
Multi-level Parallelism with MPI and OpenACC for CFD
Applications

Andrew J. McCall

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Aerospace Engineering

Christopher J. Roy, Chair
Eric de Sturler
Eric Paterson

February 24, 2017
Blacksburg, Virginia

Keywords: Multilevel parallelism, GPU, OpenACC, MPI, CFD, parallel programming
Copyright 2017, Andrew J. McCall

Multi-level Parallelism with MPI and OpenACC for CFD Applications

Andrew J. McCall

ABSTRACT

High-level parallel programming approaches, such as OpenACC, have recently become pop-
ular in complex fluid dynamics research since they are cross-platform and easy to implement.
OpenACC is a directive-based programming model that, unlike low-level programming mod-
els, abstracts the details of implementation on the GPU. Although OpenACC generally limits
the performance of the GPU, this model significantly reduces the work required to port an
existing code to any accelerator platform, including GPUs. The purpose of this research is
twofold: to investigate the effectiveness of OpenACC in developing a portable and maintain-
able GPU-accelerated code, and to determine the capability of OpenACC to accelerate large,
complex programs on the GPU. In both of these studies, the OpenACC implementation is
optimized and extended to a multi-GPU implementation while maintaining a unified code
base. OpenACC is shown as a viable option for GPU computing with CFD problems.

In the first study, a CFD code that solves incompressible cavity flows is accelerated using
OpenACC. Overlapping communication with computation improves performance for the
multi-GPU implementation by up to 21%, achieving up to 400 times faster performance
than a single CPU and 99% weak scalability efficiency with 32 GPUs.

The second study ports the execution of a more complex CFD research code to the GPU
using OpenACC. Challenges using OpenACC with modern Fortran are discussed. Three
test cases are used to evaluate performance and scalability. The multi-GPU performance
using 27 GPUs is up to 100 times faster than a single CPU and maintains a weak scalability
efficiency of 95%.

Multi-level Parallelism with MPI and OpenACC for CFD Applications

Andrew J. McCall

GENERAL AUDIENCE ABSTRACT

The research and analysis performed in scientific computing today produces an ever-increasing
demand for faster and more energy efficient performance. Parallel computing with supercom-
puters that use many central processing units (CPUs) is the current standard for satisfying
these demands. The use of graphics processing units (GPUs) for scientific computing ap-
plications is an emerging technology that has gained a lot of popularity in the past decade.
A single GPU can distribute the computations required by a program over thousands of
processing units.

This research investigates the effectiveness of a relatively new standard, called OpenACC,
for offloading execution of a program to the GPU. The most widely used standards today are
highly complex and require low-level, detailed knowledge of the GPU’s architecture. These
issues significantly reduce the maintainability and portability of a program. OpenACC does
not require rewriting a program for the GPU. Instead, the developer annotates regions of code
to run on the GPU and only has to denote high-level information about how to parallelize
the code.

The results of this research found that even for a complex program that models air flows,
using OpenACC to run the program on 27 GPUs increases performance by a factor of 100
over a single CPU and by a factor of 4 over 27 CPUs. Although higher performance is
expected with other GPU programming standards, these results were accomplished with
minimal change to the original program. Therefore, these results demonstrate the ability of
OpenACC to improve performance while keeping the program maintainable and portable.

Dedication

To him from whom, through whom, and to whom are all things.

iv

Acknowledgments

The amount of support I received toward the completion of this thesis is overwhelming. I
am grateful for the financial support of the Air Force Office of Scientific Research (AFOSR)
through the Basic Research Initiative grant, as well as from the Virginia Tech Synergistic
Environments for Experimental Computing (SEEC) Center. The use of the HokieSpeed
computer at Virginia Tech through the NSF grant CNS-0960081 was of immeasurable value
in the completion of this thesis.

Without the guidance and support from my academic advisor, Dr. Christopher Roy, I would
certainly be far from the completion of my thesis and much less satisfied with the direction
of my research.

The patience, dedication, and care of my fiancée, Christina, has helped me maintain my
sanity and health. She spent many late nights helping me stay focused and using her technical
editing expertise to redeem my compilations of words into readable documents.

My mother, father, brothers, and family have all played a key role in helping motivate me and
support me in this effort. I give particular thanks to the companionship and encouragement
of my brothers and roommates as we lived together throughout my graduate career.

I thank my research lab-mates for the many late nights and long days we spent together.
Without the intelligence, resourcefulness, and helpfulness of my lab-mates I would still be
finding out how to open a text editor in Linux.

Without the help of the Ribbens family, I would still be laboring on my thesis. I thank them
for providing me housing many days during my final semester, as I was commuting back
and forth between home and Blacksburg for research meetings and to conduct research that
could not be completed at home. I also thank my friends who housed me for the other trips
I made to Virginia Tech.

Finally, a thank you to the countless and dear friends that made my time at Virginia Tech
as a graduate student more than just survivable, but memorable and enjoyable.

v

Contents

1 Introduction 2

References . 4

2 An Efficient Directive-Based Multi-GPU Implementation of Computa-
tional Fluid Dynamics on Heterogeneous Platforms 6

Attribution . 6

Abstract . 7

2.1 Introduction . 7

2.2 Background . 11

2.2.1 OpenACC . 11

2.2.2 Solution Methodology . 12

2.3 Porting to the GPU . 14

2.3.1 OpenACC . 16

2.3.2 MPI . 18

2.3.3 Computing Resources . 23

2.4 Results and Discussion . 25

2.4.1 Problem Solution . 25

2.4.2 OpenACC Optimization . 27

2.4.3 Multi-GPU Analysis . 31

2.5 Conclusions . 41

2.6 Future Work . 42

Acknowledgments . 43

vi

References . 44

3 Multilevel Parallelism with MPI and OpenACC for Complex CFD Codes 48

Attribution . 48

Abstract . 49

3.1 Introduction . 49

3.2 Background and Theory . 52

3.3 Porting to the GPU . 53

3.3.1 Initial Considerations . 53

3.3.2 Using OpenACC with Modern Fortran 54

3.3.3 MPI . 59

3.3.4 Implementation Structure . 60

3.3.5 Computing Resources . 61

3.4 Results and Discussion . 63

3.4.1 Test Case Descriptions . 63

3.4.2 OpenACC Optimization . 67

3.4.3 Multi-GPU Analysis . 74

3.5 Conclusions . 85

3.6 Future Work . 86

Acknowledgments . 86

References . 87

4 Discussion and Conclusions 91

Appendix A GPU Parallelism 94

References . 96

Appendix B SENSEI MPI Implementation 97

B.1 Serial Implementation Theory . 98

B.2 Parallel Implementation Theory . 99

vii

B.2.1 Domain Decomposition . 100

B.2.2 Theoretical Analysis . 104

Appendix C Running Parallel SENSEI 108

C.1 Compiling SENSEI . 108

C.2 Namelist Inputs . 109

C.3 Running SENSEI . 109

References . 110

viii

List of Figures

2.1 Pseudo-code for accelerating the base CFD code with a GPU using OpenACC. 15

2.2 Different domain decompositions with the same number of sub-domains in
computational space. This illustrates the limited scalability of a 1D decom-
position. 18

2.3 Inter-block boundary data is exchanged for computation of the residuals near
the boundary. 19

2.4 Pseudo-code of the baseline multi-GPU implementation and the multi-GPU
implementation with overlapping communication and computation. Modifi-
cations to overlap communication and computation are shown in red. 20

2.5 Synchronization calls can improve performance by preventing complete desyn-
chronization of processes that must communicate with each other. Each col-
ored bar represents the execution of a GPU kernel, so the white spaces between
bars indicates time wasted by the GPU. 23

2.6 Streamlines and horizontal velocity contours of 2D lid-driven cavity flows. . . 26

2.7 Streamlines for lid-driven and buoyancy-driven flows in a 3D cavity. 26

2.8 First velocity component and temperature distribution inside the 3D LDC
and BDC fields. 27

2.9 Performance optimization results for the single-GPU implementation. 28

2.10 Performance comparisons of the single-GPU implementation for the 3D BDC
problem. 29

2.11 Illustration of the performance improvement of the Kepler architecture over
the Fermi architecture GPUs using the 3D BDC test case. 31

2.12 Performance of multi-CPU and multi-GPU implementations over a range of
grid sizes. 33

2.13 Strong scalability results for the multi-CPU and multi-GPU implementations. 34

ix

2.14 Memory-constrained weak scalability results of the multi-CPU and multi-GPU
implementations for multiple fixed local memory sizes. 35

2.15 Multi-GPU performance improves by up to 21% for larger grid sizes with
overlapping communication and computation, while multi-CPU performance
decreases. 37

2.16 Overlapping communication and computation increases strong scalability only
if the communication overhead is greater than the computational overhead
introduced by overlapping communication and computation. 38

2.17 Overlapping communication and computation masks the overhead of inter-
GPU data communication for the multi-GPU implementation, increasing the
asymptotic efficiency for weak scalability. 40

3.1 Summary profile of SENSEI’s serial execution on the CPU. 54

3.2 NACA 0012 airfoil steady-state solution. 64

3.3 Streamlines for the solution of compressible airflow in a three-dimensional
lid-driven cavity at a Reynolds number of 4,660. 65

3.4 M6 Onera wing steady-state solution. 66

3.5 A CPU-GPU transfer of the entire boundary data is 3.6 times faster than the
transfer of a non-contiguous portion of the boundary that is 10% of the full
boundary size, due to the overhead of non-contiguous memory transfer. . . . 68

3.6 Data transfer rates for the imin and imax faces are over ten times slower than
the data transfer rates for other faces, due to a highly non-contiguous memory
storage pattern. 69

3.7 The residual calculation loop is optimized by fusing array operations into the
nested loop structure. 71

3.8 The boundary flux calculation loop is optimized on the GPU by manually
inlining the subroutine. 72

3.9 Effect of optimizations on OpenACC performance. The top chart illustrates
the full results, whereas the lower chart focuses on the smaller optimizations. 74

3.10 Comparison of SENSEI’s single CPU and single GPU performance on multiple
system architectures. 76

3.11 Performance of SENSEI for the NACA 0012 test case over a range of grid sizes. 77

3.12 Strong scalability results for the NACA 0012 test case. 78

3.13 Performance of SENSEI for the LDC test case over a range of grid sizes. . . 79

x

3.14 Strong scalability results for the LDC test case. 80

3.15 Weak scalability efficiency results for the LDC test case. 81

3.16 Strong scalability results for the M6 Onera wing, excluding results with im-
balanced loads. 82

3.17 Strong scalability results for the M6 Onera wing, including results with im-
balanced loads. 84

3.18 Comparison of the strong scalability results for the different test cases. . . . 85

A.1 The Fermi architecture for NVIDIA Tesla GPUs.[2] 95

B.1 Different domain decompositions with the same number of sub-domains in
computational space. This illustrates the limited scalability of a 1D decom-
position. 101

B.2 Illustration of a hypothetical multi-block grid in computational space. 102

B.3 Algorithm for determining the optimal domain decomposition. 105

xi

List of Tables

2.1 Detailed memory transfer and mathematical operations per grid node for dif-
ferent problems. 16

2.2 Specifications for the hardware in the different machines used in this study.
Note that two processors and two GPUs exist on each node for all machines. 24

3.1 Specifications for the hardware in the different machines used in this study.
Note that two processors and two GPUs exist on each node for all machines. 62

3.2 Grid sizes used for the NACA 0012 airfoil test case. 63

3.3 Farfield conditions for the NACA 0012 airfoil test case. 64

3.4 Lid conditions for the LDC test case. 65

3.5 Farfield conditions for the M6 Onera wing test case. 66

3.6 Listing of optimizations for Figure 3.9. 74

3.7 Domain decompositions used for the NACA 0012 airfoil test case. 77

3.8 Domain decompositions used for the LDC test case. 79

3.9 Grid blocks for the M6 Onera test case. 82

3.10 Domain decompositions used for each of the four blocks in the M6 Onera test
case. 83

B.1 Theoretical performance of serial code. 98

B.2 Theoretical performance of non-iterative portion of the parallel code. 106

B.3 Theoretical performance of iterative portion of the parallel code. 107

xii

Attribution

For the first manuscript, the first author (Andrew McCall) provided the primary contribution
to the manuscript’s research and content. The multi-CPU and multi-GPU implementations
were developed by the first author and all performance and scalability results derived from
these implementations were collected and analyzed by the first author. The second au-
thor (Behzad Baghapour) researched and analyzed the single GPU optimizations for the
two-dimensional and three-dimensional solvers. Furthermore, visualizations of the problem
solution were obtained by the second author. The final author (Christopher J. Roy) pro-
vided the guidance and feedback necessary for research development and composition of this
manuscript.

For the second manuscript, the first author (Andrew McCall) provided the primary contri-
bution to the manuscript’s research and content. All research was conducted by the first
author and all results were collected and analyzed by the first author. The second author
(Christopher J. Roy) provided the guidance and feedback necessary for research development
and composition of this manuscript.

1

Chapter 1

Introduction

The scientific computing community has found interest recently in the acceleration of com-

puting performance through the use of GPUs designed for general purpose computations.

The GPU provides multiple benefits over the traditional CPU for scientific computing appli-

cations, oftentimes achieving a higher performance to cost ratio and a more energy-efficient

design that reduces power consumption. The design of a GPU is optimized to handle mas-

sively parallel computations using a Single Instruction, Multiple Threads (SIMT) architec-

ture, which proves effective for accelerating the performance of many computational models

that iteratively solve a set of discrete equations over discretized domains with many elements

or cells. More details on the GPU’s parallelism and architecture are provided in Appendix

A.

The release of the OpenACC[1] standard in 2011 opened the door for high-level programming

models in the GPU computing arena. Similar to the design of OpenMP, OpenACC is a

directive-based programming model where the instructions for parallelizing the code are

defined by annotations to the serial code base. The directive statements are effectively

comments in Fortran code and pragmas in C or C++ code. This directives-based design

minimizes the changes required and allows the program to easily compile for the GPU or the

CPU, using the same code base.

2

Andrew J. McCall Chapter 1. Introduction 3

These directive statements have two primary purposes: to dictate the loops or sections of

the code to accelerate on the GPU, and to dictate the transfer of data between the GPU

and the CPU. Clauses are appended to these directive statements to define the details of the

parallelism and the details of the data transfer. The OpenACC programming model uses

three levels of parallelism: gang, worker, and vector. These levels are synonymous to the

CUDA[2] terminology of blocks, warps, and threads, respectively.

OpenACC provides the advantage of portability as the serial and GPU-accelerated versions

of the code remain within a unified code base. Furthermore, the annotations are abstracted

enough from the low-level implementation details to offload acceleration to any accelerator

architecture with only adding directive statements to the code. OpenACC also provides

the advantage of maintainability as the code does not have to be rewritten with updates in

the GPU architecture or the emergence of new platforms; this work will ideally be handled

by the compiler. In addition, minimal modification from the CPU version of the code

enhances maintainability as the code structure is more easily understood and less complex.

In contrast, low-level programming models such as CUDA[2] or OpenCL[3] suffer from poor

portability and maintainability, as complex, hardware-specific implementation details limit

these qualities of the code. Furthermore, offloading computation to the GPU often proves

intractable for complex and large programs, since using these models would require rewriting

significant portions of the code.

The drawback to using OpenACC is the limitations on performance. Due to the very ab-

straction that enhances the programmability, portability, and maintainability of this model,

the compiler is unable to fully take advantage of the underlying hardware architecture to

accelerate performance. Therefore, an analysis of the performance obtained using OpenACC

is necessary to determine the viability of this model for the problem of interest.

Computational fluid dynamics (CFD) is a branch of scientific computing that has found ben-

efit in the use of GPU computing to accelerate compute performance. Research in OpenACC

acceleration for CFD includes the work of Markidis et al. [4] in spectral methods for the sim-

Andrew J. McCall Chapter 1. Introduction 4

ulation of 3D incompressible flows and the work of Xia et al. [5] in higher order discontinuous

Galerkin methods for 3D compressible flows on hybrid unstructured grids. Others that have

investigated the use of OpenACC with CFD include Chrust[6], Luo and co-workers [7, 8],

Hoshino et al.[9], Corrigan and co-workers [10, 11], and van Werkhoven and Hijma[12]. This

thesis investigates the viability of using OpenACC for the solution of multiple CFD solvers.

This thesis contains two primary sections. First, a solver for incompressible lid-driven and

lid-driven cavity flows is accelerated using OpenACC. This solver uses an artificial com-

pressibility method and a uniform two-dimensional or three-dimensional grid. The imple-

mentation is extended to a multi-CPU and multi-GPU code with the use of MPI and a

one-dimensional domain decomposition.

Second, a large and complex CFD solver named SENSEI is accelerated with OpenACC. This

code is a second order, finite volume CFD solver for the Euler and Navier-Stokes equations

on structured, curvilinear, multi-block grids. MPI is also used to implement a multi-CPU

and multi-GPU version of SENSEI and the best domain decomposition is automatically

determined at runtime to make use of the available processes. More details of the MPI

parallel implementation of SENSEI and the domain decomposition algorithm are discussed

in Appendix B.

The performance and scalability for both of these solvers are presented and discussed.

References

[1] OpenACC-standard. OpenACC Home. http://www.openacc.org.

[2] NVIDIA. CUDA. http://www.nvidia.com/object/cuda_home_new.html.

[3] The Khronos Group. The open standard for parallel programming of heterogeneous
systems. https://www.khronos.org/opencl/.

[4] S. Markidis et al. “OpenACC acceleration of the Nek5000 spectral element code”.
In: International Journal of High Performance Computing Applications 29.3 (Mar.

Andrew J. McCall Chapter 1. Introduction 5

2015), pp. 311–319. issn: 1741-2846. doi: 10.1177/1094342015576846. url: http:
//dx.doi.org/10.1177/1094342015576846.

[5] Y. Xia et al. “OpenACC acceleration of an unstructured CFD solver based on a re-
constructed discontinuous Galerkin method for compressible flows”. In: Int. J. Numer.
Meth. Fluids 78.3 (Feb. 2015), pp. 123–139. issn: 0271-2091. doi: 10.1002/fld.4009.
url: http://dx.doi.org/10.1002/fld.4009.

[6] M. Chrust, E. Laurendeau, and L. Ostiguy. “Accelerating low-fidelity aerodynamic
codes on multi- and many-core architectures”. In: The Journal of Supercomputing 71.9
(May 2015), pp. 3456–3481. issn: 1573-0484. doi: 10.1007/s11227-015-1444-6.
url: http://dx.doi.org/10.1007/s11227-015-1444-6.

[7] L. Luo et al. “GPU Port of A Parallel Incompressible Navier-Stokes Solver based on
OpenACC and MVAPICH2”. In: 7th AIAA Theoretical Fluid Mechanics Conference.
American Institute of Aeronautics and Astronautics (AIAA), June 2014. doi: 10.

2514/6.2014-3083. url: http://dx.doi.org/10.2514/6.2014-3083.

[8] L. Luo, J. R. Edwards, and H. Luo. “Performance Assessment of Multi-block LES
Simulations using Directive-based GPU Computation in a Cluster Environment”. In:
52nd Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics
(AIAA), Jan. 2014. doi: 10.2514/6.2014-1130. url: http://dx.doi.org/10.2514/
6.2014-1130.

[9] T. Hoshino et al. “CUDA vs OpenACC: Performance Case Studies with Kernel Bench-
marks and a Memory-Bound CFD Application”. In: 2013 13th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud, and Grid Computing. Institute of Electrical and
Electronics Engineers (IEEE), May 2013. doi: 10.1109/ccgrid.2013.12. url: http:
//dx.doi.org/10.1109/CCGrid.2013.12.

[10] A. Corrigan et al. “Semi-automatic porting of a large-scale Fortran CFD code to
GPUs”. In: International Journal for Numerical Methods in Fluids 69.2 (May 2011),
pp. 314–331. doi: 10.1002/fld.2560. url: http://dx.doi.org/10.1002/fld.2560.

[11] A. Corrigan and R. Lohner. “Semi-automatic porting of a large-scale CFD code to
multi-graphics processing unit clusters”. In: International Journal for Numerical Meth-
ods in Fluids 69.11 (Aug. 2011), pp. 1786–1796. doi: 10.1002/fld.2664. url: http:
//dx.doi.org/10.1002/fld.2664.

[12] B. van Werkhoven and P. Hijma. “An Integrated Approach to Porting Large Scientific
Applications to GPUs”. In: 2015 IEEE 11th International Conference on e-Science.
Institute of Electrical and Electronics Engineers (IEEE), Aug. 2015. doi: 10.1109/
escience.2015.23. url: http://dx.doi.org/10.1109/eScience.2015.23.

Chapter 2

An Efficient Directive-Based
Multi-GPU Implementation of
Computational Fluid Dynamics on
Heterogeneous Platforms

Andrew McCall, Behzad Baghapour, and Christopher J. Roy
Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24061, USA

Attribution

The first author (Andrew McCall) provided the primary contribution to the manuscript’s re-
search and content. The multi-CPU and multi-GPU implementations were developed by the
first author and all performance and scalability results derived from these implementations
were collected and analyzed by the first author. The second author (Behzad Baghapour)
researched and analyzed the single GPU optimizations for the two-dimensional and three-
dimensional solvers. Furthermore, visualizations of the problem solution were obtained by
the second author. The final author (Christopher J. Roy) provided the guidance and feedback
necessary for research development and composition of this manuscript.

6

Andrew J. McCall Chapter 2. Manuscript 1 7

Abstract

OpenACC is a high-level directive-based parallel library for offloading program execution
onto a graphics processing unit (GPU). The more portable directive-based model stands in
contrast with the detailed implementation model of CUDA and OpenCL that suffers from
poor portability and maintainability with changes in the accelerator hardware. In this pa-
per, we explore the capability of OpenACC to efficiently accelerate the base serial CPU
version of a CFD code, achieving a portable code with good computational performance on
the GPU. An Artificial Compressibility Method (ACM) is used for studying steady-state
incompressible 2D and 3D heat and fluid flows. We study multiple optimizations to improve
GPU performance, accounting for the limited on-chip memory. The code is extended to a
multi-GPU implementation, evaluating performance, scalability, and the effect that overlap-
ping the communication between GPUs with computation has on these metrics. Memory
management and loop scheduling considerations result in approximately 20% speedup in
computing performance from the baseline GPU implementation. A single-GPU performance
analysis demonstrates that a single NVIDIA Tesla C2075 GPU exhibits comparable speed to
8 cores on a dual-socket Xeon E5-2687W processor workstation. A multi-GPU performance
analysis is performed using NVIDIA Tesla M2050 GPUs. Performance and scalability im-
provements are achieved by overlapping communication between GPUs with computation.
The multi-GPU implementation with 32 GPUs attains a performance up to 400 times faster
than a single core of a Xeon E5645 processor, 17 times faster than a single GPU, and 12
times faster than 32 CPUs using an MPI multi-CPU implementation. A weak scalability
analysis demonstrates up to 99% efficiency with 32 GPUs.

2.1 Introduction

In recent years, the scientific computing community has seen a growing paradigm shift to-

ward the use of general-purpose graphics processing units (GPGPUs) for accelerating high

performance computation. This computing paradigm achieves a high throughput dependent

upon a much larger number of computing threads with lower processing rates to acceler-

ate the computation through very fine-grained parallelism. Conversely, the standard CPU

computing paradigm parallelizes the execution of a program on a more limited number of

computing cores with higher clock rates. The use of GPUs for scientific computing appli-

cations proves to be a highly energy- and cost-efficient solution compared to the standard

CPU computing paradigm [1].

Andrew J. McCall Chapter 2. Manuscript 1 8

The release of CUDA [2] in 2006 as a programming model for interfacing with NVIDIA GPUs

marked the beginning of widespread extension of GPUs to more general scientific comput-

ing purposes. OpenCL [3] followed shortly after in 2009, providing a much more portable

interface for GPU computing by no longer restricting the GPGPU programming model to

NVIDIA GPUs. Fundamentally, the designs of these models center around offloading a ker-

nel code to run on the target GPU and transferring data from the host CPU to the target

GPU’s memory. Both of these programming models have found success in improving the

performance of software in high performance computation, including CFD applications [4,

5, 6, 7, 8, 9, 10], and today both models still provide a basis for interfacing with GPGPUs.

Due to the ever-growing need for computing resources, interest quickly grew in multi-GPU

software implementations that offloaded computation to multiple GPUs simultaneously. A

practical solution that works for a wide range of computer hardware is the use of hybrid

parallelism for handling the communication of multiple host CPUs with their target GPUs.

Within a single node, where memory is shared between the CPUs, multi-GPU implementa-

tions have been accomplished through multi-threading using the OpenMP [11] standard [4, 6].

This approach requires a careful asynchronous implementation to avoid data race conditions

within the shared memory of the CPUs. The use of MPI [12] for multi-GPU implementations

also has found popularity [4, 5, 6] in recent years. MPI allows software to take advantage

of the computer cluster architecture by using GPUs across multiple nodes. However, this

requires additional explicit communication of data between the host CPUs for problems that

are not embarrassingly parallel.

For all that CUDA and OpenCL provide in capability for GPU computing, their low-level

interfaces require a detailed understanding of the specific GPU’s architecture. These low-level

interfaces limit portability of a specific implementation to different hardware and severely

restrict the maintainability of these implementations. Furthermore, these low-level interfaces

require complex implementations of algorithms to utilize the GPU’s architecture, making the

readability of these programs esoteric even within the scientific computing community.

Andrew J. McCall Chapter 2. Manuscript 1 9

These issues have driven the development of high-level programming models that provide a

degree of separation between the GPU architecture and the software implementation. One

such model is OpenACC[13], released in 2011, which imitates OpenMP’s use of directive

statements to delineate sections of code to parallelize. Each directive statement has ac-

companying clauses to specify the details of the parallel implementation. This abstracted

parallelization model provides the benefit of minimal modification to the original code base.

Furthermore, by leaving parallelization details for the compiler to handle, the program’s

modularity, ease of implementation, maintainability, and clarity are greatly enhanced. As

with OpenMP, this enhancement in modularity allows for incremental parallelization of a

serial program. For the reader’s benefit, another directive-based high-level interface that has

received less attention in scientific computing is HMPP [14]; however, the reader is left to

explore this programming model independently of this paper.

OpenACC has found applications in scientific computing for areas such as Monte Carlo

simulations [15], image processing [16], electromagnetics [17], and CFD [18, 19, 20, 21, 22,

23, 24]. Research in OpenACC acceleration for CFD includes the work of Markidis et al. [18]

in spectral methods for the simulation of 3D incompressible flows and the work of Xia et

al. [24] in higher order discontinuous Galerkin methods for 3D compressible flows on hybrid

unstructured grids. This research even extends to the GPU acceleration of vortex-lattice

methods [20]. The CFD solver for incompressible flows analyzed in this paper is based on

the same implementation used by Pickering et al. [23] to study optimization and performance

tuning of an OpenACC accelerated case study.

Although OpenACC provides great improvements to the modularity, ease of implementation,

maintainability, and clarity of software that uses GPU acceleration, these benefits come at

the cost of performance. The performance results are expected to vary depending upon

the problem’s computational numerics and the computer’s architecture; however, results

demonstrate a general degradation in performance from analogous implementations using

either CUDA [25] or OpenCL [26]. This degradation is due to potential optimizations that the

compiler is unable to identify independently. Therefore, the reader must consider these trade-

Andrew J. McCall Chapter 2. Manuscript 1 10

offs to evaluate whether a high- or low-level programming model would be more appropriate

to implement for a given problem.

Just as with CUDA and OpenCL, hybrid parallel implementations are used for multi-GPU

computing with OpenACC [27, 18, 17, 19, 22]. In the work of Hart et al. [27], the com-

munication between CPUs is abstracted through the use of Fortran coarrays to store the

decomposed data on the CPU memory. These coarrays greatly simplify the implementation

required for communication of data between processors. The results of Hart’s paper demon-

strate an increase in the performance of the OpenACC multi-GPU implementation over a

hybrid MPI+OpenMP multi-CPU implementation. Hart et al. [27] also explores the use of

asynchronous communication and computation with moderate success, only achieving 5% to

10% increase in performance. The GPUDirect capability is used in Otten et al. [17] to bypass

some of the overhead due to frequent communication between CPUs and GPUs, allowing

MPI calls to perform communications directly between GPUs. Although not available for all

systems, the use of GPUDirect was found to reduce the overhead of using CPUs as the inter-

mediary for data transfer, improving speedup performance by as much as 12%. Furthermore,

some proposals have been made for extensions to the OpenACC library that would allow

for more efficient multi-GPU implementations due to direct GPU - GPU communication

without relying on hybrid parallelism. [19, 22]

In the context of this survey of GPU computing, this paper intends to demonstrate the

ease of implementation when using OpenACC in transitioning from a serial CPU code to a

GPU accelerated code. This analysis is performed for an incompressible flow solver. First,

we evaluate multiple implementation considerations for improving the performance of Ope-

nACC accelerated computations for a single-GPU implementation. These considerations

include thread mapping, register spilling, loop fission, loop collapsing, and asynchronous

computation. Additionally, a hybrid MPI+OpenACC implementation is used to demon-

strate the scalability of a multi-GPU implementation for finite difference CFD methods on a

computer cluster. The effect of overlapping communication between GPUs and computation

on the solver’s performance and scalability is investigated.

Andrew J. McCall Chapter 2. Manuscript 1 11

The remainder of this paper is outlined as follows. Section 2.2 covers the background infor-

mation on the OpenACC programming model and the CFD solvers used for this analysis.

Section 2.3 discusses the single-GPU, multi-CPU, and multi-GPU implementations devel-

oped for this analysis. Results of this analysis are presented and discussed in Section 2.4

with conclusions stated in Section 2.5 and future work discussed in Section 2.6.

2.2 Background

2.2.1 OpenACC

The offloading of regions of a code to a GPU is performed by using parallelism directives in

OpenACC. Data directives are defined to transfer data from the host (CPU) to the device

(GPU). Together, these directives abstract the parallel implementation ported to the GPU,

leaving low-level, hardware-dependent implementation details for the compiler to handle.

Finer-grained management of data transfer and parallelism is possible through use of clauses

defined for each data directive. To control the details of parallelism, such as the level

of granularity, variable sharing and privatization, and variable reduction, different clauses

are defined for each parallelism directive. The OpenACC programming model uses three

levels of parallelism: gang, worker, and vector. These levels are synonymous to the CUDA

terminology of blocks, warps, and threads, respectively.

These directive clauses allow the programmer to control the detail of the parallel implementa-

tion defined within the code with minimal additional effort. Leaving the hardware-dependent

implementation details for the compiler to handle provides an easily portable code base since

the same software may be compiled for many different accelerator architectures without mod-

ification. Of equal concern, the directive-based model provides better maintainability of the

code base with a shorter development cycle and a longer lifespan. In contrast, CUDA and

OpenCL require the programmer to define all low-level acceleration implementation details

Andrew J. McCall Chapter 2. Manuscript 1 12

up-front. This detailed implementation model requires that a code accelerated using CUDA

or OpenCL must undergo significant modification with change in the accelerator hardware.

The recently added capabilities of OpenACC 2.0 have resolved some previous limitations

in the first release of the standard. [28] It is worth mentioning, at this point, some of the

important improvements in the new edition. Calling a device function inside the accelerator

region was only possible for inline functions in OpenACC 1.0 [29], which can be handled in

the new edition by the “routine” clause. Unstructured data regions help the programmer to

efficiently handle frequent use of the PCI-e terminal to transfer data across multiple acceler-

ator regions of the code. For the use of object-oriented programming practices, these regions

are helpful in transferring user-defined structures. The OpenACC 2.0 standard enhances

data management at runtime through the acc map data function and simplifies the means

for direct access to the host or device copy of an OpenACC variable. Moreover, additional

routines have been introduced for interoperating with other GPU compilers such as CUDA

and OpenCL. Atomic directives for preventing data race conditions and the tile clause for

addition optimizations in parallel directives are some other new features.

2.2.2 Solution Methodology

The steady-state solution of the incompressible heat and fluid flow equations for a lid-driven

cavity (LDC) and for a buoyancy-driven cavity (BDC) problem is considered using an arti-

ficial compressibility method proposed by Chorin [30]. The governing equations for incom-

pressible, viscous flow with heat transfer can be considered as follows:

∇ · ~V = 0

∂~V

∂t
+ ~V · ∇~V = −1

ρ
P + ν∇2~V +

1

ρ
~Fv

∂T

∂t
+ ~V · ∇T = α∇2T (2.1)

Andrew J. McCall Chapter 2. Manuscript 1 13

In Equation (2.1), ν = µ/ρ is the kinematic viscosity of the fluid and α = k/ρc is the ther-

mal dissipation rate where k and c are the thermal conductivity and capacity (at constant

pressure) of the fluid, respectively. The term ~Fv represents the volumetric force. Consid-

ering buoyancy-driven flow, the volumetric force is ~Fv = g(ρ − ρ∞)~eg, where g is the local

gravitational acceleration and ~eg points in the opposite direction of gravity. When applying

the Boussinesq approximation to the volumetric force ρ − ρ∞ = ρ∞σ(T − T∞) for small

temperature differences, the momentum equation couples with the energy equation and the

overall system of equations can be solved simultaneously through time. The subscript ∞

refers to a reference value for a primitive variable. In the Boussinesq approximation, σ is the

thermal expansion of the fluid [31]. The lid-driven cavity problem uses the same governing

equations, with omission of the buoyancy term and the energy equation.

Adding a pseudo-time derivative pressure term in the divergence-free continuity equation

transfers the set of above equations to a hyperbolic system solvable with an explicit time

discretization method. In this study, a second-order, central, finite difference scheme is used

for spatial discretization and, since the steady-state solution is desired, a simple first-order

Euler scheme is considered for time advancement. To increase the stability of ACM, a

fourth-order numerical damping term is added to the continuity equation and is discretized

with a fourth-order, central, finite difference scheme. The modified governing equations are

presented as follows:

1

β2

∂P

∂t
+ ρ∇ · ~V = εj

∂4P

∂x4
j

∂~V

∂t
+ ~V · ∇~V = −1

ρ
P + ν∇2~V + gσ(T − T∞)~eg

∂T

∂t
+ ~V · ∇T = α∇2T (2.2)

In the above equations, ε is the numerical dissipation coefficient, calculated as εj = λj∆xjCj

for the j-th direction, and Cj is the tuning parameter to adjust the artificial viscosity applied

to each spatial dimension (typically ∼0.01). In addition, β is an artificial compressibility

Andrew J. McCall Chapter 2. Manuscript 1 14

(AC) parameter calculated using the local velocity magnitude uloc along with a user-defined

parameter uref as β2 = max(u2
loc, rku

2
ref). [23]

Moreover, this discretization uses a uniform grid spacing of ∆xj in the j-direction. In

addition, λj is the maximum eigenvalue of the system of Equation (2.1) in the j-direction,

computed as follows:

λj =
1

2

(
|uj|+

√
u2
j + 4β2

)
(2.3)

where uj is the j-th component of the velocity field. Both solvers implement a Jacobi-like

iteration scheme. Although a Gauss-Seidel iteration scheme provides faster convergence than

a Jacobi iteration scheme, the Jacobi method lends itself to more effective parallelism.

2.3 Porting to the GPU

The overall computational procedure for an explicit forward-time-central-space (FTSC)

ACM can be itemized as follows:

1. Extrapolate pressure on the domain boundaries

2. Calculate the artificial compressibility and numerical damping terms

3. Calculate the residuals at grid points

4. Update the solution field (primitive variables)

5. Rescale the pressure solution to a set value at the cavity center

The overall procedure that a programmer uses to offload computation in the base CFD code

from the CPU to the GPU is shown in Figure 1. As seen in this figure, little effort is required

to develop a functional, parallelized version of the CFD solver.

To maintain fourth-order accuracy for the numerical damping term, a 9-point stencil for the

2D problem and a 13-point stencil for the 3D problem is required for the pressure solution.

Andrew J. McCall Chapter 2. Manuscript 1 15

All other terms require a 5-point stencil for 2D solutions and a 7-point stencil for 3D solutions.

Table 2.1 shows the memory transfer and computational operations per grid node for the

2D and 3D problems.

--

OpenACC annotation of a typical CFD code

--

1) Allocate memory on CPU

2) Initialize the solution

3) Transfer memory from CPU to GPU

!$acc data copy(A,B,...) [clauses]

4) Begin the iteration loop (Accelerator region)

t = 0

!$acc kernels present(A,B,...) [clauses]

do while (t < t end)

...

!$acc loop [clauses]

do j = 1,n

do i = 1,n

...

end do

end do

t = t + dt

end do

5) End of iteration loop

!$acc end kernels

6) Transfer data from GPU to CPU

!$acc end data

7) Post-process data on CPU

Figure 2.1: Pseudo-code for accelerating the base CFD code with a GPU using OpenACC.

Data caching for the reused memory between adjacent nodes is useful for reducing global

memory loads. However, transferring data from global to local memory outperforms the

global memory based access when a large number of mathematical operations are considered

for the cached data. OpenACC has an ability to check if such automatic caching is beneficial

for the calculations local to the loop and seeks to perform an implicit caching to increase

performance. Explicit data caching is also available in OpenACC by adding cache clauses

to the accelerator regions.

Andrew J. McCall Chapter 2. Manuscript 1 16

Table 2.1: Detailed memory transfer and mathematical operations per grid node for different
problems.

2D LDC 3D LDC 3D BDC
Data-solution loads 19 34 41

Single-precision memory transfer (bytes) 76 136 164
Double-precision memory transfer (bytes) 152 272 328

Number of floating point operations 130 217 257

2.3.1 OpenACC

For optimizing the computations performed on the GPU using OpenACC, the following

items are considered:

� Thread mapping: To achieve an optimal thread mapping for parallelizing the loops

with OpenACC, different arrangements of gang-vector sizes are examined for the max-

imum number of grid points in each direction. For the 2D problem, the best thread

mapping arrangement obtained is 16 × 8 (or 32 × 4 in some cases) which implies a

2D vector of parallel threads works on a chunk of the domain with length 16 in the

first Cartesian direction and length 8 in the second direction. It is worth mentioning

that the new “tile” mapping feature in OpenACC 2.0 is also examined; however, even

the best tiling configuration results in lower performance than the manually achieved

16× 8 pattern for thread mapping.

� Register pressure: Another issue that often arises with complex CFD calculations

is the shortage of on-chip memory. Although loop fusion helps the compiler at run-

time to execute the code more efficiently, unifying the loops without paying careful

attention to the register resources available for each block of threads in the GPU

may lead to high register pressure or even register spilling. In the worst case, when

the provided amount of registers is not sufficient to handle the operations, the excess

required memory will be transferred from the register to local memory with a very low

clock-rate. In this case, the performance of the computation decreases significantly no

Andrew J. McCall Chapter 2. Manuscript 1 17

matter the grid size of the problem. Based on the experience of the authors with the

ACM CFD algorithm for Cartesian meshes on the GPU, fusing the loops from the base

code step-by-step could increase the overall performance. However, fusing the AC part

(regarding the calculation of artificial compressibility coefficient β and the numerical

damping term) with the residual calculations (including first and second derivatives

of the field variables) results in register spilling. Splitting these two parts in the 2D

problem avoids register spilling to the local memory and no stack frame is required for

the operations. For the 3D problem, splitting the AC and residual computations helps

the compiler to alleviate the register pressure, but some parts of the computation still

demonstrate small spills in the register. Therefore, further investigation is necessary

for optimizing the computation for 3D problems.

� Loop collapsing: The Cartesian-based CFD solver includes nested loops performing

the operations in multiple directional sweeps. Collapsing the consecutive “do loops”

on the domain by adding the collapse clause gives an opportunity for the OpenACC

compiler to further optimize parallel performance. Implementing loop collapsing results

in up to a 40% increase in clock-rate from the base OpenACC implementation in this

research.

� Asynchronous execution: OpenACC supports asynchronous data movement and

computations inside the accelerator region. Two asynchronous activities with different

“async” argument values have the possibility to overlap. In this case the overall time

to finish these two activities will be reduced, resulting in higher computation rates.

Since a fully explicit time integration scheme is used in this research, there is much

potential for parts of the algorithm to overlap with each other and decrease the overall

time of code execution on the GPU. Results show that considering the async clause

leads to improvement in the performance up to 50% over the performance of the code

with loop collapsing optimizations.

Andrew J. McCall Chapter 2. Manuscript 1 18

2.3.2 MPI

A multi-GPU implementation of the 3D BDC solver is accomplished through the use of MPI

with OpenACC to take advantage of the computer cluster architecture of supercomputing

resources at Virginia Tech, as discussed in Section 2.3.3. This implementation decomposes

the domain across processes with separate memory spaces and communicates between these

processes to exchange inter-block boundary solution data. Since the BDC solver starts

with a single-block domain, the domain is evenly subdivided across the processes. Using a

1D decomposition allows for transfers of contiguous boundary data between sub-domains;

however, we note that a 3D decomposition does provide advantages over a 1D decompo-

sition. For example, a 3D decomposition may minimize total data transfer and provide a

more scalable decomposition, as illustrated in Figure 2.2. However, 3D decompositions per-

form best in bandwidth-bound communication, not latency-bound communication. Since

communication between the CPU and GPU becomes a source of high latency with highly

non-contiguous data transfer, a 1D decomposition is preferred for this application. Since

Fortran uses column-major ordering, the computational domain is decomposed in the ζ di-

mension of the computational domain as shown in Figure 2.2. This dimension corresponds

to the z direction in physical space.

(a) 1D domain decomposition (b) 3D domain decomposition

Figure 2.2: Different domain decompositions with the same number of sub-domains in com-
putational space. This illustrates the limited scalability of a 1D decomposition.

Andrew J. McCall Chapter 2. Manuscript 1 19

As discussed in Section 2.2, the 4th order numerical damping term requires a 13-point stencil

using the pressure solution data, and the remaining residual calculations require a 7-point

stencil for all solution variables. As shown in Figure 2.3a, two layers of ghost nodes are

required for computing the numerical damping term at the inter-block boundaries. The

remaining residual calculations only require transferring a single layer of ghost nodes. This

inter-block boundary data exchange is illustrated in Figure 2.3b.

(a) Illustration of the pressure and other so-
lution variable stencils.

(b) Boundary data is transferred between
sub-domains to update ghost nodes.

Figure 2.3: Inter-block boundary data is exchanged for computation of the residuals near
the boundary.

These values are exchanged through MPI library calls between CPUs with each iteration.

Multiple implementation choices allow for improvement in the efficiency of this exchange,

including non-blocking communication, 1-sided communication in the MPI-2.0 standard,

GPUDirect GPU-GPU communication, and the shared memory implementation defined in

the MPI-3.0 standard. This study uses non-blocking communication with MPI ISEND and

MPI IRECV to achieve asynchronous communication, allowing data transfers to occur simul-

taneously. The transformation to a parallel implementation is illustrated with a pseudo-code

outline in Figure 2.4a. Before running the solver, the processes must be assigned to separate

GPU devices. The necessary solution and residual computation data for each sub-domain is

copied to the associated GPU. To transfer boundary data between processes, the data must

Andrew J. McCall Chapter 2. Manuscript 1 20

first be passed back to the host CPU before processes can communicate with each other

using MPI. Finally, the loops used to compute the AC terms, numerical damping terms, and

residuals of the sub-domains are offloaded as kernels to the GPUs to accelerate performance.

! Set GPU device

call acc set device num(num, acc device nvidia)

! Decompose domain in zeta-direction

!$acc data copy(solution,...)

do while (error > tol .and. iter < max iter)

! Transfer inter-block boundary data

!$acc update host(solution(start:end)) async(1)

call MPI IRECV(solution(start),...)

!$acc wait(1)

call MPI ISEND(solution(start),...)

call MPI WAITALL(...)

!$acc update device(solution(start:end))

call MPI BARRIER(...)

! Compute all AC, numerical damping terms

!$acc wait

! Compute residuals

! Rescale Pressure

call MPI BCAST(center pressure,...)

! Compute global residual norm

call MPI REDUCE(..., MPI SUM, ...)

end do

!$acc end data

(a) Pseudo-code for the baseline parallel im-
plementation with OpenACC.

! Set GPU device

call acc set device num(num, acc device nvidia)

! Decompose domain in zeta-direction

!$acc data copy(solution,...)

do while (error > tol .and. iter < max iter)

! Transfer inter-block boundary data

!$acc update host(solution(start:end)) async(1)

call MPI IRECV(solution(start),...)

!$acc wait(1)

call MPI ISEND(solution(start),...)

! Compute AC, numerical damping terms

! (interior nodes)

call MPI WAITALL(...)

!$acc update device(solution(start:end))

call MPI BARRIER(...)

! Compute AC, numerical damping terms

! (remaining nodes)

!$acc wait

! Compute residuals

! Rescale Pressure

call MPI BCAST(center pressure,...)

! Compute global residual norm

call MPI REDUCE(..., MPI SUM, ...)

end do

!$acc end data

(b) Pseudo-code for the parallel implemen-
tation with overlapping communication and
computation.

Figure 2.4: Pseudo-code of the baseline multi-GPU implementation and the multi-GPU
implementation with overlapping communication and computation. Modifications to overlap
communication and computation are shown in red.

The baseline multi-CPU and multi-GPU implementations only make use of asynchronous

communication; however, non-blocking communication also allows for overlap of communi-

cation with computation. The use of asynchronous execution, as discussed in Section 2.3.1,

Andrew J. McCall Chapter 2. Manuscript 1 21

can improve GPU performance by masking memory access latencies within the GPU. Sim-

ilarly, if the inter-GPU data transfer is executed asynchronously with computations on the

GPU, the parallel communication overhead may be reduced. Overlap of communication and

computation is achieved through the use of non-blocking MPI communication calls between

CPUs and asynchronous data transfers between the GPU and host CPU. For a multi-GPU

implementation, this data transfer process consists of three steps, listed as follows:

1. Transfer boundary data from the GPU to the host CPU.

2. Transfer data to the host CPU of the neighboring sub-domain.

3. Transfer the ghost node data from the host CPU to the GPU.

To study the effect of overlapping communication and computation on performance and scal-

ability of the parallel implementation, we must identify what computations should overlap

with the data transfer communication. Due to the different stencils used to calculate the ar-

tificial compressibility and numerical damping terms for nodes near domain boundaries (not

inter-block boundaries), these calculations are splintered into multiple loop structures to

handle interior nodes, boundary face nodes, edge nodes, and corner nodes. Conversely, since

the artificial compressibility and numerical damping terms are computed separately from

the residuals to reduce register pressure, the residuals of the entire domain are computed in

a single nested loop structure. Therefore, a synchronization point for the GPU kernels must

occur before reaching the residual calculation loop to ensure all artificial compressibility and

numerical damping terms have been computed.

With this structure in mind, only artificial compressibility and numerical damping term com-

putations can overlap with the inter-GPU data communication. Otherwise, the residual loop,

which performs a reduction operation to calculate the residual norms, would also need to be

split apart. The computational overhead and reduced maintainability of the code, induced

by breaking apart the residual computation loop and separately computing the residual

norms, negates the benefit of this modification. Furthermore, computation cannot overlap

Andrew J. McCall Chapter 2. Manuscript 1 22

with communication for nodes that are located near inter-block boundaries, on the ζmin and

ζmax faces, and include ghost nodes being updated by the inter-GPU data communication

within their stencil. Therefore, the loops for computing artificial compressibility and numer-

ical damping terms are split to separate the computation that can and cannot overlap with

communication. Although this modification introduces additional computational overhead,

this modification is necessary to avoid a race condition. Figures 2.4a and 2.4b illustrate the

changes made in the program structure to overlap communication with computation, where

the modifications are highlighted in red.

It is important to note in Figure 2.4a the MPI BARRIER call added after the inter-block ghost

node data transfer has completed. Although performance is generally degraded by syn-

chronization, careful usage of synchronization may improve performance when the processes

must communicate with each other. Figure 2.5 illustrates the execution profile of GPU

kernels using two GPUs over time with and without the MPI BARRIER call. This execution

timeline was produced using the NVIDIA Visual Profiler tool[32]. Each colored bar within

the timeline represents the execution of a given GPU kernel. The white spaces between

these colored bars in Figure 2.5a indicate that nothing is executing on the GPU during that

timespan. This figure shows that execution of the two GPUs can become desynchronized,

such that one GPU performs the residual computations for the next iteration before fully

transferring ghost node data to its neighboring sub-domain. This subsequently requires the

sub-domain to wait for the neighboring sub-domain to catch up in the residual computation

before continuing. Figure 2.5a illustrates that this desyncronization happens every one to

three iterations. However, adding the synchronization point forces both GPUs to execute

close enough to synchronously to avoid this problem, as shown in Figure 2.5b, and improve

performance by up to 28%. Figure 2.5b also illustrates the effect of asynchronous execution

on the GPU, as up to six GPUs kernels execute simultaneously, indicated by the kernels

with overlapping timespans being stacked vertically.

Andrew J. McCall Chapter 2. Manuscript 1 23

(a) Execution profile of two GPUs without barrier synchronization.

(b) Execution profile of two GPUs with barrier synchronization.

Figure 2.5: Synchronization calls can improve performance by preventing complete desyn-
chronization of processes that must communicate with each other. Each colored bar repre-
sents the execution of a GPU kernel, so the white spaces between bars indicates time wasted
by the GPU.

2.3.3 Computing Resources

Table 2.2 summarizes the machines used and their specifications. The single-GPU perfor-

mance results for the LDC and BDC solvers are obtained using a Dell T7600 Precision

workstation with dual-socket 8-core Intel Xeon E5-2687W processors, for a total of 16 cores.

The workstation also contains two NVIDIA Tesla C2075 GPUs and 67 GB memory. Scala-

Andrew J. McCall Chapter 2. Manuscript 1 24

bility and performance analyses of the multi-GPU implementation are conducted using the

HokieSpeed [33] CPU-GPU computer cluster at Virginia Tech. HokieSpeed has 204 compute

nodes connected by a QDR Infiniband interconnect, each containing dual-socket 6-core Intel

Xeon E5645 processors, for a total of 12 cores within each node. Every node also contains

two NVIDIA Tesla M2050 GPUs and 24 GB of memory.

Table 2.2: Specifications for the hardware in the different machines used in this study. Note
that two processors and two GPUs exist on each node for all machines.

Machine Name Workstation HokieSpeed NewRiver
Memory Specifications

Size (GB) 67 24 256
Bandwidth (GB/s) 51.2 32.0 51.2

Processor Specifications
Model Intel Xeon Intel Xeon Intel Xeon

E5-2687W[34] E5645[35] E5-2680[36]
Physical Cores 8 6 12
Base Clock Rate (GHz) 3.10 2.40 2.70
Shared L3 Cache (MB) 20 12 20

GPU Specifications
Model NVIDIA Tesla NVIDIA Tesla NVIDIA Tesla

C2075[37] M2050[38] K80[39]
Architecture Fermi Fermi Kepler
Chip GF110 GF100 2 × GK210
Memory Size (MB) 6144 3072 2 × 12288
Bandwidth (GB/s) 144.0 148.4 2 × 240.6
Cores (Total) 448 448 2 × 2496
Core Clock Rate (GHz) 1.150 1.150 0.560 – 0.875

The comparison of performance between the Fermi and Kepler architectures for NVIDIA

Tesla GPUs makes use of the Virginia Tech NewRiver [40] computer cluster. NewRiver has

134 nodes, with 8 nodes dedicated to GPU computing. These nodes use dual-socket 12-core

Intel Xeon E5-2680 processors, for a total of 24 cores within each node. Furthermore, each

node contains two NVIDIA Tesla K80 GPUs and 256 GB of memory. Due to the limited

availability of nodes, only the performance of a single GPU is analyzed on NewRiver to

compare with the single GPU performance on the workstation and on HokieSpeed. All

Andrew J. McCall Chapter 2. Manuscript 1 25

analyses use the PGI Fortran 15.7 compiler and the multi-GPU analysis on HokieSpeed

makes use of the Open MPI 1.8.5 library.

2.4 Results and Discussion

This section presents the computational performance achieved by offloading computation in

the CFD base code to the GPU with OpenACC. The computation grid for the single-GPU

analysis varies from 1282 to 40962 in 2D and from 163 to 2563 in 3D simulations. This

covers the range of grid sizes that can be used, limited by the maximum available amount of

memory for a single NVIDIA Tesla C2075. For the multi-GPU analysis with the 3D BDC

code, the computational grid varies from 323 to 5123 between the performance and strong

scalability analyses. Due to memory limitations, the maximum grid size computable on a

single GPU on HokieSpeed is a 3063-node domain. The weak scalability analysis maintains

a fixed computational grid size for each process. The weak scalability analysis is run for

multiple local grid sizes ranging from 256× 256× 64 to 256× 256× 256 nodes.

2.4.1 Problem Solution

Figures 2.6 and 2.7 show the flow fields inside the lid-driven cavity and the buoyancy-driven

cavity for different Reynolds (Re) and Rayleigh (Ra) numbers. Moreover, Figure 2.8 shows

the fluid velocity and temperature distribution in different slices of the 3D LDC and BDC

problems. As shown in Figure 2.7, a constant velocity ulid = 1.0 is considered at the top

face of the 3D cavity normal to xz-plane. For the BDC problem, a temperature difference

of ∆Tlid = 10.0 is considered at front face of the cavity normal to the yz-plane.

Andrew J. McCall Chapter 2. Manuscript 1 26

(a) LDC (Re = 100) (b) LDC (Re = 1000)

Figure 2.6: Streamlines and horizontal velocity contours of 2D lid-driven cavity flows.

(a) LDC (Re = 100) (b) BDC (Ra = 105)

Figure 2.7: Streamlines for lid-driven and buoyancy-driven flows in a 3D cavity.

Andrew J. McCall Chapter 2. Manuscript 1 27

(a) LDC (Re = 100) (b) BDC (Ra = 105)

Figure 2.8: First velocity component and temperature distribution inside the 3D LDC and
BDC fields.

2.4.2 OpenACC Optimization

Figure 2.9a demonstrates the achieved performance in terms of gigaflops (GFLOP/s) using

OpenACC optimization strategies in comparison with the base GPU implementation. As

can be seen, using an optimal thread mapping results in better performance, especially in

finer grids, with respect to the automatic mapping selected by the compiler. Moreover,

applying loop collapsing and asynchronous executions leads to a considerable increase in the

total performance. The optimized code in this case provides up to 24% better performance

than the base code.

The performance demonstrated in Figure 2.9b for 3D LDC and BDC is attained by pursuing

the strategies considered for improving the performance of the 2D LDC solver in the 3D

problem. According to this figure, the computational throughput of the isotherm (4 equa-

tions) and thermal (5 equations) problems deviate from each other as the grid size increases.

The performance achieved with a single GPU at the maximum grid size is 44.6 GFLOP/s

for the lid-driven cavity and 37.7 GFLOP/s for the buoyancy-driven cavity. Moreover, the

Andrew J. McCall Chapter 2. Manuscript 1 28

performance improvement with a single GPU stalls sooner in the thermal problem. This

decrease in performance is due to the increased the number of governing equations, conse-

quently increasing the total amount of required on-chip register memory. Furthermore, this

issue shows a performance barrier due to register resource limitation in the GPU.

(a) Effect of optimal thread mapping and other
optimizations on performance with respect to
the base GPU implementation for the 2D LDC
problem.

(b) Achieved computational performance for
the 3D LDC and BDC problems.

Figure 2.9: Performance optimization results for the single-GPU implementation.

Figure 2.10a compares the achievable increase in performance for a single NVIDIA Tesla

C2075 with respect to a single CPU and with respect to MPI and OpenMP multi-CPU

implementations for the 3D BDC problem. Note that the MPI implementation is not tested

for the full range of grid sizes. This is because the minimum grid dimension is restricted to

4 nodes that are not ghost nodes. This restriction prevents ghost node regions of different

neighboring sub-domains from overlapping with each other, which leads to instability in the

solver. According to this figure, a single GPU achieves a performance of 37.7 GFLOP/s

at the maximum grid size. In comparison, the achievable performance of the multi-CPU

implementations at the maximum grid size are 38.9 GFLOP/s for the MPI implementation

with 8 cores and 18.4 GFLOP/s for the OpenMP implementation using 16 cores. The

Andrew J. McCall Chapter 2. Manuscript 1 29

performance of the single-CPU implementation is 4.66 GFLOP/s at the maximum grid size.

Therefore, the single-GPU implementation provides approximately a factor of 8 improvement

in performance compared to the serial CPU code, a factor of 2 improvement in performance

compared to the OpenMP multi-CPU implementation using 16 cores, and an 8.2% increase

in performance relative to the MPI multi-CPU version of the code using 8 cores. The

multi-CPU code does provide up to an 8.7% increase in performance over the single-GPU

implementation for smaller grid sizes; however, for grids larger than 643 nodes the multi-CPU

performance degrades with increase in grid size.

(a) Comparison of the performance of a single
NVIDIA Tesla C2075 GPU with single-CPU
and multi-CPU implementations of the CFD
code on a Dell 7600 Precision workstation.

(b) Comparison of performance on the Hok-
ieSpeed supercomputer (one CPU per socket)
with performance on a Dell T7600 Precision
workstation.

Figure 2.10: Performance comparisons of the single-GPU implementation for the 3D BDC
problem.

As illustrated in Figure 2.10a, the performance of the single-CPU implementation steadily

decreases by approximately 12% with each increase in the grid size. This effect is likely due

to a greater number of cache misses as, proportionally, less of the grid fits into the cache.

This effect is further demonstrated in the MPI implementation run with 8 CPUs for grid sizes

ranging from 643 nodes to 2563 nodes. When the MPI implementation is run with 16 CPUs a

Andrew J. McCall Chapter 2. Manuscript 1 30

much more significant performance degradation occurs with increase in grid size, decreasing

in performance by over 22% between the 643-node grid and the 1283-node grid. This more

dramatic performance degradation illustrates the effect of running all cores within a socket,

causing the CPUs to compete for shared cache, memory, and communication bus resources.

The shared-memory parallel architecture that OpenMP uses does not seem to suffer from

these same performance degradations; however, the overall performance of the OpenMP

multi-CPU implementation is considerably worse than the performance of the MPI multi-

CPU implementation. For a 643-node grid, use of a baseline OpenMP implementation in

place of the optimized MPI implementation leads to a 70% decrease in performance. A more

scalable OpenMP implementation is necessary to determine whether or not a shared-memory

architecture similarly suffers from performance degradation due to resource contention.

Performance comparisons between HokieSpeed’s computing resources and the workstation’s

computing resources are shown in Figure 2.10b for the 3D BDC problem. As shown, an

NVIDIA Tesla M2050 in HokieSpeed produces very similar performance to an NVIDIA

Tesla C2075, with less than 3% difference in performance. However, a single core of the

Xeon E5645 processor in HokieSpeed exhibits 52% to 58% lower performance than a sin-

gle core of the Xeon E5-2687W processor. These performance results for the single-CPU

implementation lead to a reduction in performance of the MPI multi-CPU implementation

on HokieSpeed. Using 8 CPUs for grid sizes ranging from 643 nodes to 2563 nodes, the

performance on HokieSpeed is 52% to 61% lower than the performance on the workstation.

However, the performance of 16 CPUs on HokieSpeed is only 22% to 41% lower than the per-

formance on the workstation. This discrepancy is explained by a lack of resource contention

on HokieSpeed because only one CPU is run on each socket.

The GPUs on the workstation and HokieSpeed are Fermi architecture NVIDIA Tesla GPUs,

released in 2011 [37, 38]. Since the release of HokieSpeed, later in 2011[41], the first Kepler

architecture was released in 2012[42]. The NewRiver computing cluster at Virginia Tech was

released in 2015[43] and contains 16 K80 GPUs, the latest Kepler architecture GPU, released

in 2014[39]. Due to limited access to these nodes, only the performance of a single K80 GPU

Andrew J. McCall Chapter 2. Manuscript 1 31

is compared with the performance of the C2075 and M2050 GPUs to illustrate the potential

of GPU computing with more modern GPUs. As Figure 2.11 shows, for grid sizes greater

than 643, the K80 GPU achieves between 300% and 320% of the performance of the Fermi

architecture GPUs. This performance is 14.7 to 17.9 times greater than the performance of

a single CPU on NewRiver. Therefore, with access to the latest technology the reader may

expect even better performance results relative to the CPU than shown in this paper.

Figure 2.11: Illustration of the performance improvement of the Kepler architecture over the
Fermi architecture GPUs using the 3D BDC test case.

2.4.3 Multi-GPU Analysis

This study analyzes the computational performance as well as the strong and weak scala-

bility of the 3D BDC solver to evaluate the parallel implementations developed. The strong

scalability analysis observes the speedup and efficiency of the implementation for a constant

overall grid size. For a multi-CPU implementation, we measure speedup relative to a single

CPU, whereas for a multi-GPU implementation, we measure speedup relative to a single

GPU. Efficiency for the strong scalability analysis compares the obtained speedup with the

ideal linear speedup. In the weak scalability analysis, the grid size remains constant on each

process, so the problem sizes increases as processes are added. The only metric used for this

Andrew J. McCall Chapter 2. Manuscript 1 32

analysis is efficiency, which compares the execution time per iteration for a given number of

processes with the execution time per iteration for a single process.

Baseline Implementation

With the noted improvements of a single GPU over both single and multi-CPU implementa-

tions, it is desirable to test the scalability and performance of a multi-GPU implementation

in comparison with a multi-CPU implementation on the HokieSpeed cluster. This analysis

is limited to the 3D BDC solver due to the similar performances between the LDC and BDC

codes. Furthermore, the additional computational expense and memory cost of the BDC

solver allow for a more extensive test of the multi-GPU implementation. As Figure 2.9b il-

lustrates, the performance of a single CPU is relatively insensitive to change in the problem

size, with a decrease in performance of less than 30% from the 163-node case. A single GPU’s

performance, however, increases by over 500% from the 163-node case. Similar results are

replicated when the 3D BDC code is run on HokieSpeed, as shown in Figure 2.12. This figure

additionally illustrates the overall performance of the MPI multi-CPU and MPI+OpenACC

multi-GPU implementations with grid refinement when run on HokieSpeed.

As illustrated in Figure 2.12, the multi-CPU implementation demonstrates a marginal effect

of problem size on the performance. The overall performance of the multi-GPU implemen-

tation not only continues to increase with grid size, but also experiences a greater sensitivity

of performance to grid size with an increased number of GPUs. This performance sensitivity

produces a compounding effect of increasing performance with grid size for the multi-GPU

implementation. This increase in performance is bounded on a single GPU, leveling off after

the 643 grid; however, as the number of GPUs increases, this performance bound is raised.

As discussed in Section 2.4.2, this performance bound is likely due to a register resource lim-

itation on the GPU. The 1283 grid, run with 8 GPUs, contains the same amount of memory

per GPU as the 643 grid on a single GPU, and yet the performance on 8 GPUs continues to

increase past the 1283 grid. This is likely due to the proportional decrease of communication

Andrew J. McCall Chapter 2. Manuscript 1 33

time between GPUs relative to the amount of work performed within each iteration.

Figure 2.12: Performance of multi-CPU and multi-GPU implementations over a range of
grid sizes.

For the single-GPU case, the performance levels off with a factor of 1.7 increase in the

performance between the 323-node domain and the 2563-node domain. However, with 8

GPUs the performance continues to increase over the range of grid sizes tested for this

analysis, reaching over a factor of 12.6 increase in the performance between the 323-node

domain and the 5123-node domain. This behavior demonstrates that the massively parallel

GPU architecture produces better performance when computing over high volumes of data,

whereas the parallelism exploited in a distributed memory multi-CPU architecture produces

relatively constant performance with grid size. The performance of the 5123-node case with

32 GPUs is over 364 times faster than a single CPU run on HokieSpeed, over 15.7 times

faster than a single GPU run on HokieSpeed, and 10 times faster than 32 CPUs bound to

different sockets on HokieSpeed.

The speedup and efficiency results for a strong scalability test of these multi-GPU and

multi-CPU implementations are illustrated in Figure 2.13. The multi-CPU implementation

exhibits a speedup proportional to the number of processes used, producing a slightly su-

perlinear speedup up to 32 processes with an efficiency of 102%. This superlinear speedup

Andrew J. McCall Chapter 2. Manuscript 1 34

is likely due in part to cache effects as the problem is decomposed into chunks that better

fit into the cache local to each socket. For 2 or more CPUs the multi-CPU implementation

exhibits an almost linear decrease in efficiency with increase in the number of processes,

having a coefficient of determination of 0.991. The slope of this linear correlation indicates

a loss of 1.97% in efficiency with an increase of 10 CPUs in the total process count. These

results demonstrate that the multi-CPU implementation is highly scalable for lower numbers

of processes. With the addition of a few OpenACC directives to accelerate the code on the

GPU, the scalability performance rapidly degrades to 31.4% efficiency with 32 processes.

This behavior is explained by the results previously discussed in Figure 2.12. With a strong

scalability analysis, the total grid size is fixed so that as the number of processes is increased,

each GPU computes on less data. Therefore, the performance of the GPU degrades because

the amount of data per GPU is not maximized. Consequently, a weak scalability test with

fixed grid size per GPU provides a better analysis of the effect of communication overhead

incurred by transferring data between the CPU and the GPU on the implementation’s scal-

ability.

(a) Strong scalability speedup. (b) Strong scalability efficiency.

Figure 2.13: Strong scalability results for the multi-CPU and multi-GPU implementations.

Figure 2.14 illustrates the results for the weak scalability analysis of the multi-CPU and

Andrew J. McCall Chapter 2. Manuscript 1 35

multi-GPU implementations on HokieSpeed. Multiple weak scalability tests were performed

for different local grid sizes stored in the memory of each processing unit. Since the decom-

position of the domain among processes is one-dimensional, the grid size is increased only in

the z-dimension (the dimension along which the domain is decomposed) so that the memory

storage pattern for data transfer of a local grid remains constant.

Figure 2.14: Memory-constrained weak scalability results of the multi-CPU and multi-GPU
implementations for multiple fixed local memory sizes.

The multi-CPU implementation exhibits close to the same superlinear efficiency for different

local grid sizes with less than 5% difference in efficiency. The efficiency of the multi-CPU

implementation is also almost constant with increase in the number of processes, exhibiting

only 2% difference in the efficiency when using more than 2 processes. These results indicate

a scalable implementation. Since the local grid size is kept fixed for different numbers

of processes, this superlinear behavior is not explained by cache effects. This superlinear

behavior perhaps relates to the additional cost of boundary evaluations, such as pressure

extrapolation, that are divided up between different processes when run in parallel.

Unlike the multi-CPU implementation, the efficiency of the multi-GPU implementation

changes with the local grid size. For a local grid size of 256 × 256 × 64, the efficiency

reaches a lower bound of 74%. The efficiency for a local grid size of 256 × 256 × 128 de-

Andrew J. McCall Chapter 2. Manuscript 1 36

grades to a bound of 83% and for a local grid size of 256× 256× 256 degrades to 92%. This

behavior demonstrates a dependence of the efficiency on the grid size. Since the grid size

is only increased in one dimension, the amount of data that each process transfers remains

constant. Therefore, as the size of the local grid becomes larger the communication overhead

becomes proportionally smaller relative to amount of the work performed within each itera-

tion. Notably, this overhead has little effect on the scalability efficiency for the multi-CPU

implementation, illustrating the significance of the communication overhead incurred by the

transfer of data between the host CPU and the GPU. All of these tests still indicate a scal-

able multi-GPU solution since the efficiency remains bounded with increase in the number of

GPUs. The results of Figures 2.13 and 2.14 seem to concur with the results found in Jacob-

sen [44], where strong scalability results for an MPI+CUDA implementation demonstrated

poor scalability. Also in Jacobsen’s paper, the weak scalability results for the multi-GPU

implementation maintained an efficiency of approximately 80% up to 128 processes.

Overlapping Communication and Computation

Although the baseline parallel implementation has already been shown to be scalable, we seek

to further optimize performance by overlapping communication of boundary data between

processes with computation of the artificial compressibility and numerical damping terms.

As Figure 2.14 illustrates, the overhead of data communication between a GPU and the host

CPU introduces a significant penalty to the performance and scalability, so we seek to mask

this overhead.

Using the implementation described in Section 2.3, the change in performance relative to the

baseline parallel implementation is illustrated in Figure 2.15. Figure 2.15a illustrates that the

performance of the multi-CPU implementation is consistently lower when using overlapping

communication and computation. This is due to the large computational overhead relative

to the communication overhead between CPUs. For large grid sizes, the performance reaches

equivalence with the baseline implementation’s performance, but does not exceed the baseline

Andrew J. McCall Chapter 2. Manuscript 1 37

implementation’s performance.

(a) Multi-CPU performance. (b) Multi-GPU performance.

Figure 2.15: Multi-GPU performance improves by up to 21% for larger grid sizes with
overlapping communication and computation, while multi-CPU performance decreases.

The reason that the performance when overlapping communication and computation never

exceeds the baseline implementation performance is that the communication between CPUs

does not produce a significant overhead cost, so there is not much overhead to mask. This

is apparent from Figure 2.14, where the multi-CPU implementation already has superlinear

weak scalability that is relatively unaffected by grid size.

Figure 2.15b shows that performance for the multi-GPU implementation remains unchanged

or even decreases for smaller grid sizes by overlapping communication and computation.

However, for the larger grid sizes the performance improves by up to 21%. When using 32

GPUs to compute the 5123 grid solution, the performance increases from 568 GFLOP/s

to 636 GFLOP/s. In comparison, this performance is over 400 times greater than the

performance of a single CPU, over 17.6 times greater than the performance of a single GPU,

and over 11.2 times greater than the performance of 32 CPUs bound to different sockets on

HokieSpeed. The baseline multi-CPU implementation is used in this comparison to produce

the best performance comparison. The decrease in performance for smaller grid sizes is

attributed to a large computational overhead relative to the total computation performed

Andrew J. McCall Chapter 2. Manuscript 1 38

asynchronously with data communication. As discussed in Section 2.3, the computational

overhead is introduced by splitting loops to separate computation that cannot overlap with

communication.

When considering using overlapping communication and computation to improve perfor-

mance, one should first consider the problem size of interest for the program and the weak

scalability of the implementation without overlapping communication and computation. If

planning to use a smaller grid size or if the weak scalability efficiency of the code is already

very high, the effort required to overlap communication and computation may not be of

benefit and may even reduce performance.

Now that we have demonstrated improved performance in the multi-GPU implementation

for larger grid sizes, we desire to determine the effect of overlapping communication and

computation on the implementation’s scalability. Figure 2.16 illustrates the effect of over-

lapping communication with computation on strong scalability. The same grid size is used

for this analysis as for the baseline implementation to allow for a direct comparison.

(a) Strong scalability speedup. (b) Strong scalability efficiency.

Figure 2.16: Overlapping communication and computation increases strong scalability only
if the communication overhead is greater than the computational overhead introduced by
overlapping communication and computation.

Andrew J. McCall Chapter 2. Manuscript 1 39

The multi-CPU implementation consistently demonstrates a decrease in efficiency when over-

lapping communication with computation relative to the baseline multi-CPU implementa-

tion, dropping to 83% efficiency with 32 CPUs instead of increasing to 102% efficiency.

For 2 or more CPUs, the multi-CPU implementation still maintains a linear correlation

between efficiency and process count when overlapping communication and computation.

The coefficient of determination for this correlation is 0.998 and indicates a loss of 7.69% in

efficiency for every increase by 10 in the number of the processes. This slope is 3.9 times

greater than the slope of this correlation for the baseline multi-CPU implementation, indicat-

ing that overlapping communication and computation significantly decreases the scalability

of the multi-CPU implementation. The explanation for this decrease in scalability is the

same as the explanation for the decrease in performance: the multi-CPU implementation

does not have a high communication overhead. Therefore, overlapping communication and

computation does not gain performance by masking the data communication cost, leaving

the multi-CPU implementation to only suffer from the computational overhead of the code

structure for overlapping communication and computation.

Conversely, the multi-GPU implementation consistently demonstrates an improvement in

efficiency when overlapping communication with computation, with a difference as much as

16.5% using 4 GPUs. This benefit diminishes as the number of processes increases. With 32

GPUs, the multi-GPU implementation with overlapping communication and computation

achieves an efficiency of 34%, compared to 31.4% for the baseline multi-GPU implementa-

tion. The decrease in efficiency improvement with increase in the number of processes is

attributed the decreasing grid size local to each GPU that becomes too small outweigh the

computational overhead of overlapping communication with computation.

Finally, the effect of overlapping communication and computation on weak scalability is

analyzed for the multi-CPU and multi-GPU implementations. The results of this analysis

are shown in Figure 2.17. To further emphasize the effect of overlapping communication and

computation on the weak scalability the plots are zoomed in, not including zero efficiency

on the y-axis. However, the same scaling is applied to both plots to accurately compare the

Andrew J. McCall Chapter 2. Manuscript 1 40

(a) Multi-CPU weak scalability efficiency. (b) Multi-GPU weak scalability efficiency.

Figure 2.17: Overlapping communication and computation masks the overhead of inter-GPU
data communication for the multi-GPU implementation, increasing the asymptotic efficiency
for weak scalability.

changes in efficiency between the multi-CPU and multi-GPU implementations. Furthermore,

the same grid sizes are used to analyze weak scalability as for the baseline implementation

to allow for a direct comparison.

The weak scalability of the multi-CPU implementation is not significantly affected by over-

lapping communication and computation, as shown in Figure 2.17a. Although the efficiency

for all grid sizes does decrease, the largest decrease is 3.54% efficiency and all grid sizes

maintain superlinear weak scalability. Similar to the baseline implementation, the efficiency

varies by less than 3.4% for greater than two processes, indicating a scalable implementation.

The computational overhead of overlapping communication and computation does not ap-

pear to affect the weak scalability as much as it affected the strong scalability, likely because

the amount of computation performed on each process remains constant and large enough

to mask the computational overhead of overlapping communication and computation.

In contrast, Figure 2.17b illustrates that overlapping communication and computation sig-

nificantly improves the weak scalability efficiency for the multi-GPU implementation. The

Andrew J. McCall Chapter 2. Manuscript 1 41

asymptotic efficiency shifts by 14% efficiency for the smallest grid size, from 74% to 88%

efficiency, by 10% for the medium grid size, from 83% to 93%, and by 7% for the largest grid

size, from 92% to 99% efficiency. With close to linear efficiency now for the largest grid size,

these results demonstrate the effectiveness of overlapping communication and computation

in masking the inter-GPU data transfer latencies.

2.5 Conclusions

In this paper, we investigated the use of OpenACC to transform a serial CPU code into a

single-GPU implementation. This transformation was shown to require minimal modification

to the code base with the use of directive statements. In addition, these directive statements

provide an abstraction from low-level implementation details that makes the code highly

modular in contrast with other GPU-acceleration models such as CUDA and OpenCL. We

analyzed the potential bottlenecks of this implementation that prevent efficient performance

of the GPU-accelerated code. It was determined that a 24% increase in speedup is attainable

by addressing these implementation bottlenecks. The optimized OpenACC implementation

produces a factor of 8 speedup over the serial CPU execution using an NVIDIA Tesla C2075

GPU and comparable performance to an MPI multi-CPU implementation using 8 cores of a

dual-socket Xeon CPU workstation.

Scalability and performance analyses of a hybrid MPI+OpenACC multi-GPU implementa-

tion of the 3D BDC solver demonstrates excellent weak scalability and performance on the

HokieSpeed supercomputer with up to 92% efficiency using 32 GPUs. Overlapping communi-

cation and computation for the multi-GPU implementation is found to improve performance

by up to 21% for large grid sizes and improve weak scalability to up to 99% effficiency with

32 GPUs. The performance decreases for smaller grid sizes since too little data computation

is performed to outweigh the overhead of overlapping communication with computation.

Conversely, overlapping communication and computation always decreases the performance

Andrew J. McCall Chapter 2. Manuscript 1 42

and scalability of the baseline multi-CPU implementation. For large grid sizes, the perfor-

mance with overlapping communication and computation attains the performance of the

baseline implementation, yet never exceeds the baseline performance. This lack of perfor-

mance improvement is due to the already small communication overhead of the multi-CPU

implementation. Therefore, masking the communication overhead does not significantly im-

prove performance, whereas the computational overhead of overlapping communication and

computation reduces performance.

The most efficient version of the multi-GPU implementation overlaps communication and

computation; however, the most efficient version of the multi-CPU implementation does

not because of the performance and scalability degradation that overlapping communication

with computation produces. It is important to note that overlapping communication with

computation for this solver reduces portability, as the multi-CPU and multi-GPU imple-

mentations no longer use the same code base. For similar situations, the reader must use

discretion to weigh the importance of portability against performance and scalability for the

available computational platforms.

Using the HokieSpeed supercomputer, the performance of the final multi-GPU implementa-

tion for the 5123-node case with 32 GPUs is over 400 times faster than a single CPU, 17.6

times faster performance than a single GPU, and 11.2 times faster than 32 CPUs bound to

different sockets using the final multi-CPU implementation. These results demonstrate the

capability of OpenACC to develop programmable, portable, and efficient codes from a base

serial or multi-CPU implementation.

2.6 Future Work

Further analysis is required to alleviate the remaining performance degradation for the 3D

LDC and BDC codes due to register spilling. Analysis in development of a 3D decomposi-

tion that minimizes the overhead incurred by non-contiguous data transfer from the GPU

Andrew J. McCall Chapter 2. Manuscript 1 43

to the CPU would allow for an implementation that performs well with larger numbers

of GPUs and modest computational grid sizes. Moreover, a performance and scalability

analysis with GPUDirect 2.0 communication is recommended to quantify the overhead of

GPU-CPU communication and improve performance of the multi-GPU BDC solver. The

current configuration of HokieSpeed only supports GPUDirect 1.0 communication and is not

configured properly to use GPUDirect with Open MPI.

Acknowledgments

The authors acknowledge the support the Air Force Office of Scientific Research (AFOSR)

Basic Research Initiative program provided for this work with Drs. Fariba Fahroo and Jean-

Luc Cambier as the program managers. Support for this work was provided in part by the

VT Synergistic Environments for Experimental Computing (SEEC) Center. Finally, this

work was supported in part by NSF grant CNS-0960081 and the HokieSpeed supercomputer

at Virginia Tech.

Andrew J. McCall Chapter 2. Manuscript 1 44

References

[1] T. Dong et al. “A step towards energy efficient computing: Redesigning a hydrodynamic
application on CPU-GPU.” In: Parallel and Distributed Processing Symposium, 2014
IEEE 28th International. IEEE, 2014.

[2] NVIDIA. CUDA. http://www.nvidia.com/object/cuda_home_new.html.

[3] The Khronos Group. The open standard for parallel programming of heterogeneous
systems. https://www.khronos.org/opencl/.

[4] D. Jacobsen and I. Senocak. “Scalability of Incompressible Flow Computations on
Multi-GPU Clusters Using Dual-Level and Tri-Level Parallelism”. In: 49th AIAA
Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Ex-
position (Jan. 2011). doi: 10.2514/6.2011-947. url: http://dx.doi.org/10.2514/
6.2011-947.

[5] D. Mu, P. Chen, and L. Wang. “Accelerating the discontinuous Galerkin method for
seismic wave propagation simulations using multiple GPUs with CUDA and MPI”. In:
Earthq Sci 26.6 (Dec. 2013), pp. 377–393. issn: 1867-8777. doi: 10.1007/s11589-
013-0047-7. url: http://dx.doi.org/10.1007/s11589-013-0047-7.

[6] C. Xu et al. “Collaborating CPU and GPU for large-scale high-order CFD simulations
with complex grids on the TianHe-1A supercomputer”. In: Journal of Computational
Physics 278 (Dec. 2014), pp. 275–297. issn: 0021-9991. doi: 10.1016/j.jcp.2014.
08.024. url: http://dx.doi.org/10.1016/j.jcp.2014.08.024.

[7] T. Brandvik and G. Pullan. “Acceleration of a 3D Euler Solver Using Commodity
Graphics Hardware”. In: 46th AIAA Aerospace Sciences Meeting and Exhibit (Jan.
2008). doi: 10.2514/6.2008-607. url: http://dx.doi.org/10.2514/6.2008-607.

[8] J. Cohen and M. J. Molemaker. “A fast double precision CFD code using CUDA”.
In: Parallel Computational Fluid Dynamics: Recent Advances and Future Directions
(2009), pp. 414–429.

[9] H.-Y. Schive, Y.-C. Tsai, and T. Chiueh. “GAMER: A GRAPHIC PROCESSING
UNIT ACCELERATED ADAPTIVE-MESH-REFINEMENT CODE FOR ASTRO-
PHYSICS”. In: The Astrophysical Journal Supplement Series 186.2 (Feb. 2010), pp. 457–
484. issn: 1538-4365. doi: 10.1088/0067-0049/186/2/457. url: http://dx.doi.
org/10.1088/0067-0049/186/2/457.

[10] J. Thibault and I. Senocak. “CUDA Implementation of a Navier-Stokes Solver on
Multi-GPU Desktop Platforms for Incompressible Flows”. In: 47th AIAA Aerospace
Sciences Meeting including The New Horizons Forum and Aerospace Exposition (Jan.
2009). doi: 10.2514/6.2009-758. url: http://dx.doi.org/10.2514/6.2009-758.

[11] The OpenMP API specification for parallel programming. http://openmp.org/wp/.

[12] Message Passing Interface Forum. http://www.mpi-forum.org/.

Andrew J. McCall Chapter 2. Manuscript 1 45

[13] OpenACC-standard. OpenACC Home. http://www.openacc.org.

[14] CAPS. HMPP Directives Reference Manual. url: https://www.olcf.ornl.gov/wp-
content/uploads/2012/02/HMPPWorkbench-3.0_HMPP_Directives_ReferenceManual.

pdf.

[15] Y. Komura. “OpenACC programs of the Swendsen–Wang multi-cluster spin flip al-
gorithm”. In: Computer Physics Communications (Aug. 2015). issn: 0010-4655. doi:
10.1016/j.cpc.2015.08.022. url: http://dx.doi.org/10.1016/j.cpc.2015.08.
022.

[16] M. Misic, D. Dasic, and M. Tomasevic. “An analysis of OpenACC programming model:
Image processing algorithms as a case study”. In: Telfor Journal 6.1 (2014), pp. 53–
58. issn: 1821-3251. doi: 10.5937/telfor1401053m. url: http://dx.doi.org/10.
5937/telfor1401053M.

[17] M. Otten et al. “An MPI/OpenACC Implementation of a High Order Electromagnetics
Solver with GPUDirect Communication”. In: The International Journal of High Per-
formance Computing Applications 30.3 (2016), pp. 320–334. doi: 10.1177/1094342015626584.

[18] S. Markidis et al. “OpenACC acceleration of the Nek5000 spectral element code”.
In: International Journal of High Performance Computing Applications 29.3 (Mar.
2015), pp. 311–319. issn: 1741-2846. doi: 10.1177/1094342015576846. url: http:
//dx.doi.org/10.1177/1094342015576846.

[19] R. Xu et al. “Multi-GPU Support on Single Node Using Directive-Based Programming
Model”. In: Scientific Programming 2015 (2015), pp. 1–15. issn: 1875-919X. doi: 10.
1155/2015/621730. url: http://dx.doi.org/10.1155/2015/621730.

[20] M. Chrust, E. Laurendeau, and L. Ostiguy. “Accelerating low-fidelity aerodynamic
codes on multi- and many-core architectures”. In: The Journal of Supercomputing 71.9
(May 2015), pp. 3456–3481. issn: 1573-0484. doi: 10.1007/s11227-015-1444-6.
url: http://dx.doi.org/10.1007/s11227-015-1444-6.

[21] C. Couder-Castaneda et al. “Performance of a Code Migration for the Simulation of
Supersonic Ejector Flow to SMP, MIC, and GPU Using OpenMP, OpenMP+LEO, and
OpenACC Directives”. In: Scientific Programming 2015 (2015), pp. 1–20. issn: 1875-
919X. doi: 10.1155/2015/739107. url: http://dx.doi.org/10.1155/2015/739107.

[22] T. Komoda et al. “Integrating Multi-GPU Execution in an OpenACC Compiler”. In:
Parallel Processing (ICPP), 2013 42nd International Conference on. 2013, pp. 260–
269. doi: 10.1109/ICPP.2013.35. url: http://ieeexplore.ieee.org/stamp/
stamp.jsp?arnumber=6687359.

[23] B. P. Pickering et al. “Directive-based GPU programming for computational fluid
dynamics”. In: Computers & Fluids 114 (July 2015), pp. 242–253. issn: 0045-7930.
doi: 10.1016/j.compfluid.2015.03.008. url: http://dx.doi.org/10.1016/j.
compfluid.2015.03.008.

Andrew J. McCall Chapter 2. Manuscript 1 46

[24] Y. Xia et al. “OpenACC acceleration of an unstructured CFD solver based on a re-
constructed discontinuous Galerkin method for compressible flows”. In: Int. J. Numer.
Meth. Fluids 78.3 (Feb. 2015), pp. 123–139. issn: 0271-2091. doi: 10.1002/fld.4009.
url: http://dx.doi.org/10.1002/fld.4009.

[25] M. Norman et al. “A case study of CUDA FORTRAN and OpenACC for an atmo-
spheric climate kernel”. In: Journal of Computational Science 9 (July 2015), pp. 1–6.
issn: 1877-7503. doi: 10.1016/j.jocs.2015.04.022. url: http://dx.doi.org/10.
1016/j.jocs.2015.04.022.

[26] H. Matsufuru et al. “OpenCL vs OpenACC: Lessons from Development of Lattice
QCD Simulation Code”. In: Procedia Computer Science 51 (2015), pp. 1313–1322.
issn: 1877-0509. doi: 10.1016/j.procs.2015.05.316. url: http://dx.doi.org/
10.1016/j.procs.2015.05.316.

[27] A. Hart, R. Ansaloni, and A. Gray. “Porting and scaling OpenACC applications on
massively-parallel, GPU-accelerated supercomputers”. In: Eur. Phys. J. Spec. Top.
210.1 (Aug. 2012), pp. 5–16. issn: 1951-6401. doi: 10.1140/epjst/e2012-01634-y.
url: http://dx.doi.org/10.1140/epjst/e2012-01634-y.

[28] The OpenACC API: Version 2.0. http://www.openacc.org/sites/default/files/
OpenACC.2.0a_1.pdf.

[29] The OpenACC API: Version 1.0. http://www.openacc.org/sites/default/files/
OpenACC.1.0_0.pdf.

[30] A. J. Chorin. “A numerical method for solving incompressible viscous flow problems”.
In: Journal of Computational Physics 2.1 (Aug. 1967), pp. 12–26. issn: 0021-9991.
doi: 10.1016/0021-9991(67)90037-x. url: http://dx.doi.org/10.1016/0021-
9991(67)90037-X.

[31] W. Kays, M. Crawford, and B. Weigand. Convective Heat and Mass Transfer. 4th.
McGraw-Hill, 2004.

[32] N. Corporation. NVIDIA Visual Profiler. https://developer.nvidia.com/nvidia-
visual-profiler.

[33] Advanced Research Computing at Virginia Tech. HokieSpeed (CPU/GPU). https:

//secure.hosting.vt.edu/www.arc.vt.edu/hokiespeed-cpugpu/.

[34] Intel. Intel Xeon Processor E5-2687W. http://ark.intel.com/products/64582/
Intel-Xeon-Processor-E5-2687W-20M-Cache-3_10-GHz-8_00-GTs-Intel-QPI.

[35] Intel. Intel Xeon Processor E5645. http://ark.intel.com/products/48768/Intel-
Xeon-Processor-E5645-12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI.

[36] Intel. Intel Xeon Processor E5-2680. http://ark.intel.com/products/64583/

Intel-Xeon-Processor-E5-2680-20M-Cache-2_70-GHz-8_00-GTs-Intel-QPI.

[37] www.techpowerup.com. NVIDIA Tesla C2075. https://www.techpowerup.com/

gpudb/563/tesla-c2075.

Andrew J. McCall Chapter 2. Manuscript 1 47

[38] www.techpowerup.com. NVIDIA Tesla M2050. https://www.techpowerup.com/

gpudb/1534/tesla-m2050.

[39] www.techpowerup.com. NVIDIA Tesla K80m. https : / / www . techpowerup . com /

gpudb/2616/tesla-k80m.

[40] Advanced Research Computing at Virginia Tech. NewRiver. https://secure.hosting.
vt.edu/www.arc.vt.edu/computing/newriver/.

[41] Virginia Tech Department of Computer Science. HokieSpeed. https://www.cs.vt.
edu/facilities/hokiespeed.

[42] Lawrence Latif. Nvidia announces its Kepler-based Tesla K10 GPGPU board. http:
//www.theinquirer.net/inquirer/news/2174756/nvidia-announces-kepler-

tesla-m10-gpgpu-board.

[43] Advanced Research Computing at Virginia Tech. NewRiver Supercomputer Released to
VT Researchers. https://secure.hosting.vt.edu/www.arc.vt.edu/2015/08/arc-
releases-supercomputer-newriver-to-vt-researchers/.

[44] D. A. Jacobsen and I. Senocak. “Multi-level parallelism for incompressible flow com-
putations on GPU clusters”. In: Parallel Computing 39.1 (Jan. 2013), pp. 1–20. doi:
10.1016/j.parco.2012.10.002. url: http://dx.doi.org/10.1016/j.parco.
2012.10.002.

Chapter 3

Multilevel Parallelism with MPI and
OpenACC for Complex CFD Codes

Andrew McCall and Christopher J. Roy
Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24061, USA

Attribution

The first author (Andrew McCall) provided the primary contribution to the manuscript’s
research and content. All research was conducted by the first author and all results were
collected and analyzed by the first author. The second author (Christopher J. Roy) pro-
vided the guidance and feedback necessary for research development and composition of this
manuscript.

48

Andrew J. McCall Chapter 3. Manuscript 2 49

Abstract

One of the challenges in GPU computing today is the extensive work required to transform an
existing program that runs on the CPU to one that runs on the GPU. This research studies
the ability of OpenACC to develop a portable GPU-accelerated CFD code while maintaining
the same code base as an existing code that runs on the CPU. The code used is a second-order
accurate, structured, finite volume CFD solver for the Euler and Navier-Stokes equations.
The challenges of using OpenACC with a complex program written in modern Fortran
are detailed in this paper, as well as a number of optimization considerations when using
OpenACC. MPI is used to communicate between GPUs for a multi-GPU implementation
of the code base. Test cases of a NACA 0012 airfoil, lid-driven cavity, and M6 Onera
wing are used to test the performance and scalability of the multi-CPU and multi-GPU
implementations compiled from the same code base. The performance results demonstrate
that a single NVIDIA Tesla M2050 GPU attains a 3.7 speedup for the airfoil, 4.25 speedup for
the lid-driven cavity, and 3.2 speedup for the wing over a single Intel Xeon E5645 processor
core. The performance of 27 GPUs is up to 100 times faster than a single core and 25 times
faster than 27 cores and the multi-GPU implementation maintains an efficiency of 95% up
to 27 GPUs.

3.1 Introduction

With the expansion of compute capability in graphics processing units (GPUs) to include

general purpose computation, many areas of scientific computing have found significant per-

formance improvements with the use of the GPU over the CPU. These areas include Monte

Carlo simulations [1], image processing [2], electromagnetics [3], and computational fluid

dynamics (CFD) [4, 5, 6, 7, 8, 9, 10]. Multiple programming models, including CUDA [11],

OpenCL [12], and OpenACC[13], have been designed to allow developers to interface with

the GPU. The central design of these models is to transfer data between the host CPU’s

memory and the target GPU’s memory and offload kernel codes to run on the target GPU.

The GPU subsequently operates on the transferred data using the kernel code.

One significant challenge in exploiting the performance benefits of the GPU is that many

complex and lengthy codes have already been developed, and rewriting significant portions

of these codes to run on the GPU presents both a time-consuming and an expensive process.

Andrew J. McCall Chapter 3. Manuscript 2 50

For commercial codes on the order of 1 million lines of code, many would consider the time,

money, and effort required to rewrite significant portions of the code to outweigh the benefit

of the potential performance gains that GPUs offer. The standard programming models

for the GPU, CUDA and OpenCL, require explicit definition of low-level implementation

details dependent upon the GPU’s architecture, meaning that any kernel code run on the

GPU must be rewritten to account for these architecture differences. Moreover, since the

architecture of GPUs rapidly changes, the code would likely need to be modified again by the

time of completion of the initial GPU implementation in order to work well with the latest

architecture. Furthermore, the complexity of these low-level programming models adds to

the intractability of their use for large codes that already exhibit significant complexity.

The release of OpenACC in 2011[13] provided a solution to this issue. By compromising

absolute control of the low-level implementation details, the directive-based programming

model, similar in design to OpenMP [14], allows the programmer to identify parallelism

in the code with minimal modification to the code base. The OpenMP 4.0 standard even

supports offloading computation to an accelerator; however, compiler implementations have

not yet leveraged this standard for GPU acceleration. This model reduces code modification

to a level that makes the porting of large codes to the GPU feasible. Furthermore, this model

allows for the potential of a single code base for the CPU and the GPU, an accomplishment

not possible with CUDA and OpenCL. With a single code base, the programmer no longer

has to abandon the CPU version of the code or maintain two separate versions of the code,

greatly improving the portability and maintainability of the code.

Although these advantages are alluring, the reader must be mindful of the cost of using

the OpenACC programming model. The portability, maintainability, and simplicity of the

OpenACC programming model comes at the price of performance degradation. As demon-

strated by Luo[15] and Hoshino et al.[16], an OpenACC implementation of a given algorithm

can exhibit a factor of two to four in performance reduction relative to CUDA. Therefore,

some programs may find little to no performance increase with the use of OpenACC due

to a numerical algorithm that already limits the GPU performance. In these cases, the

Andrew J. McCall Chapter 3. Manuscript 2 51

meager performance gains using OpenACC negate the benefit of effort spent to utilize GPU

acceleration.

For CFD applications, acceleration of these codes using OpenACC has been shown to be

beneficial to performance in some cases. Research in OpenACC acceleration for CFD includes

the work of Markidis et al. [4] in spectral methods for the simulation of 3D incompressible

flows and the work of Xia et al. [10] in higher order discontinuous Galerkin methods for 3D

compressible flows on hybrid unstructured grids. The use of OpenACC for CFD codes even

extends to the GPU acceleration of vortex-lattice methods [6]. The work of Luo et al. [17]

demonstrated a speedup of 3.5 over the CPU version using OpenACC for a multi-block

incompressible Navier-Stokes solver. Even in the case of large, complex, commercial CFD

codes, OpenACC has proven itself effective in accelerating performance [16]. An alternative

solution to the GPU parallelization of complex CFD codes that has found popularity is

the development and use of tools that semi-automatically port the code to the GPU, as

researched by Corrigan and co-workers[18, 19] and van Werkhoven and Hijma[20].

This work intends to demonstrate the capability of OpenACC to simplify the process of

porting a large and complex CFD code to the GPU using a research CFD code named

SENSEI[21]. SENSEI is implemented with modern Fortran and as such requires special

attention be given to the interaction between OpenACC and Fortran to design a program

that works on the CPU and easily ports to the GPU using OpenACC. Furthermore, this

work intends to show that the ported code achieves scalable peformance that is notably

faster than the serial version.

The remainder of this paper is outlined as follows. Section 3.2 covers the background infor-

mation and the theory behind the CFD solver used for this analysis. Section 3.3 discusses the

process of porting SENSEI to the GPU while maintaining the same code base. This discus-

sion includes the compatibility issues found between OpenACC and Fortran with resolutions

to these issues, as well as discussion of the use of MPI for the multi-GPU implementation,

and the overall implementation structure. The performance and scalability results using

Andrew J. McCall Chapter 3. Manuscript 2 52

three test geometries are presented and discussed in Section 3.4 with conclusions stated in

Section 3.5 and future work discussed in Section 3.6.

3.2 Background and Theory

As already mentioned, the research code SENSEI[21] is used to test the capability of Ope-

nACC to port a complex CFD code to the GPU. SENSEI is a second order, structured

grid, finite volume solver for both the Euler and Navier-Stokes equations, developed to solve

compressible flow problems. SENSEI can use both explicit and implicit time integration;

however, for this study only the explicit solver, a Runge-Kutta method, will be ported to

the GPU. Additional features of SENSEI include capability for the method of manufactured

solutions (MMS) for code verification, axisymmetric problems, truncation error estimation,

RANS turbulence models, and grid adaptation. In total, SENSEI contains over 123,000 lines

of code. Although many commercial codes have significantly more lines of code, SENSEI

nevertheless provides a good test case for porting large and complex codes to the GPU.

The three-dimensional Navier-Stokes equations may be written in weak, conservation form

for a fixed, infinitesimal control volume as follows[22]:

∂

∂t

ˆ
Ω

~UdΩ +

˛
S

~Fd~S −
˛
S

~Fvd~S =

ˆ
Ω

~QdΩ (3.1)

where the conserved variables ~U and the inviscid and viscous flux vector tensors ~F and ~Fv

are functions of the primitive variables density ρ, the velocity components vi, and pressure

p:

~U =


ρ

ρ~v

ρet

 , ~F =


ρ~v

ρ~v ⊗ ~v + p ¯̄I

ρht~v

 , ~Fv =


0

¯̄τ

¯̄τ · ~v + k~∇T



Andrew J. McCall Chapter 3. Manuscript 2 53

The variables k and T are the coefficient of thermal conductivity and temperature, respec-

tively. The total energy et and total enthalpy ht are computed using the assumption of a

perfect gas. Under the assumption of a Newtonian fluid that follows the Stokes relation, the

shear stresses are computed as

τij = µ(δivj + δjvi)−
2

3
µ(~∇ · ~v)δij (3.2)

where µ is the dynamic viscosity. With no body forces and when not using the method of

manufactured solutions, the source term ~Q is neglected. Upwind flux schemes with MUSCL

extrapolation and limiters are used to compute a second order accurate solution. Local time

stepping is computed based on the wave stability condition and global time stepping uses

the minimum local time step. SENSEI’s design is further detailed by Derlaga[21].

3.3 Porting to the GPU

3.3.1 Initial Considerations

A number of considerations must be made in the process of accelerating computation with a

GPU. The first step in offloading computation to the GPU is to identify the most computa-

tionally dense portions of the serial code. Figure 3.1 is a summary of the profile results for

the explicit, serial version of SENSEI. These results show that 88.9% of the code execution

occurs in the residual calculation; therefore, the primary focus for acceleration of the code

lies in offloading computation of the residuals with OpenACC.

Due to the high latency of communication between the GPU and CPU, transferring solu-

tion data at each time step between the GPU and CPU is not feasible while still attaining

reasonable performance. Therefore, since the residual computation requires storing the full

solution data on the GPU, other operations on the solution data need to be performed on

the GPU. These operations including calculation of the time step, calculation of the residual

Andrew J. McCall Chapter 3. Manuscript 2 54

Figure 3.1: Summary profile of SENSEI’s serial execution on the CPU.

norms, and updating the solution. Enforcement of the boundary conditions is also an oper-

ation on the solution data; however, since this operation only requires solution data along

the boundaries, further consideration must be made before determining whether or not to

offload the computations for boundary condition enforcement. As Figure 3.1 illustrates, the

boundary condition enforcement and time step calculations are the most expensive compu-

tations outside of the residual calculation, consuming 3.9% and 1.3% of the execution time,

respectively.

3.3.2 Using OpenACC with Modern Fortran

Restrictions

Aside from the standard modifications necessary to port a code to the GPU using OpenACC,

there exist multiple restrictions on the use of The Portland Group, Inc. (PGI) OpenACC

implementation[23] with modern Fortran that may require additional modification of the

original code base. Some of these restrictions are not as clearly defined in the OpenACC

standard or in the PGI OpenACC implementation resources as others; thus, we outline a

Andrew J. McCall Chapter 3. Manuscript 2 55

number of important restrictions in using PGI OpenACC with Fortran. These restrictions

relate to the following functionality.

1. Procedure optional arguments.

2. Array-valued functions.

3. Multi-dimensional array assignments.

4. Temporary arrays.

5. Reductions with derived type members.

6. Procedure pointers.

7. Derived types with allocatable members.

Although optional arguments for procedure calls are allowed, the Fortran present func-

tion will return .true. for all optional arguments because OpenACC implicitly passes a

dummy argument value. This issue relates not only to PGI OpenACC, but to the OpenACC

standard, and has been proposed to be resolved in the OpenACC 2.6 standard[24].

Similarly, calls to array-valued functions (functions with an array return type) are permissible

within an OpenACC kernel, yet PGI OpenACC handles these functions in a non-intuitive

manner. The result from the function call is stored in a temporary array and subsequently

assigned to the array specified on the left-hand side of the statement. PGI OpenACC

automatically generates this temporary array, not as a private, local variable within the kernel

loop but as data to be copied between the host and the accelerator device. This issue not

only introduces a potential loop dependency but also reduces the overlap of asynchronously

executing kernels as the transfer of data between the host and the device delays kernel

execution. Furthermore, Fortran intrinsic functions that have array-valued results are not

supported for use within OpenACC kernels. This includes functions such as the intrinsic

matrix multiplication function matmul. Therefore, all array-valued functions used within an

Andrew J. McCall Chapter 3. Manuscript 2 56

OpenACC kernel should be transformed to subroutines with a single intent(out) parameter

within the call statement. This modification avoids issues with temporary array generation

and unsupported intrinsic functions.

In Fortran, array operations may be stated in vector form, preventing the need for an ex-

plicit loop to assign values to an array. In the case of multi-dimensional array assignment

operations, the developer is not required to specify the indices or dimensions of the array if

all indices in the array are being set to the same value. When using PGI OpenACC, the de-

veloper must be careful to specify the number of dimensions of the array in these situations.

Otherwise, a PGI function pgf90 mzero8 is called to perform the assignment, which is not

supported in PGI OpenACC. For example, consider the initialization of a three-dimensional

array, A, to zero. Rather than writing this statement as follows,

A = 0

one must write the initialization in the following manner:

A(:,:,:) = 0

Another feature of Fortran that is not supported with PGI OpenACC is the generation of

temporary arrays as parameters to a procedure call. These temporary arrays are generated

when passing a non-contiguous sub-array as a parameter or when performing some operation

upon the array within the procedure call. For example, since Fortran uses column-major

ordering of arrays, the following statement requires generation of a temporary array due to

non-contiguous memory access:

call foo(...,rho(i_low:i_high,:,:),...)

Furthermore, the following statement requires a temporary array due to operations performed

upon the array within the procedure call:

Andrew J. McCall Chapter 3. Manuscript 2 57

call foo(...,-eta_normal(:),...)

To resolve this issue, the developer must manually create and pass these temporary arrays

as parameters to the procedure call.

The following restrictions apply to modern Fortran and the use of derived types, available

since the Fortran 90 standard. First, PGI OpenACC does not support reduction operations

on derived type members. This issue is resolved by declaring an additional variable within the

current scope of program execution for the reduction operation and subsequently assigning

the reduced value to the derived type member.

Second, PGI OpenACC does not support the use of procedure pointers within OpenACC

kernels. This issue is resolved by calling a procedure that uses a select case structure

to determine which procedure to call. Although tests show this implementation method

impacts the overall performance by less than 1%, even for frequently called procedures, the

developer may desire to preserve procedure pointers when compiling the code base for the

CPU. To maintain a single code base, preprocessing directives allow the programmer to use

the same name for the OpenACC procedure with select case statements as the name of

the procedure pointer used for the CPU version.

Finally, although the latest versions of PGI OpenACC support arrays of derived types and

derived types with allocatable members, PGI OpenACC does not yet support arrays of

derived types with allocatable members as of PGI version 16.9. To make use of derived

types with allocatable members, the developer must explicitly reference each allocatable

member that will be used on the accelerator within a data directive[25].

Recommendations

A number of issues did not consistently present themselves in relation to a specific Fortran

feature; however, the authors present some recommendations to either avoid these issues or

to provide insight toward finding a resolution for these issues.

Andrew J. McCall Chapter 3. Manuscript 2 58

Although the OpenACC 2.0 standard allows for procedure calls within kernels, this is still not

always the best approach to port an existing code to the GPU. In complex CFD codes, these

procedure calls will sometimes cause subtle errors in the program execution buried within

the underlying OpenACC kernel implementation. In these cases, the most straightforward

correction of the error may be to use the PGI compiler option -Minline to force the compiler

to inline specific procedures. Less than 1% performance differences were noted when inlining

these procedures in SENSEI. As an example, the limiter calculation procedure had to be

inlined to prevent errors in the residual calculations.

Another issue that may appear in more complex codes is the overwriting of data on the

device that is not supposed to be modified. In SENSEI, an allocatable array within a

derived type contains the normal vectors for all ξ (corresponding to the i index) cell faces.

Since the grid geometry is fixed, these values should remain unmodified throughout program

execution; however, during execution of the GPU-accelerated version of the code, some values

in this array were modified. We determined that this issue was caused by performing array

operations on private arrays within a parallel loop kernel, which would overwrite the data

within the normal vector array. Since these array operations were in vector form, a directive

could not be used to specify the level of parallelism for these inherent loop structures. By

replacing the array operations with an explicit loop and applying a loop directive to express

the level of parallelism for the loop, these issues were circumvented. This resolution made

less than 1% of an impact on performance.

These, and other complex errors make the development and debugging of complex Ope-

nACC codes considerably more challenging than for more basic codes. The authors did not

experience these issues when using OpenACC for a more basic research code[26] that did not

make use of derived types or much of the other functionality that modern Fortran provides.

However, the authors did manage to find resolutions for all of these issues without making

significant sacrifices to performance. Furthermore, as the PGI OpenACC implementation

becomes more mature, the authors anticipate these issues to be resolved. Support for most

modern Fortran functionality has only begun since the release of the OpenACC 2.0 standard

Andrew J. McCall Chapter 3. Manuscript 2 59

in 2014[13].

3.3.3 MPI

As will be discussed in Section 3.3.5, MPI is used to develop the multi-GPU solver. Although

the use of MPI to communicate data between blocks is largely transparent to the OpenACC

implementation, as it occurs on the CPU, OpenACC does still have to transfer boundary data

to the CPU in order to exchange data between GPUs. As such, the decomposition method

utilized by MPI is important to take into account when designing the GPU implementation.

Multiple considerations must be made in the decomposition of the domain. The domain

could be sub-divided along a single dimension or along multiple dimensions. The desirable

characteristics that serve as metrics to influence the choice of decomposition type are as

follows.

1. Maximize the utility of the decomposition method for any general case and any number

of available processes.

2. Minimize the total amount of data transferred between sub-domains.

3. Minimize the difference in decomposed domain sizes to balance the computational load.

4. Minimize the number of communication calls made between sub-domains.

5. Maximize the amount of contiguous memory transferred between sub-domains.

SENSEI automatically decomposes the domain by focusing on satisfying the first three met-

rics. This solution is determined by seeking a decomposition that minimizes the surface

area to volume ratio and minimizes the load imbalance between processes. However, when

using the GPU, which suffers from latency-bound communication with the CPU, the final

metric for contiguous memory transfers becomes much more important. Therefore, since the

decomposition method allows for inter-block imin and imax faces, which contain completely

Andrew J. McCall Chapter 3. Manuscript 2 60

non-contiguous data, a mitigation for the performance degradation caused by non-contiguous

data transfer is necessary. Section 3.4.2 addresses this issue among other optimization con-

siderations.

3.3.4 Implementation Structure

Due to the latency-bound communication between the CPU and the GPU, data transfer

between the host and device should be minimized. This requires that the solution data

remain on the GPU across iterations and the majority of the loop iteration must be executed

on the GPU. Therefore, kernels are generated to compute the local time step for each cell and

to perform a reduction operation to determine the global time step. As discussed in Section

3.4.2, the boundary conditions are updated on the CPU for performance reasons. Therefore,

solution data must be transferred across inter-block boundaries and periodic boundaries.

Without using GPUDirect, this requires that the solution data on all boundaries be passed

back to the CPU. Finally, the residual calculation and reductions to compute the residual

L2 norms are computed on the GPU. The solution is updated on the GPU using the residual

calculations and checked for convergence by passing the computed L2 norms to the host

CPU.

A number of modifications to SENSEI’s residual calculation structure were necessary to

remove loop dependencies. Originally, when computing the residual of the solution, the

ξ-, η-, and ζ-fluxes (corresponding to the i, j, and k indices of the array) were computed

in separate loops and directly added to the residual array. Each loop iteration computed

the flux at a given face, requiring assignments to two different indices of the residual array

within each loop iteration. This structure generated loop dependencies that prevent paral-

lelization. Furthermore, since the ξ-, η-, and ζ-fluxes all operated directly on the residual

array, dependencies existed between the different loop structures, preventing asynchronous

execution of the kernels. To remove these dependencies, arrays were allocated for the ξ-,

η-, and ζ-fluxes to directly store them, with a final loop added to compute the complete

Andrew J. McCall Chapter 3. Manuscript 2 61

residuals using the computed fluxes. Although adding these three arrays increases the mem-

ory usage on the GPU by 32.2% when using the Euler equations and by 14.6% when using

the Navier-Stokes equations, this method avoids atomic operations within the kernels, which

would cause significant performance degradation. Maintaining this structure for running

on the CPU marginally increases the memory usage by less than 10% and causes less than

a 3% difference in performance; therefore, the code base was modified uniformly for both

execution on the CPU and the GPU to maintain the same code base.

Furthermore, the serial version of the code reuses face limiter calculations between iterations

to reduce the total computation. Since this structure improves performance for the CPU

version, preprocessing directives are used to keep this algorithm structure for the CPU, yet

avoid these loop dependencies on the GPU.

3.3.5 Computing Resources

Table 3.1 summarizes the machines used for this study and their specifications. The single-

GPU performance optimization results for SENSEI are obtained using a Dell T7600 Precision

workstation with dual-socket 8-core Intel Xeon E5-2687W processors, for a total of 16 cores.

The workstation also contains two NVIDIA Tesla C2075 GPUs and 67 GB memory. Scala-

bility and performance analyses of the multi-GPU implementation are conducted using the

HokieSpeed [27] CPU-GPU computer cluster at Virginia Tech. HokieSpeed has 204 compute

nodes connected by a QDR Infiniband interconnect, each containing dual-socket 6-core Intel

Xeon E5645 processors, for a total of 12 cores within each node. Every node also contains

two NVIDIA Tesla M2050 GPUs and 24 GB of memory.

Andrew J. McCall Chapter 3. Manuscript 2 62

Table 3.1: Specifications for the hardware in the different machines used in this study. Note
that two processors and two GPUs exist on each node for all machines.

Machine Name Workstation HokieSpeed NewRiver
Memory Specifications

Size (GB) 67 24 256
Bandwidth (GB/s) 51.2 32.0 51.2

Processor Specifications
Model Intel Xeon Intel Xeon Intel Xeon

E5-2687W[28] E5645[29] E5-2680[30]
Physical Cores 8 6 12
Base Clock Rate (GHz) 3.10 2.40 2.70
Shared L3 Cache (MB) 20 12 20

GPU Specifications
Model NVIDIA Tesla NVIDIA Tesla NVIDIA Tesla

C2075[31] M2050[32] K80[33]
Architecture Fermi Fermi Kepler
Chip GF110 GF100 2 × GK210
Memory Size (MB) 6144 3072 2 × 12288
Bandwidth (GB/s) 144.0 148.4 2 × 240.6
Cores (Total) 448 448 2 × 2496
Core Clock Rate (GHz) 1.150 1.150 0.560 – 0.875

The comparison of performance between the Fermi and Kepler architectures for NVIDIA

Tesla GPUs makes use of the Virginia Tech NewRiver [34] computer cluster. NewRiver has

134 nodes, with 8 nodes dedicated to GPU computing. These nodes use dual-socket 12-core

Intel Xeon E5-2680 processors, for a total of 24 cores within each node. Furthermore, each

node contains two NVIDIA Tesla K80 GPUs and 256 GB of memory. Due to the limited

availability of nodes, only the performance of a single GPU is analyzed on NewRiver to

compare with the single GPU performance on the workstation and on HokieSpeed. All

analyses use the PGI Fortran 15.7 compiler and the multi-GPU analysis on HokieSpeed

makes use of the Open MPI 1.8.5 library.

Andrew J. McCall Chapter 3. Manuscript 2 63

3.4 Results and Discussion

This section presents the computational performance achieved by importing SENSEI’s base

code into the GPU with OpenACC. A description of the test cases used to analyze perfor-

mance and scalability as well as a discussion of the significant optimizations discovered in

the development of the OpenACC version of SENSEI preface the presentation and discussion

of the performance results.

3.4.1 Test Case Descriptions

NACA 0012 Airfoil

Three test cases are used to test the performance of SENSEI when accelerated using Ope-

nACC. The first test case is a two-dimensional NACA 0012 airfoil geometry with the bound-

aries 500 chord lengths away from the airfoil. The grids used for this study are listed in Table

3.2. This test case is used for performance optimization and to demonstrate the performance

and scalability of the GPU-accelerated version of SENSEI for two-dimensional problems.

Table 3.2: Grid sizes used for the NACA 0012 airfoil test case.

h1 1792× 512
h2 896× 256
h4 448× 128

This two-dimensional geometry is solved using the Euler equations for the steady-state,

inviscid flow solution. Global time-stepping is used with the 4-step Runge-Kutta time inte-

gration scheme and the second-order residuals are computed using the Van Leer[35] upwind

flux scheme with MUSCL extrapolation[35] and a limiter function developed by Michalak

and Ollivier-Gooch[36]. The farfield conditions of this test case are listed in Table 3.3 and

the steady-state flow solution is illustrated in Figure 3.2.

Andrew J. McCall Chapter 3. Manuscript 2 64

Table 3.3: Farfield conditions for the NACA 0012 airfoil test case.

α (deg) 5
Mach 0.25
p∞ (Pa) 84,307
T∞ (K) 278

Figure 3.2: NACA 0012 airfoil steady-state solution.

Lid-driven Cavity (LDC)

The second test case is a 0.001 m cubic, lid-driven cavity (LDC) at a Reynolds number

of 4,660. The grids used are systematically refined from a 32 × 32 × 32-cell uniform grid.

Performance optimizations are conducted using this test case as well as a demonstration

of the performance and scalability of the GPU-accelerated version of SENSEI for three-

dimensional problems. This test case solves the laminar Navier-Stokes equations for a steady-

state solution of the compressible air flow within the cavity. As with the previous test case,

global time-stepping is used with the 4-step Runge-Kutta time integration scheme and the

fluxes are computed using the Van Leer flux scheme with MUSCL extrapolation. For this

test case, the van Albada[37] limiter function is used. The lid flow conditions are fixed at

Andrew J. McCall Chapter 3. Manuscript 2 65

the values listed in Table 3.4 and the steady-state flow solution is illustrated in Figure 3.3.

Table 3.4: Lid conditions for the LDC test case.

Re 4,660
u (m/s) 68.0
v, w (m/s) 0.0
Mach 0.2

p∞ (kPa) 101.325
T∞ (K) 288.15

Figure 3.3: Streamlines for the solution of compressible airflow in a three-dimensional lid-
driven cavity at a Reynolds number of 4,660.

M6 Onera Wing

The final test case is for the classic M6 Onera wing geometry, tested with viscous flow at

transonic speeds. The laminar Navier-Stokes equations are used to determine a steady-state

solution. The multi-block, structured grid that is used comes from NASA[38] and has four

blocks: two 24 × 48 × 32-cell blocks in the wake aft of the wing, and two 72 × 48 × 32-cell

blocks to cover the wing surface and upstream domain. The total cell count is approximately

295,000 cells. This test case demonstrates the capability of SENSEI, with GPU acceleration,

Andrew J. McCall Chapter 3. Manuscript 2 66

to solve a multi-block, three-dimensional geometry with a complex, transonic flow. With a

multi-block grid, load-balancing becomes an issue as the provided processes must be divided

among the four blocks in a way that minimizes imbalance, while attempting to satisfy the

other metrics of a satisfactory decomposition, as described in Section 3.3. The Reynolds

number of the flow for this test case is 11.72 million, using the mean aerodynamic chord of

0.64607 m as the reference length. The farfield conditions are listed in Table 3.5 and the

steady-state solution is illustrated in Figure 3.4.

Table 3.5: Farfield conditions for the M6 Onera wing test case.

Re 11.72 million
Mach 0.8395
α (deg) 3.06
β (deg) 0.0
p∞ (kPa) 315.980
T∞ (K) 255.56

Figure 3.4: M6 Onera wing steady-state solution.

Andrew J. McCall Chapter 3. Manuscript 2 67

3.4.2 OpenACC Optimization

The main focus of this study is to minimize the changes made to the code base to demon-

strate OpenACC’s capability to feasibly port large and complex codes to the GPU; however,

some optimization is necessary to obtain a reasonable speedup over the CPU’s performance.

Therefore, a few optimization considerations that require minimal alteration of the code base

are evaluated in this study. These optimizations are based on the findings from optimizing

SENSEI’s OpenACC implementation and later were individually tested to verify their im-

pact on the performance of the optimized version of the code. The results presented in the

initial discussion are for the NACA 0012 airfoil test case. In the following discussion, these

results are compared with the LDC test case results. The NVIDIA profiling tool[39] is used

to plot the timeline execution of individual kernels for some of the discussed optimizations.

Transfer Contiguous Data

The first optimization under consideration relates to the transfer of boundary data between

sub-domains. The high latency of data transferred to and from the GPU mandates that the

number of transfers made be minimized to achieve good performance. Furthermore, large

transfers amortize the latency cost. However, the underlying implementation set by the

compiler only transfers data in contiguous chunks. Therefore, the transfer of data along a

highly non-contiguous set of boundary data induces a significant performance penalty since

separate data transfers are scheduled for each contiguous chunk of memory.

Using a representative code that performs just the residual calculations, boundary condition

updates, and the transfer of data along inter-block boundaries between GPUs, it was deter-

mined that transferring contiguous data is more important than minimizing the transfer of

data between the CPU and the GPU. Figure 3.5 compares the data transfer performance

between the full boundary, a contiguous data set, and a non-contiguous portion of the bound-

ary, arbitrarily chosen to be 10% of the size of the full boundary. Despite transferring 10

Andrew J. McCall Chapter 3. Manuscript 2 68

times more data, the full boundary data transfer executes 3.6 times faster than the partial

boundary data transfer. This knowledge implies that rather than just passing the solution

data along an inter-block or periodic boundary, the boundary data along the entire face

should be passed between the CPU and the GPU to maintain a contiguous data transfer.

Figure 3.5: A CPU-GPU transfer of the entire boundary data is 3.6 times faster than the
transfer of a non-contiguous portion of the boundary that is 10% of the full boundary size,
due to the overhead of non-contiguous memory transfer.

The exception to this rule is for the imin and imax faces, when using Fortran, where all

data along the face is non-contiguous; in this case, passing the minimum amount of data is

the most efficient method. Figure 3.6 illustrates the difference in data transfer performance

between the different domain faces. As shown, the j and k faces both transfer data close to

a rate of 6.2 GB/s, whereas the i faces transfer data at a rate of 300 to 600 MB/s. This

factor of ten difference in data transfer rate is attributed to non-contiguous data transfer.

Although the j faces are not completely contiguous, as with the k faces, the amount of data

transferred within each contiguous chunk is still sufficiently large to mask the latency cost

of data transfer. To resolve this issue of low data transfer rates for the i faces, a buffer is

generated to store the boundary data contiguously before transferring between the CPU and

the GPU.

Andrew J. McCall Chapter 3. Manuscript 2 69

Figure 3.6: Data transfer rates for the imin and imax faces are over ten times slower than the
data transfer rates for other faces, due to a highly non-contiguous memory storage pattern.

Enforce Boundary Conditions on the CPU

Although the boundary conditions were initially enforced on the GPU to avoid transferring

more boundary data to the CPU, computing the boundary enforcement on the CPU instead

of the GPU produced a 32% increase in performance. This demonstrates that the structure

and the numerical algorithms of the boundary enforcement are not well-suited for parallel

execution on the GPU. When enforcing the boundary conditions entirely on the CPU, all

boundary data, including on the imin and imax faces, must be passed between the CPU and

the GPU, further emphasizing the importance of a mitigation for the highly non-contiguous

data transfer on these faces.

Reduce the Level of Loop Collapsing

Multiple kernels make use of loop collapsing to optimize performance. However, we found

that for both two-dimensional and three-dimensional problems, better performance is gen-

erally obtained by only collapsing the outer loop(s) and applying a loop directive on the

innermost loop. This structure permits the programmer to enforce finer-grained parallelism

for the innermost loop with the use of vector or worker parallelism. Using the finer-grained

parallelism of the GPU better exploits the performance capabilities of the GPU and masks

the GPU latencies more effectively. Applying this optimization to the flux calculation ker-

Andrew J. McCall Chapter 3. Manuscript 2 70

nels, within the residual calculation procedure, produces a 620% increase in performance.

Furthermore, this optimization produces an 90% increase in performance when applied to

the solution update kernel. To understand why this optimization provides such significant

performance improvements, we must look at the time calculation kernel.

In contrast, applying this optimization to the time step calculation kernel, a similar kernel

structure, provides almost no benefit to the solver’s performance. However, an array op-

eration within the time step calculation kernel was already transformed to an explicit loop

structure with an explicit$acc loop seq directive to prevent vector parallelism from being

applied to this small loop. Otherwise, an error would occur in the time step calculation.

Therefore, the cause of performance degradation in the other kernels is attributed to the im-

plicit use of vector parallelism by OpenACC on small vector computations within the kernel

rather than using vector parallelism for the primary kernel loops. This means that all array

operations within the flux calculation kernels and the solution update kernel could similarly

be transformed to explicit loops to achieve the same performance gains; however, reduc-

ing the levels of loop collapsing is a less intrusive method of achieving better performance,

allowing the programmer to still use Fortran’s shorthand notation of array operations.

Fuse Array Operations into Nested Loop Structure

Similarly, the residual calculation kernel exhibited better performance by eliminating array

operations within the innermost loop. This modification is accomplished by adding an

additional inner loop to perform computation of the residual for each equation individually.

Figure 3.7 illustrates this optimization. A performance improvement of 35% was obtained

by collapsing all four loops for this optimized kernel.

Andrew J. McCall Chapter 3. Manuscript 2 71

!$acc loop collapse(3)

do k = 1, k_cells

do j = 1, j_cells

do i = 1, i_cells

residual(:,i,j,k) = &

i_flux(:,i+1,j,k)*i_area(i+1,j,k) - &

i_flux(:,i ,j,k)*i_area(i ,j,k) + &

...

end do

end do

end do

(a) Residual calculation loop before opti-
mization.

!$acc loop collapse(4)

do k = 1, k_cells

do j = 1, j_cells

do i = 1, i_cells

do n = 1, n_eq

residual(n,i,j,k) = &

i_flux(n,i+1,j,k)*i_area(i+1,j,k) - &

i_flux(n,i ,j,k)*i_area(i ,j,k) + &

...

end do

end do

end do

end do

(b) Residual calculation loop after optimiza-
tion.

Figure 3.7: The residual calculation loop is optimized by fusing array operations into the
nested loop structure.

Inline Subroutines

As mentioned in Section 3.3.2, function calls within OpenACC kernels limit asynchronous

execution of the kernels, reducing performance. However, even numerous calls to subroutines

within a kernel can limit performance, especially if multiple arrays are created within the

scope of the subroutine with minimal computation performed to outweigh the cost of array

allocation. A subroutine for computing the flux at the domain boundaries demonstrated

this issue and had to be manually inlined, as shown in Figure 3.8. With the boundary

flux calculation subroutine inlined, the contained arrays are declared within the scope of the

residual calculation subroutine and these arrays are declared as private for each kernel thread.

This optimization increases performance by 20% on the GPU, yet decreases performance on

the CPU by approximately 5%. Therefore, preprocessing directives are used to manually

inline the function only when accelerating on the GPU.

Andrew J. McCall Chapter 3. Manuscript 2 72

double precision :: rho_ghost (5)

double precision :: vel_ghost (3,5)

double precision :: p_ghost (5)

double precision :: temp_ghost(5)

...

! Calculate i-min boundary fluxes

!$acc loop

do k = k_min, k_max

!$acc loop worker private(rho_bound, vel_bound, p_bound, temp_bound)

do j = j_min, j_max

...

#ifdef _OPENACC

!$acc loop vector

do n = 1, length

rho_bound (n) = rho (i_low+n-1,j,k)

vel_bound (:,n) = vel (:,i_low+n-1,j,k)

p_bound (n) = p (i_low+n-1,j,k)

temp_bound(n) = temp(i_low+n-1,j,k)

end do

call set_bcflux(rho_bound, vel_bound, p_bound, temp_bound, i_flux(:,i,j,k))

#else

call bc_flux_imin(j, k, i_flux(:,i,j,k))

#endif

...

end do

Figure 3.8: The boundary flux calculation loop is optimized on the GPU by manually inlining
the subroutine.

Andrew J. McCall Chapter 3. Manuscript 2 73

Eliminate Private Arrays

With the addition of private arrays for the manually inlined subroutine, it is desirable to

reduce the total number of private variables within kernels. The computed flux was originally

stored in a private variable before being assigned to the flux array. Directly assigning the

flux to the flux array removed the need for this private variable. Meager performance gains

of only 2% were observed for this optimization on the GPU, indicating a lack of sensitivity

to the number of private array variables, at least for some kernels.

Change Loop Ordering

Finally, performance optimization was attempted by switching the order of the flux calcu-

lation loops. Instead of computing the fluxes in the order of ξ-fluxes, η-fluxes, and ζ-fluxes,

the authors’ experience has demonstrated that computing fluxes in the reverse order can

improve the performance of the program execution. The reason for this performance im-

provement is that the more non-contiguous memory accesses in the ζ- and η-flux calculation

loops causes these loops to execute more slowly than the ξ-flux calculation loop. Oftentimes,

better overlap between asynchronously executing kernels is achieved by starting the most

work-intensive kernels first. However, for this program only a performance improvement of

1% was observed.

A summary of the optimizations considered in this study are listed in Table 3.6. Figure

3.9 compares the effects of these optimizations on the performance of SENSEI with GPU

acceleration. The top chart in the figure shows the entire results, while the bottom chart

focuses on the smaller optimizations. These results were obtained on the T7600 workstation

for the NACA 0012 test case on the 896 × 256-cell grid and the LDC test case on the 643-

cell grid. Note that optimizations 1 and 5, marked out with cross marks, were not able

to be tested for the LDC grid because the lack of these optimizations generates errors for

three-dimensional grids. This figure illustrates that the most effective optimizations were

Andrew J. McCall Chapter 3. Manuscript 2 74

collapsing only two loop levels for the flux calculation kernels and the solution update kernel.

Furthermore, the results for the LDC test case indicate that optimizations 3 and 4 were less

effective for three-dimensional problems by approximately 30%. However, optimization 2

was more effective for the LDC test case by approximately 3%.

Table 3.6: Listing of optimizations for Figure 3.9.

1 Update boundary solution on the CPU
2 Only collapse two loop levels for residual calculation kernels
3 Only collapse two loop levels for solution update kernel
4 Add fourth inner loop to source term/residual norm calculation kernels
5 Manually inline boundary flux calculation subroutine
6 Eliminate flux private variable
7 Switch loop ordering

Figure 3.9: Effect of optimizations on OpenACC performance. The top chart illustrates the
full results, whereas the lower chart focuses on the smaller optimizations.

3.4.3 Multi-GPU Analysis

Using the MPI implementation discussed in Section 3.3, the single-GPU implementation of

SENSEI is extended to a multi-GPU implementation. The following section analyzes the

Andrew J. McCall Chapter 3. Manuscript 2 75

scalability and performance of this optimized implementation. The strong scalability analysis

maintains a fixed total problem size with an increasing number of processes. Conversely, the

weak scalability analysis maintains a fixed problem size local to each process, so the total

problem size is directly proportional to the number of processes. All performance results,

both for the GPU and the CPU, are normalized relative to the slowest CPU performance

for the same test case, which for all analyses in this study is the single CPU performance on

the smallest grid size.

Since all performance optimizations were analyzed on the T7600 workstation, Figure 3.10

compares the performance of the workstation with the performance of the HokieSpeed and

NewRiver supercomputers at Virginia Tech. These results are based on the normalized

performance of the multi-CPU and multi-GPU implementations of SENSEI for the LDC

test case.

Figure 3.10 shows that the CPU performance increases by 30% to 33% with increase in

grid size from the 323-cell grid to the 1283-cell grid. Furthermore, the performance of the

workstation CPU is very similar to the performance of a NewRiver CPU, with less than 6%

difference. A CPU on HokieSpeed is 38% to 43% slower than the CPU performance of the

workstation. On the other hand, the GPU performance increases by 32% to 41% between the

323-cell grid and the 643-cell grid, maintaining close to the same performance for the 1283-cell

grid. Although a previous study has shown the performance of the NVIDIA C2075 GPU

on the workstation and an NVIDIA M2050 GPU on HokieSpeed to be the same within 3%

difference[26], the performance of the workstation in this study is approximately 8% to 15%

greater than the performance of HokieSpeed for the single GPU case. This discrepancy is due

to performing the boundary enforcement on the CPU, meaning that the CPU performance

has a greater effect on the overall performance of the GPU-accelerated version of SENSEI.

The NVIDIA K80 GPU on NewRiver demonstrates 62% to 68% better performance than the

workstation, illustrating the improvement in performance that the new Kepler architecture

provides over the Fermi architecture of the workstation’s and HokieSpeed’s GPUs for a

complex, CFD code.

Andrew J. McCall Chapter 3. Manuscript 2 76

Figure 3.10: Comparison of SENSEI’s single CPU and single GPU performance on multiple
system architectures.

NACA 0012 Airfoil Test Case

The grids used for the NACA 0012 airfoil test case are single-block, but non-uniform to

provide better resolution near the airfoil surface. There are 3.5 times more cells in the i di-

rection; therefore, SENSEI chooses two-dimensional decompositions with more subdivisions

in the i direction. The decompositions used for this analysis are listed in Table 3.7. Decom-

positions are identified by the number of blocks in the i, j, and k directions, respectively. A

decomposition of 30 processes is used instead of 32 processes because a decomposition of 30

processes better satisfies the first two decomposition metrics, as described in Section 3.3.3,

by decreasing the surface area to volume ratio.

Figure 3.11 illustrates the performance of the NACA 0012 test case over the range of grid

sizes specified in Section 3.4.1. The multi-CPU performance increases by 8% to 15% as the

grid size is increased. Relative to the multi-GPU performance, this performance increase is

minor. The multi-GPU performance increases by 100% for a single GPU and by 250% for

four GPUs. The h4 grid is too small to be divided into 8 or 16 sub-domains, so only the

Andrew J. McCall Chapter 3. Manuscript 2 77

Table 3.7: Domain decompositions used for the NACA 0012 airfoil test case.

Number of Processes Decomposition (i× j × k)
2 2× 1× 1
4 4× 1× 1
8 4× 2× 1
16 8× 2× 1
30 10× 3× 1

h1 and h2 grids are analyzed for these results. With 16 GPUs, the performance is up to

36 times greater than the serial code and 2.5 times greater than 16 CPUs, run on separate

sockets.

Figure 3.11: Performance of SENSEI for the NACA 0012 test case over a range of grid sizes.

Figure 3.12 illustrates the strong scalability results of multi-CPU and multi-GPU SENSEI.

The h1 grid is used as the fixed domain grid size for these results. The multi-CPU implemen-

tation demonstrates an efficiency of 86% with 30 CPUs, while the multi-GPU implementation

demonstrates only an efficiency of 48% with 30 GPUs. However, GPUs inherently are not

designed for strong scalability, as the performance results in Figure 3.11 illustrate that the

performance drastically decreases as the problem size, local to a given GPU, decreases.

Andrew J. McCall Chapter 3. Manuscript 2 78

(a) Strong scalability speedup. (b) Strong scalability efficiency.

Figure 3.12: Strong scalability results for the NACA 0012 test case.

Lid-driven Cavity (LDC) Test Case

The LDC test case uses single-block, uniform, three-dimensional grids. This simple test

case allows for a more detailed analysis of scalability and performance than more complex

multi-block grids, such as for the M6 Onera wing, since load-balancing is an issue for multi-

block grids. The decompositions used for this analysis are listed in Table 3.8. Again, the

decompositions are selected in an effort to best satisfy the decomposition metrics, as discussed

in Section 3.3.3. Since the grid is the same size in all dimensions, a 3D decomposition with the

same number of sub-divisions in every dimension provides the most scalable decomposition

with large numbers of processes, as it is less limited than 1D or 2D decompositions by the

number of cells in each dimension. This decomposition also minimizes the surface area

to volume ratio of the computational sub-domains, reducing the total data communicated

between processes. Table 3.8 shows that this decomposition is fully achieved for 8 processes

and 27 processes.

For this test case the multi-CPU performance, as shown in Figure 3.13, increases by 32%

Andrew J. McCall Chapter 3. Manuscript 2 79

Table 3.8: Domain decompositions used for the LDC test case.

Number of Processes Decomposition (i× j × k)
2 2× 1× 1
4 2× 2× 1
8 2× 2× 2
16 4× 2× 2
27 3× 3× 3

for a single CPU and by 53% for 16 CPUs with increase in grid size. The multi-GPU

implementation increases by 41% for a single GPU and by 250% for four GPUs. Although

the multi-CPU performance increase is still smaller than the GPU performance increase

with increase in grid size, it is no longer negligible. Similar to the NACA 0012 test case,

the smallest grid size is too small to run with more than four sub-domains. Furthermore,

the 643-cell grid is too small to run with 27 processes. On the other hand, the largest grid

size that a single GPU can hold in memory with SENSEI is the 1283-cell grid, so the 2563

grid is unable to fit in the GPU’s memory until is is split into at least 8 sub-domains. The

performance of 27 GPUs is up to 100 times greater than the serial version of SENSEI and

4.1 times greater than the performance of 27 CPUs.

Figure 3.13: Performance of SENSEI for the LDC test case over a range of grid sizes.

Andrew J. McCall Chapter 3. Manuscript 2 80

The strong scalability results for the LDC test case, shown in Figure 3.14, demonstrate that

the multi-GPU implementation actually exhibits fairly good scalability. The multi-GPU

implementation runs with greater efficiency than the multi-CPU implementation up to eight

processes and demonstrates 104% efficiency with two GPUs. The multi-GPU implementation

maintains 72% efficiency with 27 GPUs, whereas the multi-CPU implementation achieves

81% efficiency with 27 CPUs. Although the efficiency of the multi-GPU implementation

does continue to drop with increase in process count, the high efficiency results relative to

the NACA 0012 test case are attributed to using the maximum amount of memory possible

on the GPU. This means that even with decomposing the domain into 27 sub-domains, the

sub-domains are large enough to prevent a significant loss of efficiency, unlike the NACA

0012 test case.

(a) Strong scalability speedup. (b) Strong scalability efficiency.

Figure 3.14: Strong scalability results for the LDC test case.

A weak scalability analysis is run for the LDC test case, where the grid local to each GPU is

maintained at a constant size. These results are illustrated in Figure 3.15. For a fixed local

grid size of 323 cells, the multi-GPU implementation maintains 81% efficiency, whereas the

multi-CPU implementation maintains an efficiency of 93%. The efficiency drops when using

27 sub-domains, likely because that decomposition is the only one tested with a sub-domain

Andrew J. McCall Chapter 3. Manuscript 2 81

that must communicate with neighbors on all of its faces. This seems to affect the multi-CPU

performance as much as the multi-GPU performance, as the efficiency drops from 99% to

93% for the multi-CPU implementation and from 89% to 81% efficiency for the multi-GPU

implementation. This issue seems to affect the multi-CPU performance even more drastically

for the fixed local grid size of 643 cells, as the efficiency drops from 99.9% to 88% between

the use of 8 CPUs and 27 CPUs. The multi-GPU implementation, however, seems to be less

affected for the larger grid size, maintaining an efficiency of 95% with 27 GPUs.

Figure 3.15: Weak scalability efficiency results for the LDC test case.

M6 Onera Wing Test Case

The final test case, the M6 Onera wing, uses a multi-block, structured grid. The block

numbers, associated with the block dimensions, are listed in Table 3.9. Only a single grid

size is used, so only a strong scalability analysis is performed for this test case. Due to the

grid complexity, the decomposition with a given number of processes is no longer guaranteed

to be load-balanced. Table 3.10 lists the decompositions used for this analysis, as well as

the load imbalance of these decompositions. The load imbalance metric defines the percent

increase in cells of the largest sub-domain over the average sub-domain size.

Andrew J. McCall Chapter 3. Manuscript 2 82

Table 3.9: Grid blocks for the M6 Onera test case.

Block Number Block Dimensions
1 24× 48× 32
2 72× 48× 32
3 72× 48× 32
4 24× 48× 32

Figure 3.16 illustrates the strong scalability results for the M6 Onera test case, ignoring

load-imbalanced decompositions. This figure demonstrates a smooth curve for the decrease

in efficiency of the multi-CPU and multi-GPU implementations. The efficiency using 16

CPUs is 90%, whereas the efficiency using 16 GPUs is 64%. Again, these results reflect the

expectation of good strong scalability performance for the multi-CPU implementation, yet

poor strong scalability performance for the multi-GPU implementation.

(a) Strong scalability speedup. (b) Strong scalability efficiency.

Figure 3.16: Strong scalability results for the M6 Onera wing, excluding results with imbal-
anced loads.

Including the load-imbalanced decompositions produces the results shown in Figure 3.17.

The speedup and efficiency curves no longer indicate smooth or consistent trends with in-

crease in the number of processes. Considering the smoothness of the curves in Figure 3.16,

Andrew J. McCall Chapter 3. Manuscript 2 83

Table 3.10: Domain decompositions used for each of the four blocks in the M6 Onera test
case.

Number of Processes Decomposition (i× j × k) Load Imbalance (%)
4 1× 1× 1 50.0

1× 1× 1
1× 1× 1
1× 1× 1

6 1× 1× 1 12.5
2× 1× 1
2× 1× 1
1× 1× 1

8 1× 1× 1 0.0
3× 1× 1
3× 1× 1
1× 1× 1

10 1× 1× 1 25.0
2× 2× 1
2× 2× 1
1× 1× 1

16 1× 2× 1 0.0
3× 2× 1
3× 2× 1
1× 2× 1

this decrease in consistency is caused by the load imbalance of these decompositions de-

grading the performance. Interestly, six GPUs actually demonstrate a higher efficiency than

expected from Figure 3.16.

Andrew J. McCall Chapter 3. Manuscript 2 84

(a) Strong scalability speedup. (b) Strong scalability efficiency.

Figure 3.17: Strong scalability results for the M6 Onera wing, including results with imbal-
anced loads.

Comparison of Results

Finally, we desire to compare the scalability results between the different test cases. Figure

3.18 illustrates the differences in strong scalability for all test cases. Interestingly, the LDC

test case has the worst multi-CPU scalability results, yet the best multi-GPU scalability

results. The better scalability on the GPU is attributed to the larger grid size for the LDC

test case, compared with the grids used for the strong scalability analyses of the other test

cases. The grid size used for the LDC test case is 1283 cells, the maximum possible grid

size that fits in a single GPU’s memory. The NACA 0012 grid used for strong scalability

analysis is the h1 grid, which is approximately 44% of the LDC grid size. Furthermore, only

the Euler equations are solved for the NACA 0012 grid, so all of the viscous subgrid data

is not needed, further reducing memory usage by 55%. In addition, the M6 Onera grid is

approximately 7.1 times smaller than the LDC grid. Therefore, it should be anticipated that

the strong scalability efficiency is lower for these test cases, since the GPU’s performance

is significantly affected by the grid size. Therefore, to achieve better GPU performance

Andrew J. McCall Chapter 3. Manuscript 2 85

the memory size should be increased to accommodate even larger grid sizes, as this would

improve strong scalability as well as performance. The design of new GPU architectures

such as the NVIDIA Tesla K80 on NewRiver supports this statement, as a single K80 GPU

holds 24 GB of memory[33], rather than just 3 GB with the NVIDIA Tesla M2050[32].

(a) Strong scalability speedup. (b) Strong scalability efficiency.

Figure 3.18: Comparison of the strong scalability results for the different test cases.

3.5 Conclusions

In this paper, we investigated the use of OpenACC to port the SENSEI CFD code from

a CPU implementation to a multi-GPU implementation. We discussed the challenges in

porting the code to the GPU and the optimizations exploited to improve GPU performance,

while maintaining a single code base for the CPU and GPU implementations. Multiple

optimizations were found to improve the performance of the OpenACC code. The most

effective optimization discussed was the reduction of levels of loop collapsing for some ker-

nels to prevent vector parallelism being only applied to small inner loops, providing in total

over 700% increase in performance. Other useful optimizations for SENSEI included en-

forcing the boundary conditions on the CPU and adding an inner loop to some kernels to

Andrew J. McCall Chapter 3. Manuscript 2 86

combine multiple array operations, increasing performance by 32% and 35%, respectively.

The performance results demonstrate that a single NVIDIA Tesla M2050 GPU attains a 3.7

speedup for the airfoil, 4.25 speedup for the lid-driven cavity, and 3.2 speedup for the wing

over a single Intel Xeon E5645 processor core. The performance of 27 GPUs is up to 100

times faster than a single core and 4.1 times faster than 27 cores for the lid-driven cavity.

The multi-GPU implementation also maintains an efficiency of 95% up to 27 GPUs with

the lid-driven cavity flow. These results demonstrate the capability of OpenACC to develop

portable, accelerated codes from a base CPU implementation with minimal modifications,

even when the base implementation is a large and complex CFD code.

3.6 Future Work

The primary area of interest for further development would be in running these tests for

larger-scale GPU clusters. Multiple design considerations, including the domain decomposi-

tion are more important for larger scale parallelism. Furthermore, having access to a large

GPU cluster with the latest K80 GPUs would allow for scalability and performance testing of

one of the latest GPU designs. With the increased memory capacity and compute capability,

we believe the results of this study would be even further enhanced.

Acknowledgments

The authors acknowledge the support of the Virginia Tech Synergistic Environments for

Experimental Computing (SEEC) Center for this research. This work was supported in part

by the HokieSpeed supercomputer at Virginia Tech through NSF grant CNS-0960081.

Andrew J. McCall Chapter 3. Manuscript 2 87

References

[1] Y. Komura. “OpenACC programs of the Swendsen–Wang multi-cluster spin flip al-
gorithm”. In: Computer Physics Communications (Aug. 2015). issn: 0010-4655. doi:
10.1016/j.cpc.2015.08.022. url: http://dx.doi.org/10.1016/j.cpc.2015.08.
022.

[2] M. Misic, D. Dasic, and M. Tomasevic. “An analysis of OpenACC programming model:
Image processing algorithms as a case study”. In: Telfor Journal 6.1 (2014), pp. 53–
58. issn: 1821-3251. doi: 10.5937/telfor1401053m. url: http://dx.doi.org/10.
5937/telfor1401053M.

[3] M. Otten et al. “An MPI/OpenACC Implementation of a High Order Electromagnetics
Solver with GPUDirect Communication”. In: The International Journal of High Per-
formance Computing Applications 30.3 (2016), pp. 320–334. doi: 10.1177/1094342015626584.

[4] S. Markidis et al. “OpenACC acceleration of the Nek5000 spectral element code”.
In: International Journal of High Performance Computing Applications 29.3 (Mar.
2015), pp. 311–319. issn: 1741-2846. doi: 10.1177/1094342015576846. url: http:
//dx.doi.org/10.1177/1094342015576846.

[5] R. Xu et al. “Multi-GPU Support on Single Node Using Directive-Based Programming
Model”. In: Scientific Programming 2015 (2015), pp. 1–15. issn: 1875-919X. doi: 10.
1155/2015/621730. url: http://dx.doi.org/10.1155/2015/621730.

[6] M. Chrust, E. Laurendeau, and L. Ostiguy. “Accelerating low-fidelity aerodynamic
codes on multi- and many-core architectures”. In: The Journal of Supercomputing 71.9
(May 2015), pp. 3456–3481. issn: 1573-0484. doi: 10.1007/s11227-015-1444-6.
url: http://dx.doi.org/10.1007/s11227-015-1444-6.

[7] C. Couder-Castaneda et al. “Performance of a Code Migration for the Simulation of
Supersonic Ejector Flow to SMP, MIC, and GPU Using OpenMP, OpenMP+LEO, and
OpenACC Directives”. In: Scientific Programming 2015 (2015), pp. 1–20. issn: 1875-
919X. doi: 10.1155/2015/739107. url: http://dx.doi.org/10.1155/2015/739107.

[8] T. Komoda et al. “Integrating Multi-GPU Execution in an OpenACC Compiler”. In:
Parallel Processing (ICPP), 2013 42nd International Conference on. 2013, pp. 260–
269. doi: 10.1109/ICPP.2013.35. url: http://ieeexplore.ieee.org/stamp/
stamp.jsp?arnumber=6687359.

[9] B. P. Pickering et al. “Directive-based GPU programming for computational fluid
dynamics”. In: Computers & Fluids 114 (July 2015), pp. 242–253. issn: 0045-7930.
doi: 10.1016/j.compfluid.2015.03.008. url: http://dx.doi.org/10.1016/j.
compfluid.2015.03.008.

Andrew J. McCall Chapter 3. Manuscript 2 88

[10] Y. Xia et al. “OpenACC acceleration of an unstructured CFD solver based on a re-
constructed discontinuous Galerkin method for compressible flows”. In: Int. J. Numer.
Meth. Fluids 78.3 (Feb. 2015), pp. 123–139. issn: 0271-2091. doi: 10.1002/fld.4009.
url: http://dx.doi.org/10.1002/fld.4009.

[11] NVIDIA. CUDA. http://www.nvidia.com/object/cuda_home_new.html.

[12] The Khronos Group. The open standard for parallel programming of heterogeneous
systems. https://www.khronos.org/opencl/.

[13] The OpenACC API: Version 2.0. http://www.openacc.org/sites/default/files/
OpenACC.2.0a_1.pdf.

[14] The OpenMP API specification for parallel programming. http://openmp.org/wp/.

[15] L. Luo, J. R. Edwards, and H. Luo. “Performance Assessment of Multi-block LES
Simulations using Directive-based GPU Computation in a Cluster Environment”. In:
52nd Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics
(AIAA), Jan. 2014. doi: 10.2514/6.2014-1130. url: http://dx.doi.org/10.2514/
6.2014-1130.

[16] T. Hoshino et al. “CUDA vs OpenACC: Performance Case Studies with Kernel Bench-
marks and a Memory-Bound CFD Application”. In: 2013 13th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud, and Grid Computing. Institute of Electrical and
Electronics Engineers (IEEE), May 2013. doi: 10.1109/ccgrid.2013.12. url: http:
//dx.doi.org/10.1109/CCGrid.2013.12.

[17] L. Luo et al. “GPU Port of A Parallel Incompressible Navier-Stokes Solver based on
OpenACC and MVAPICH2”. In: 7th AIAA Theoretical Fluid Mechanics Conference.
American Institute of Aeronautics and Astronautics (AIAA), June 2014. doi: 10.

2514/6.2014-3083. url: http://dx.doi.org/10.2514/6.2014-3083.

[18] A. Corrigan and R. Lohner. “Semi-automatic porting of a large-scale CFD code to
multi-graphics processing unit clusters”. In: International Journal for Numerical Meth-
ods in Fluids 69.11 (Aug. 2011), pp. 1786–1796. doi: 10.1002/fld.2664. url: http:
//dx.doi.org/10.1002/fld.2664.

[19] A. Corrigan et al. “Semi-automatic porting of a large-scale Fortran CFD code to
GPUs”. In: International Journal for Numerical Methods in Fluids 69.2 (May 2011),
pp. 314–331. doi: 10.1002/fld.2560. url: http://dx.doi.org/10.1002/fld.2560.

[20] B. van Werkhoven and P. Hijma. “An Integrated Approach to Porting Large Scientific
Applications to GPUs”. In: 2015 IEEE 11th International Conference on e-Science.
Institute of Electrical and Electronics Engineers (IEEE), Aug. 2015. doi: 10.1109/
escience.2015.23. url: http://dx.doi.org/10.1109/eScience.2015.23.

[21] J. M. Derlaga, T. Phillips, and C. J. Roy. “SENSEI Computational Fluid Dynamics
Code: A Case Study in Modern Fortran Software Development”. In: 21st AIAA Com-
putational Fluid Dynamics Conference (June 2013). doi: 10.2514/6.2013-2450. url:
http://dx.doi.org/10.2514/6.2013-2450.

Andrew J. McCall Chapter 3. Manuscript 2 89

[22] H. Hirsch. Numerical computation of internal and external flows: Computational Meth-
ods for Inviscid and Viscous Flows. Vol. 2. John Wiley & Sons, 1990, pp. 536–556.

[23] N. Corporation. PGI Accelerator Compilers with OpenACC Directives. https://www.
pgroup.com/resources/accel.htm.

[24] OpenACC.org. OpenACC 2.6 Proposed Features. http://www.openacc.org/sites/
default/files/OpenACC26-proposed_features.pdf.

[25] NVIDIA Corporation. PGI Accelerator Compilers OpenACC Getting Started Guide.
https://www.pgroup.com/doc/openacc_gs.pdf.

[26] B. Baghapour, A. J. McCall, and C. J. Roy. “Multilevel Parallelism for CFD Codes
on Heterogeneous Platforms”. In: 46th AIAA Fluid Dynamics Conference. American
Institute of Aeronautics and Astronautics (AIAA), June 2016. doi: 10.2514/6.2016-
3329. url: http://dx.doi.org/10.2514/6.2016-3329.

[27] Advanced Research Computing at Virginia Tech. HokieSpeed (CPU/GPU). https:

//secure.hosting.vt.edu/www.arc.vt.edu/hokiespeed-cpugpu/.

[28] Intel. Intel Xeon Processor E5-2687W. http://ark.intel.com/products/64582/
Intel-Xeon-Processor-E5-2687W-20M-Cache-3_10-GHz-8_00-GTs-Intel-QPI.

[29] Intel. Intel Xeon Processor E5645. http://ark.intel.com/products/48768/Intel-
Xeon-Processor-E5645-12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI.

[30] Intel. Intel Xeon Processor E5-2680. http://ark.intel.com/products/64583/

Intel-Xeon-Processor-E5-2680-20M-Cache-2_70-GHz-8_00-GTs-Intel-QPI.

[31] www.techpowerup.com. NVIDIA Tesla C2075. https://www.techpowerup.com/

gpudb/563/tesla-c2075.

[32] www.techpowerup.com. NVIDIA Tesla M2050. https://www.techpowerup.com/

gpudb/1534/tesla-m2050.

[33] www.techpowerup.com. NVIDIA Tesla K80m. https : / / www . techpowerup . com /

gpudb/2616/tesla-k80m.

[34] Advanced Research Computing at Virginia Tech. NewRiver. https://secure.hosting.
vt.edu/www.arc.vt.edu/computing/newriver/.

[35] B. van Leer. “Towards the Ultimate Conservative Difference Scheme. V. A Second-
order Sequel to Godunov’s method.” In: Journal of Computational Physics 32.1 (1979),
pp. 101–136. url: http://dx.doi.org/10.2514/6.2008-607.

[36] C. Michalak and C. Ollivier-Gooch. “Accuracy Preserving Limiter for the High-order
Accurate Solution of the Euler Equations.” In: Journal of Computational Physics
228.23 (2009), pp. 8693–8711. url: http://dx.doi.org/10.2514/6.2008-607.

[37] G. van Albada, B. van Leer, and W. Roberts. “A comparative study of computa-
tional methods in cosmic gas dynamics”. In: Astronomy and Astrophysics 108.1 (1982),
pp. 76–84.

Andrew J. McCall Chapter 3. Manuscript 2 90

[38] John W. Slater. ONERA M6 Wing: Study #1. https://www.grc.nasa.gov/WWW/
wind/valid/m6wing/m6wing01/m6wing01.html.

[39] N. Corporation. NVIDIA Visual Profiler. https://developer.nvidia.com/nvidia-
visual-profiler.

Chapter 4

Discussion and Conclusions

Although the exact performance in GFLOPs is not obtained for SENSEI’s results, some

comparisons may be made between the scalability and performance results of these two

chapters.

The weak scalability efficiency for the cubic, buoyancy-driven cavity in the second chapter

remain as high as 99% using 32 GPUs with a grid size that consumes approximately 60% of

the available memory on the GPU. In contrast, SENSEI attains a weak scalability efficiency

of 95% using only 27 GPUs for a cubic, lid-driven cavity with a grid size that uses almost

100% of the available memory on the GPU. Comparing performance results, the code from

the second chapter attained a factor of 400 speedup over the serial implementation using 32

GPUs. SENSEI, however, only manages to attain a factor of 100 speedup over the serial

implementation for the lid-driven cavity, using 27 GPUs. Although five fewer GPUs are used

when running SENSEI, this difference does not account for the factor of four discrepancy in

performance speedup.

The reduced scalability and performance of SENSEI is attributed to its additional numerical

and structural complexity. SENSEI is designed to handle a general structured, curvilinear,

multi-block grid, as opposed to the code for the second chapter, which specifically solves the

91

Andrew J. McCall Chapter 4. Discussion and Conclusions 92

lid-driven or buoyancy driven cavity with a uniform Cartesian grid. Furthermore, SENSEI

uses second-order upwind flux schemes with MUSCL extrapolation and limiters, whereas

the code for the second chapter is simply a finite-difference discretization with artificial

compressibility and pressure rescaling to maintain a fixed pressure at the cavity center.

In terms of code structure, SENSEI makes use of many modern Fortran constructs, most

importantly including derived types containing allocatable arrays. The difficulty in correctly

porting SENSEI’s execution to the GPU is much greater than the difficulty in porting the

code for the second chapter, which made use of very few modern Fortran constructs. This

difficulty not only limited OpenACC’s ability to accelerate performance, but also limited the

options available for optimizing execution performance of SENSEI relative to the code used

in the second chapter. Much more effort was dedicated to performance optimization in the

second chapter, as fewer obstacles presented themselves and complicated the optimization

process.

In these two chapters, MPI and OpenACC were used to accelerate performance of CFD

codes. The remainder of this section outlines the conclusions made for this thesis regarding

the viability of the OpenACC programming model.

In the second chapter, the transformation of a serial CPU code into a single-GPU implemen-

tation was shown to require minimal modification to the code base with the use of directive

statements. In addition, the optimized OpenACC implementation produced a factor of 8

speedup over the serial CPU execution using an NVIDIA Tesla C2075 GPU and compa-

rable performance to an MPI multi-CPU implementation using 8 cores of a dual-socket

Xeon CPU workstation. A hybrid MPI+OpenACC multi-GPU implementation of the 3D

BDC solver was developed and overlapping communication and computation was found to

improve performance by up to 21%. Although using overlapping communication and compu-

tation reduced portability of the code, since the multi-CPU implementation attained better

performance without this overlap of communication and computation, the performance im-

provement was substantial enough to offset this issue. Scalability and performance analyses

of the multi-GPU implementation on the HokieSpeed supercomputer demonstrated excel-

Andrew J. McCall Chapter 4. Discussion and Conclusions 93

lent weak scalability on the HokieSpeed supercomputer with up to 99% efficiency using 32

GPUs. Furthermore, the performance of the final multi-GPU implementation for the 5123-

node case with 32 GPUs was over 400 times faster than a single CPU and 11.2 times faster

than 32 CPUs. These results demonstrate the capability of OpenACC to develop portable,

accelerated codes, while maintaining the same baseline CPU implementation.

In the third chapter, the challenges in porting a large, complex code written in modern

Fortran to the GPU were discussed. The performance results demonstrated that a single

NVIDIA Tesla M2050 GPU attained a 3.7 speedup for a 2D NACA 0012 airfoil model,

4.25 speedup for a 3D, cubic, lid-driven cavity model, and 3.2 speedup for a 3D M6 Onera

wing model over a single Intel Xeon E5645 processor core. SENSEI was extended to a

hybrid MPI+OpenACC multi-GPU implementation, which was tested for scalability and

performance. The multi-GPU implementation maintained a weak efficiency of 95% up to 27

GPUs with the lid-driven cavity flow and the performance of 27 GPUs was up to 100 times

faster than a single core and 4.1 times faster than 27 cores for the lid-driven cavity. These

results illustrate OpenACC’s ability to port large and complex CFD codes to the GPU,

maintaining a unified, portable code base while achieving good scalability and performance.

The results for the second chapter indicate a greater performance increase over the serial

and multi-CPU implementations; however, the code for the second chapter is numerically

and structurally less complex. As the complexity of the code increases, the performance and

scalability of the GPU-accelerated implementation decreases. This behavior is similarly an-

ticipated for low-level programming models; however, the development of a GPU-accelerated

version of SENSEI without using OpenACC would be extremely difficult due to the level

of refactoring required and the minimal implementation portability. Overall, these results

demonstrate OpenACC is a viable and expedient programming model for the acceleration

of codes on the GPU.

Appendix A

GPU Parallelism

In the Single Intruction, Multiple Threads (SIMT) architecture of the GPU, as described by

NVIDIA[1], groups of threads perform a specific operation on a large data set, leading to a

massively parallel execution of data. This massive parallelism masks the high latency of the

processing units in accessing data from memory.

The SIMT architecture of the GPU combines aspects of the Single Instruction, Multiple Data

(SIMD) vector processing architecture and Intel’s Simultaneous Multi-Threading (SMT)

hyper-threading architecture. The primary architectural difference is in the hardware design.

The SIMD architecture makes use of a vector processing unit that operates on a single thread

by executing a single instruction on multiple data values simultaneously. For example,

this parallelism may be exploited when performing array operations in Fortran, where an

operation is performed element-wise to the array. In contrast, the SIMT architecture executes

multiple threads simultaneously to perform the equivalent operation of a vector processor.

On the other hand, the SMT architecture allows a single CPU core to effectively run multi-

ple independent threads simultaneously. The use of multiple threads is similar to the SIMT

architecture; however, in current Intel technology only makes use of two hyper-threads. The

SIMT architecture makes use of hundreds to thousands of threads. The primary difference in

94

Andrew J. McCall Appendix A: GPU Parallelism 95

these architectures is that the SMT architecture is designed for already low-latency process-

ing units, to mask any remaining low-latency overhead. Conversely, the SIMT architecture

makes use of many thread groups to mask the high latency of the processing units.

Specifically for the NVIDIA Tesla GPU architecture, execution of a GPU kernel code is

parallelized on three levels. Thread blocks are the first level of parallelism and are each

mapped to a single streaming multiprocessor (SM) on the GPU. The Fermi architecture for

NVIDIA Tesla GPUs contains 16 SMs, as shown in Figure A.1a. Each SM contains many

cores that may execute simultaneously. The Fermi architecture contains 32 of these cores

within an SM, as shown in Figure A.1b. In the second level of parallelism, multiple warps may

execute within each thread block. Warp schedulers within the SM handle switching execution

between warps to mask the high latency of the processing units. This warp scheduling is

similar to the context switching used with the SMT architecture. Finally, within each warp

the threads within the SM are executed simultaneously, similar to the vector processing of

the SIMD architecture. These levels of parallelism, thread blocks, warps, and threads, are

synonymous to the OpenACC terminology of gangs, workers, and vectors, respectively.

(a) Illustration of full Fermi architecture pro-
cessing die.

(b) Illustration of a single Fermi architecture
SM.

Figure A.1: The Fermi architecture for NVIDIA Tesla GPUs.[2]

Andrew J. McCall Appendix A: GPU Parallelism 96

Overall, the design of the GPU relies on high occupany (high usage of the threads) to attain

good performance and effectively mask the high latency of the GPU architecture. However,

this high occupancy also potentially produces a much greater throughput than the CPU,

even when using either the SIMD or SMT architecture. Therefore, GPU computing is ideal

for accelerating performance of scientific computing applications where a set of operations

are performed on a large domain set.

References

[1] NVIDIA Corporation. NVIDIA”s Next Generation CUDA Compute Architecture: Fermi.
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_

Compute_Architecture_Whitepaper.pdf.

[2] NVIDIA Corporation. White Paper: NVIDIA GF100. www.nvidia.com/object/IO_
86775.html.

Appendix B

SENSEI MPI Implementation

97

Andrew J. McCall Appendix B: SENSEI MPI Implementation 98

B.1 Serial Implementation Theory

The theoretical performance of the serial implementation is outlined in Table B.1. The

performance analysis is based on a value n, which is on the same order of the dimensions of

the computational domain. In other words, if N is on the order of the total number of cells

in the domain, then O(n) = O(N1/3). This assumes the problem is three-dimensional. This

choice for n is selected because typically when trying to increase the accuracy of a solution,

the grid is systematically and consistently refined in all dimensions. Therefore, if one level of

grid refinement leads to an increase of both dimensions by a factor of 2, then n also increases

by a factor of 2, whereas the total number of cells and total number of degrees of freedom

increases by a factor of 8. Therefore, we analyze the theoretical bounds of performance of

the problem with increase in grid refinement.

Table B.1: Theoretical performance of serial code.

Explicit Implicit
Function Order Function Order

CFL ramping O(1) CFL Ramping O(1)
Local Time Step O(n3) Local Time Step O(n3)
Global Time Step O(n3) Global Time Step O(n3)

Update BCs O(n3) +O(n2) Update BCs O(n3) +O(n2)
Exchange Bound Data O(n3) Exchange Bound Data O(n3)

Compute Residuals O(n3) +O(n2) Compute LHS O(n3)
Check convergence O(n3) Compute Residuals O(n3) +O(n2)
Solution Update O(n3) Check convergence O(n3)

Compute RHS O(n3)
Scaling O(n3)

Preconditioning O(n3)
Iterative Solver O(n3 ∗ k)
Solution Update O(n3)

Overall O(n3) Overall O(n3 ∗ k)

Since SENSEI is capable of solving multi-block grids, note that data still must be exchanged

along inter-block boundaries and along periodic boundaries although not using MPI (this

is a serial implementation analysis). Furthermore, the orientation of different blocks (or

Andrew J. McCall Appendix B: SENSEI MPI Implementation 99

different periodic boundaries on the same block) is not required to be consistent. This

adds the required complication of transforming the memory-storage order of the data before

exchanging the data to ensure the data orientation is consistent with the receiving boundary’s

orientation. The compressed sparse row (CSR) matrix storage format is used by SENSEI to

store only nonzero entries in the matrix. For sparse matrices such as the Jacobian matrix used

for computing the solution update in the implicit formulation, this reduces the storage size

to O(n3), the order of the number of unknowns. It is also noted that the CSR storage format

is what allows the implicit formulation to retain O(n3) performance for preconditioning and

the GMRES linear solve to retain O(n3 ∗ k) performance. Ideally the number of iterations

for convergence of the linear solve, k, is minimally affected by the domain size and is much

less than n3.

B.2 Parallel Implementation Theory

This parallel implementation makes use of the fundamental divide-and-conquer model, where

the computational domain is decomposed among the available processes such that each

process can independently compute the residuals and update the solution for its local sub-

domain. Since SENSEI is capable of solving multi-block problems, the decomposition must

be applied to all blocks with the available number of processes. The only communication

necessary during the solver iteration is to compute the global time-step, exchange inter-block

boundary solution data, and compute the global norm of the residuals to evaluate iterative

convergence. The primary development cost for this distributed memory parallelism occurs

in the domain decomposition. This is advantageous for the overall performance of the solver

because the most potential for parallel overhead occurs in the non-iterative portion of the

solver. Typically this portion of the solver consumes less than 1% of the execution time

since it is only executed once. Therefore, the solution time will be highly insensitive to any

inefficiency in this portion of the implementation.

Andrew J. McCall Appendix B: SENSEI MPI Implementation 100

B.2.1 Domain Decomposition

Multiple considerations must be made in the decomposition of the domain. First, we consider

the type of decomposition. The domain could be sub-divided along a single dimension or

along multiple dimensions. The desirable characteristics that serve as metrics to influence

the choice of decomposition type are as follows.

1. Maximize the utility of the decomposition method for any general case and any number

of available processes.

2. Minimize the total amount of data transferred between sub-domains.

3. Minimize the difference in decomposed domain sizes to balance the computational load.

4. Minimize the number of communication calls made between sub-domains.

5. Maximize the amount of contiguous memory transferred between sub-domains.

Before discussing these metrics, it is important to discuss the costs of communication. La-

tency is the time required to communicate data and bandwidth defines the throughput,

or rate of data transfer. In latency-bound communication, the latency will remain high

even with a high bandwidth because the up-front cost of executing the data transfer, in-

dependent of size, will outweigh the high throughput of the data transfer. Conversely, in

bandwidth-bound communication the bandwidth for transferring data is low enough that

the data transfer cost is primarily attributed to the limitation set by reaching the maximum

throughput, or bandwidth.

As a general CFD solver, this first metric is highly important since SENSEI is intended to

work for any CFD problem. As a structured grid solver, we may simplify our decomposition

analysis by noting that a structured grid may be mapped into a computational domain space

that is rectangular (or cubic for 3D problems) with uniform spacing. This allows us to easily

visualize the decomposition without loss of generality since the decomposition illustrated in

Andrew J. McCall Appendix B: SENSEI MPI Implementation 101

the computational domain could apply with any arbitrary mapping function to any struc-

tured, physical domain. Consider Figure B.1, which illustrates a 1D decomposition and a 3D

decomposition of the same domain in computation space. This domain has an equal number

of cells in each dimension. The same number of subdivisions are used to decompose each

domain, yet it is apparent that the number of subdivisions possible in a 1D decomposition

are much more limited than for a 3D decomposition. The 1D decomposition is limited by the

number of cells in the decomposed dimension of the domain. For example, a 64×64×64-cell

grid used with a second order discretization in SENSEI requires a minimum sub-domain di-

mension of four cells to prevent adverse interactions between sub-domains. Therefore, the 1D

decomposition can only use up to 16 sub-domains, whereas the 3D decomposition can use up

to 163 (4, 096) sub-domains. However, what if the domain is larger in a given dimension and

therefore requires more cells? If large enough, the problem becomes highly one-dimensional,

and a 1D decomposition might provide the most amount of decompositions possible. For

example, if instead of a 64 × 64 × 64-cell grid we used a 1024 × 16 × 16-cell grid, a purely

1D decomposition could have 256 sub-domains, whereas a purely 3D decomposition could

only have 43 (64) sub-domains. Therefore, the decomposition algorithm must be intelligent

enough to determine what mixture of these decompositions to apply.

(a) 1D domain decomposition. (b) 3D domain decomposition.

Figure B.1: Different domain decompositions with the same number of sub-domains in com-
putational space. This illustrates the limited scalability of a 1D decomposition.

Andrew J. McCall Appendix B: SENSEI MPI Implementation 102

This problem relates to and can be solved by addressing the next metric, which is especially

important for bandwidth-bound communication. To minimize the total amount of data

transferred between sub-domains, we want to minimize the surface area to volume ratio

of all sub-domains. Considering that the geometrically minimal surface area solution for

any volume is a sphere, we desire to decompose the domain to approximate this shape in

the computational domain. Therefore, the minimal surface area solution is a cubic shape

in the computational domain. By optimizing this function, we automatically apply more

decomposition in the dimensions with more cells. Since this is a discrete problem, we have

to determine the discrete decomposition that minimizes the total amount of data transferred

for each subdomain.

(a) Blocks can vary drastically in size. (b) We try to minimize the differ-
ence in sub-domain volume.

Figure B.2: Illustration of a hypothetical multi-block grid in computational space.

The next metric is much more consequential for the multi-block case. In a single-block

decomposition, we simply divide the total number of grid points as evenly as possible among

the sub-domains. However, for the multi-block case, oftentimes the blocks vary drastically

in size in the computational domain, as illustrated in Figure B.2. This complicates the

decomposition as the appropriate portion of available processes must be assigned to each

block so that each block knows how many processes it may use for its decomposition. Again,

this would be an elementary operation by simply assigning the number of processes to each

block based on its total number of cells relative to the total number of cells in all blocks;

Andrew J. McCall Appendix B: SENSEI MPI Implementation 103

however, this is a discrete problem. This metric usually competes with the previous metric

for minimizing the surface area of each subdomain.

Consider the case that the available processes are proportionally distributed to each block,

yet the larger block is one process short of a decomposition that would minimize the surface

area of each sub-domain. It is quite possible that by giving one more process to the larger

block and not minimizing the difference in volumes of the two block’s sub-domains, the

overall performance of the solver will be increased. Therefore, the implementation must

determine a balance between these optimizing functions.

Now consider the fourth metric, to minimize the total number of communication calls made

between sub-domains. This metric is very important for latency-bound communication. A

1D decomposition best satisfies this metric, as each sub-domain only communicates with two

neighbors. In contrast, a 3D decomposition requires communication with up to 6 neighbors.

However, the 1D decomposition cannot guarantee satisfaction of the first two metrics, which

are more important for SENSEI to satisfy, so this should be done only in circumstances when

the system communication is highly latency-bound.

The final metric provides a similar conclusion to the fourth metric. To maximize the amount

of contiguous data transfer, a 1D decomposition in the dimension with the largest stride

(distance in memory between consecutive indices) will allow for completely contiguous data

transfer between sub-domains. Fortran uses column-major ordering for memory storage,

so a decomposition in the third dimension index, corresponding to the z-dimension, would

maximize the amount of contiguous data transfer. Again, this conflicts with the first two

metrics and should be considered in cases of highly latency-bound communication. In the

case of a 3D decomposition, this would also imply that a 2D decomposition in the y and

z dimensions would provide better performance than a 2D decomposition in the x and z

dimensions or the x and y dimensions.

With all of these considerations, it was determined that a decomposition method based on the

first three metrics would provide the best performance and capability desired for SENSEI.

Andrew J. McCall Appendix B: SENSEI MPI Implementation 104

This implementation is accomplished by first proportionally distributing processes among

the blocks, then iteratively enforcing as close to a minimum surface area decomposition as

possible and reinforcing the proportional distribution of processes until the solver converges

to an optimal decomposition or the maximum number of iterations is attained. With each

iteration, the remaining processes that are not used because of the attempt to minimize

the surface area are distributed among all blocks to determine which block(s) can make the

most effective use of the remaining processes. The algorithm is outlined in Figure B.3: This

algorithm was found to converge within 2 or 3 iterations for multiple test cases with different

domain sizes and numbers of available processes.

B.2.2 Theoretical Analysis

This section provides a basic theoretical analysis for the performance of the parallel imple-

mentation of SENSEI for 3D problems. Again, n is on the order of the dimensions of the

computational domain. The order of every parallel function within SENSEI is also analyzed

accounting for p, the number of processes, ts, the startup time for setting up parallel commu-

nication, and tw, the per-word parallel communication cost dependent upon the amount of

data being transferred. This analysis assumes that all collective calls (broadcasting, scatter-

ing, gathering, etc.) are made using a binary tree network topology. This topology dictates

that the data is broadcast from one process to two neighbors, which subsequently each

broadcast to two other neighbors, communicating the data to all processes in log(p) steps.

Decomposition Parallelism

The steps involved with decomposing the domain and their associated performance are out-

lined in Table B.2 with the associated order of each function. The domain decomposition

requires no parallel communication and the execution time is negligibly affected by the do-

main grid size, so this operation has a constant order. The order of the block decomposition

Andrew J. McCall Appendix B: SENSEI MPI Implementation 105

! Calculate total volume of all blocks

! Determine ideal distribution of nodes among blocks

! (To minimize difference in sub-domain volumes)

! Iterate until converged or reach maximum iteration

for i from 1 to max_iter

for n from 1 to num_blocks

! Enforce as close to minimum sub-domain surface area as possible

! Reinforce as close to ideal distribution as possible with

! remaining processes available.

end loop

! Calculate total remainder of processes

if remainder > 0 then

add remainder to process count for all blocks

else if remainder == 0 then

return ! The decomposition is computed

else if nothing has changed this iteration

exit loop

end if

end loop

! Order blocks from largest to smallest

for n from 1 to num_blocks

! Now that the decomposition has been optimized, try to reduce the

! total remainder as much as possible to make use of all processes.

if remainder < 0 then

! Do whatever it takes to make the remainder positive.

! (Makes use of the reordered list of blocks)

end if

end loop

Figure B.3: Algorithm for determining the optimal domain decomposition.

Andrew J. McCall Appendix B: SENSEI MPI Implementation 106

is dictated by multiple broadcast collective calls and blocking send/receive calls to trans-

fer the sub-domain grid geometry. The bound decomposition also makes use of broadcast

collective calls.

Table B.2: Theoretical performance of non-iterative portion of the parallel code.

Function Order
Calculate Decomposition O(1)

Decompose Block O(log p(ts + tw)) +O(p(ts + twn
3/p))

Decompose Bounds O(log p(ts + tw))
Add Interior Bounds O(ts + twδ1)

Link Interblock Bounds O(δ2 log p(ts + tw)) +O(ts + tw)

All parallel communication for adding interior boundaries and linking these interior bound-

aries between sub-domains is for transfer data sizes of δ. These steps use non-blocking

send/receive calls as well as broadcast and gather collective calls. Since δ is much smaller

than n, the primary parallel overhead of the decomposition is generated by distributing the

physical coordinates of all grid nodes to all other processes from the root process. This

function uses blocking communication since all communication is with the root already, so

the number of simultaneous communication calls is already limited. Therefore, the parallel

execution time and overhead of the non-iterative portion of the code execution is approxi-

mately:

Tp ≈ n3 + log p(ts + tw) + pts + twn
2 + n2/p (B.1)

To ≈ p log p(ts + tw) + p2ts + p(tw + 1)n2 (B.2)

These results lead to an isoefficiency of O(p3), which is not cost-optimal. This parallel

overhead could potentially be reduced by using non-blocking communication; however, since

this portion of the solver is executed only once the overhead due to this inefficiency was not

found to significantly affect overall execution time.

Andrew J. McCall Appendix B: SENSEI MPI Implementation 107

Iterative Solver Parallelism

With all the work performed to decompose the domain, the only remaining communication

for the iterative portion of the solver is to compute the global time step (if used), exchange

solution data at inter-block boundaries, and compute the global residual norm to evaluate

convergence. These functions and associated order of performance are outlined in Table

B.3. The global time stop and computation of a global residual norm both use collective

reduction operations to determine the global values. The boundary data interchange uses

non-blocking send/receive calls.

Table B.3: Theoretical performance of iterative portion of the parallel code.

Function Order
Global Time Step O(log p(ts + tw))

Interchange Bound Data O(ts + twn
2/
√
p)

Global Residual Norm O(log p(ts + tw))

The resulting parallel time and overhead are:

Tp ≈ log p(ts + tw) + ts + twn/
√
p (B.3)

To ≈ p log p(ts + tw) + pts +
√
ptwn (B.4)

Since non-blocking communication is used, the communication that bounds the isoefficiency

(assuming a reasonably high bandwidth) is the collective calls for computing the global time

step and global residual norm. This leads to an isoefficiency of O(p log p) which is close

enough to linear to be considered cost-optimal. Memory-constrained and time-constrained

scalability analyses indicates that the efficiency for these tests is O(1).

Appendix C

Running Parallel SENSEI

Very few modifications are required to run SENSEI in parallel with MPI, OpenACC, or

both. The key steps to run SENSEI in parallel are outlined within this section.

C.1 Compiling SENSEI

With the updated use of cmake to compile SENSEI, only a couple of flags are necessary

to add or modify. The serial cmake compile requires execution of the following statements

within the build directory:

cmake -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_Fortran_COMPILER=[gfortran, pgfortran]

[-DMPI=OFF] [-DOPENACC=OFF] <path-to-SENSEI>/SENSEI/

make

For the parallel build of SENSEI, an MPI option flag and OpenACC option flag are added.

When using MPI, the compiler should be changed to Open MPI (or some other MPI im-

plementation such as MVAPICH2), that is compiled to use the desired underlying compiler

108

Andrew J. McCall Appendix C: Running Parallel SENSEI 109

(e.g. GCC’s gfortran or PGI’s pgfortran). The network directory for Dr. Roy’s research lab

contains two compilations for Open MPI 1.10.0: one that uses gfortran and one that uses

pgfortran. When using OpenACC, compile with either pgfortran or the Open MPI compiled

to run with PGI. The updated compile statements are as follows:

cmake -DCMAKE_BUILD_TYPE=RELEASE

-DCMAKE_Fortran_COMPILER=[gfortran, pgfortran, mpifort]

-DMPI=[ON,OFF] -DOPENACC=[ON,OFF] <path-to-SENSEI>/SENSEI/

make

C.2 Namelist Inputs

No additional inputs are necessary for the input file namelist. However, in the case that the

user desires the automatic domain decomposition to give preference to a decomposition that

uses more processes than a decomposition that is more optimal in the decomposition metrics,

as discussed in Appendix B, the nonoptimal decomp input may be used in the parallel

namelist section, as shown below. If set to true, a decomposition that uses more processes

but is less optimal will be given preference.

&PARALLEL

NONOPTIMAL_DECOMP=[T,F]

/

C.3 Running SENSEI

Finally, if running SENSEI with MPI, the mpirun executable must be used to start the

processes desired for program execution. Details on the use of mpirun may be found in the

Andrew J. McCall Appendix C: Running Parallel SENSEI 110

man page documentation of this executable[1]. A basic example to run SENSEI with 32

processes, mapped and bound to separate sockets, is shown below.

mpirun -np 32 --map-by ppr:1:socket --bind-to socket

<SENSEI-build-dir>/bin/SENSEI

References

[1] The Open MPI Project. mpirun(1) man page (version 1.10.1). https://www.open-
mpi.org/doc/v1.10/man1/mpirun.1.php.

