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A Compiler Framework to Support and Exploit Heterogeneous Overlapping-ISA
Multiprocessor Platforms

Christopher S. Jelesnianski

(ABSTRACT)

As the demand for ever increasingly powerful machines continues, new architectures are sought to
be the next route of breaking past the brick wall that currently stagnates the performance growth
of modern multi-core CPUs. Due to physical limitations, scaling single-core performance any
further is no longer possible, giving rise to modern multi-cores. However, the brick wall is now
limiting the scaling of general-purpose multi-cores. Heterogeneous-core CPUs have the potential
to continue scaling by reducing power consumption through exploitation of specialized and simple
cores within the same chip.

Heterogeneous-core CPUs join fundamentally different processors each which their own peculiar
features, i.e., fast execution time, improved power efficiency, etc; enabling the building of versatile
computing systems. To make heterogeneous platforms permeate the computer market, the next
hurdle to overcome is the ability to provide a familiar programming model and environment such
that developers do not have to focus on platform details. Nevertheless, heterogeneous platforms
integrate processors with diverse characteristics and potentially a different Instruction Set Archi-
tecture (ISA), which exacerbate the complexity of the software. A brave few have begun to tread
down the heterogeneous-ISA path, hoping to prove that this avenue will yield the next generation
of super computers. However, many unforeseen obstacles have yet to be discovered.

With this new challenge comes the clear need for efficient, developer-friendly, adaptable system
software to support the efforts of making heterogeneous-ISA the golden standard for future high-
performance and general-purpose computing. To foster rapid development of this technology, it is
imperative to put the proper tools into the hands of developers, such as application and architecture
profiling engines, in order to realize the best heterogeneous-ISA platform possible with available
technology. In addition, it would be in the best interest to create tools to be as “timeless” as possible
to expose fundamental concepts industry could benefit from and adopt in future designs.

We demonstrate the feasibility of a compiler framework and runtime for an existing heterogeneous-
ISA operating system (Popcorn Linux) for automatically scheduling compute blocks within an
application on a given heterogeneous-ISA high-performance platform (in our case a platform built
with Intel Xeon - Xeon Phi). With the introduced Profiler, Partitioner, and Runtime support, we
prove to be able to automatically exploit the heterogeneity in an overlapping-ISA platform, being
faster than native execution and other parallelism programming models.

Empirically evaluating our compiler framework, we show that application execution on Popcorn
Linux can be up to 52% faster than the most performant native execution for Xeon or Xeon Phi.
Using our compiler framework relieves the developer from manual scheduling and porting of ap-
plications, requiring only a single profiling run per application.
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Chapter 1

Introduction

1.1 A future towards Heterogeneous Computing

Because of the so called “brick wall” dilemma [26], the computing industry is experiencing a
paradigm shift. There exist three elements in this barrier, and in order to continue to produce
increasing through-put gains we must overcome them in some shape or form: the power wall,
the instruction level parallelism (ILP) wall, and the memory wall. Although trends are following
Moore’s Law, the following question remains: Will this trend continue? For now, the answer seems
to be “yes”. But Herb Sutter argues that like all exponential progressions, Moore’s Law must end
someday [33]. As a result, future performance gains are now expected to be achieved through non-
traditional designs compared to the past. One of those non-traditional designs are heterogeneous
systems.

This concept, though complex, is continuing to gain momentum in the hope of salvation to break
through this “brick wall.” But with this approach, researchers and developers alike will face the
challenge of managing ever-increasing complexity of systems as additional architectures and de-
vices are thrown into the mix.

While many paradigms in the form of language extensions, various programming models, and
frameworks have been created to aid developers writing software for a given heterogeneous system,
few are able to truly give the developer an upper hand without also coming with an unavoidable
trade-off. Some are platform specific (e.g., CUDA for Nvidia GPUs), while others are portable
but at a low level of abstraction, as with OpenCL and Message Passing Interface (MPI). Most, if
not all of these paradigms require explicit data-transfer, memory management, kernel launch to be
coded as well as re-optimization and adaptation to achieve decent performance when migrating to a
different device. Given the dramatic difference in complexity and additional effort needed writing
applications for a heterogeneous platform versus writing for a traditional SMP homogeneous-ISA
machine, mastering heterogeneity for the next generation of high performance computing (HPC),
embedded, and all the other computing domains will be no small task.

1
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As far back as 1994, Von Bank et al. [36] is one of the first publications to breathe life into
heterogeneous computing as the next step forward in high-performance computing, putting forth
a theoretical model as well as including a formal definition of heterogeneous process migration.
They assert that the language system (i.e., compiler, assembler, and linker, etc.) can be designed
to ensure equivalence points are at a user-determined granularity. The end goal of the work pre-
sented herein goes along this path, implementing a solution as a compiler framework providing
developers with a means of transforming their applications to be compatible with an experimen-
tal heterogeneous platform by taking advantage of equivalence points, while, at the same time
requiring minimal user intervention.

1.2 Motivations

The problem of running the same application on different platforms has a long history of investiga-
tion, dating back to the issue of code portability between different architectures. With the advent of
high-level languages, like C, the main issue was to compile the same source code on different plat-
forms. Once this was solved, the compiler community focused on the problem of running the same
executable on different architectures, which interpreted languages (IR, or byte code) like Java or
C# solved (static or dynamic binary translation can also achieve the same result). These approaches
solve the problem of writing the code once and running the application on different architectures.
However, these solutions assume that the application will always be executed on a given architec-
ture, and will not be migrated to, and executed on another architecture with a different Instruction
Set Architecture (ISA).

It should be noted that thus far, the term “heterogeneous computing” has generally been the way
to describe machines that contain specialized hardware, dedicated accelerators, or even cores with
inherently different characteristics, in addition to traditional general-purpose CPUs within the same
machine. Up to this point, a large assumption has been made that all cores in the heterogeneous
machine share the same ISA (a homogeneous-ISA platform). Developers can offload specific code
blocks onto the specialized device thus allowing the computation to complete faster compared to
letting it execute on the general-purpose CPU. This definition has quickly gone stale with today’s
advances in research and available commodity hardware. Technology is now at a point where a
daring few are pushing the envelope of heterogeneity; specialized devices such as FPGAs and NICs
(like the Tilera) have evolved to become fully general purpose devices and thus even OS-capable!
We define “OS-capable” as being able to run a fully-fledged operating system and have the ability
to control scheduling and memory compared to traditional, non-programmable I/O devices [24].
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Figure 1.1: Intel Xeon Phi Coprocessor compared to traditional methods.
https://www.lrz.de/services/compute/courses/x lecturenotes/MIC GPU Workshop/
Intel-01-The-Intel-Many-Core-Architecture.pdf, Used under fair use, 2015.

One example of such a recently released “OS-capable” device is Intel’s R© Xeon Phi Coprocessor
[16]. Figure 1.1 showcases the competitive edge Xeon Phi has over current accelerator hardware.
An honourable mention should also be given to AMD’s Project Skybridge [1]; though this CPU
has been cancelled for different reasons [38], it is a prime example of where heterogeneous com-
puting could be tomorrow. Just as cellphones have consolidated many everyday-devices (e.g.,
alarm clock, calculator, watch, etc.) all into one platform, we envision heterogeneous platforms to
evolve similarly albeit in the form of consolidating various platform configurations into one super
versatile machine.

Taking advantage of parallelism and heterogeneity can result in significant performance gains but
require substantial developer effort and deep knowledge of the underlying framework being uti-
lized to achieve maximum performance. It also doesn’t help that each heterogeneous-ISA hardware
usually has it’s own preferred or even required programming paradigm when developing code for
these various hardware, implying that developers must spend additional time if they want to port
between the various options available. A few examples of these semantically diverse program-
ming paradigms include CUDA for Nvidia GPUs, OpenCL, OpenACC, and OpenMP 4.0. Any
experience with these is fairly tedious if not unpleasant from the developer point of view; mem-
ory consistency between host and devices must be managed manually, taking away developers
valuable time and attention away from focus on desired logical flow of an application and addi-
tionally spawning a new place for software bugs to manifest and hide, a potential nightmare for
any unsuspecting developer.

Though the number of vendors starting to pursue general purpose OS-capable devices is increasing,
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no one has stepped up to the plate to propose a standard for how applications should be structured,
compiled, and executed on a given heterogeneous platform despite the respective vendors them-
selves. OpenCL is an attempt to solve this gap, but even this paradigm contains handicaps inherent
with a large amount of boilerplate code that the developer is forced to use to effectively exploit the
architecture. Note that OpenCL is only compatible with CPU + GPU and Xeon + Xeon Phi plat-
forms, any other configuration for moving an application around is not allowed (e.g., rescheduling
an application directly from one GPU to another GPU) since OpenCL is based on the “offloading”
programming model. Ideally, the developer should only have to focus on creating the desired logic
of his application, assuming a symmetric multiprocessing (SMP) environment while a compiler
tool-chain and runtime support/library would manage code transformation to conform with the
target heterogeneous platform as well as extracting maximum performance.

We thus seek to address the missing link developers have been waiting for to make heterogeneous
platforms viable and easy to work with. At this point, we do not seek to have support for the
“upgrading-of” legacy binaries (a model assuming no source is available either because the appli-
cation is old or is restricted containing proprietary elements). Instead, we assume that the developer
is always starting from source and interested in working with a heterogeneous platform that could
potentially have up to N different devices and/or architectures. Therefore we seek to make the work
contained herein be as generic as possible to support any combination of heterogeneous devices in
the future. It is structured such that porting to a new device or architecture is only needed once per
device as opposed to once per application. In addition, to gain more traction within the compiler
community, we propose to develop the compiler framework by extending common software tools
included in Linux, which is synergistic with the proposed Popcorn Linux OS.

1.3 Research Contributions

Though the possible directions to pursue with heterogeneous systems are limitless (e.g., perfor-
mance, power, energy-savings, etc.) this work focuses on the performance and throughput advan-
tage gained by leveraging a heterogeneous-ISA platform compared to traditional approaches. In
this thesis the following contributions are presented for the Popcorn project:

1. A heterogeneous-ISA application Profiler is designed and implemented for Popcorn Linux’s
Xeon - Xeon Phi platform. Written using LLVM [21], it automatically analyzes memory
access patterns and searches for highly parallel regions in an input application to provide the
best partitioning in regards to performance.

2. A heterogeneous-ISA application partitioner is also designed and implemented to compli-
ment the application Profiler and perform the needed code transformations to make an ap-
plication have the necessary components for heterogeneous-ISA migration within Popcorn
Linux. The partitioner is implemented in C using the ROSE Compiler Framework [27].
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3. A compiler framework specific to the Xeon - Xeon Phi Popcorn Linux platform is de-
signed and implemented to create compatible FAT heterogeneous-ISA binaries. Underlying
heterogeneous-ISA support for commonly needed application librarys (such as the Math Li-
brary, libm and the C Library, libc) are given clever modifications to resolve conflicts inherent
during link-time for a heterogeneous-ISA binary. In addition, a linker tool is implemented
as part of the compiler framework to realize the final binary.

4. A comprehensive evaluation of the performance gained on the Xeon - Xeon Phi prototype
platform compared to current methodologies and mature models aimed at high performance
computing (HPC) is provided. This evaluation showcases what improvements are acheived
using the proposed compiler framework.

1.4 Thesis Organization

This thesis is organized as follows:

• Chapter 2 presents background on the Popcorn Linux Operating System for the support of
heterogeneous platforms. Note that this chapter is an excerpt taken from of a previous work
I am a co-author of. It expands in detail for parts relevant to the compiler framework not
mentioned before because of space constraints. In addition, it discusses the heterogeneous-
ISA platforms chosen for this work.

• Chapter 3 presents related work in the area of heterogeneous compilers and runtimes.

• Chapter 4 presents the first segment of the Xeon - Xeon Phi compiler framework, specifically,
the application Profiler. Using the LLVM framework, we are able to profile applications for
advantageous partitionings on the Xeon - Xeon Phi system.

• Chapter 5 presents the second half of the Xeon - Xeon Phi compiler framework. This chapter
describes the ROSE source-to-source transformation partitioner tool. It dicusses the needed
changes to make an application migration-ready. It also presents the heterogeneous compil-
er/linker needed to create heterogeneous FAT binaries for the Xeon - Xeon Phi platform.

• Chapter 6 presents compiler runtime adaptations needed for heterogeneous execution through
the manipulation of various libraries. This chapter describes the modifications in both the
libraries and the compiler to solve compatibility issues for our two experimental platforms.

• Chapter 7 presents a detailed evaluation of the work discribed in this work. We compare
this work to several other standard approaches currently used in heterogeneous platforms to
validate our methodology. We also give an analysis of the overheads associated with the
proposed methodology. It also presents the specifications of the platform used for those
wishing to reproduce our results.
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• Chapter 8 presents conclusions and wraps up the work. Future work is discussed here.



Chapter 2

Background

2.1 Popcorn Linux: A beast of the Heterogeneous

This Chapter contains select material from a paper in which I am a co-author [4] in order to inform
the reader of underlying assumptions for this thesis.

To properly set the stage for the work in this thesis, it is necessary to describe what exactly the
work described hereafter is actually supporting. For this work to have a meaning it is needed to
acknowledge that the landscape of heterogeneous computing is evolving as depicted in Figure 2.1.

Proliferation of new computing hardware platforms that support increasing number of cores, as
well as increasing instruction set architecture (ISA) heterogeneity, creates the opportunity for sys-
tem software developers to question existing software architecture. The trend of specialization in
new devices is becoming progressively less specialized and more general-purpose!

Figure 2.1: Evolution of device specialization over time.

7
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Popcorn Linux is a possible answer to the future of heterogeneous computing. Popcorn Linux
is a replicated-kernel Linux based operating system that bridges the gap in heterogeneous-ISA
platforms for the application developer. Popcorn provides inter-architecture thread migration and
Distributed Virtual Shared Memory (DVSM) across the entire heterogeneous-ISA platform. Pop-
corn aims to make applications believe, similar to a distributed OS, that multiple OS instances are
infact a single computational entity, forming a “Single-System-Image”. This illusion of a single-
system-image and thus a single execution environment is a very beneficial simplification for both
the developer and application. The Popcorn architecture aims to specifically provide the following
three principles:

1. Transparency: The user should not see any kernel/processor boundaries, but a single system
on which applications can run everywhere and use all the available resources on the platform.
Developers life is simplified and can focus on an application’s logic while assuming an SMP
system; the compiler framework (the focal point of this thesis) takes care of application
partitioning.

2. Load Sharing: Produced application executable should be able to run on any architecture
by containing code for each architecture present in the heterogeneous-ISA platform. The
operating system would handle migration, while the compiler framework would provide a
compatible binary. Threads for an application should be able to migrate intra- and inter-
architecture partition without being limited to a specific architecture partition.

3. Exploiting Asymmetries: Although sometimes it may be desirable to mask the asymmetries,
the OS should still provide and expose architectural distinctions such that an application is
able to exploit the architectural asymmetries present on the heterogeneous-ISA platform for
maximum performance.

These principles lead to the Popcorn architecture in Figure 2.2 and Figure 2.3.

ISA A ISA B ISA C

Core 0 Core 1 Core 2 Core 3 Core 0 Core 1
Core 1Core 0

Dev X

Core 2

Dev WDev ZDev Y

Global Accessible Memory (Mem G)

Local Mem A Local Mem B

Linux Kernel B Linux Kernel CLinux Kernel A

Single System Image

Application
ISA A Optimized ISA B Optimized ISA C Optimized

Figure 2.2: Heterogeneous-ISA generic hardware model, and Popcorn software layout.
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ISA A ISA B ISA C

Application

ISA A Optimized ISA B Optimized ISA C Optimized

Single System Image

Linux Kernel CLinux Kernel BLinux Kernel A

Communication Layer

Popcorn

Services

Popcorn

Services

Popcorn

Services

Namespace Namespace Namespace

Figure 2.3: Popcorn kernel- and user-level software layout.

Hardware Model

The Popcorn Linux software architecture (along with the compiler framework described herein)
is designed to work with a generic hardware platform, depicted in Figure 2.2, which attempts to
abstract current and emerging hardware. Popcorn assumes a hardware model where processors of
the same ISA are grouped together, and different ISA processors share access to a global, eventu-
ally consistent, memory (Mem G in Figure 2.2). Computational units of the ISA group may have
exclusive access to a memory area (Mem A and Mem B) as well as across ISA groups, the same
memory can be mapped to different physical address ranges. A similar model holds for accessing
devices and peripherals that are mainly memory-mapped. Some devices, like Dev X and Dev Y,
can be directly accessed by any processor. Others, like Dev Z or Dev W, cannot.

Software Layout

Figure 2.2 shows Popcorn’s software architecture and how it is layered on top of a generic hardware
model and the single-system-image. It illustrates a single application compiled with the Popcorn
compiler framework (described herein) that is running on the Popcorn Linux operating system.
The application is multi-threaded, and different threads potentially run on different kernels (and
therefore on different ISA processors).

Operating System Architecture

The operating system consists of multiple kernel instances, one is compiled for each different ISA
present in the heterogeneous-ISA platform. Therefore the kernel code must be portable to any ISA
that could be included in the platform. Kernels interact to provide applications with the illusion of a
single operating system, a “single-system-image” amongst the different kernels in the platform as if
it were an ordinary SMP machine, as shown in Figure 2.2. The OS state is partially replicated on all
kernels in order to account for thread migrations across them, and resource sharing (e.g., memory
and devices). When no hardware cache coherent shared memory is available between kernels,
Popcorn additionally provides software DVSM, so that multi-threaded applications, written for
shared memory architectures can continue to function.
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A communication layer glues kernels together and provides basic data conversion between ISAs, as
in Figure 2.3. The communication layer is a key component: all replicated-kernel OS services rely
on it (e.g., thread migration, page coherence, thread synchronization, etc.). Kernels communicate
through it to maintain a single (partially replicated) OS state.

Popcorn’s services and namespaces layer, depicted in Figure 2.3, strive to create a single envi-
ronment for applications running amongst kernels, and make applications assume that they are
executing on a traditional SMP OS. Popcorn’s namespaces layer on each kernel provides a unified
processes and resources view.

2.2 Architectures & Connectivity

In theory, a heterogeneous platform can exist in a wide variety of different configurations ranging
from same-ISA heterogeneous cores to a completely disjoint-ISA platform. Each configuration
with it’s own set of benefits and drawbacks; even if some configurations are theoretically possi-
ble, they physically are not simply because the hardware to provide such a configuration and the
connectivity neeeded between devices does not exist. Since this work seeks to demonstrate the
pervasiveness of heterogeneous platforms, we implement our solution on commodity hardware in
order to show both the possibilities with heterogeneous hardware and the viability the presented
work. Figure 2.4 summarizes possible ISA platform setups.
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Xeon

Xeon Phi
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64-bit

Mustang 

Arm v8 

64-bit

x86 

64-bit

Arm v8 

64-bit

SPARC MIPS etc...
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...

Figure 2.4: Overlap of instruction set architectures (ISA) for heterogeneous platforms. In (a) the
two processors share a common ISA, but each has special purpose features (such as vector masks in
the case of Xeon Phi coprocessor). In (b) the two processors have their own ISA and are completely
disjoint; no features are shared. (c) depicts the end goal of what kind of heterogeneous platforms
future compiler tool-chains will need to provide for.

2.2.1 Intel’s Xeon + Xeon Phi

Our first experimental platform consists of two Intel processors, the Xeon E5, an 8-core 64-bit
processor, as the host platform CPU connected with a Xeon Phi 3120A, a 57-core 4-way hyper
threaded coprocessor, over PCIe. Throughout this work the term host platform, host architecture,
and host kernel are used interchangeably; these terms all refer to the Xeon x86 architecture for
the test platform used in this work. At the same time this work could be extended, in which case,
using hardware available today, the host architecture would refer to the main anchoring architecture
which provisions the rest of the devices/accelerators that have different architectures. Note that
this does not imply a master worker relationship between devices using the Popcorn Linux OS.
In the future, we predict that the terms host/non-host will fade as systems become increasingly
heterogeneous.

This platform, when setup with Popcorn Linux, is one which exhibits an overlapping-ISA config-
uration (see Figure 2.4 (a)). To go into greater detail, both the Intel Xeon and the Intel Xeon Phi
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coprocessor make use of the base x86 64-bit ISA, however, both processors have their own im-
plementation for performing floating point arithmetic. The Xeon Phi coprocessor features vector
masks along with vector instructions which use a special extra source, known as the write-mask,
sourced from a set of 8 registers called vector mask registers in order to do highly parallel computa-
tion [15]. The Intel Xeon does not have these registers or instructions and instead uses owns means
for Floating Point Unit (FPU) computation. Thus even the case of a simpler heterogeneous-ISA
model such as an overlapping-ISA platform has a number of implications. Things such as com-
putational implementations and other general functionality usually supported by libraries must be
taken into consideration. These implications will be discussed in later sections as well as how the
compiler tool-chain accounts for them.

Since the two processors are connected over PCIe, this greatly simplifies one of the biggest con-
cerns in heterogeneous computing, namely, moving data. At the same time the PCIe bus can be
identified as the largest bottleneck of the heterogeneous system during the process of migrating
data to where it is needed. However, messaging and synchronization of data across the Xeon and
Xeon Phi are beyond what the compiler must provide to enable migration therefore it is beyond
the scope of this work.



Chapter 3

Related Work

In conjunction with the goal of making Popcorn Linux a versatile operating system for future het-
erogeneous systems, able to support any combination of N-architectures within the same platform,
this work is somewhat aimed to be broad on purpose for that reason. At the same time this work
retains focus on key components that are indifferent to the number of distinct architectures/devices
present on the target heterogeneous platform. Technically, the age of heterogeneous computing
is already here. Single-ISA heterogeneous CMPs have been introduced into the market such as
ARM’s big.LITTLE processor [2] and Nvidia’s Kal-El processor [25]. An even more widely
known heterogeneous CMP is Intel’s integrated graphics CPU architecture, Sandy Bridge[41].
However, none of these architectures allow migration between core types to occur at arbitrary
places in the code.

Since the work in this thesis interacts with many different aspects of system software, research re-
lated to this work falls into several categories. The first section discusses profiling and quantifying
application performance characteristics (i.e., file I/O, loops, memory access patterns, and compute
kernels) with respect to hardware characteristics (i.e., number of cores, memory subsystem, device
locality, functional units in processors, etc.) available for which an application will be run on.

The next section pertains to compiler toolchains/frameworks developed for similar systems. Since
heterogeneous-ISA platform technology (not to be confused with “heterogeneous systems” com-
monly consisting of only CPUs and GPUs) is for the most part still in its infancy, there do not exist
any direct competitors for comparison of compiler toolchains/frameworks in this respect – Popcorn
Linux is the first multiple kernel OS for heterogeneous platforms to be successfully implemented
in hardware while most other works rely strictly on emulation.

Following this, the next section explores what has been done in terms of providing underlying
support for heterogeneous systems as a whole. This includes various approaches to solve functional
heterogeneity in multi-core architectures.

Finally, the last section discusses approaches that tackle the challenge of heterogeneity on the
system scale; several works resolve this challenge by building operating systems from the ground

13



Christopher S. Jelesnianski Chapter 3. Related Work 14

up to introduce methodologies which allow the system to cooperate and benefit as a whole!

3.1 Application Characterization/Profiling

Several previous works give motivating evidence and hints that heterogeneous-ISA platforms could
out-perform traditional homogeneous SMP platforms by evaluating their methodologies on sys-
tems that are heterogeneous of varying degree.

Even on a homogeneous-ISA, heterogeneous-core platform, it is not sufficient to arbitrarily migrate
tasks between processors in an attempt to make up for performance bottlenecks one processor
exhibits but the other processor does not. Inefficient partitioning/mapping can easily result in
application slowdown and ruin performance.

Saez et al. [31] develop two versions of an Heterogeneity-Aware Signature-Supported (HASS)
scheduling algorithm. They are HASS-S and HASS-D, which handle analysis and scheduling
statically (HASS-S), compared to handling analysis and scheduling dynamically (HASS-D), re-
spectively, during runtime for an asymmetric multi-core platform. Specifically their algorithm is
based upon the idea of “architectural signatures” of an application. They explain that an architec-
tural signature is a compact summary of architectural properties of an application and may con-
tain information such as memory access patterns and instruction-level parallelism (ILP) along with
characteristics of hardware present within the platform such as variation in clock speed. With these
two parameters the scheduler schedules threads onto a given core based upon its estimated perfor-
mance. They also introduce a novel concept (denoted as “optimistic rebinding”) where thread
assignment is further optimized by “finding” a good partner thread to swap cores to execute on
instead of traditional thread assignment. Evaluating both HASS algorithms showed that they out-
performed an IPC-Driven algorithm as well as out-performing a heterogeneity-agnostic scheduler
by as much as 12.5%.

Our work follows a similar path but goes to the next level of comparing compute kernels. Moving
across cores versus moving across heterogeneous architectures involve very different factors that
impact total cost. Even though our algorithm only performs static analysis for now, it is critical
to have an accurate guage of the migration cost associated with moving across architectures and
whether migrating can offset this upfront cost. Our work puts extra effort to accurately derive this
cost while Saez et al. don’t even have to consider this cost.

Going a step closer to real heterogeneous systems, Kofler et al. [20] work with a heterogeneous
CPU and GPU platform for which the authors propose and implement an automatic, problem-size
sensitive compiler-runtime framework as part of Insieme, which can auto-generate multi-device
OpenCL code and optimized task partitioning for a given application. They argue that the per-
formance capability of individual devices can vary significantly across different applications and
problem sizes on a heterogeneous platform. The framework consists of two phases declared as
training and deployment phases. During the first phase, the training phase, it utilizes machine
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learning via Artificial Neural Networks (ANN) to build a task partitioning prediction model based
on static program features extracted from the intermediate-representation (IR) of the application.
The framework has the benefit of being universal in the sense that any previously unseen tar-
get architecture can be supported by generating a new model for it in the training phase. The
source-to-source transformation is performed offline via the Insieme Compiler [10] using a gen-
erated problem size sensitive model with the help of machine learning to determine the best task
partitioning for the given application. To test the viability of their approach, the authors used a se-
lection of 23 programs from various sources and varied input problem sizes in order to create their
training patterns. Once the training phase completed, running two simple benchmarks resulted in
22% and 25% performance improvement compared to an execution of the benchmarks on a single
CPU or a single GPU respectively using the Insieme Runtime System responsible for the execution
and scheduling of the generated programs. Interestingly enough, over 25% of their 355 training
patterns deliver best performance when using a hybrid task partitioning.

Compared to Popcorn Linux, Kofler et al.’s framework does not allow for the gathering and merg-
ing of writes from different devices; Popcorn solves this using a replicated kernel with Distributed
Virtual Shared Memory (DVSM).

On the other hand, the Merge framework proposed by Linderman et al. takes a different approach
and proposes a general purpose programming model for heterogeneous multi-core systems [23].
Their framework replaces current ad-hoc approaches to parallel computing on heterogeneous plat-
forms with a rigorous, library based methodology that can automatically distribute computation
across heterogeneous cores to achieve increased energy efficiency and performance. Rather than
writing and/or compiling an application for the heterogeneous target at hand, the programmer
only needs to express computations using architecture-independent, high-level language extensions
based on the map-reduce pattern. The Merge framework consists of three components, namely, a
high-level parallel programming language based on map-reduce patterns, a predicate-based library
system for managing and invoking function variants for different architectures, and a compiler and
runtime which implement the map-reduce paradigm by dynamically selecting the best available
function variant. As can deduced, this framework’s backbone is reliant on map-reduce that then
produce different variants of compute kernel’s in a given application. Though porting an appli-
cation such as Blackscholes can take up to four days to be compliant with their framework, the
authors were able to achieve 3.7x-8.5x speed ups relative to the reference implementation on a
heterogeneous CPU-GPU platform.

While the Merge framework is a library-based approach, our Profiler/Partitioner compiler frame-
work uses the direct approach mapping the application directly onto the predetermined best fit
architecture. The tradeoff is that the library-based compiler will have only minimal information
about any given function-intrinsic, and thus will miss some of the optimizations exploited our
direct approach takes.
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3.2 Heterogeneous Runtime Support/Migration Techniques

A significant amount of engineering goes into designing adequate and efficient migration tech-
niques for heterogeneous systems – moving applications across cores and ISA boundaries is where
most runtime overhead of an application originates for heterogeneous systems!

Reddy et al. [28] presented a comprehensive study of heterogeneous architectures and the chal-
lenges inherent with supporting and running applications on such platforms. The authors discuss a
variety of issues including process migration, feature enumeration, and virtual memory & paging
that would have to be considered for a true heterogeneous-aware OS. They then analyze several
methods that can be used to bridge the functional issues that arise in heterogeneous systems. The
authors propose three design models (Restricted Model, Hybrid Model, Unified Model) and dis-
cuss the benefits and drawbacks of each proposed model. The findings in this work both reveal the
numerous hurdles that Popcorn Linux needed to overcome to be what it is today and emphasize the
need of a symbiotic evolution of hardware and software for heterogeneous systems to fulfill their
potential as the next generation in high performance computing.

The two experimental platforms used in Reddy et al’s work are minimally heterogeneous, the au-
thors citing that their first experimental platform consists of processors from different microarchi-
tecture families (but still using the same underlying ISA) while the second platform uses identical
processors but with certain features disabled to “emulate” heterogeneity. Thus this authors work
does not address heterogeneous-ISA platforms. On the other hand, our work is tested and verified
on a platform with processors that have different ISAs.

Dynamic Binary Rewriting for Migration (DBRM), presented by Georgakoudis et al. [13], is a low-
level thread migration methodology for the case of a shared-ISA heterogeneous platform where
some cores are performance enhanced (PE) (i.e., those cores extend the baseline ISA with instruc-
tions that accelerate performance-critical operations). The application is compiled for the under-
lying ISA of the platform and DBRM occurs during runtime, filling in the gaps during execution
if a thread is rescheduled onto a PE core by rewriting assembly to reflect compatible instructions
for the core the thread has been assigned to. Note that the authors limit the scope of their work to
statically compiled applications only and are not able to handle dynamically loaded libraries. The
authors evaluate their migration methodology using the SPEC CPU2006 and Rodina benchmark
suites, showing that a DBRM-enabled scheduler can improve performance by 2%-30% compared
to an oracle scheduler that statically matches threads to cores using a-priori knowledge. They fur-
ther investigate their methodology to reveal a breakdown of its overheads. It is no surprise from
reading similar works that binary analysis and assembly translations accounts for the majority of
the overhead.

Our approach forgoes the expensive overhead associated with performing DBRM during the run-
time of an application and instead utilize a FAT binary to contain all needed implementations of
a given candidate compute kernel. We argue that storage is cheap and outweighs the overhead of
performing DBRM. In addition, our approach does not have to worry about a core missing a PE
instruction implementation as our tool compiles the compute kernel natively for each architecture
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present on the target heterogeneous-ISA platform.

DeVuyst et al. [8] present their approach for execution migration on heterogeneous-ISA CMPs uti-
lizing Dynamic Binary Translation (DBT) and stack transformation to bridge the gap between ar-
chitectures (in their use case they use a small, low-power ARM core and a large, high-performance
MIPS core). Their approach is achieved in four steps: rescheduling the process on another core,
changing page table mappings to facilitate access to the code for the migrated-to core, performing
binary translation until a program transformation point (in their work this is at any function call
site), and transforming the program stack for execution on the new architecture. The first two steps
are common operating system responsibilities; the last two are unique to heterogeneous-ISA migra-
tion and DeVuyst’s attempt to bridge the gap between architectures in the most memory-coherent
manner possible. Memory consistency between architectures was a major topic in their work, and
most of their modifications to their compiler tool reflect this as they present compiler techniques to
minimize the amount of program state kept in ISA-specific form to enable fast migration. Even so
these modifications came at a price of having to disable some optimizations usually desired when
compiling (in their case GCC’s RTL optimizations had to be disabled). In addition, the authors
have a runtime component (called the Stack Transformer) which facilitates translating the current
stack for native execution once a transformation point is reached after performing DBT. Improving
their approach by inserting more transformation points to conclude DBT as soon as possible (the
most expensive component of their migration approach) the authors were able to achieve a total
loss of performance of under 5% compared to native execution, regardless of migration frequency
between architectures.

It should be noted that their evaluation was completely carried out in simulation using the M5
Processor Simulator whereas our work has been implemented in real hardware better showing the
viability of heterogeneous-ISA platforms even if a bit more engineering work is required to bring
concepts to a reality. The difference between the authors ARM - MIPS platform and our Xeon -
Xeon Phi platform is that DeVuyst’s platform requires state transformation and DBT in order to
successfully migrate a task between architectures, our approach does not need state transformation
as we take advantage of equivalence points to minimize the amount of effort required by the OS to
migrate a task thus lowering the overheads associated with migration.

Another work actually builds upon DeVuyst et al.’s work, but instead of focusing on the migration
mechanism, it seeks to identify the best heterogeneous designs for a given workload for varying
power budgets and performance. Venkat et al. [35] considers several axes of ISA diversity includ-
ing: code density, dynamic instruction count, register pressure, and floating-point/SIMD support
and explains the benefits and drawbacks of the three target ISA’s chosen a priori – Thumb, Alpha,
and x86-64. Similar to Popcorn, the authors opt to use a unified address space and utilize FAT
binaries with multiple target-specific code sections and common target-independent data sections.
Their compilation strategy leverage’s LLVM common intermediate representation (LLVM byte-
code) to enforce target-independent type legalization which ensures a consistent view of global
data when compiling the multi-ISA FAT binary. Interestingly, the authors also generate a set of
transforms that can be applied by the runtime environment at the time of migration during compile-
time. These transforms are routines that reconstruct the target-specific program state of a basic
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block (live registers and stack objects). The authors create a modified version of DeVuyst et al.’s
migration mechanism for the purpose of utilizing DBT and stack transformation with the help of
the generated transforms mentioned earlier. Using the SPEC CPU2006 benchmarks, the authors
were able to achieve an average energy savings of 21.5% and an average reduction of 27.8% in
the Energy Delay Product (EDP) using Heterogeneous-ISA CMPs compared to single-ISA hetero-
geneous CMPs. In addition, they observe an additional speedup of 11.2% due to migration on a
heterogeneous-ISA CMP at phase boundaries in contrast to a 4.6% speedup due to migration on a
single-ISA heterogeneous CMP.

Note that similar to DeVuyst, this work is based upon simulation of a heterogeneous platform – it
is not implemented in hardware as Popcorn Linux.

Kessler et al. [19] elaborates on three approaches to obtaining portability and increased levels of
abstraction for the programming of heterogeneous multicore systems. The authors first describe
a library approach combining the SkePU skeleton programming library and leverage the StarPU
heterogeneous runtime system. Skeletons are generic components derived from higher-order func-
tions that describe common computational structures and are mapped to one or more StarPU tasks,
generating task-parallelism for the runtime system. Their second approach, explores the use of
Codeplay’s Offload C++ language and compiler traditionally used by game developers. By hiding
implementation details in generic C++ classes, it enables complex C++ accelerator code to be em-
bedded inside target applications without major code changes. The third approach builds on the
PEPPHER component model and transformation system to encapsulate user-provided code into
different implementation variants along with XML meta-data for different architectural compo-
nents of a heterogeneous manycore system. During runtime the PEPPHER framework can gener-
ate a performance model using historical performance data to choose and schedule the best variant
possible during runtime. Using OpenCV image processing code as their benchmark, the authors
were able to reduce execution time by a factor of up to 3.14 using the third approach with PEP-
PHER compared to an implementation using Intel Threading Building Blocks (TBB). They also
used the ROSE compiler framework to implement their source-to-source compiler.

While PEPPHER is similar in functionality to our compiler framework performing source-to-
source transformation to prepare code for migration, their approach as a whole does not treat
devices within the heterogeneous platform as general purpose but only as accelerators to perform
offloading. Assuming the offloading model in heterogeneous platforms severly limits what can be
acheived with them. By Popcorn Linux being a replicated-kernel OS, opportunities such as load
balancing and energy savings open up to be explored and exploited.

3.3 Other Heterogeneous Compilers and Runtimes

Dandelion [30], presented by Rossbach et al., is a recent approach trying to unify the wide variety
of programming techniques usually needed for different devices (such as CPUs, GPUs, FPGAs,
and even the cloud) typically part of a heterogeneous system. The authors utilize the .NET Lan-
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guage INtegrated Query (LINQ), a general language integration framework, as the backbone of
their compiler and runtime system. This allows them to support a wide variety of data-parallel op-
erators which could be run on a multitude of devices for the developer. Dandelion’s runtime uses
statically generated “execution plans”, a data flow graph representation of the application, from
its compiler to help automatically and efficiently map application computational blocks onto their
heterogeneous system for the best performance. Their mapping scheme consists of 3 layers: the
cluster execution engine, the machine execution engine, and the GPU execution engine; each layer
is of finer granularity orchestrating the assignment of vertices from the execution plan onto compo-
nents making up that layer (e.g. machines within the cluster layer, processors within the machine
layer, cores of a given CPU or GPU within the GPU layer). In their evaluation, the authors were
able to achieve up 6.4x speed up using the Dandelion system compared to CPU parallelism only on
a single machine. They also empirically affirm that memory management and transfer overheads
are one of the most impacting costs in heterogeneous systems.

Though Dandelion is able to cross-compile for a variety of devices like GPUs and FPGAs to take
advantage of a heterogeneous platform, it contains an offload model mentality. It depends on
low-level GPU runtimes such as CUDA and therefore has limited support for dynamic memory
allocation. In addition, Dandelion assumes that user-defined functions must be side-effect free.
Popcorn Linux along with the compiler framework presented in this work provides it’s own runtime
mechanisms that collectively side-step the limitations that Dandelion has.

A project dubbed Liquid Metal [3] gives its take on how the headaches linked with heterogeneous
systems could be solved via the use of a Java Virtual Machine (JVM) and a new device agnostic
programming language developed by Auerbach et al. called Lime. Lime is a Java-compatible
object-oriented language with new features such as: ability to define a unit of migration between
CPUs and accelerators, statically compile efficient code for accelerators in a given heterogeneous
system, and orchestrate data flow across the system. Limes strong points in design consist of strong
isolation and abstract parallelism, therefore decreasing the learning curve needed to be successful
with Lime. Using Lime with the Liquid Metal compiler and runtime system enables seamless
co-execution of the resultant programs on CPUs and accelerators that include GPUs and FPGAs.
Liquid Metal features dynamic runtime-partitioning, since the result of the Liquid Metal compiler
is a collection of artifacts (created from the applications computational kernels) for the various
architectures on the heterogeneous platform. As a result, the runtime can choose from a large
number of functionally-equivalent configurations for co-execution for the compute kernels. This
allows Liquid Metal to advantageously adapt to changes in the platform or program workloads,
availability of resources, and other fine-grained dynamic features. Execution is handled via any
modern JVM and runtime-partitioning occurs using a task graph where elements are the compiled
artifacts for each compute node in the program. The authors even put in additional effort to design
and implement an interactive development environment (IDE) to aid with using Lime.

Though Liquid Metal and Lime provide a new way of programming heterogeneous platforms, it
still leaves the question of very large/complex and/or legacy applications should be handled. It
is a given fact that industry very rarely spends effort in porting applications unless a new proven
standard has been ushered in [14]. Popcorn Linux along with its compiler framework takes care
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of these common concerns, providing all the necessary tools to prepare any C application to be
compatible with Popcorn Linux and the given heterogeneous-ISA platform. All that’s needed is
the original source code.

3.4 Heterogeneous Operating Systems

Several other works propose operating systems and compiler techniques to realize viable migra-
tion within heterogeneous platforms to achieve high performance as well as flexibility in load-
balancing.

Helios [24], an operating system proposed by Nightingale et al., is composed of multiple “satellite
kernels”, where a microkernel is instantiated for each CPU present on the heterogeneous platform
that has a different ISA or performance characteristics. Together with each microkernel, Helios
forms the notion of a “single-system-image” by exporting a single, unified namespace. Helios
implements both local message passing (LMP) and remote message passing (RMP) to provide
transparent, unified interprocess communication, independent of where a process or service exe-
cutes. The authors highlight a common theme within heterogeneous computing – the placement
of applications can have a drastic impact on performance. Helios attempts to solve migration costs
by exporting an affinity metric that is expressed over message-passing channels: a positive affinity
indicates to the OS that two components (e.g. process and a service or process and another cur-
rently executing process) will benefit from fast message passing and therefore should execute on
the same satellite kernel and the opposite for a negative affinity. The authors explicitly state that
Helios does not strive to optimally map processes to a graph of active processes on a system, but
instead base scheduling on their affinity metric with respect to the location of other processes with
which it wishes to communicate. Helios simplifies application deployment on a heterogeneous
platform by implementing its own two-phase compilation strategy for applications to be run on
its OS. The first step transforms source into a common intermediate language (CIL), followed by
compiling for each ISA present using a derivative of the Marmot [12] compiler called Bartok. The
authors argue that packaging applications using CIL has two advantages over FAT binaries. Devel-
opers using FAT binaries must choose ahead of time which architectures to support as a result as
more instruction sets are supported the size of the binary will grow in size. In addition, CIL already
contains infrastructure for efficiently supporting multiple versions of a method. This in turn allows
an application to be portable, taking advantage of device-specific features if they are present, and
still functioning if this device is missing by falling back to a another implementation. Running a
SAT solver benchmark using their affinity metric and being automatically offloaded resulted in the
application running 28% faster than when sharing the CPU with a disk indexer benchmark.

Popcorn Linux and Helios are similar in several regards. Both Popcorn Linux and Helios use repli-
cated kernels to form their respective OSs. However, kernels in Popcorn are peers, while in Helios
they are structured in a master/worker relationship. Moreover, Helios utilizes explicit message
passing to enable inter-processor-communication (IPC) whereas Popcorn Linux is shared memory
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POSIX compliant. All Helios applications must be written in Sing# in order to be compiled to
CIL; our compiler framework can prepare any C application into a compatible binary for a target
heterogeneous-ISA platform.

Barrelfish [5], as proposed by Baumann et al., is a new future thinking operating system based upon
the authors OS model coined as “the multikernel.” Recognizing the trend in rising core counts and
increasing hardware diversity leads the authors to identify three design principles for their mul-
tikernel model. These principles are: making all inter-core communication explicit, make OS
structure hardware neutral, and view state as replicated instead of shared. The authors give com-
pelling reasoning that in order to fully exploit the heterogeneity present in tomorrow’s platforms,
the traditional OS model needs to be rewritten. They observe that platforms are increasingly re-
sembling networked systems, and should be treated as such. They argue that explicit message
passing can outperform shared memory for updating shared state. By making the OS structure
hardware neutral, it leaves minimal hardware specific aspects needed to be created or ported when
a developer desires to add in a new device to their heterogeneous platform. Specifically, the only
components that would need to be implemented for a newly added device would be the messaging
transport mechanisms and the interface to hardware. In addition, the Barrelfish team developed
their own compiler framework named Hake [29], essentially a Haskell embedded domain-specific
language, to build both Barrelfish itself and applications for Barrelfish. By additionally writing a
Hakefile for a target application, the Hake compiler will parse this file and generate a Makefile that
will create a Barrelfish compatible binary. Finally, by making the OS state viewed as replicated
instead of shared across the multiple kernels, it allows for improved system scalability by reducing
load on the system interconnect, contention for memory, and overhead for synchronization as the
system resembling more an event-driven system.

Even though Barrelfish claims to be portable [32] on heterogeneous platforms, no heterogeneous-
ISA platform deployments are mentioned in their work. Popcorn is currently portable on the
Xeon-Xeon Phi heterogeneous platform as demonstrated in this thesis.



Chapter 4

Heterogeneous-ISA Application Profiling

The first part of this work addresses the profiling of applications across the available processing
resources in a heterogeneous platform. This thesis targets a platform with an Intel Xeon proces-
sor and an Intel Xeon Phi coprocessor. Moreover, the applications we focus on are written using
OpenMP. OpenMP [7] is a traditional multicore/shared-memory parallelism model that targets
thread-based parallelism in CPUs. To reiterate from the introduction, one of the driving forces of
using heterogeneous hardware and systems is to leverage individual advantages of a given archi-
tecture.

Even though Popcorn Linux provides the illusion of a single operating system environment among
different architectures through thread and process migration, it delegates to the user the decision
of migrating an application to a different architecture. The profiling tool introduced in this chapter
fills that gap; it finds an ideal partitioning that obtains the most performance with reference to the
strength of memory coupling between functions within the given application. The definition of
memory coupling in regards to this work is:

Definition 4.1. The amount of data (i.e., variables, arrays, etc.) used by a given function A, that is
also used by a successive second function B within the same application. A high or large memory
coupling value denotes that given functions A and B are highly coupled with each other as a result
of sharing and/or passing each other a significant amount of data. A low or small memory coupling
value denotes the opposite and therefore functions A and B do not share and/or pass a significant
amount of data to each other.

Note that the proposed profiling tool is static and dependent on the input data. Although a single
input data is usually representative of the call graph for certain applications, the input data can alter
the runtime behaviour and therefore the tool should be re-run for each different input.

Memory coupling between functions of a target application is highly relevant to heterogeneous

22
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platforms, especially when their current bottleneck hinges on the migration cost moving threads
and data across architectures. This specifically pertains to heterogeneous platforms constructed
of processors that do not share memory, since if processors do indeed share memory, there is no
need to move data back and forth as it is already accessible to the other cores. No heterogeneous
architecture today is cache-coherent, however this may change in the future. Nonetheless today’s
heterogeneous-ISA processors themselves can be cache-coherent within a heterogeneous platform,
or even use shared memory (such as AMD APUs, and the Xeon - Xeon Phi) to get closer to closing
the gap of memory coupling.

Migrating across different architectures provides the advantage that particular functions could po-
tentially see a speed up by being mapped to one architecture versus another such that the migration
cost is amortized throughout the program runtime. On the other hand, a function within the same
program could also have terrible performance by being mapped to a different architecture and ex-
perience slowdown. By analyzing the input program by the Profiler tool presented in this work,
this fatal scenario is avoided. As of this writing, characterizing and associating given architectures
to having affinity for certain computation types has not been studied but could be a further work.
Running the profiling tool is a one-time cost per application so this cost is constant compared to
the number of architectures present on the heterogeneous platform.

The rest of this chapter discusses the Page Tracking Library and the application Profiler and is
structured as follows:

• Section 4.1 presents the design of a generic heterogeneous application Profiler.

• Section 4.2 goes into detail of how the Profiler was implemented, how a page tracking library
was implemented to accurately predict the costs of migration, and how graph theory is used
to produce an accurate model that would give favourable partition solutions for the Xeon -
Xeon Phi heterogeneous platform for a given target application.

• Section 4.3 gives small examples illustrating what the Profiler produces.

4.1 Profiler Design

Several preliminary experiments had been performed to better gauge the cost of the Popcorn Linux
Operating System on Xeon - Xeon Phi platform. This tool is completely concerned with task
migration as it is the most influential part of the formula to decide which compute kernels are
worth migrating in the first place. Table 4.1 summarizes the averages of the timing information
gathered.
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Cost Name Cost
Migration Cost 900 µs
Page Fault Cost 50 µs

Table 4.1: Costs associated with Popcorn Linux (from cost.h of the Page Tracking Library
explained later)

The migration cost is the cost in micro-seconds associated with moving one thread from kernel 0 to
kernel 1 (or vice-versa). The page fault cost is the cost in micro-seconds associated with bringing
in a missing page to kernel 1, from kernel 0’s memory. To obtain the migration cost, we average
the cost of 20 migrations (operating system overhead only), invoked by a simple micro-benchmark
which ping-pongs a simple function across architectures keeping track of the elapsed time needed
to complete the migration, and then divide this time by the number of threads for each thread count
of 1, 4, 8, 57, 114, 228. Because the Xeon - Xeon Phi configuration utilizes 8 cores for the Xeon,
we therefore additionally weigh this average by the thread count divided by 8 (where any weight
less than one is rounded up to 1). Finally, to get an all-around migration cost for any potential
scenario, we take the mean of these values.

Number of Threads Avg. Migration Cost
1 0.899 µs
4 1.103 µs
8 1.896 µs

57 0.369 µs
114 0.355 µs
228 0.437 µs

Table 4.2: Costs associated with Popcorn Linux (from cost.h of the Page Tracking Library
explained later)

When calculating the best partitioning for the given application and in order to run the Profiler once,
we should not only consider the system software overheads but also the relative computational
capacity of one processor island in comparison to the other. Therefore we added the following
parameters for each function when calculating a possible partitiong. The xeon compute cost is the
cost in nano-seconds of performing on average one compute operation per memory access. The
xeon parallelism is the number of cores available on the Xeon. The phi compute cost is the same
value except for the Xeon Phi coprocessor. We measure it as eleven times (11x) slower. The phi
parallelism is the number of cores available on the Xeon Phi.

We now discuss how Popcorn Linux achieves task migration.

Popcorn Linux introduces inter-kernel user-space task (thread and process) migration in Linux.
A task migration consists of copying the task state from one kernel to another kernel in the
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heterogeneous-ISA platform. A kernel-level migration service runs on each kernel and to handle
migrating tasks quickly, a pool of dummy user-space tasks is maintained on each kernel. Dummy
tasks are kept in a sleeping state until called upon by an incoming inter-kernel task migration re-
quest. Using this technique, the pool adds minimal resource overhead to the system. Figure 4.1
shows the initial migration cost varying the number of concurrent migrating threads. The blue line
shows that successive migrations are up to 35 times faster, but performance number dwindles as
more concurrent threads are added.

Figure 4.1: The bar graph shows average per-thread first migration OS cost in milli-seconds, for
Xeon and Xeon Phi (refer to left side units). The blue line shows the speed up for subsequent
migrations (refer to right side units).

4.1.1 Obtaining Processor Relations for Profiling & Partitioning

To obtain the performance relation between the Xeon and Xeon Phi processors needed for pro-
filing, we performed the following experiment. Since the target set of applications that would be
interesting to evaluate on this heterogeneous platform were already known, specifically we were
interested in the NASA NPB benchmark suite [9], so we used that to our advantage and used that
as the basis for the experiment. The procedure involved running a wide spectrum of benchmarks
of varying nature and complexity on both the Xeon and Xeon Phi; this was so that the resulting
equation for determining optimal partitionings (described in the following sections) would be de-
cent “in-general” and not be specifically tuned for a particular use-case or type of application, and
therefore potentially avoid profiling and partitioning to be skewed in certain manner. The applica-
tions were compiled natively with maximum optimizations enabled and configured to utilize the
optimal number of threads per processor design (8 for Xeon and 228 for Xeon Phi). With these
runtimes documented, we then divided the runtime by the number of threads utilized to see con-
tribution per-thread. Finally, we took an average for both the Xeon and Xeon Phi runtimes and
divided Xeon Phi numbers by Xeon numbers to see the speed-up or slowdown ratio between the
two processors. Figure 4.2 shows the average performance ratio of Xeon Phi compared to Xeon.
As can be observed the BT and SP benchmark of the NPB suite performance ratio both follow a
similar linear trend as the input problem size is increased. It is expected that as the input prob-
lem size is doubled, so will the amount of time needed to perform the benchmark; as Class is
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increased, the Xeon Phi takes approximately 11 times, 22 times, and 33 times longer to complete
the benchmark respectively for classes A, B and C. The rest of the NPB suite follows a similiar
trend.

Figure 4.2: This figure shows the ratio of the additional time needed for Xeon Phi to complete the
BT and SP benchmarks for each input problem size (Classes A, B, and C).

4.1.2 Design Principles

Once we explored the capabilities of the Xeon - Xeon Phi platform, we then decided upon some
desired qualities our program Profiler should resonate and exhibit once completed. We came up
with the following design principles.

• Be generic. Machines are being packed with more and more processing elements everyday,
thus becoming more heterogeneous as a result. The Profiler tool should have a versatile
interface to which a developer can easily add/modify/delete architectures and/or devices to
consider when performing profiling on a target application.

• React to interference. How multiple applications are scheduled and mapped on a many-
core system, such as a heterogeneous platform running Popcorn Linux, can influence inter-
application interference for critical shared resources. Undesired interference can be intro-
duced if poor/bad application-to-core mapping policies are in place, thus potentially hamper-
ing performance and efficiency. The Profiler should be at least naı̈vely aware of such inter-
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ferences and predict which application phases could be most vulnerable to this phenomenon
in the presence of other applications. A possible solution is to provide hints highlighting
these vulnerable code regions and suggest to schedule them onto another core/architecture.

• Accurately predict if migration will amortize migration costs. It is known that migra-
tion of a target application to different architectures is the most expensive operation on a
heterogeneous-ISA platform. The Profiler should be able to predict whether executing a
given compute kernel on another architecture/device will amortize the migration cost and
give better performance than by staying on the host kernel.

• Be aware of the hardware topology. Different heterogeneous-ISA platforms could have
various configurations regarding shared memory and cache-coherence. In the current im-
plementation of Popcorn Linux if cache-coherent shared memory is present, it is utilized by
default. If shared memory is not available, Popcorn’s DVSM is used in order to maintain a
replicated state among kernels. Depending on the cache configuration, the Profiler should
automatically select the appropriate cost model to use when profiling applications to cor-
rectly reflect the costs incurred when migrating across architectures connected by different
means (e.g., PCIe, multi-socket, network, etc.). In addition, the result of the Profiler can vary
according to the number of cores available on each architecture.

4.2 Implementation

To begin, we decided to implement the Profiling tool to initially use a static approach. We real-
ize that using a static approach comes with limitations a dynamic approach would not encounter:
static analysis is very rigid, is not problem size invariant, is not able to interact with features such
a real-time scheduling, is not able to accurately account compute costs associated with external
library functions, etc. These additional features are left as a future work and are beyond the scope
of this thesis. The profiling tool is written using LLVM [21] (last tested against LLVM/Clang
trunk revision 212187) and has been implemented as a LLVM pass. LLVM passes perform trans-
formations and optimizations that make up the compiler as well as build analysis results from the
transformations.

The profiling tool walks over every function in the target application and annotates every function
call and every variable access with a call to a created page tracking library. We do not necessarily
care about specifics, like which exact address is being accessed by which function, but rather care
about the amount of data and memory pages that need to be fetched by a function in order for it
to execute. The obvious reason being that the amount of data transferred during heterogeneous-
ISA execution migration directly correlates to the incurred overhead of migration time. More
specifically, we care about the number of pages needed to transferred – specifically per migration.
This is because one page is the unit of allocation that the DVSM protocol handles when migrating
data between architectures. This is why the Page Tracking Library was created. In Linux, system
memory is divided into units called pages which consist of 4KB. In addition, a memory address is
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“page-aligned” if it’s the beginning of a new page. An optimization discussed in Chapter 6 goes
into more detail of why pages are important.

4.2.1 The Page Tracking Library

In order to encapsulate the core mechanisms of the Profiler and keep it simple for the LLVM pass,
it was ideal to create functions as part of a small library. These functions would be called for each
and any call of the target application’s LLVM bytecode that manipulates memory in some shape or
form. It is implemented in C/C++. To give a short summary, the library was organized as follows:

• cost.h – A header that provides the costs of performing actions using Popcorn Linux.
These costs include migration cost, page fault cost, Xeon compute cost and the Xeon Phi
compute cost all used the in Profiling algorithm when deciding whether or not it is beneficial
to partition a given function to the Xeon Phi.

• interface.h – Implements the core page tracking functions described below.

• graph.h – Provides access to requires Boost Graph Library [22] Functionality. To avoid
the need to use the Boost Graph Library directly in the main code we have this abstraction
layer. It provides graphs where each vertex can have a name and a partition assignment, edge
properties are templated. The main purpose of Graph<> is to provide a way to record edge
properties. Not all functions make sense for all template types, this should only be a “prob-
lem” for FlowNetworks, but it’s not actually a problem because those are only used in one
place in a very specific way. Partitioning (global min-cut or s-t min-cut) is only implemented
for UndirectedGraph. Most functions are implemented in function graph.h, but a few
functions which have per-template specializations are implemented in graph.cpp. As
Boost is massively templated this class is lightly templated, however at the very bottom of
this file three different template combinations typedef’d, these represent the only current use
cases of the Graph<> class.

• page tracking.h – Implements functions that record which function accesses which
pages during runtime. The main purpose of this class is to provide information about the
function that previously accessed a page, i.e. the function that currently owns a page. So
when a function accesses a page, it is recorded as the new owner, and the previous owner
is returned. Of course, the current function may already be the owner of a page. The point
of this is that if two functions end up on separate kernels we need to know how many page
faults this will cause so that we can choose a partitioning that minimizes the number of faults
(balanced with other costs).

• function graph.h – Implements functions which record properties of the call graph.
More specifically this class records which functions call which and how often, and which
functions access pages owned by other functions. Most of this work is actually done by
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Graph (graph.h) and PageTracker (page tracking.h), this class wraps these together
and builds a cost model on top of them.

The following are the core tracking functions implemented in interface.cpp that are used to
track which functions call which, and which memory addresses each function accesses:

• ptrack init(void) – This function is called once before any other function in the target
application. It initializes data structures used to store the memory access patterns during
execution and registers a callback to the destruction function that is called upon completion
of the target application.

• ptrack enter func(const char *fname) – This function is called upon entering
a function. It can be used to keep track of which function the annotation’s regarding memory
access are occurring.

• ptrack call func(const char *caller, const char *callee) – This func-
tion is called just before a caller calls a callee. It is used for keeping track of the call
chain and determining the strength of coupling between functions.

• ptrack memory read(const char *fname, const void *addr) – This func-
tion is called just before the current function, fname, reads from address, addr. It denotes
that when the current function is being run, a page fault will occur. This will give an estimate
of how much data is needed by this function.

• ptrack memory write(const char *fname, const void *addr) – This func-
tion is called just before the current function, fname, writes an address, addr. It denotes
that when the current function is being run, the followed data will be invalidated. AKA This
will give an estimate of how much data is affected by this function.

It should be noted that LLVM inserts functions for certain tasks (e.g., memset for initializing
memory). These functions have nothing to do with partitioning, as they can happen locally for any
architecture, and we do not see the implementation of them, so the Profiler has been modified to
quietly ignore them. Early along the initial implementation, it was observed that failing to ignore
them slightly biases against partitioning to put a given function on a different architecture, as these
instructions tend to be widely used, and thus add a false cost of potentially putting a function on a
different architecture.

Since applications tend to use libraries and functions associated with those libraries, those func-
tions can potentially also affect how target applications should be partitioned between architec-
tures. However, our page tracking library cannot track the memory or computational cost of library
functions for obvious reasons. It is possible that the source of external libraries is not accessible,
therefore the tool is not able to modify it appropriately and recompile. Mostly, this doesn’t mat-
ter as functions like printf() are not interesting or relevant for our profiling. The GNU math
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library, libm, however, is! Computational kernels frequently use math library functions, and as-
suming that they have a cost of zero is clearly wrong. We must realize that since we are considering
scientific applications, their contibution in the application is substantial as they are a key player,
but even so math library functions are quick to execute. We therefore assign a constant value for all
math related functions, but realize that future work could possibly give the profiling tool a better
way of accounting for the costs of library functions and improve the Profiler’s introspection. In
addition, to get desired behaviour of having I/O on the host architecture (e.g., it doesn’t make much
sense to have these operations occurring on an accelerator) we decided to pin all functions related
to I/O (i.e., fopen, fclose, fwrite, fread, etc.) to the Xeon processor.

The Page Tracking Library utilizes the Boost Graph C++ Library [22], in order to represent the
target application memory access pattern once all data has been recorded as a call-graph. Using
the produced call-graph, s-t minimum-cut [11] (s-t Min-Cut), a common graph operation, can
be performed and yield the most advantageous application partitioning from the memory access
profile. In graph theory, a traditional minimum-cut of a graph is an operation that results in a
partition of the vertices of a graph into two disjoint subsets that are joined by at least one edge that
is minimal in some sense such as minimum edge weight. A conceptual illustration of a minimum-
cut is below in Figure 4.3. Using information from the Page Tracking Library an s-t Min-Cut is
performed to determine on which architecture each function in the target application should be run
for best performance.

Figure 4.3: A graph and two of its cuts. The dotted line in red represents a cut with three crossing
edges. The dashed line in green represents one of the minimum cuts of this graph, crossing only
two edges.

4.2.2 Profiler Schema

The overall schema of the Profiler can be illustrated as below in Figure 4.4:
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Figure 4.4: A complete schema of the heterogeneous-ISA Application Profiler

To better illustrate how the Profiler internals work, we describe a target application’s profile graph
as follows:

• The information used to create these cost graphs for each benchmark is obtained by using
a LLVM pass to annotate every function call and memory access with a call to the Page
Tracking Library mentioned earlier. In turn, this library then generates the necessary infor-
mation during a profiling run of the binary. It is necessary to track every address to know
which pages are being accessed, providing a foundation for a precise runtime analysis of the
application memory access pattern. The analysis library builds up a call-graph, shown in
Figure 4.4 (a). If a function is not executed during the profiling run it will not be considered
for migration. Each vertex in the graphs represents a function ( A, B, C, D in Figure 4.4
(a) − (e)) within the target application. In (a) a call-graph is formulated to discern which
functions call upon which to realize relationships and dependencies between functions in the
target application.

• Each edge’s weight between two vertices in Figure 4.4 (b) represents how tightly coupled
two given functions are in terms of data transfers and page-faults incurred since data transfer
is the most impacting cost when migrating between architectures. This is where the runtime
analysis is essential, so that it is able to know precisely which function most recently read or
wrote to a particular page and thus owns it (i.e., that page currently resides on the architecture
that executed that function). The thicker lines in Figure 4.4 (b) between two functions A and
B represent pairs of highly coupled functions that access many of the same pages, and thus it
is desirable for those two functions to reside on the same architecture to avoid data-transfers.
In addition there is one configurable variable used in calculating the edge weight defined as
bias. In this equation, bias controls how aggressively the tool attempts to partition a program.
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It is implemented by increasing the compute cost of a vertex (node); this in turn reduces the
relative cost of a data transfer, thus making partitioning more attractive. Trial runs of the
Profiling tool performed on the NASA NPB suite show a good bias value is somewhere
between one and five inclusive.

• To calculate the weight associated with a functions affinity with respect to the available
architectures, as in Figure 4.4 (c) and (d), it is based on known constant (static) costs/spec-
ifications known about the heterogeneous system, in our case the Xeon - Xeon Phi platform
(Refer to Table 4.1). Again, a higher (bigger) weight represents higher affinity between a
function and a given architecture indicating that the function should be mapped to that par-
ticular architecture for most performance benefit. A low affinity between a function and a
given architecture suggests that the function may have more benefit being mapped to some
other architecture in the heterogeneous platform. The specifications used in the calculations
include migration cost (the cost to migrate a thread from kernel 0 to kernel 1 or vice-versa),
page fault cost (the cost to bring in a missing page to kernel 1, from kernel 0’s memory),
Xeon compute cost (the average compute per memory access), Xeon parallelism (the num-
ber of cores Xeon has), Xeon Phi slowdown (the slowdown of Xeon Phi compared to Xeon
running a single-threaded program), Xeon Phi parallelism (the number of cores Xeon Phi
has).

• Source and Sink nodes represent the various possible processors or instruction set architec-
tures present within the heterogeneous-ISA platform. In our Profiler schema Figure 4.4 (c),
(d), and (e) nodes s and t map Source and Sink nodes to the Xeon and Xeon Phi processors
respectively. It is simple to extend our experimental platform to the source and sink model of
a flow network as there are only two different architectures present and each can arbitrarily
represent either the source or the sink while the second represents the node chosen (e.g.,
Xeon can be the source and Xeon Phi the sink or vice-versa).

The four graphs are combined into a single cost graph, shown in Figure 4.4 (e), by assigning a
weight to each type of event. These weights are the number of nanoseconds required to handle a
single event of that type. The edge between two functions represents the number of nanoseconds
that will be added to the program’s runtime if a migration happens at that function call boundary.
The edge between a function and a virtual compute cost node is the estimated cost in nanoseconds
of not running on that architecture, i.e., how many nanoseconds will be added to the total runtime
by choosing a different architecture.

The migration and page fault costs are stable enough to be considered constant for this analysis
and thus their weights are measured directly. However, the diverse compute cost of executing a
single function on different architectures varies greatly and can only be approximated. An approx-
imate nanosecond cost of executing a single memory access is found by dividing the runtime of
a set of benchmarks by the number of tracked memory accesses. The number of tracked memory
accesses per-function is then weighted by this measured value. Finally, the compute cost is divided
by the number of processors available for functions that will execute in parallel (i.e., those that
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contain parallel OpenMP loops, or are called from inside a parallel loop), but is left unmodified for
functions that are not parallel.

To find the optimal partitioning we need to assign each vertex to a partition such that the sum of the
weights of the edges crossing between the two partitions is minimized. For example, in Figure 4.4
(e) the best partitioning is s, A, D, and B, C, t as the edges crossing between these sets have small
weights. This is known as the “min-cut”, and although there are many algorithms for solving that
globally, we have the additional constraint that s and t reside on opposite sides of the cut. We find
an s-t min-cut by exploiting the max- flow/min-cut duality theorem [11]. We map Figure 4.4 (e)
to a flow network, find the maximum-flow from s to t, and then map that back to a s-t min-cut by
exploiting the property that any vertex reachable from s using residual flow in the network must
belong to the same partition as s. This lets us find the partitioning shown in Figure 8(f), and shows
us that we should migrate between architectures on the edge between vertices A and B.

Before we dive into how we perform an s-t Min-Cut operation, it is necessary to be aware of a few
terms that are used. The core algorithm implemented in the Page Tracking Library which decides
the most advantageous partitioning for the target application based on the memory access profile
and is based upon the Max-Flow Min-Cut Theorem [11] described below.

Definition 4.2. A partition of a set X is a set of non-empty subsets of X such that every element x
in X is in exactly one of these subsets.

Definition 4.3. A network is a directed graph G = (V,E) with a source vertex s ∈ V and a sink
vertex t ∈ V . Each edge e = (v, w) from v to w has a defined capacity, denoted by u(e) or u(v, w).
It is also useful to also define capacity for any pair of vertices (v, w) /∈ E with u(v, w) = 0.

Theorem 4.4. The maximum possible flow from left to right through a network is equal to the
minimum value among all simple cut sets.

Theorem 4.5. Max-Flow Min-Cut: In any network, the value of max flow equals capacity of Min-
Cut. (Ford-Fulkerson, 1956)

An s-t Min-Cut operation is the same as a Min-Cut operation, except that the operation additionally
satisfies that nodes s and t reside on opposite sides of the cut and thus in different partitions. This
s-t Min-cut is determined using max-flow/min-cut duality. What this means is that we map the
resulting profile graph to a flow network, solve for max-flow using the Max-Flow Min-Cut The-
orem, and then map that flow back to a min-cut. To go into more detail, once the flow-network’s
max-flow is obtained, we take the residual network (i.e., every edge which not at maximum capac-
ity in the max-flow) and perform a reachability search from the original source node, to map the
graph back to a min-cut of the original graph. Every node that we can reach goes in one partition,
every node that we can’t goes in another. This gives us the optimal partition’s for Xeon and Xeon
Phi. For those curious, the runtime of the Ford-Fulkerson algorithm is O(m|f |) if all capacities
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are integers, where m is the number of paths that exist in the graph and |f | is the max-flow of the
graph.

Finding the min-cut of a graph results in a binary partitioning. For example, in the final reachability
stage of the above algorithm, each node is either reachable from s, or not. This means that the
approach as presented does not generalize to N architectures, which is not required for the Xeon-
Xeon Phi, but should be supported to follow the proposed design principles. Less precise graph
partitioning approaches such as clustering algorithms could be used to split the cost graph into
N partitions, but are out of scope for this paper. Finally, the partitioning analysis only considers
computational capability. It could be extended to consider how other costs, such as network or disk
I/O, differ between processor islands when determining optimal partitionings.

4.3 Results

The Profiler optimizes the target application with the maximum settings using the -O3 parameter.
We also use the -fno-inline CFLAGS parameter so that every source function exists and is
tracked. Disabling inlining of functions will have a conflicting affect on other optimizations, but
leaving function inlining enabled will result in inaccurate partitioning decisions. After compiling
to LLVM bytecode with maximum optimizations, the tool then applies the previously described
annotation pass functions to each source file where needed. Then linking occurs and the target
application can be run. With the annotations now inserted, running the application will record
each function and it’s memory accesses therein. Adding annotations enormously slows down the
program, but luckily this is a one time cost per application for the user. The initial implementation
could be sped up for loops that access memory serially by adding a new hook function to the Page
Tracking Library and exploiting LLVM bytecode loop information. Generally however, the need
to know the exact memory accessed at every single point makes optimizations hard.

Once the target annotated application completes, the second phase of the Profiler begins as it is
safe to begin processing all the data that was recorded and produce an analysis that give the best
partitioning of the target application between the Xeon and Xeon Phi. The analysis produces a
few results: a text file with a list of functions that are deemed advantageous to put on the Xeon Phi
coprocessor, a .DOT (graph description language) file which graphically represents the information
collected, as well as a PDF file to visually show the application call-graph and along with their
calculated costs. The best determined partitioning for the target application is also displayed to the
user.
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Figure 4.5: A sample call graph for the EP NPB benchmark that is generated by the Application
Profiler.

Figure 4.5 shows a sample DOT graph from a generated PDF file representing all profiling data
collected for the NPB EP benchmark. The two unique s and t nodes are denoted in blue. As
mentioned earlier all the nodes in this graph (besides the two in blue boxes) are various functions
that are used in the target application. The resulting best partitioning is denoted by the function
names contained in red boxes. These are the functions and subfunctions that have been deemed
advantageous to be run heterogeneously should be compiled for the Xeon Phi coprocessor to be
migrated to that architecture during runtime. The remaining functions contained in black circular
nodes are functions that are not worth migrating onto the Xeon Phi and therefore do not need to
be transformed. If inspected carefully, it can be observed that certain edges have massively large
weights compared to other edges. It was mentioned earlier that all I/O functionality would be
pinned to the host (Xeon) architecture when performing the s-t Min-Cut computation to determine
optimal partitions. We acheived pinning the desired I/O functions by manually assigning them the
maximum edge weight between the host architecture when creating the cost graph.

In addition, a production version of the Application Profiler would be combined with the Heterogeneous-
ISA Application Partitioner (to be presented in the next chapter) to form a 1-step process for the
developer. However, for the prototype it was earlier to debug the compiler framework as separate
entities, isolating problems to resolve issues faster. Figure 4.6 illustrates this connection.



Christopher S. Jelesnianski Chapter 4. Heterogeneous-ISA Application Profiling 36

List of
Parallel functions

Profiler Partitioner Migration-Ready
Souce

Original
Application
Source

Figure 4.6: This figure illustrates how the Profiler and Partitioner are connected.

It has been left for future work to implement detection of multi-application intereference and auto-
matic cache configuration detection. With this tool, instead of the developer needing to guess and
check various possible partition configurations for the target application, they only need to run the
Profiler once to obtain the optimal configuration, with no user intervention required besides a few
initial settings.



Chapter 5

Heterogeneous-ISA Partitioner

While the Xeon - Xeon Phi Profiler enables the developer to see what functions have advantages
being run on different processors available within a given heterogeneous-ISA platform, it doesn’t
perform the code transformations needed for an application to be migration-ready during runtime
to take advantage of the platforms heterogeneity. When we say that an application is migration-
ready, we mean that the application’s source has been successfully transformed and additional files
have been included during recompilation to allow migration to occur at function boundaries (the
purpose of this tool). Even with this newly collected information, it still leaves the developer with
the tedious and error-prone task of performing porting for their target applicationsto to a given
parallelism programming paradigm. In addition, several Popcorn Linux specific code blocks and
files need to be added to any target application to be compatible and migration-ready on Popcorn
Linux. We envision Popcorn Linux to be a self contained and easily deployed solution for hetero-
geneous systems. By having an automatic Partitioner, we provide a component that performs the
tedious tasks a user would otherwise need to worry about when attempting to use Popcorn Linux.
Therefore, this tool fosters the programmability of such emerging platforms. Note that the compo-
nent we are referring to can be integrated into the C library when the entire system software will
support heterogeneous-ISA platforms, thereby removing the burden from the developer.

This chapter presents the second half of the Xeon - Xeon Phi compiler framework, namely the
Application Partitioner. The Application Partitioner’s duty is to take a developer’s original source
code, and, using the information produced by the Application Profiler, properly transform the
designated functions to become able to migrate between Xeon and Xeon Phi during runtime. The
Application Partitioner will also need to satisify dependencies created by partitioning as well as
add in Popcorn Linux specific modifications to enable seamless migration. While performing all
these tasks, the Partitioner must be careful to maintain original application semantics in order to
not introduce new unintended bugs or unsupported corner cases.

This chapter is structured as follows:

• Section 5.1 discusses the design behind re-factoring developer code (by performing source-

37
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to-source code transformation) in order to a) be compatible with the underlying OS, Popcorn
Linux, and b) support process migration during runtime.

• Section 5.2 gives the implementation details for performing the source-to-source code trans-
formation step-by-step, what additional code is needed for process migration to be possible
and why, as well as the complete compilation strategy for producing a heterogeneous-ISA
binary ready to be run on the Xeon - Xeon Phi platform featuring the Popcorn Linux OS,
including modified runtime support libraries that will be further described later in Chapter 6.

• Section 5.3 presents sample source-to-source code transformations on a smaller scale in or-
der to demonstrate what this process looked like for the benchmarks that are included in this
work; we also present the evaluation of our profiling, partitioning, and code transformation
techniques in this section.

5.1 Design

With the need to add-in additional Popcorn Linux specific code blocks to a target applications
source and compiling additional files when creating a heterogeneous-ISA binary, it drives the mo-
tivation for creating a tool that would automatically take care of this and require minimal user in-
tervention during the transformation process. Performing porting for numerous benchmarks would
otherwise be time-consuming and user-effort could better spent elsewhere. With the Application
Partitioner the following goals should be realized:

• Be Compartmentalized. In the larger scheme of things, the scale of complexity of the Xeon
- Xeon Phi compiler framework steadily grew throughout the engineering phase of develop-
ing this framework to be production ready for the desired set of benchmarks to bring to light
how good Popcorn Linux and the compiler framework were with respect to given competi-
tors (e.g., Barrelfish, Intel LEO, and OpenCL implementations). The further the framework
progressed, the more complex and minute nuances plagued our implementation that had
to be figured out and resolved in order to progress. These nuances occurred in the entire
spectrum of the compiler framework and early on it was determined to be of best interest to
adopt a modular design of components. This would allow for straightforward access to apply
remedies for discovered bugs without the risk of encountering a domino effect where one fix
breaks something else. As a result, the application Profiler and application Partitioner are
completely disjoint, but the Profiler feeds information directly to the partitioner as an input
parameter.

• Be Automatic. A few Popcorn specific code blocks need to be inserted in order to enable
process migration between architectures for the given target application. This consists of
wrapping function calls and redirecting variable assignment. Depending on the complexity
of the target application, this could easily become very troublesome for a developer to deal
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with manually by hand. The application partitioner described below steps in and provides
the porting of a target application without user intervention.

• Be Modular. Thinking ahead, it is important to consider possible configurations of heterogeneous-
ISA platforms down the line. When implementing this part of the compiler framework, it
was paramount to make it modular and generic, able to be adapted to add, remove, and mod-
ify the interface that directs how the target application would be compiled. This is so that
creating binaries for any given heterogeneous-ISA platform would be easy to update and as
easy as physically swapping in and out various heterogeneous hardware. As a result, both
the partitioner and compiler have interfaces and options that provide a means for the user
to update which architectures and/or devices that they wish for the binary to support. This
feature proved to be very useful in the development stage, as it provided a means to debug
the target application’s different ISA compiled versions by being isolated from each other
and allowing them to tested independently.

For the given configurations presented in this work (Xeon - Xeon Phi) only one partition file
(explained in the implementation section) is needed to be generated as there exists only one “other”
architecture present within the heterogeneous-ISA platform and to compile separately for (besides
the host architecture). In a production version of this application partitioner tool, the tool would
be capable of performing all the source-to-source code transformations needed to support N target
architectures and/or devices. In this production scenario there would exist as many partition files
as “other” non-host architectures present on the heterogeneous-ISA platform.

5.2 Implementation

The Xeon - Xeon Phi partitioner presented in this work is implemented using the ROSE Compiler
Infrasture [27]. ROSE is an open source compiler infrastructure to build source-to-source pro-
gram transformation and analysis tools for large scale C(C89 and C98), C++(C++98 and C++11),
UPC, Fortran (77/95/2003), OpenMP, Java, Python and PHP applications and was developed at
the Lawrence Livermore National Laboratory (LLNL). Using its API, we were able to construct
a source-to-source compiler that performs two passes of transformations on the target application
before being ready for the final heterogeneous-ISA compilation for Xeon - Xeon Phi.

ROSE works by first reading the target application’s source and generating an Abstract Syntax Tree
(AST). The AST generates a graph representing the structure of the target application composed of
nodes that contain the intermediate representation (IR) of the source. The API then provides and
interface to manipulate and change the tree as desired; this is how source-to-source transformation
occurs.
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5.2.1 Adding Hooks

The first pass connects the Application Profiler to the Application Partitioner (refer to Figure 4.6)
by taking in the results of the Application Profiler (a text file with a list of functions that should be
transformed to be migration-ready) and going through the application source appending #pragma
popcorn above the listed function’s definitions. This is acheived by creating a new node into the
AST with this content and traversing the AST until the designated function definition is found.
This process is repeated until all functions listed in the Profiler output file have been found. This
creates a hook for the second pass to easily recognize which functions should be transformed.
Figure 5.1 depicts this transformation.

1 . . .
2

3 i n t compute ( i n t a , i n t b )
4 {
5 i n t c ;
6 c = a + b ;
7 . . .
8 r e t u r n c ;
9 }

10

11 vo id p r i n t r e s u l t ( c h a r ∗n ) {
12 . . .

1 . . .
2

3 # pragma popcorn
4 i n t compute ( i n t a , i n t b )
5 {
6 i n t c ;
7 c = a + b ;
8 . . .
9 r e t u r n c ;

10 }
11

12 vo id p r i n t r e s u l t ( c h a r ∗n ) {
13 . . .

Figure 5.1: Before (left) andAfter (right) adding code transformation hooks to a sample program

5.2.2 The Main Pass

The second pass performs the majority of the heavy lifting for the Application Partitioner. In order
to stay aligned with the third goal of the partitioner to be modular, we create a new file (hereafter
called partition file) for each different ISA we will be compiling for except for the designated
“host” architecture. In this work only one partition file is created as the Xeon Phi ISA is the only
additional “non-host” architecture present in our target heterogeneous-ISA plaftform. The partition
file will be populated during the second pass of Application Partitioner and will contain functions
and those function’s respective dependencies of the given target application that have been deemed
beneficial in utilizing migration to a given target ISA present on the given heterogeneous-ISA
platform. This population process is repeated for each ISAs designated partition file, based on the
results from the Application Profiler and is described in more detail below. Dependencies that need
to be copied over to a partition file from the original target application’s source include global ob-
jects used within the target function such as arrays, pointers including their parallel programming
meta-data (in our test case OMP pragmas such as #pragma omp threadprivate), as well
as functions called within target functions. It should be mentioned that the partitioner can handle
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any amount of recursive function calls and will copy all involved children functions. In addition,
the partitioner has been implemented to recognize and correctly handle traditional recursion (e.g.,
if a function is recursive, the partitioner will not copy the function more than once, thus avoiding
going into an infinite loop).

Now we will go into more detail of the source-to-source transformation that occurs in the second
pass once the creation of partition files for each of the present ISAs has completed. The process
described below is iterative, an iteration is executed for each #pragma popcorn and this search-
and-transform process is repeated until no more #pragma popcorn hooks are found. Once a
#pragma popcorn is found partitioner begins the source transformation process begins.

The source-to-source transformation is composed of several steps. We will discuss each of them
separately and after each step, a figure is presented to depict what new changes have been made
to the sample application to give a better understanding of the code transformation process. For
easy readibility as well as debugging each of the steps are implemented as a specific function in
our ROSE Partitioner tool. Table 5.1 lists each of these steps, notes which function is associated
with this step, and gives a short description.

Tranformation Step Function Associated with Step Description
Input and Output Argu-
ment Recognition

makeStruct4Func(funcDecl); Creates the structures needed
to encapsulate function pa-
rameters

Function Rewriting to
Handle Arguments on
the Heap

makePopcornFunc(funcDecl, st); Transforms target functions
to be migration-ready

General Cleanup removeOrigFunc(funcDecl); Removes old function defini-
tions

Adding Stub Code to
Enable Migration

mainMigrateTransform(project); Replaces all instances of tar-
get functions to enter a migra-
tion wrapper

Table 5.1: Main Code Transformation Steps

For the rest of the implementation please refer to the following code in Figure 5.2 as a reference to
what the original application source looked liked before it underwent transformation.
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1 /∗ O r i g i n a l Source Code ∗ /
2 # i n c l u d e < s t r i n g . h>
3 . . .
4

5 do ub l e compute ( i n t a , i n t b )
6 {
7 do ub l e c ;
8 c = a + b + 3 . 1 4 ;
9 . . .

10

11 r e t u r n c ;
12 }
13 . . .
14

15 i n t main ( i n t a rgc , c h a r ∗ a rgv ) {
16 i n t a , b ;
17 do ub l e s ;
18 . . .
19

20 s = compute ( a , b ) ;
21 p r i n t f ( ” o u t p u t a f t e r compute : %f \n ” , s ) ;
22 . . .
23

24 r e t u r n 0 ;
25 }

Figure 5.2: Original source code of sample application

5.2.3 Input and Output Argument Recognition

This is the first step that occurs. This function creates a structure (struct) that will hold the
funcDecl’s function parameters (as well as the return value if the function is not of type void)
and is the unit which gets fetched when execution migration occurs. The parameters of funcDecl
are obtained by parsing the function’s function declaration using the AST. This structure definition
is added to both the partition file and in the source file where the original function is located such
that all files which will reference this structure will have its definition. Note that a structure is
created individually for each #pragma popcorn annotated function with the following naming
convention: functionName migrate, where functionName is replaced with the actual
name of the function currently being transformed. This approach is scalable as more architectures
are included within the heterogeneous-ISA platform, only one structure per function is needed.
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1 . . .
2

3 e x t e r n s t r u c t c o m p u t e m i g r a t e ;
4

5 do ub l e compute ( i n t a , i n t b )
6 {
7 do ub l e c ;
8 c = a + b + 3 . 1 4 ;
9 . . .

10 r e t u r n c ;
11 }
12

13 vo id p r i n t r e s u l t ( c h a r ∗n ) {
14 . . .

1

2 s t r u c t c o m p u t e m i g r a t e
3 {
4 i n t a ;
5 i n t b ;
6 do ub l e r e t u r n v a l ;
7 }

Figure 5.3: Source (left) and Partition File (right) after makeStruct4Func

5.2.4 Function Rewriting to Handle Arguments on the Heap

This is the next step that occurs in the loop and is responsible for creating the migration-ready
version of the function that has been marked with the Popcorn pragma. This includes changing
the function’s name to include a suffix (i.e. x86, phi, etc.) to prevent compiler conflicts later
in the compilation process, modifying its input parameters to only be the structure (created in
makeStruct4Func(funcDecl); associated with that function, and changing it’s return type
to be void now that the return value will be stored in the migration structure instead. This step
also modifies the body of the given function to reflect the changes in the function prototype. This
means changing all references of input parameters in the function to refer to its migration structure
counterpart (e.g., input1 becomes ctx->input1, etc.) for all original input parameters. Refer
to Figure 5.4. In addition, this step recursively searches for child function calls within the Popcorn
pragma’ed function, records them, and adds static copies of function definitions to the partition
file to resolve dependencies. The last part of this step checks and modifies the return segment of
the function. Since the return value, if any, will now be stored in the migration structure, the code
needs to reflect this so the return statement is modified to be stored in the structure, therefore the
return structure is eliminated and return type is changed to void.
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1 vo id compute x86 ( s t r u c t c o m p u t e m i g r a t e ∗ c t x )
2 {
3 i n t a = c tx−>a ;
4 i n t b = c tx−>b ;
5 do ub l e c ;
6 c = a + b + 3 . 1 4 ;
7 . . .
8 c tx−>r e t u r n v a l = c ;
9 }

Figure 5.4: The migration-ready version of compute kernel after makePopcornFunc

5.2.5 General Cleanup

Once the modified migration-ready function has been created, the next step appends it to the orig-
inal functions source location as well as partition file and removes the old function as that one is
now obsolete. The orginal function can be optionally left in during transformation but adds no
value to the target application at this point.

1 . . .
2

3 s t r u c t c o m p u t e m i g r a t e
4 {
5 i n t a ;
6 i n t b ;
7 do ub l e r e t u r n v a l ;
8 }
9

10 vo id compute x86 ( s t r u c t c o m p u t e m i g r a t e
∗ c t x )

11 {
12 i n t a = c tx−>a ;
13 i n t b = c tx−>b ;
14 do ub l e c ;
15 c = a + b + 3 . 1 4 ;
16 . . .
17 c tx−>r e t u r n v a l = c ;
18 }
19

20 vo id p r i n t r e s u l t ( c h a r ∗n ) {
21 . . .

1 s t r u c t c o m p u t e m i g r a t e
2 {
3 i n t a ;
4 i n t b ;
5 do ub l e r e t u r n v a l ;
6 }
7

8 vo id c o m p u t e p h i ( s t r u c t c o m p u t e m i g r a t e
∗ c t x )

9 {
10 i n t a = c tx−>a ;
11 i n t b = c tx−>b ;
12 do ub l e c ;
13 c = a + b + 3 . 1 4 ;
14 . . .
15 c tx−>r e t u r n v a l = c ;
16 }

Figure 5.5: Source (left) and Partition File (right) after removeOrigFunc
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5.2.6 Adding Stub Code to Enable Migration

This step does the heavy lifting of searching throughout the entire application source and replacing
all calls to Popcorn pragma’ed functions with the migration hint function, the function through
which migration to another architecture occurs. This step also takes care of adding neccessary
calls to populate the migration structure that gets passed into the migration hint function to use
migrated and used by the Popcorn pragma’ed function. In addition it takes care of adding calls for
populating the variable which originally received the return value redirecting it from the migration
structure; note that this additional process is not invoked if the Popcorn pragma’ed function has
return type void.
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1 # d e f i n e GNU SOURCE
2 # i n c l u d e <sched . h>
3 # i n c l u d e ” m i g r a t i o n a d d i n s . h ”
4

5 # i n c l u d e < s t r i n g . h>
6

7 . . .
8

9 s t r u c t c o m p u t e m i g r a t e
10 {
11 i n t a ;
12 i n t b ;
13 do ub l e r e t u r n v a l ;
14 }
15

16 vo id compute x86 ( s t r u c t c o m p u t e m i g r a t e ∗ c t x )
17 {
18 i n t a = c tx−>a ;
19 i n t b = c tx−>b ;
20 do ub l e c ;
21 c = a + b + 3 . 1 4 ;
22 . . .
23 c tx−>r e t u r n v a l = c ;
24 }
25

26 . . .
27

28 i n t main ( i n t a rgc , c h a r ∗ a rgv ) {
29

30 s t r u c t c o m p u t e m i g r a t e ∗ c o m p u t e c t x ;
31 c o m p u t e c t x = ( ( s t r u c t c o m p u t e m i g r a t e ∗ ) ( ma l l oc ( s i z e o f ( s t r u c t

c o m p u t e m i g r a t e ) ) ) ) ;
32

33 . . .
34

35 c o m p u t e c t x −> a = 1 ;
36 c o m p u t e c t x −> b = 2 ;
37 m i g r a t i o n h i n t ( compu te c tx , compute x86 , c o m p u t e p h i ) ;
38 s = c o m p u t e c t x −> r e t u r n v a l ;
39

40 p r i n t f ( ” o u t p u t a f t e r compute : %d\n ” , s ) ;
41

42 . . .
43

44 f r e e ( c o m p u t e c t x ) ;
45 r e t u r n 0 ;
46 }

Figure 5.6: The resulting source code after undergoing all stages of the transformation
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To highlight the code transformation, all function calls of functions that have been deemed wor-
thy to migrate and now migration-ready versions, are replaced with a function call the function,
migration hint which invokes process migration between kernels. A code block is shown
below.

migration hint(funcName ctx, funcName x86, funcName phi);

This is an example of the Xeon - Xeon Phi implementation of the migration hint. The first pa-
rameter is the function’s structure, created in the first step and contains funcName’s original func-
tion parameters. The second parameter is always designated to be a pointer to the host-architecture
version of funcName x86 (In our implementation the Xeon x86 version). In our implementation,
the third parameter is a pointer to the Xeon Phi architecture verision of funcName phi.

migration hint(funcName ctx, funcName arch0, funcName arch1,
funcName arch2, ... );

Figure 5.7: Generic Implementation of migration hint

In a production version of the Application Partitioner, the migration hint function would be
configurable to handle any number of N different architectures for a developer that is targeting
a given heterogeneous-ISA platform. The current implementation is able to be reconfigured to
handle additional architectures with trivial developer effort.

Once the partitioner has come out of this loop, minor touch-ups on the source are performed. This
includes declaring header files and a few macros needed for migration functionality. An important
distinction is needed to treat/compile the correct versions of library functions (specifically from
the math library as these functions can potentially be called from any partition). As a result suppli-
mental code transformation needed to be performed, but this process will be described in detail in
the Xeon - Xeon Phi runtime support section of the Heterogeneous-ISA Runtime Support chapter.
This concludes the source-to-source transformation process; modified source is now ready to be
compiled and linked to form the heterogeneous-ISA FAT binary [39].

5.2.7 Xeon - Xeon Phi Compiler/Linker

Once source-to-source code transformation has been performed on the target application, it is ready
to be compiled and linked for the Xeon - Xeon Phi platform.

We automated the process to complete both the compile and link steps needed to create a heterogenousa-
ISA FAT binary of the target application. The automation process has 3 modes of operation and 2
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variable inputs for creating binaries. Mode 0 denotes the creation of heterogeneous-ISA executa-
bles with the ability of migration between architectures. The other two modes, 1 and 2, denote
the creation of homogeneous-ISA executables (no ability to migrate but still able to run on the
Popcorn Linux platform. The migration hint function forces the application to run the native
version of the target function instead of performing sched setaffinity() and migrating the
threads before executing the non-native version of the target function) that are compatible with
only one host architecture, Xeon or Xeon Phi respectively. The two variable inputs were for fine
tuning of experimental results and denote to the compiler how many cores to enable for use on
each architecture in order to test a wide spectrum of configurations on the Xeon - Xeon Phi plat-
form with respect to the number of CPU cores to be utilized. Depending on the mode selected, the
binaries are assigned discernable names to help the developer understand the configuration of the
executable produced without much effort.

This notation is as follows: bName.bClass.version.xCores.xpCores.kernel, where
bName is the benchmark name, bClass is the benchmark input problem size (in the case of
NPB), version to descipher which mode was used to compile the benchmark and can have
values Heterogeneous or Homogeneous, xCores denotes how many Xeon cores have been
enabled, xpCores denotes how many Xeon Phi cores have been enabled, and kernel is for the
heterogeneous-ISA case where the kernel states for which architecture the given benchmark file is
for (in our case it can take values Xeon or Phi, denoting that the file has been compiled using the
Xeon or Xeon Phi ISA, respectively).

After the output names are set, traditional compilation flags are set such as optimization level,
enabling libraries, including a few customly created macros for manipulating the OMP library
at run time. Note that each architecture’s partition uses the most aggressive optimization option
(-O3) when being compiled to gain the most performance benefit. The previously mentioned
custom macros include:

-DNUM HOST CORES: the number of cores to be enabled for use on the host architecture (in this
case Xeon)

-DNUM REMOTE CORES: the number of cores to be enabled for use on the target architecture (in
this case Xeon Phi)

-DFIRST REMOTE CORE: this macro is tied in with Popcorn Linux’s OS single system image and
the way it sees the heterogeneous platforms available resources. It denotes the assigned number of
the first CPU of the target architecture to be migrated to. This is utilized when migrating calling
the function sched setaffinity() which takes in the process’s PID and CPU affinity mask
and uses that to ‘reschedule’ the process onto the target architecture.

Once all flags are set for the mode selected, it is time to actually compile the source with the
appropriate flags into object files. This is accomplished in one (optionally two) step(s). The first
step is that all C source files are compiled for the host (Xeon) architecture. During this step, all
host architecture object files have the libomp symbol kmpc atomic float8 add defined to
point to the Xeon ISA implementation. This is a patch for a nuance created by the OMP Library
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for proper multithreaded execution and will be described in further detail in the chapter regarding
heterogeneous-ISA runtime support, Chapter 6.

Since the first action performed by the automation process compiles all C source files for the host
architecture, this inadvertently also includes all non-host partition files (in our case this includes
the parttion file created for Xeon Phi) which is undesired if compiling for a heterogeneous-ISA
FAT binary (mode 0). If mode 0 was selected, we delete the object’s created for the non-host
partitions and recompile for their respective ISAs (in our case we recompiled for Xeon Phi using
Intel’s ICC compiler with k1om as as the target architecture.

During this step we also redefine the libomp symbol kmpc atomic float8 add to point to
the Xeon Phi ISA implementation. This is make sure the correct implementation is used for proper
multithreaded execution.

Assuming that we are compiling for a heterogeneous-ISA FAT binary, we run into the issue that
compilers such as GCC were not designed to link object files of varying ISAs. We therefore need
to manipulate the ELF’s Magic Number [40] value for the each partitions generated object file to
match the host architectures Magic Number configuration. Essentially a files Magic Number, not
usually relevant in high performance computing yet is an obscure obstacle we discovered working
with heterogeneous platforms, is meta data located in the first few byte of a file that specifies
the architecture type of a given file. In our case, it prevents mixing of object files of different
architectures during compilation which we actually do want to do to form a heterogeneous-ISA
binary. With the value changed the compiler will successfully create the host architecture version
of the target application, no longer preventing compilation. But this is only half of a complete
heterogeneous-ISA FAT binary. In addition, a binary for each target architecture (in our case
just Xeon Phi) must also be compiled, but a short-cut can be taken here. Since we have already
compiled object files for each partition using it’s respective ISA and we will not be executing any
other functions on a target architecture besides the ones specified by the Profiler into the host-
architecture binary, we need make a copy of the host-architecture binary and modify it’s Magic
Number to satisfy the architecture requirement for execution.

Note that if mode 0 was not selected this re-compilation of non-host partition files can be side-
stepped and linking can occur immediately after object file creation. Also if the mode was selected
to compile for a non-host ISA, the binary would be compiled for that architecture.

There is one more catch when dealing with heterogeneous-ISA FAT binaries in Popcorn: each
executable must be in the same system directory location on each architecture. Another caveat,
though not really a limitation, is that execution of the heterogeneous binary must begin on the host
(Xeon) architecture of the platform. This design decision was motivated by providing simplicity
to the user and also to provide potential future work for the Heterogeneous compiler, specifically
the potential of a ubiquitous (all-encompassing) executable for the heterogeneous platform for
maximum flexibility.
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5.2.8 Add-in Files & Migration Mechanism

In addition to the needed source-to-source code transformation provided by the Application Par-
titioner, an additional module is necessary to be compiled together with the target application to
correctly produce a migration-ready FAT binary for Popcorn Linux. This source file provides the
implementation of functions that take care of process migration as well as a “primer” migration
function. Taking advantage of Popcorn Linux’s global namespace, we are able to “see” the majority
of all hardware and software resources (i.e., processor cores, PID’s, etc.) on the heterogeneous-ISA
platform. We mention this because the mechanism to migrate a process onto a different architecture
is through the use of sched.h macros and functions. The implementation of migration hint
is depicted below.

1 I n p u t s :
2 ∗ c t x : F u n c t i o n s a s s o c i a t e d s t r u c t u r e h o l d i n g o r i g i n a l f u n c t i o n s p a r a m e t e r s
3 ∗ f : P o i n t e r t o Xeon compi l ed v e r s i o n o f f u n c t i o n t o be m i g r a t e d
4 ∗g : P o i n t e r t o Xeon−Phi compi l ed v e r s i o n o f f u n c t i o n t o be m i g r a t e d
5 vo id m i g r a t i o n h i n t ( vo id ∗ c tx , vo id (∗ f ) ( ) , vo id (∗ g ) ( ) ) {
6 i n t k e r n e l , i ;
7 k e r n e l = p i c k k e r n e l ( ) ;
8 c p u s e t t hos t , t a r g e t ;
9

10 CPU ZERO(& h o s t ) ; CPU ZERO(& t a r g e t ) ;
11 c o n s t i n t h o s t c p u s = NUM HOST CORES ;
12 c o n s t i n t t a r g e t c p u s = NUM REMOTE CORES; / / xeon p h i i s 228
13 c o n s t i n t o f f s e t = FIRST REMOTE CORE ; / / 8
14

15 f o r ( i = 0 ; i < h o s t c p u s ; i ++) {
16 CPU SET ( i , &h o s t ) ;
17 / / 0 , 1 , 2 , 3
18 }
19 f o r ( i = o f f s e t ; i < ( o f f s e t + t a r g e t c p u s ) ; i ++) {
20 CPU SET ( i , &t a r g e t ) ;
21 / / 4 , 5 , 6 , 7 , . . .
22 }
23 i f ( k e r n e l == 0) {
24 / / 0 i s h o s t ( Xeon )
25 f ( c t x ) ;
26 } e l s e {
27 / / 1 i s t a r g e t a r c h ( Xeon Phi )
28 / / go t o t a r g e t
29 # i f d e f OPENMP
30 o m p s e t n u m t h r e a d s ( t a r g e t c p u s ) ;
31 # e n d i f
32 # pragma omp p a r a l l e l
33 {
34 s c h e d s e t a f f i n i t y ( 0 , s i z e o f ( c p u s e t t ) ,& t a r g e t ) ;
35 }
36 / / run t h a t v e r s i o n s o f f u n c t i o n
37 g ( c t x ) ;
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38 / / come back
39 # pragma omp p a r a l l e l
40 {
41 s c h e d s e t a f f i n i t y ( 0 , s i z e o f ( c p u s e t t ) ,& h o s t ) ;
42 }
43 }
44 }

Listing 5.1: migration hint Implementation

The macros NUM HOST CORES, NUM REMOTE CORES, FIRST REMOTE CORE are defined
during compilation by the compilation script described earlier. The function works as follows.
First, executing pick kernel(); gives which kernel/architecture the process should be mi-
grated to for the given function. In our case, there is only one other architecture possible to migrate
to, the Xeon Phi and thus returns the value 1. With the help of CPU ZERO and CPU SET, we are
able to create the desired CPU mask for the given platform, and thus dictate onto which CPUs the
process and/or its respective threads should be scheduled. Once the CPU mask is set, it is passed
to the function sched setaffinity() which takes care of performing the needed syscalls to
perform the process/thread migration.

Below is an excerpt of the description for sched setaffinity() from Linux Programmer’s
Manual [18]:

A thread’s CPU affinity mask determines the set of CPUs on which it is eligible to run. On a
multiprocessor system, setting the CPU affinity mask can be used to obtain performance benefits.
For example, by dedicating one CPU to a particular thread (i.e., setting the affinity mask of that
thread to specify a single CPU, and setting the affinity mask of all other threads to exclude that
CPU), it is possible to ensure maximum execution speed for that thread. Restricting a thread to
run on a single CPU also avoids the performance cost caused by the cache invalidation that occurs
when a thread ceases to execute on one CPU and then recommences execution on a different CPU.

A CPU affinity mask is represented by the cpu set t structure, a “CPU set”, pointed to by mask. A
set of macros for manipulating CPU sets is described in CPU SET(3).

sched setaffinity() is wrapped within a #pragma omp parallel block in order to
support multi-threaded migration. The desired function to be run on the different architecture is
then initiated by calling g(ctx);. The target function will now be executed on the Xeon Phi ar-
chitecture. Once it completes, sched setaffinity() is called once again, this time with the
host CPU mask configuration to bring the threads back to the host architecture (Xeon). With addi-
tional architectures present on the target heterogeneous-ISA platform, the function pick kernel();
is a perfect candidate for modifying to create a user-defined migration model with the various op-
tions available to the developer. In addition, enabling for the use of additional different architec-
tures or devices would require minimal developer effort to add in additional hooks following the
current model for our Xeon - Xeon Phi platform.



Chapter 6

Heterogeneous-ISA Runtime Libraries

Having an automatic compiler framework that properly partition target applications to be migration-
ready for a heterogeneous-ISA platform is just one piece of the puzzle to possessing the capability
of fully exploiting a heterogeneous-ISA platform.

Making the argument that today’s applications are intricate and complex, they usually rely on
support from various libraries to fill in functionality that would otherwise be too tedious to also
implement alongside the application logic. In other words, why re-invent the wheel when some-
one else has already created a library to provide the functionality you desire in your application. It
is general knowledge that the kernel (in our case Popcorn Linux) governs access to memory, the
filesystem, hardware, and the privileges for using these resources. The standard C library provides
the actual C function interfaces userspace applications see. It is responsible for thread creation,
managing memory allocation and synchronization operations, and other commonly needed func-
tionality using the lower-level interfaces the kernel provides. Finally, the standard C library also
gives access to pure library routines of the C language like strstr, sqrt, exp, etc. Therefore
the standard C library is a necessary core component for any non-trivial application. Normally,
this type of discussion about libraries is not a major concern or real interest to most developers and
computer scientists in this day and age. The reason being that most current heterogeneous devices
such as GPUs, FPGAs, and assorted accelerators simply provide the developer “their” device’s
library API when they purchase the device. Sure the developer has to now port his/her applications
to conform with the new devices API, but manufacturers assume this is acceptable as the speedup
that the hardware provides is a satisfactory compromise for this time investment. We claim that
this is not sufficient.

Providing support for heterogeneous-ISA OS-capable platforms is a whole different story. Our ini-
tial survey of core libraries showed that finding ones which have multiple implementations across
various architectures proved difficult to come by, and in our case, forcing us to even perform
porting ourselves in some instances. Because of the predicted significant effort required to port
multiple libraries for the heterogeneous-ISA platforms, we decided to narrow our scope and only
target core and absolutely necessary libraries for this work. This included libraries such as the C
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standard library, the Math library, and libraries to enable multi-threading. For most benchmarks
presented in this work, we were fortunate enough to not be required to port any additional obscure
libraries. All things aside, this caveat is still a harsh reality that developers wishing to use our work
should realize. Though on the bright side, libraries only need to be ported once per architecture.

In addition, at this point it should be noted that all applications as well as libraries (i.e., glibc,
libm, pthreads, etc.) used and presented in this work and all others to be run on Popcorn Linux
are compiled statically as dynamic compilation is not yet supported for Popcorn Linux. The rea-
soning behind this design decision is for a multitude of logical reasons. Since we are supporting
a heterogeneous-ISA platform, the complexity inherent with dynamically loaded libraries is much
greater than static libraries and the amount of engineering needed is beyond the scope of this the-
sis. Even though we are well aware it makes the size of a heterogeneous-ISA FAT binary explode,
static libraries give much more direct access for performing modifications and resolving issues
during compiling and linking of binaries. Static linking also comes with it’s other already known
benefits of portability and slight performance advantage over dynamically linked programs. As
Popcorn Linux and its compiler framework continues to mature, it is a working goal to support
dynamically linked libraries.

To obtain the best performance gains possible, it should also be noted that all applications and
libraries used and presented in this were compiled with maximum and most reasonably aggressive
optimizations for each respective architecture enabled. In order to make sure that our compiler
framework had maximum optimizations enabled, we verified that all loops in our various test cases
had been vectorized. We checked this using the -vec-report1 option available in Intel’s ICC
compiler.

One interesting caveat that came up during benchmarking was a specified option for the compiler.
The GCC option -mcmodel= can have one of several values including small, medium, and
large. This option specifies and tells the compiler to generate code for the small, medium, or
large code model respectively, where the medium value specifies that the program is to be linked
in the lower 2GB of the address space and to place small symbols there as well, where symbols
with large size are put into large data or bss sections and can be located above 2GB. The large
code model allows the compiler to make no assumptions about addresses and sizes of sections. By
default, the Nasa Parallel Benchmark Suite has this option flags set to -mcmodel=medium and
so we tuned our compiler framework to enable the same flag.

During compilation of the larger class input problem sizes of NPB, an error occured consisting of
the message: relocation truncated to fit. It was discovered that the combination of
compiling NPB statically and compiling the large input problem size data sets (larger than 2GB)
into the binary, triggered a relocation overflow error at link time. We discovered that applications
built with -mcmode=medium should be linked against shared libraries. Since Popcorn Linux
does not support shared libraries, we had to rely with the second solution. We fixed this by re-
building all the libraries we used specifying the same memory model option as the application.
Therefore both the libraries and application were compiled with the same memory model. This
was an easy problem to solve, but interesting nonetheless. This issue is referenced and resolved in
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an article at Intel’s Developer Zone website [17].

This chapter presents the runtime support implemented for the Xeon - Xeon Phi platform. We
describe the challenges associated with each heterogeneous-ISA platform. We then go into im-
plementation details for various nuances discovered along the way while debugging to currently
have flawless execution for the benchmarks utilized for this work. We also present compiler mod-
ifications related to the runtime support here instead of the compiler partitioner chapter for easier
understanding.

6.1 Design

Even in the case of an overlapping-ISA platform a variety of changes were needed to enable seam-
less migration for any target application. The following sections will discuss each change that
was necessary for Xeon - Xeon Phi in detail and why it is needed for each library. These changes
include modifying the following libraries:

1. libc (including pthreads to enable multi-threading)

2. libm

3. libomp

Because of initial personal design decisions along with taking the path of least resistence to imple-
ment a working prototype, a few design decisions were made for us. For example, because the Intel
Manycore Platform Software Stack (MPSS) version that was shipped with our Xeon Phi utilized
GNU libc 2.13, we had to use it. We adapted all of our code based on this and also performed
modifications to run the system on this version. Antonio Barbalace also ported our Popcorn Linux
kernel from Linux kernel 2.6.38.8 to 3.2.14 which is the Intel baseline Linux kernel.

Significant work went to create a compliant methodology for discerning appropriate implementa-
tions of functionality provided by the Math library for a given architecture. In a heterogeneous-ISA
binary is essential that a function compiled for a particular architecture is only linked to functions
compiled for the same architecture. As noted earlier, the most divergent characteristics between
the Xeon and Xeon Phi occur in the way ISA extensions are handled. Both the Xeon and Xeon
Phi represent vector processors within their own respective instruction set, capable of operating
on instructions that consist of one-dimensional arrays of data (i.e., vector instructions). However,
the Xeon and Xeon Phi vector sizes are different, with the Xeon possessing smaller vector size
compared to the Xeon Phi. This in turn has a significant impact on the performance of mathemat-
ical computations; therefore it should be no suprise that the Xeon Phi excels at SIMD operations
compared to the Xeon even if it has a lower operating frequency.

Finally, not much design per se was needed for the OMP library. Instead, mostly pure engineering
effort was needed to make it compatible on a heterogeneous-ISA system.
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6.2 The C Library, libc

In this work libc is GNU libc (glibc). Since the C Library consists of a large spectrum of core
functionalities, it was imperative to have a working implementation for Popcorn Linux applica-
tions. Thoughout the development process few but necessary changes were made to the glibc
library. It should be noted that though the Math Library, libm, is traditionally a part of glibc, the
changes performed were quite unique and therefore called for their own section which follows.

One notable change performed in libc, in order to improve the performance of the page fault
coherence algorithm, was to pad the pthread mutex data structure to 4kB to ensure that only
a single instantiation can exist on a page. As supporting concurrent writes to a single page across
multiple kernels is expensive, false sharing should be avoided. Often multiple mutexes are created
together and this modification prevents multiple mutexes from existing on the same page.

In addition, several changes were made to adapt glibc for Popcorn Linux in terms of pthreads.
These changes were performed in the native POSIX thread library (also a part of glibc).

Other changes included stripping the library down to the bare minimum in terms of functionality.
These modifications were done to simplify the prototype evaluation and debugging process.

The fact that the needed changes performed were minimal demonstrates the “transparency” and
wide applicability of our approach.

6.3 The Math Library, libm

The design constraint of using a single FAT binary presented a unique challenge to execution of
external library functions. Typically it is known that an executable can only have one instance
of a given symbol when being compiled and executed in order to avoid ambiguity, otherwise an
exception is raised and linking is aborted. As mentioned in Section 5.2.5 describing Compiling
and Linking for Xeon - Xeon Phi, external libraries such as the Math library, are compiled for each
architecture on the system and then linked in with the appropriate object file (Xeon implementation
to Xeon object file, and similarly Xeon Phi to Xeon Phi), each of which forms an executable that
is part of the single FAT heterogeneous-ISA binary. The question that immediately comes to mind
when known that several implementations of the same function are present is how are symbol name
clashs avoided?

In order to account for incompatibilities between different architectural implementations for the
various math library routines, it was needed that each compiled executable (one for each architec-
ture as part of the FAT heterogeneous-ISA binary) had only its architectures respective implemen-
tation linked in, for Xeon and Xeon Phi respectively. This isolation was acheived as a two-part
solution:

1. The library source would contain both implementations in the same archive file.
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2. The compiler would perform additional code transformation to:

• Provide prototypes of all implementations of the various Math library routines with
unqiue names to provide distinguishability.

• Include additional macro logic in the source of the target application in order to as-
sociate to correct implementation of each of the math library routine during compile
time.

Creating a heterogeneous Math library was a daunting task, combining C implementations, as-
sembly, utilizing macro, and performing Magic Number conversions in file meta data to combine
it all together into one functional entity. Take a step back to the external library source code it-
self. Libraries are filled with optimized routines; most are written in assembly and therefore are
architecture dependent. For the experimental evaluation for Popcorn, libm was needed for most
benchmarks and therefore needed to be revamped to work with heterogeneity, in our case Xeon
(x86) - Xeon Phi (x86 extended). The way in which a heterogeneous library was created for Pop-
corn is as follows.

For each respective implementation of Math Library functions, we changed the function names
to include a prefix ( xeon popcorn for the Xeon implementations and phi popcorn for
Xeon Phi implementations) to be easily distinguishable and prevent symbol name clashing. Simi-
larly to how a heterogeneous-ISA binary is created, the Math Library implementations were com-
piled using their respective native compiler (gcc for Xeon and icc k1om for Xeon Phi). Then the
same scripts that modified the Xeon Phi partition file Magic Number meta data is also applied to
the Xeon Phi compiled Math function’s object (*.o) files meta data. Once the Xeon Phi imple-
mentation is compiled to object files, each file’s Magic Number bytes were overwritten. Magic
Numbers [40] are a block of byte values used to designate a file type in order for applications (in-
cluding gcc) to be able to detect whether or not the file the application plans to parse and consume
is of the proper format. Initial compilation debugging resulted showed that a binary with different
Magic Number than what is assigned for the target architecture results in both linking (for when
trying to link in a library with an object file compiled for a foreign architecture) and runtime errors
(the binary itself has foreign architecture Magic Number values) presumably an expected error to
protect the user. It was resolved soon after that the “Magic Numbers” values are 0x3E and 0xB5 for
Xeon and Xeon Phi, respectively. The Xeon Phi compiled objects Magic Number byte’s are over-
written to be 0x3E so that the linking stage of the compilation process of the heterogeneous binary
succeeds. Finally, after the magic byte swap has occurred, all object files from both Xeon and Xeon
Phi are archived into a single library. Then all object files are compiled into a heterogeneous-ISA
Math Library archive, now containing both implementations. At the same Homogeneous-ISA of
libraries are also created for extended accessibility of running homogeneous-ISA binarys as well.
An illustration of the math library compilation process is depicted in Figure 6.1.
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Libm Funcs 

for Xeon Phi

Xeon Libm.a

Xeon Phi Libm.a

Libm Funcs 
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Het-ISA Libm.a
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Figure 6.1: This depicts how various versions of the Math library are formed. Boxes in cyan
depict object files compiled using k1om gcc for Xeon Phi, while boxes in orange depict object files
compiled using regular gcc for Xeon thus having a different magic number than the object files
compiled for Xeon Phi. First in a) Xeon Phi implementations are collected into a Homogeneous-
ISA Xeon Phi Math Library, then Xeon implementations are collected into a Xeon Math Library in
b). Finally before combining to create a Het-ISA Math Library c), the Xeon Phi object files meta
data are processed to match the Xeon’s object file Magic Number meta data.

The second part of our solution lets us effectively connect the correct implementation of a math
function to the correct compilation pass, when compiling for each architecture. Our solution con-
sists of including addition macro logic in the source code of the target application in order to
achieve correct association of implementations of each of the Math library routines. The following
code snippet shows how this requirement was implemented:
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1 # i f d e f xXEON
2 e x t e r n d ou b l e x e o n p o p c o r n p o w ( d oub l e x , d oub l e y ) ;
3 # d e f i n e pow x e o n p o p c o r n p o w
4 # e l i f d e f xPHI
5 e x t e r n d ou b l e p h i p o p c o r n p o w ( d ou b l e x , d ou b l e y ) ;
6 # d e f i n e pow p h i p o p c o r n p o w
7 # e n d i f
8

9 # i f d e f xXEON
10 e x t e r n d ou b l e x e o n p o p c o r n s q r t ( d ou b l e x ) ;
11 # d e f i n e s q r t x e o n p o p c o r n s q r t
12 # e l i f d e f xPHI
13 e x t e r n d ou b l e p h i p o p c o r n s q r t ( d ou b l e x ) ;
14 # d e f i n e s q r t p h i p o p c o r n s q r t
15 # e n d i f

Figure 6.2: Distingushing Math Library Implementations (pow and sqrt)

The code in Figure 6.2 shows how we provide per-cpu optimized versions of pow and sqrt.
NOTE: The rest of the math library routines (i.e., exp, fabs, etc.) were wrapped in a similar
manner.

As can be observed there exist two disquishing macros xXEON and xPHI which can are se-
lected during compile time when creating the object files of the target application for each archi-
tecture. During compile time, the script that creates the executables for each architecture passes in
a defining macro option -D along with which architecture it is currently compiling for (e.g., the
script would pass -Dx XEON when compiling the Xeon executable and -D xPHI when compil-
ing the Xeon Phi executable) which collectively form the heterogeneous-ISA binary. Finally, this
structure can be easily be extended to cater for additional architectures.

6.4 The OpenMP Library, libiomp

OpenMP, the main parallelism method supported by and benchmarked for the Xeon - Xeon Phi
heterogeneous platform, is provided by libiomp, the Intel OpenMP runtime library. However, it
is not provided to be compatible with heterogeneous platforms right out of the box, so this is the
second library that had to be modified and rebuilt to become compatible with the Xeon - Xeon Phi
platform.

Many implementations of OpenMP exist (e.g. GOMP, Intel’s libiomp, LLVM’s, etc.), however
in our test case we are limited to using Intel’s version of OpenMP (libiomp) as it is the the only
version compatible with Xeon Phi’s tools. We automated the process to compile an unstripped
version of this library for Xeon Phi using GCC that targeted k1om. This library is open-source.
More information can be found in [6].
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One issue discovered only after initial benchmarking had begun was a problem in the accuracy
of the benchmarks. Even though all migration issues had been fixed, when the NPB suite was
run, most of the benchmarks “failed” verification. Isolating the problem, it was found that multi-
threading was causing a race condition, giving incorrect results due to a lock, because each archi-
tecture had its own respective implementation. To remedy this, a simple macro ( MIC was used to
toggle between implementations when compiling the OMP library. If MIC was defined, it meant
that the Xeon Phi implementation was being compiled, otherwise the Xeon implementation was
used. Figure 6.3 shows this code modification. Two assembly files were created with each archi-
tectures respective implementation of kmp test then add real64. For better readibility to
see changes made in the code base, the suffixes popcorn phi and popcorn xeon were added.

1 # i f d e f MIC
2 # d e f i n e LOCK FUNC2 k m p t e s t t h e n a d d r e a l 6 4 p o p c o r n p h i
3

4 e x t e r n kmp rea l64 LOCK FUNC2 ( v o l a t i l e kmp rea l64 ∗p , kmp rea l64 v ) ;
5

6 vo id k m p c a t o m i c f l o a t 8 a d d p h i ( i d e n t t ∗ i d r e f , i n t g t i d , kmp rea l64 ∗ l h s
, kmp rea l64 r h s ) { 0 ; ; i f ( ( 0 ) && ( kmp atomic mode == 2) ) { i f (
g t i d == (−5) ) { g t i d = k m p g e t g l o b a l t h r e a d i d r e g ( ) ; } ;

k m p a c q u i r e a t o m i c l o c k ( & k m p a t o m i c l o c k , g t i d ) ; (∗ l h s ) += ( r h s ) ;
k m p r e l e a s e a t o m i c l o c k ( & k m p a t o m i c l o c k , g t i d ) ; ; r e t u r n ; }

7 LOCK FUNC2( ( l h s ) , (+ r h s ) ) ;
8 }
9

10 # e l s e
11 # d e f i n e LOCK FUNC1 k m p t e s t t h e n a d d r e a l 6 4 p o p c o r n x e o n
12

13 e x t e r n kmp rea l64 LOCK FUNC1 ( v o l a t i l e kmp rea l64 ∗p , kmp rea l64 v ) ;
14

15 vo id k m p c a t o m i c f l o a t 8 a d d x e o n ( i d e n t t ∗ i d r e f , i n t g t i d , kmp rea l64 ∗
l h s , kmp rea l64 r h s ) { 0 ; ; i f ( ( 0 ) && ( kmp atomic mode == 2) ) { i f (

g t i d == (−5) ) { g t i d = k m p g e t g l o b a l t h r e a d i d r e g ( ) ; } ;
k m p a c q u i r e a t o m i c l o c k ( & k m p a t o m i c l o c k , g t i d ) ; (∗ l h s ) += ( r h s ) ;
k m p r e l e a s e a t o m i c l o c k ( & k m p a t o m i c l o c k , g t i d ) ; ; r e t u r n ; }

16 LOCK FUNC1( ( l h s ) , (+ r h s ) ) ;
17 }
18

19 # e n d i f

Figure 6.3: Distingushing OMP Library Implementations for kmp test then add real64

6.5 Putting It All Together

Finally, at this stage we have all the profiling data for optimal execution, migration-ready parti-
tioned source code, and finally the core dependencies provided by libraries. The compiler frame-
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work described in this work provides all the necessary pieces to create a heterogeneous-ISA binary
for the Popcorn Linux Xeon - Xeon Phi platform.



Chapter 7

Experimental Evaluation

For our evaluation of the compiler framework for Popcorn Linux on the Xeon - Xeon Phi platform,
we measured the speedup achieved compared to running homogeneously using only one of the
architectures (i.e., Xeon or Xeon Phi), an OpenCL version, or utilizing Intel’s Language Extension
for Offload (LEO) [37]. The Xeon - Xeon Phi platform results have been published at the ACM
2015 EuroSys conference [4].

7.1 Hardware

All experiments were run on a system containing two Intel Xeon E5-2695 (12 cores, 2-way hyper-
threaded at 2.4GHz per socket in a dual-socket configuration), 64GB of RAM, and an Intel Xeon
Phi 3120A (57 cores, 4-way hyper-threaded at 1.1GHz, 6GB of RAM) connected via PCIe. Data
was collected with a configuration of 8 Xeon cores and 228 Xeon Phi cores. We limit the ex-
periments on the Xeon to 8 cores because the majority of the NPB applications do not see any
performance gain by running on the Xeon Phi, when more than 8 Xeon cores are used. Refer to
Saif Ansary’s MS thesis for more information on this configuration decision. This configuration
was used for all experiments presented herein.

7.2 Software

The Popcorn Linux prototype platform is based on Linux 3.2.14 and Intel MPSS 3.2.3, which was
ported from kernel 2.6.38.8 to 3.2.14. We backported part of the namespace code from Linux 3.8
since the namespace code on Linux 3.2.14 was not complete. In order to compile applications
for Popcorn Linux, we used a combination of LLVM 3.4, ICC 14.0.3, gcc 4.4.7, gcc 4.7 (k1om),
and ROSE 0.9.5a. We partially rewrote and recompiled GNU libc 2.13 (shipped with Intel MPSS
3.2.3) and Intel OpenMP 5.0 (libiomp) to make them work across ISAs and to enable a medium
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compiler memory model for statically-compiled NPB applications. The Linux distribution used in
the experimental system was CentOS 6.5.

7.3 Results

The goal of this evaluation is to show that our system software enables optimal exploitation of a
heterogeneous-ISA platform, automatically. We seek to provide evidence that our system software
consisting of the compiler framework, when paired with a heterogeneous-ISA OS, Popcorn Linux,
is able to produce advantageous compute kernel code placements on available cores for the Xeon
- Xeon Phi platform. This section compares our system software approach to the most predomi-
nantly used mature programming paradigms for offloading as well as homogeneous approaches.

Just to reiterate, our heterogeneous-ISA FAT binaries were compiled using a combination of GCC
and ICC (k1om) for Xeon and Xeon Phi partitions respectively.

To compare to homogeneous-ISA implementations of the chosen benchmark applications (com-
piled to be run natively on either Xeon or Xeon Phi only), we did not modify any code but simply
compiled with the appropriate compiler with maximum optimizations enabled.

To compare our work to Intel’s LEO, we manually port the same set of benchmark applications
and insert the additional offloading paradigms as needed. We insert the LEO calls at the same code
locations as they are inserted in the OpenCL implementation.

Finally, we also included the OpenCL version of the SNU NPB benchmark suite as an additional
competitor.

7.3.1 Running with Code Analysis

The following Figures 7.1 through 7.15, depict the execution times (in seconds) of various bench-
marks from the NPB suite. Specifically we include the EP, IS, SP, and BT benchmarks in this work.
For each benchmark, we report the execution time for different input data sizes (denoted as Class
A, Class B, and Class C catagories) using various combinations of available cores on the Xeon Phi
processor (4, 8, 57, 114, and 228). For more precise results, each data point was averaged over 10
separate runs; the maximum deviation per sample never exceeded 11ms. Note that in these graphs,
lower is better.
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Figure 7.15: SP Class C

As denoted in the graph legend, an asterik above a given bar denotes that migration occured at least
once during execution between Xeon and Xeon Phi for the given configuration/benchmark. Other
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benchmarks from the NPB suite (i.e. UA) never migrate between Xeon and Xeon Phi for any input
data size or have a similar migration and performance pattern as the ones shown (e.g. BT has the
same pattern as SP).

When an application runs on Popcorn, a migration occurs when the cost model (Figure 4.4), de-
termines that the performance benefits outweigh the communication overheads due to migration.
From the figures, it is clear that due to the large difference (almost 2x) in the clock frquency be-
tween the Xeon and Xeon Phi, the compiler frame never idicates to migrate threads when a small
number of cores are allocated on the Xeon Phi, running on only the Xeon cores. When 57, 114, or
228 cores are made available on the Xeon Phi, the behavior changes for each benchmark.

Figures 7.13-7.15 shows that for the SP benchmark, the partitioner decides to always migrate for
57, 114, and 228 threads, showing heterogeneous execution is more beneficial over both Xeon and
Xeon Phi native execution for higher thread counts. With 57 threads, Popcorn is up to 53% and
46% faster than native execution on Xeon and Xeon Phi (Class C), respectively. When the number
of threads increases to 114, Popcorn is up to 33% and 61% faster than native execution on the Xeon
and Xeon Phi (Class B), respectively. With 228 threads, Popcorn is still able to outperform native
execution, although its performance advantage is reduced. This performance gain demonstrates
the benefits of the application Profiler/Partitioner part of the compiler framework, with its decision
to migrate execution to the Xeon Phi for highly parallel, and therefore favorable, functions within
the various NPB benchmarks.

Since the migration points are in the same locations in both the Popcorn and LEO implementations
for all the benchmarks, this allows for a direct comparison of Popcorn and the LEO models and
their respective performance. However, Popcorn is always faster than its competitors. In particular,
Popcorn is up to 3.5 times faster on 57 cores for Class C benchmarks.

From this superior performance, we conclude that Popcorn’s kernel-level shared memory model
amongst processor islands allows for better performance than an offloading software stack im-
plementated in user-space between the Xeon and Xeon Phi. The same performance trends and
conlusions hold for both EP (Class B and Class C) and IS (Class C) benchmarks.

We observe that for all other benchmarks, the Class A versions have the shortest execution time by
more than one order of magnitude. Because of this short execution time, the application Profiler
of the compiler framework decides to never migrate any of the benchmarks, as the advantage of
greater parallelism in the Xeon Phi would be offset by the migration overhead. Thus, Popcorn
executes the Class A versions of CG, EP, and IS only on 8 Xeon cores.

On the other hand, OpenCL and LEO versions of the NPB benchmarks always migrate because
these versions do not have any migration policy mechanism that can select which device or archi-
tecture to perform its’ computations on. Therefore, the OpenCL and LEO versions are (in most
cases) slower than Popcorn, with up to 12 times slowdown for IS Class A using 228 cores.

The EP Class B and Class C benchmarks (Figures 7.2-7.3 have the same trend as the SP Class B
and Class C benchmarks (Figures 7.14-7.15). Popcorn is up to 52% and 53% faster than native
execution on the Xeon Phi for EP Class B and Class C, respectively, for 57 threads. With 114
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threads, Popcorn’s speedup decreases to 25% and 32%, respectively. For 228 threads, Popcorn
is slower than native execution on the Xeon Phi (33% in Class B and 8% in Class C), but faster
than native execution on the Xeon (65% and 72%) due to higher overhead in thread migration.
Benchmark EP represents a special case for OpenCL in which Intel’s analysis tool allowed us to
discover its exploitation of extremely efficient mathematical fucntions that could not be used for
the other versions of the benchmark, hence Popcorn’s performance is slower.

An interesting case is observed in the CG benchmark, where the partitioner migrates for higher
number of threads (114 or 228). In this case, Popcorn is up to 27% and 43% better than native
execution on the Xeon in Class B and Class C, respectively. From Figure 9, we observe that for
both Class B and Class C, native execution on the Xeon Phi has a clear advantage over native
execution on the Xeon for only 228 threads. This is detected by the application Profiler that is part
of Popcorn’s compiler framework. However, the OpenCL and LEO versions are not able to detect
this and experience up to 6.2 times slowdown for 57 cores, Class C.

From the NPB suite, IS is its fastest benchmark. It turns out that Popcorn’s partitioned IS migrates
to Xeon Phi only for 57 and 114 threads in Class B and Class C, respectively. In both cases, exe-
cution using Popcorn is faster than native execution on the Xeon Phi (for Class C, Popcorn is also
always faster than native execution on the Xeon). The publication hypothesizes that this behavior
is due to the fact that the Popcorn partitioner has a cost model that better fits FPU computations
than integer computations on which the Xeon Phi appears to be slower (the IS benchmark contains
only integer computations).

7.3.2 Lessons Learned

This evaluation illustrates that compute and memory intensive benchmarks written for SMP and
running on a replicated-kernel OS with DVSM (Popcorn Linux) can take significant advantage
of a heterogeneous platform when profiled and compiled with our Profiler and Partitioner. Addi-
tionally, Popcorn’s system software infrastructure is more performant than a user-space offloading
software infrastructure many developers are still in the midst of today. However, for short-running
benchmarks there is no benefit in using due to the high communication overheads incurred when
migrating between architectures. Moreover, Popcorn does not always have low migration over-
heads for high thread counts. This performance profile is application-dependent.

7.3.3 Framework Overheads

Once the resulting applications performance had been evaluated it was also of importance to see
the impact of adopting this methodology. There are two interesting angles to investigate here.
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7.3.4 Profiling Time

The first is to evaluate the time needed to perform profiling in order to have an optimal partition-
ing for a target application. Depending on the complexity of the application, the time will vary.
Since the Profiler adds annotations to memory accesses, it can be naturally assumed that memory-
intense applications will be affected significantly more than other applications such as ones that
are compute-bound. A table, Table 7.1, shows the slowdown incurred to run an NPB benchmark
for Class W which has been annotated for profiling by the profiling tool described in Chapter 4.
The slowdown incurred is calculated by comparing the runtime of the annotated application to the
runtime of a natively compiled vanilla version of the same application; it should also be noted that
the same input problem size is used for both runs.

Benchmark Avg. Runtime (s) Avg. Profiling Time (s)
BT 2.07 2136.06
CG 0.23 208.43
EP 3.17 109.40
IS 0.05 44.79

MG 0.16 216.60
SP 4.48 2578.45

Table 7.1: Percentage Increase in Time to Perform Profiling Compared to Native Execution for
Class W (The second smallest data size)

As can be observed from Table 7.1, the EP benchmark is affected the least from being annotated,
compared to MG and BT which are up to 40x more affected due to being annotated. This bias is
due to the number memory accesses performed during these benchmarks. Further inspection of the
code source of MG and BT reveals that these benchmarks use fairly large data structure consisting
of many elements whereas EP has barely any and is primarily compute-bound. The rest of the
benchmarks, CG, IS, and SP fall somewhere in the middle of the road between these two extremes
of data structure usage, and the resulting data reflects this trend.

Finally, an added benefit of the Profiler is that it only needs to be be run once to gather the informa-
tion it needs to provide an optimal partitioning; this justifies the seemingly high overhead imposed
by this solution as the information can be additionally reused to provide optimial partitionings on
any heterogeneous architecture configuration. As a future work, it would be interesting to inves-
tigate ways of making the profiling phase faster while still providing enough information to make
an informed and correct decision for an optimal partitioning.
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7.3.5 Executable Size

The second interesting angle to explore and evaluate is to compare the difference in size of the bi-
nary footprint produced with compiling heterogeneous-ISA applications using the compiler frame-
work described in this work. Ideally, the difference in footprint size should not differ significantly
than the size that results by compiling the same application natively for a given platform. In reality
though, space is cheap and abundant, therefore not a chief concern in most domains (It should
be noted this fact is quite the contrary in the embedded systems domain, however the embedded
domain is out of scope for this work).

In the following table, Table 7.2 gives a detailed report of the additional executable compilation
configurations that are possible with our framework for a given application. Specifically, this table
lists the percentage increase in binary footprint size with respect to a native, statically compiled
vanilla version of NPB benchmark (hereafter refered as the native compilation). The compilations
we compared are: the partitioned version of the NPB benchmark compiled statically to run homo-
geneously on Xeon only (denoted as Xeon Static), the partitioned version of the NPB benchmark
compiled statically to run homogeneously on Xeon Phi only (denoted as Xeon Phi Static), and
the partitioned version of the NPB benchmark compiled statically to run heterogeneously (it is
the cumalative size of the executables that form the FAT heterogeneous-ISA binary, denoted as
Heterogeneous). During this analysis, we tested various configurations for both homogeneous and
heterogeneous-ISA scenarios. Out of these two scenarios we tested differences in multi-threading
for 4, 8, 57, 114, and 228 concurrent threads. Only the 8, 57, and 228 thread configurations are
listed because both the 4 and 8 thread configurations and the 114 and 228 thread configurations
had the exact same binary footprint size. In addition, it should be noted that in the Heterogeneous-
ISA configuration, multi-threading was never set to use 4 or 8 threads because this would be
sub-optimal for exploiting the parallelism offered by the Xeon Phi coprocessor, thus these fields
have been marks as N/A. A similar explanation is true for not testing 57, 114, or 228 threads on
the Xeon only configuration as the Xeon is hyper-threaded to efficiently handle a maximum of 8
threads; configuring to use more than 8 threads would cause significant degradation of performance
due to the huge increase in context switchs needed to be performed to maintain a larger amount of
threads.
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Xeon Static Xeon Phi Static Heterogeneous
BT (A) 8 -1.64% 182.30% N/A

BT (A) 57 N/A 182.32% 101.44%
BT (A) 228 N/A 182.31% 101.44%

BT (C) 8 -1.64% 183.85% N/A
BT (C) 57 N/A 183.87% 103.15%

BT (C) 228 N/A 183.86% 103.15%
CG (A) 8 -7.46% 179.19% N/A

CG (A) 57 N/A 179.21% 87.83%
CG (A) 228 N/A 179.20% 87.83%

CG (C) 8 -7.41% 179.36% N/A
CG (C) 57 N/A 179.38% 87.94%

CG (C) 228 N/A 179.37% 87.94%
EP (A) 8 -14.28% 165.46% N/A

EP (A) 57 N/A 165.48% 71.62%
EP (A) 228 N/A 165.47% 71.62%

EP (C) 8 -14.31% 165.39% N/A
EP (C) 57 N/A 165.41% 71.56%

EP (C) 228 N/A 165.40% 71.56%
IS (A) 8 -0.35% 229.68% N/A
IS (A) 57 N/A 229.73% 99.39%

IS (A) 228 N/A 229.71% 99.39%
IS (B) 8 -0.34% 229.72% N/A

IS (B) 57 N/A 229.77% 99.42%
IS (B) 228 N/A 229.75% 99.42%
IS (C) 8 -0.35% 229.71% N/A

IS (C) 57 N/A 229.75% 99.41%
IS (C) 228 N/A 229.73% 99.41%
MG (A) 8 -8.98% 175.20% N/A

MG (A) 57 N/A 175.21% 98.13%
MG (A) 228 N/A 175.21% 98.13%

MG (B) 8 -8.98% 175.20% N/A
MG (B) 57 N/A 175.22% 98.12%

MG (B) 228 N/A 175.21% 98.12%
SP (A) 8 0.52% 195.24% N/A
SP (A) 57 N/A 195.26% 121.33%

SP (A) 228 N/A 195.25% 121.33%
SP (C) 8 -2.19% 193.48% N/A

SP (C) 57 N/A 193.50% 119.58%
SP (C) 228 N/A 193.49% 119.58%

Table 7.2: Percentage Increase in Size of Binaries compared to x86 Vanilla Static Compilation
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Just to shed light on the difference between dynamic and static compilations for the various con-
figurations, this data point is also included. It should be no surprise that a dynamic compilation is
much slimmer than a static one as not much information is stored in the actual binary since the li-
brary functions are fetched on demand during runtime. It was surprising to see that the Xeon Static
compilation was actually smaller than the native compilation for not one but all the benchmarks
to a varying degree. Before we collected this data, I predicted that out of all compilations, the
Heterogeneous compilation would be the largest. This hypothesis was wrong; it was interesting
to note that the Xeon Phi Static compilation had the largest footprint being larger than both the
native compilation and the Heterogeneous compilation. In some cases the Xeon Phi compilation’s
footprint increase was up to 2 times larger than the increase for the Heterogeneous compilation.
In conclusion, our FAT heterogeneous-ISA compilation adds only up to double the size of vanilla
binary for the applications proposed – therefore the resulting space overhead is insignificant and
in some cases it can even be smaller than a given compilation as is the case compared to a static
Xeon Phi compilation.



Chapter 8

Conclusion

In this thesis, we have shown that emerging OS-capable heterogeneous platforms can run applica-
tions written for homogeneous-ISA multiprocessors; this is enabled by the presented hetereogeneous-
ISA compiler framework, consisting of a Profiler, Partitioner, and runtime support. The framework
successfully introduces heterogeneous-ISA migration during execution of compute and memory
bound applications running on the Popcorn Linux operating system while requiring no rewriting
from the developer. Using the Profiler leads to significant performance improvements on the Xeon -
Xeon Phi platform and save time spent on application development by being an automatic process.
Our evaluation showed that exploiting a heterogeneous-ISA platform such as the Xeon - Xeon Phi
is more performant than running the same application homogeneously (exclusively) on one proces-
sor. Given the diversity present in heterogeneous-ISA platforms, we successfully provided runtime
support for our experimental platform porting various core libraries, which enable heterogeneous
execution for most applications. We also show that applications automatically processed and com-
piled with our toolchain benefit from the heterogeneous-ISA environment, performing better than
manually partitioned programs. Moreover, the results demonstrate that the proposed programming
model is more efficient and performant than other mature user-space “offloading” paradigms.

8.1 Contributions

This work consists of the following contributions:

1. We implemented an application Profiler that analyzed memory access patterns of a
given application and generates the most advantageous partitioning scheme for the
Xeon - Xeon Phi platform. The Profiler examined preliminary compiled object code and
annotated all instances of memory access instructions. It then ran the application, keeping
track of these annotations to create a graph representing the cost of migration across archi-
tectures between function calls. The logic for obtaining an optimal partitioning for a given
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target application is implemented utilizing the ST-Min Cut algorithm. Once an optimal par-
titioning is found it is fed as input to the application partitioner.

2. We developed an application partitioner that would prepare and compile heterogeneous-
ISA binaries for the Xeon - Xeon Phi platform. Using the information obtained by the
Profiler, the partitioner is then able to perform source-to-source code transformation on a
target application in order to enable heterogeneous-ISA migration on the Xeon - Xeon Phi
platform. The second part of the partitioner then compiles and links in any additional runtime
support needed (libraries) to create a heterogeneous-ISA FAT binary.

3. Using the Xeon - Xeon Phi compiler framework, we were able to accurately predict the
cost of migration to effectively schedule worth-while compute kernels onto the Xeon
Phi. Since the compiler framework supports multi-threaded applications, we were able to
evaluate the effectiveness of exploiting a heterogeneous-ISA platform for OpenMP appli-
cations, such as the NASA Benchmark Suite [9]. We indeed found that running a given
benchmark heterogeneously showed a substantial speedup compared to its homogeneous
counterpart.

4. We additionally implemented core runtime components to support our heterogeneous
platform. Namely, we implemented a heterogeneous version of commonly needed libraries
for the Xeon - Xeon Phi platform. These libraries included the C Library, libc, and the Math
Library, libm. Modifications included porting functionality that was implemented in assem-
bly for either architecture, restructuring functionality to support migration while maintaining
semantics, as well as enabling heterogeneous-ISA migration of multiple threads to support
parallelism models such as OpenMP. In the cases where low-level assembly needed to be
changed to resolve architecture-specific implementations, we follow the x86 architecture’s
organization.

5. We evaluate the effectiveness of the implemented compiler framework. The work de-
scribed in this thesis is compared to currently used practices in high performance computing
to guage how well it compares. We compare our methodology to OpenCL and Intel’s LEO as
well as homogeneous implementations. This comparison gives a twofold benefit of showing
the performance that can be exploited by utilizing heterogeneous-ISA platforms as well as
proving the viability of the compiler framework compared to traditional practices. We also
evaluate the overheads associated with using our compiler framework to give a complete
view of how this approach compares against competitors.

Our evaluations show that together with the compiler framework, Popcorn is up to 61% faster
executing applications heterogeneously compared to native execution on the Xeon or Xeon Phi.
For compute and memory-intensive benchmarks, running them on Popcorn can show up to a 52%
performance improvement compared to the most performant natively executing benchmark. In
addition, Popcorn applications outperform the Intel LEO model’s implementation for all problem
input sizes, partiticularly, being up to 3.5 times faster for the largest input problem size (Class C)
in the SP benchmark.
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General trends from the data indicate that the Popcorn platform continues to improve in perfor-
mance as more resources are added to the system, indicating that Popcorn would scale very well
in the long run. It also helps that the compiler framework’s cost model can adapt the migration
decisions to a variable number of processor cores active. This allows Popcorn and the compiler
framework to be up to 6.2 times faster than the OpenCL and LEO models. This proves that Pop-
corn’s programming model can be implemented in kernel space together with a compiler frame-
work that results in faster mechanisms compared to a user-space “offloading” programming model
that requires user-level daemons.

The Profiler and the effective time it takes to produce an optimal partitioning for a target application
greatly depend on the nature of it. It is a given that the Profiler will never be faster than the original
target application itself. For non-memory-intensive applications, such as the EP benchmark, the
Profiler runtime was 3 times as long (a 3x slowdown) to produce an optimal partitioning compared
to the original target applications runtime. This overhead skyrockets for memory-intensive appli-
cations, such as the MG benchmark, taking 135 times as long as the original to produce an optimal
partitioning.

Given that storage is no longer a major concern in most domains, the difference in footprint size of
a heterogeneous-ISA binary compared to native homogeneous compilation is insignificant. Going
into more detail, using the compiler framework proposed in this work for any given application at
worst case produces a heterogeneous-ISA binary that is 230% larger compared to its natively com-
piled vanilla counterpart. In the best case, the heterogeneous-ISA binary is only 71.5% larger than
the original. As a side note, it is was interesting to observe that a homogeneous Xeon compilation
(the application is partitioned but can only run on Xeon) using our compiler framework actually
resulting in a decrease in size, up to 14% smaller! We believe that this occured from partitioning
tool, in that the reorganization of the application code (while still maintaining that it is semantically
correct) influenced the optimizations to better pack the binary. However, this is a hypothesis and
would need to be investigated further to determine a discernible cause.

Coming full circle, we feel that our compiler framework exceeds most other approachs attempting
to break into the heterogeneous domains. Furthermore, the benefits that this compiler framework
offers to the developer far outweigh the minimal impact and overheads it imposes mentioned ear-
lier.

8.2 Future Work

Although we demonstrated several strong research contributions built upon the Popcorn Linux
Operating System, there are additional improvements and implementation details that can further
solidify the research.
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8.2.1 Application Profiler

As stated in section 4.1, the Profiler is a priliminarly implementation and therefore has a lot of
room for improvement:

• The Profiler is currently implemented to analyze and give results from a static point of view,
it has no regard or control over an application’s performance when additional applications
are running on the same machine. A dynamic approach to scheduling applications would
yield even better performance in the case of multiple concurrent applications.

• The Profiler is input problem size dependent and therefore must be rerun if the application’s
input problem size is changed. The Profiler was implemented initially catering to legacy
applications where not much information would change over the course of time; this makes
the one time analysis cost no big deal and an acceptable set-back. Ideally, the Application
Profiler would be input problem size independent. Only requiring the analysis phase to be
run once regardless of how many different input sets an application has.

• The time taken to perform analysis is quite substantial. Even if the profiling phase of an-
alyzing a target application is a one time cost to the user, that time could be decreased.
Specifically, a low hanging fruit for this challenge would be to optimize the way data ac-
cesses are kept track of especially in the case of memory being accessed serially as in the
case of loops.

8.2.2 Heterogeneous-ISA Compiler Framework

Although we were able to successfully provide a solution for the Xeon - Xeon Phi platform, this
is still a very specific platform configuration and thus the compiler framework provided is not
portable to other heterogeneous-ISA systems. It should be recognized that heterogeneous com-
puting, especially for the case of heterogeneous-ISA platforms, is a fairly young concept. While
a wide variety of solutions to this challenge such as OpenMP, CUDA, etc. have been proposed
and embraced by the high performance computing community, there is still no clear winner. In
order for Popcorn Linux and the compiler framework presented in this work to accel, the need to
converge to a common interface is key. We believe that when heterogeneous computing matures,
this compiler framework along with Popcorn Linux will be a strong competitor as well as helping
mature the field of heterogeneous computing itself.

In the mean time though, there are a number improvements that could further the innovation the
compiler framework provides:

• Note that this partitioner is not production ready, as it is only able to support heterogeneous-
ISA platforms featuring 64-bit x86. Ideally, in the future it should be able to support any
given combination of architectures and devices to provide a solid and genericsolution in
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which to exploit any given heterogeneous platform’s configuration. Given the amount of
work that went into creating a sound migration mechanism for overlapping-ISAs, this will
be no small task.

• In the case of a further improved heterogeneous-ISA compiler framework, each architecture
possesses it’s own strengths and weaknesses. Ideally, any given partitioning schema given
either by static analysis or runtime should only exploit an architectures strengths. However,
just as there are “good” combinations of architectures that become even more performant
when joined together, there also exist “bad” combinations of architectures that should be
avoided. These “bad” combinations would potentially arise from implementation details as
to get the both of best worlds, it is often needed to compromise in some aspect to resolve
ISA differences. This question therefore poses a new avenue of research to explore various
heterogeneous-ISA configurations.

• A common challenge with software in industry is that source code for applications some-
times cannot be provided or cannot be modified for a variety of reasons. Some code is
protected by Intellectual Protection (IP) or cannot be disclosed, other applications no longer
have source or the source is fairly dated to the years that assembly and FORTRAN were the
main programming models, leaving the binary file as the programs only tangible form. Fi-
nally, the application’s source code could be so large that partitioning is not a viable option.
For any of these ailments, its not to say that dealing with them is impossible but a signif-
icant upgrade would be required, with more intricate methods needed to perform the same
changes.

• Applications that are too small to benefit from heterogeneity should automatically be recog-
nized by analysis and reported to the user.

8.3 Further Evaluation

While we have evaulated the Xeon - Xeon Phi platform with the NAS Parallel Benchmark Suite [9],
it would be beneficial to expand our evaluation to also include other arbitrary C language bench-
marks (as our compiler framework currently only supports the C language) such as PARSEC [34].

Additionally, we would be very excited to evaluate our heterogeneous-ISA compiler framework on
more than two different architectures. When hardware catches up to our expectations of pushing
the envelope of heterogeneous processors and easy ways of connecting heterogeneous-ISA devices,
it would be interesting to see the resulting performance together with Popcorn’s heterogeneous
runtime scheduler.
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