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BER Modeling for Interference Canceling Adaptive NLMS Equalizer 

Tamoghna Roy 

ABSTRACT 

Adaptive LMS equalizers are widely used in digital communication systems for 

their simplicity in implementation. Conventional adaptive filtering theory suggests the 

upper bound of the performance of such equalizer is determined by the performance of a 

Wiener filter of the same structure. However, in the presence of a narrowband interferer 

the performance of the LMS equalizer is better than that of its Wiener counterpart. This 

phenomenon, termed a non-Wiener effect, has been observed before and substantial work 

has been done in explaining the underlying reasons. In this work, we focus on the Bit 

Error Rate (BER) performance of LMS equalizers. 

At first a model – the Gaussian Mixture (GM) model – is presented to estimate 

the BER performance of a Wiener filter operating in an environment dominated by a 

narrowband interferer. Simulation results show that the model predicts BER accurately 

for a wide range of SNR, ISR, and equalizer length. Next, a model similar to GM termed 

the Gaussian Mixture using Steady State Weights (GMSSW) model is proposed to model 

the BER behavior of the adaptive NLMS equalizer. Simulation results show 

unsatisfactory performance of the model. A detailed discussion is presented that points 

out the limitations of the GMSSW model, thereby providing some insight into the non-

Wiener behavior of (N)LMS equalizers. An improved model, the Gaussian with Mean 

Square Error (GMSE), is then proposed. Simulation results show that the GMSE model is 

able to model the non-Wiener characteristics of the NLMS equalizer when the 

normalized step size is between 0 and 0.4. A brief discussion is provided on why the 

model is inaccurate for larger step sizes. 
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CHAPTER 1 INTRODUCTION 

This chapter provides the necessary background for this work and sets up the 

research problem. A brief background regarding adaptive equalization and narrowband 

interference is presented first, followed by a literature review highlighting the relevant 

works that dealt with the non-Wiener characteristics of the adaptive LMS class of 

equalizers. The contribution of this work to the domain of the problem is summarized in 

Section 1.3. Lastly, Section 1.4 contains the mapping for the remaining thesis. 

1.1 Background 

Adaptive Equalizers are an integral part of any digital communication system. For 

a majority of practical situations the channel conditions are not known a priori. 

Moreover, the channel conditions may be time varying. Adaptive Equalizers provide a 

solution to this problem by compensating for the channel impairments and in case of time 

varying channels, adapting to the time varying channel response [1]. 

To our best knowledge, Adaptive Equalization for digital communication systems 

was first proposed by Lucky [2]. His work was based on minimizing the peak distortion 

criterion. Concurrently, Widrow et al. [3] devised the Least Mean Square (LMS) 

algorithm which was computationally simple and converged to the optimal Wiener 

solution. Proakis and Miller [4] showed an adaptive receiver based on the LMS algorithm 

which was capable of adjusting to the unknown slowly time varying channel conditions. 

An excellent summary of adaptive equalization techniques is presented by Qureshi [5]. 

The primary objective of an equalization technique is to undo the unwanted effect 

of the channel characteristic – inter-symbol interference on the received communication 

signal. Although Qureshi [5] mentions that any technique employed to reduce inter-

symbol interference can be considered an equalization technique, equalization can be 

viewed in general as a mitigation technique. In this work, our focal point will be 
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modeling the performance of digital communication systems where narrowband 

interference has been suppressed by Adaptive Equalizers; more specifically by Adaptive 

LMS or NLMS Equalizers. 

Narrowband interference and its mitigation has been a topic of a great deal of 

research since this type of interference corrupts the desired signal in numerous systems. 

These narrowband interferences can be intentional like narrowband jamming in tactical 

communications. In some cases, the narrowband interference is unintentional like the 

power line interference in ECG signals. Irrespective of the cause of origin it is desirable 

to get rid of this interference. 

There has been a substantial amount of work regarding suppression of 

narrowband interference. Milstein [6] in his work gives a brief summary of methods of 

rejecting interference in spread spectrum communication systems emphasizing primarily 

two schemes – 1. LMS based and 2. Transform domain processing structure based. Laster 

and Reed [7] provide a comprehensive survey of interference rejection methods for both 

spread spectrum and non-spread spectrum communication systems. Poor [8] gives a 

detailed account of various interference mitigation schemes based on different 

techniques, such as linear predictive methods, non-linear predictive methods, linear code 

aided methods, etc. Batra [9] examines the effect of severe narrowband interference on a 

wireless communication system and proposes two novel methods - 1. Data-aided 

Initialization (DAI) and 2. Two stage filtering, which utilizes a prediction error filter 

(PEF) as a pre-filter to the equalizer, for faster convergence of the adaptive equalizer 

weights. 

Adaptive LMS equalizers were seen to behave ‘unconventionally’ in the presence 

of a narrowband interference, as was first observed by North, Axford, and Zeidler [10]. 

The term ‘unconventional’ demands special attention.  

Conventional adaptive filtering suggests the Wiener filter as the appropriate 

benchmark against which the performance of the adaptive filter is measured [11]. In this 

work we are interested in LMS equalizers for which the Wiener equalizer is considered to 

provide the lower bound since the LMS algorithm is subject to misadjustment error due 
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to weight adaptation. For this reason, traditionally LMS equalizers are implemented with 

small step sizes. North, Axford, and Zeidler [10] observed that the performance of LMS 

equalizers was superior in terms of probability of error to that of the corresponding 

Wiener equalizer with the same structure in an environment dominated by narrowband 

interference. This effect will be referred to as a non-Wiener characteristic of adaptive 

LMS equalizers. The next section gives a brief review of the work done regarding non-

Wiener characteristics of LMS equalizers. 

1.2 Literature Review 

As mentioned earlier, the non-Wiener characteristics of adaptive equalizers were 

first observed by North, Axford, and Zeidler [10]. Reuter and Zeidler [12] demonstrated 

that the steady state Mean Square Error (MSE) of LMS equalizers can better the 

corresponding Wiener equalizer of the same structure. This work also tries to model the 

non-linear nature of the LMS algorithm and quantify the MSE performance of the LMS 

algorithm. However, the experimental results and the theoretical results did not coincide, 

pointing to limitations in the model. In subsequent works [13-15], it has been shown that 

LMS may outperform the corresponding Wiener filter and the performance is dependent 

on system parameters such as Signal to Noise Ratio (SNR), Signal to Interference Ratio 

(SIR), length of the equalizer, and the adaptation step size. 

Beex and Zeidler [16] modeled the interference canceller as a two channel Wiener 

Filter with the interference signal as the input to the second channel. This work showed 

that the adaptive NLMS filter is trying to track a time-varying target solution. This two-

channel model was extended to Recursive Least Squares (RLS) adaptation [17] and 

adaptive noise cancellation [18]. 

Conventional adaptive filtering theory posits that the steady state weights for 

LMS equalizers converge to the corresponding Wiener weights. Ikuma, Beex, and Zeidler 

[19] derived a closed form expression for the mean of the LMS weight vectors in steady 

state. The expression was derived from the Butterweck expansion of the weight update 
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equation [20]. Simulation results were in conformity with the analytical results for all 

step-sizes where the expansion converges. In a subsequent work [21], it was shown that 

the analytical solution holds true over a wide range of ISR. 

Reuter and Zeidler [12] first proposed a transfer function based approach to 

quantify the MSE performance of LMS equalizers. The results were inaccurate since the 

model assumed that the mean of the LMS weights in steady state converged to the 

corresponding Wiener weights which as shown in [19, 21] is not true. Hence, the Reuter-

Zeidler model for the MSE was not an accurate one. Ikuma and Beex [22] incorporate the 

shift in the mean of the steady state weights and proposed a new model for MSE. 

Simulation results illustrate the improvement of the new model over the previous Reuter-

Zeidler model. The derivations for the mean LMS weights in steady state and the 

improved MSE model have been excellently documented [23]. 

In this thesis, we are interested in formulating a model predicting the Bit Error 

Rate (BER) behavior of the adaptive LMS equalizers in an environment contaminated by 

a strong narrowband interference. The BER serves as a more practical metric to measure 

the performance of a digital communication system than MSE. Surprisingly, very little 

literature exists which deals with this particular topic. 

North, Axford, and Zeidler [10] compared the performances of different adaptive 

equalizers in terms of probability of error. However, the error probability was computed 

via simulation and no model was proposed.  

Prior to this, Iltis and Milstein [24] provided a statistical analysis of the LMS 

algorithm where the adaptive filter was used to suppress a fading gone jammer. The work 

provided a BER model which inherently assumes slow convergence (i.e. a near Wiener 

case) and a large equalizer length. In this thesis, we are primarily interested in large step 

sizes where the non-Wiener characteristics are predominant. A Gaussian BER approach 

was also adopted [25]. However, no simulation results were provided to support the 

claims. 



 5 

Coulson [26] investigates the effect of narrowband interference on OFDM 

systems. An analytical Gaussian model is provided to gauge the effect of the narrowband 

interference on receiver post detection BER performance. However, no analytical model 

is put forward to estimate the BER post interference suppression. Instead a heuristic 

method to estimate the BER is provided where the latter is simply the ensemble median 

of the simulation results. 

1.3 Contributions 

The primary contribution of this thesis is analyzing the superior BER performance 

of the LMS equalizer compared to its Wiener counterpart. There has been very little work 

in the area of developing BER models, as reviewed in Section 1.2. This thesis attempts to 

explain the reason behind the superior BER performance and proposes models that will 

estimate or model the BER performance of an LMS equalizer in a narrowband 

interference dominated environment. 

Secondly, this thesis presents a model to describe the BER performance of the 

Wiener equalizer operating in a narrowband interference dominated environment. 

Simulation results show that the model is very accurate over a wide range of SNR and 

SIR. This Wiener BER model provides a benchmark for comparing the BER performance 

of the LMS equalizer. This model also highlights the significant difference between the 

adaptive and the fixed case thereby helping us in gaining a better understanding of the 

non-Wiener behavior of the LMS equalizers. 

1.4 Organization 

The thesis is comprised of three main chapters. Before analyzing the adaptive 

case, we analyze the BER performance of the Wiener filter in an environment dominated 

by narrowband interference in Chapter 2. The chapter includes a detailed derivation of 

the BER model and simulation results. In Chapter 3, a BER model similar to the one 

proposed in Chapter 2 is applied to the adaptive NLMS case. Simulation results and a 



 6 

detailed discussion analyzing the results are provided. Chapter 4 contains a new BER 

model for the adaptive NLMS case. Simulations showing the comparison of the different 

models are provided, followed by a discussion. Finally, concluding remarks and future 

directions are provided in Chapter 5. 
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CHAPTER 2 BER MODELING FOR FIR WIENER 

EQUALIZER 

Wiener Filtering theory provides the analytical expression for the Mean Square 

Error (MSE). However, for practical communication systems Bit Error Rate (BER) is 

frequently used as a metric for system performance as well as an indicator of Quality of 

Service (QoS). While mean squared error (MSE) is assumed to relate to bit error rate 

(BER), the connection between the two performance metrics is not necessarily a direct 

one when the detector output noise is not Gaussian. We show that BER can be increasing 

for increasing signal power (or decreasing noise power) even though MSE is decreasing; 

this occurrence is counter-intuitive. The expression for the BER when the receiver output 

is Gaussian is pretty well known. In this chapter we consider a system which is corrupted 

by narrowband interference and then proceed towards developing statistical model(s) 

which can predict the BER of the system. The performance of the models is compared to 

simulation results. 

2.1 FIR Wiener Equalizer 

Figure 2-1 shows the block diagram of the system under consideration. The 

symbols transmitted at time instant n are denoted by nd , while ni   and  nn   respectively 

denote the sinusoidal interference and the zero-mean AWGN (additive, white, Gaussian 

noise). Thus, the input process to the Wiener equalizer is given by: 

 n n n nx d i n     (2.1) 

which is seen to be a summation of three independent wide sense stationary (WSS) 

processes. 
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Figure 2-1. Block Diagram of the Wiener Equalizer System. 

Let  1 2

T

Lw w ww  be the vector of FIR Wiener filter weights, and 

 1 1

T

n n n n Lx x x  x  be the vector input to the Wiener filter at time n; with T 

denoting the transpose operator. The output of the Wiener filter at time n is then given 

by: 

 

n n

n n n

d i n

n n n

y

y y y





  

H

H H H

w x

w d + w i + w n   (2.2) 

where H denotes the Hermitian transpose operator, and the other definitions follow the 

vector convention above. The FIR Wiener filter is found by solving the Wiener-Hopf 

equation [11] 

 xR w p   (2.3) 

with the definitions:  nE H

x nR x x  and  n nE d

p x . The resulting minimum MSE is 

then given by [11] 

 2 H

dMMSE  w p   (2.4) 

From (2.3) we can see that in the narrowband interference canceling environment, 

the FIR Wiener weights will be dependent on the fractional interference frequency if  as 

the term xR  is a function of if  which is later shown in Section 2.4. 

Receiver Channel 
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Equalizer 
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Device 
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nn
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2.2 Gaussian Mixture Model 

To evaluate BER performance, the PDF of ny  conditioned on nd  (usually 

 1 2L   , the “center” of equalization, but the point of equalization can actually be 

any value/location) is needed for each of the possible symbol values the latter can take 

on. As a result of independence, and the Wiener filter being linear time invariant (LTI), 

the right-hand side components in (2.2) can be evaluated separately in terms of the 

corresponding mean and variance.    

2.2.1 Conditional PDF of n

ny    

The AWGN is independent of the symbol sequence and the interference, so that 

this output component does not depend on the conditioning symbol. A linear combination 

of independent Gaussian random variables produces a Gaussian random variable [27]. So 

in order to completely describe the PDF of n

ny   we need to evaluate its mean and 

variance. Note that, as we are working at baseband, the zero-mean AWGN is assumed to 

be circularly symmetric, with real and imaginary parts that are independent and 

identically distributed. 

The mean of n

ny   is derived in (2.5): 

 

   

 

1

1

1

0

n

n n

L

i n i

i

L

i i

i

E y E

E w n

w E n



 









 
  

 

 





H
w n

  (2.5) 

 

 

and the variance of n

ny  is derived in (2.6): 
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






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















H

2

2

w n

w

  (2.6) 

where 2

n   is the input noise power and 
2

. denotes the Euclidean norm. As a result, the 

PDF of n

ny   is given by: 

  2~ ,n

n ny CN 
2

2
0 w   (2.7) 

where, 2~ ( ,2 )CN      indicates that   is a complex normal random variable, or a real 

vector random variable with mean 
  
  

Re

Im

E

E






 
  
  

 and covariance 

2

2

0

0





 
 
 

 . 

2.2.2 Conditional PDF of d

ny   

Let the modulation scheme have M   symbols denoted by  
M

1m m



 , so that the 

conditional PDF of interest is  d

n n mf y d    . Note that this fixes the “equalization-

point” component in nd , which is multiplied by the corresponding element of the weight 

vector, say w , while the   L-1 remaining terms in (2.8) produce a sum of random 

variables, i.e.   
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The first term on the right-hand-side is deterministic, while the symbols under the 

sum are random and independent. In addition assuming a modulation scheme such that 

the mean of all possibilities in the constellation is zero, we can then evaluate mean: 
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  (2.9) 

The variance can be computed by: 
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where 
2

   is the symbol power. Each of the terms under the sum in (2.8) contributes a 

PDF (actually a PMF or probability mass function) corresponding to a symbol 

constellation that is rotated and scaled, by 
iw  given by: 

  
1

1
~

M

l k l m

m

w x w
M

  


   (2.11) 

The various terms under the sum in (2.8) are independent, so that the overall PMF 

is given by the convolution of the various PMFs of the form in (2.11). The resulting 

conditional PDF is therefore: 
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  (2.12) 

Figure 2-2 shows an example to illustrate the PDF described in (2.12). For our 

example we used the QPSK modulation scheme so that 4M  . The filter length L is 

taken to be 3 and the interference frequency 1if e . The PDF has 1 16LM    discrete 

values which are equally likely. This result is consistent with (2.12). 

 

Figure 2-2. Output Constellation Map for QPSK with L = 3 and  fi =1/e . 
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2.2.3 Conditional PDF of i

ny    

The additive zero-mean sinusoidal interference is given by: 

 ( )ij n

n ii e
  

   (2.13) 

where 2

i  is the average power, 2i if   is the fractional angular frequency, and   is 

the random phase.   is uniformly distributed in the interval [0,2 )  radians but is fixed 

for each realization. The random phase makes it a WSS process [27]. 

The interference is independent of the transmitted symbol sequence. The 

interference process described in (2.13) follows an Arc-Sine distribution [27] and thus the 

PDF of i

ny   also follows the same distribution as a LTI system (in this case FIR Wiener 

equalizer) only shifts and scales the input sinusoid. However, for ease of analysis we will 

assume that the latter follows a Gaussian distribution. The implications of this 

assumption will be discussed in Section 2.4. 

Under the assumption that i

ny  follows a Gaussian distribution we need to find the 

mean and the variance to describe the PDF completely. 

The mean of i

ny  is derived in (2.14):  
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  (2.14) 

and the variance of i

ny  is derived in (2.15): 
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  (2.15) 

with the definitions: 02 ij n

i e
 H

i
R ξξ  and ( 1)

[1 ]i ij j M Te e
   

ξ . 
i

R  is the auto-

correlation matrix for the input sinusoidal process. 

Thus, the PDF of the interference component process i

ny  is given by: 

  ~ ,i

ny CN H

i0 w R w   (2.16) 

The Wiener filter aims to minimize MSE. Thus in an interference dominated 

environment (large interference to signal ratio (ISR)) the interference gets pretty much 

canceled, because it provides the largest contribution to MSE. As a result, the residual 

interference component i

ny  is negligible in comparison with the other two components 

contributing to the Wiener filter output. Under such conditions, the variance computed in 

(2.15) can be neglected. 

2.2.4 Conditional PDF of ny    

The noise component, the signal component, and the interference component of 

the LTI Wiener filter output are independent, so that the overall conditional PDF of ny   is 

the convolution of the corresponding PDFs, i.e. the convolution of the results in (2.7), 

(2.12), (2.16) which is a Gaussian Mixture (GSM) model. 
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  (2.17) 

For an interference dominated environment the GM model is written without 

taking into account the contribution from the interference component. 
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  (2.18) 

Based on the conditional PDF model in (2.17) or (2.18), we can calculate the 

probability of bit-error by evaluating the volume enclosed by the complex normal 

distribution in the regions corresponding to a bit error. The regions are determined by the 

modulation scheme used and the choice of decision boundaries. 

For example, for the QPSK modulation scheme as used in the subsequent 

simulations, a received symbol is detected as a first quadrant symbol if both the in-phase 

and quadrature component are positive. If the transmitted symbol is in the first quadrant 

the probability of bit error ( eP ) is evaluated by computing the volume enclosed by each 

of the complex normal distributions in (2.17) in the second, third, and fourth quadrant. 

The volume enclosed in the third quadrant is multiplied by 2 (as the third quadrant 

implies that both bits are in error) before being added to the contributions from the 

second and fourth quadrant. Then that final sum is divided by the factor 1LM    which is 

the probability associated with each of the terms in the GM model. 

2.3  Gaussian Model 

To improve the BER performance of a communication system, longer equalizers 

are generally used. With an increase in the length of the equalizer the number of discrete 
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points in  d

n n mf y d     increases exponentially as the number of points in the output 

constellation is given by 1LM  . As a result, the number of individual Gaussians in (2.16) 

or (2.17) also increases. Therefore the Gaussian sum model becomes computationally 

expensive. 

Figure 2-3 shows the output constellation for an equalizer length of  L = 10, 

which gives rise to 262,144 Gaussian distribution terms compared to 16 terms for L = 3 

(shown in Figure 2-2). While there are clearly non-Gaussian features, it seems reasonable 

to approximate this fairly circular probability mass with its best Gaussian fit. So for 

larger values of L we propose an approximated version of the Gaussian Mixture model, 

consisting of a single Gaussian term. 

 

Figure 2-3. Output Constellation for QPSK with L = 10 and  fi =1/e . 

2.3.1 Conditional PDF of   

The Gaussian model assumes the PDF of the conditional output  n n mf y d     

to follow a Gaussian distribution. The mean of this distribution is the same as that derived 

ny
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in (2.9) and the variance is given by the sum of the variances described in (2.7), (2.10) 

and (2.15). Thus, the Gaussian model PDF is given by: 
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2 H
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w w R w   (2.19) 

Following arguments as for the GM model, for an interference dominated 

environment we can neglect the interference component and (2.19) can be re-written as: 
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1
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l
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2

2
w   (2.20) 

We use the PDF characterized in (2.20) to then model the probability of bit error 

for the Gaussian model. 

2.4 Frequency Effect 

The frequency of the interference signal evaluated from (2.3) impacts system 

performance. A change in interference frequency alters the Wiener weights. The changed 

Wiener weights in turn will affect the output constellation. To show this we use similar 

conditions used to generate Figure 2-2 only changing the interference frequency from 

1/ e  to 1/ 4e .  

With the change in interference frequency we see a rotation in the output 

constellation. However, the number of discrete points is still 1 16LM   . This result is 

also consistent with (2.12). 
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Figure 2-4. Output Constellation Map for QPSK with L = 3 and fi =1/4e. 
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Figure 2-5. MSE performance for L = 3. 

It is to be noted that for all cases the MSE performance is monotonically 

decreasing with a decrease in noise power; behavior one might reasonably expect. The 

observed MSE values are from simulation results, averaging the results from 1000 

independent realizations of 10,000 QPSK symbols each. The observed MSE behave as 

predicted by (2.4). 

The scenario when there is no interference is the same as an AWGN channel. For 

a QPSK system the theoretical expression for eP   in the AWGN channel is given by [1]: 
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where 
21

( ) exp
22 x

u
Q x du




 

  
 

  which calculates the tail probability of a Gaussian 

distribution. 
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Figure 2-6 shows eP , the probability of bit-error performance, for the same system 

when there is no interference and when ISR = 20 dB and 1if e .  

 

Figure 2-6. Pe performance for L = 3 under no interference and for ISR = 20 dB and fi =1/e. 
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simulation, in the same way the observed MSE results were generated for Figure 2-5 

earlier.  

 

Figure 2-7. BER performance for L = 3 and ISR = 20 dB. 
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associated with the COG outside of the first quadrant (there are four of these) becomes 

concentrated outside of the first quadrant. The latter causes the BER to then increase and 

eventually saturate at the fraction of the number of COG outside the first quadrant 

relative to the total number of COG. For 3L    and  1if e  that saturation BER is 

(4/32=) 0.125 (or -0.9031 dB), while for 3L    and 1/ 4if e   that saturation BER is 

(2/32=) 0.0625 (or -1.204 dB). As seen in Figure 2-7, SNR needs to be higher to reach 

the latter limiting BER, which is understandable from the output constellation in Figure 

2-4, since some of the constellation points are very close to a decision boundary 

(requiring tighter concentration of the probability mass at those COG before the limiting 

BER is reached). 

In Figure 2-7 the performance predicted by the Gaussian model described in 

(2.20) was shown for the L = 3 case. Figure 2-8 shows the BER performance of the same 

system under the same strong narrowband interference (ISR = 20 dB), for 1if e , but 

now the equalizer length L is set to 10. 

 

Figure 2-8. BER performance for L = 10 with ISR = 20 dB and  fi =1/e. 
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While not shown in Figure 2-8, the same experiment was performed also for the 

different interference frequency 1 4if e ; the results were completely indistinguishable 

from those in Figure 2-8. 

For L = 3 we saw (in Figure 2-7) that the Gaussian model provided less accurate 

results than the Gaussian Mixture model, especially at higher SNR. The actual BER 

performance was over-estimated by the Gaussian model over most of the SNR range. For 

L = 10 (in Figure 2-8) we see that the prediction of the Gaussian model is now under-

estimating actual BER performance but it is much closer to the observed values based on 

simulation. In fact, for the most practical range of SNR values, Eb/N0 below 15 dB, the 

Gaussian model is a reasonably good one for the narrowband interference dominated 

environment. Observe that the Gaussian sum model provides very accurate results; 

however, we note that this accuracy comes at the expense of a considerably increased 

computational burden. 

The BER saturation effect is still observed for L = 10, it just happens at a lower 

level. For larger equalizers the estimation of the narrowband interference gets better, but 

the residual interference power starts to act as a limiting factor on performance as SNR 

becomes very large. 

For all the above results we have used (2.18) for the GM model and (2.20) for the 

Gaussian model. Neither of these models considers the effect of the residual interference 

in the output. This approximation works to a large extent as long as ISR is high. However 

with a decrease in ISR level, the models in (2.18) and (2.20) tend to deviate from the 

observed values. 

To illustrate this limitation of the GM and Gaussian models described 

respectively in (2.18) and (2.20) we perform the same simulations as earlier but now with 

ISR = 5 db. Figure 2-9 shows the result for L = 3 and 1if e . 
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Figure 2-9. BER performance for L = 3 with ISR = 5 dB and fi =1/e. 
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performance. Simulation Environment identical to the one used to generate Figure 2-7 

was used in this case, only difference being ISR was set to 5 dB instead of 20 dB. 

 

Figure 2-10. BER performance for L = 3 with ISR = 5 dB and fi =1/e with the improved model. 
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sufficiently Gaussian characteristic and hence the BER predicted by the Gaussian model 

is quite close to the observed value. 

2.6 Summary 

We have shown that the BER performance of a Wiener equalizer based digital 

communication system – when operating in a narrowband interference dominated 

environment – does not always follow along with the MSE performance. The BER 

performance of the system can be predicted accurately using the Gaussian sum model 

that was proposed. For practical considerations where larger equalizer filters are used, the 

Gaussian Mixture model can be approximated using a Gaussian model which is then 

much more efficient computationally. 
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CHAPTER 3 BER MODELING FOR ADAPTIVE (N)LMS 

EQUALIZER USING STEADY STATE WEIGHTS 

In the previous chapter we discussed at length BER models that can be used to 

predict the BER of a communications system which uses a Wiener Equalizer. In order to 

find the optimum Wiener Weights we need to know the signal statistics of all the signals 

involved. This information may not be available in a practical situation. For this reason 

adaptive equalizers are often used instead of the Wiener equalizer. In this chapter, we 

investigate the BER performance of the Least Mean Square (LMS) class of adaptive 

equalizers for an environment which is dominated by narrowband interference. 

The chapter begins by motivating the topic where simulation results are used to 

highlight the superior performance of an adaptive equalizer over its Wiener counterpart. 

Then we take a detour and define some terms related to LMS equalizers. A model is 

proposed that describes the BER performance of the adaptive equalizer followed by 

simulation results. The results are then analyzed highlighting the contrast between the 

two cases – the Wiener and the adaptive equalizers.  

3.1 Motivation 

The FIR Wiener Filter is considered to be the optimal solution given that we 

know the signal statistics of all the signals involved. The primary argument behind opting 

for adaptive filters is their ease of implementation since they do not need any prior 

knowledge of the signals involved. So even at the cost of sub-optimal performance 

practical systems often prefer an adaptive equalizer over the optimal Wiener one. 

In an environment dominated by narrowband interference, non-Wiener effects are 

observed when using LMS equalizers. Figure – 3.1 shows the comparison between an 

adaptive (N)LMS equalizer and a fixed FIR Wiener equalizer in terms of Mean Square 

Error (MSE) as a function of the normalized step size (  ). We simulated an environment 
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which had a Gaussian white noise (SNR = 25 dB) and a narrowband interference 

simulated by a tone having a fractional frequency of 1/if e  with ISR = 20 dB. For both 

of these cases, the length of the equalizer was set to 5L  . 

 

Figure 3-1. Comparison between NLMS and Wiener Equalizers in terms of Mean Square Error 

(MSE). 
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Figure 3-2. Comparison between NLMS Equalizer and Wiener Equalizer in terms of Bit Error 

Rate (BER). 

From Figure 3-2 we see that a 2 dB improvement in the MSE results in an 

improvement of 2 orders of magnitude in BER. These simulation results point out that the 

(N)LMS class of equalizers is not only simpler to implement, they are also performing 

substantially better than their Wiener counterpart – both in terms of MSE and BER.  

There are a couple of interesting observations from Figures 3-1 and 3-2. 
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We observe here that the adaptive equalizer performs optimally both in terms of MSE 

and BER for large step sizes ( 0.7  ). We also notice that the optimal performance in 

terms of MSE and BER occurs at different step-sizes. The adaptive equalizer delivers the 

optimal performance in terms of MSE for 0.7  , whereas the optimal performance in 

terms of BER is observed for 1  . This is similar to what we observed in the previous 

chapter, in that MSE and BER were not following the same trend.  
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So we see that the adaptive equalizer outperforms the Wiener equalizer in terms 

of BER and MSE. The main aim of this work is to find a mathematical model which will 

accurately describe the BER performance of the adaptive equalizer. 

3.2 Adaptive (N)LMS Equalizers: Update Equations & Steady State 

Weights 

Figure 3-3 shows a block diagram of an adaptive equalizer. 

 

Figure 3-3. Block Diagram of an Adaptive Equalizer. 

All the input signals shown in this block diagram are identical to the ones that 

were depicted in the block diagram for the Wiener Case in Figure 2-1. The only 

difference is the error signal at the n-th instant denoted by ne  and defined as follows: 

 n n ne d y    (3.1) 

3.2.1  Update Equation 

The error feedback is utilized to update the filter weights at each instant. The 

update equation for the Normalized Least Mean Square (NLMS) is given by [11]: 

- 

Receiver Channel 

  
(N)LMS 

Equalizer 

Decision 

Device 
nd

nn
ni

nx ny ˆ
nd
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 *

2 ne
a


 


n+1 n n

n

w w x
x

  (3.2) 

where 
nw  is the filter weight vector at the n-th instant and a  is the regularization 

parameter. The regularization parameter is present to ensure that we do not run into a 

division by a very small number – a situation which may arise if the input energy of the 

tapped delay line is (temporarily) small, i.e. 
2

0nx .  

3.2.2  Steady State Weights 

For most applications, the LMS algorithm converges to match the performance of 

the corresponding optimal Wiener Filter. The steady state weights of the adaptive filters 

also converge to the corresponding Wiener weights. In the case of an environment 

dominated by a narrowband interference however, we see the non-Wiener characteristics 

of LMS equalizers and the steady state (N)LMS weights have been shown  not to 

converge to the corresponding Wiener weights. 

A closed form expression of the steady state NLMS weights is given below [19, 

21]:  

 ( )  
ss

w p w   (3.3) 

where,  

 

 

2

2 2

0 0 1 0 0

n

T








 




Δp

  (3.4) 

The vector Δ
p  is of length L  and has   zeros before 1. As explained in Chapter 2,   is 

the center of equalization. Following the same notation as in Chapter 2, 
2

  and 2

n  

respectively denote the signal power and the noise power. 
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The remaining term in (3.3), w  is defined as – 

 -1 1

2 2
( )

( )
w

n iL



 

 


x
w I R Q w   (3.5) 

where I  is the identity matrix of size L L ,  H

n nExR x x , 2

i  is the interference 

power, and Q  is given by:  

 
1

2 2 1

1

i

L
j kk k

n i

k

L e
  


 



 Q Z   (3.6) 

where Z is a unit lower triangular Toeplitz matrix where all the non-zero elements are set 

to 1, max1   , 
2 2 2

max i nL       , and 
w

w  is the corresponding Wiener weight 

vector.  

It is clear from (3.3) and (3.5) that if 0   the steady state NLMS weight vector 

ss
w  is the same as the Wiener weight vector w

w . This result is consistent with our 

intuition since 0   implies a fixed filter and for that case the Wiener filter is indeed the 

optimal solution. 

3.3  Gaussian Mixture using Steady State Weights Model 

With the basic definitions and notations in place, we try to find a model that will 

accurately determine the BER performance of a digital communications system that has 

an adaptive LMS equalizer. As an initial model we propose a Gaussian Sum Model 

(GSM) similar to the one proposed in (2.17). The only difference between the two cases 

is the fact that instead of using the Wiener weights we use the steady state NLMS 

weights. 

The conditional PDF  n n mf y d    for an interference dominated environment 

is expressed by: 
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w

  (3.7) 

The deduction is exactly similar to the one shown in Section 2.2. This model is termed 

the Gaussian Mixture using Steady State Weights (GMSSW) model to differentiate it 

from the GM model introduced in Section 2.2.  

From (3.7), we find the BER estimate for the system by evaluating the volume 

enclosed by the complex normal distribution in the regions corresponding to a bit error. 

The regions are determined by the appropriate decision rules.  

3.4  Simulation Results 

For simulation purposes, we use a digital communication symbol which uses a 

QPSK modulation scheme, i.e. nd  are QPSK symbols, which implies 4M  . The 

narrowband interference signal is represented by a complex sinusoid, as in (2.12).  

With this environment, we proceed to compare the performance of our model 

with the simulated results. The simulated results were generated taking the ensemble 

average of 100 independent realizations with 100,000 independent symbols generated for 

each realization. Figure 3-4 shows a comparison of the simulated BER with the 

theoretical BER calculated by (3.7) as a function of   . The equalizer length L  is taken 

to be 3 with SNR = 25 dB, ISR = 20 dB, and 1/if e . 
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Figure 3-4. Comparison between observed and theoretical GMSSW model BER for L = 5 as a 

function of µ. 

From Figure 3-4 we see that the model is unable to capture the BER performance 

of the system. The model in fact produces a different trend, i.e. it is monotonically 

increasing with an increase in step size whereas the observed values show a decrease in 

BER for  0 1  , with a subsequent increase.  

Figure 3-5 shows the comparison of observed and theoretical BER (GMSSW 

model) as a function of SNR. A step size of 1   is chosen and all the other parameters 

are kept the same as before. 

We clearly see that the GMSSW model is unable to track the BER for a varying 

SNR. The model in this case predicts a decreasing trend but the rate of decrease is much 

slower than what is actually observed.  

Although the model is inaccurate, it is worthwhile to investigate why the model did 

not work in spite of the fact that it worked very well in the case of a fixed Wiener 

equalizer, as shown in Figures 2-7 and 2-8. In the next section we will analyze the results 
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thoroughly in order to come up with an explanation for the reasons underlying the failure 

of the GM model in the adaptive case. 

  

Figure 3-5. Comparison between observed and theoretical GMSSW BER for L = 5 as a function of 

SNR. 

3.5  Discussions 

The output ny  of the equalizer at any instant can be thought of as a result of 

summing three components – the desired signal component d

ny , the noise component n

ny  

and the interference component i

ny . We can then write: 

 

n n

n n n

d i n

n n n

y

y y y
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H

n

H H H

n n n

w x

w d + w i + w n   (3.8) 

It is to be noted here that this equation looks similar to (2.2). However, the 

systems in the two cases are entirely different. A fixed Wiener filter is an LTI system, 
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while the adaptive filter is a time varying system. However, even for the time varying 

filter at each instant the output can be thought of as being a summation of these three 

components. The idea is similar to the one that we adopted while deriving GM model in 

Section 2.2. We will investigate each component separately and try to gauge how they are 

interacting.  

For illustrative purposes, we take the equalizer length 3L  . For a QPSK system 

with 4M  , the number of conditional output constellation points should be 1 16LM   . 

A higher value of L  will result in an enormous number of constellation points and it will 

be difficult to visualize. 

Figures 3-6 (a-d) shows the conditional output constellation map |d

n n my d    

for four different step sizes  0,0.1,0.5,1  . We generated 10,000 independent QPSK 

symbols with SNR = 25 dB, ISR = 20 dB, and 1/if e . For this figure we are 

conditioning on the symbol of the QPSK modulation scheme that occurs in the first 

quadrant. 

Figure 3-6 points out a few interesting things. Figure 3-6 (a) is the Wiener case 

and it is identical to Figure 2-2, which is as expected. This also provides us with a sanity 

check that if the normalized step size 0   the steady state NLMS weights indeed 

converge to the Wiener weights. Figure 3-6 (b) shows sixteen blobs roughly centered 

around the output constellation points shown in Figure 3-6 (a). This is also expected since 

the blobs signify that there are minor deviations from the steady state values.  

Figure 3-6 (c) shows that there are twelve blobs. Although this looks like a 

deviation from the number of output constellation points predicted by the GMSSW 

model, actually we can see from the Figure 3-6 (c) there are four instances where a pair 

of blobs converged to become a single one. Figure 3-6 (d) further corroborates this point. 

From Figure 3-6 we can conclude that at higher step sizes non-Wiener effects 

play a dominating part. The output constellation map is similar to the one predicted by 
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GMSSW model although for higher step sizes two blobs can merge to form a single one. 

It also shows that the step size   has a significant effect on the output constellation map. 

 

(a) µ = 0 (Wiener Filter) 

 

(b) µ = 0.1 

 

(c) µ = 0.5 

 

(d) µ = 1 

Figure 3-6. Conditional output constellation map for L = 3 for four different step sizes. 

Figures 3-7 (a-d) shows the noise component for the same step sizes as in Figure 

3-6. We notice that the noise component is independent of the step size. This indicates 

the conditional PDF for the noise component, i.e. ( | )n

n n mf y d    is the same as the one 

described in (2.7) with the Wiener weights w  replaced by the steady state NLMS 

weights ss
w  . 
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(a) µ = 0 (Wiener Filter) 

 

(b) µ = 0.1 

 

(c) µ = 0.5 

 

(d) µ = 1 

Figure 3-7. Conditional output noise component for L = 3 for four different step sizes. 

Figures 3-8 (a-d) shows the conditional output interference component for the same 

setup. Figure 3-8 (a) shows the Wiener filter case where the output is a complex sinusoid. 

This result is consistent with the fact that the Wiener filter is a LTI system and a complex 

sinusoid in the input will produce a scaled and shifted version at the output. It is to be 

noted that the magnitude of the sinusoid at the output is extremely small, compared to the 

input sinusoidal power, 20 dB in this case, which implies that the Wiener filter is 

successfully suppressing the interference. 
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(a) µ = 0 (Wiener Filter 

 

(b) µ = 0.1 

 

(c) µ = 0.5 

 

(d) µ = 1 

Figure 3-8. Conditional output interference component for L = 3 for four different step sizes. 

Figure 3-8 (b) shows the output interference component when the step size 

0.1  . By comparing Figure 3-8 (b) with Figure 3-8 (a) we clearly see that the output 

conditional PDF is different in each case. We also note that the variance of the 

interference component in Figure 3-8 (b) is now substantially higher than in Figure 3-8 

(a). 

Figures 3-8 (c) and 3-8 (d) further provide us with the contrast in the output 

interference component compared to Figure 3-8 (a). We notice similar trends – the output 
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is not a complex sinusoid as was the case with the Wiener filter and the variance is 

substantially higher. We can conclude that the interference component is also 

significantly different in the case of an adaptive filter than what it was with a fixed filter. 

GM model neglects the interference component at the output. That assumption 

worked well in the fixed case since, for high ISR cases, the interference component is 

practically negligible. However, we can clearly see from Figures 3-8 (b-d) that the 

interference component for the adaptive case is not at all negligible. The variance as seen 

in Figures 3-8 (c-d) is relatively high considering that 
2 1  . This points to a 

shortcoming of the GMSSW model. 

Figures 3-9 (a-d) show the conditional output |n n my d   . Figure 3-9 (a) shows 

the output corresponding to the Wiener filter. Once again this is consistent with the 

results that we have seen in Chapter 2. The Gaussian Mixture model was successful in 

describing this since the output was simply a summation of sixteen Gaussian variables 

centered at different output constellation mapping points shown in Figure 3-6 (a). The 

variance of each of those Gaussian distributions is the same as the variance of the noise 

shown in Figure 3-7 (a). 

Figure 3-9 (b) shows the conditional output for a step size 0.1  . We cannot 

isolate the centers as we were able to do in Figure 3-9 (a). In Figures 3-9 (c) and (d) we 

observe similar trends where we are not able to discern individual centers. The 

assumption that worked in favor of GMSSW model for Figure 3-9 (a) no longer hold true 

for Figures 3-9 (b-d). The output components are no longer independent of each other 

which implies that the conditional PDF |n n my d    does not result from the 

convolution of the three constituent PDFs, to wit ( | )n

n n mf y d   , ( | )d

n n mf y d    and 

( | )i

n n mf y d   . As a result, the GMSSW model is unable to capture the non-Wiener 

effects for higher step sizes. The interaction between the output components is discussed 

in the remainder of this chapter. 
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(a) µ = 0 (Wiener Filter) 

 

(b) µ = 0.1 

 

(c) µ = 0.5 

 

(d) µ = 1 

Figure 3-9. Conditional output component for L = 3 for four different step sizes. 

From the simulation results in Figure 3.4 we observed that the BER was 

decreasing with an increase in step-size within a certain range  0 1  . From Figures 

3-9 (b-d) we observed that the variance of the interference component is increasing as we 

increase the step size from 0 to 0.1 and then to 0.5 and finally to 1. These two phenomena 

seem counter intuitive as a higher variance of the interference component indicates that 

the interference was not successfully mitigated and hence should result in a poorer BER 

performance. However, we observe the opposite, i.e. an increase in the variance of the 

interference component results in the decrease of BER.  
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We now investigate this case in detail. Figure 3-10 shows the conditional output 

constellation (for an equalizer of length 5L  ) with the three colored points denoting 

three points which are in the wrong quadrant (since we are conditioning on the first 

quadrant symbol). The step size was set to 1  , with SNR = 25 dB, ISR = 20 dB, and

1/if e . 

 

Figure 3-10. Conditional output constellation highlighting three error points. 

Figure 3-11 shows the corresponding conditional interference component. The 

three colored points correspond to the points which were in the wrong quadrant in Figure 

3-10. We notice an interesting trend by observing Figures 3-10 and 3-11. If we consider 

the blue point in Figure 3-10 we see that the point is in the second quadrant. In order to 

shift it to the correct quadrant we need to add a term which has a positive real part. The 

corresponding interference component in Figure 3-11 has a positive real part and thus it 

pushes the blue point in Figure 3-10 into the correct quadrant. Similarly the black and the 

red points needed a term with a positive imaginary part. The corresponding interference 

component provides exactly that and shifts them into the correct quadrant.  
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Figure 3-11. Conditional interference component highlighting the points corresponding to the three 

wrong quadrant points shown in Figure 3-10. 

Figure 3-12 shows the conditional output highlighting the same three points as 

shown in Figures 3-10 and 3-11. We observe that those points which were in the wrong 

quadrant, as shown in Figure 3-10, have been shifted into the correct quadrant. Figure 3-

12 shows that there are points which are in the wrong quadrant and thus will be treated as 

an error. However, this number turns out to be significantly less than the number of 

points in incorrect quadrants in Figure 3-10. 

For example, in this simulation there is a total of 25044 first quadrant symbols, which 

means that in each of Figures 3-10 to 3-12 we have 25044 green points. Among those 

25044 points in Figure 3-10 there are 1390 points which are in wrong quadrants. 

However, from Figure 3-12 we observe that the number of points in the wrong quadrant 

has been reduced to 6 which gives a bit error rate of 4 3.626
2.4 10 10

25044

    . Note 

that the bit error rate observed for a step size of 1   is 4 3.721.9 10 10    as shown in 

Figure 3-4. These two results are statistically consistent. Figures 3-10 to 3-12 indicate 

that the adaptive (N)LMS equalizer exploits the narrowband interference to its advantage 
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and outperforms the corresponding Wiener equalizer which only tries to mitigate the 

interference in a Mean Square Error sense. 

 

Figure 3-12. Conditional output highlighting the points corresponding to the three wrong quadrant 

points shown in Figure 3.10. 

3.6  Summary 

In this chapter, we introduced a BER model – termed GMSSW – which was 

similar to the one that we used for the fixed Wiener filter. Although the GM model 

worked well for the Wiener filter, simulation results showed that GM model was not 

accurate for the adaptive NLMS case. We investigated the reasons for its failure and 

highlighted the differences between the Wiener and the adaptive case. We also put forth a 

plausible explanation behind the superior BER performance of the NLMS equalizer over 

the Wiener equalizer.  
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CHAPTER 4 BER MODELING FOR ADAPTIVE (N)LMS 

EQUALIZER USING MEAN SQUARE ERROR 

In the previous chapter we introduced a BER model which uses the steady state 

weights for the (N)LMS equalizer and termed it the GMSSW model. We observed that 

the model was inadequate as it failed to capture the non-Wiener characteristics of the 

(N)LMS equalizer. In this chapter we propose a different model towards more accurate 

estimation of BER. 

The chapter is organized as follows. We start by stating the expression for the 

steady state error for a (N)LMS equalizer in an environment dominated by a narrowband 

interference followed by our proposed model. The performance of the model is compared 

to observed values as well as with our previous GMSSW model in the next section and 

the results is analyzed in the final section.  

4.1  Steady State Mean Square Error for (N)LMS Equalizer 

For the Wiener equalizer, the closed form expression of MSE is well known (2.4). 

In fact, the MSE for the Wiener equalizer is termed the minimum MSE (MMSE) since it 

was the optimal solution. From Figure 3-1, we can clearly see that the NLMS equalizer 

outperforms the Wiener equalizer in terms of MSE. As explained in Section 3.2.2, for a 

narrowband interference dominated environment the steady state NLMS weights do not 

converge to the Wiener solution.  

However, in an environment dominated by narrowband interference the MSE 

performance is better than for the Wiener filter, i.e. MSE can converge to less than the 

corresponding MSE for the Wiener filter. The closed form expression for the steady state 

MSE for a narrowband interference cancelling NLMS equalizer is given in [22] 
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The MSE expression given in (4.1) models the non-Wiener characteristics of the NLMS 

equalizer. In the following section we introduce a model which uses this MSE to describe 

the BER behavior of the NLMS equalizer. 

4.2  Gaussian using Mean Square Error Model 

The conditional PDF of interest given by  n n mf y d    fixes the equalization 

point in nx  which is multiplied by the corresponding element in the weight vector 
nw . 

We can write the summation as follows: 
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The processes that enter the equalizer are all zero mean. We also assume that the 

deviation of the weight vector from the steady state value is negligible. Under these two 

assumptions, we approximate the conditional mean of as:  
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Next we assume that  follows a Gaussian distribution, so that we 

need only the mean and the variance to describe it completely. The mean of the 

distribution is already derived in (4.4). For the Wiener filter we were able to assume that 

the output was composed of three independent components and we derived the Gaussian 

Mixture model in Section 2.2. However, when we tried a similar approach – the Gaussian 

Mixture with Steady State Weights model – this did not work very well for the NLMS 

equalizer as described in the previous chapter. This indicates that the assumption of 

independence is not a correct one. We will pursue an alternate approach to estimate the 

conditional variance of . 

The basic definition of MSE is mean of the sum of the error squares where the error 

is the difference between the output and the desired signal. Thus, for N observations, 

MSE can be written as: 
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Our desired signal consists simply of the transmitted symbols. We have a closed 

form estimate of this MSE which is expressed in (4.1). However, J  described in (4.1) is 

centered on the symbol values whereas, our variable of interest is 

 n n mf y d  
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 n n mf y d  

 n n mf y d  
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centered on a shifted mean which is evaluated in (4.4). We compensate for this shift and 

obtain an estimate of the variance which is given by: 

  

    *

n n mVar f y d J        (4.6) 

where *

m ss mw    . 

Combining (4.4) and (4.6) we get the PDF of , which is the 

Gaussian Model using Mean Square Error (GMMSE): 

    * *~ ,n n m ss mf y d CN w J   

     (4.7) 

In the next section, we compare the BER predicted by the GMMSE model with 

the observed values as well as with the BER predicted by the GSMSSW model. 

4.3  Simulation Results 

We use the same simulation scheme as we have used before – in Sections 2.5 and 

3.4 – which makes the transmitted QPSK symbols our desired signal nd  and the 

narrowband interference is represented by a complex sinusoid, as in (2.12). 

Figure 4-1 compares the performance of the GMSE BER model and the GMSSW 

BER model with the observed BER values as a function of  . The equalizer length L  is 

taken to be 5 with SNR = 25 dB, ISR = 20 dB, and 1/if e . 

From Figure 4-1 we see that the GMSE model is able to model the BER behavior 

for low to medium step sizes  0.4  . The performance of the GMSE model is indeed 

better than with the GSMSSW model for that region. However, for larger step sizes, the 

GMSE is not able to capture the non-Wiener characteristics of the NLMS filter. 

 n n mf y d  
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Figure 4-1. Comparison between observed and modeled, GMSSW and GMSE, BER for L = 5 as a 

function of µ. 

Figure 4-2 shows the comparison of observed and modeled BER obtained from 

the GMSSW and GMSE BER models as a function SNR. A step size of 1   is chosen. 

All other parameters, i.e. SNR, ISR and if , are kept the same as those used to generate 

Figure 4-1. 

Figure 4-2 shows that for a SNR less than 15 dB the GMSE modeled BER is quite 

accurate and the performance is significantly better than for the GMSSW model. 

However, for high SNR cases the GMSE model is unable to capture the non-Wiener 

characteristics of the NLMS equalizer. In the next section, we will investigate why the 

GMMSE model is working well for some cases and deteriorating in performance for 

other cases. 
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Figure 4-2. Comparison between observed and modeled, GMSSW and GMSE, BER for L = 5 as a 

function of SNR. 

4.4  Discussion 

We analyze the conditional output for different step sizes with the 

equalizer length set to 3L   . The other parameters of importance are set as follows: 

SNR = 25 dB, ISR = 20 dB, and . Figure 4-3 shows the conditional output 

  for different step sizes. 

From Figure 4-3 (a) we see distinct blobs in the output. The GMSE model for this 

case is not very accurate as we see in Figure 4-1. However, the GMSSW model is able to 

model this pretty effectively. This is not surprising as GMSE tries to replace the 

individual Gaussian components by a single Gaussian; the latter mismatch can certainly 

cause inaccuracies. 
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(a) µ = 0 (Wiener Filter) 

 

(b) µ = 0.3 

 

(c) µ = 0.7 

 

(d) µ = 1 

Figure 4-3. Conditional output component for L = 5 for four different step sizes. 

In Figure 4-3 (b) we notice a distinct difference from the previous case. The 

conditional output no longer seems to consist of distinct blobs. Instead it looks like a 

single Gaussian function. The simulation results corroborate this claim since the GMSE 

model predicts the BER much more accurately than the GMSSW model, and the 

assumption that the output can be represented by a single Gaussian is pretty accurate in 

this case. 

We observe an interesting phenomenon in Figure 4-3 (c). The shape of the output 

component can no longer be claimed to be circular, i.e. equally distributed along both 

axes. We can clearly observe a non-circular behavior for 0.7  . This non-circular 
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behavior is even more prominent in Figure 4-3 (d), where we observe that the output is 

formed by four different clusters. Naturally the assumption of the GMSE model that the 

output can be represented by a single Gaussian is no longer valid, which is reflected in 

the simulation results in Figure 4-1. Thus, from analyzing Figure 4-3, we have some 

insight into why the GMSE model failed to work for higher step sizes. 

Figure 4-4 (a-d) show the output component for different SNR values for an 

equalizer length 3L  , step size 1  , and an ISR = 20 dB. 

 

(a) SNR = 0 dB 

 

(b) SNR = 5 dB 

 

(c) SNR = 15 dB 

 

(d) SNR = 25 dB 

Figure 4-4. Conditional output component for L = 5 for four different SNR. 
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Figures 4-4 (a-b) show that for high SNR values the conditional output 

component can be represented by a single Gaussian. This is because the Gaussian white 

noise power is very high and hence that component dominates in the output. As a result 

we observe in Figure 4.2 that the GMMSE model for BER produces a pretty accurate 

prediction. 

For Figures 4-4 (c-d) we see that the output shows non-circular behavior, just as 

we saw in Figures 4-3 (c-d). As expected, the GMSE model for BER does not provide 

accurate predictions. An interesting thing to note in this context is that in Figures 4-3 (d) 

and 4-4 (d) we observe that the output is composed of four blobs. The number four 

represents the number of possible symbols in a QPSK modulation scheme. Although we 

have observed this behavior, a comprehensive mathematical model explaining why the 

equalizer output behaves the way it does – for high step sizes – is yet to be formulated. 

4.5  Summary 

In this chapter we introduced a new model to estimate the BER for an adaptive 

NLMS equalizer – the GMSE BER model. This model was able to capture the non-

Wiener behavior of the NLMS equalizer for a certain range of step sizes  0.4  .  

However, for higher step sizes, the GMSE model failed to model the non-Wiener 

behavior. At best, we can say that the GMSE model provides us with a very conservative 

upper bound for higher step sizes. 
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CHAPTER 5 CONCLUSIONS 

5.1  Conclusions 

This work focused on the BER characteristics of the adaptive NLMS equalizer in 

an environment where a narrowband sinusoidal interference is dominant. The goal of this 

work was to develop analytical models which can predict the BER performance of such 

an equalizer for the particular scenario.  

We started by deriving the BER model for a Wiener equalizer constrained to have 

the FIR structure, as this is a simple and usual structure for adaptive equalization. Based 

on observations of the behavior of signal components for the case of the FIR Wiener 

equalizer, the Gaussian Mixture (GM) model was hypothesized for the prediction of 

BER. The GM model predicted the BER behavior pretty accurately, but it was 

computationally complex for larger equalizers. To address the latter issue, a 

computationally simple Gaussian model was proposed; potentially sacrificing accuracy of 

BER prediction for computational simplicity. However, for larger equalizers (equalizers 

with a larger number – in the tens – of taps) the accuracy of the model was not affected 

substantially compared to the reduction achieved in computational complexity. 

With the BER model for the FIR Wiener equalizer in place, to serve as a suitable 

benchmark, we proceeded towards developing similar BER models for adaptive NLMS 

equalizers. We introduce the Gaussian Mixture with Steady State Weights model 

(GMSSW) model as a logical extension of the GM model, the only difference being that 

the Wiener weights were replaced by the steady state NLMS weights. The simulation 

performance showed that the GMSSW model is unable to capture the non-Wiener 

characteristics of the adaptive NLMS equalizer. A thorough analysis of individual signal 

components provided insight as to why the GMSSW model failed to work for the 

adaptive case and highlighted the primary difference between the adaptive NLMS 

equalizer and its Wiener counterpart. The residual interference component at the output 

was different in those two cases. While, the Wiener equalizer focused only on mitigating 
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the interference in terms of MSE, the NLMS equalizer actually exploited the narrowband 

interference to its advantage. 

As a result, an improved BER model – the Gaussian using Mean Square Error 

Model (GMSE) – was introduced for the NLMS equalizer, in which the steady state 

Mean Square Error for the NLMS equalizer is used. The simulation results show that the 

GMSE model was able to capture the non-Wiener characteristics for certain cases while 

failing for others. The following table summarizes the BER modeling work to date.  

Table 5-1.  Applicability of the Different BER Models for Different Scenarios. 

Step Size ( µ ) 
Low SNR 

( < 15 dB) 

High SNR 

( > 20 dB) 

Small ( < 0.1) GMSSW GMSE 

Medium ( 0.1 – 0.4) GMSE GMSE 

Large ( 0.4 – 1) GMSE To Be Done 

 

5.2  Future Work 

One of the possible future directions which is evident from Table 5.1 is to find an 

appropriate BER model which accurately estimates the BER for large step sizes. It is to 

be noted here that in an environment dominated by a narrowband interference large step 

sizes yield the best performance in terms of BER. A model that is able to explain the 

BER performance in that region is consequently of much importance and will help to 

explain the non-Wiener characteristics of the NLMS equalizer in greater detail. From a 

practical point of view, such a model can be used to indicate when the NLMS equalizer 

should use a large step-size. 

Another possible avenue for extension of this research is to develop similar BER 

models for different scenarios. Different scenarios can range from multiple narrowband 
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interferers, taking into account imperfect synchronization, non-sinusoidal narrowband 

interference, and so on. 
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