Quantification of the performance of 3D sound field reconstruction algorithms using high-density loudspeaker arrays and 3rd order sound field microphone measurements.

Alexander Marco Kern

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science

In

Mechanical Engineering

Michael Roan, Committee Co-Chair

Tobias Melz, Committee Co-Chair

Jan Helge Bøhn

Manfred J. Hampe

January 18, 2017

Darmstadt, Germany

Keywords: 3D audio, immersive audio, sound field reconstruction
Quantification of the performance of 3D sound field reconstruction algorithms using high-density loudspeaker arrays and 3rd order sound field microphone measurements.

Master Thesis
Alexander Kern | 1917095
Mechanical and Process Engineering
Alexander Kern
Student-ID (TUD): 1917095
Degree Program: Mechanical and Process Engineering

Master Thesis
Topic: Quantification of the performance of 3D sound field reconstruction algorithms using high-density loudspeaker arrays and 3rd order sound field microphone measurements.


Committee:

Chair
Prof. Dr.-Ing. Tobias Melz
Mechanical and Process Engineering (TU Darmstadt)
System Reliability, Adaptive Structures, and Machine Acoustics (SAM)
S1|08 105
Magdalenenstraße 4
64289 Darmstadt

Co-Chair
Prof. Dr. Michael Roan
Mechanical Engineering (VT)
Acoustics Signal Processing and Immersive Reality Lab (ASPIRe)
111 Randolph Hall (0710)
460 Old Turner Street
Blacksburg, VA 24061

Committee Member
Prof. Dr.-Ing. Manfred J. Hampe
Mechanical and Process Engineering (TU Darmstadt)
Thermal Process Engineering (TVT)
L1|01 364
Otto-Berndt-Straße 2
64287 Darmstadt

Committee Member
Prof. Dr. Jan Helge Bøhn
Mechanical Engineering (VT)
Virginia Tech Computer Aided Design Laboratory (PACE)
114H Randolph Hall (0710)
460 Turner Street
Blacksburg, VA 24061
1 Abstract

The development and improvement of 3-D immersive audio is gaining momentum through the growing interest in virtual reality. Possible applications reach from recreating real world environments to immersive concerts and performances to exploiting big data acoustically.

To improve the immersive experience several measures can be taken. The recording of the sound field, the spatialization and the development of the loudspeaker arrays are some of the greatest challenges.

In this thesis, these challenges for improving immersive audio will be explored. First, there will be a short introduction about 3D audio and a review about the state of the art technology and research. Next, the thesis will provide an introduction to 3D loudspeaker arrays and describe the systems used during this research. Furthermore, the development of a new 16-element 3rd order sound field microphone will be described. Afterwards, different spatial audio algorithms such as higher order ambisonics, wave field synthesis and vector based amplitude panning will be described, analyzed and compared. For each spatialization algorithm, the quality of soundfield reproduction will be quantified using listener perception tests for clarity and sound source localization.

Full text available at: http://tuprints.ulb.tu-darmstadt.de/id/eprint/6186