
DroidCat: Unified Dynamic Detection of Android Malware

ABSTRACT
Various dynamic approaches have been developed to detect
or categorize Android malware. These approaches execute
software, collect call traces, and then detect abnormal
system calls or sensitive API usage. Consequently,
attackers can evade these approaches by intentionally
obfuscating those calls under focus. Additionally, existing
approaches treat detection and categorization of malware
as separate tasks, although intuitively both tasks are
relevant and could be performed simultaneously. This
paper presents DroidCat, the first unified dynamic
malware detection approach, which not only detects
malware, but also pinpoints the malware family. DroidCat
leverages supervised machine learning to train a multi-class
classifier using diverse behavioral profiles of benign apps
and different kinds of malware. Compared with prior
heuristics-based machine learning-based approaches, the
feature set used in DroidCat is decided purely based on a
systematic dynamic characterization study of benign and
malicious apps. All differentiating features that show
behavioral differences between benign and malicious apps
are included. In this way, DroidCat is robust to existing
evasion attacks.

We evaluated DroidCat using leave-one-out cross
validation with 136 benign apps and 135 malicious apps.
The evaluation shows that DroidCat provided an effective
and scalable unified malware detection solution with 81%
precision, 82% recall, and 92% accuracy.

1. INTRODUCTION
Android is the target of 97% malicious mobile apps [10],

most of which steal personal information, abuse privileged
resources, and/or install additional malicious software [7].
Detecting and categorizing malware are crucially important
for Android developers and users.

Researchers have mainly taken two types of approaches
to Android malware detection: static and dynamic. The
static approaches analyze code to check whether an app
contains abnormal information flows or calling
structures [26, 29, 32, 39, 60], matches malicious code
patterns [33, 55], requests for more permissions than

ACM ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

necessary [25, 35, 44, 48], and/or invokes APIs that are
frequently used by malware [11, 14, 56]. These approaches
cannot always precisely detect malware because how
control and data dynamically flows is not always statically
decidable. The mere existence of some permissions and/or
APIs in code does not always mean that they are used or
executed at runtime. Furthermore, attackers can use
widely adopted techniques such as code obfuscation [21]
and metamorphism [38] to evade static pattern matching
and deceive the detectors.

In comparison, dynamic approaches provide a
complementary way to detect malware [12,16,19,49]. They
profile program behaviors [15, 52] by collecting system
calls [16, 28, 36, 46], permissions [19], and/or resource
usage [28, 49]. Based on the profiles, existing dynamic
detectors typically use machine learning to train a classifier
to decide whether an app is malware. However, these
detectors are limited by the specific profiles on which they
focus. For example, the system call-based detectors suffer
from the evasion attacks, which intentionally obfuscate
malicious activities by replacing malicious chains of system
calls with some syntactically different, but semantically
equivalent system calls [27, 40, 50]. A more advanced
dynamic malware detector is needed to capture varied
behavioral profiles and thus become robust to attacks
against specific profiles.

Given a malicious app, existing Android malware
categorization approaches also rely on system calls [23, 58]
to identify the malware family. Similar to many dynamic
detectors, these approaches are also subject to the
obfuscation attack of system calls [41]. Even worse, current
categorization approaches can only be applied to the
malicious apps recognized beforehand by humans or other
tools. To decide whether a given app belongs to a specific
malware family, developers usually take two passes: one
pass to differentiate malicious apps from benign ones, and
one pass to categorize malicious apps. This two-pass
process may not be as efficient as a single pass for both
malware detection and classification, thus costing more in
time and human effort.

In this paper, we present the design and implementation
of a unified malware detection technique, DroidCat, which
detects and categorizes Android malware simultaneously
through systematic dynamic profiling and supervised
learning. Differently from existing machine-learning based
dynamic approaches, DroidCat trains a classification model
with a more diverse set of behavioral features. It
instruments all Inter-Component Communications
(ICCs)1, and all invocations of methods defined by user
code, third-party libraries, and the Android framework.

1ICC is an event-driven model of communication, as further
explained in Section 2.

1

10.1145/1235

Therefore, DroidCat is robust to attacks targeting system
calls, because system calls are not used in our approach. It
is also robust to attacks targeting sensitive APIs, because
these APIs are not the only information source of method
invocations.

The features used in DroidCat manifest the behavioral
differences between benign and malicious apps. Compared
with prior approaches, this feature set was decided based
on a systematic dynamic characterization study of 136
benign apps and 135 malicious apps. In the study, we
traced the execution of each app, defined and evaluated
122 behavioral metrics to thoroughly characterize any
behavioral difference between the two app groups. All
these metrics measure the occurrence frequencies of certain
method invocations or ICCs, which can never be captured
by static malware detectors.

Based on the study, we discovered 70 discriminating
metrics with noticeably different values, and included all of
them into our feature set. By training a model with the
Random Forest machine learning algorithm [34], DroidCat
builds a multi-class classifier that predicts whether an app
is benign or malicious in a particular malware family.

We evaluated DroidCat using leave-one-out cross
validation, the strongest form of k-fold cross validation,
with our data set of benign and malicious apps. For the
unified detection, DroidCat achieved 81% precision, 82%
recall, and 92% accuracy. For conventional
binary-classification malware detection (only telling benign
or not), DroidCat performed even better with 95%
precision, 99% recall, and 99% accuracy. As malicious apps
behave similarly, precisely identifying the malware family is
generally more challenging than merely detecting malware.
This explains why DroidCat’s unified malware detection is
not as effective as conventional malware detection.

To understand how sensitive DroidCat is to the selection
of behavioral features, we investigated 5 other ways to
choose features: 1 full set of 122 metrics and 4 different
subsets. Our investigation revealed that DroidCat worked
best with the 70 metrics that were noticeably different
between benign and malicious apps. To avoid any bias
caused by the selection of machine learning algorithms, we
also experimented with four other machine learning
algorithms: Support Vector Machine [22], Decision
Trees [45], k-Nearest Neighbors [13], and Naive Bayes [9].
We found that DroidCat performed best when using
Random Forests.

In summary, we have made the following contributions:

• We designed and implemented the first unified
dynamic Android malware detection approach,
DroidCat, based on a systematic characterization
study of benign and malicious apps. Due to its
diverse feature set, DroidCat is robust to evasion
attacks targeting specific behavioral profiles. It not
only precisely detects malware, but also pinpoints the
malware family for most malicious apps.

• We conducted the first systematic dynamic
characterization study for Android applications with
136 benign apps and 135 malicious apps. To
thoroughly characterize program behaviors, we traced
ICCs and all methods defined in user code,
third-party libraries, and Android SDK. We defined
122 behavioral metrics. No prior work has done such
a comprehensive dynamic characterization for
Android apps.

• We explored different learning algorithms to train
models for unified malware detection, and observed
that Random Forest worked best.

• We open sourced both DroidCat and the benchmark
suite of 271 Android apps. Our benchmarks will
facilitate scientific comparison between dynamic
malware detection and categorization techniques.

2. BACKGROUND
To facilitate later discussion, this section introduces main

concepts and terminologies relevant to our work.

Android applications. Programmers develop Android
apps primarily using Java, and then build them into
Android application package (i.e., APK) files. Each APK
file can contain three software layers: user code,
Android libraries (i.e., SDK APIs), and third-party
libraries (if any). An Android application typically
comprises four components as follows [1]:

• Activities: They dictate the UI and handle the user
interaction to the device screen.

• Services: They handle background processing
associated with an application.

• Broadcast Receivers: They handle communication
between Android OS and applications.

• Content Providers: They handle data storage and
management (e.g., database) issues.

ICC. Components interact with each other through ICC
objects—mainly Intents. We classify ICC in two ways
depending on the relationship between Intent senders and
receivers, and the content of Intents. If both the sender
and the receiver of an Intent are within the same app, we
classify the ICC as internal; otherwise, it is external. If
an Intent has the receiver explicitly specified in its content,
we classify the ICC as explicit; otherwise, it is implicit.

Lifecycle methods and callback. Each app component
follows a prescribed lifecycle that defines how this
component is created, used, and destroyed.
Correspondingly, developers are allowed to overwrite
various lifecycle methods, such as onCreate(), onStart(),
and onDestroy(), to define program behaviors when the
events happen. Developers can also overwrite other event
handlers (such as onClick()) or define new callbacks to
implement extra logic when other interesting events occur.

Security-relevant APIs. There are sensitive APIs that
acquire personal information of users like locations and
contacts. For example, Location.getLatitude() and
Location.getLongitude() retrieve GPS location
coordinates. We consider these APIs as sources of
potential sensitive information flows. There are also output
APIs that send data out of the current component via
network or storage. We consider them as sinks of potential
sensitive information flows. If an app’s execution trace has
any paths from sources to sinks, the app is considered
malicious because of potential sensitive data leakage.

3. UNIFIED MALWARE DETECTION
We designed and implemented DroidCat, a unified

malware detection approach leveraging systematic dynamic
profiling and supervised learning, to decide whether a
given app is benign or belongs to a particular malware
family. As shown in Figure 1, there are two phases in our
approach: training and testing. In the training phase,
DroidCat takes in both benign and malicious apps as
input. For each app, it computes behavioral features by
instrumenting and executing the program, and by

2

Supervised
learning

Multi-class
classifier

Training'

Tes*ng'

Instrumentation

Android Monkey [31]

Feature extraction

Feature'Computa*on'
Instrumented*

apps*

Execu0on*
traces*

Behavioral*
features*

Benign*
apps*

Malicious*
apps*

Android*
apps*

Unified*malware*
detec0on*result*

Figure 1: DroidCat consists of two phases: training and testing. The first phase takes in both benign and
malicious apps to train a multi-class classifier. The second phase takes in Android apps to do unified malware
detection with the trained classifier.

collecting a variety of behavioral characteristics. The
features are then provided to the supervised machine
learning to train a multi-class classifier, which will be used
in the second phase. For testing, given an arbitrary app,
DroidCat computes its behavioral features in the same way
as mentioned above, and then feeds these features to the
classifier to decide whether the app is benign or a member
of a malware family. In this section, we will discuss how
features are computed in Section 3.1, and explain the two
phases in Section 3.2 and 3.3, separately.

3.1 Feature Computation
To compute the dynamic features of an Android app, we

first instrumented the program for execution trace
collection. Specifically, for each app’s APK file, we used
Soot [37] to decompile the executable file into bytecode,
and then inserted bytecode instrumentation to trace every
method call, and every ICC together with its Intent
content. In this process, we also labeled additional
information for instrumented classes and methods to
facilitate feature extraction. For instance, we marked the
component type for each instrumented class, the category
of each instrumented callback, and the source or sink
property of each relevant Android API. To decide the
component type of a class such as Foo, we applied Class
Hierarchy Analysis (CHA) [24] to identify all the
superclasses. If Foo extends any of the four known
component types such as Activity, its component type is
labeled accordingly. We used a method-type mapping list
used in [17] to label the category of callbacks and the
source/sink property of APIs.

Next, we ran the instrumented APK of each app on an
Android emulator [30] to collect execution traces, which
include all method calls and ICCs. Note that we do not
instrument OS-level system calls, because we want
DroidCat to be robust to any attack targeting system calls.
Our instrumentation is not limited to sensitive APIs,
either. By ensuring that sensitive APIs are not the only
target scope of method-call profiling, we make DroidCat
robust to any attack targeting sensitive APIs as well. Prior
work shows that even without invoking system APIs or
sensitive APIs, some malicious apps can still conduct
attacks by manipulating other apps via ICCs [42].
Therefore, we also instrument ICCs to reveal any
behavioral differences between benign and various
malicious apps from a different perspective.

To fully characterize the dynamic behaviors of apps, we
need to run each instrumented app for a sufficiently long
time using various inputs to cover as many paths as
possible. Manually entering inputs to apps is tedious and

inefficient. In order to quickly trigger diverse executions of
an app, we used Monkey [31] to randomly generate inputs.
Since a previous study shows that for an average app,
Monkey does not significantly cover more paths after the
first 10-minute run [20], we intentionally set Monkey to
execute every app for 10 minutes. This allowed us to
efficiently collect abundant trace data without sacrificing
much dynamic coverage.

Finally, we extracted 70 features from the execution
traces. All of these features were defined as the percentage
of certain function calls or ICCs with a particular
characteristic. For instance, one feature measures the
percentage of ICCs carrying URI data only, while another
feature describes the percentage of source APIs which have
paths reaching at least one sink API. These features were
defined based on our systematic dynamic characterization
study of Android apps. Both the study and our extracted
features will be further discussed in Section 4.

3.2 Training
To train a classifier for unified malware detection, we

need behavioral feature data not only for benign apps, but
also for malicious apps from different malware families.
Therefore, in our training data, each data point represents
one app, and has the following format: <feature vector,
label>, where feature vector contains 70 feature values,
which are computed as mentioned in Section 3.1. Label is
either BENIGN or a malware family’s name (e.g.,
DroidKungfu). We use Random Forest [34], a supervised
machine learning (ML) algorithm, to train a classifier with
the labeled data.

3.3 Testing
In the testing phase, given an unknown app, DroidCat

computes its features as mentioned in Section 3.1, and passes
the feature vector to the well-trained multi-class classifier.
Unlike the training data, each data point in the testing data
is unlabeled, because we do not know whether an app is
benign. Based on the feature vector, our classifier judges
what category label should be assigned to the app.

We implemented DroidCat in Python, and used
Scikit-learn [43], a free machine learning toolkit for
Python, to train and test the classifier. We provided open
source DroidCat at (link withheld for double-blind review.)

4. FEATURE EXTRACTION
With the execution traces collected for both benign and

malicious apps as mentioned in Section 3.1, we need to
extract a variety of behavioral features to characterize
different apps, and to leverage machine learning for

3

Table 1: Metrics for dynamic characterization

of Substantially # of Noticeably
Dimension # of Metrics Exemplar Metric Disparate Metrics Different Metrics
Structure 63 The percentage of method calls whose definitions are in

user code.
15 32

ICC 7 The percentage of external implicit ICCs. 2 5
Security 52 The percentage of sinks reachable by at least one path

from a sensitive source
19 33

Total 122 36 70

effective unified malware detection. Although for the same
trace we can extract as many features as we like, not every
feature is a good differentiator of malicious apps from
benign ones. Therefore, with 136 benign apps and 135
malicious apps (Section 4.1), we conducted a systematic
dynamic characterization study by defining and measuring
122 metrics (Section 4.2). Based on the comparison
between the two groups of apps, we decided which metrics
were good differentiation factors, and thus included them
into our feature set (Section 4.3).

4.1 Benchmarks
Our characterization study needed a benchmark suite of

both benign apps and malicious apps. To collect benign
apps, we downloaded the top 3,000 most popular free apps in
Google Play at the end of year 2015 as our initial candidate
pool. Next, we randomly selected an app from the pool to
check whether it met the following three criteria: (1) the
minimum supporting SDK version is 4.4 (API 19) or above,
(2) the instrumented APK file runs successfully with inputs
by Monkey [31], and (3) the 10-minute Monkey run covers
at least 50% of user code. If an app met all criteria, we
further analyzed it with VirusTotal2, to check whether the
app is benign. If it is, we included it into our data set, which
eventually comprised 136 benign apps.

We collected malicious apps with their malware families
identified similarly. Instead of starting with the popular
free apps in Google Play, we used the 1,433 malicious apps
mentioned in prior work [61] as our initial candidate pool.
We found 135 apps meeting the above criteria, and
analyzed them with VirusTotal for malware confirmation
and malware type identification. For instance, we checked
a malicious app rom.jonas.eley with VirusTotal, which
reported that the app is malicious and belongs to the
malware family FakeInst. VirusTotal confirmed all 135
malicious apps. Based on its reports, we identified six
malware families, as shown in Table 2. The first five
malware families were directly reported by VirusTotal;
their attack models are explained below:

Table 2: Categories of the 135 malicious apps

Malware Family # of Apps Exemplar App
DroidKungfu 5 com.peter.wuzilianzhu
ProxyTrojan/NN 27 android.cat.calendar
GoldDream 11 com.craigsrace.headtoheadrcing
Plankton 8 cenix.android.vbr
FakeInst 33 com.opera.installer
MALICIOUS 51 app.batterymonitor

DroidKungfu can obtain the root access to Android
operating system code. It encrypts two known root
exploits: a udev exploit and a so-called rageagainstthecage

2VirusTotal is a free online service that analyzes files and
URLs to identify viruses, worms, trojans, and other kinds of
malicious content. Given a file to analyze, VirusTotal runs
multiple antivirus engines and website scanners in parallel,
and then aggregates the output from these tools.

exploit. During execution, it decrypts these two exploits
and executes them to launch the attack [6].
ProxyTrojan/NN (short for ProxyTrojan/NotComp-
atible/NioServ) is a type of Trojan horse designed to use
the victim’s computer as a proxy server. This gives the
attacker the opportunity to do everything from the
victim’s computer, such as committing credit card frauds
and launching attacks against other computers [4].
GoldDream spys on SMS messages received by users and
incoming/outgoing phone calls. It then uploads them to
a remote server without users’ awareness. Moreover, this
malware can also fetch commands from a remote server and
execute them accordingly [5].
Plankton is installed on phones as a bundle with an
application that a user downloaded. It displays unwanted
advertisements as notifications. These ads are hard to
block unless users completely remove some applications [2].
FakeInst appears to be an installer for other applications.
When executed, it sends SMS messages to premium-rate
numbers or services, although the content it presents is
actually free of charge. Furthermore, it can also intercept,
delete, and respond to incoming text messages [3].

In addition to these five families, we synthesized the last
family MALICIOUS to contain those apps not included in
one of the five families. In order to train a multi-class
classifier, we need each category to contain a sufficient
number of apps. Although VirusTotal identified the
malware families for each of these 51 remaining apps, none
of those families contained more than 4 apps, and 11 of
them contained only 1 app. Therefore, we decided to
merge the minor families whose member app counts were
less than five. The APK file size of all our benchmark apps
varies from 2.9MB to 25.6MB. All benchmarks are
available at (link withheld for double-blind review.)

4.2 Dynamic Characterization
Based on collected execution traces, we characterized

program behaviors by defining 122 metrics in 3 orthogonal
dimensions: structure, ICC, and security (Table 1).
Intuitively, the more diversely these metrics capture one
execution trace, the more completely they characterize
program behaviors. These metrics measure not only the
existence of certain method invocations or ICCs, but also
their occurrence frequencies. To simplify explanation, we
will only discuss a few metrics in the paper. For a full
explanation of all metrics, please refer to our website (link
withheld for double-blind review.)

Structure dimension contains 63 metrics to describe
the distributions of method calls, their declaring classes,
and caller-callee links. Among these metrics, 31 metrics
describe the distributions of all method calls among three
software layers (i.e. user code, third-party libraries, and
Android SDK), or among different components. The other
32 metrics describe the distributions of a specific kind of
methods—callbacks.

ICC dimension contains 7 metrics to describe ICC
distributions. Since there are two ways to classify ICCs,

4

internal vs. external, and implicit vs. explicit. Enumerating
all possible combinations leads to four metrics. The other
three metrics are defined based on the type of data
contained in Intents.

Security dimension contains 52 metrics to describe
distributions of sources, sinks, and the reachability between
them. Specifically, to examine the reachability between any
two APIs when given an execution trace, we create a
dynamic call graph, and then check for any path in the call
graph that links the APIs. If a source has at least one path
reaching a sink, it is considered risky source. Similarly, a
risky sink is reachable from at least one source. We
defined risky sources and sinks as separate metrics. Both
of them indicate security vulnerabilities, because sensitive
data may be leaked when flowing from sources to sinks.

4.3 Feature Selection
With 122 metrics defined, we evaluated the metrics for

each app in our benchmark suite. If some metrics always
showed different profiles between benign apps and
malicious apps, we relied on them to characterize the
behavioral divergence, and selected them as features to
train a unified malware detector.

To identify any metric with different profiles across the
two app groups, we measured the value of each metric on
every benchmark app, and then computed the mean value
for all benign apps and that for all malware. If a metric
had a mean value difference greater than or equal to 5%,
we considered the behavioral profile of the two groups
substantially disparate concerning the metric; if a metric
had a difference greater than or equal to 2%, we said the
behavioral profile was noticeably different concerning the
metric. As expected, substantially disparate metrics are
always a subset of noticeably different metrics. In our
setting, 5% and 2% were chosen as heuristics; our later
experiments showed that both thresholds work well.

As shown in Table 1, by comparing mean metric values
across app groups, we found 36 substantially disparate
metrics, and 70 noticeably different metrics. Due to the
space limit, we only show the top 10 differentiating metrics
in Figure 2. In the figure, there are ten metrics listed on
the Y-axis, and the X-axis corresponds to mean metric
values, which vary from 0% to 100%. Each metric listed on
Y-axis corresponds to two horizontal bars: one red bar to
show the mean value of all malicious apps, and one green
bar to represent the mean of all benign ones. The whisker
on each bar represents the standard error of the mean3.
These 10 metrics best demonstrate the behavioral
differences between malicious and benign apps. We further
examine these metrics, and group them by dimensions.

In the structural dimension, malicious apps call fewer
methods defined in SDK, more methods defined in user
code, and involve more callbacks relevant to the UI. This
indicates that user operations may trigger excessive or
unplanned computation. In the ICC dimension, malware
involves more external explicit ICCs with more URI data
carried by Intents. This means that malware uses explicit
ICCs more often to potentially attack specific external
components, or sends more URI data via ICCs to
disseminate potentially malicious URIs. In the security
dimension, malware invokes more risky source APIs, but
fewer logging sink APIs. By executing more risky sources,
malware may cause sensitive data leakage.

Our metric comparison shows that malicious apps
behave noticeably differently from benign ones. Such
behavioral differences are reflected in the metrics of the
structural, ICC, and security dimensions. By default, we

3https://en.wikipedia.org/wiki/Standard error

use the 70 noticeably different metrics as the features
extracted to train unified malware detection models in
DroidCat. Recall that these features show not only the
existence of certain method calls or ICCs, but also their
dynamic execution rates, which can never be captured by
any static malware detector.

5. EVALUATION
In this section, we will first discuss our evaluation

methodology in Section 5.1, and then present the
evaluation results for DroidCat in Section 5.2 and 5.3. To
better understand how sensitive DroidCat is to feature
selection and ML algorithm choice, we also investigated
different feature sets and ML algorithms, and will report
our observations in Section 5.4 and 5.5. Finally, we will
describe the analysis cost of our approach in Section 5.6.

5.1 Evaluation Methodology
K-fold cross validation (CV) is a widely adopted method

to assess how well a supervised classification generally
performs on independent data sets [47]. For our evaluation,
we use leave-one-out cross validation (LOOCV), the
strongest CV form, to assess DroidCat’s unified malware
detection capability. In more detail, given n samples from
C categories, each time LOOCV uses one sample as testing
data, and considers the other (n − 1) samples as training
data to train and test a multi-class classifier. The
experiment is repeated n times until every sample is used
exactly once as testing data.

In our settings, n = 271 including 136 benign apps and
135 malicious apps, and C = 7 including 1 benign category,
5 identified malware families, and 1 synthesized category
MALICIOUS that contains apps from minor malware
families. We chose to use LOOCV because it is
recommended as the most efficient way to use limited
available data for cross validation [8].

By evaluating DroidCat’s prediction capability for each
category, we can average the effectiveness metrics among all
categories to measure its general performance. Specifically,
for each category Ci, we assessed DroidCat’s effectiveness
with the following four metrics:

Precision (P) measures among all the apps labeled as
“Ci” by DroidCat, how many of them actually belong to the
category. Formally,

Pi =
of apps belonging to Ci

Total # of apps labeled as “C′′
i

. (1)

Recall (R) measures among all apps belonging to Ci, how
many of them are labeled by DroidCat as “Ci”. Formally,

Ri =
of apps labeled as “C′′

i

Total # of apps belonging to Ci
. (2)

F1 score (F1) is the harmonic mean of precision and
recall. It can be interpreted as a weighted average of the
precision and recall. Formally,

F1i =
2 ∗ Pi ∗Ri

Pi + Ri
. (3)

Accuracy (A) [58] measures among all apps no matter
whether or not they belong to Ci, how many of them are
labeled correctly as “Ci” or “not Ci”. Formally,

Ai =
(#apps correctly labeled as “C′′

i or “not C′′
i)

Total # of apps
. (4)

5

27%

21%

14%

10%

23%

56%

73%

12%

19%

60%

39%

9%

26%

42%

5%

84%

92%

28%

45%

8%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Risky source invocation

Logging sink invocation

ICC carrying URI data only

External explicit ICC

System status event handler

View event handler

Activity lifecycle callback

3rdLib‐>SDK calls

UserCode‐>SDK calls

SDK‐>SDK calls malware benign
St
ru
ct
ur
e

IC
C

Se
cu
rit
y

Figure 2: Top-10 differentiating metrics between malware and benign apps.

Note that our multi-class classifier only labels apps with
“C′′

1 , “C2”, . . . , or “C7”, and never uses any label like “not
Ci”. However, to facilitate the accuracy computation with
respect to a particular category like C1, we treat all apps
with other labels like “C2”, “C3”, . . . , “C7” as “not Ci”.

Suppose among the 271 apps, there are 10 apps belonging
to C3. DroidCat labels 11 apps with “C3”, but only 8 of
them actually belong to C3. As a result, P3 = 8/11 = 73%
because only 8 out of the 11 “C3”-labeled apps are identified
correctly. R3 = 8/10 = 80% because only 8 out of the 10
C3 apps are labeled correctly. F13 = 2 ∗ 73% ∗ 80%/(73% +
80%) = 76%. Finally, A3 = (8 + 258)/271 = 98%, because
8 C3 apps and 258 non-C3 apps are predicted correctly.

With the above effectiveness metrics computed for each
category, we further evaluated the overall effectiveness of
DroidCat by computing the weighted average among
categories. Intuitively, the larger the number of apps in a
category, the more weight its effectiveness metrics should
have. The malware families vary greatly in size, so we
weight each family’s contribution to the average by its
relative size to the benchmark suite. Formally, if we use Γ
to generally represent P , R, and A, and use ni to represent
the number of samples in Ci, then the overall
effectiveness in terms of precision, recall, and accuracy
can be computed with

Γoverall =

∑7
i=1 Γi ∗ ni∑7

i=1 ni

. (5)

Finally, the overall F1 is computed with:

F1overall =
2 ∗ Poverall ∗Roverall

Poverall + Roverall
(6)

5.2 Unified Malware Detection Results
Table 3 presents our evaluation results, in terms of

confusion matrix and the four effectiveness metrics. We
also examined the average behavioral profile of each app
category to further understand DroidCat’s effectiveness.

Confusion Matrix Results.
A confusion matrix (or error matrix) [51] is a specific

table layout used to visualize the performance of a
supervised learning algorithm. In Table 3, each row shows
the number of instances in an actual category, while each
column represents the instances in a predicted category.

Numbers on the diagonal represent the instances whose
categories are predicted correctly. Ideally, if a classifier has
all positive numbers on the diagonal and “0” in all other
cells, the classifier perfectly labels all instances.

In our confusion matrix, there are seven rows and seven
columns, corresponding to the seven categories from C1 to
C7. The number of apps in each category varies widely.
For instance, C6 contains 135 benign apps and is the
biggest category, while C1 contains 5 DroidKungfu
malicious apps and is the smallest category. Although it
would be better if we had a balanced suite that contained
the same number of samples in each category, in reality,
this is really difficult to achieve for two reasons. First,
some malware families are more prevalent than others and
contain more malicious apps. Second, after filtering apps
with the criteria mentioned in Section 4.1, we have no
control on the resulting app distribution. In future we
intend to obtain more malicious apps and create a more
balanced benchmark suite.

As shown in the matrix, DroidCat almost always
correctly labeled benign apps. Among the 136 benign apps,
DroidCat only confused 1 app with MALICIOUS apps;
however, it did not distinguish well between C2 and C7.
For instance, 8 of C2 apps were wrongly labeled as “C7”,
while 8 C7 apps were wrongly labeled as “C2”. We made
similar observations between C5 and C7. By further
checking the C7 row and C7 column, it is clear that
DroidCat was more likely to confuse C7 with other
categories. This is because C7 (MALICIOUS) consists of
malicious apps from a variety of minor malware families,
which apps may not share sufficient behavioral
characteristics to uniquely differentiate themselves from
other kinds of malware or benign apps.

Effectiveness Metrics Values.
Overall, DroidCat achieved 81% precision, 82% recall,

81% F1, and 92% accuracy. In particular, DroidCat
achieved as high as 99% accuracy for C1, C3, and C4, but
attained the highest F1 score, 93%, for C4 and C6. Since
accuracy does not always coincide with F1, we have
included both metrics to present DroidCat’s capability
from different perspectives. According to both F1 score
and accuracy, we found DroidCat worked less effectively for
C2 and C7, because it either confuses one of these
categories with the other one, or with C6 (BENIGN).

Hypothetically, the more sample apps a category has,

6

Table 3: Evaluation results of DroidCat’s unified malware detection capability

Confusion Matrix Effectiveness metrics

Actual category (# of apps)
Predicted

P R F1 AC1 C2 C3 C4 C5 C6 C7

C1: DroidKungfu (5) 4 0 0 0 0 1 0 100% 80% 90% 99%
C2: ProxyTrojan/NN (27) 0 13 0 0 0 6 8 57% 48% 52% 91%
C3: GoldDream (11) 0 1 10 0 0 0 0 91% 91% 91% 99%
C4: Plankton (8) 0 1 0 7 0 0 0 100% 88% 93% 99%
C5: FakeInst (33) 0 0 0 0 26 2 5 93% 79% 85% 97%
C6: BENIGN (136) 0 0 0 0 0 135 1 87% 99% 93% 92%
C7: MALICIOUS (51) 0 8 1 0 2 12 28 67% 55% 60% 86%

Overall effectiveness 81% 82% 81% 92%

the more data we can use to train the classifier for that
category, and more effectively DroidCat should perform.
However in Table 3, we have not observed any correlation
between the number of apps and the effectiveness. For
instance, DroidCat worked best for C4, although C4 does
not have the most apps. It worked worst for C2, although
C2 does not have the fewest apps. It may be that some
malware families are harder to recognize than others.

A Case Study of DroidCat’s Effectiveness.
To understand why DroidCat made mistakes when

classifying software, for each cell of Table 3, we gathered
the applications and computed their average metric values
for the Top-10 differentiating features shown in Figure 2.
By comparing the values between the correctly classified
applications and those wrongly classified ones, we observed
several interesting findings. First, the metric values of
different malware had a lot of overlaps, making unified
malware detection very challenging.

Second, compared with benign apps, GoldDream
malicious apps were almost always observed to have a
higher percentage for both external explicit ICCs and ICCs
carrying URI data only. The reason is such malware
always spies on incoming/outgoing SMS messages and
phone calls, and uploads the data to a remote server
without users’ awareness. When a GoldDream malicious
app had no external explicit ICC and no ICC carrying URI
only, DroidCat could not classify it correctly.

Third, Plankton malicious apps seemed to usually have a
higher percentage for both view event handlers and
external explicit ICCs. Such malware displays unwanted
advertisements as notifications. With more view event
handlers implemented, the malware eagerly monitors for
user actions, so that user actions can trigger more
advertisement displays and more ICC invocations.
However, there was a Plankton malicious app which had
very low percentage of view event handlers and almost 0%
external explicit ICC invocations. DroidCat wrongly
classified it as ProxyTrojan/NN.

Fourth, most FakeInst malicious apps manifested a
higher percentage for view event handlers, external explicit
ICCs, and ICCs carrying URI data only. This is because
such apps send SMS messages to premium-rate numbers of
services but present free content. With more view event
handlers implemented, the malware eagerly monitors for
user actions, triggering more ICCs invoked to send SMS
messages to premium-rate numbers and to charge more
money for actually free services. However, there were 7
FakeInst malicious apps which had very low percentage of
view event handlers and almost 0% external explicit ICCs
and ICCs carrying URI only. DroidCat could not correctly
identify their category.

In summary, DroidCat captured meaningful behavioral
differences between various categories of Android apps. It

managed to correctly classify the majority of applications.
However, to classify apps more precisely in future, we may
need to closely examine the execution data of the apps
that DroidCat wrongly classified and define more
behavioral metrics.

Finding 1: DroidCat conducts unified malware de-
tection with 81% precision, 82% recall, 81% F1, and
92% accuracy overall on the benchmarks. In particu-
lar, 99% accuracy is achieved for 3 malware families:
DroidKungfu, GoldDream, and Plankton.

5.3 Conventional Malware Detection Results
We also trained and tested DroidCat to simply

distinguish between malicious and benign apps without
malware categorization. We reused the feature data
extracted for the 271 apps, but relabeled the data of
malicious apps by replacing various malware category
names solely with “MALWARE”. Then we repeated the
LOOCV process to evaluate DroidCat’s effectiveness. Our
results show that DroidCat effectively detected malware
with 95% precision, 99% recall, 96% F1, and 99% accuracy.

Compared with unified malware detection, DroidCat
worked more effectively in the conventional malware
detection setting. To understand why the effectiveness is
different, we further checked the prediction results for
individual apps. We observed that unified malware
detection commits more mistakes by wrongly classifying
malicious apps as benign for some malware families. For
example, in the C2 row of Table 3, 6 apps were wrongly
labeled as benign; however, in the conventional setting,
only 3 of these apps were classified as benign. One possible
reason is that there are much fewer malicious apps in C2

than in MALWARE (27 vs. 135) so that DroidCat was
less trained to separate C2 apps from benign ones.

This evaluation also indicates that unified malware
detection is more challenging than conventional malware
detection. As apps from different malware families behave
similarly, malicious apps in the same family may not share
sufficient dynamic characteristics to distinguish themselves
from apps in other families.

Finding 2: DroidCat conducts conventional mal-
ware detection with 95% precision, 99% recall, 96%
F1, and 99% accuracy, working more effectively than
in the unified malware detection setting. It indicates
that unified malware detection is more challenging.

5.4 Sensitivity to Feature Selection
To understand how sensitive DroidCat is to different

selections of features, we investigated different ways to
select features. In addition to the default configuration of
70 features (D*) used in DroidCat, we also explored the

7

81%
75% 75%

57%

68%
74%

82%
77% 76%

61%
69%

75%
81%

76% 75%

57%

67%
74%

92% 89% 88%

79%
84%

89%

0%

20%

40%

60%

80%

100%

D* Full Structure ICC Security D

Precision Recall F1 A

Figure 3: DroidCat’s effectiveness with six alternative feature sets

following five feature sets.

• Full : All 122 behavioral metrics defined for our
characterization study were used as features.
Hypothetically, this feature set should produce an
equally good or even better classifier than D*, since
in addition to the 70 features, the full set also
includes 52 metrics with indistinguishable differences
between benign and malicious apps. Even if these
metrics cannot help improve the classification result,
machine learning should be able to assign lower
weights to them to remain effective.

• Structure: Only the 32 noticeably different metrics
in the structure dimension were selected as features.
Although these metrics are already included in the
default 70 features, we do not know how important
these 32 metrics are compared with the other 38
metrics in D*. Hypothetically, this feature set should
produce a worse classification than D*, because more
than half of the features used in D* are not included.

• ICC : Only the 5 noticeably different metrics in the
ICC dimension were selected as features. Since the
feature set is so small, it is quite possible that this
small set will work much more poorly than D*.

• Security : Only the 33 noticeably different metrics in
the security dimension were selected as features.
Along with the Structure and ICC feature sets, this
feature set was examined to understand how features
selected in different dimensions can affect the overall
effectiveness of DroidCat.

• D : All of the 36 substantially disparate metrics of
Table 1 were selected as features. Similar to the
above three subsets, D was also investigated to
understand which feature subset plays an important
role in affecting DroidCat’s effectiveness. If any of
these four subsets performs equally well with D*, it
means that we can further refine the default feature
set to improve DroidCat’s efficiency.

We compared the five new feature sets with D* by
separately feeding them to the Random Forest algorithm
for unified malware detection. The evaluation results are
shown in Figure 3.

Interestingly, D* worked best, even better than Full for
all metrics. The reason is that the additional 52
nondiscriminatory metrics may provide noisy information
and mislead the classifier to perform poorly. Therefore, D*
is more desirable, because it achieves better effectiveness
with fewer features. This experiment also demonstrates
that more features do not necessarily improve classification
capability. Instead, they can worsen the capability
especially if they seem to be nondiscriminatory.

The D set had similar effectiveness to Full, albeit worse
than D*. The 36 substantially disparate metrics can capture
the behavioral differences among apps in different categories.
Therefore, in cases when computation resources are limited,
and fast model training and testing approaches are required,
the D set can be used.

The Structure set had comparable effectiveness with D,
but was significantly better than ICC and Security. This
indicates that the behavioral differences between categories
are more effectively reflected by the chosen metrics in
structure dimension. Unsurprisingly, ICC performs worst
because its feature set is too small.

Finding 3: D*, the default feature set of DroidCat,
exhibits the best effectiveness compared with other
five alternative feature sets, because it balances well
the diversity and relevance of features.

5.5 Sensitivity to Learning Algorithm Choice
To understand how sensitive DroidCat is to the selection

of machine learning (ML) algorithm, in addition to Random
Forest, we also experimented with seven other supervised
learning algorithms.

• Random Forest (RF) [34], or random decision
forest, is an ensemble learning method for
classification, regression, and other tasks. It operates
by constructing a multitude of decision trees at
training time and outputting the class on which the
majority agrees (classification), or the mean
prediction of all decision trees (regression). We used
100 decision trees to perform classification separately,
and then output the class for which the majority
trees vote.

• Support Vector Machine (SVM) [22] SMV is a
discriminative classifier that produces a separating
hyperplane to categorize samples when given labeled
training data. By configuring SVM with 2 different
kernel functions we obtained SVM-linear and
SVM-rbf.

• Decision Tree (DT) [45] is a non-parametric
learning method that creates a model to predict the
value of a target variable by learning simple decision
rules inferred from data features. We used the default
random number generator (random state=None).

• k-Nearest Neighbors (kNN) [13] is a
non-parametric learning method whose input consists
of the k closest training examples in the feature space
and output is a class membership. Given a specific
object, kNN classifies it according to the class of the
majority of its k nearest neighbors. We set k to 5.

8

81%

25%

74%
69% 67% 67%

53%

71%

82%

50%

75%

67% 69%

49%

62%
69%

81%

34%

74%
67% 67%

51%
56%

70%

92%

69%

89%
85% 85%

74%
81%

85%

0%

20%

40%

60%

80%

100%

RF SVM‐rbf SVM‐linear DT kNN NB‐gaussian NB‐multinomial NB‐bernoulli

Precision Recall F1 A

Figure 4: DroidCat’s effectiveness with eight alternative ML algorithms.

• Naive Bayes (NB) [9] is a probabilistic classifier
which applies Bayes’ theorem with strong
independence assumptions between features. To
estimate the parameters for each feature’s
distribution, users usually assume that their features
have a Gaussian, Multinomial or Bernoulli
distribution. We investigated three NB algorithms:
NB-gaussian, NB-multinomial, and NB-bernoulli,
corresponding to those assumed distributions.

We fed the default feature set D* to each of the above ML
algorithms, and thus trained eight classifiers. Our evaluation
results of their unified malware detection effectiveness are
shown in Figure 4. Based on our experiments, RF performs
significantly better than all other ML algorithms, perhaps
because it gathers diverse independent classifiers to predict
separately, and only reports the prediction that the most
classifiers agree on.

SVM-linear has the second best effectiveness, while
SVM-rbf performs the worst among all explored
algorithms. With the same SVM algorithm applied,
DroidCat’s effectiveness is significantly affected by the
selection of kernel functions (i.e., configuration) in SVM.

We observed similar differences between the three
variant algorithms of NB. NB-bernoulli has the third best
effectiveness, while NB-gaussian gets the second worst
effectiveness. One possible reason is that the
Bernoulli-distribution assumption aligns better with the
actual distribution of all feature values of the benchmarks.

Neither DT nor kNN works as well as the best setting of
other kinds of ML algorithms, including RF, SVM, and NB.
This may indicate that these algorithms are not a good fit
for the classification problem. For instance, when features
have complicated interferences with each other, a decision
tree is not capable of modeling the relationship. For small
categories, such as C1 with five members, kNN cannot work
well. The reason is that for any app whose actual category
is C1, there may be not sufficient support among the five
nearest neighbors in training data to correctly label the app.

Finding 4: RF outperforms all other investigated
algorithms. The effectiveness of DroidCat depends
both on which ML algorithm is used and how that
algorithm is configured.

5.6 Analysis Overhead
There are five sources of analysis overhead of DroidCat:

APK instrumentation, trace collection, feature
computation, model training, and model testing.

For each benchmark app, the instrumentation overhead
varied from 20 seconds to 80 seconds, with an average of 50
seconds. To collect traces, DroidCat invokes Monkey to
run every app for 10 minutes. Compared with the original

uninstrumented version, the run-time slowdown of the
instrumented version for trace collection was at most 3%.
The feature computation took 24 seconds on average. As
these three types of overhead comprise per-app time cost,
the overall analysis cost of instrumenting and tracing apps
and computing features is proportional to the number of
apps under the unified malware detection.

With training and testing data ready, the average training
time of Random Forest was 5 seconds, while the testing time
was 2 seconds.

Finding 5: DroidCat has very low analysis over-
head, which makes it applicable to large app sets for
unified malware detection.

6. THREATS TO VALIDITY
In addition to the benign apps, our benchmark suite

only includes five malware families, each of which covered
at least five apps, and one synthesized family to include
miscellaneous malicious apps. This small number of
categories may be not sufficient to evaluate DroidCat’s
capability for unified malware detection. In the future, we
will include additional malware in our existing families and
new malware families in a revised benchmark suite, for
more balanced training data.

We took the same approach as prior work [53] to identify
benign apps and malicious apps with VirusTotal. We
created the oracle category label for each included
benchmark app based on VirusTotal’s output. The validity
of DroidCat depends on the correctness and completeness
of VirusTotal in identifying malware.

The effectiveness of DroidCat is affected by the dynamic
coverage of execution traces. After running each app with
Monkey for 10 minutes, we included the app as a
benchmark as long as the execution trace covered more
than 50% code. However, with more manual inspection, we
realized that the collected traces contain a lot of
repetitively executed paths, because Monkey generated
many similar or identical inputs again and again. In
future, we will implement filters for Monkey-generated
inputs to condense duplicated executions, and to diversify
the collected execution paths. In this way, we will achieve
better dynamic coverage in the 10-minute execution trace,
lower the bar to include more apps as benchmarks, and
better characterize the dynamic behaviors of each app.
Alternatively, we may obtain the same dynamic coverage
by running each app for fewer minutes.

We designed 122 behavioral metrics in three dimensions
to comprehensively capture any difference between benign
apps and different malware families. We aimed to leverage
such diverse behavioral profiles to make DroidCat robust
to the obfuscation attacks which target specific dynamic

9

profiles. However, we have not implemented any such
attack to actually verify DroidCat’s robustness. In future,
we will implement various attack models to evaluate the
resilience of DroidCat.

There are various malware detection and categorization
techniques proposed by other researchers. It would be
great if we could run those tools against the same
benchmark suite and conduct a fair comparison. However,
most relevant tools are not publicly available, making such
tool-comparison experiments impractical. Therefore, we
have open sourced DroidCat and published our benchmark
suite to facilitate any future comparison between malware
detectors and classifiers.

7. RELATED WORK
This section describes related work on (1) dynamic

Android characterization studies, (2) malware detection,
and (3) malware categorization.

Dynamic Characterization for Android Apps.
There are very few empirical studies characterizing the
runtime behaviors of Android apps [17, 54, 61]. For
instance, Zhou et al. manually analyzed 1,200 malware
samples to understand malware installation methods,
activation mechanisms, and the nature of carried malicious
payloads [61]. Cai et al. instrumented 114 benign apps for
method calls and ICCs, and investigated the dynamic
behaviors of benign apps [17]. These two studies either
focus on malicious apps or benign ones. However, our
systematic dynamic study characterizes both app groups to
better understand their common behavioral profiles and
divergent ones. Canfora et al. profiled Android apps to
characterize their usage of resources like CPU, memory,
storage, and network, and then leveraged the profiles to
detect malware [18]. Similar to their research methodology,
we have also first profiled Android executions and then
leveraged some of the profiles to do unified malware
detection; however, our profiles focus on method
invocations and ICCs.

Android Malware Detection. Researchers have
mainly taken two kinds of approaches to detect malware:
static and dynamic.

The static approaches analyze source code and/or
manifest files to detect any abnormal control flow, data
flow, call graph, API call, ICC usage, or permission
request [11, 26, 32, 56, 57, 59]. For instance, Droidmat
extracted static information about permissions,
deployment of components, Intent message passing, and
API calls to train a machine learning model for malware
detection [56]. Apposcopy built inter-component call
graphs to detect any subgraph matching the signature of
known malware families like DroidKungfu [26].
ICCDetector first performed systematic characterization of
ICC patterns in benign apps and malicious ones, and then
used the ICC patterns to train a model to distinguish
malicious apps from benign ones [57]. However, these
approaches cannot always precisely detect malware,
because how a program behaves dynamically is not always
statically inferable. Furthermore, they are subject to the
well-adopted attacks that intentionally obfuscate code and
make malicious apps to appear benign.

In comparison, the dynamic approaches provide a
complementary way to detect malware [12,16,19,49]. They
observed behavioral differences between benign and
malicious apps, and then leveraged machine learning to
train a model based on the differences. For example,
Crowdroid collected system calls and counted the
occurrence of each unique call to create feature
vectors [16]. Andromaly monitored the consumption of

CPU, memory, and battery to extract features [49].
StormDroid used both the static feature of permission
requests in manifest files, and dynamic features like
sensitive APIs, call sequences, and invocation counts to
detect malware [19]. In comparison, DroidCat does not
instrument system calls, because various wide-adopted
attacks leverage code polymorphism to obfuscate system
calls [27, 40, 50]. It does not monitor resource consumption
either, because CPU or battery usage does not reflect
fine-grained program behaviors. DroidCat traces method
calls and ICCs, and uses the relative percentage of each
call or ICC to statistically characterize dynamic behaviors.

Android Malware Categorization. Two approaches
have been proposed to categorize malware [23, 58]. Xu et
al. traced system calls, investigated three alternative ways
to graphically represent the traces, and then leveraged the
graphs to categorize malware [58]. Dash et al. generated
features at different levels, including pure system calls,
decoded Binder communication, and higher-level
behavioral patterns like file system access which conflate
sequences of related system calls. Both approaches require
users to provide a set of malicious apps, instead of any
random unknown apps, to identify the malware families.
This requirement may cause extra effort of using malware
detection tools.

8. CONCLUSION
We presented DroidCat, the first dynamic unified

malware detection approach. DroidCat not only detects
malware, but also identifies the malware family.
Specifically, DroidCat instruments Android apps to trace
ICCs and all invocations of methods defined in user code,
third-party libraries, and the Android framework. Based
on the traces, 70 behavioral features are extracted to
characterize each app. Random Forest is used to predict
whether a given app is benign or belongs to a certain
malware family. Different from static malware detectors,
the 70 features in DroidCat measure the dynamic
occurrence frequencies of method calls and ICCs, which are
impossible to measure by static approaches. Different from
many learning-based dynamic malware detectors, DroidCat
defines a diverse set of features according to a systematic
characterization study on the behavioral differences
between benign apps and malicious ones.

Using 136 benign apps and 135 malicious apps, our
evaluation with LOOCV reveals that DroidCat conducts
unified malware detection with 81% precision, 82% recall,
81% F1, and 92% accuracy. With a deeper study on
DroidCat’s effectiveness results, we observed that
DroidCat’s feature set captured meaning behavioral
differences between malware families and benign apps,
although some tricky cases still require far more
sophisticated behavioral features in future. DroidCat can
achieve even better effectiveness when simply
distinguishing malware from benign apps, which is 95%
precision, 99% recall, 96% F1, and 99% accuracy. Our
evaluation reveals that unified malware detection is more
challenging than conventional malware detection, because
malicious apps of different malware families behave
similarly, while the apps from the same family do not
always share sufficient characteristics to uniquely indicate
their category. By investigating different feature sets, we
have found that the selected 70-feature set embodies a
good trace-off between diversity and relevance: all these
features show noticeable differences between the two app
groups from different perspectives. Our exploration of
different ML algorithms also demonstrates that Random
Forest works best.

10

9. REFERENCES
[1] Android - application components.

http://www.tutorialspoint.com/android/
android application components.htm.

[2] android/plankton.
http://www.avgthreatlabs.com/us-en/virus-and-
malware-information/info/android-plankton/.

[3] First ever android sms trojan targeting u.s. users.
https:
//blog.kaspersky.com/fakeinst-targets-us-users/4601/.

[4] Proxy trojan. http:
//www.webopedia.com/TERM/P/Proxy Trojan.html.

[5] Security alert: New android malware – golddream –
found in alternative app markets. https:
//www.csc2.ncsu.edu/faculty/xjiang4/GoldDream/.

[6] Security alert: New sophisticated android malware
droidkungfu found in alternative chinese app markets.
https://www.csc2.ncsu.edu/faculty/xjiang4/
DroidKungFu.html.

[7] The ultimate android malware guide: What it does,
where it came from, and how to protect your phone or
tablet.
http://www.digitaltrends.com/android/the-ultimate-
android-malware-guide-what-it-does-where-it-came
-from-and-how-to-protect-your-phone-or-tablet/.

[8] Why every statistician should know about
cross-validation.
http://robjhyndman.com/hyndsight/crossvalidation/.

[9] Russell, Stuart J. and Norvig, Peter. Artificial
Intelligence: A Modern Approach, 2003.

[10] Android malware accounts for 97% of all malicious
mobile apps. http:
//www.scmagazineuk.com/updated-97-of-malicious-
mobile-malware-targets-android/article/422783/,
2015.

[11] Y. Aafer, W. Du, and H. Yin. DroidAPIMiner:
Mining API-level features for robust malware
detection in Android. In SecureComm, 2013.

[12] V. M. Afonso, M. F. de Amorim, A. R. A. Grégio,
G. B. Junquera, and P. L. de Geus. Identifying
android malware using dynamically obtained features.
Journal of Computer Virology and Hacking
Techniques, 11(1):9–17, 2015.

[13] N. S. Altman. An Introduction to Kernel and
Nearest-Neighbor Nonparametric Regression. The
American Statistician, 46(3):175–185, 1992.

[14] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon,
and K. Rieck. Drebin: Effective and explainable
detection of Android malware in your pocket. In
NDSS, 2014.

[15] U. Bayer, P. M. Comparetti, C. Hlauschek,
C. Kruegel, and E. Kirda. Scalable, behavior-based
malware clustering. In NDSS, volume 9, pages 8–11.
Citeseer, 2009.

[16] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani.
Crowdroid: behavior-based malware detection system
for android. In Proceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile
devices, pages 15–26. ACM, 2011.

[17] H. Cai and B. Ryder. Understanding application
behaviours for android security: A systematic
characterization. Technical Report TR-16-05, Virginia
Tech, May 2016. http://hdl.handle.net/10919/71678.

[18] G. Canfora, E. Medvet, F. Mercaldo, and C. A.
Visaggio. Acquiring and analyzing app metrics for
effective mobile malware detection. In Proceedings of
the 2016 ACM on International Workshop on Security

And Privacy Analytics, 2016.
[19] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu.

Stormdroid: A streaminglized machine learning-based
system for detecting android malware. In Proceedings
of the 11th ACM on Asia Conference on Computer
and Communications Security, pages 377–388, 2016.

[20] S. R. Choudhary, A. Gorla, and A. Orso. Automated
test input generation for android: Are we there yet?
In Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on, pages
429–440. IEEE, 2015.

[21] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and
R. E. Bryant. Semantics-aware malware detection. In
Security and Privacy, 2005 IEEE Symposium on,
pages 32–46. IEEE, 2005.

[22] C. Cortes and V. Vapnik. Support-vector networks.
Mach. Learn., 1995.

[23] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam,
M. Ahmadi, J. Kinder, and L. Cavallaro. Droidscribe:
Classifying Android malware based on runtime
behavior. Mobile Security Technologies (MOST), 2016.

[24] J. Dean, D. Grove, and C. Chambers. Optimization of
object-oriented programs using static class hierarchy
analysis. In Proceedings of the 9th European
Conference on Object-Oriented Programming, 1995.

[25] W. Enck, M. Ongtang, and P. McDaniel. On
lightweight mobile phone application certification. In
Proceedings of the 16th ACM Conference on Computer
and Communications Security, 2009.

[26] Y. Feng, S. Anand, I. Dillig, and A. Aiken.
Apposcopy: Semantics-based detection of Android
malware through static analysis. In FSE, 2014.

[27] S. Forrest, S. Hofmeyr, and A. Somayaji. The
evolution of system-call monitoring. In Computer
Security Applications Conference, 2008. ACSAC 2008.
Annual, pages 418–430. IEEE, 2008.

[28] H. S. Galal, Y. B. Mahdy, and M. A. Atiea.
Behavior-based features model for malware detection.
Journal of Computer Virology and Hacking
Techniques, pages 1–9, 2015.

[29] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck.
Structural detection of android malware using
embedded call graphs. In Proceedings of the 2013 ACM
Workshop on Artificial Intelligence and Security, 2013.

[30] Google. Android emulator. http:
//developer.android.com/tools/help/emulator.html,
2015.

[31] Google. Android Monkey. http:
//developer.android.com/tools/help/monkey.html,
2015.

[32] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang.
Riskranker: scalable and accurate zero-day android
malware detection. In Proceedings of the 10th
international conference on Mobile systems,
applications, and services, pages 281–294. ACM, 2012.

[33] K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh.
Automatic generation of string signatures for malware
detection. In Proceedings of the 12th International
Symposium on Recent Advances in Intrusion
Detection, 2009.

[34] T. K. Ho. Random decision forests. In Proceedings of
the Third International Conference on Document
Analysis and Recognition (Volume 1) - Volume 1,
1995.

[35] H. Kang, J.-w. Jang, A. Mohaisen, and H. K. Kim.
Detecting and classifying android malware using static
analysis along with creator information. Int. J.

11

http://www.tutorialspoint.com/android/android_application_components.htm
http://www.tutorialspoint.com/android/android_application_components.htm
http://www.avgthreatlabs.com/us-en/virus-and-malware-information/info/android-plankton/
http://www.avgthreatlabs.com/us-en/virus-and-malware-information/info/android-plankton/
https://blog.kaspersky.com/fakeinst-targets-us-users/4601/
https://blog.kaspersky.com/fakeinst-targets-us-users/4601/
http://www.webopedia.com/TERM/P/Proxy_Trojan.html
http://www.webopedia.com/TERM/P/Proxy_Trojan.html
https://www.csc2.ncsu.edu/faculty/xjiang4/GoldDream/
https://www.csc2.ncsu.edu/faculty/xjiang4/GoldDream/
https://www.csc2.ncsu.edu/faculty/xjiang4/DroidKungFu.html
https://www.csc2.ncsu.edu/faculty/xjiang4/DroidKungFu.html
http://www.digitaltrends.com/android/the-ultimate-android-malware-guide-what-it-does-where-it-came
http://www.digitaltrends.com/android/the-ultimate-android-malware-guide-what-it-does-where-it-came
-from-and-how-to-protect-your-phone-or-tablet/
http://robjhyndman.com/hyndsight/crossvalidation/
http://www.scmagazineuk.com/updated-97-of-malicious-mobile-malware-targets-android/article/422783/
http://www.scmagazineuk.com/updated-97-of-malicious-mobile-malware-targets-android/article/422783/
http://www.scmagazineuk.com/updated-97-of-malicious-mobile-malware-targets-android/article/422783/
http://hdl.handle.net/10919/71678
http://developer.android.com/tools/help/emulator.html
http://developer.android.com/tools/help/emulator.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html

Distrib. Sen. Netw., 2015.
[36] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda,

X.-y. Zhou, and X. Wang. Effective and efficient
malware detection at the end host. In USENIX
security symposium, pages 351–366, 2009.

[37] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. Soot
- a Java bytecode optimization framework. In Cetus
Users and Compiler Infrastructure Workshop, 2011.

[38] J. Lee, K. Jeong, and H. Lee. Detecting metamorphic
malwares using code graphs. In Proceedings of the
2010 ACM symposium on applied computing, pages
1970–1977. ACM, 2010.

[39] K. Lu, Z. Li, V. P. Kemerlis, Z. Wu, L. Lu, C. Zheng,
Z. Qian, W. Lee, and G. Jiang. Checking more and
alerting less: Detecting privacy leakages via enhanced
data-flow analysis and peer voting. In NDSS, 2015.

[40] W. Ma, P. Duan, S. Liu, G. Gu, and J.-C. Liu. Shadow
attacks: Automatically evading system-call-behavior
based malware detection. J. Comput. Virol., 2012.

[41] J. Ming, Z. Xin, P. Lan, D. Wu, P. Liu, and B. Mao.
Impeding behavior-based malware analysis via
replacement attacks to malware specifications. Journal
of Computer Virology and Hacking Techniques, pages
1–15, 2016.

[42] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, and Y. Le Traon. Effective inter-component
communication mapping in android with epicc: An
essential step towards holistic security analysis. In
Proceedings of USENIX Security Symposium, 2013.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of Machine Learning
Research, 12(Oct):2825–2830, 2011.

[44] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi,
R. Potharaju, C. Nita-Rotaru, and I. Molloy. Using
probabilistic generative models for ranking risks of
android apps. In Proceedings of the 2012 ACM
Conference on Computer and Communications
Security, 2012.

[45] J. R. Quinlan. Induction of decision trees. Mach.
Learn., 1986.

[46] K. Rieck, P. Trinius, C. Willems, and T. Holz.
Automatic analysis of malware behavior using
machine learning. Journal of Computer Security,
19(4):639–668, 2011.

[47] G. Santafe, I. Inza, and J. A. Lozano. Dealing with
the evaluation of supervised classification algorithms.
Artificial Intelligence Review, 44(4):467–508, 2015.

[48] B. P. Sarma, N. Li, C. Gates, R. Potharaju,
C. Nita-Rotaru, and I. Molloy. Android permissions:
A perspective combining risks and benefits. In
Proceedings of the 17th ACM Symposium on Access
Control Models and Technologies, 2012.

[49] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and
Y. Weiss. “Andromaly”: A behavioral malware

detection framework for android devices. Journal of
Intelligent Information Systems, 38(1):161–190, 2012.

[50] A. Srivastava, A. Lanzi, J. Giffin, and D. Balzarotti.
Operating system interface obfuscation and the
revealing of hidden operations. In Detection of
Intrusions and Malware, and Vulnerability
Assessment, pages 214–233. Springer, 2011.

[51] S. V. Stehman. Selecting and Interpreting Measures of
Thematic Classification Accuracy. Remote Sensing of
Environment, 62(1):77–89, 1997.

[52] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro.
Copperdroid: Automatic reconstruction of android
malware behaviors. In NDSS, 2015.

[53] K. Tian, D. Yao, B. G. Ryder, and G. Tan. Analysis
of code heterogeneity for high-precision classification
of repackaged malware. 2016 IEEE Security and
Privacy Workshops (SPW), 2016.

[54] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos.
Profiledroid: multi-layer profiling of android
applications. In Proceedings of the 18th annual
international conference on Mobile computing and
networking, pages 137–148. ACM, 2012.

[55] B. Wolfe, K. Elish, and D. Yao. High precision
screening for android malware with dimensionality
reduction. In Proceedings of the 2014 13th
International Conference on Machine Learning and
Applications, 2014.

[56] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P.
Wu. Droidmat: Android malware detection through
manifest and API calls tracing. In Information
Security (Asia JCIS), 2012 Seventh Asia Joint
Conference on, pages 62–69. IEEE, 2012.

[57] K. Xu, Y. Li, and R. H. Deng. ICCDetector:
ICC-Based malware detection on android. IEEE
Transactions on Information Forensics and Security,
11(6):1252–1264, 2016.

[58] L. Xu, D. Zhang, M. A. Alvarez, J. A. Morales,
X. Ma, and J. Cavazos. Dynamic android malware
classification using graph-based representations. In
Cyber Security and Cloud Computing (CSCloud), 2016
IEEE 3rd International Conference on, pages 220–231,
2016.

[59] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and
P. Porras. Droidminer: Automated mining and
characterization of fine-grained malicious behaviors in
android applications. In Computer Security-ESORICS
2014, pages 163–182. Springer, 2014.

[60] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and
W. Enck. Appcontext: Differentiating malicious and
benign mobile app behaviors using context. In Proc. of
the International Conference on Software Engineering
(ICSE), 2015.

[61] Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In Security and
Privacy (SP), 2012 IEEE Symposium on, pages
95–109. IEEE, 2012.

12

	Introduction
	Background
	Unified Malware Detection
	Feature Computation
	Training
	Testing

	Feature Extraction
	Benchmarks
	Dynamic Characterization
	Feature Selection

	Evaluation
	Evaluation Methodology
	Unified Malware Detection Results
	Conventional Malware Detection Results
	Sensitivity to Feature Selection
	Sensitivity to Learning Algorithm Choice
	Analysis Overhead

	Threats to Validity
	Related Work
	Conclusion
	References

