List of Tables

Table II-1. Yields for the synthesis of II-46 under different reaction conditions. 43

Table V-1. Comparison of thermodynamic data and binding constants for bibracchial lariat ethers in Figure V-3. 101

Table V-2. Dependence of Weber’s "probability of binding" upon experimental conditions. Black entries are suitable p values. aIn this example [R]o and [S]o are always equal. 121

Table V-3. Suitable concentrations (M) for [S]o and [R]o for given values of K_o. 122

Table V-4. Results from the graphical methods used to determine the 1:1 association constants for the complex between BMP32C10 the dibenzyl ammonium salt the dibenzyl ammonium salt V-9•PF_6 using the H_c proton of BMP32C10 in acetonitrile-d_3. 139

Table V-5. Data for determination of K_o from Creswell-Allred graphical method for complex of BMP32C10 (R) and V-9•PF_6 (S) in acetonitrile-d_3. (p = Δ/Δ_o) 141

Table V-6. ΔH and ΔS obtained from van’t Hoff plots for different graphical methods for BMP32C10:V-9•PF_6 in acetonitrile-d_3. 142

Table V-7. Comparison of crystal parameters (Å). 146

Table V-8. Data for determination of K_o from Creswell-Allred graphical method for complex of BMP32C10 (R) and V-14•2(PF_6) (S) in acetone-d_6. (p = Δ/Δ_o), [R]o (mM) 10.0, δR (ppm) = 6.473, Temp(°C) = 23.0. 150

Table V-9. Results from the graphical methods used to determine the 1:1 association constants for BMP32C10:V-14•2(PF_6) using the H_a proton of BMP32C10 in acetone-d_6 (Temp = 23.0 °C). 150

Table V-10. Association constants (M⁻¹) for DB24C8:V-8•PF_6 and DB24C8:V-9•PF_6 in various solvents. 157

Table V-11. Results from the graphical methods used to determine the 1:1 association constants for DB24C8:V-10•PF_6 using the H_a proton of DB24C8 in acetone-d_6 (Temp = 23.0 °C). 160

Table V-12. Results from the graphical methods used to determine the 1:1 association constants for 30C10:V-9•PF_6 using the proton signal of 30C10 in acetone-d_6 (Temp = 23.0 °C). aAverage for Benesi-Hildebrand and Creswell-Allred methods only. 174

Table V-13. Data for determination of K_o from Creswell-Allred graphical method for complex of 30C10 (R) and V-9•PF_6 (S) in acetone-d_6, (p = Δ/Δ_o), [R]o 10.0 mM, δ_R = 6.473 ppm, Temp(°C) = 23.0. 174

Table V-14. Summary of complexation in solution. T = 23.0 °C (25.0 °C for BMP32C10 + V-9), nc = no complex, nm = not measured. Counterions = PF_6. 182

Table V-15. Volumetric amounts titrated and resulting concentrations of BMP32C10 for Mole the Ratio experiment for BMP32C10 + V-9•PF_6. [V-9•PF_6] = 10 mM. 185
Table V-16. Volumetric amounts titrated and resulting concentrations of $\text{V-14}\cdot\text{PF}_6$ for the Mole Ratio experiment for $\text{BMP32C10 + V-14}\cdot\text{PF}_6$. \([\text{BMP32C10}] = 10\, \text{mM}$. \(187\)

Table V-17. Volumetric amounts titrated and resulting concentrations of $\text{V-10}\cdot\text{PF}_6$ for the Mole Ratio experiment for $\text{DB24C8 + V-10}\cdot\text{PF}_6$. \([\text{DB24C8}] = 10\, \text{mM}$. \(188\)

Table V-18. Volumetric amounts titrated and resulting concentrations of $\text{V-9}\cdot\text{PF}_6$ for the Mole Ratio experiment for $\text{30C10 + V-9}\cdot\text{PF}_6$. \([\text{30C10}] = 10\, \text{mM}$. \(190\)

Table V-19. Volumetric amounts titrated and resulting concentrations of 32-Cryptand for the Mole Ratio experiment for 32-$\text{CRYPTAND + V-9}\cdot\text{PF}_6$. \([\text{V-9}\cdot\text{PF}_6] = 10\, \text{mM}$. \(191\)

Table V-20. X-Ray crystallographic data. \(193\)