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1 Executive Summary

The goal of this project is to leverage microblogging data about the stock
market to predict price trends and execute trades based on these predic-
tions. Predicting the price trends of stocks with microblogging data involves
a complex opinion aggregation model. For this, we built upon previous re-
search, specifically a paper called “CrowdIQ” submitted by a team consisting
of some Virginia Tech faculty [2]. This paper details a complicated method
of aggregating an accurate opinion by modeling judge reliability and inter-
dependence. Once the overall sentiment of the judges was deduced, we built
trading strategies that take this information into account to execute trades.

The first step of the project was a sentiment analysis of posts on a mi-
croblogging site named StockTwits [22]. These messages can contain a label
indicating a bullish or bearish sentiment, which will help indicate a specific
position to take on a given stock. However, most users choose not to use these
labels on their StockTwits [2]. A classification of these unlabeled tweets is
required to autonomously utilize StockTwits to drive the proposed trading
strategies.

With a working sentiment analysis model, we implemented the opinion
aggregation model described by CrowdIQ [2]. This can gauge an accurate
market sentiment for a particular stock based on the collection of sentiments
that are received from users on StockTwits.

The next step was the creation of a trading simulation platform, including
a complete virtual portfolio management system and an API for retrieving
historical and current stock data. These tools allow us to run quick and
repeatable tests of our trading strategies on historical data. We can eas-
ily compare the performance of strategies by running them with the same
historical data.

After we had a viable testing environment setup, we implemented trading
strategies. This required research and analysis of other attempts at similar
uses of microblogging data on predicting stock returns. The testing envi-
ronment was focused on a set of stocks that is consistent with those used in
CrowdIQ. The implementation of the CrowdIQ strategy served as a baseline
against which we compared our results.

Development of new trading strategies is an open-ended task that involved
a process of trial and error. It is possible for a strategy to find success in 2014,
but not perform quite as well in other years, because market climates can
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be fickle. To assess the dependence of the market climate on our strategy’s
success, we also tested against data for the year of 2015 and compared the
performance.

The final deliverable is a viable trading simulation environment coupled
with various trading strategies and an analysis of their performance in the
years of 2014 and 2015. The analysis of each strategy’s performance indicated
that our sentiment-based strategies perform better than the index in bullish
markets like that of 2014, but, when they encounter a bear market, they
typically make poor trading decisions which result in a loss of value.
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2 Introduction

There have been numerous instances in the past where tweets have been
used to create short term trading positions on specific stocks. On September
23, 2016, a tweet reported speculation on a possible takeover of Twitter by
Google. The tweet was sent at around 9 AM, and, by 11 AM, the Twitter
stock had gained about 20% on its previous day closing price [20]. We want
to build a bot that can analyze a given set of people who tweet about stock
trading. By analyzing their historical predictions and matching them with
current data, we would filter the junk analysts and only follow the ones
who have good accuracy in their predictions. For those tweeters, we would
follow the tweets in real-time and employ sophisticated machine learning
algorithms in text classification to analyze stock sentiments. Based on this
analysis, we will develop, test, and compare multiple trading strategies. We
would want to test the strategies with historical data from multiple intervals
to determine how the strategies perform in different market climates. With
analysis of these tests, we will determine particular strengths and weaknesses
of particular strategies and which strategies perform the best.

In the User’s Manual, we describe how to use our software deliverables to
execute tests of your own. Next, in the Developer’s Manual, we describe our
development environment and how to get started with defining new trading
strategies and data sources in our simulation software. Finally, in Lessons
Learned, we reflect on our experiences in the development of this project and
propose future work which can expand upon our work.
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3 User’s Manual

In this section, we describe the usage of our trading simulation software, in-
cluding setting up databases, using the opinion aggregation implementation,
and executing backtests for trading strategies.

3.1 Usage Environment

Our software does not come with a graphical user interface or even a single
command line entrypoint. Our code is written with Scala [14] and uses sbt
[12] to manage project structure and dependencies. Additionally, our system
depends upon an HBase [5] instance or cluster. We have been provided a
Hadoop cluster that runs HBase by Virginia Tech, so this manual will assume
that you have an HBase instance set up and that you have sbt installed.
Please consult an external reference such as Deploying HBase on a Cluster
by Cloudera [1] if you need any assistance setting this up. If you are affiliated
with Virginia Tech and are interested in the DLRL Hadoop cluster that we
used, please contact Prof. Edward Fox for more information.

3.2 Use Cases

3.2.1 Populating Databases

Before you can run any simulations, you must populate HBase with stock
prices for the date range of interest. Additionally, if you want to use our
sentiment-based strategies, you must populate HBase with microblog posts.
To populate HBase with stock prices, you can use our YahooGoogleFinance-
DBPopulate utility, which will query Yahoo Finance and Google Finance
for daily stock price summaries on a given date range and populate the
database with the results. There are two variables, startDate and endDate,
which define the date range of daily stock prices to query. You should avoid
setting a range that spans more than one year due to the limitations of the
respective APIs. You can configure the symbols to query from Yahoo Finance
and Google Finance by modifying the two lists named yahooSymbols and
googleSymbols. The dataSource variable specifies that the YahooFinance

table should be used. Therefore, you should create the HBase table named
stockprices yahoo with the price column family (by executing create

‘stockprices yahoo’, ‘price’ in the HBase shell). For more information,

9



see the Design report in Appendix B. To run the utility, use the command
sbt ‘‘PricingData/run-main

cs4624.prices.test.YahooGoogleFinanceDBPopulate’’.

3.2.2 Stock Opinion Aggregation

We implemented the opinion aggregation model from a paper called CrowdIQ
[2]. A library to use our implementation is provided with the Opinion Ag-
gregation subproject. The AggregatedOpinions class provides an interface
that will compute the aggregated sentiment towards a certain stock. This
class requires that you have a source of stock price data. Additionally, you
must specify a window of time which determines the amount of time after
a post that we will confirm the accuracy of the post and adjust the weight
for the post’s author. To use an instance of this class, you pass the mi-
croblog posts in the interval (i.e., between market open events) to the on

method. Using the sentimentForStock method, you can get the aggregated
sentiment (bullish, bearish, or inconclusive) towards a stock symbol. After
you’ve gotten the sentiments for that date, you use the reset method to
start a new interval of posts and repeat the process.

3.2.3 Backtesting Trading Strategies

Our software provides the ability to test trading strategies by replaying his-
torical data (a “backtest”). Trading strategies are defined as extensions of
the TradingStrategy trait. All data that a trading strategy can use to make
decisions is formed into a class that extends the TradingEvent trait. In a
backtest, these events are collected for a particular time interval and passed
in-order to each trading strategy by an instance of the TradingContext class.
The TradingContext class takes the sources of these trading events, the set of
trading strategies, and the time interval in its constructor. The run method,
which will execute the backtest, takes a callback which allows you to see
the change in each strategy’s portfolio after an event. Our tests are written
in the TradingSimulation.scala file. To execute this main class, run sbt

‘‘TradingSimulation/run-maincs4624.trading.TradingSimulation’’.
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4 Developer’s Manual

In this section, we describe our development environment, the structure of
the project’s code, and how to define new trading strategies and sources of
data in our platform.

4.1 Preparing a Development Environment

To develop on our system, you will need to have sbt[12] installed and an
HBase[5] instance ready to use. Virginia Tech’s DLRL cluster is running the
Cloudera 5.6.0 distribution which contains HBase version 1.0.0-cdh5.6.0.
To ensure that there are no incompatibilities, it is best to run this version of
HBase. Because our project is using sbt, you should easily be able to import
this code into your favorite Scala IDE, or you can simply edit the code in
your favorite text editor and compile using the command line interface.

4.2 Project Structure

Our root sbt project is broken down into three subprojects: Pricing Data,
Opinion Aggregation, and Trading Simulation. The Pricing Data subproject
(located within the PricingData/ folder) contains all of our code related to
accumulating information about stock prices and populating it within our
database. This includes APIs which query Yahoo and Google Finance, as
well as data structures which represent a stock price tick and a daily stock
price summary. The Opinion Aggregation subproject (located within the
OpinionAggregation/ folder) contains all of our code related to microblog
posts, sentiment analysis, and the CrowdIQ model. This includes data struc-
tures to represent microblog posts, an API to read in StockTwits posts from
the CSV format provided to us by our client, and an interface which facil-
itates the use of the CrowdIQ model in forming a crowd-sourced sentiment
towards a stock. The Trading Simulation subproject (located within the
TradingSimulation/ folder) contains all of our code related to defining and
testing trading strategies. This includes all of the strategies that we have
developed and tested (Baseline, Moving Average, Selection by Sentiment,
etc) and a program which executes a simulation with all of our strategies,
outputting a CSV file with the results. Our project structure is outlined
in extensive detail in the Design, Implementation, and Prototyping reports
found in Appendixes B, C, and D, respectively.
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4.3 Defining New Trading Strategies

One critical design feature of our simulation software was that it had to allow
developers to easily define new trading strategies. This can be done by ex-
tending the TradingStrategy trait. This trait defines a currentPortfolio

method which should return the current portfolio. Typically, your trading
strategy will define a variable in the constructor to represent the portfolio,
and you should override this method to return that portfolio. This is done
so that other objects will not be able to mutate the portfolio instance within
your trading strategy. The TradingStrategy trait also defines an on method
which you should override to react to the delivery of a trading event. When
your strategy receives an event, you can check the type of the event using
pattern matching and perform different logic when a particular type of a
event is sent. For example, if you wanted to buy/sell a stock when the mar-
ket opens, you would use pattern matching to check for an event of the type
MarketOpen to be sent, then perform this logic.

4.4 Defining Sources of Data

The ability for developers to easily extend our simulation software by adding
new sources of information which strategies can consider in their decision-
making was another crucial design choice. This was the main motivation for
the TradingEvent trait. By creating case classes which extend this trait,
you can make it easy for strategies to use Scala’s pattern matching feature
to react to your event type. To add a source of data, simply create a case
class which extends TradingEvent and encapsulate your data within this
case class. Then define a corresponding class, which will be used to query
for these events during a backtest, that extends the TradingEventEmitter

trait. This trait contains one method called eventsForInterval, which
returns an iterator of the events (that is in-order by time) in a given time
interval. An instance of the class extending TradingEventEmitter will need
to be passed to your TradingContext’s constructor to generate the events
during the backtest.
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5 Lessons Learned

In this section, we reflect on our progress, documenting the problems that
we encountered, and outline some possible directions of future work.

5.1 Problems Encountered

The main problem that we encountered was related to our project plan. We
underestimated the amount of work that was required to produce trading
simulation software that was viable for running our tests. Due to the limited
time we had to work on this project, we could not build a comprehensive
trading simulation with exceptional real-world accuracy from scratch. Our
simulation software lacks realistic models which consider the trading volumes
of each stock when placing orders. In our simulation, your orders are always
fulfilled, but this is not always the case in real-life. The development of our
simplified simulation and other parts of the project – including the CrowdIQ
model, structures and schemas for stock prices and microblog posts, APIs
to access stock price information, and more – put us behind schedule in
the research and development of novel trading strategies. We would have
liked to spend time on machine learning-based strategies and day trading
strategies, but our time was too constrained for this to be possible. This
project was a learning experience for our group because we had essentially
no prior knowledge about the stock market. The effort behind this project
has taught us some valuable lessons about developing and committing to a
project timeline.

5.2 Future Work

There are many different directions in which future work could take this
project. This section will detail a few of the directions that we have consid-
ered.

5.2.1 Improving Trading Simulation Software

As discussed in the Problems Encountered section, our trading simulation
software has an oversimplified ordering model that isn’t always consistent
with stock trading in the real world. One way to expand upon our work
is to improve our simulation using a realistic ordering model that considers
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whether your stock orders would be fulfilled. Quantopian’s slippage models
are an example of an implementation of a realistic order fulfilling model [15].
This would require a modification of our pricing data schema to include the
trading volume for each price tick. It would also be beneficial to modify the
schema to include the bid/ask price instead of just one trade price. This
would allow the simulation to consider the bid/ask spread. Additionally,
our simulation software lacks a comprehensive graphical or command-line
interface. One way to develop a UI around this software is to turn it into a
web server which you can access from your browser to start simulations with
adjustable parameters (the trading strategies, trading event emitters, and
time intervals) and easily export/view the results of past simulations. This
would streamline the development and analysis of trading strategies using
our system. Another addition to our trading simulation software would be
the integration with platforms that execute real trades (like the Bloomberg
Terminal [19] and Robinhood [16]), allowing your strategies, as defined in
this software, to drive real trades.

5.2.2 Advanced Trading Strategies

In the Problems Encountered section, we mentioned that, due to time con-
straints, we were unable to explore some more advanced trading techniques.
To expand upon our work, a future project could research machine learning-
based strategies that learn relationships from various sources of information,
such as stock price trends and the sentiment of microblog posts, to make deci-
sions on whether to buy/sell a stock. Additionally, it would be interesting to
experiment with day trading. This would require a high-resolution source of
stock quotes. It may be beneficial to address the potential inaccuracies of the
simulation before adding day trading support, because the error introduced
by not considering the bid-ask spread or not implementing a realistic order
fulfillment model may compound as you start to trade at higher frequencies.
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Appendices

A Requirements

A.1 Who Will Be Served

The main drive for this completion of this project is Saurabh Chakravarty, our
client. By iterating over his feedback, we are treating him as the eventual end
user. Eric Williamson is also working with Saurabh as an additional client
for the project and a potential end user. Theoretically there is room for
expansion when it comes to future users. If we are successful in “predicting”
the stock market, there is potential for our work to be used for monetary
gain, but no plan is in place at the current time.

Automated stock trading is a rapidly developing research area. Our paper
will help to further expand this research. Its availability on VTechWorks will
allow future researchers to expand upon our work. As evidenced by our
group’s use of earlier work done at Virginia Tech through CrowdIQ, we can
provide a roadmap to jump start others’ forays into utilizing microblogging
data as predictive input.

Formally there are no current plans for extended support. As opposed to
other potential projects in this class ours is more conceptual/research based.
Hopefully, the ability of others to reference our research will result in its
future use.

A.2 Scenarios Served

We are tasked with building an extensible trading simulation software that
can be used to define and test any arbitrary trading strategy. This trading
software should be able to operate on arbitrary market-related events, such
as posts on microblogging websites, stock price changes, and market open
and close events.

The simulation software must allow the querying of the most recent stock
price for a symbol at a given time. In addition, there must be a comprehen-
sive virtual portfolio implementation that allows strategies to easily execute
transactions that buy or sell shares of a stock. The virtual portfolio must
take transaction fees into account with every transaction.

We also must implement the opinion aggregation model from CrowdIQ.
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Symbol Name
$APPL Apple Inc.

$FB Facebook
$GILD Gilead Sciences Inc.
$KNDI Kandi Technologies Group Inc.
$MNKD MannKind Corporation

$NQ NQ Mobile Inc.
$PLUG Plug Power Inc.
$QQQ PowerShares QQQ Trust, Series 1 (ETF)
$SPY SPDR S&P 500 ETF Trust

$TSLA Tesla Inc.
$VRNG Vringo Inc.

Table 1: Baseline Stocks

This complex aggregation model takes a judge’s historical accuracy and the
interdependence of each post into account to accumulate an accurate opinion.
This will be used to implement strategies that operate on the perceived
market sentiment toward a stock.

Our focus is to test and compare the performance of trading strategies for
11 stocks in the year of 2014. These 11 stocks are shown in Table 1. This set
of historical data is used to compare our results to a baseline. Focusing our
testing to the same set of stocks allows for a more accurate comparisons of
performance. Otherwise, the performance of the chosen stocks for a strategy
would influence the potential returns.

Our reach goal is to test our strategy on other time intervals in addition
to the year of 2014. This will allow us to ensure that our trading method is
not created just to specifically fit the data from 2014. This additional testing
comes at a much lower cost than going straight to real-time testing as it will
be quicker, and much of the implementation overlaps from the baseline set.

A prospective future use case of this system is for real-time testing. Real-
time access to stock prices and microblogging data often comes at quite a
high cost. Therefore, we are not expecting to perform any real-time testing.

A.3 Data To Be Processed

The main dataset consists of microblog posts from the StockTwits website.
Each post will contain a stock symbol at the front as a way to determine
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Figure 1: Example microblog post from StockTwits

what stock the user is talking about (see Figure 1). Some posts will also
contain a tag referring to the tweet as either bullish or bearish. We will use
sentiment analysis to detect the sentiment of untagged posts.

The initial data set will focus on 11 stocks, shown in Table 1, for the year
2014. However, we hope to expand this time frame to include the year of
2015 as well. This will require us to obtain a set of microblog posts for 2015
from StockTwits.

We will use stock price data to verify past predictions by judges. The
verification of past predictions will be used to assign a weight to each judge.
A judge’s weight corresponds to the historical performance of that judge in
predicting stock price trends. Additionally, we will use the order in which
posts arrive to determine the interdependence of a judge’s opinions on other
judges. This will be used to prevent judges who are subject to groupthink
from affecting the overall market sentiment. All of this judge performance
analysis will be implemented from CrowdIQ.

By analyzing the portfolio value over time of different strategies, we will
determine which strategies perform most optimally. We can further analyze
specific large changes in portfolio values to determine why a strategy might
have gained or lost money. The prices of the 11 stocks during the change and
the microblog posts during the change will be referenced in this analysis.

A.4 Existing Code Base

Saurabh and Eric have provided us with some code that will help implement
the sentiment analysis. This code is in the Scala general-purpose program-
ming language [14]. Due to this code already being created we have decided
to do the rest of the program in Scala as well and will be storing in a public
GitHub repository.

We will also make use of previous implementations of chosen machine
learning algorithms (specifically those provided in the Spark.ML library).
This will allow us to save time by not creating anything that already exists.
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B Design

In this section, we discuss the planned design of our system. We start by
outlining a very high-level architecture of interconnected components that
make up our system in the System Architecture subsection. Next, we discuss
the external tools that will be used to facilitate the development and execu-
tion of each component in the Technology Used section. In the Schema/Data
Structures section, the details on how each component represents information
is clarified. Finally, in the Data Flow section, we elaborate on the specifics
of how the separate components communicate with each other.

B.1 System Architecture

The architecture of this project is separated into three interconnected com-
ponents. One component retrieves and stores information on stock prices
from various sources so that it can be easily queried on-demand by other
components. Another component implements the opinion aggregation model
from a related work. The remaining component is responsible for testing a
trading strategy and analyzing the results.

B.1.1 Pricing Data

The Pricing Data component contains utilities that can be used to query
stock prices from a given data source. All stock prices from each source are
preloaded into separate tables in an HBase [5] database. For our tests, we
download data from our sources on the set of stocks that we are considering
(see Table 1) for the entire year of 2014. Once we have downloaded the
data, we can populate a table on the cluster provided to us by Virginia Tech
with the price information so that it is in a standardized format. The main
purpose of this component is to provide facilities for other components to
access stock price information.

B.1.2 Opinion Aggregation

The Opinion Aggregation component is an implementation of the model de-
scribed by Qianzhou Du, Hong Hong, G. Alan Wang, Pingyuan Wang, and
Weiguo Fan in CrowdIQ: A New Opinion Aggregation Model [2]. It provides
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utilities that aggregate an opinion towards a stock symbol based on the mi-
croblog posts in a given time interval as well as the historical performance
and consistency of each microblog author. This component is also responsi-
ble for storing and querying microblog posts from our database and provides
utilities for other components to do so as well. Finally, it also provides an im-
plementation of a sentiment analysis utility that categorizes microblog posts
as “bullish” or “bearish”.

B.1.3 Trading Simulation

The Trading Simulation component brings the other two components to-
gether to provide a full simulation of a trading environment. This involves
implementing a virtual stock portfolio and the ability to execute transac-
tions to buy and sell stocks. Additionally, it involves the ability to define a
strategy that responds to specific events (for example, a microblog post, a
stock price change, and/or market open or close events). This component
provides utilities that allow you to define a strategy like an event listener
which manipulates a virtual portfolio. Within this component, we will also
implement the strategies that we are evaluating.

B.2 Technology Used

In this section, we discuss the external tools or dependencies of each compo-
nent. There are a few tools that all components depend upon. The entire
project will be implemented in the Scala programming language [14]. Scala
was chosen because it integrates well with Apache Spark [6], which the project
also depends upon. Spark allows for large-scale data processing with high
performance by distributing work across a cluster of computers. We are using
the Simple Build Tool (SBT) to build and execute our Scala code [12]. SBT
allows us to organize the code for each component in separate projects and
introduce build dependencies easily between the projects. We use Apache
HBase [5] for our database needs, which is a distributed database that runs
on Apache Hadoop [4]. Apache Hadoop is a framework that facilitates the
development of distributed applications. The Hadoop/HBase cluster in use
was provided to us by our colleagues at Virginia Tech and allows us to store
a massive amount of information (since it runs on a cluster and is optimized
to store big data). We are using versions 2.10.6 and 1.5.0 of Scala and Spark
(respectively) so that we can match the versions available on the cluster.

22



B.2.1 Pricing Data

The Pricing Data component contains code to pull stock prices from vari-
ous data sources and store them in HBase. Apart from the Apache HBase
libraries, we also depend on the Play framework’s [11] WS library, which
provides a Scala API to perform web requests [13]. This component depends
upon two different sources of data to retrieve stock prices. The Play WS
library is used to query the Yahoo Finance and Google Finance APIs.

We will pull stock prices from Yahoo Finance [24] and Google Finance [9].
Yahoo Finance has historical daily stock prices available for all but one of
the stocks that we are using for testing (see Table 1). The one stock that we
couldn’t retrieve from Yahoo, $VRNG, is available from Google Finance. We
have developed small utilities that request daily stock prices from the web
APIs given a set of stock symbols and a date range. When the API responds
with the list of prices in a JSON [17] or CSV [3] file format, we parse the
response, massage the data into our own data structures, and write this
information to the corresponding HBase table.

B.2.2 Opinion Aggregation

The Opinion Aggregation component is responsible for performing sentiment
analysis on microblog posts and aggregating these sentiments according to
a complex model from a related work. This component makes use of the
HBase libraries to query the microblog posts from our database. The senti-
ment analysis portion depends upon the machine learning library provided
by Spark called “Spark.MLLib” [7]. This library provides implementations of
commonly used feature extraction, regression, and classification algorithms
that are useful when implementing sentiment analysis. This component also
depends on a source of microblog posts. Our client, Saurabh Chakravarty,
has provided us with a CSV file containing about 1.5 million posts from
the site StockTwits [22] for the year of 2014. The HBase libraries are used
to build an interface to store and retrieve these microblog posts from our
database.

B.2.3 Trading Simulation

The Trading Simulation component has no external dependencies outside of
those common to the entire project.
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B.3 Schema/Data Structures

This section describes the data structures and schemas used to represent and
organize information in this system.

Understanding the database schemas requires some background informa-
tion about how HBase works [5]. An HBase table stores records in the fol-
lowing manner. Each record is uniquely identified by its row key. Each row
contains a set of columns which are identified by the column family and col-
umn qualifier. Our schemas are simple enough that it is not very important
to know what distinguishes between the column family and column qualifier,
but be aware that the combination of the column family and column qualifier
uniquely identifies a column in a row.

B.3.1 Pricing Data

The Pricing Data component defines a simple structure for a stock price
within this system and a matching schema within our HBase database. Fig-
ure B.3.1 shows how the structure in Scala is stored in the database. Data
from various sources must be processed into this structure before it can be
stored in our database. We pull stock prices from three different sources
which all use their own structures to represent the information. Google Fi-
nance’s API returns information in a CSV format [3]. Every row (line) in the
CSV contains columns for the date, open price, high price, low price, close
price, and trading volume. The CSV will contain a line for each market day
in the date range that is specified. Yahoo Finance’s API returns information
in a JSON format [17]. The information of interest in the JSON response is
an array within the nested object structure. This array is found by following
these keys in the nested object structure: “query”, “results”, and, finally,
“quote”. This array is filled with objects containing keys for the stock sym-
bol, date, open price, high price, low price, close price, volume, and adjusted
close price. These daily price summaries don’t give us granular information
about the price at a particular time during the day, but by associating a
predefined time with the open and close of the market, we can generate a
StockPrice object for the open and close of each market day.

B.3.2 Opinion Aggregation

The Opinion Aggregation component is responsible for storing and retrieving
microblog posts from our database, performing sentiment analysis on those

24



Figure 2: The stock price data structure as a Scala case class (left) mapped
onto its corresponding database schema (right).

posts, and aggregating sentiments towards a particular stock symbol. A
structure is defined to represent a microblog post, and a matching schema
defines how it is stored in our database. Additionally, we represent the
author of a microblog post as a structure of its own, even though it only
contains one field at this point. Figure B.3.2 shows both the structures and
schema and how to convert between the two. The conversion between the
CSV of StockTwits data from 2014 provided by our client to the microblog
post structure described above is done by parsing each row of the CSV and
extracting the columns that correspond to the post ID, text content, symbols
mentioned, tagged sentiment, time, and author ID. These columns translate
directly into values stored in the MicroblogPost data structure.

Aggregating the opinions of microblog authors requires many data struc-
tures. In order to future-proof our implementation for the support of live
data, we are modeling the opinion aggregation as an online algorithm so it
processes input incrementally and doesn’t need to have all posts available at
the start of execution. This decision influences the intermediate values used
in the calculation of the aggregate sentiment and the data structures required
to represent them. The aggregate sentiment of a stock requires that we know
the sum of the post author’s weight multiplied by the order in which each
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post that mentions the stock with the same sentiment was posted. Since we
only need the sum of these, we don’t need to store every post in the time
interval with its associated order. In order to know the order in which each
post referencing a particular stock symbol and with a particular sentiment
was created, we can store these values in a map with keys taking the form of a
tuple containing the symbol and sentiment and values being an integer. Ad-
ditionally, we need to store each author’s weight. This can be represented by
a map of microblog authors to an object that calculates the author’s weight
incrementally. An author’s weight is calculated by dividing their average pre-
diction score by the standard deviation of their prediction scores. The object
that calculates the author’s weight must store enough data to calculate the
average and standard deviation of the set of prediction scores incrementally
(i.e., adding one score at a time). The score of a prediction is only available
after we know if the prediction was correct or not, which happens after a
confirmation time window. Therefore, we also need to queue up posts until
after the confirmation window in order to update each author’s weight.

Figure 3: The MicroblogPost and MicroblogAuthor data structures (left)
mapped onto the corresponding database schema (right).

B.3.3 Trading Simulation

One of the main structures required in the Trading Simulation is the virtual
portfolio. Storing a virtual portfolio involves storing the amount of each
stock that is owned, as well as the amount of cash available. This structure
is shown in Figure B.3.3. Because we’ve decided to model a trading strategy
as a listener to trading events, we must define what a trading event is. A
trading event is any action or occurrence that is recognized by a trading
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strategy. The structure of a trading event will be defined to contain a time
(so that all events are guaranteed to be sorted by their time of occurrence).
Other than that, any implementation of a trading event may contain any
arbitrary data. For example, a microblog event would be an implementation
of a trading event that contains a microblog post. Trading event emitters
create iterators of trading events (that are ordered by time). In order to
process each event in order from all the emitters efficiently, a min priority
queue that is sorted by the event time will be used to store the next event
from each emitter. When an event is pulled from the priority queue, it will
be processed by the strategy and then the next event from that emitter is
inserted into the queue. This process repeats until there are no more events
available.

Figure 4: The virtual portfolio data structure.

B.4 Data Flow

This section gives a detailed view of how data flows between each component
of the system.

B.4.1 Pricing Data

Data within the pricing data component flows into our system through exter-
nal sources of prices. As described in previous sections, these sources consist
of the Yahoo and Google Finance APIs. Data from these sources is processed
and stored into HBase tables. Then, the stock price information flows out
of the pricing data component through an interface than pulls the data from
the appropriate HBase table.
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B.4.2 Opinion Aggregation

External sources of microblog posts flow into the opinion aggregation com-
ponent. As described in previous sections, the microblog data that we use
is a set of posts from the StockTwits site in CSV format. These posts are
processed and stored in an HBase table. An interface that pulls these posts
from our database is provided so that other components can easily make use
of this information. A utility is provided that analyzes the sentiment of a
post. An additional utility calculates the aggregated sentiment towards a
stock from a set of microblog posts. Both of these utilities receive microblog
posts from another component (the Trading Simulation component) and re-
turn additional information (a sentiment or the current set of aggregated
sentiments).

B.4.3 Trading Simulation

As discussed earlier, in the trading simulation component, trading events
flow into a trading strategy object. In response to these events, a trading
strategy will manipulate virtual portfolio objects to execute transactions.
When executing transactions, the portfolio will use an interface provided by
the pricing data component to get the current price of a particular stock.
Additionally, trading strategies may use interfaces provided by the opinion
aggregation and pricing data components as factors in their decision making.

B.5 Group Roles

Apart from Saurabh and Eric, we have a four person team to which we can
delegate tasks. Joseph Watts functions as the Data Processing Specialist,
which leads the effort on any interactions with the distributed data pro-
cessing aspect of this project. This will require proficiency with Spark and
HBase. Nick Anderson is our Portfolio Management and Machine Learn-
ing specialist. Nick will develop the portfolio management system that was
detailed earlier and will assist Joseph Mehr in developing and researching
machine learning algorithms. Joseph Mehr will specialize in machine learn-
ing and will specifically organize the effort behind implementing a Support
Vector Machine (SVM). Connor Asbill is our Data Aggregation Researcher.
His role involves researching new ways to best aggregate the data that we
obtain (tweet sentiments, judge reliability scores, stock price changes, etc) to
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make informed trading decisions. On top of all of our roles, each of us is re-
sponsible for participating in the literature survey that is ongoing throughout
this project.

B.6 Timeline

A timeline of milestones over the course of our project can be seen below.
Our group plans to meet once a week to delegate tasks and review work that
has been done independently.

• Feb. 15 - Draft Trading Simulation & Pricing Data

– Before we can evaluate any trading strategy, we need to develop
a system that simulates the trading environment (by replaying
historical events and allowing a strategy to buy/sell stocks). By
February 15, we want to have an initial draft of the implementa-
tion of these pricing data and trading simulation components.

• Mar. 1 - Complete Trading Simulation & Pricing Data

– By March 1, we want to have the pricing data and trading simu-
lation components completed, so that we can start to implement
and test trading strategies on top of this framework.

• Mar. 15 - Complete Opinion Aggregation & Baseline Strategy

– By March 15, we aim to complete our implementation of the opin-
ion aggregation model laid out by CrowdIQ: A New Opinion Ag-
gregation Model [2].

– Additionally, we want to have the trading strategy described by
this paper implemented by then.

• Apr. 1 - Research and Start Implementing Trading Strategies

– From March 15 to April 1, we’d like to have completed our research
on trading strategies. By this time, our goal is to have identified
three trading strategies and to start on their implementation.

• Apr. 15 - Complete Implementation and Analysis of Trading Strategies
/ Assemble Presentation
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– By April 15, our goal is to have working implementations of the
trading strategies and analyze their results for the year of 2014.

– Additionally, we want to assemble the presentation that we will
be giving to the rest of our capstone class on our work.

• Apr. 25 - Complete Documentation of Work in Final Report

– By April 25, we want to have completed our documentation for
users and developers who are interested in our work.
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C Implementation

In this section, we outline the plan to implement each component of our sys-
tem as it was designed in the previous section. Specifically, we are outlining
the implementation plan for the trading simulation software required to test
the strategies that are being researched and will be implemented in a later
stage of this project. Additionally, the responsibilities for each member of
our team will be made clear.

Our team will make use of the Git version control tool to help maintain
our project [8]. We will use GitHub’s free web service to host our source code
publicly [10]. This repository is available at github.com/saurabh/cs4624.

C.1 Pricing Data

To recap the design section, the implementation of the pricing data com-
ponent involves setting up the database schema, implementing an interface
that stores and retrieves stock prices (in the data structure described) from
our database, and, finally, implementing utilities that request and parse the
stock price information from external sources. The effort behind the imple-
mentation of this component is led by Joseph Watts.

C.1.1 Setting Up Database Schema

In order to prepare HBase to store our data, we need to define the table
that will store the stock prices from a given data source. With HBase, ta-
bles need to be predefined with a name and a list of column families before
they can be used to store any information [5]. In this case, the name of
our table will correspond to the stock prices that we are storing (for exam-
ple, dailystockprices). Then, this table will contain one column family
named price. To actually execute the command that defines this table in
the database, we first start the HBase shell by running hbase shell. Then
we run the command create ’dailystockprices’,’prices’ in this shell.

C.1.2 Database Interactions

Assuming that a table to hold stock prices is predefined, we need inter-
faces to query stock prices from this table and write stock prices to this
table. StockPriceDataSource (see figure C.1.2) is a Scala trait (which is
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similar to an interface in Java) that abstracts away the actual source of
the stock prices. All objects that implement StockPriceDataSource must
define two methods that allow you to request stock prices. The query

method allows you to do a range query for stock prices of a particular
symbol between two timestamps. The priceAtTime method allows you to
get the most recent stock price of a particular symbol (that is, on or be-
fore a given timestamp). StockPriceDataSource affords this system the
flexibility of moving away from HBase towards a different database solu-
tion. We define a HBaseStockPriceDataSource class which implements
the contract laid out by StockPriceDataSource. The constructor for the
HBaseStockPriceDataSource class takes the table name as a parameter.
HBaseStockPriceDataSource provides functions that write stock prices back
to the source (the database). These functions are used by the tools which
query the external sources and populate HBase with their data.

Figure 5: The StockPriceDataSource trait.

C.1.3 External Sources

We use two different external sources to retrieve daily stock prices for the
full set of stocks of interest. This set of securities consists of the 11 stocks in
Table 1 and the S&P 500 index. The two data sources are Yahoo Finance and
Google Finance. Since both of these sources give us access to daily summaries
of the stock price, we will define an intermediate data structure that will
store this daily summary and have functions to convert it into singular stock
prices. This intermediate data structure can be seen in Figure C.1.3. The
daily stock price summary contains the open, close, high, and low prices and
the transaction volume for a particular security on a given day. For every
daily summary, we will use the open and close prices to generate the open
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and close stock prices for that day. In the context of our simulation, we have
set the time of open price to be at 7:59 am and the time of the close price to
be at 4:59 pm. Once we have EndOfDayStockQuote objects retrieved from
the external data source, we can insert the open and close prices into an
HBase table using an instance of the HBaseStockPriceDataSource.

In order to retrieve these daily stock price summaries from the exter-
nal sources, there must be some interface that queries the corresponding
Web APIs. For this, we define a trait named EODStockQuoteAPI that has a
method called getQuotes. Implementing classes of EODStockQuoteAPI (that
is, YahooFinanceAPI and GoogleFinanceAPI) will implement the getQuotes
method to construct a query to the Web API in the correct format and return
a list of EndOfDayStockQuotes. Therefore, instances of the YahooFinanceAPI
and GoogleFinanceAPI classes can retrieve the stock price information in the
form of daily summaries, which we process into two stock prices at the open
and close of each day, and use an instance of the HBaseStockPriceDataSource
to populate our database.

Figure 6: The EndOfDayStockQuote data structure.

C.2 Opinion Aggregation

The opinion aggregation component contains sentiment analysis code, facili-
ties to aggregate an accurate crowd-sourced sentiment towards a stock from
microblog posts based on the CrowdIQ model, and facilities to store and
retrieve microblogs from our database.
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C.2.1 Setting Up Database Schema

Similar to the pricing data component, we need to setup a table in HBase to
store our microblog posts. Recall from Figure B.3.2 that a microblog post
table has the column families base data and options. From the HBase shell,
we execute the command “create ’stocktwits’,’base data’,’prices’”
to create the table that will store all of our post data.

C.2.2 Database Interactions

In the same pattern as the pricing data component, we define a trait named
MicroblogDataSource (see Figure C.2.2). MicroblogDataSource contains
a query method that allows you to perform a time range query on the set
of posts. The HBaseMicroblogDataSource class, which implements the con-
tract laid out by MicroblogDataSource, implements the query method so
that it retrieves the posts from a table (specified in the class’ constructor) in
our HBase database. Additionally, the HBaseMicroblogDataSource contains
a write function that will write a set of posts into the HBase table.

Our microblog post data from StockTwits that we received from our client
is in the form of a CSV file. We implemented a CsvMicroblogDataSource

class that reads the posts from our CSV file, so that we can write them to
our database with an instance of the HBaseMicroblogDataSource.

Figure 7: The MicroblogDataSource data structure.

C.2.3 Sentiment Analysis

The implementation of our sentiment analysis model is simply a slightly
modified version of the code that was provided to us by our client Saurabh
Chakravarty and his colleague Eric Williamson. The provided sentiment
analysis implementation used the Word2Vec feature extractor and the logis-
tic regression classifier from Spark’s MLlib [7]. We trained and tested our
sentiment analysis model using the posts from StockTwits that already had

34



an author-specified bullish/bearish sentiment. We sampled 50% of the pre-
classified posts to serve as the training data and the remaining pre-classified
posts were used as testing data.

C.2.4 Aggregation Model

A class named AggregatedOpinions will be implemented to aggregate the
sentiments towards each stock based on the method outlined in CrowdIQ
[2]. An instance of AggregatedOpinions is passed MicroblogPost objects
(that include a sentiment that has been analyzed by our sentiment analysis
model) one-by-one through a method named on (like an event listener). The
quantity of author individual weight times the degree of independence needs
to be accumulated for each stock symbol and sentiment pair. Therefore,
with each post, AggregatedOpinions will accumulate these values in a map
that is keyed by a tuple of the stock symbol and sentiment. The degree of
independence of a post is an exponential decay function that requires the
order in which a post appears among others with the same sentiment and
stock in a given time frame. This requires an additional map (also keyed by
a tuple of stock symbol and sentiment) to store the order in which the next
post appears. Individual weights for each author are also maintained in this
object. These weights are calculated by determining the post’s score, which
measures the accuracy of the prediction made by the post. It does this by
checking the price change of the stock in a time window after the post was
made and checking if the trend is consistent with the prediction. Therefore,
to adjust the author weights, this object needs to store each post (using a
queue) until after the time window when it can verify the price change. The
AggregatedOpinions class exposes a method named sentimentForStock

which allows you to query for the aggregated sentiment of a stock in the
current time window. It also exposes a reset method which resets the time
window (clears the current aggregated sentiments).

C.3 Trading Simulation

The implementation of the Trading Simulation component consists of the
development of a virtual portfolio model, a trading context that collects
events for a given time interval and passes them off to a trading strategy,
and the trading strategies themselves. This is quite an open-ended task.
Due to the complexity and importance of this component, which is required
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before we can implement and test any trading strategies that we encounter,
all group members are responsible for contributing to this component.

C.3.1 Virtual Portfolio

The virtual portfolio stores a cash value as well as the number of each stock
that you own. It provides several functions that allow you to buy and sell
shares of a stock. Additionally, it performs error checking so that you can-
not perform invalid trades. Nick Anderson was responsible for implementing
the first draft of the virtual portfolio. After the first draft of the virtual
portfolio was completed, our team convened to discuss the final form of
this API. This API consists of a class named Portfolio which stores the
amount of cash available, and a map containing the stock symbols mapped
to the amount of each stock that is currently held in the portfolio. This
class is modeled as an immutable object. The Portfolio object requires
a StockPriceDataSource instance to buy/sell stocks or calculate the to-
tal value of the portfolio. A TransactionError object is defined to rep-
resent an error performing a transaction. This error object contains the
previous portfolio and an error message describing what went wrong. The
Portfolio object contains several methods to perform transactions, all of
which return either a TransactionError or the resulting Portfolio ob-
ject. The methods that perform transactions include withSharesAtTarget-

Amount, withSharesAtTargetValue, withSharesPurchasedAtValue, with-
SharesPurchased, withSharesSold, and withAllSharesSold. The with-

SharesAtTargetAmount and withSharesAtTargetValue methods perform a
transaction so that the number of shares or the total value of the shares for
a particular stock is a particular value. The withSharesPurchasedAtValue

and withSharesPurchased methods will try to purchase more shares of a
stock using the number of shares or the amount that you can buy with a
dollar value, respectively. The withSharesSold method will try to sell a
number of shares of a stock. The withAllSharesSold will sell all shares in
the portfolio.

C.3.2 Trading Context

We are required to be able to easily define different trading strategies and ex-
ecute them by passing old trading events. At the core of this functionality is
a class named TradingContext, which contains a list of all the trading strate-
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gies to test and a list of the event emitters that will generate events to pass to
the strategies. The TradingContext is responsible for obtaining the trading
events from the emitters and passing them to the strategies in order. This
class contains a run method that runs a simulation for a given time interval.
This calls on the event emitters to generate the events for the provided time
interval and pass them off to all of the strategies. Each trading strategy is im-
plemented by extending a Scala trait named TradingStrategy. This involves
implementing an on method that responds to an instance of TradingEvent.
In this method, you can execute transactions on your portfolio or maintain
information that influences the decision to perform a transaction (like ana-
lyzing the sentiment of a MicroblogPost). The TradingEvent trait defines
each event as containing a time (so that they can be sorted). Extensions
of TradingEvent can choose to provide more information. For example,
we define the MicroblogPostEvent as containing a MicroblogPost object.
The TradingEventEmitter trait allows you to define how events are gener-
ated by implementing an eventsForInterval method where you may return
an interval of events for a given time interval. In the TradingStrategy’s
on method, we can use Scala’s pattern matching feature as a convenient
way to check the type of event and extract data from it. Figures C.3.2,
C.3.2, and C.3.2 show our TradingStrategy trait, TradingEvent trait, and
MicroblogPostEvent class, respectively.

Figure 8: The TradingStrategy trait.

C.3.3 Trading Strategies

Referring back to our timeline from the design report, we are planning to
implement the trading strategy described by CrowdIQ before March 15 [2].
We can run simulations with this strategy and compare the results achieved
by our implementation to see our simulation software in action and to make
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Figure 9: The TradingEvent trait and the TradingEventEmitter trait.

Figure 10: A TradingEvent signifying a new microblog post was made.

sure that our implementation of CrowdIQ is working properly. More rig-
orous testing and analysis will be performed at later stages of the project.
Additionally, we will implement a simple strategy that invests in the S&P
500 index fund to compare our results against the market performance. The
three trading strategies that we’d like to start implementing on April 1 will
be implemented after we have ensured that we have a working system on
which to test our strategies. The intricate details of these strategies will be
discussed in detail in the Refinement report.
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D Prototyping

At this stage, we have implemented the trading simulation software that has
been previously described in the requirements, design, and implementation
reports. This section details the usage of this software. We describe how to
compile and run this software and how to interpret its output.

D.1 Program Entry Point

We have defined the program’s entry point (the main function) in an object
called TradingSimulation within the Trading Simulation component. The
trading strategies that will be tested, the trading events that will be emitted
during the simulation, and the time interval that the simulation will test all
need to be defined in the entry point of the program.

At this point, the baseline strategy and a buy-and-hold strategy are the
only strategies that have been implemented. The Buy-and-Hold strategy is
used to compare the baseline against the S&P 500 index by tracking the
change in value of the index over time. The implementation of the Baseline
strategy operates on one stock at a time, so you must define 11 instances of
the Baseline strategy (one for each stock). The entry point receives a callback
after each trading event, allowing it to track the value of each strategy’s
portfolio. On each market open event, we output a line to a CSV file with
three columns. The first column is the time. The second column is the sum
of all 11 Baseline strategy portfolio values. The third column is the S&P 500
Buy-and-Hold strategy portfolio value. A CSV file is a universally recognized
file format that facilitates analysis on our data.

This project does not provide any interface that is especially usable, but
we can describe a few things about the code in the program entry point that
will aid in customizing the parameters of the simulation.

D.1.1 Specifying the Simulation Time Range

Since we are backtesting on old data, we need to specify a time range over
which to run the simulation. This date is specified in the TradingSimulation
program in the start and end values that are passed in the constructor of the
TradingContext. These values are constructed using the OffsetDateTime

class from Java 8’s time library. Therefore, it is easy to read and modify the
date and time of the timestamp being passed to the TradingContext.
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D.1.2 Customizing the Trading Events

The trading event emitters are specified in the eventSources value in the
TradingSimulation program. eventSources is a list of event emitters
that you can easily modify to add or remove the current defined event
emitters. By default, the eventSources value is constructed to contain
the MarketEventsEmitter, which sends market open/close events, and the
MicroblogEventEmitter, which sends an event for each microblog post.

D.1.3 Customizing the Trading Strategies

The trading strategies in the simulation are more complicated to specify than
one might expect. Because some strategies only operate on one stock and you
need to define several instances of them to cover all 11 stocks, the strategies
are specified in a map of the strategy name to a list of strategies. This allows
us to easily sum the value of a list of strategies and output a CSV with a
header containing the strategy names and rows containing the summed up
portfolio values. For example, you can store the 11 instances of the baseline
strategy with the key “Baseline”, and the CSV file will contain a column
that corresponds to the summed up portfolio values of these 11 strategies.
This allows for a very declarative specification of trading strategies without
requiring any modification of the code that writes the CSV.

D.2 Running a Simulation

Before you can compile and run our code, you first obtain it from our
GitHub repo by using the git command line utility: git clone https:

//github.com/saurabh/cs4624 [10]. As we explained in the design report,
we chose to use the sbt build tool for our project. The code can be compiled
by executing sbt compile in the project directory. This will compile all
three components. Running a main class in a particular component or sub-
project can be done by executing a command with the following form: sbt

‘‘ProjectName/run-main package.ClassName’’. Therefore, to run the
TradingSimulation program, we execute sbt ‘‘TradingSimulation/run-main

cs4624.trading.TradingSimulation’’.
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D.3 Interpreting the Output

As stated previously, our program outputs data points for the portfolio values
of each strategy at the beginning of every market day. Because this informa-
tion is output in a CSV file, we can easily import it in spreadsheet software
that is suited to perform analysis on the data. An easy visualization of this
data can be made by creating a line graph with the dates on the horizontal
axis and the portfolio value on the vertical axis. Each strategy would be a
separate series on this graph. This allows you to compare the performance
of the strategies throughout the year. See Figure D.3 for an example of this
that compares the S&P 500 index fund with the Baseline strategy.

Figure 11: Comparison of the Baseline Strategy and S&P 500 Index Portfolio
Values for the year of 2014.
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E Refinement

After implementing the prototype, which consists of the trading simulation
software, the baseline strategy, and a simple buy-and-hold strategy, we re-
viewed our progress with our client, Saurabh. Together, we determined that
our simulation is as designed and the baseline implementation is working
as anticipated. In this section, we discuss the refinements that we make on
our prototype and three trading strategies that we will implement, test, and
compare against the baseline.

E.1 Stock Split Consideration

We discovered that we neglected to consider stock-splits in the design of
our trading simulation software. A stock split is when a security’s shares
split so that the number of shares is adjusted (and as a consequence, the
value of each share changes) [18]. For example, in a 1-for-3 stock split, one
share splits into three shares with values that sum to the same value of the
existing share. There are also reverse stock splits (or “stock merges”). In
our research, we discovered that the only stock split for the year of 2014 for
our selection of 11 stocks was $AAPL’s 1-for-7 split on June 9, 2014 [21]. We
were able to implement the adjustment for stock splits in our virtual portfolio
by hardcoding the split ratio and adding a function withSplitAdjustments

that will adjust the number of $AAPL stocks that are owned once June 9, 2014
is passed in the simulation. This served as a short term solution and allows
us to prioritize our work on implementing additional trading strategies.

E.2 Moving Average Strategy

Using moving averages of stock prices is a very common indicator used to
make trading decisions. A moving average is calculated by averaging the
stock price for the last n days. We devised a “Moving Average” trading
strategy that takes a long moving average and a short moving average of a
stock’s price, and compares them against the closing price of the day. If the
closing price is greater than both the short and the long moving averages,
then we buy the stock. If the closing price is less than both the short and
the long moving averages, then we sell the stock. Otherwise, we hold. This
strategy is based on the idea that a stock’s price will continue on its current
trend.
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To implement this strategy, we used a queue of StockPrice objects to
store the open price of the last m days where m is the number of stocks to
consider in the long moving average. On every market open, we query for
the current stock price and add it to the queue, dropping the front of the
queue while the length is greater than m. With this queue, it is simple to
compute a moving average.

Since we are doing relatively short-term trading, we decided on using 5
days for the short moving average and 10 days for the long moving average.

E.3 Moving Average with Sentiment Strategy

The baseline strategy does not consider the trend in stock price in the
decision-making process. With the “Moving Average with Sentiment” strat-
egy, we attempt to consider the price trend in addition to the aggregated
market sentiment. The strategy works by only trading when the baseline
strategy and the “Moving Average” strategy would both make the same de-
cision. That is, if the “Moving Average” strategy would expect the stock
price to continue rising (if it would buy), but the baseline strategy thinks
that the market is bearish, it will not make a trade. Similarly, if the baseline
detects a bullish market, but the “Moving Average” strategy is expecting the
price to drop, then it will not make a trade. It only trades when the expec-
tations of both strategies are the same. The hypothesis with this strategy is
that baseline can lose a significant amount of money by not considering the
current price trend and only going off of others opinions, and by augmenting
this strategy with the information about the price trend, the decision-making
considers more factors.

E.4 Selection by Sentiment Strategy

The “Selection by Sentiment” strategy differs from the baseline in the way
that it allocates funds to bullish stocks. The baseline strategy allocates
funds for each stock in a separate portfolio. This is inefficient when a stock
is bearish because the funds are sitting in cash as opposed to being invested
in a different stock that is bullish. This strategy is a more efficient allocation
of funds because it keeps all the cash in the same portfolio. On each market
open event, it evenly distributes the value of the portfolio among a maximum
of n stocks that it detects as bullish. By more efficiently allocating funds,
we can significantly increase profit. This is because profits will compound
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across all stocks since they are all in the same portfolio and more money will
typically be invested in each bullish stock since it rarely happens that all
stocks are bullish.

We will experimentally test several values for n, the maximum number
of stocks that you can be invested in, to determine which performs the best.
Interestingly, a related work on sentiment-based stock trading strategies
claimed that diversification (investing in more stocks) leads to diminished
returns [23].
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F Testing

In this section, we will test the performance of our strategies by comparing
their profit rate and portfolio values. We will also go over the testing that
we perform on the trading simulation software to ensure that it operates as
expected.

F.1 Trading Simulation Software

The trading simulation software has a few unit tests that ensure that certain
operations are working correctly. The virtual portfolio is tested with a unit
test that performs operations on a portfolio instance and checks that the
output of each operation is as expected. That is, it tests all of the transaction
methods with valid and invalid inputs, making sure that the correct output is
returned each time. We also perform unit tests on TradingContext to ensure
that it delivers events to the strategies in order. This test is implemented
by defining several mock trading event emitters that emit a mock trading
event class that only contains a timestamp. The test also defines a trading
strategy that accumulates all of the events that it receives and an assertion
is performed at the end to make sure that all of the events occur in the
expected order. We perform unit testing on the MarketEventsEmitter to
make sure that the market open/close events are only sent for days when the
market is open. It also ensures that a market open event is always followed
by a market close event on the same day. This unit test is performed with
a hardcoded time range (so that we can manually figure out a list of events
that should be emitted and easily compare this with the result).

As a precaution, we also perform extensive logging during the execution
of a simulation, so that it is possible to detect any issues by looking back
at logs. This has allowed us to detect issues that are harder to write tests
for, such as incorrect author weight calculation in the opinion aggregation
implementation.

F.2 Trading Strategy Performance

Trading strategies are tested by running a simulation with historical data and
observing their performance. This performance can be analyzed to determine
which strategies are performing the best, and which ones perform the worst.
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F.2.1 Results for 2014

Figure 12: A graph of the portfolio values for the year of 2014 for several
trading strategies.

For 2014, we tested 7 different strategies, including the baseline strategy
and the buy-and-hold S&P 500 strategy. The “Moving Average” and “Mov-
ing Average with Sentiment” strategies detailed in the refinement report
were also tested. Additionally, three variations of the “Selection by Senti-
ment” strategy were tested. The first is “SelectionBySentiment(OneStock)”,
which is the “Selection by Sentiment” strategy with n = 1. “SelectionBy-
Sentiment(AllStocks)” is the “Selection by Sentiment” strategy with n = 11.
“SelectionBySentiment” is the “Selection by Sentiment” strategy with n = 3.
A graph of each strategy’s portfolio values over time for the year of 2014 is
shown in Figure 12.
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The Moving Average strategy only shows some marginal improvement
over the S&P 500 index. By considering the sentiment with the moving
average, we see some additional improvement over that, but unfortunately,
the Moving Average with Sentiment strategy yields lower returns than our
baseline implementation.

The Selection by Sentiment strategy yields the greatest returns of any
strategy that we have tested by far. Interestingly (and maybe intuitively),
greater values of n yield a higher return, even though this disagrees with the
assertion made by the related work [23].

We start each strategy off with a total of $1.1 million. The “SelectionBy-
Sentiment(AllStocks)” strategy’s maximum portfolio value over the year was
$6.15 million (on Nov. 10), which is an incredible 459% profit. This strategy
closed the year (on Dec. 31) with $4.17 million (a 279% profit) after dropping
quite a bit in a short time frame, but this number is still significantly higher
than any other strategy.

There is a large jump in the graph for all Selection by Sentiment strategies
from April 1 to April 2. After some analysis, we discovered that this due to
an investment in the MNKD stock (which was $4.02 on April 1 and closed at
$6.99 on April 2). This occurred because MNKD received a recommendation
for FDA approval from an assembled Adcom committee after two previous
denials from the FDA. Looking at the posts from our StockTwits data on
March 31, we received an influx of speculative posts about FDA approval
(like “@the twit $MNKD , I fully expect to get at least partial approval, but
more importantly-soon Europe will also approve. Insulin lab there+2” and
“$MNKD in the end with approval I expect that it will shove it into the 7.87
range.-then fade-as people come to grips with the work ahead..”).

There was also a large fall-off towards the end of the year on December
16. This was due to the purchase of $VRNG on December 12 in anticipa-
tion of the Federal Circuit’s ruling on Vringo’s request for en banc. This
request was denied by the Federal Circuit on December 15, sending the stock
into a free-fall. After looking at the StockTwits posts from December 11,
some seemed to be hopeful that the en banc would be approved, while others
seemed pessimistic. Here are some examples of these posts: “$VRNG Thus
far charts looking nicely. We may take a nice rise.”, “$VRNG I’m here. Good
morning VRNGites! Hope Mr Buies is ready to deal with corupt system and
we go to $10!!!!”, “$VRNG Chief Judge Prost has stood up for the little guy in
the past... http://stks.co/e1MT6”, and “$VRNG Trying to get licensing fees
from ZTE is like stopping piracy. It’s not going to happen, and def not for
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a significant amt of money.” These posts give some insight into what’s hap-
pening, but there doesn’t seem to be a clear consensus. This indicates that
experimentation with the cutoffs for bullish and bearish aggregated opinions
could improve performance.

F.2.2 Results for 2015

Figure 13: A graph of the portfolio values for the year of 2015 for several
trading strategies.

For 2015, we tested the same 7 strategies as we did in 2014. A graph
of each strategy’s portfolio values over time for the year of 2015 is shown in
Figure 13.
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The results for all strategies are quite underwhelming in comparison to
the 2014 results. The S&P 500 index fund had the best performance judging
by the portfolio values at the end of the year, but it still did significantly
worse than it did in 2014. The index fund ended the year roughly at the same
value with which it started, achieving essentially a zero percent return. This
means that the overall market performed very poorly. All other strategies
performed worse than the index fund, which shows that our strategies do not
perform well in a bearish market. The only non-sentiment-based strategy
other than the index fund is the moving average strategy, and this strategy
performed consistently better throughout the year than all of the sentiment-
based strategies. We can conclude that our sentiment-based strategies with
the current sentiment analysis and opinion aggregation models perform very
poorly in bearish markets.

F.3 Additional Refinements

In the future, we’d like to further refine our system by adding more compre-
hensive support for corporate actions like stock splits and dividends without
having to hardcode them in our simulation. Our goal is to perform more test-
ing, specifically with data from the year of 2015. This will help us determine
whether our strategy is scalable or if it is market-dependent. We would also
like to add support for volume information and more complex and realistic
stock ordering mechanisms in our simulation software. Our current simula-
tion makes the assumption that the volume of stock that we would like to
buy is available for purchase and that the volume of stock that we would like
to sell is always sold. This is not always true in the real world, and it requires
a more complicated simulation that takes the trading volumes into account
to model this phenomenon. A more realistic simulation might support real-
istic ordering mechanisms like market orders and limit orders and implement
slippage models like Quantopian does [15]. On top of this, we’d like to exper-
iment with machine learning based strategies that perform price prediction
based on sentiment and past price trends. More long-term refinements might
include full support for live testing with real-time data, and integration with
real trading platforms like Robinhood [16] and the Bloomberg Terminal [19].
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