and design sequence continues with remaining designs (if any 

 

Good Design 2 Probability=0.9 

Units: Dimensionless 

Fraction of accepted technology 2 designs that do not have false negative test or 

inspection results 

 

Initial Probability of Choosing Technology 1=1 

Units: Dimensionless 

Exogenous variable that establishes the probability of Technology 1 being initially 

chosen. The default value is 0.5 

 

Initial Technology 1 Designs=1 

Units: Designs 

There is one unit of technology 1 in the technology 1 stock. This can be increased to 

increase the probability that a technology 1 unit will be selected in the first period. 

 

Initial Technology 2 Designs=1 

Units: Designs 

There is one unit of technology 2 in the technology 2 stock. This can be increased to 

increase the probability that a technology 2 unit will be selected in the first period. 

 

"Lock-in Notice"=IF THEN ELSE("Lock-in Switch" = 1, “Cost Lock-In Occurrence" + 

"Schedule Lock-in Occurrence", 0) 

Units: Dimensionless 

Activates a lock-in notice if the lock-in switch is on and cost or schedule lock-in occurs 

 

"Lock-in Switch"=0 

Units: Designs/period 

If = 1, schedule or cost lock-in will stop designs from being generated, if = 0, lock-in will 

have no effect 
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Max Extinctions=1 

Units: Designs/period 

Total number of extinction events allowed in a single model run 

 

Percent Extinction=0.75 

Units: Dimensionless 

Percent of good designs to be removed from stock during extinction event 

 

Probability of Choosing Technology 1=IF THEN ELSE (Time = 0, Initial Probability of 

Choosing Technology 1, 1/(1+exp (-Sensitivity to Proportion*(Proportion of Technology 1 

Designs - 0.5)))) 

Units: Dimensionless 

The probability of choosing technology 1 is a function of the proportion of technology 1 

choices. The exponential function is used. The probability of choosing technology 1 is 

1/2 when the proportion of technology1 is 1/2. 

 

Probability of Choosing Technology 2=IF THEN ELSE (Time = 0, (1-Initial Probability of 

Choosing Technology 1), 1/(1+exp (-Sensitivity to Proportion *(Proportion of Technology 2 

Units -0.5)))) 

Units: Dimensionless 

The probability of choosing technology 2 is a function of the proportion of technology 2 

choices. The exponential function is used. The probability of choosing technology 2 is 

1/2 when the proportion of technology 2 is 1/2. 

 

Proportion of Technology 1 Designs=(Technology 1 False negative Designs + Technology 1 

Good Designs)/Total Number of Designs 

Units: Dimensionless 

The proportion of technology 1 choices. 

 

Proportion of Technology 2 Designs=(Technology 2 False negative Designs + Technology 2 

Good Designs)/Total Number of Designs 

Units: Dimensionless 

The proportion of technology 2 choices. 

 

Random Draw=RANDOM UNIFORM (0,1,Random Seed Input) 

Units: Dimensionless 

Each period a random number is drawn from the uniform distribution on the interval [0, 

1]. 

 

Random Seed Input= 1614 

Units: Dimensionless 

Exogenous variable that triggers other Random Number Seeds 
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Rework 1 Added=Technology 1 False negative Designs/Design 1 Discovery Delay 

Units: Designs/period 

Number of technology 1 false negative designs moved from the false negative design 

stock to the rework stock 

 

Rework 1 Delay=4 

Units: period 

Average number of periods it takes to rework a technology 1 false negative design 

 

Rework 2 Added=Technology 2 False negative Designs/Design 2 Discovery Delay 

Units: Designs/period 

Number of technology 2 false negative designs moved from the false negative design 

stock to the rework stock 

 

Rework 2 Delay=5 

Units: period 

Average number of periods it takes to rework a technology 2 false negative design 

 

Sensitivity to Proportion=7 

Units: Dimensionless 

The larger this parameter, the faster the probability of choosing a given technology 

increases with its proportion of total technologies selected. 

 

Tech 1 Accept Draw=RANDOM UNIFORM (0,1, (Random Seed Input + 1800)) 

Units: Dimensionless 

Random number generation to determine if inspection or test result of an accepted design 

is a false negative (should have been a rejection). 

 

Tech 1 Failure Draw=RANDOM UNIFORM (0,1, (Random Seed Input + 1600)) 

Units: Dimensionless 

Random number generation to determine if design is rejected during inspection or test. 

 

Tech 2 Accept Draw=RANDOM UNIFORM (0,1, (Random Seed Input + 2200)) 

Units: Dimensionless 

Random number generation to determine if inspection or test result of an accepted design 

is a false negative (should have been a rejection). 

 

Tech 2 Failure Draw=RANDOM UNIFORM (0,1, (Random Seed Input + 2000)) 

Units: Dimensionless 

Random number generation to determine if design is rejected during inspection or test. 

 

Technology 1 Design Accepted=Technology 1 Design Selected * IF THEN ELSE (Tech 1 

Failure Draw > Technology 1 Failure Probability, 1, 0) 

Units: Designs/period 

Accepts a tested or inspected technology 1 design if the random draw is less than the 

probability of technology 1 passing the test or inspection 
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Technology 1 Design Quality=Technology 1 Good Designs/(Technology 1 False negative 

Designs + Technology 1 Good Designs + Total Technology 1 Designs Failed) 

Units: Dimensionless 

The ratio of total good technology 1 designs to total technology 1 designs tested or 

inspected - does not include reworked designs 

 

Technology 1 Design Selected=Designs Added Each Period * IF THEN ELSE (Random Draw 

<=Probability of Choosing Technology 1, 1, 0) 

Units: Designs/period 

Adds a design from technology 1 if the random draw is less than or equal to the 

probability of selecting a technology 1 design 

 

Technology 1 Extinction=IF THEN ELSE(Extinction 1 Draw < Technology 1 Probability of 

Extinction, Extinction Event, 0) 

Units: Designs 

Causes a technology 1 extinction event to occur if the extinction 2 random number is less 

than the probability of the extinction occurring 

 

Technology 1 Failure Probability=0.1 

Units: Dimensionless 

Exogenous variable that establishes the probability of a technology 1 unit passing 

inspection or test. 

 

Technology 1 False negative Designs=INTEG (False negative Design 1 Added - Rework 1 

Added, 0) 

Units: Designs 

Stock of total false negative technology 1 designs that have not been detected and have 

not been reworked 

 

Technology 1 Good Designs=INTEG (Completed Rework 1 + Good Design 1 Added - Good 

Design 1 Adjustment, Initial Technology 1 Designs) 

Units: Designs 

Total number of good technology 1 designs 

 

Technology 1 Probability of Extinction=0 

Units: Dimensionless 

Probability that technology 1 extinction will occur 

 

 

Technology 2 Design Accepted=Technology 2 Design Selected * IF THEN ELSE (Tech 2 

Failure Draw > Technology 2 Failure Probability, 1, 0) 

Units: Designs/period 

Accepts a tested or inspected technology 2 design if the random draw is less than the 

probability of technology 2 passing the test or inspection 
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Technology 2 Design Quality=Technology 2 Good Designs/(Technology 2 False negative 

Designs + Technology 2 Good Designs + Total Technology 2 Designs Failed) 

Units: Dimensionless 

The ratio of total good technology 2 designs to total technology 2 designs tested or 

inspected - does not include reworked designs 

 

Technology 2 Design Selected=Designs Added Each Period * IF THEN ELSE (Random Draw 

<=Probability of Choosing Technology 2, 1, 0) 

Units: Designs/period 

Adds a design from technology 2 if the random draw is less than or equal to the 

probability of selecting a technology 2 design 

 

Technology 2 Extinction=IF THEN ELSE(Extinction 2 Draw <Technology 2 Probability of 

Extinction, Extinction Event, 0) 

Units: Designs 

Causes a technology 2 extinction event to occur if the extinction 2 random number is less 

than the probability of the extinction occurring 

 

Technology 2 Failure Probability=0.1 

Units: Dimensionless 

Exogenous variable that establishes the initial probability of a technology 2 unit passing 

inspection or test. 

 

Technology 2 False negative Designs= INTEG (False negative Design 2 Added-Rework 2 

Added, 0) 

Units: Designs 

Stock of total false negative technology 2 designs that have not been detected and have 

not been reworked 

 

Technology 2 Good Designs= INTEG (Completed Rework 2 + Good Design 2 Added - Good 

Design 2 Adjustment, Initial Technology 2 Designs) 

Units: Designs 

Total number of good technology 2 designs 

 

Technology 2 Probability of Extinction=0.01 

Units: Dimensionless 

Probability that technology 2 extinction will occur 

 

Total Design Quality=(Technology 1 Good Designs + Technology 2 Good 

Designs)/(Technology 1 False negative Designs + Technology 1 Good Designs +Total Failures + 

Technology 2 False negative Designs + Technology 2 Good Designs) 

Units: Dimensionless 

The ratio of total good designs to total designs tested or inspected - does not include 

reworked designs 
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Total Designs=500 

Units: Designs 

The total number of accepted technology units required to complete the design phase. 

 

Total Failures=Total Technology 1 Designs Failed + Total Technology 2 Designs Failed 

Units: Designs 

Cumulative number of failed technology 1 and 2 designs 

 

Total Number of Designs=Technology 1 False negative Designs + Technology 1 Good Designs 

+ Technology 2 False negative Designs + Technology 2 Good Designs 

Units: Designs 

The total number of units added from both technologies, including good designs and false 

negative accepted designs 

 

Total Technology 1 Designs Failed= INTEG (Design 1 Failures, 0) 

Units: Designs 

The total number of technology 1 designs units that have failed inspection or test 

 

Total Technology 2 Designs Failed= INTEG (Design 2 Failures, 0) 

  Units: Designs 

The total number of technology 2 designs units that have failed inspection or test 
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Cost and Schedule Activities 

 

"Cost %"=Cost Table (Total Number of Designs) 

 Units: Dimensionless 

The percent of maximum cost from the cost table that will be used to determine redesign, 

design development, test or inspection, or rework cost for the period 

 

Average Days Per Design=1.6 

Units: Days/Designs 

Average days required to complete each design 

 

Completed Rework 1=Design 1 Rework/Rework 1 Delay 

Units: Designs/period 

Technology 1 design rework completed and placed in Good Design stock 

 

Completed Rework 2=Design 2 Rework/Rework 2 Delay 

Units: Designs/period 

Technology 2 design rework completed and placed in Good Design stock 

 

"Cost Lock-In Occurrence"= IF THEN ELSE (Total Cumulative Cost/Maximum Allowed Cost 

< 1, 0, 1) 

Units: Dimensionless 

If maximum allowed cost is exceeded, lock-in occurs 

 

Cost Table ([(0,0)-1000,1),(0,0),(100,0.0394737),(200,0.0657895),(300,0.122807), 

(400,0.184211),(500,0.254386),(600,0.42),(700,0.6),(800,0.8),(900,0.95),(1000,1),(5000,1),(500

0,1)],(0,0),(64.2202,0.0175439),(128.44,0.0438596),(192.661,0.0701754),(250.765,0.0921053),(

308.868,0.122807),(373.089,0.166667),(431.193,0.20614),(498.471,0.263158),(556.575,0.34649

1),(617.737,0.429825),(691.131,0.552632),(749.235,0.679825),(795.107,0.780702),(844.037,0.8

68421),(883.792,0.938596),(938.838,0.969298),(1000,1)) 

Units: Dimensionless 

Percent of maximum cost to be applied during each period  

 

Cumulative Design Cost= INTEG (Design Cost Added, 0) 

Units: Dollars 

Cumulative amount of Unit Cost up to and including the current period. 

 

Cumulative Redesign Cost= INTEG (Redesign Cost Added, 0) 

Units: Dollars 

Cumulative amount of redesign cost, up to and including the current period. 

 

Cumulative Rework Cost= INTEG (Rework Cost Added, 0) 

Units: Dollars 

Cumulative amount of rework cost, up to and including the current period. 
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Cumulative Test Cost= INTEG (Test Cost Added, 0) 

Units: Dollars 

Cumulative amount of test and inspection cost, up to and including the current period. 

 

Design 1 Failures=IF THEN ELSE (Technology 1 Design Selected = 1: AND: Technology 1 

Design Accepted = 0, 1, 0) 

Units: Designs/period 

Number of rejected technology 1 designs added to stock of technology 1 designs failed 

 

Design 2 Failures=IF THEN ELSE (Technology 2 Design Selected = 1: AND: Technology 2 

Design Accepted = 0, 1, 0) 

Units: Designs/period 

Number of selected technology designs rejected during test or inspected that are added to 

stock of technology 2 designs failed - nothing is added if technology 2 is selected 

 

Design Cost=MAX ((Technology 1 Design Accepted + Technology 2 Design Accepted), 0)* 

Max Design Cost * "Cost %" 

Units: Dollars/period 

Cost of a unit development. Determined by multiplying the maximum unit development 

cost by the cost %. 

 

Design Cost Added=Design Cost 

Units: Dollars/period 

Dollar amount added each period to the Cumulative Unit Cost stock 

 

Designs Selected=Technology 1 Design Selected + Technology 2 Design Selected 

Units: Designs/period 

Total number of designs added each period 

 

"Lock-in Notice"=IF THEN ELSE ("Lock-in Switch" = 1, "Cost Lock-In Occurrence" + 

"Schedule Lock-in Occurrence", 0) 

Units: Dimensionless 

Activates a lock-in notice if the lock-in switch is on and cost or schedule lock-in occurs 

 

"Lock-in Switch"=0 

Units: Dimensionless 

If = 1, schedule or cost lock-in will stop designs from being generated, if = 0, lock-in will 

have no effect. 

 

Max Design Cost=20000 

Units: Dollars/Designs 

Exogenous variable. The most dollars that a single unit development will cost  

 

Max Redesign Cost=25000 

Units: Dollars/Designs 

Exogenous variable. The most dollars that a single redesign will cost 
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Max Rework Cost=25000 

Units: Dollars/Designs 

Exogenous variable. The most dollars that a single rework will cost 

 

Max Test Cost=10000 

Units: Dollars/Designs 

Exogenous variable. The most dollars that a single test or inspection will cost  

Maximum Allowed Cost=100,000 

Units: Dollars 

Budget Limit for Design - above which lock-in occurs 

 

Maximum Days Allowed=1000 

Units: Days 

Total days budgeted to complete all designs 

 

Redesign Cost=MAX ((Design 1 Failures + Design 2 Failures), 0) * Max Redesign Cost * "Cost 

%" 

Units: Dollars/period 

Cost of redesign of a unit that failed test or inspection. Determined by multiplying the 

maximum redesign cost by the cost %. If no unit failed, there is no cost. 

 

Redesign Cost Added=Redesign Cost 

Units: Dollars/period 

Dollar amount added each period to the Cumulative Redesign Cost stock 

 

Rework Cost=MAX ((Completed Rework 1 + Completed Rework 2), 0) * Max Rework Cost * 

"Cost %" 

Units: Dollars/period 

Cost of rework of a design that tested or inspected as a false negative and was later 

discovered to be a failure. Determined by multiplying the maximum rework cost by the 

cost %. If no unit was reworked, there is no cost. 

 

Rework Cost Added= Rework Cost 

Units: Dollars/period 

Dollar amount added each period to the Cumulative Rework Cost stock 

 

"Schedule Lock-in Occurrence"=IF THEN ELSE (Total Days Expended/Maximum Days 

Allowed < 1, 0, 1) 

Units: Dimensionless 

If maximum allowed schedule is exceeded, lock-in occurs 

 

Technology 1 Design Accepted=Technology 1 Design Selected * IF THEN ELSE (Tech 1 

Failure Draw > Technology 1 Failure Probability, 1, 0) 

Units: Designs/period 

Accepts a tested or inspected technology 1 design if the random draw is less than the 

probability of technology 1 passing the test or inspection 
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Technology 1 Design Selected=Designs Added Each Period * IF THEN ELSE (Random Draw 

<=Probability of Choosing Technology 1, 1, 0) 

Units: Designs/period 

Adds a design from technology 1 if the random draw is less than or equal to the 

probability of selecting a technology 1 design 

 

Technology 2 Design Accepted=Technology 2 Design Selected * IF THEN ELSE Tech 2 Failure 

Draw > Technology 2 Failure Probability, 1, 0) 

Units: Designs/period 

Accepts a tested or inspected technology 2 design if the random draw is less than the 

probability of technology 2 passing the test or inspection 

Technology 2 Design Selected=Designs Added Each Period * IF THEN ELSE (Random Draw 

<=Probability of Choosing Technology 2, 1, 0) 

Units: Designs/period 

Adds a design from technology 2 if the random draw is less than or equal to the 

probability of selecting a technology 2 design 

 

Test Cost=MAX ((Technology 1 Design Selected + Technology 2 Design Selected), 0) * Max 

Test Cost * "Cost %" 

Units: Dollars/period 

Cost of an inspection or test. Determined by multiplying the maximum test cost by the 

cost %. 

 

Test Cost Added=Test Cost 

Units: Dollars/period 

Dollar amount added each period to the Cumulative Test Cost stock 

 

Total Cumulative Cost=Cumulative Redesign Cost + Cumulative Rework Cost + Cumulative 

Test Cost + Cumulative Design Cost 

Units: Dollars 

Total cumulative cost for designs 

 

Total Days Expended=Total Designs Selected * Average Days Per Design 

Units: Days 

Total number of days required to perform all work up to this time 

 

Total Designs Selected= INTEG (Designs Selected, 0) 

Units: Designs 

Cumulative designs selected 

 

Total Number of Designs=Technology 1 False negative Designs + Technology 1 Good Designs 

+ Technology 2 False negative Designs + Technology 2 Good Designs 

Units: Designs 

The total number of units added from both technologies, including good designs and false 

negative accepted design  
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Appendix B – Data Envelopment Analysis 

 

B-1 Supporting Data for Data Tables 

 

The Comparison of Model vs. Actual Results table on the following page reflects DEA scores 

and ranking of DMUs for all projects evaluated for fiscal years 2005, 2006, and 2007. The blue 

DMUs were the projects selected for funding by the evaluation team. The DEA model used the 

same evaluation criteria as the evaluation team. 

The Project Selection Using Minimum Affordability Parameters table on the following page 

reflects DEA scores using six final affordability fitness variables to evaluate the same input data 

as in the previous table. Again, the blue DMUs were the projects selected for funding by the 

evaluation team. The red DMUs were rated as efficient, but reflect slack, which means excess 

inputs or shortfalls in output were encountered. 

 

 

 

 

 

 

 

 

 

 

 

 

  



   

 143 

 

No. DMU Score No. DMU Score No. DMU Score No. DMU Score No. DMU Score No. DMU Score

3 F-114 1 3 FAR01 1 2 FAR02 1 2 W-102 1 1 WAF01 1 1 WAF01 1

5 F-116 1 5 FAR03 1 3 FAR03 1 3 W-103 1 2 WAF02 1 6 WAF06 1

7 F-222 1 17 FAR15 1 7 FAR07 1 5 W-105 1 3 WAF03 1 7 WAF07 1

8 F-223 1 25 FNV02 1 10 FAR10 1 7 W-107 1 4 WAF04 1 8 WAR01 1

15 F-313 1 29 FNV06 1 15 FAR15 1 9 W-109 1 7 WAF07 1 14 WDD01 1

19 F-317 1 30 FNV07 1 28 FNV02 1 27 W-215 1 9 WAF09 1 21 WNA03 1

24 F-322 1 35 FNV12 1 30 FNV04 1 35 W-303 1 10 WAF10 1 22 WNA04 1

6 F-221 0.980482 36 FNV13 1 17 FAR17 0.962484 41 W-309 1 21 WAR11 1 26 WNS02 1

13 F-311 0.958141 4 FAR02 0.891625 5 FAR05 0.912243 30 W-218 0.975829 23 WNA01 1 31 WNS07 1

20 F-318 0.892346 13 FAR11 0.888889 8 FAR08 0.901907 6 W-106 0.965676 25 WNA03 1 4 WAF04 0.960878

21 F-319 0.883444 18 FAR16 0.888889 19 FAR19 0.895669 31 W-219 0.956131 27 WNA05 1 25 WNS01 0.929782

22 F-320 0.87411 15 FAR13 0.882943 1 FAR01 0.875518 26 W-214 0.946912 33 WNA19 1 11 WAR04 0.809354

16 F-314 0.732657 24 FNV01 0.867027 20 FAR20 0.859735 37 W-305 0.938977 41 WNS18 1 10 WAR03 0.794734

23 F-321 0.648667 23 FAR21 0.830979 33 FNV07 0.843257 24 W-212 0.859265 26 WNA04 0.954115 16 WMC02 0.763322

4 F-115 0.441002 6 FAR04 0.799887 27 FNV01 0.80646 33 W-301 0.814095 17 WAR07 0.888889 2 WAF02 0.696171

17 F-315 0.398804 22 FAR20 0.798417 22 FAR22 0.783784 29 W-217 0.805292 34 WNS11 0.857143 29 WNS05 0.688991

10 F-225 0.383186 28 FNV05 0.632338 18 FAR18 0.78125 1 W-101 0.784732 22 WAR12 0.841258 30 WNS06 0.685804

2 F-113 0.301396 32 FNV09 0.567685 34 FNV08 0.766499 28 W-216 0.713732 29 WNA07 0.640323 32 WNS08 0.673157

1 F-112 0.296207 12 FAR10 0.516043 24 FAR24 0.680981 12 W-117 0.709827 35 WNS12 0.595929 3 WAF03 0.662776

18 F-316 0.232893 31 FNV08 0.449179 21 FAR21 0.651988 32 W-220 0.650385 18 WAR08 0.449102 13 WAR06 0.662776

14 F-312 0.223041 26 FNV03 0.449146 32 FNV06 0.623727 36 W-304 0.615743 38 WNS15 0.423987 5 WAF05 0.609008

9 F-224 0.182896 7 FAR05 0.444426 29 FNV03 0.595056 20 W-208 0.60562 8 WAF08 0.284088 17 WMC03 0.572209

11 F-226 0.178299 14 FAR12 0.428403 9 FAR09 0.547631 34 W-302 0.514946 14 WAR04 0.252101 20 WNA02 0.502731

12 F-229 0.176414 37 FNV14 0.38181 16 FAR16 0.511254 4 W-104 0.514584 31 WNA09 0.237991 24 WNA06 0.464524

33 FNV10 0.304413 11 FAR11 0.475141 23 W-211 0.445565 30 WNA08 0.227758 27 WNS03 0.463486

34 FNV11 0.25698 31 FNV05 0.393285 17 W-205 0.40897 37 WNS14 0.216645 12 WAR05 0.403603

9 FAR07 0.225288 4 FAR04 0.351684 11 W-111 0.407177 32 WNA10 0.178278 23 WNA05 0.3125

19 FAR17 0.190466 23 FAR23 0.303742 8 W-108 0.388011 28 WNA06 0.15366 28 WNS04 0.26756

11 FAR09 0.167799 13 FAR13 0.300967 15 W-203 0.371713 36 WNS13 0.150026 15 WMC01 0.187862

8 FAR06 0.152996 14 FAR14 0.264598 16 W-204 0.350573 24 WNA02 0.133333 33 WNS09 0.184753

20 FAR18 0.152996 6 FAR06 0.251918 38 W-306 0.329948 5 WAF05 0.131033 18 WMC04 0.177391

27 FNV04 0.152118 12 FAR12 0.251918 39 W-307 0.329948 13 WAR03 0.124993 35 WNS11 0.11761

10 FAR08 0.147946 25 FAR26 0.218849 10 W-110 0.289174 15 WAR05 0.124993 9 WAR02 0.111111

21 FAR19 0.119843 26 FAR27 0.218631 19 W-207 0.286985 19 WAR09 0.124993 19 WNA01 0.11084

16 FAR14 0.115964 22 W-210 0.28177 12 WAR02 0.111111 34 WNS10 0.103027

1 FAF01 6.03E-02 21 W-209 0.279908 39 WNS16 0.111111

2 FAF02 6.03E-02 14 W-202 0.226746 6 WAF06 0.10762

25 W-213 0.199372 40 WNS17 0.103348

18 W-206 0.199263 20 WAR10 8.29E-02

Selected projects in blue 13 W-201 0.148236 16 WAR06 7.60E-02

40 W-308 0.143223 11 WAR01 6.69E-02

FY06 Weapons FY07 Weapons

COMPARISON OF MODEL VS. ACTUAL RESULTS USING CCRI DEA MODEL

FY05 Facilities FY06 Facilities FY07 Facilities FY05 Weapons

Table 15. Comparison Using Traditional Evaluation Criteria 
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No. DMU Score No. DMU Score No. DMU Score No. DMU Score No. DMU Score No. DMU Score

3 F-114 1 3 FAR01 1 2 FAR02 1 1 W-101 1 1 WAF01 1 1 WAF01 1

5 F-116 1 5 FAR03 1 3 FAR03 1 2 W-102 1 2 WAF02 1 2 WAF02 1

7 F-222 1 17 FAR15 1 7 FAR07 1 3 W-103 1 3 WAF03 1 3 WAF03 1

8 F-223 1 18 FAR16 1 10 FAR10 1 7 W-107 1 4 WAF04 1 5 WAF05 1

10 F-225 1 23 FAR21 1 13 FAR13 1 9 W-109 1 8 WAF08 1 6 WAF06 1

16 F-314 1 25 FNV02 1 14 FAR14 1 12 W-117 1 9 WAF09 1 8 WAR01 1

18 F-316 1 26 FNV03 1 15 FAR15 1 26 W-214 1 10 WAF10 1 13 WAR06 1

24 F-322 1 28 FNV05 1 17 FAR17 1 35 W-303 1 13 WAR03 1 14 WDD01 1

14 F-312 1 29 FNV06 1 18 FAR18 1 41 W-309 1 15 WAR05 1 15 WMC01 1

17 F-315 1 35 FNV12 1 19 FAR19 1 27 W-215 0.991913 17 WAR07 1 26 WNS02 1

20 F-318 0.993265 36 FNV13 1 20 FAR20 1 28 W-216 0.985125 18 WAR08 1 29 WNS05 1

21 F-319 0.955821 13 FAR11 1 31 FNV05 1 20 W-208 0.915741 19 WAR09 1 31 WNS07 1

13 F-311 0.901879 15 FAR13 0.985161 32 FNV06 1 24 W-212 0.8896 21 WAR11 1 22 WNA04 0.965076

15 F-313 0.895944 6 FAR04 0.950182 23 FAR23 0.9552 23 W-211 0.86537 24 WNA02 1 19 WNA01 0.963819

22 F-320 0.888851 24 FNV01 0.897545 1 FAR01 0.943744 37 W-305 0.789776 27 WNA05 1 18 WMC04 0.943529

23 F-321 0.871169 22 FAR20 0.893648 29 FNV03 0.940507 32 W-220 0.777622 28 WNA06 1 25 WNS01 0.929782

12 F-229 0.77026 4 FAR02 0.891625 21 FAR21 0.93292 6 W-106 0.671163 30 WNA08 1 21 WNA03 0.902707

19 F-317 0.745535 30 FNV07 0.888889 8 FAR08 0.92378 15 W-203 0.583737 31 WNA09 1 35 WNS11 0.8

6 F-221 0.694191 16 FAR14 0.888889 5 FAR05 0.916402 13 W-201 0.496394 41 WNS18 1 7 WAF07 0.768893

11 F-226 0.5 20 FAR18 0.888889 12 FAR12 0.912722 36 W-304 0.388576 25 WNA03 1 10 WAR03 0.727273

1 F-112 0.4 12 FAR10 0.888889 33 FNV07 0.90293 5 W-105 0.327327 12 WAR02 1 20 WNA02 0.725621

4 F-115 0.276199 27 FNV04 0.878505 34 FNV08 0.864336 22 W-210 0.270029 26 WNA04 0.963354 23 WNA05 0.717447

9 F-224 0.228678 19 FAR17 0.820017 4 FAR04 0.829222 29 W-217 0.25985 7 WAF07 0.911078 11 WAR04 0.717043

2 F-113 0.155791 7 FAR05 0.76748 16 FAR16 0.809524 11 W-111 0.256117 33 WNA19 0.861466 4 WAF04 0.645128

9 FAR07 0.760523 30 FNV04 0.809524 8 W-108 0.248155 34 WNS11 0.857143 30 WNS06 0.625

32 FNV09 0.726495 27 FNV01 0.80646 25 W-213 0.24003 36 WNS13 0.846395 32 WNS08 0.567554

21 FAR19 0.714286 25 FAR26 0.763636 14 W-202 0.215324 22 WAR12 0.773617 24 WNA06 0.5

37 FNV14 0.702083 26 FAR27 0.763636 31 W-219 0.211653 40 WNS17 0.676045 17 WMC03 0.5

31 FNV08 0.66453 24 FAR24 0.583973 30 W-218 0.208746 5 WAF05 0.670114 16 WMC02 0.46875

8 FAR06 0.629706 11 FAR11 0.577934 16 W-204 0.198361 39 WNS16 0.666667 28 WNS04 0.375

10 FAR08 0.623955 22 FAR22 0.509907 18 W-206 0.195801 23 WNA01 0.594951 12 WAR05 0.3125

14 FAR12 0.619642 9 FAR09 0.505952 4 W-104 0.190729 35 WNS12 0.582679 27 WNS03 0.3125

33 FNV10 0.518812 6 FAR06 0.502234 34 W-302 0.190677 11 WAR01 0.504302 9 WAR02 0.307741

1 FAF01 0.5 28 FNV02 0.49646 10 W-110 0.186695 29 WNA07 0.497974 33 WNS09 0.244115

2 FAF02 0.5 17 W-205 0.150739 38 WNS15 0.423987 34 WNS10 0.239448

34 FNV11 0.383232 33 W-301 0.141722 6 WAF06 0.40121

11 FAR09 0.218565 38 W-306 0.117561 37 WNS14 0.384542

21 W-209 0.10824 32 WNA10 0.383366

39 W-307 0.107572 14 WAR04 0.357724

Selected projects in blue 19 W-207 9.85E-02 16 WAR06 0.193502

Efficient projects with slack variables in red 40 W-308 7.90E-02 20 WAR10 5.69E-02

FY06 Weapons FY07 Weapons

PROJECT SELECTION USING MINIMUM AFFORDABILITY PARAMETERS IN CCRI DEA MODEL

FY05 Facilities FY06 Facilities FY07 Facilities FY05 Weapons

Table 16.  Comparison Using Affordability Evaluation Criteria 
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B-2 Department of Defense Corrosion R&D Program Project Selection Using DEA 

FY2008 to FY2012 

 

The Department of Defense ran the fiscal year 2008 evaluation using DEA in parallel 

with the manual process used by the evaluation team. The team provided inputs for some 

DEA affordability fitness variables. The following two pages show the FY 2008 actual 

input data forms and Vensim DSSP software model output for weapon systems projects 

on the first page and for facilities and infrastructure projects on the second page. The blue 

DMUs in the DEA Output Data table reflect those projects selected for funding. 

Data for the next three years (FY 2009 to 2011) are found on the six pages, following the 

FY 2008 results, and contain the same data in the same format. In those years, DEA was 

used as the primary data source, with adjustments to the DEA ranking performed by the 

evaluation team after reviewing the DEA results and the project contents. Note that 

beginning in FY 2010, Cost of Corrosion replaced the Acceptance Index as an input to 

the DEA model. 

Data for FY 2012 are complete and are shown on the final two pages of DEA results. 

Weapon systems and facilities projects were evaluated using a single DEA model run. 

The results are shown in the same format as the other tables. However, final selection 

was dependent on the availability funding as of this writing, so the actual projects funded 

were not yet known. However, funding was to be applied in the order of blue DMUs 

shown.  
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Table 17. FY08 Weapon System DEA Results 

Red Column Headings Indicate Input Data 

 
 

Table 18. DEA Output Data – Blue Shaded DMUs Selected for Funding 

 
  

DMU

(O) 

ROI

$K 

Savings Service OSD

(I) % 

OSD

(I) 

Perform 

Period

(O) 

Accept 

Index

(O) 

Joint 

Index

Readiness 

Benefits 

Index

Logistics 

Benefits 

Index

Safety 

Benefits 

Index

(O) 

Total 

Benefits 

Index

W08AF01 24.4 9761 100 300 0.75 12 3.67 5.00 1.00 1.33 2.00 4.33

W08AF05 113.1 42428 125 250 0.67 12 2.67 4.67 2.00 1.67 5.00 8.67

W08AF07 23.49 8221 100 250 0.71 12 2.00 3.00 1.00 1.67 2.00 4.67

W08AF08 34.83 12713 65 300 0.82 14 1.33 4.33 1.00 1.33 2.00 4.33

W08AR01 34.05 17023 200 300 0.60 24 2.67 5.00 1.00 1.33 2.00 4.33

W08AR02 26 5197 50 150 0.75 24 2.67 3.33 1.33 1.67 2.00 5.00

W08AR03 32.13 3856 40 80 0.67 24 2.33 2.67 1.67 1.67 1.00 4.33

W08AR04 46.75 4442 47 48 0.51 24 2.67 1.67 1.67 1.67 1.00 4.33

W08AR07 60.2 12642 70 140 0.67 24 2.33 1.00 1.33 1.67 1.00 4.00

W08AR14 11.33 7023 320 300 0.48 24 2.33 3.33 1.00 1.67 2.00 4.67

W08AR24 448 447291 500 500 0.50 24 2.33 5.67 1.00 1.33 2.00 4.33

W08AR25 77.97 73294 470 470 0.50 24 3.00 5.67 1.00 1.67 2.00 4.67

W08AR26 91.05 59183 325 325 0.50 24 2.67 5.33 1.00 1.67 1.00 3.67

W08MC02 18.18 5000 75 200 0.73 16 2.33 4.33 1.00 2.00 2.00 5.00

W08MC03 12.79 3580 70 210 0.75 17 2.67 4.67 0.67 1.33 1.00 3.00

W08NA01 16.46 13165 400 400 0.50 18 2.33 4.00 3.00 2.00 4.00 9.00

W08NA02 2.1 1974 670 270 0.29 30 2.00 3.00 2.00 1.33 2.00 5.33

W08NA07 6.99 3844 275 275 0.50 24 3.00 4.00 0.67 1.67 1.00 3.33

W08NS01 23.27 10953 200 400 0.67 17 2.67 4.33 0.67 1.33 4.33 6.33

W08NS02 21.45 12867 200 400 0.67 12 3.00 4.33 1.33 1.67 2.67 5.67

W08NS03 1075 397618 185 185 0.50 12 2.67 4.33 0.67 1.33 1.67 3.67

W08NS04 188.9 94427 200 300 0.60 12 2.33 4.00 0.33 1.67 1.67 3.67

W08NS06 34.46 27398 300 495 0.62 12 3.00 4.67 1.00 1.67 2.00 4.67

W08NS07 61.04 54939 400 500 0.56 12 3.00 3.67 1.00 2.00 2.00 5.00

W08NS08 51.57 43053 390 445 0.53 24 3.00 6.00 1.33 1.67 3.00 6.00

W08NS09 155.1 116319 350 400 0.53 30 3.33 4.33 1.33 1.67 4.00 7.00

W08NS11 14.56 9098 200 425 0.68 20 3.00 3.33 1.33 1.67 2.00 5.00

W08NS12 16 15267 455 500 0.52 24 2.67 4.00 1.00 1.67 3.00 5.67

W08NS13 15.08 11011 245 485 0.66 15 2.33 3.67 1.00 1.33 1.00 3.33

W08NS16 14.24 5340 100 275 0.73 12 2.67 5.33 1.00 2.00 2.00 5.00

DMU Score Rank Reference set (lambda)

W08AF01 1 1 W08AF01 1

W08AF05 1 1 W08AF05 1

W08AR24 1 1 W08AR24 1

W08AR25 1 1 W08AR25 1

W08NA01 1 1 W08NA01 1

W08NA02 1 1 W08NA02 1

W08NS03 1 1 W08NS03 1

W08NS07 1 1 W08NS07 1

W08NS08 1 1 W08NS08 1

W08NS09 1 1 W08NS09 1

W08NS16 1 1 W08NS16 1

W08NS06 0.9992 12 W08AF01 0.33549 W08AF05 0.13794 W08NS03 0.45856 W08NS16 6.72E-02

W08NA07 0.9928 13 W08AR25 8.24E-02 W08NS07 0.19509 W08NS09 0.65029

W08NS02 0.9556 14 W08AF01 0.37097 W08AF05 0.31855 W08NS03 2.42E-02 W08NS07 0.24194

W08AR26 0.9412 15 W08AR24 0.23529 W08AR25 0.70588

W08NS12 0.8766 16 W08NA01 7.63E-02 W08NS07 0.13542 W08NS08 0.23389 W08NS09 0.4142

W08AR04 0.8745 17 W08NS07 0.20084 W08NS09 0.61925

W08NS04 0.8485 18 W08AF01 7.07E-02 W08AF05 3.08E-02 W08NS03 0.4811 W08NS16 0.26585

W08NS01 0.8223 19 W08AF05 0.18684 W08NA01 0.28394 W08NS03 0.45164 W08NS07 0.1005

W08AR14 0.7995 20 W08AR25 5.23E-02 W08NS07 8.87E-02 W08NS08 0.1087 W08NS09 0.47528

W08NS11 0.789 21 W08NS07 0.74801 W08NS09 0.22679

W08AR01 0.7885 22 W08AR25 0.22536 W08NS03 0.25821 W08NS08 0.43401

W08MC03 0.7387 23 W08NS03 0.91457 W08NS16 0.13191

W08MC02 0.7361 24 W08AF05 0.28163 W08NS03 0.6898 W08NS08 4.99E-03

W08AF08 0.7174 25 W08AF05 7.08E-02 W08NS03 8.32E-02 W08NS16 0.68297

W08NS13 0.672 26 W08AF01 7.67E-02 W08AF05 2.71E-02 W08NS03 0.68611 W08NS07 5.01E-02

W08AF07 0.6593 27 W08AF01 0.24176 W08AF05 0.41758

W08AR02 0.6335 28 W08NA01 3.72E-02 W08NS07 0.57895 W08NS09 0.25288

W08AR03 0.6084 29 W08NS07 0.42664 W08NS09 0.31603

W08AR07 0.6084 29 W08NS07 0.42664 W08NS09 0.31603
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Table 19. FY08 Facilities DEA Results 

Red Column Headings Indicate Input Data 

 
 

Table 20. DEA Output Data – Blue Shaded DMUs Selected for Funding 

 

 
  

DMU

(O) 

ROI

$K 

Savings Service OSD

(I) % 

OSD

(I) 

Perform 

Period

(O) 

Accept 

Index

(O) 

Joint 

Index

Readiness 

Benefits 

Index

Logistics 

Benefits 

Index

Safety 

Benefits 

Index

(O) 

Total 

Benefits 

Index

F08AR01 7.08 6017 425 425 0.5 24 3.3333 8.33 1.33 2.00 3.00 6.33

F08AR02 13.47 13466 500 500 0.5 18 3 6.33 1.00 1.67 2.00 4.67

F08AR03 17.44 12211 350 350 0.5 18 2.3333 6.33 1.00 1.33 2.00 4.33

F08AR05 10.02 9019 450 450 0.5 24 1.6667 3.00 1.00 1.00 2.00 4.00

F08AR06 13.34 10669 400 400 0.5 18 2.6667 4.67 1.33 1.67 3.00 6.00

F08AR07 17.81 16915 475 475 0.5 24 3 5.67 1.33 1.67 3.00 6.00

F08AR09 8.29 7463 450 450 0.5 24 2.3333 4.67 1.00 1.67 5.00 7.67

F08AR11 14.37 5748 200 200 0.5 18 3 6.00 1.00 1.67 2.00 4.67

F08AR12 13.48 10787 400 400 0.5 18 2.6667 3.33 1.33 1.67 2.00 5.00

F08AR13 34.57 53589 775 775 0.5 24 2.6667 5.67 1.00 2.00 3.00 6.00

F08AR14 16.84 10106 300 300 0.5 18 2.6667 4.67 1.00 1.33 3.00 5.33

F08AR15 9.15 7774 425 425 0.5 24 2.3333 3.00 0.67 1.33 3.00 5.00

F08AR16 11.29 4515 200 200 0.5 18 2.6667 5.00 1.00 1.67 4.00 6.67

F08AR23 65.07 65073 500 500 0.5 18 3 5.33 1.33 2.00 5.00 8.33

F08AR24 84.56 80328 475 475 0.5 18 3.3333 7.00 1.33 1.67 3.00 6.00

F08NV01 127.5 1275000 500 500 0.5 12 3 6.67 1.00 1.33 3.00 5.33

F08NV17 5.18 6185 1114 80 0.067 24 3.3333 5.00 1.33 1.67 2.00 5.00

F08NV18 10 1000 0 100 1 21 2.6667 2.33 1.33 1.67 3.00 6.00

F08NV21 8.89 1111 60 65 0.52 24 2 2.67 1.00 1.33 3.00 5.33

DMU Score Rank Reference set (lambda)

F08AR23 1 1 F08AR23 1

F08NV01 1 1 F08NV01 1

F08NV17 1 1 F08NV17 1

F08AR01 0.939767 4 F08NV01 0.872279 F08NV17 0.503627

F08AR24 0.914034 5 F08AR23 4.08E-02 F08NV01 0.841856 F08NV17 0.233979

F08AR16 0.845029 6 F08AR23 0.642385 F08NV01 0.195367 F08NV17 5.43E-02

F08AR02 0.81541 7 F08NV01 0.786131 F08NV17 0.218492

F08AR03 0.81541 7 F08NV01 0.786131 F08NV17 0.218492

F08AR09 0.814508 9 F08AR23 0.784173 F08NV17 0.226379

F08AR06 0.797534 10 F08AR23 0.44861 F08NV01 0.336395 F08NV17 9.35E-02

F08AR11 0.792507 11 F08NV01 0.76405 F08NV17 0.212355

F08AR14 0.75426 12 F08AR23 0.240056 F08NV01 0.495741 F08NV17 0.137783

F08AR12 0.732624 13 F08AR23 0.13578 F08NV01 0.575413 F08NV17 0.159926

F08AR07 0.717237 14 F08AR23 0.284911 F08NV01 0.391049 F08NV17 0.308029

F08AR13 0.717237 14 F08AR23 0.284911 F08NV01 0.391049 F08NV17 0.308029

F08NV18 0.627866 16 F08AR23 0.419753 F08NV01 0.469136

F08AR15 0.570517 17 F08AR23 0.349419 F08NV01 0.192675 F08NV17 0.212116

F08NV21 0.554605 18 F08AR23 0.558612 F08NV17 0.135646

F08AR05 0.436996 19 F08AR23 0.359546 F08NV01 5.90E-02 F08NV17 0.137847
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Table 21. FY09 Weapon System DEA Results 

Red Column Headings Indicate Input Data 

 
 

Table 22. DEA Output Data – Blue Shaded DMUs Selected for Funding 

 
 

Index OSD$ Service $ Total $ Savings $ (O) ROI

(I) 

Perform 

Period

(O) 

Accept 

Index

(O) Joint 

Index

Readines

s Benefits 

Index

Logistics 

Benefits 

Index

Safety 

Benefits 

Index

(O) 

Combined  

Index

(I) %OSD 

Funds

W09AF01 $46 $48 $94 $4,680 49.79 12 2.80 6.00 1.60 1.60 1.40 4.60 0.49

W09AF02 $300 $125 $425 $116,919 275.10 12 2.20 3.80 1.40 1.40 1.00 3.80 0.71

W09AF04 $250 $100 $350 $12,097 34.57 12 1.67 5.00 1.33 1.33 1.33 4.00 0.71

W09AF05 $350 $150 $500 $14,364 35.91 12 1.67 3.00 0.33 1.00 1.33 2.67 0.70

W09AF06 $500 $125 $625 $89,793 276.29 12 2.40 5.80 1.20 1.60 2.00 4.80 0.80

W09AF07 $200 $100 $300 $24,132 80.44 12 2.20 4.20 1.20 1.40 1.40 4.00 0.67

W09AR01 $350 $350 $700 $447,291 638.99 24 2.20 5.40 1.40 1.25 1.40 4.05 0.50

W09AR02 $250 $1,103 $1,353 $542,280 400.80 9 2.80 5.40 1.20 1.60 3.60 6.40 0.18

W09AR03 $350 $75 $425 $50,990 119.98 12 2.40 5.60 1.80 1.60 3.40 6.80 0.82

W09AR04 $125 $100 $225 $7,023 31.22 18 1.80 1.75 1.50 1.50 1.00 4.00 0.56

W09AR07 $500 $300 $800 $15,929 19.91 12 2.50 4.25 1.75 2.00 3.75 7.50 0.63

W09NS01 $440 $260 $700 $9,627 13.75 24 2.40 4.40 1.80 1.80 2.80 6.40 0.63

W09NS02 $395 $395 $790 $142,072 179.84 24 2.40 4.20 1.40 1.60 2.00 5.00 0.50

W09NS04 $445 $390 $835 $75,724 90.70 24 3.00 4.40 1.40 1.60 3.00 6.00 0.53

W09NS06 $490 $390 $880 $18,238 20.49 28 2.60 4.00 1.40 1.40 2.20 5.00 0.56

W09NS07 $450 $450 $900 $20,576 22.86 24 2.20 4.40 1.40 1.40 2.20 5.00 0.50

W09NA01 $400 $400 $800 $9,427 11.78 12 2.80 5.00 1.40 1.40 2.20 5.00 0.50

W09NA02 $200 $200 $400 $4,439 11.10 19 2.75 4.50 1.25 1.25 2.00 4.50 0.50

W09NA03 $350 $1,500 $1,850 $11,718 6.33 19 2.60 6.00 1.20 1.40 3.00 5.60 0.19

W09MC02 $350 $175 $525 $85,504 162.86 12 2.60 5.40 1.60 1.60 2.20 5.40 0.67

W09MC03 $450 $250 $700 $31,022 44.32 24 2.80 5.80 1.80 1.80 2.80 6.40 0.64

W09MC04 $250 $65 $315 $3,464 11.00 12 2.00 6.00 1.80 1.80 2.20 5.80 0.79

W09MC06 $500 $300 $800 $151,795 189.74 24 2.75 4.50 1.25 1.50 2.00 4.75 0.63

No. DMU Score Rank Reference set (lambda)

W09AF01 W09AR02 1 1 W09AR02 1

W09NA03 1 1 W09NA03 1

W09AR07 0.878906 3 W09AR02 1.171875

W09AF01 0.833333 4 W09AR02 1.111111111

W09AF06 W09MC04 0.833333 4 W09AR02 1.111111111

W09AF06 0.805556 6 W09AR02 1.074074074

W09AR01 W09AR03 0.796875 7 W09AR02 1.0625

W09AR02 W09NA01 0.75 8 W09AR02 1

W09AR03 W09MC02 0.75 8 W09AR02 1

W09AR04 W09AF04 0.694444 10 W09AR02 0.925925926

W09AR01 0.597857 11 W09AR02 1.594286427

W09NS01 W09AF02 0.589286 12 W09AR02 0.785714286

W09AF07 0.589286 12 W09AR02 0.785714286

W09NS04 W09NA02 0.465226 14 W09AR02 0.982142857

W09NS06 W09AF05 0.446429 15 W09AR02 0.595238095

W09NS07 W09MC03 0.402778 16 W09AR02 1.074074074

W09NA01 W09NS04 0.401786 17 W09AR02 1.071428571

W09NA02 W09NS01 0.375 18 W09AR02 1

W09NA03 W09MC06 0.368304 19 W09AR02 0.982142857

W09MC02 W09AR04 0.321429 20 W09AR02 0.642857143

W09NS02 0.321429 20 W09AR02 0.857142857

W09MC04 W09NS06 0.308137 22 W09AR02 0.928571429

W09MC06 W09NS07 0.305556 23 W09AR02 0.814814815
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Table 23. FY09 Facilities DEA Results 

Red Column Headings Indicate Input Data 

 
 

Table 24. DEA Output Data – Blue Shaded DMUs Selected for Funding 

 
  

Index OSD$ Service $ Total $ Savings $ (O) ROI

(I) 

Perform 

Period

(O) 

Accept 

Index

(O) Joint 

Index

Readines

s Benefits 

Index

Logistics 

Benefits 

Index

Safety 

Benefits 

Index

(O) 

Combined  

Index

(I) %OSD 

Funds

F09AR01 $380 $380 $760 $6,863 9.03 24 3.17 6.33 1.17 1.50 3.83 6.50 0.50

F09AR02 $210 $210 $420 $12,981 30.91 18 3.17 6.67 1.00 1.50 3.50 6.00 0.50

F09AR03 $240 $240 $480 $4,991 10.40 24 2.67 6.33 0.83 1.50 1.83 4.17 0.50

F09AR04 $275 $275 $550 $12,706 23.10 18 2.67 6.00 1.17 1.33 1.17 3.67 0.50

F09AR07 $395 $395 $790 $15,000 18.99 24 3.20 5.60 1.20 1.60 4.20 7.00 0.50

F09AR08 $350 $350 $700 $12,038 17.20 24 2.83 5.83 1.33 1.50 1.83 4.67 0.37

F09AR10 $310 $310 $620 $7,789 12.56 24 2.50 6.67 1.17 1.67 2.33 5.17 0.50

F09AR11 $185 $185 $370 $3,669 9.92 18 2.80 6.20 0.60 1.40 1.20 3.20 0.50

F09AR12 $215 $215 $430 $8,492 19.75 24 3.00 6.00 1.00 0.75 3.50 5.25 0.50

F09AR13 $345 $345 $690 $17,448 25.29 18 3.00 6.40 0.80 1.60 3.60 6.00 0.50

F09AR14 $235 $235 $470 $9,655 20.54 18 3.00 5.17 1.50 1.50 2.33 5.33 0.50

F09AR16 $425 $425 $850 $8,433 9.92 22 2.67 5.50 1.33 1.50 2.67 5.50 0.50

F09AR17 $175 $175 $350 $4,314 12.33 24 2.67 5.50 1.17 1.67 1.33 4.17 0.50

F09AR18 $235 $235 $470 $10,525 22.39 18 2.17 6.33 0.83 1.33 3.17 5.33 0.50

F09NV01 $500 $500 $1,000 $0 0 12 2.40 5.00 0.80 0.75 1.00 2.55 0.50

F09NV04 $90 $90 $180 $448 2.49 24 3.00 6.33 1.00 1.50 1.83 4.33 0.50

F09NV05 $80 $80 $160 $537 3.36 20 3.00 6.83 1.33 1.83 3.33 6.50 0.50

F09NV07 $400 $0 $400 $1,165 2.91 24 2.60 4.80 1.40 1.80 2.40 5.60 1.00

F09NV08 $150 $0 $150 $1,979 13.19 24 3.50 4.40 1.20 1.60 2.40 5.20 1.00

F09NV09 $680 $313 $993 $18,281 18.41 24 2.25 5.25 1.50 1.25 4.00 6.75 0.68

DMU Score Rank Reference set (lambda)

F09AR02 1 1 F09AR02 1

F09AR07 1 1 F09AR07 1

F09AR08 1 1 F09AR08 1

F09AR13 1 1 F09AR02 1

F09NV01 1 1 F09NV01 1

F09NV05 1 1 F09NV05 1

F09AR01 0.975974 7 F09AR02 2.64E-02 F09AR07 0.420866 F09AR08 0.248893 F09NV05 0.343688

F09AR18 0.95 8 F09AR02 0.95

F09AR14 0.947368 9 F09AR02 0.947368

F09AR10 0.930666 10 F09AR02 0.11202 F09AR08 0.432114 F09NV05 0.497444

F09AR11 0.93 11 F09AR02 0.93

F09AR04 0.9 12 F09AR02 0.9

F09NV04 0.884193 13 F09AR02 0.380819 F09AR08 0.470622 F09NV05 0.153548

F09AR03 0.884122 14 F09AR02 5.65E-02 F09AR08 0.399568 F09NV05 0.530635

F09AR12 0.872715 15 F09AR02 0.506215 F09AR08 0.493054

F09NV09 0.84375 16 F09AR02 1.125

F09AR16 0.841682 17 F09AR02 0.155461 F09AR07 0.249569 F09AR08 0.109051 F09NV05 0.355592

F09NV08 0.779908 18 F09AR02 0.562055 F09NV01 0.716733

F09AR17 0.775747 19 F09AR02 0.449969 F09AR08 0.43827

F09NV07 0.7 20 F09AR02 0.933333
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Table 25. FY10 Weapon System DEA Results 

Red Column Headings Indicate Input Data – Cost of Corrosion replaced Acceptance Index 

 
 

Table 26. DEA Output Data – Blue Shaded DMUs Selected for Funding 

 

Index OSD$ Service $ Total $ Savings $ (O) ROI

(I) 

Perform 

Period

(O) Cost 

of 

Corrosion

(O) Joint 

Index

Readiness 

Benefits 

Index

Logistics 

Benefits 

Index

Safety 

Benefits 

Index

(O) 

Combined 

Benefits 

(I) %OSD 

Funds

W10AF01 320 $330 $650 $39,727 $61 11.00 18.16 5.00 1.25 1.75 3.00 6.00 0.49

W10AF03 500 $250 $750 $5,509 $7 8.00 18.16 6.50 1.00 1.25 3.00 5.25 0.67

W10AF05 500 $386 $886 $78,924 $89 11.00 7.1 6.00 1.33 1.33 3.00 5.67 0.56

W10AF06 245 $763 $1,008 $0 $0 11.00 1.88 4.00 1.25 1.25 3.00 5.50 0.24

W10AF07 300 $260 $560 $339,002 $605 8.00 18.16 6.00 1.33 1.25 3.00 5.58 0.54

W10AR01 220 $300 $520 $25,090 $48 24.00 6.2 7.25 1.00 1.50 3.00 5.50 0.42

W10AR03 335 $165 $500 $17,023 $34 6.00 61.2 5.00 1.50 1.50 4.00 7.00 0.67

W10AR04 290 $720 $1,010 $29,639 $29 24.00 1.65 3.75 1.00 1.50 3.00 5.50 0.29

W10AR05 325 $150 $475 $3,240 $7 22.00 6.2 4.50 1.50 1.50 3.00 6.00 0.68

W10AR09 30 $0 $30 $223 $7 24.00 10.97 4.25 1.75 1.75 3.00 6.50 1.00

W10NS01 500 $800 $1,300 $23,385 $18 21.00 1.14 3.33 1.33 1.33 3.00 5.67 0.38

W10NS02 380 $400 $780 $69,258 $89 24.00 9.62 3.50 1.33 1.33 4.00 6.67 0.49

W10NS03 390 $320 $710 $17,539 $25 24.00 9.62 4.00 1.00 1.50 3.00 5.50 0.55

W10NS04 350 $350 $700 $29,078 $42 18.00 9.62 3.67 1.00 1.67 3.00 5.67 0.50

W10NS06 490 $0 $490 $105,514 $215 22.00 9.62 2.67 1.00 1.33 3.00 5.33 1.00

W10NS07 500 $600 $1,100 $30,049 $27 24.00 4.86 3.50 1.00 1.75 3.00 5.75 0.45

W10NS08 480 $300 $780 $33,264 $43 24.00 8.56 4.00 1.25 1.75 3.00 6.00 0.62

W10NA01 200 $200 $400 $7,405 $19 15.00 21.66 3.67 1.33 1.33 3.00 5.67 0.50

W10NA02 500 $200 $700 $2,043 $3 23.00 4.71 3.25 1.75 1.75 4.00 7.50 0.71

W10NA03 334 $256 $590 $6,270 $11 13.00 21.66 3.75 1.00 1.50 3.00 5.50 0.57

W10NA05 250 $450 $700 $3,339 $5 21.00 21.66 4.75 1.33 1.25 3.00 5.58 0.36

W10NA06 350 $0 $350 $3,762 $11 12.00 2.42 5.50 1.50 1.50 3.00 6.00 1.00

W10NA07 100 $100 $200 $7,213 $36 21.00 21.66 4.25 1.25 1.25 3.00 5.50 0.50

W10NA08 500 $189 $689 $11,276 $16 24.00 2.74 2.67 1.67 1.67 3.00 6.33 0.73

W10MC01 400 $200 $600 $2,745 $5 24.00 6.5 5.00 2.00 2.00 4.50 8.50 0.67

W10MC02 400 $300 $700 $31,022 $44 24.00 8.92 6.00 2.00 2.00 4.50 8.50 0.57

W10MC03 200 $200 $400 $1,168 $3 21.00 6.23 5.75 1.50 1.75 4.50 7.75 0.50

W10MC04 300 $250 $550 $82,523 $150 24.00 14.26 5.75 1.25 1.50 3.00 5.75 0.55

W10MC05 200 $350 $550 $34,639 $63 23.00 8.92 5.50 1.25 1.50 3.00 5.75 0.36

W10MC06 300 $300 $600 $26,642 $44 24.00 0 4.25 1.75 1.75 3.00 6.50 0.50

W10MC07 200 $220 $420 $15,070 $36 18.00 8.92 4.75 1.25 1.25 3.00 5.50 0.48

W10MC08 175 $175 $350 $12,758 $36 24.00 8.87 5.25 1.75 1.50 4.00 7.25 0.50

W10MC09 250 $300 $550 $151,795 $276 24.00 8.92 5.00 1.75 1.75 4.00 7.50 0.45

W10MC10 175 $140 $315 $6,347 $20 12.00 0 5.00 1.50 1.75 4.50 7.75 0.56

DMU Score Rank Reference set (lambda)

W10AF03 1 1 W10AF03 1

W10AF06 1 1 W10AF06 1

W10AF07 1 1 W10AF07 1

W10AR01 1 1 W10AR01 1

W10AR03 1 1 W10AR03 1

W10NA05 1 1 W10NA05 1

W10MC09 1 1 W10MC09 1

W10MC05 0.9819 8 W10AF06 0.43079 W10AF07 7.74E-02 W10AR01 0.312748 W10NA05 0.220034

W10MC10 0.9502 9 W10AF06 0.75485 W10AF07 4.58E-03 W10AR03 0.510392

W10AR04 0.8921 10 W10AF06 0.85501 W10MC09 0.10633

W10AF05 0.8867 11 W10AF06 0.30951 W10AF07 0.79366

W10AF01 0.8674 12 W10AF06 0.52886 W10AF07 0.32817 W10AR03 0.183107

W10MC04 0.7499 13 W10AF06 0.16528 W10AF07 0.22339 W10AR01 0.269135 W10AR03 7.32E-04 W10NA05 0.377614

W10NS02 0.7464 14 W10AF06 0.58641 W10AF07 3.84E-02 W10NA05 0.265126 W10MC09 0.232885

W10NA01 0.7438 15 W10AF06 0.47576 W10AF07 1.42E-02 W10AR03 0.263864 W10NA05 0.201294

W10MC02 0.7426 16 W10AF06 1.28872 W10AF07 0.07004 W10AR03 0.037142 W10NA05 0.136291

W10MC03 0.7399 17 W10AF06 1.29731 W10AR01 3.60E-02 W10AR03 5.73E-02 W10NA05 2.87E-03

W10MC08 0.7349 18 W10AF06 0.9262 W10AF07 3.27E-02 W10NA05 0.278836 W10MC09 5.55E-02

W10NA07 0.7345 19 W10AF06 0.20413 W10AF07 4.77E-02 W10AR03 0.131066 W10NA05 0.571968

W10MC07 0.6914 20 W10AF06 0.77659 W10AF07 4.40E-02 W10AR01 0.1239 W10AR03 9.63E-02

W10NS01 0.672 21 W10AF06 0.94142 W10MC09 6.52E-02

W10MC01 0.6531 22 W10AF06 1.33455 W10AR03 0.16571

W10NA03 0.6435 23 W10AF06 0.56924 W10AR03 0.33482 W10NA05 4.55E-03

W10NS04 0.6174 24 W10AF06 0.78063 W10AF07 6.30E-02 W10AR03 0.089467 W10NA05 7.07E-02

W10MC06 0.6141 25 W10AF06 0.96243 W10MC09 0.16089

W10NS07 0.6133 26 W10AF06 0.79612 W10NA05 0.11534 W10MC09 9.70E-02

W10NA06 0.5855 27 W10AF03 6.40E-02 W10AF07 0.51605 W10AR03 0.397519

W10NA02 0.5754 28 W10AF06 1.08281 W10AR03 0.22065

W10NS03 0.5369 29 W10AF06 0.66867 W10AF07 3.66E-02 W10AR03 4.18E-02 W10NA05 0.237445

W10NS08 0.5144 30 W10AF06 0.84527 W10AF07 6.64E-02 W10AR03 5.76E-02 W10NA05 0.103324

W10AR05 0.4876 31 W10AF06 0.84953 W10AF07 7.63E-02 W10AR03 0.128757

W10NA08 0.4722 32 W10AF06 0.93004 W10AF07 0.01806 W10AR03 0.159609

W10AR09 0.4195 33 W10AF06 0.71523 W10AR03 0.3666

W10NS06 0.3853 34 W10AF06 0.44332 W10AF07 0.34807 W10AR03 0.13596
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Table 27. FY10 Facilities DEA Results 

Red Column Headings Indicate Input Data 

 
 

Table 28. DEA Output Data – Blue Shaded DMUs Selected for Funding 

 
  

Index OSD$ Service $ Total $ Savings $ (O) ROI

(I) 

Perform 

Period

(O) Cost 

of 

Corrosion

(O) Joint 

Index

Readiness 

Benefits 

Index

Logistics 

Benefits 

Index

Safety 

Benefits 

Index

(O) Combined 

Benefits 

Index

(I) %OSD 

Funds

F10AR01 $350 $350 $700 $15,735 22.48 24 24.55 6.00 1.00 1.50 3.00 5.50 0.50

F10AR02 $180 $180 $360 $6,147 17.08 15 10.04 5.75 1.00 1.00 3.00 5.00 0.50

F10AR04 $275 $275 $550 $5,930 10.78 18 18.72 5.25 1.00 1.33 5.25 7.58 0.50

F10AR06 $475 $475 $950 $46,153 48.58 15 0.00 5.00 6.50 1.33 3.00 10.83 0.50

F10AR07 $325 $325 $650 $13,187 20.29 24 8.62 4.50 1.33 1.25 3.00 5.58 0.50

F10AR08 $275 $275 $550 $4,759 8.65 24 6.73 4.00 1.00 1.25 3.00 5.25 0.50

F10AR10 $300 $300 $600 $13,492 22.49 22 10.04 5.00 1.00 1.25 3.00 5.25 0.50

F10AR12 $200 $200 $400 $5,694 14.24 18 10.04 4.50 1.00 1.00 3.00 5.00 0.50

F10AR15 $665 $665 $1,330 $23,212 17.45 22 6.73 5.25 1.00 1.00 3.00 5.00 0.50

F10AR18 $230 $230 $460 $9,523 20.70 18 8.22 5.00 1.00 1.25 3.00 5.25 0.50

F10AR19 $370 $370 $740 $9,748 13.17 18 0.00 4.25 1.33 1.25 4.00 6.58 0.50

F10NV01 $340 $290 $630 $725 1.15 22 10.04 4.25 1.00 1.25 3.00 5.25 0.54

F10NV02 $175 $217 $392 $1,832 4.67 24 2.07 4.50 1.25 1.25 3.00 5.50 0.45

F10NV03 $100 $100 $200 $47 0.24 22 2.85 5.00 1.33 1.33 3.00 5.67 0.50

F10NV04 $75 $75 $150 $55,000 366.67 22 18.72 5.75 1.00 1.50 3.00 5.50 0.50

F10NV05 $180 $80 $260 $368 1.42 22 2.85 4.00 1.50 1.50 3.00 6.00 0.69

F10NV06 $190 $200 $390 $289 0.74 18 4.53 5.00 1.25 1.50 3.00 5.75 0.49

F10NV07 $250 $250 $500 $12,519 25.04 20 0.00 4.25 1.25 1.75 3.00 6.00 0.50

F10NV10 $160 $5,750 $5,910 0 0 22 10.04 4.00 1.00 1.67 3.00 5.67 0.03

DMU Score Rank Reference set (lambda)

F10AR01 1 1 F10AR01 1

F10AR02 1 1 F10AR02 1

F10AR04 1 1 F10AR04 1

F10AR06 1 1 F10AR06 1

F10NV04 1 1 F10NV04 1

F10NV10 1 1 F10NV10 1

F10NV06 0.8283 7 F10AR02 0.6283 F10AR06 0.17155 F10NV10 0.13232

F10AR18 0.8113 8 F10AR02 0.6937 F10AR06 0.10072 F10NV04 1.08E-02 F10NV10 0.1113

F10AR12 0.7603 9 F10AR02 0.4849 F10AR04 0.23218 F10AR06 3.45E-02 F10NV04 4.85E-03 F10NV10 7.32E-02

F10AR15 0.7558 10 F10AR02 0.7288 F10NV04 1.37E-02 F10NV10 0.24518

F10AR10 0.7354 11 F10AR02 0.5983 F10AR04 6.76E-02 F10AR06 2.98E-02 F10NV04 2.75E-02 F10NV10 0.224309

F10NV03 0.7306 12 F10AR02 0.5956 F10AR06 0.1219 F10NV10 0.24138

F10AR19 0.7267 13 F10AR02 0.3106 F10AR06 0.41053 F10NV10 0.10289

F10NV07 0.6783 14 F10AR02 0.3564 F10AR06 0.3017 F10NV04 1.17E-02 F10NV10 0.15619

F10NV02 0.659 15 F10AR02 0.4371 F10AR06 0.13337 F10NV10 0.3299

F10AR07 0.6444 16 F10AR02 0.3906 F10AR04 9.70E-02 F10AR06 0.1253 F10NV04 1.77E-02 F10NV10 0.254131

F10NV01 0.6358 17 F10AR02 0.331 F10AR04 0.28711 F10AR06 6.09E-02 F10NV10 0.13369

F10AR08 0.5714 18 F10AR02 0.3366 F10AR04 5.28E-02 F10AR06 0.16924 F10NV10 0.23524

F10NV05 0.524 19 F10AR02 0.3453 F10AR06 0.37856 F10NV10 3.04E-02
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Table 29. FY11 Weapon System DEA Results 

Red Column Headings Indicate Input Data 

 
 

Table 30. DEA Output Data – Blue Shaded DMUs Selected for Funding 

 
  

Index OSD$ Service $ Total $ Savings $ (O) ROI

(I) 

Perform 

Period

(O) Cost 

of 

Corrosion

Readiness 

Benefits 

Index

Logistics 

Benefits 

Index

Safety 

Benefits 

Index

(O) Joint 

Index

(O) Combined 

Benefits 

Index

(I) %OSD 

Funds
W11AF01 325$  100$     425$    79,453$      187.0 12 11.18 0.60 0.40 0.60 3.80 1.60 0.76

W11AF02 550$ 200$     750$    31,464$      42 24 12.22 1.20 0.80 0.60 4.20 2.60 0.73

W11AF04 335$  100$     435$    5,274$       12.1 12 14.83 0.60 0.80 0.60 3.80 2.00 0.77

W11AF06 70$   70$       140$    4,761$         34 18 11.83 1.00 1.00 1.20 4.40 3.20 0.50

W11AF07 200$  100$     300$    23,880$       79.6 6 13.83 0.80 1.00 1.20 4.00 3.00 0.67

W11AF08 500$  250$     750$    2,482$       4 12 3.17 0.80 0.60 0.60 3.80 2.00 0.67

W11AF09 500$  407$     907$    72,673$      80.1 12 7.24 0.60 1.20 1.20 3.80 3.00 0.55

W11AR01 325$  100$     425$    218,580$    364.3 15 11.86 1.00 0.83 1.00 3.00 2.83 0.76

W11AR02 195$  195$     390$    12,330$      31.6 24 1.40 1.20 1.00 1.20 4.40 3.40 0.50

W11AR03 220$  1,280$   1,500$ 182,645$    121.8 24 11.58 0.83 1.33 1.00 2.83 3.17 0.15

W11AR04 250$  560$     810$    4,706$       5.8 24 13.00 0.80 1.60 3.60 5.60 6.00 0.31

W11AR05 490$  490$     980$    97,253$      99.2 24 26.90 1.40 2.00 1.80 6.20 5.20 0.50

W11AR09 250$  250$     500$    99,547$      199.1 24 17.45 0.83 0.67 1.00 3.17 2.50 0.50

W11AR10 176$  176$     352$    18,506$      52.6 12 37.02 1.00 0.83 1.00 4.00 2.83 0.50

W11AR12 350$  125$     475$    6,872$       14.5 24 20.80 1.80 1.60 1.20 6.80 4.60 0.74

W11MC01 150$  150$     300$    24,569$      81.9 12 31.67 1.40 1.20 1.20 4.00 3.80 0.50

W11MC02 160$  140$     300$    965$          3.2 24 14.81 1.80 2.00 1.20 4.60 5.00 0.53

W11MC03 160$  140$     300$    339$          1.1 24 14.81 2.00 2.20 1.20 4.60 5.40 0.53

W11MC04 110$  110$     220$    1,836$       8.4 24 13.76 1.20 1.00 0.60 4.60 2.80 0.50

W11MC05 150$  150$     300$    1,035,452$ 3451 24 28.94 1.00 0.80 1.80 5.20 3.60 0.50

W11MC06 200$  200$     400$    9,629$       24.1 12 43.11 1.25 1.75 0.75 6.50 3.75 0.50

W11MC07 275$  150$     425$    5,737$       13.5 24 22.86 1.20 1.00 1.20 3.60 3.40 0.65

W11MC08 100$  100$     200$    31,022$      44.3 24 24.00 1.40 1.00 1.20 4.60 3.60 0.50

W11MC09 200$  200$     400$    26,058$      65.1 12 16.04 1.40 1.80 0.60 4.40 3.80 0.50

W11NA01 250$  250$     500$    702$             1.4 24 9.53 0.80 1.00 1.20 3.80 3.00 0.50

W11NA02 60$   30$       90$      338$          3.8 10 20.94 1.25 1.75 0.75 2.75 3.75 0.67

W11NA03 200$  200$     400$    2,133$       5.3 11 5.76 1.00 1.25 1.50 6.00 3.75 0.50

W11NA04 285$  100$     385$    13,358$      34.7 12 17.00 0.83 1.00 1.00 3.17 2.83 0.74

W11NA05 460$  50$       510$    24,455$      48 24 13.00 1.40 1.00 0.60 3.40 3.00 0.90

W11NS01 500$  400$     900$    30,453$      33.9 24 4.12 1.00 1.17 1.50 2.67 3.67 0.56

W11NS02 480$  800$     1,280$ 332,120$    259.5 24 9.18 0.83 1.00 1.00 3.00 2.83 0.38

W11NS04 400$  700$     1,100$ 27,808$      25.3 24 6.58 1.17 1.17 1.00 2.83 3.33 0.36

W11NS05 450$  450$     900$    290,607$    322.9 24 6.94 0.83 0.83 1.50 3.17 3.17 0.50

W11NS06 500$  500$     1,000$ 34,451$      34.5 12 8.24 1.20 1.20 0.60 3.40 3.00 0.50

DMU Score Rank Reference set (lambda)

W11AF07 1 1 W11AF07 1

W11AR03 1 1 W11AR03 1

W11AR04 1 1 W11AR04 1

W11MC01 1 1 W11MC01 1

W11MC05 1 1 W11MC05 1

W11MC06 1 1 W11MC06 1

W11NA03 1 1 W11NA03 1

W11MC09 0.980998 8 W11AR04 2.81E-02 W11MC01 0.382815 W11MC05 8.85E-03 W11NA03 0.572002

W11NA02 0.971741 9 W11AF07 0.554352 W11MC06 0.269597 W11NA03 0.286921

W11AR10 0.871249 10 W11MC05 9.29E-03 W11MC06 0.852675

W11AR05 0.821122 11 W11AR04 0.576398 W11MC01 7.00E-03 W11MC05 2.46E-02 W11MC06 0.427867 W11NA03 5.84E-03

W11MC03 0.818636 12 W11AR04 0.576757 W11MC06 0.116031 W11NA03 0.401159

W11NS06 0.766561 13 W11AR04 0.032498 W11MC01 0.130452 W11MC05 5.91E-03 W11NA03 0.610139

W11MC02 0.758949 14 W11AR04 0.533 W11MC06 0.136908 W11NA03 0.343625

W11AF09 0.748719 15 W11AF07 4.80E-02 W11MC01 6.72E-02 W11MC05 1.95E-02 W11NA03 0.674771

W11AR12 0.667762 16 W11AR04 0.254176 W11MC06 0.827171

W11MC08 0.634112 17 W11AR03 0.18529 W11AR04 0.227825 W11MC05 2.87E-03 W11MC06 0.43626

W11NA04 0.633804 18 W11AF07 0.34279 W11MC01 1.34E-03 W11MC06 0.253205 W11NA03 0.22676

W11AF06 0.629357 19 W11AR04 0.228183 W11MC05 6.59E-03 W11MC06 0.392846 W11NA03 8.91E-02

W11MC04 0.601448 20 W11AR04 0.434975 W11MC06 0.332944

W11AR01 0.593619 21 W11AF07 0.280995 W11MC01 0.103263 W11MC05 9.61E-02 W11NA03 0.333846

W11AF01 0.586616 22 W11AF07 0.423544 W11MC05 4.24E-02 W11MC06 0.290059

W11AR02 0.5773 23 W11AR04 0.412988 W11MC05 6.26E-03 W11MC06 0.316114

W11AF08 0.558824 24 W11AF07 0.223529 W11MC06 0.447059

W11NS01 0.551973 25 W11AR04 0.371236 W11MC05 8.62E-03 W11NA03 0.375523

W11NS04 0.544742 26 W11AR04 0.501638 W11MC05 6.37E-03 W11NA03 8.02E-02

W11AF04 0.543929 27 W11AF07 0.352616 W11MC06 0.367621

W11NS05 0.526271 28 W11AR04 0.327541 W11MC05 9.27E-02 W11NA03 0.231425

W11NS02 0.504176 29 W11AR04 0.402172 W11MC05 7.41E-02 W11MC06 5.57E-02

W11MC07 0.50343 30 W11AR04 0.259442 W11MC01 1.58E-02 W11MC06 0.435062 W11NA03 0.040465

W11NA01 0.496848 31 W11AR04 0.359328 W11MC06 0.275041

W11AR09 0.465497 32 W11AR03 0.138604 W11AR04 0.129035 W11MC05 5.05E-02 W11MC06 0.294661

W11AF02 0.415989 33 W11AR04 0.154396 W11MC05 8.37E-03 W11MC06 0.506436

W11NA05 0.400792 34 W11AR04 7.44E-02 W11MC01 0.308858 W11MC05 5.90E-03 W11NA03 0.362313
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Table 31. FY11 Facilities DEA Results 

Red Column Headings Indicate Input Data 

 
 

Table 32. DEA Output Data – Blue Shaded DMUs Selected for Funding 

 
  

Index OSD$ Service $ Total $ Savings $ (O) ROI

(I) Perform 

Period

(O) Cost of 

Corrosion

Readiness 

Benefits 

Index

Logistics 

Benefits 

Index

Safety 

Benefits 

Index

(O) Joint 

Index

(O) 

Combined 

Benefits 

(I) %OSD 

Funds
F11AF09 74$          48$          122$         302$         2.50 18 3.71 1.50 1.75 0.75 9.00 4.00 0.61

F11AR01 300$         300$         600$         6,254$      10.40 24 2.88 2.00 1.50 0.75 8.00 4.25 0.50

F11AR02 230$         230$         460$         4,752$      10.30 24 5.18 0.75 1.50 0.75 7.00 3.00 0.50

F11AR03 180$         180$         360$         5,119$      14.20 24 7.27 0.75 1.50 0.75 7.00 3.00 0.50

F11AR04 500$         500$         1,000$      26,431$    26.40 24 20.57 2.00 2.00 0.75 7.75 4.75 0.50

F11AR08 250$         250$         500$         7,445$      14.90 24 13.25 1.50 1.50 0.75 8.50 3.75 0.50

F11AR15 400$         400$         800$         13,497$    16.90 24 10.03 1.75 1.00 2.25 8.25 5.00 0.50

F11AR16 300$         300$         600$         25,061$    41.80 24 9.34 1.00 2.00 2.00 11.33 5.00 0.50

F11AR17 475$         525$         1,000$      21,890$    21.9 24 3.00 1.75 1.50 2.25 10.25 5.50 0.48

F11AR18 400$         400$         800$         7,445$      14.9 24 3.25 1.25 1.50 0.75 7.25 3.50 0.50

F11AR19  $        375  $        375  $        750  $     9,746 13.00 24 3.50 1.00 1.00 3.00 6.25 5.00 0.50

F11AR22 200$         200$         400$         4,411$      11 24 7.07 1.00 1.25 0.75 7.25 3.00 0.50

F11AR23 375$         375$         750$         7,789$      10.4 24 4.96 1.25 1.50 0.75 7.25 3.50 0.50

F11AR24 275$         275$         550$         5,956$      10.8 24 5.04 1.25 1.25 1.50 7.00 4.00 0.50

F11AR25 225$         225$         450$         4,719$      10.5 24 4.21 2.25 1.75 0.00 4.75 4.00 0.50

F11AR26 250$         250$         500$         5,668$      11.3 24 3.68 1.50 1.25 0.75 7.50 3.50 0.50

F11AR27 450$         450$         900$         12,255$    13.6 24 5.93 1.75 1.50 2.25 7.00 5.50 0.50

F11NV02 185$         90$          275$           368$         1.34 24 2.96 2.25 1.75 2.25 7.75 6.25 0.67

F11NV04  $        100  $        150  $        250  $          -   0 24 2.45 2.00 1.33 2.00 9.00 5.33 0.40

F11NV05  $        260  $        260  $        520  $   14,460 27.8 24 2.50 2.00 1.75 0.75 6.25 4.50 0.50

F11NV06 150$         150$         300$         1,378$       4.6 24 5.25 1.25 2.00 0.75 8.25 4.00 0.50

F11NV07  $        200  $        300  $        500  $     1,603 3.2 24 4.93 2.25 2.25 3.00 8.50 7.50 0.40

F11NV08  $        125  $        125  $        250  $        969 3.9 12 1.92 1.00 1.50 0.75 6.25 3.25 0.50

F11NV09  $        100  $        100  $        200  $     1,783 8.9 12 6.23 1.33 2.33 1.00 5.67 4.67 0.50

DMU Score Rank Reference set (lambda)

F11AR04 1 1 F11AR04 1

F11AR16 1 1 F11AR16 1

F11NV04 1 1 F11NV04 1

F11NV07 1 1 F11NV07 1

F11NV08 1 1 F11NV08 1

F11NV09 1 1 F11NV09 1

F11AF09 0.995542 7 F11AR16 0.285606 F11NV08 0.9221

F11AR17 0.968735 8 F11AR16 0.708421 F11NV07 0.257293 F11NV09 6.04E-03

F11AR08 0.889241 9 F11AR04 0.440391 F11AR16 0.44885

F11AR15 0.86275 10 F11AR04 0.25049 F11AR16 0.345334 F11NV07 0.222438 F11NV09 8.90E-02

F11NV05 0.807581 11 F11AR16 0.642874 F11NV07 0.137256 F11NV09 5.49E-02

F11AR27 0.798006 12 F11AR04 1.57E-02 F11AR16 0.242753 F11NV07 0.449669 F11NV09 0.179867

F11NV02 0.774349 13 F11AR16 0.072324 F11NV07 0.362102 F11NV09 0.679846

F11NV06 0.747452 14 F11AR16 0.653801 F11NV07 0.078042 F11NV09 0.031217

F11AR01 0.744903 15 F11AR16 0.557602 F11NV07 0.156084 F11NV09 6.24E-02

F11AR19 0.728955 16 F11AR16 0.245905 F11NV07 0.402542 F11NV09 0.161017

F11AR26 0.672117 17 F11AR16 0.622425 F11NV07 4.14E-02 F11NV09 1.66E-02

F11AR24 0.667021 18 F11AR16 0.430028 F11NV07 0.197494 F11NV09 0.078998

F11AR22 0.664012 19 F11AR04 7.69E-02 F11AR16 0.587136

F11AR18 0.656031 20 F11AR16 0.57767 F11NV07 6.53E-02 F11NV09 2.61E-02

F11AR23 0.656031 20 F11AR16 0.57767 F11NV07 6.53E-02 F11NV09 2.61E-02

F11AR03 0.651062 22 F11AR04 0.105685 F11AR16 0.545377

F11AR02 0.617647 23 F11AR16 0.617647

F11AR25 0.584105 24 F11AR16 0.199342 F11NV07 0.320636 F11NV09 0.128254
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Table 33. FY12 Combined Weapon System and Facilities DEA Results* 

Red Column Headings Indicate Input Data 

 
 Prior year DEA runs were performed separately for weapon system projects and 

facility projects. In FY12, All projects were evaluated in a single DEA run. 

  

Index OSD$ Service $ Total $ Savings $ (O) ROI

(I) Perform 

Period

(O) Cost of 

Corrosion

Readiness 

Benefits 

Index

Logistics 

Benefits 

Index

Safety 

Benefits 

Index

(O) Joint 

Index

(O) Combined 

Benefits 

Index

(I) %OSD 

Funds
W12AF02 100 50 150 4284 28.6 24 18 0.62 1.23 1.69 4.38 3.54 0.67

W12AF03 150 150 300 2163 7.2 18 18 1.00 1.00 1.08 3.31 3.08 0.50

W12AR01 400 400 800 5025 6.3 21 0 1.08 1.15 1.38 2.69 3.62 0.50

W12AR02 492 334 826 3129 3.8 24 12 0.38 0.38 0.15 1.92 0.92 0.60

W12AR04 500 175 675 125368 185.7 24 23 0.92 0.92 0.92 3.08 2.77 0.74

W12AR05 200 200 400 25417 63.5 24 2 0.62 1.08 0.92 2.85 2.62 0.50

W12AR06 400 200 600 7309 12.2 24 12 1.00 1.00 1.15 2.54 3.15 0.67

W12AR07 200 200 400 28290 70.7 24 17 0.38 0.77 0.54 1.92 1.69 0.50

W12AR09 450 450 900 213849 237.6 12 0 0.46 1.08 1.00 1.46 2.54 0.50

W12AR10 300 200 500 93582 187.2 8 1 0.85 1.00 1.00 2.38 2.85 0.60

W12AR11 500 560 1060 18422 17.4 8 61 1.15 1.23 1.38 3.54 3.77 0.47

W12AR12 135 165 300 29067 96.9 24 61 0.85 1.15 1.00 3.62 3.00 0.45

W12MC01 300 250 550 16217 29.5 24 30 0.62 0.85 0.77 2.00 2.23 0.55

W12MC03 275 275 550 14814 26.9 8 22 0.77 1.23 1.00 2.69 3.00 0.50

W12MC04 150 150 300 18592 62.0 12 36 0.77 0.85 0.62 2.00 2.23 0.50

W12MC05 200 200 400 7272 18.2 21 15 0.77 0.92 0.62 2.77 2.31 0.50

W12MC06 300 250 550 10131 18.4 24 30 0.54 1.00 1.00 3.08 2.54 0.55

W12MC07 150 150 300 2301 7.7 12 22 0.54 0.77 0.54 2.23 1.85 0.50

W12MC08 300 300 600 50834 84.7 18 17 0.31 0.69 0.46 1.77 1.46 0.50

W12MC09 125 125 250 2234 8.9 14 0 0.77 1.31 1.08 3.23 3.15 0.50

W12NA01 340 80 420 24455 58.2 12 0 1.23 1.38 1.38 2.23 4.00 0.81

W12NA02 315 152 467 7929 17.0 13 22 0.62 0.62 0.23 1.92 1.46 0.67

W12NA03 125 125 250 1059 4.2 12 22 0.54 0.46 0.85 2.15 1.85 0.50

W12NA04 170 200 370 3708 10.0 12 4 0.62 0.92 0.62 2.15 2.15 0.46

W12NA05 100 150 250 3017 12.1 24 22 0.69 1.08 0.85 2.92 2.62 0.40

W12NA06 388 318 706 4069 5.8 12 25 0.46 0.85 1.46 2.69 2.77 0.55

W12NS01 500 400 900 164562 182.8 24 5 1.00 1.31 1.54 1.54 3.85 0.56

W12NS02 250 250 500 8376 16.8 24 0 0.46 1.08 0.69 1.85 2.23 0.50

W12NS03 300 242 542 24345 44.9 12 18 0.38 0.69 0.46 1.38 1.54 0.55

W12NS04 195 100 295 6206 21.0 12 10 0.69 0.77 0.62 1.31 2.08 0.66

W12NS05 500 250 750 53357 71.1 24 8 1.08 1.15 0.92 2.92 3.15 0.67

W12NS06 275 0 275 5026 18.3 12 0 0.38 0.77 0.38 0.92 1.54 1.00

W12NS07 350 330 680 3977 5.8 24 10 0.92 1.08 1.54 1.92 3.54 0.51

W12NS08 300 150 450 59078 131.3 24 5 0.77 1.23 1.46 2.23 3.46 0.67

F12AF01 41.5 20.5 62 153 2.5 24 3 0.54 0.92 0.92 3.54 2.38 0.67

F12AR01 305 305 610 6435 10.5 24 0 0.69 1.08 1.15 2.54 2.92 0.50

F12AR03 245 245 490 5121 10.5 24 8 0.85 1.00 0.69 3.31 2.54 0.50

F12AR04 405 405 810 9746 12.0 24 0 0.77 0.85 0.92 2.77 2.54 0.50

F12AR06 255 255 510 4715 9.2 24 11 0.69 1.23 1.00 3.15 2.92 0.50

F12AR07 250 250 500 12291 24.6 24 3 0.85 1.15 1.54 3.00 3.54 0.50

F12AR08 500 500 1000 21890 21.9 24 0 0.62 0.92 0.92 2.54 2.46 0.50

F12AR11 250 1000 1250 21914 17.5 24 0 1.08 1.38 2.08 2.85 4.54 0.20

F12AR12 500 500 1000 6100 9.8 24 11 0.77 1.08 0.85 3.31 2.69 0.50

F12AR14 375 375 750 6100 13.0 24 11 0.54 0.85 0.85 3.31 2.23 0.50

F12AR15 440 440 880 17534 19.9 24 0 0.69 1.08 1.31 2.38 3.08 0.50

F12NV01 400 75 475 9562 20.1 12 12 0.85 1.38 0.92 2.77 3.15 0.84

F12NV02 150 150 300 603 2.0 24 24 0.69 1.00 1.62 3.00 3.31 0.50

F12NV05 170 170 340 5887 17.3 18 18 0.77 1.31 0.92 2.92 3.00 0.50
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Table 34.  FY12 Combined Weapon System and Facility DEA Output Data – Blue 

shaded DMUs listed by priority* 

 
 Projects listed in priority order and will be funded in that order until funds 

exhausted 

DMU Score Rank Reference set (lambda)

F12AR11 1 38 W12AR09 9.71E-02 W12AR11 1.02E-03 W12AR12 0.491668

W12AR09 1 37 W12AR11 0.534358 F12AR11 9.24E-02

W12MC03 0.729569 43 W12AR09 0.153958 W12AR11 0.29363 W12AR12 3.34E-02

W12MC09 0.785834 24 W12AR09 0.514971 W12AR11 0.212995 F12AR11 0.297783

W12AF02 0.762065 13 W12AR09 0.177958 W12AR11 0.471538 W12AR12 0.118626

W12MC04 0.613909 44 W12AR09 5.08E-02 W12AR11 0.508637 F12AR11 6.77E-03

F12AR03 0.694261 25 W12AR11 0.501756 F12AR11 0.379898

F12AR14 0.694261 1 W12AR10 1

F12NV05 0.673121 7 W12AR10 7.53E-02 W12AR11 0.739073

F12NV02 0.629679 41 W12AR11 0.255433 W12AR12 0.236371 F12AR11 0.123141

W12NA06 0.626463 21 W12AR11 0.414475 W12AR12 0.106319 F12AR11 0.403707

W12MC06 0.560403 48 W12AR10 6.43E-02 W12AR11 0.359645

F12AF01 0.605157 10 W12AR11 0.834699 W12AR12 7.02E-02 F12AR11 0.413627

W12MC02 0.814355 45 W12AR11 0.244729 W12AR12 8.66E-02 F12AR11 0.234402

W12NS07 0.562404 22 W12AR11 0.466393 F12AR11 0.474215

W12MC07 0.592307 34 W12AR11 0.436983 F12AR11 0.416743

W12MC01 0.461051 6 W12AR09 0.706737 W12AR12 8.20E-02 F12AR11 0.397982

W12MC05 0.612456 28 W12AR09 0.140277 W12AR11 0.371027 W12AR12 0.30431 F12AR11 0.10716

W12NA04 0.578767 31 W12AR11 0.430516 F12AR11 0.437737

W12AR11 1 14 W12AR11 0.338376 W12AR12 2.23E-02 F12AR11 0.578042

W12AR10 1 32 W12AR11 0.513648 F12AR11 0.118168

F12NV01 0.563066 1 W12AR12 1

W12NS08 0.626267 19 W12AR11 0.566674 W12AR12 2.43E-02 F12AR11 0.291663

W12AR04 0.781642 30 W12AR09 0.228535 W12AR11 0.103833 W12AR12 0.295352

W12AR05 0.706166 8 W12AR11 0.743735 F12AR11 0.210491

W12NS01 0.84573 36 W12AR11 0.343778 W12AR12 0.104157 F12AR11 0.332184

F12AR15 0.516185 1 W12AR11 1

F12AR07 0.648184 15 W12AR09 8.95E-03 W12AR11 0.145238 W12AR12 0.597771 F12AR11 5.55E-02

W12NA05 0.713114 20 W12AR11 0.49031 F12AR11 0.498533

F12AR01 0.532805 11 W12AR11 0.653695 F12AR11 0.34946

F12AR06 0.66197 9 W12AR09 0.596954 W12AR11 0.196125 W12AR12 0.41779

F12AR12 0.694261 1 W12AR09 1

W12NS02 0.402566 1 F12AR11 1

W12AR06 0.441824 12 W12AR10 0.228584 W12AR11 0.88862

W12NA03 0.541079 16 W12AR11 0.514228 F12AR11 0.522852

W12NS03 0.416427 16 W12AR11 0.514228 F12AR11 0.522852

W12NS04 0.40346 16 W12AR11 0.514228 F12AR11 0.522852

W12AR12 1 23 W12AR11 0.695359 F12AR11 8.14E-02

W12AF03 0.756478 26 W12AR11 0.466286 W12AR12 4.26E-02 F12AR11 0.339101

W12AR01 0.625314 27 W12AR11 0.50821 W12AR12 2.29E-02 F12AR11 0.420113

W12NA01 0.744803 29 W12AR11 0.701263 F12AR11 0.371403

W12NS06 0.282599 33 W12AR10 0.032111 W12AR11 0.812487

W12AR02 0.357725 35 W12AR11 0.553442 F12AR11 9.57E-02

W12NA02 0.388288 39 W12AR11 0.39464 F12AR11 0.401259

W12NS05 0.605284 40 W12AR09 1.95E-02 W12AR11 0.344065 W12AR12 3.08E-02 F12AR11 0.360957

F12AR08 0.550934 42 W12AR11 0.509058 F12AR11 0.272138

W12AR07 0.540553 46 W12AR09 2.16E-02 W12AR11 0.501492 W12AR12 3.24E-02

F12AR04 0.581242 47 W12AR11 0.349431 F12AR11 0.241247


