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ABSTRACT

A door-to-door trip may involve multiple traffic modes. For example, travelers may drive
to a subway station and make a transfer to rail transit; alternatively, people may also start
their trips by walking/cycling to a bus/subway station and then take transit in most of the
trip. A successful eco-route planning thus should be able to cover multiple traffic modes
and offer intermodal routing suggestions. Developing such a system requires to address
extensive concerns. The dissertation is a building block of the multi-modal energy-efficient
routing system which is being developed and tested in the simulation environment before real
applications. Four submodules have been developed in the dissertation as partial fulfillment
of the simulation-based system: energy consumption modeling, subway system development,
on-road vehicles dynamic eco-routing, and information effect on route choice behavior. Other
submodules such as pedestrian/bicycle modeling will be studied in the future.

Towards the research goal, the dissertation first develops fuel consumption models for on-road
vehicles. Given that gasoline light duty vehicles (LDVs) and electric vehicles were modeled in
previous studies, the research effort mainly focuses on heavy duty vehicles (HDVs). Specif-
ically, heavy duty diesel trucks (HDDTs) as well as diesel and hybrid-electric transit buses
are modeled. The models are developed based on the Virginia Tech Comprehensive Power-
based Fuel consumption Modeling (VT-CPFM) framework. The results demonstrate that
the model estimates are highly consistent with field observations as well as the estimates of
the Comprehensive Modal Emissions Model (CMEM) and MOtor Vehicle Emissions Simula-
tor (MOVES). It is also found that the optimum fuel economy cruise speed ranges between
32 and 52 km/h for the tested trucks and between 39 and 47 km/h for the tested buses on
grades varying from 0% to 8%, which is significantly lower than LDVs (60-80 km/h).

The dissertation then models electric train dynamics and energy consumption in support of
subway simulation system development and trip energy estimation. The dynamics model
varies throttle and brake level with running speed rather than assuming constants as was
done by previous studies, and the energy consumption model considers instantaneous energy
regeneration. Both models can be easily calibrated using non-engine data and implemented
in simulation systems and eco-transit applications. The results of the dynamics modeling
demonstrate that the proposed model can adequately capture instantaneous acceleration/de-
celeration behavior and thus produce realistic train trajectories. The results of the energy



consumption modeling demonstrate that the model produces the estimates consistent with
the National Transit Database (NTD) results, and is applicable for project-level analysis
given its ability in capturing the energy consumption differences associated with train, route
and operational characteristics.

The most suitable simulation testbed for system development is then identified. The disser-
tation investigates four state-of-the-art microsimulation models (INTEGRATION, VISSIM,
AIMSUM, PARAMICS). Given that the car-following model within a micro-simulator con-
trols longitudinal vehicle motion and thus determines the resulting vehicle trajectories, the
research effort mainly focuses on the performance of the built-in car-following models from
the energy and environmental perspective. The vehicle specific power (VSP) distributions
resulting from each of the car-following models are compared to the field observations. The
results demonstrate that the Rakha-Pasumarthy-Adjerid (RPA) model (implemented in the
INTEGRATION software) outperforms the Gipps (AIMSUM), Fritzsche (PARAMICS) and
Wiedemann (VISSIM) models in generating accurate VSP distributions and fuel consump-
tion and emission estimates. This demonstrates the advantage of the INTEGRATION model
over the other three simulation models for energy and environmental analysis.

A new eco-routing model, comprehensively considering microscopic characteristics, is then
developed, followed by a numerical experiment to test the benefit of the model. With the
resulting eco-routing model, an on-road vehicle dynamic eco-routing system is constructed
for in-vehicle navigation applications, and tested for different congestion levels. The results
of the study demonstrate that the proposed eco-routing model is able to generate reason-
able routing suggestions based on real-time information while at the same time differentiate
eco-routes between vehicle models. It is also found that the proposed dynamic eco-routing
system achieves lower network-wide energy consumption levels compared to the traditional
eco-routing and travel time routing at all tested congestion levels. The results also demon-
strate that the conventional fuel savings relative to the travel time routing decrease with the
increasing congestion level; however, the electric power savings do not monotonically vary
with congestion level. Furthermore, the energy savings relative to the traditional eco-routing
are also not monotonically related to congestion level. In addition, network configuration is
demonstrated to significantly affect eco-routing benefits.

The dissertation finally investigates the potential to influence driver behavior by studying
the impact of information on route choice behavior based on a real world experiment. The
results of the experiment demonstrate that the effectiveness of information in routing ratio-
nality depends upon the traveler’s age, preferences, route characteristics, and information
type. Specifically, information effect is less evident for elder travelers. Also, the provided
information may not be contributing if travelers value other considerations or one route sig-
nificantly outperforms the others. The results also demonstrate that, when travelers have
limited experiences, strict information is more effective than variability information, and
that the faster less reliable route is more attractive than the slower more reliable route; yet
the difference becomes insignificant with experiences accumulation. The results of the study
will be used to enhance system design through considering route choice incentives.
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GENERAL AUDIENCE ABSTRACT

A door-to-door trip may involve multiple traffic modes. For example, travelers may drive
to a subway station and make a transfer to rail transit; alternatively, people may also start
their trips by walking/cycling to a bus/subway station and then take transit in most of the
trip. A successful eco-route planning thus should be able to cover multiple traffic modes
and offer intermodal routing suggestions. Developing such a system requires to address
extensive concerns. The dissertation is a building block of the multi-modal energy-efficient
routing system which is being developed and tested in the simulation environment before real
applications. Four submodules have been developed in the dissertation as partial fulfillment
of the simulation-based system: energy consumption modeling, subway system development,
on-road vehicles dynamic eco-routing, and information effect on route choice behavior. Other
submodules such as pedestrian/bicycle modeling will be studied in the future.

Towards the research goal, the dissertation first develops fuel consumption models for on-road
vehicles. Given that gasoline light duty vehicles (LDVs) and electric vehicles were modeled in
previous studies, the research effort mainly focuses on heavy duty vehicles (HDVs) including
heavy duty diesel trucks (HDDTs) as well as diesel and hybrid-electric transit buses. The
model estimates are demonstrated to provide a good fit to field data.

The dissertation then models electric train dynamics and energy consumption in support of
subway simulation system development and trip energy estimation. The proposed dynamics
model is able to produce realistic acceleration behavior, and the proposed energy consump-
tion model can provide robust energy estimates that are consistent with field data. Both
models can be calibrated without mechanical data and thus easily implemented in complex
frameworks such as simulation systems and eco-transit applications.

The most suitable simulation testbed for system development is then identified. The dis-
sertation investigates four state-of-the-art microsimulation models (INTEGRATION, VIS-
SIM, AIMSUM, PARAMICS). The results demonstrate that INTEGRATION outperforms
the other three simulation models for energy and environmental analysis. Also, INTEGRA-
TION is able to generate measures of effectiveness (MOEs) for electric vehicles, which makes
it more competitive than the state-of-the-art counterpart.

A dynamic eco-routing system is then developed in the INTEGRATION simulation environ-
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ment. The built-in eco-routing model of the system comprehensively considers microscopic
characteristics and is demonstrated to generate reasonable routing solutions based on real-
time information while at the same time differentiate vehicle models. The system is able
to provide routing suggestions for both conventional gasoline/diesel and electric vehicles.
The testing results demonstrate that the proposed eco-routing system achieves network-
wide energy savings compared to the traditional eco-routing and travel time routing at all
tested congestion levels. Also, network configuration is demonstrated to significantly affect
eco-routing benefits.

The dissertation finally investigates the potential to influence driver behavior by studying
the impact of information on route choice behavior based on a real world experiment. The
results of the experiment demonstrate that the effectiveness of information in routing ratio-
nality depends upon the traveler’s age, preferences, route characteristics, and information
type. Specifically, information effect is less evident for elder travelers. Also, the provided
information may not be contributing if travelers value other considerations or one route sig-
nificantly outperforms the others. The results also demonstrate that, when travelers have
limited experiences, strict information is more effective than variability information, and
that the faster less reliable route is more attractive than the slower more reliable route; yet
the difference becomes insignificant with experiences accumulation. The results of the study
will be used to enhance system design through considering route choice incentives.
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Chapter 1

Introduction

The transportation sector has become a major contributor to energy use and greenhouse gas
(GHG) emissions not only in the United States but worldwide. As reported by [1, 2], trans-
portation activities account for 28% of the total U.S. energy use and 33.4% of CO2 emissions
(CO2 is the majority of GHG emissions). Globally, 27% of the world primary energy con-
sumption and one-third of CO2 emissions are contributed by the transportation sector [3].
Climate change and deteriorating dwelling environment stimulate numerous efforts on envi-
ronmentally sustainable transportation systems, such as improving vehicle engine efficiency,
developing alternative fuels, reducing the vehicle miles traveled (VMT), and enhancing traffic
operational efficiency. Intelligent transportation system (ITS) technologies have been widely
utilized to reduce energy use and emissions by improving traffic operational efficiency.

One of the major successes in ITS during the past decade is the advanced traveler information
systems (ATIS). ATIS is basically the system that acquires, analyzes, and presents informa-
tion to assist surface transportation travelers in moving from a starting location (origin)
to their desired destinations [4]. Relevant information may include locations of incidents,
weather and road conditions, optimal routes, recommended speeds, and lane restrictions. In
particular, starting from the early 2000’s, online trip planning services became increasingly
available and quickly started to be an integral part of route planning, especially for private
users [5]. The majority of the commercial routing services primarily offer the route with
either shortest distance or minimum travel time between an origin and a destination. The
shortest distance route is typically calculated based on the physical lengths of network road-
ways. The minimum travel time route is usually generated based on speed limits of different
road types. Recently, more advanced services have been developed that are capable of using
real time information to provide optimum routes so that enable drivers to avoid congestion
and incidents.

Nonetheless, either shortest distance or minimum travel time routing may not always be
the best from an energy and environmental perspective. For example, although the shortest
distance route minimizes the VMT of a trip, it may result in more energy use and GHG
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emissions per unit distance if congestion occurs on the route. Likewise, vehicles running
on the minimum travel time route may produce higher unit-distance energy and emission
levels given traveling at high speeds. Also, there may be cases that travel time-based routing
results in longer distance traveled. A recent study by Ahn and Rakha [6] demonstrated that
significant improvements to energy and air quality could be achieved when motorists rather
traveled on the arterial route (shorter distance) at moderate speeds, although it incurs
additional travel time compared to the faster freeway route (travel time routing). Given
the limitations of distance and travel time routing in terms of environmental sustainability,
an innovative routing concept, known as eco-routing, has been proposed recently [7, 8] in
response to rising energy costs and increased environmental concerns. An eco-routing system
is designed specifically to minimize trip energy consumption and emission levels.

A door-to-door trip may involve either one traffic mode or sometimes multiple modes. For
example, travelers may drive by themselves throughout a trip, or first drive to a subway
station and then make a transfer to rail transit; alternatively, people may also start their trips
by walking/cycling to a bus/subway station and take transit in most of the time of the trip.
Therefore, a successful eco-route planning should be able to compute energy consumption for
multiple traffic modes and offer inter-modal routing suggestions. Furthermore, for private
car or truck drivers who can choose routes randomly, eco-routing systems are anticipated to
generate routing suggestions based on real time information, so that vehicles can be routed
dynamically. In-vehicle eco-routing applications are also expected to differentiate eco-routes
between vehicle models given their differences in energy consumption behavior. Developing
such a system in reality requires to address extensive concerns such as multi-modal energy
consumption modeling, eco-routing algorithm development, public transit and non-motorized
traffic system design, and travelers responses to received route information.

The dissertation is a building block of the multi-modal energy-efficient routing system which
is being developed and tested in a micro-simulation environment before it can be used in
real applications. Basically, four sub-modules are developed in the dissertation as partial ful-
fillment of the system: energy consumption modeling, subway system development, on-road
vehicles eco-routing, and information effect on route choice behavior. Other sub-modules
such as pedestrian and bicycle modeling will be investigated in the future study.

1.1 Problem Statement

This section presents the research gap relative to the proposed study in five aspects: energy
consumption modeling, subway system development, traffic micro-simulation testbeds, eco-
routing systems for in-vehicle applications, and effect of route information on route choice
behavior.
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1.1.1 Energy Consumption Modeling

Towards the research goal, simple, accurate and efficient energy consumption models rel-
ative to each motor traffic mode are first needed. Numerous models have been developed
from macroscopic to mesoscopic to microscopic levels. The macroscopic and mesoscopic
models such as MOBILE [9], Emission Factors (EMFAC) [10], and the VT-Meso model
[11], however, may produce unreliable estimates given that they are incapable of accounting
for transient vehicle behavior. Instead, microscopic models are better suited to adequately
incorporate the elements associated with a wide range of dynamic characteristics. Most
of the prevalently-used microscopic models such as comprehensive modal emissions model
(CMEM), Motor Vehicle Emissions Simulator (MOVES), VERSIT+micro, the passenger car
and heavy duty emissions model (PHEM), vehicle transient emissions simulation software
(VeTESS), EMIssions from Traffic (EMIT), and the VT-Micro, however, either produce poor
model predictions or cannot be easily calibrated or implemented in complex frameworks (e.g.
traffic simulation software, in-vehicle and smartphone eco-routing and eco-driving applica-
tions).

To overcome these shortcomings in the modeling practice, Rakha et al. developed a model-
ing framework, known as the Virginia Tech Comprehensive Power-based Fuel consumption
Model (VT-CPFM), which can be calibrated using publicly available data or using the data
that can be readily collected by non-engine instrumentation (e.g. GPS) [12]. The VT-CPFM
model has been calibrated for light duty vehicles (LDVs); however, it has not been extended
to model heavy duty diesel vehicles (HDDVs) such as transit buses and trucks. This study
partly aims to develop the HDDVs fuel consumption model.

All of the above-mentioned models were developed for conventional gasoline and diesel ve-
hicles. Towards electric vehicles, Fiori et al. developed the modeling approach, known as
the Virginia Tech Comprehensive Power-based Energy consumption Model (VT-CPEM),
which also can be easily calibrated to specific vehicle models and used in traffic simulation
software, in-vehicle and smartphone eco-routing and eco-driving applications [13]. The VT-
CPEM framework is applied to model electric trains in this study for rail energy estimation.

1.1.2 Subway System Modeling

For the subway system module, a railway simulation model is proposed to be developed
and combined with the train energy model to estimate railway trip energy consumption.
A dynamics model is the essential component to develop the simulation system given that
longitudinal dynamics characterizes the motion of rolling stock vehicles in the direction of
the track and thus determines acceleration/deceleration behavior.

The majority of the existing train dynamics models, however, cannot either capture realistic
acceleration/deceleration behavior (e.g. [14, 15, 16, 17]) or be easily calibrated given the
need of considerable mechanical data for model calibration (e.g. [18, 19, 20]). Unrealistic
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acceleration behavior may result in incorrect simulated vehicle trajectories which cause bias
in energy estimation [21, 22, 23]. Consequently, developing an accurate and efficient train
dynamics model is essential to enhance the robustness of a railway simulation system.

1.1.3 Microsimulation Testbed

As mentioned before, the proposed system is developed and tested in a microsimulation
environment. Microsimulation model is considered because macro- and meso- simulation
models are incapable of modeling instantaneous vehicle motions and thus may cause the
bias in energy estimation. Which microsimulation model would be better suited to serve as
the testbed is thus another issue that needs to be deliberately concerned. The applicability
of a simulation model in this regard highly depends on the accuracy of the simulated vehicle
trajectories and the built-in energy consumption model. A suitable simulation model should
be able to adequately capture realistic vehicle motions and to accurately estimate energy
consumption. In addition, the simulation testbed is also expected to easily model large
transportation network and simultaneously can assign traffic dynamically.

1.1.4 Eco-routing Study for In-vehicle Applications

For private cars and trucks which do not have fixed routes, the routing system is anticipated
to generate route guidance in real time, so that vehicles en route can be re-routed with the
evolution of network traffic conditions using in-vehicle navigation tools.

The majority of the existing eco-routing systems, however, are not able to dynamically
update link costs and thus eco-routes based on real time information. Specifically, these
systems calculate eco-routes by every vehicle’s departure from the origin of a trip; namely,
each vehicle is provided with the optimum route at the beginning of the trip and travels on
the suggested route until it arrives at the destination. Upon these systems, the vehicles en
route cannot be re-routed to other routes even though the traffic conditions on the original
routes environmentally deteriorate. In reality, however, traffic conditions on a road network
evolve in real time. The pre-trip optimum route may be no longer the best when a vehicle
is en route. Traveling on the original optimum route throughout may instead result in more
energy use. Although transit buses and rail trains cannot be re-routed in real time, private
cars and trucks routing should be able to adapt to the ever-changing traffic conditions. It is
worth mention that Rakha et al. [24] developed an agent-based dynamic eco-routing system
which updated eco-routes by every vehicle’s departure from a link. The system, however,
assumes that all vehicle models have the same link energy cost and eco-route, which is not
realistic in reality given that energy behavior significantly differs between vehicle models.

Eco-route calculation is based on the shortest path algorithm which requires the availabil-
ity of link energy cost factors. Accordingly, the accuracy of link cost factors significantly
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determines the validity and robustness of resulting eco-routes. Before an eco-route can be
calculated, link costs should be estimated or updated. Vehicle energy consumption are
affected by many factors including traffic conditions (e.g. speed, acceleration, congestion
level), road attributes (road type and vertical grade), and vehicle characteristics (vehicle
type and weight). Most of the existing eco-routing systems, however, cannot comprehen-
sively incorporate these factors into link cost functions. For example, the early studies,
such as [25, 26, 27, 28, 29, 30], modeled traffic assignment at a macroscopic level, which
either assumed fixed link-specific emission factors or utilized the average speed as the input
of link cost function. These systems cannot capture the impact of dynamic characteristics
(e.g. speed and grade variation) and vehicle specifications on energy estimation, so that
are not suitable for operational level analysis such as evaluating the energy and environ-
mental impact of ITS deployment. A recent study [31] developed a mesoscopic approach
which successfully incorporated road grade and vehicle type into the system modeling. The
system, however, cannot account for the impact of within-link grade and speed variation
on energy estimation. It has been demonstrated that failing to capture these microscopic
characteristics may result in incorrect eco-routing suggestions [6]. Accordingly, developing a
link cost function, comprehensively considering microscopic elements, would be an important
enhancement of the eco-routing study. A recent study [24] successfully incorporated micro-
scopic elements into route planning through estimating and accumulating second-by-second
fuel consumption to achieve link-level fuel cost; however, the study, as mentioned before,
was not able to differentiate link costs and eco-routes between vehicle models.

How to formulate link cost and the eco-routing problem which can comprehensively con-
sider microscopic elements and dynamically route vehicles in real time while simultaneously
differentiate vehicle models? This question remains to be answered by this study.

1.1.5 Effect of Route Information on Route Choice Behavior

In reality, travelers may not completely conform to the received route information. Empirical
research found that the factors considered by travelers in route choice decision-making were
not unitary [32]. Numerous attributes were found to be important considerations such as
travel time, trip distance, average speed, and the number of traffic signals. Therefore, inves-
tigating how travelers response to route information would provide significant implications
to enhance the design of the system in order to maximize the eco-routing benefit.

Despite numerous research efforts in this regard, most of the attempts were based on ei-
ther simulator or stated preference approach. In the simulator surroundings, respondents
make decisions in a digital and virtual environment. Stated preference, alternatively, is
an investigative approach in which respondents are given questionnaires to make choices
hypothetically. Both approaches are performed under fictitious conditions and may not ad-
equately capture actual choice behavior. Consequently, a real world case study is needed to
address the realistic route choice behavior when travelers are informed.
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1.1.6 Conclusions

In a nutshell, this dissertation addresses the following questions:

1. How to develop energy consumption models for HDDVs and electric trains based on
the VT-CPFM and VT-CPEM frameworks, respectively?

2. How to model train dynamics to build a railway simulation system?

3. Which micro-simulation model would be better suited to serve as a modeling tool to
evaluate eco-routing strategies?

4. How to formulate the link cost and eco-routing problem that is able to comprehensively
consider microscopic elements and route private cars and trucks in real-time while at
the same time differentiate between vehicle models?

5. With the resulting link cost and eco-routing model as well as the selected simulation
testbed, how to develop and test the eco-routing system?

6. How would route information affect travelers route choice behavior in the real world?

1.2 Research Scope

The study of the dissertation is not a complete package but a building block of the multi-
modal eco-routing system. Specifically, the study develops some of the submodules including
multi-modal energy consumption models, railway simulation system, dynamic eco-routing
system for in-vehicle applications, and the route information effect on route choice behavior.
Other submodules such as pedestrian and bicycle modeling will be studied in the future.
It should be noted that the proposed system focuses on minimizing energy consumption
and GHG emissions (CO2). The routing solutions on minimum pollutant emissions such as
hydrocarbon (HC), carbon monoxide (CO) and nitric oxides (NOx) are not investigated in
this study. Furthermore, as a preliminary study, this dissertation employs energy consump-
tion as the single objective (the minimum CO2 route is identical to the minimum energy
route given that CO2 is linearly related to energy consumption [12]) without considering the
constraints from other factors such as travel time. In addition, conventional gasoline and
diesel vehicles as well as all-electric vehicles and trains are tested in this study; other vehicle
types (e.g. hybrid electric vehicle (HEV), compressed natural gas (CNG) vehicle) remain to
be included and tested in the future.
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1.3 Research Objectives

Given the above-mentioned research gaps, the research effort presented in this dissertation
attempts to develop some of the submodules of the multi-modal eco-routing system. Towards
this goal, several objectives are addressed:

1. Develop the HDDV and electric train energy consumption model which can be easily
calibrated and implemented in traffic simulation software and in-vehicle eco-routing
and eco-driving applications.

2. Develop a railway simulation system by introducing a state-of-the-art dynamics model.

3. Identify the best microscopic simulation model in which the proposed system can be
developed and tested.

4. Formulate the link energy cost function and eco-routing problem in support of the
private car and truck dynamic eco-routing as an in-vehicle application of the multi-
modal energy-efficient system.

5. Develop and test the dynamic eco-routing system in the simulation environment.

6. Investigate the effect of route information on route choice behavior based on a real
world experiment in order to provide significant implications to enhance the design of
the proposed system in the future.

1.4 Research Contributions

To achieve the state-of-the-art on the proposed study, the major contributions of this dis-
sertation are addressed hereinafter:

1. The dissertation comprehensively investigates the existing research efforts on energy
consumption modeling, railway microsimulation and dynamics, eco-routing study, mi-
croscopic traffic simulation model, effect of route information on route choice behavior,
and offers an in-depth synthesis of the relevant literature.

2. The research constructs real world transit bus trajectory and fuel consumption dataset,
and develops the VT-CPFM-based HDDVs fuel consumption model and VT-CPEM-
based electric train model.

3. The study develops a state-of-the-art train dynamics model which can be calibrated
without mechanical engine data and easily implemented in railway simulation systems.
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4. The research also compares the performance of the state-of-the-art traffic microsimu-
lation software in terms of energy and environmental analysis, and identifies the sim-
ulation model which produces the lowest prediction error in vehicle trajectories and
energy consumption to be served as the testbed for the proposed system.

5. Furthermore, the dissertation formulates the link energy cost function and eco-routing
problem based on the VT-CPFM and VT-CPEM models, which adequately includes
microscopic elements and is able to serve real time eco-routing application while at the
same time to differentiate eco-routes between vehicle models.

6. With the resulting link cost and eco-routing model as well as the selected simulation
testbed, the dissertation develops and tests the private car and truck dynamic eco-
routing system as an exemplary application of the multi-modal eco-routing system.
The system is tested by comparing the resulting network-wide measures of effectiveness
(MOEs) with those derived from traditional dynamic eco-routing [24] and the travel
time routing methods.

7. The research also constructs a route choice dataset based on a real world experiment,
and investigates how drivers make route choice decision when they are informed with
dynamic route information.

1.5 Dissertation Layout

In achieving the research objectives, the dissertation is composed of eight chapters. The first
chapter provides an overview of the problem and identifies research scope, objectives and con-
tributions. The second chapter provides a synthesis of the literature on energy consumption
and emissions modeling, railway simulation and dynamics, eco-routing study, traffic micro-
simulation model, effect of route information on route choice behavior, and identifies research
needs that are to be addressed. The third chapter introduces the VT-CPFM framework and
develops fuel consumption models for HDDVs (i.e. heavy duty truck and transit bus). The
fourth chapter develops electric train energy consumption and dynamics models in support
of railway simulator development and trip energy estimation. The fifth chapter identifies the
best microsimulation testbed through comparing the model performance in terms of energy
and emissions analysis. The sixth chapter formulates the link energy cost and eco-routing
problem, and develops and tests the private car and truck dynamic eco-routing system in
the selected simulation testbed. The seventh chapter investigates the effect of route infor-
mation on route choice behavior. Finally, the last chapter gives the concluding remarks of
the dissertation and provides several recommendations for further research.
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Chapter 2

Literature Review

This chapter presents extensive literature to further address the research needs and establish
the basis for the proposed research effort. First, the modeling work on energy and emissions is
introduced in order to identify the best model for the proposed eco-routing system. Secondly,
the literature on railway simulation and dynamics is reviewed. Thirdly, the chapter compares
the most state-of-the-practice microscopic traffic simulation software in terms of energy and
environmental analysis. Furthermore, the existing eco-routing systems are comprehensively
investigated, which sheds light on the limitations of these research efforts and enlightens
the significance of the proposed study. Finally, the studies relative to the effect of route
information on route choice behavior are presented.

2.1 Energy Consumption and Emission Modeling

As mentioned in section 1.1.1, macroscopic and mesoscopic models may produce unreliable
estimates given their inability in accounting for transient vehicle behavior. Alternatively, mi-
croscopic models are able to generate robust model estimates through addressing the details
in instantaneous vehicle motions, and thus are applied in this study. This section mainly
focuses on the research efforts relative to microscopic models. Review effort is presented for
conventional fossil fuel-powered vehicles as well as electric vehicles and trains respectively.

2.1.1 Conventional Gasoline and Diesel Vehicle

There are several key microscopic models for conventional vehicles, including CMEM, PHEM,
EMIT, VT-Micro, VeTESS, MOVES, VERSIT+micro, VT-CPFM. The review effort mainly
focuses on these models.

CMEM was originally developed at the University of California (UC) at Riverside, along with
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researchers from the University of Michigan and Lawrence Berkeley National Laboratory.
This model is a physically power-based model that separates the entire modeling process into
different components which consist of a power demand model, an engine speed estimator, a
fuel rate model, an engine-out emission component and an after-treatment component [33].
The first three components are used to generate fuel consumption rate. The CMEM-based
fuel consumption model requires the input of engine data (e.g. engine speed) to generate
model estimates. Therefore, the model can be calibrated only when the engine data is
available, which makes the calibration work difficult and thus limits its popularization to
new vehicle models. The requirement of engine data also restricts the extensive use of the
model in complex frameworks such as traffic simulation software. Another issue of the model
is that the model characterizes fuel consumption as a linear function of vehicle power, which
may produce a bang-bang type of control. The bang–bang control may arise when the partial
derivative of fuel consumption with respect to the vehicle power is not a function of vehicle
power [12, 34], suggesting that drivers accelerate at full throttle to reduce acceleration time
and minimize their trip fuel consumption levels.

Another model, which also requires the input of engine speed and torque for model devel-
opment, is the PHEM modeling framework [35]. Similar to CMEM, PHEM also cannot be
easily calibrated given the need of engine data and is difficult to popularize to new vehicle
models.

Massachusetts Institute of Technology (MIT) researchers developed a simple statistical model,
known as EMIT [36], to estimate instantaneous emissions and fuel consumption for light-
duty composite vehicles. The model uses instantaneous speed/acceleration and vehicle spec-
ifications as input variables and is easy to calibrate and implement. However, the model
was calibrated and validated only for two composite LDVs under the level grade condition.
Further efforts are needed to model other vehicle categories and include road grade as an
explanatory variable. In addition, the model cannot cover a wide range of real world driving
conditions given that it was calibrated using very limited data.

Another statistical model (VT-Micro) was developed in 2004 by Virginia Tech researchers,
characterizing fuel consumption as a polynomial combination of speed and acceleration. The
original VT-Micro model was developed using chassis dynamometer data for nine LDVs, and
then was expanded to more vehicle categories including 60 LDVs and trucks [37]. The model
predictions were compared against laboratory measurements, producing the prediction error
of fuel consumption within 2.5%. The major limitation of the model is that the calibration
work requires massive on-road data collection, which would significantly increase monetary
and time costs to calibrate new vehicle models.

VeTESS [38] was developed for a European project, known as DECADE, to capture dynamic
engine behavior and to predict instantaneous fuel consumption and emissions. The model
evaluates engine speed and torque from the forces acting on the vehicle, and can adequately
predict fuel consumption and emissions. The major limitation of the model is that it consid-
ers only one vehicle at a time and one journey at a time. Also, model calibration requires a
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large amount of engine tests. If an engine type or its emissions control equipment is updated,
the engine test must be repeated for the new engine. This demonstrates that the model is
not suitable for mass simulation of hundreds of vehicle types, and also not easily used in
traffic simulation system and ITS applications.

Environmental Protection Agency (EPA) also developed a microscopic model, known as
MOVES which has been widely used in the United States for energy and environmental
analysis at different levels: national, state and project. The up-to-date version of the model
is MOVES 2014. The input of the model is instantaneous vehicle speed and acceleration
as well as road grade and vehicle specifications, without any engine data required. To
generate MOVES estimates, the operating modes, defined discretely based on vehicle speed,
acceleration and vehicle specific power (VSP) [39], need to be calculated. MOVES cannot
model specific vehicle models, and provides less accurate model estimates at an instantaneous
level compared to CMEM and VT-Micro given the discrete operating mode definition [40].
Furthermore, the use of the model requires massive user inputs for each scenario run and
significantly increases the time required to run multiple scenarios and large networks [40, 41],
which is not suitable for real time applications.

VERSIT+micro is another microscopic model which was developed in Netherlands to simulate
the emissions of CO2, NOx and PM10 as well as energy consumption [42]. The inputs of
the model are instantaneous speed and acceleration which can be easily collected using
non-engine instrumentation. The model also accounts for the impact of vehicle type and
road gradient on the model estimates. It is worth mention that VERSIT+micro can be
easily linked to complex frameworks such as traffic simulation models so that allows for
evaluation of effectiveness of transportation measures (e.g. signal coordination and speed
control) in improving energy efficiency and air quality. However, the model assumes that
energy/emissions are the linear dependence on vehicle speed, which is not correct in reality
and may lead to model estimation bias. Also, the linear relationship, as mentioned before,
may result in the bang-bang type of control.

To overcome the shortcomings of the above-mentioned models, Rakha et al. [12] developed
the VT-CPFM modeling framework which characterizes fuel consumption as a second-order
polynomial function of vehicle power, circumventing the bang-bang control problem. The
model can be calibrated using publicly available data without massive field data collection.
The validity of the model has been tested using both standard driving cycles [12] and on-
road measurements [43]. Also, given the simple model specification, the model is ideal for
implementation within traffic simulation software, in-vehicle or smartphone applications.
The model was originally developed for gasoline LDVs, yet it has not been extended to
HDDVs before this study. Chapter 3 presents the HDDVs modeling effort in detail.

13



J. Wang

2.1.2 Plug-in Electric Vehicle

Energy consumption models can be divided into two categories: forward models and back-
ward models [44]. As demonstrated by [13], models that compute the tractive contribution
required at the wheels and “work backward” towards the engine are called “backward mod-
els”; alternatively, models that start from the engine and work with transmitted and reflected
torque are called “forward models”. The use of forward models requires extensive internal
engine data. These models are very complex and characterized by slow execution time and
high computer memory. Backward models, however, achieve reliable evaluation of vehicle
energy consumption based on drive cycle and vehicle characteristic data, without the need
to input engine data. In addition, they are characterized by fast computational times and
low memory usage, and can be easily implemented in traffic simulation model and ITS ap-
plications [45]. The backward modeling approach is thus recommended for the proposed
study.

Macroscopic and mesoscopic electric energy models, similar to conventional fuel models,
also do not allow for addressing the differences of electric power consumption associated
with microscopic characteristics. For example, the aggregated values are not able to reflect
difference in energy consumption that results from traveling on one route with frequent
acceleration and deceleration and cruising on another route with constant speed if both
trips have identical average speed. Accordingly, the electric energy model used for ITS
applications (e.g. eco-routing navigation) should be able to consider microscopic elements.

A number of models have been developed to estimate plug-in electric vehicle energy con-
sumption. For example, Hayes et al. [46] developed a simplified energy model to quantify
the impact of battery degradation on the total vehicle energy consumption. The model is
able to recognize the differences of energy consumption resulting from various routes, driv-
ing conditions, and driving cycles. Muratori et al. [47] proposed a model to estimate the
total energy consumption associated with private cars of the United States. The model was
used to evaluate the impact of plug-in electric vehicles on the electric power grid. Another
effort [48] developed an analytical model which characterized energy power as a function of
vehicle velocity, acceleration and road grade. The model is able to differentiate energy use
on different routes and under different driving patterns. Specifically, the results of the study
demonstrated that electric vehicles were more efficient when driving on in-city routes than
driving on freeway routes. Some of the studies incorporated energy regeneration into the
modeling practice. Abousleiman et al. [49] evaluated the energy consumption of an electric
vehicle considering a constant regenerative braking efficiency. Hayes et al. [50] developed
an energy consumption model based on EPA coast-down parameters by assuming that all
the available regenerative energy was returned to the battery as long as the regenerative
power level is 20 kW or less. Many other efforts have been made on electric energy modeling
such as [51, 52, 53, 54]. Despite these models, most of them cannot either accurately model
vehicle transient behavior, or model energy regeneration at a microscopic level, or easily to
be implemented in traffic simulation software and ITS applications.
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To overcome the above-mentioned modeling shortcomings, Fiori et al. [13] developed a
backward microscopic energy consumption model, known as VT-CPEM, which included
instantaneous speed/acceleration, vehicle specification and road gradient as the explanatory
variables. The model can be easily calibrated using non-engine data and also implemented in
the following applications: in-vehicle or smartphone eco-driving and eco-routing systems, and
transportation microsimulation software. It is worth mention that the model can address the
energy regeneration microscopicly by characterizing regenerative efficiency as an exponential
function of instantaneous deceleration level, as formulated in Equation (2.1),

ηre(t) =

{
1

e
α
|a(t)|

, ∀a(t) < 0

0, ∀a(t) ≥ 0
(2.1)

where ηre is the regenerative efficiency (%), a is the acceleration level (m/s2), and α is the
model coefficient. Equation (2.1) demonstrates that energy can be regenerated only during
braking (a < 0). The resulting regenerative efficiency is used to calculate recovered energy
(Precovery) as illustrated in Equation (2.2) with Pavailable the total available negative power
to be regenerated (kW ).

Precovery(t) = Pavailable(t)× ηre(t) (2.2)

The electric power consumption is computed using Equation (2.3):

P (t) =

(
ma(t)+mg ·cos(θ)· Cr

1000
(c1v(t)+c2)+0.5ρairAfCDv

2(t)+mg ·sin(θ)

)
·v(t)· 1

1000ηd
(2.3)

where P is the electric power consumption in kW , m is the vehicle mass in kg, g is the
gravitational acceleration which equals 9.8066 m/s2, θ is the road grade angle, Cr, c1 and c2

are rolling coefficients (unitless), v is the vehicle speed in m/s, ρair is the air density at the
sea level (1.2256 kg/m3), Af is the frontal area of a vehicle (m2), CD is the drag coefficient
(unitless), and ηd is the driveline efficiency. The model has been demonstrated to produce
robust energy estimates that are consistent with field observations.

Given the robustness in energy estimation and the simplicity in model specification, the
VT-CPEM model is applied to electric vehicle eco-routing in the proposed study.

2.1.3 Electric Train

Electric trains are widely used in urban subway systems. A subway, put simply, is a train
and the tunnel through which the train runs. A subway train consists of several connecting
cars that contain durable seats as well as poles and straps for people to hold on to when the
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train is full [55]. The trains, known as rolling stock, are complex given that they include
a traction and dynamics system that highly impact energy consumption. For example, the
traction system determines how the propulsive force is generated and provided to move a train
forward; and the dynamics system determines how a train is accelerated or decelerated thus
affecting train transient behavior that highly impacts instantaneous energy consumption.
Also, the brake system determines whether the braking power is regenerated to be used or
wasted as heat. For regenerative braking, the brake energy can be recovered by converting
kinetic energy into a form that can be either immediately used or stored until needed;
however, other brake systems, such as dynamic braking, dissipate electric energy as heat
rather than using it. Other train characteristics, such as car empty weight, number of axles
per rail car and drag coefficient significantly affect the forces acting on a train and thus are
also important parameters in energy modeling.

In addition to the train itself, there are several other rail system components, such as track
infrastructure and passenger loading, affecting the tractive/braking forces acting on the train.
For instance, a good condition track (good rails and cross ties) decreases the starting tractive
effort [56]; while a track with steep grades and large curvature results in high resistance forces
[56, 57]; and passenger loading affects the total railcar weight and thus acting forces. These
factors should also be incorporated into the energy modeling framework.

The most widely available measures for rail (either electric or diesel-electric train) energy
consumption are those estimated on an annual gross average basis. Specifically, Equation
(2.4)-(2.6) present the modeling approach, where Ep, Es and Ev are the energy consumed
per passenger kilometer (kWh/P · km), per seating kilometer (kWh/S · km) and per vehicle
kilometer (kWh/V · km), respectively; E is the annual energy consumption of a rail transit
system in kWh; Mp, Ms andMv are total passenger kilometers, seating kilometers and vehicle
kilometers, respectively; C is the train seating capacity and β is the line loss factor associated
with the train transmission system. The parameters in the models are readily available
from the National Transit Database (NTD) [58, 59, 60]. Despite the effortless acquisition
of the aggregated measurements, they are not capable of representing the differences in
energy consumption associated with route and vehicle characteristics, passenger loading,
speed profiles and weather and track conditions, and thereby not suitable for project-level
analysis.

Ep =
E

Mp × β
(2.4)

Es =
E

Ms × C × β
(2.5)

Ev =
E

Mv × β
(2.6)
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Research efforts have thus focused on developing a modeling framework sensitive to the
aforementioned system characteristics. An early study conducted by Mittal [61] proposed
an analytical method to estimate energy consumption sensitive to speed, train configuration
and passenger load. However, the method used average speed for energy prediction without
considering speed fluctuation. The model also did not incorporate an energy regeneration
module. Some of the state-of-the-art models [62, 63, 64, 65, 66, 67] considered an average
constant regenerative braking energy efficiently that mainly depended on the train’s average
speed. The major limitation is that these models cannot capture vehicle transient behavior
and model energy regeneration at a microscopic level. Although some of these simplified
models have been used to develop energy-optimized strategies [68, 69, 70, 71, 72, 73], the
validity of the resulting strategies is questionable given the models’ inadequacy in instanta-
neous energy prediction. The National Cooperative Rail Research Program (NCRRP) [74]
designed a passenger rail simulation framework which incorporated route and train charac-
teristics, speed, passenger load and regenerative braking into the energy modeling practice.
The framework, however, is an excel-based tool and cannot be implemented in more com-
plex frameworks, such as traffic simulation software, smartphone eco-driving and eco-routing
systems. Furthermore, the energy prediction within the framework also considers average
speed and a constant regenerative efficiency. A recent study [57] initiated a bottom-up mod-
eling framework sensitive to acceleration behavior by incorporating second-by-second speed
profiles. Nonetheless, the model cannot generate instantaneous energy regeneration because
it assumes a constant regenerative efficiency. The model is also an excel-based tool and thus
does not allow for integration in complex frameworks. Other models, such as [75, 76, 77],
are also not suitable for ITS applications due to their complexity in model specification.

To the authors’ best of knowledge, although there have been numerous studies on modeling
train electric power consumption, these studies were of limited application. They either
cannot model train transient behavior or fail to capture energy regeneration at a microscopic
level or are not simple enough to be implemented within complex systems. The dissertation
partially attempts to fill this void and, for the first time, relates energy regeneration with
the instantaneous deceleration level in rail transit energy modeling.

2.2 Railway Simulation and Dynamics Modeling

Numerous simulation programs have been developed and widely used to support the sus-
tainability (e.g. safety, comfort, efficiency, environment) of the off-the-shelf railway systems.
Based on the level of simulation detail, railway simulators can be classified into two cate-
gories: discrete and continuous. The discrete-event simulation, such as [78, 79, 80, 81, 82],
models the operation of the rail system as a discrete sequence of events in time, which as-
sumes no change in the system between consecutive events (e.g. assume constant speed over
the track segment between two stations). Such simulators fail to capture the instant act-
ing forces and thus acceleration/deceleration behavior, and thus cannot adequately emulate
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the details of train motion and effectively design and test various strategies (e.g. environ-
mentally optimal operation, speed control, passenger comfort improvement) which require
the acquisition of the continuous state of train activities. Continuous simulation, however,
tracks the system dynamics over time, and thus can instantly model the train movement.
Nonetheless, existing continuous simulators, such as [16, 17], cannot emulate realistic train
dynamics given a lack of accurate dynamics models to mathematically and dynamically char-
acterize the throttle and brake input. For instance, Nash et al. [16] assumed that a train
always accelerated at full throttle, which overestimates acceleration levels overall. Conse-
quently, incorporating an accurate and efficient train dynamics model is needed for realistic
acceleration/deceleration behavior from the railway simulation perspective.

The application of dynamics models to address acceleration behavior in railway systems
has been found in some literature. The typical equation used to estimate tractive effort
for acceleration analysis is illustrated in Equation (2.7)[83], with N and Nmax the typical
and maximum throttle notch respectively, and Pmax the maximum engine power and v the
vehicle speed. The traction of locomotives or rolling stock vehicles, known as throttle notch,
is controlled discretely. Namely, the typical throttle notch N varies discretely with train
power conditions. It is difficult to determine a relationship between the throttle notch and
engine output power without the assistance of train manufacturers. Although some of the
studies [84, 85, 86] have accounted for the impact of throttle notch on force profiles, yet no
analytical expressions so far are available. This void highlights the need to mathematically
characterize throttle input as a function of train motion data (e.g. speed) which can be easily
measured using non-engine instrumentation such as Global Positioning Systems (GPSs).

Ft =

(
N

Nmax

)2
Pmax
v

(2.7)

Towards this goal, the achievements on motor vehicle dynamics may provide valuable in-
sights. Searle [87], one of the pioneers using dynamics model for acceleration prediction,
linked vehicle motion to the ratio of engine power to vehicle weight by introducing a con-
stant acceleration efficiency that accounts for external resistance forces and the losses in the
transmission. The model assumes the acting force to be a constant and thus cannot account
for the change of dynamics with vehicle operational conditions. To enhance vehicle dynam-
ics modeling, Rakha et al. [88, 89] developed a standard dynamics model considering the
impact of vehicle speed on tractive force, yet failing to capture the realistic driver throttle
input given the assumption that vehicles always accelerate at full throttle. An enhancement
to the standard model was proposed by Rakha et al. [90] through introducing a constant
throttle input level. Nonetheless, recent studies by Fadhloun et al. [91, 92] found that the
driver throttle level input varied as a hyperbolic function of the ratio of vehicle speed to the
facility desired speed. The model was demonstrated to generate a better match of acceler-
ation behavior to field observations than other dynamics models. The proposed dynamics
model for acceleration counterpart was thus developed based on Fadhloun et. al’s modeling
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framework which is described in section 4.2.1.

For deceleration estimation, researchers have either empirically or mathematically addressed
train dynamics. Hay [56] presented empirical results, indicating that the brake force linearly
increased up to the maximum level with the increasing speed at the low speed level (smaller
than 10 km/h), and fluctuated at the vicinity of the maximum force level within a specific
speed range (10-30 km/h), then decayed at relatively high speed levels (larger than 30
km/h). Namely, they assumed the brake force to be a piecewise linear function of speed. A
later study by Iwnicki et al. [83] confirmed Hay’s results and further demonstrated that the
modern locomotive design ensured a constant brake force at the maximum force level. In
addition to empirical experiments, many mathematical models have been developed in the
field of mechanical engineering [14, 15, 18, 19, 20]. These models, however, cannot be easily
calibrated and used in simulators or control systems given that the model calibration requires
considerable mechanical data that are not easily accessible without seeking assistance from
train manufacturers. For instance, the model in Equation (2.8), developed by Perpinya et
al. [14], requires 10 mechanical parameters 1 as the model inputs to estimate the brake
force, which significantly limits the model application in transportation systems. Hay [56]
developed a simple brake force model that characterizes the brake force as a function of
braking ratio, the weight of rolling stock, the efficiency of the brake lever system, and the
coefficient of friction between the wheel and the brake shoe. The coefficient of friction is the
only variable in the model that dynamically changes as a function of speed levels, and needs
to be functionally determined. Given the simplicity in model specification, Hay’s model was
used to develop the proposed deceleration model.

Fb,i =

[(
π · d2

bc · pbc,i
4

− FR
)
· ic −Rsa

]
· il · n∆ · nbc · f(Ps, vi) · ηbr (2.8)

To quantify the coefficient of friction, earlier studies [93, 94] tested various train fleets and
generated experimental curves to determine the magnitude of the coefficient of friction at
each speed level, yet without mathematical generalization. This limits the use of the results
by other researchers once the empirical brake data is not available. Some of the researchers
[14, 95, 96, 97, 98] mathematically developed functions to analytically compute the coefficient
of friction, demonstrating that it strongly depends on the instantaneous running speed, the
applying force on a brake shoe and the surface contact pressure. However, these models
also require the measurement of mechanical data for model calibration and implementation.
Thus, a simple modeling framework is needed in order to ensure that the use of the model

1dbc brake cylinder diameter, pbc,i the instantaneous relative air pressure in the brake cylinder, FR and Rsa

the resistance force due to the brake cylinders back spring and to the self-adjusting mechanism incorporated
in the piston rod respectively, ic the central brake rigging, il the amplification ratio of the brake rigging
vertical levers, n∆ the number of triangular axles, nbc the number of brake cylinders of the vehicle, f the
coefficient of friction between the wheel and the brake shoe, ηbr the mechanical efficiency of the brake rigging.
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requires only non-mechanical data (e.g. speed) that can be measured directly using non-
engine instrumentation.

In summary, an accurate, simple and efficient longitudinal dynamics model is needed to
capture typical train acceleration and deceleration behavior and develop railway simulation
systems. The model will also support the planning, management and control of railway
transportation systems, such as designing and testing cruise control strategies [99, 100],
optimizing rail signal timings [101], evaluating eco-friendly strategies [102, 103, 104].

2.3 Traffic Microscopic Simulation Models

This section investigates the applicability of the most state-of-the-art traffic microsimulation
models for energy and environmental analysis, and identifies the model which is better suited
to serve as the testbed for the proposed study. As mentioned hereinbefore, the applicability
of a simulation model for energy and environmental analysis highly depends on the accuracy
of the simulated vehicle trajectories and the embedded energy/emissions model. The car-
following model of a simulator controls longitudinal vehicle motions and thus determines
the resulting vehicle trajectories [21, 22, 23, 105]. Therefore, the review efforts in this
section mainly focus on the built-in car-following function and energy/emission model of
each simulator. The key microsimulation models include VISSIM, CORSIM, AIMSUM,
PARAMICS, INTEGRATION.

VISSIM is a microscopic, time step- and behavior-based simulation model developed to
analyze the full range of functionally classified roadways and public transportation operations
[106]. The model was first developed in 1970s and can simulate multiple traffic modes such as
LDVs, buses, light rail, heavy rail, trucks, pedestrians, and bicyclists. With the integrated
dynamic traffic assignment module, VISSIM can generate assignment results dynamically
over time for either an aggregated O-D matrix or an individual vehicle. The basic traffic
model ruling the movement of vehicles was developed by Rainer Wiedemann in 1974 [107]
which is a psycho-physical model. The steady-state car-following behavior of the Wiedemann
model is constituted by the Pipes model [108], while the non-steady state behavior is jointly
determined by four discrete regimes and a linear acceleration model. VISSIM has been
demonstrated by a recent study [109] that the system generates unrealistic vehicle trajectories
that are inconsistent with field observations, given the inadequacy of the Wiedemann model
in capturing acceleration behavior [21]. Furthermore, the built-in energy/emissions model,
PHEM, provides predictions that are less accurate than those derived from the state-of-the-
art models such as CMEM, VT-Micro and VT-CPFM [110].

CORSIM, developed and maintained by U.S. Federal Highway Administration (FHWA), is
a microscopic simulation model designed for the analysis of freeways, urban streets, and
corridors or networks. The model integrates a conventional traffic assignment module with
two optimization algorithms: the user equilibrium assignment and the system optimal as-
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signment [111]. CORSIM combines the NETSIM and FRESIM models into an integrated
package to characterize the car-following behavior. Both NETSIM and FRESIM can be re-
verted to the Pipes model, and simulate traffic behavior at a microscopic level with detailed
representation of individual vehicles and their interactions with their physical environment
and other vehicles [112]. Accordingly, both VISSIM and CORSIM incorporate the Pipes
model as their core component of the car-following model. In addition, CORSIM uses the
VeTESS model for energy/emissions estimation, which allows for energy and environmental
analysis relative to very limited number of vehicles and engines [38].

AIMSUM is an integrated transport modeling system, developed and marketed by Transport
Simulation Systems (TSS) in Barcelona, Spain. The model stands out for the exceptionally
high speed of its simulations and for fusing travel demand modeling, static and dynamic
traffic assignment with mesoscopic, microscopic and hybrid simulation – all within a single
software application. The embedded dynamic traffic assignment module is able to route a
portion of the vehicles along pre-defined OD routes. The system uses the Gipps car-following
model [113] to control longitudinal vehicle motions. The vehicle trajectories derived from
the Gipps model have been demonstrated to be more consistent with field measurements
compared to the Wiedemann and Fritzsche models [23]. However, the system applies the
VERSIT+micro model for energy/emissions estimation which, as mentioned before, may re-
sult in prediction bias and the bang-bang type of control given the linear relationship between
fuel consumption and speed.

Another prevalently-used microscopic simulation package is PARAMICS which was devel-
oped at the Edinburgh Parallel Computer Center in Scotland. The model simulates the
individual components of traffic flow and congestion, and presents its output as a real-time
visual display for traffic management and road network design [114]. PARAMICS also offers
wide area vehicle routing with dynamic feedback. The vehicle movement of the model is
principally controlled by the Fritzsche car-following model [115] which was demonstrated by
the recent study [23] to generate high simulation error in vehicle trajectories. The energy/e-
missions model in PARAMICS, CMEM as mentioned before, is not easily calibrated for new
vehicle models given the need of engine test, and thus cannot be extensively implemented in
traffic simulation software. Although it has been used by PARAMICS, the engine test has
to be repeated for the new integrated vehicle models.

The INTEGRATION system is an agent-based microscopic traffic assignment and simula-
tion software [116, 117, 118], conceived as an integrated simulation and traffic assignment
model and performs traffic simulations by tracking the movement of individual vehicles every
deci-second [24]. There are many different variations to the system’s routing logic. Some
of these techniques are static and deterministic while others are stochastic and dynamic.
The car-following behavior of the system is characterized by the Rakha-Pasumarthy-Adjerid
(RPA) model which consists of three components: Van Aerde steady-state car-following
model [119, 120], collision avoidance model [121, 122] and vehicle dynamics model [88, 90].
It has been demonstrated that the RPA model can adequately capture both steady-state and
non-steady-state car-following behavior [90, 112, 122, 123, 124]. In addition, INTEGRA-
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TION has incorporated three microscopic energy/emissions models, known as VT-Micro,
VT-CPFM and VT-CPEM, to generate environmental measures of effectiveness (MOEs).
The VT-CPFM and VT-CPEM models, as discussed in section 2.1.1, can generate highly
accurate energy estimates and also outperforms the other state-of-the-art models in terms
of its simplicity in calibration and implementation.

In conclusion, most of the above-mentioned micro-simulators are capable of assigning traf-
fic dynamically. For VISSIM and PARAMICS, the built-in car-following models have been
demonstrated to provide unrealistic vehicle trajectories, and the energy/emissions models are
not easily calibrated and implemented in ITS applications given the need of engine test. The
car-following model within AIMSUM generates more accurate vehicle trajectories compared
to VISSIM and PARAMICS; however, the built-in energy/emissions model, VERSIT+micro,
may result in estimation bias and the bang-bang control problem. INTEGRATION incor-
porates accurate energy/emissions models which can be calibrated using non-engine data
and easily used by traffic simulation model and ITS applications. It is worth mention that
the VT-CPEM model recently has been included. This enables INTEGRATION to gen-
erate MOEs relative to electric vehicles, which also makes it more competitive than the
state-of-the-art counterparts. However, its validity of the simulated vehicle trajectories in
terms of energy/emissions analysis has not been investigated yet, although the adequacy of
car-following behavior has been demonstrated.

2.4 Eco-routing Systems

The commonly used User Equilibrium (UE) and System Optimum (SO) traffic assignment
algorithms utilize minimum travel time or the marginal travel time respectively as a general-
ized cost to assign traffic flows over a network. However, given that UE and SO assignments
are estimated based on travel time, energy consumption and emissions of UE and SO con-
ditions may not achieve their optimum solutions. Several researchers have attempted to
enhance traffic assignment methods from the energy and environmental perspective.

Tzeng et al. [25] developed a multi-objective (travel time, distance, and emissions) traffic
assignment method, and produced various solutions that minimize CO emissions constrained
by the other two objectives. The method assumed that link traffic flow was the only ex-
planatory variable of CO emission. Namely, the link emission cost is a constant relative to
speed/acceleration, vehicle type and road attribute. This is not correct in reality given that
traffic conditions, road and vehicle characteristics significantly affect energy/emissions esti-
mation. Furthermore, the method was developed for the transportation planning purpose
and thus not suitable for real time navigation applications. A similar study was conducted by
Nagurney et al. [26, 27] who developed a multi-class and multi-criteria traffic network equi-
librium model with an environmental criterion. The model also made a constant assumption
on link-specific emission factors.
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Rilett et al. [28, 29] developed a macroscopic traffic assignment system with environmental
considerations. Specifically, the system aimed to minimize CO emission which was estimated
using average speed and link length as explanatory variables. The system outperforms
Tzeng’s method by incorporating average speed and link length into the emission model, and
is suitable for the planning purpose. Nonetheless, the system assumed that vehicles traveled
at a constant rate on each link of their journey and that the grades on the roadways were 0%,
failing to capturing the impact of within-link speed and grade variation on emissions. This
may result in incorrect optimal solutions for operational level programs such as dynamic
routing system.

Another macroscopic traffic assignment system was developed in 2002 by Sugawara and
Niemeier [30]. The method also used average speed CO emission factors developed by the
California Air Resources Board (CARB). The results of the study demonstrated that the
emission-optimized trip assignments could reduce system-level vehicle emissions moderately
compared to time-dependent UE and SO solutions, and was most effective when the network
is under low to moderately congested conditions, saving up to 30% of total CO emissions.
The results also demonstrated that the emission-optimized assignments became less effective
when the network was highly congested, achieving emission saving of only 8%. Also, it was
found that less traffic was assigned to freeway routes under minimum emission assignment
given that emission levels became very high at high speeds.

Barth et al. [8, 31] presented an eco-routing navigation system that combined a microscopic
energy/emissions model (CMEM) with a large vehicle activity database to create functional
relationships between link-based energy/emission factors and a set of link-based explanatory
variables (e.g. speed and road grade). The link-level energy consumption was characterized
as a polynomial function of speed and grade as formulated in Equation (2.9):

ln(fk) = β0 + β1vk + β2v
2
k + β3v

3
k + β4v

4
k + β5gk (2.9)

where fk is the fuel consumption of link k, vk is the link average speed, gk is the link-specific
road grade, and β(·) are the model coefficients. According to Equation (2.9), the link cost
function uses the average speed and grade as the inputs of the model without considering
their within-link variation. Furthermore, the regression analysis may cause an unexplainable
random error to the model estimates. In addition, this navigation system generates eco-
routes only at the beginning of a trip; namely, vehicles en route cannot be re-routed to other
routes even though the traffic conditions on the original route environmentally deteriorate.

Nie et al. [125] incorporated some of the microscopic factors (e.g. between-link acceleration
and idling delay) into their eco-routing model. The model basically assumed that vehi-
cles accelerated/decelerated only when they were traveling from one link to another. This
assumption, however, also excludes the impact of within-link speed fluctuation. Another
limitation of the model is the exclusive of the effect of road grade. Additionally, the model
was developed based on the CMEM model which requires engine data for model calibration
and implementation, and thus is not easily integrated into traffic simulation models and ITS
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applications.

Rakha et al. [24, 126] developed and tested an agent-based eco-routing system in the sim-
ulation environment that comprehensively considered microscopic elements and was able to
dynamically update link costs and eco-routes based on real time information. The system
is essentially a feedback traffic assignment method that utilizes the fuel costs experienced
by vehicles running on each link for eco-routes update. Link costs and eco-routes update
is triggered by every vehicle’s departure from its origin or from a link, and each vehicle is
assigned individually based on routing suggestions. A major issue of the system is that it
may generate unrealistic routing suggestions when there are multiple vehicle models in the
network, given the assumption that different vehicle models have the identical link-specific
fuel cost. In reality, however, different vehicle models may have different energy consumption
behavior. For example, under the same traffic and road conditions, a heavy duty truck may
produce significantly higher fuel consumption level than a passenger car. Furthermore, the
results of the recent studies [12, 127, 128] imply that the optimum fuel economy cruise speed
varies with vehicle models, demonstrating that optimum routes may be different between
vehicle models. According to Rakha’s eco-routing system, all vehicle models in the network
have the same optimum route given the identical link-specific fuel cost. Consequently, this
dynamic eco-routing system is not applicable to real world road networks in which there may
be hundreds of vehicle models.

In summary, most of the existing eco-routing systems either do not comprehensively include
microscopic elements, or cannot dynamically update eco-routes for the vehicles en route, or
are unable to differentiate eco-routes between vehicle models. These systems thus cannot
adequately generate realistic routing suggestions for in-vehicle navigation applications. To
overcome these shortcomings, the dissertation develops an innovative eco-routing framework
as being a submodule of the multimodal energy-efficient system.

2.5 Effect of Route Information on Route Choice Be-

havior

As captured in the “hot stove” effect [129], individuals were not inclined to select options
associated with high variability, although these might actually provide larger benefits. Con-
sidering uncertainty, people do not have perfect knowledge of the gains that could be ac-
crued and the loss associated with risking changing habitual choices. Prospect Theory [130]
explicitly and thoroughly describes this psychological behavior that risk-seeking behavior
would likely exhibit in the loss domain rather than in the gain domain. In relation to route
choice, katsikopoulos et al. [131] verified the results of Prospect Theory through a simulated
experiment in which participants were provided with the information of travel time vari-
ability, indicating that risk aversion emerged in the gain domain (alternative route is faster
but riskier) while risk seeking emerged in the loss domain (alternative route is slower but
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riskier). Accordingly, drivers repeatedly make illogical choices due to the risk aversion in
the gain domain. Information is expected to reduce the uncertainty and enhance rational
behavior partially by leading travelers to risk seeking in the gain domain. katsikopoulos et
al. [131, 132] revealed that the provided information supported for choice rationality and
reduced inertia.

The behavioral effect of route information on route choice behavior has been incrementally
studied both from a theoretical and practical standpoint. Ben et al. [133] thoroughly inves-
tigated the combined effects of information and driving experience on route choice behavior
using a simulated experiment. The results provided evidence to suggest that the expected
benefit of information is achieved only if drivers lacked long-term experience. Based on
this study, a discrete choice model with Mixed Logit specifications was developed to ac-
curately describe the respondents’ learning process under the provision of real-time infor-
mation [134]. Further, Ben et al. [134] also demonstrated that information provided on
average travel time resulted in different responses compared to information on travel time
variability, which remained to be verified. Using a simulation- and a stated preference-based
approach, numerous attempts were made to econometrically address the various behav-
ioral mechanisms of drivers’ route choice with real-time information. The studied behav-
ioral mechanisms involved logical choice [133, 134], inertia choice [135], switching behavior
[136, 137, 138] and habit and learning [139, 140]. Specifically, Karthik et al. [135] demon-
strated that users experiences decreased inertia behavior in day-to-day variation. Route
information was demonstrated by many studies to effectively move route choice towards
rationality [133, 134, 136, 138, 141, 142, 143], however, the effect of information strongly
depends on other factors, such as personal traits, trip characteristics, and other decision
considerations. From the personal trait perspective, Jou et al. [136] concluded that elderly
travelers would be less likely to switch due to the habitual and risk-aversive effects, and
male travelers would be more likely to switch to the best route. Also, trip characteristics
and traveler preferences were proved by Polydoropoulou et al. [137] significantly to affect
route switching and compliance with information. However, few of the existing studies have
characterized the information effect of the details of trip characteristics, such as directness
of the route, number of intersections, conflicts with non-motorized traffic.

Although previous attempts provided econometric and empirical generalizations, most were
based on simulator and stated preference approaches. In the simulator surroundings, how-
ever, respondents make decisions in a digital and virtual environment. Stated preference
is an investigative approach in which respondents are given questionnaires to make choices
hypothetically. Both approaches are performed under fictitious conditions and may not ac-
curately capture actual choice behavior. Consequently, an in-field case study is needed. To
the author’s best knowledge, this study, is the first attempt at addressing this need using
dynamic travel time information, which differs from the previous real-world experiments (e.g.
[144, 145, 146, 147]) that conducted experiments for a short time period (e.g. several days)
and did not capture the day-to-day variation of route choice behavior using the learning
mechanism that accounts for information effects. As a follow-up test of Tawfik and Rakha’s
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experiment (in which information was not available) [148], participants were provided with
real time information during test driving.

Drivers’ responses to information may differ based on personal characteristics, demographics,
preferences and choice situations [149, 150]. Nonetheless, few studies so far have attempted
to quantitatively investigate such discrepancy. Tawfik et al. [140] developed a latent class
choice model by classifying personal traits and choice situations into four behavioral groups
as illustrated in Table 2.1. The results demonstrated that the model outperformed traditional
hierarchical models in predicting realistic behavior. However, Tawfik et al.’s study did not
consider information effect. Accordingly, this study attempts to investigate the information
effect considering different participants and choice situation characteristics in order to provide
significant implications to enhance the design of the routing system.

In general, given the incomplete picture of the existing studies, more attempts are justified.
The dissertation thus initiates a real world case study to provide a better understanding of
underlying effects of route information on route choice behavior.

2.6 Summary

The review effort first demonstrates that the VT-CPFM and VT-CPEM modeling frame-
works outperform the other state-of-the-art models in terms of either robustness in energy
estimation or simplicity in model calibration and implementation. The frameworks are thus
used in this dissertation to model HDDV and electric train energy consumption.

The literature relative to railway simulation and dynamics modeling demonstrates that exist-
ing efforts on dynamics modeling either cannot adequately capture realistic acceleration/de-
celeration behavior given the constant assumption on throttle or brake level, or require ex-
tensive mechanical engine data for model calibration and implementation, which limits their
popularization in simulation applications. It is important to develop an accurate, simple and
efficient longitudinal dynamics model to characterize typical train acceleration/deceleration
behavior in support of the proposed subway system model.

Furthermore, the state-of-the-art traffic microsimulation models were investigated in order
to identify the better suited model to serve as the testbed for the proposed eco-routing
system. Five commonly used microsimulation models were reviewed: VISSIM, CORSIM,
AIMSUM, PARAMICS, and INTEGRATION. The results demonstrate that INTEGRA-
TION outperforms the other models in terms of the accuracy and simplicity of the built-in
energy consumption and emissions models (VT-CPFM and VT-CPEM). However, the valid-
ity of INTEGRATION simulated vehicle trajectories for energy and environmental analysis
needs to be investigated and compared with the other microsimulation models.

The literature relative to eco-routing studies demonstrates that most of the existing eco-
routing systems may generate incorrect link costs and eco-routing solutions given their in-
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Table 2.1: Four identified driver behavioral types

Behavior Type Typical Behavior Type Description

1 A driver starts by arbitrarily select-
ing a route, is apparently satisfied
with the experience, and continues
making the same choice for the en-
tire 20 trials.

2 A driver starts by arbitrarily select-
ing a route, is apparently not sat-
isfied with the experience, tries the
other route, and decides that the
first route was better. The driver
makes a choice after trying both
routes and does not change after-
wards.

3 A driver switches between the two
alternative routes over the dura-
tion of the experiment. The driver,
however, drives on one route more
than the other route. This reflects
his/her preference for the selected
route.

4 A driver switches between the two
alternative routes over the dura-
tion of the experiment. The driver
drives both routes with approxi-
mately equal percentages. This re-
flects a lack of preference towards
any of the alternatives.
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ability in capturing microscopic characteristics. Also, most of them are not able to route
vehicles en route in real time, except for one of the systems [24] which, however, assumes
that all vehicle models had the same eco-route. This is unrealistic in reality given that
energy consumption behavior significantly differs between vehicle models. The major con-
cern of this dissertation is thus to develop an innovative eco-routing system that is able
to comprehensively consider microscopic elements and route vehicles in real time while at
the same time differentiate vehicle models. The proposed eco-routing system is developed
for in-vehicle navigation applications as being an integral of the multimodal energy-efficient
routing system.

Finally, the review effort relative to information effect on route choice behavior demonstrates
that the majority of the research efforts in this regard are based on simulation and stated
preference approaches. Both approaches are performed under fictitious conditions and may
not adequately capture realistic route choice behavior. Consequently, a real world case study
is designed in this dissertation.
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Chapter 3

Heavy Duty Diesel Vehicles Fuel
Consumption Modeling

This chapter is based on the papers listed below:

1. Wang, J. and Rakha, H. Convex Fuel Consumption Model for Diesel and Hybrid Buses.
Transportation Research Record: Journal of Transportation Research Board, 2017.

2. Wang, J. and Rakha, H. Fuel Consumption Model for Conventional Diesel Buses. Journal
of Applied Energy, 2016.

3. Wang, J. and Rakha, H. Hybrid-Electric Bus Fuel Consumption Modeling: Model Devel-
opment and Comparison to Conventional Buses. Transportation Research Record: Journal
of Transportation Research Board, 2016.

4. Wang, J. and Rakha, H. Fuel Consumption Model for Heavy Duty Diesel Trucks: Model
Development and Testing. Transportation Research Part D: Transport and Environment.
(In Review).
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This chapter aims to develop conventional HDDVs fuel consumption model based on the
VT-CPFM modeling approach. The resulting models will be used to estimate HDDVs trip
fuel costs and eco-routes. Truck and transit bus are modeled in this study as the most typical
representatives of HDDVs.

3.1 Introduction

Although HDDVs make up only a fraction of the total vehicle population, they are ma-
jor contributors to GHG emissions in the transportation sector. For example, heavy duty
diesel trucks (HDDTs) account for 22.8% of the total CO2 production [2]. Also, bus fuel
consumption had been continually increasing from 827 million gallons/year to 2,059 mil-
lion gallons/year between 1960 and 2012 as reported by the U.S. Bureau of Transportation
Statistics (BTS). HDDVs are receiving increasing attention from legislators, the government
and society at large. For example, in September 2011, the National Highway Traffic Safety
Administration (NHTSA) and the U.S. Environmental Protection Agency (EPA) jointly
promulgated the first-ever federal regulations mandating improvements in fuel economy of
heavy-duty commercial vehicles [151]. Furthermore, researchers have been committed to
developing road eco-freight [152, 153, 154, 155] and eco-transit programs [156, 157] in order
to support “green transportation” policy making.

A simple, accurate and efficient fuel consumption model is needed to provide robust fuel
estimates in support of quantifying potential reductions in fuel consumption and emission
levels induced by implementing eco-freight or eco-transit strategies. As mentioned in section
2.1, the VT-CPFM model outperforms the other state-of-the-art models so that is applied
for HDDVs modeling.

3.2 Modeling Framework

Rakha et al. [12] developed two VT-CPFM frameworks (VT-CPFM-1 and VT-CPFM-2) for
LDVs each of which is a two-regime model and characterizes fuel consumption as a second-
order polynomial function of vehicle power. The use of a second-order model ensures that a
bang-bang control does not result from the application of the model. Furthermore, a model
higher than a second-order model cannot be calibrated using standard drive cycles given the
complexity of the higher order model. Consequently, a second-order model achieves a good
trade-off between model accuracy and applicability. However, only VT-CPFM-1 is utilized
to develop the model in this study given that VT-CPFM-2 requires engine gear data which
is typically not available. The VT-CPFM hereinafter refers to the VT-CPFM-1 model.

The VT-CPFM modeling framework is illustrated in Equation (3.1) with P the vehicle power
(kW ) and α0, α1, and α2 the vehicle type-specific model coefficients. The power function
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is formulated by Equation (2.3). A second-order polynomial function was used to model
the positive power condition in order to circumvent the bang-bang type of control [12]. For
the negative power condition, fuel consumption is a constant which equals the idling fuel
rate. The model has been validated for LDVs by Park et al. [43] using real world data,
demonstrating a good model fit to field measurements.

FC(t) =

{
α0 + α1P (t) + α2P (t)2, ∀P (t) ≥ 0

α0, ∀P (t) < 0
(3.1)

It should be noted that the model coefficients, α0, α1, and α2, can be calibrated using publicly
available data using Equation (3.2)-(3.4):

α0 =
Pfmpωidled

22164(HV )N
(3.2)

α2 =
(Fcity − Fhwy PcityPhwy

)− (Tcity − Thwy PcityPhwy
)α0

P 2
city − P 2

hwy
Pcity
Phwy

(3.3)

α1 =
Fhwy − Thwyα0 − P 2

hwyα2

Phwy
(3.4)

Here Pfmp is the idling fuel mean pressure (400,000 Pa); d is the engine displacement (l);
HV is the fuel lower heating value (43,000,000 J/kg for gasoline and 43,200,000 J/kg for
diesel); N is the number of engine cylinders; ωidle is the engine idling speed (rpm); Fcity
and Fhwy (liters) are the fuel consumed for the EPA city and highway drive cycles (mpg);
Pcity, P

2
city, Phwy, P

2
hwy are the sum of the power and power squared over the EPA city- and

highway- cycle respectively; Tcity and Thwy are the duration of EPA city and highway drive
cycles (s). Most of the parameters are related to either physical characteristics of the vehicles
or fuel type, and stated as specifications by vehicle manufacturers. Nonetheless, the HDDVs
standard driving cycles and the relevant fuel economy data cannot be obtained given that
EPA does not require HDDVs to report the cycle-specific fuel economy data. Consequently,
instead of using publicly available data, the HDDVs models were calibrated based on in-field
data.

3.3 Heavy Duty Diesel Truck Fuel Consumption Mod-

eling

This section presents the procedure and results of HDDTs fuel consumption modeling.
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Table 3.1: Heavy duty diesel truck vehicle-specific information
Make/Model Model Year Engine Make/Model Rated Power (hp) Engine Size (l) Vehicle Mass (kg)
International/ 9800 SBA 1997 Cummins/M11-330 330 10.8 7182
Freightliner/ D120 1997 DDC/C-60 360/400 12.7 7758
Freightliner/ D120 1997 Cummins/N14 370/435 14 7029
Freightliner/ C-120 1997 Cummins/N14 370/435 14 7623
Freightliner/ C-120 1998 DDC/C-60 370/430 12.7 8028
Freightliner/ FDL 120 1999 DDC/C-60 470 12.7 8118
Freightliner/ FDL 120 1999 DDC/C-60 360 12.7 8118
Freightliner/FLD 120 2001 CAT/C-15 475 14.6 7092

3.3.1 Data Preparation

The data used for model development were collected and provided by the University of
California (UC) at Riverside. The modeling effort aimed to test the applicability of the
VT-CPFM framework to modeling the HDDTs within diverse vehicle-technology categories.
The recruited trucks differ in a wide range of vehicle specifications. A total of eight trucks
were randomly recruited from used vehicle fleets in Southern California within test categories
by vehicle model year and engine model/displacement, and a balance between horse power
and manufacturers was attempted. The detailed vehicle information is presented in Table
3.1. For simplicity, the eight trucks, from the top to the bottom of Table 3.1 are respectively
denoted as HDDT1, HDDT2, HDDT3, HDDT4, HDDT5, HDDT6, HDDT7, HDDT8.

To adequately measure real-world fuel consumption and emission levels, UC Riverside de-
veloped a mobile emissions research laboratory (MERL) that contains all instrumentation
that is normally found in a regular vehicle emission laboratory. MERL weighs approximately
45,000 lbs and could serve as a truck load, so that it is capable of capturing the transient
fuel consumption and emissions of a truck pulling it when the truck is being tested. Further
details of MERL can be found in [158, 159].

The HDDT test was conducted by the Center for Environmental Research and Technology at
UC Riverside on the roadways in California’s Coachella Valley involving long, uninterrupted
stretches of road, approximately at sea level. All trucks were tested using standard fuel from
the same source. The data were recorded at a frequency of 1 Hz and a total of 238,893
seconds of data were gathered with a collection of 8 parameters for each truck, including
CO2, CO, HC, NOx, velocity, fuel rate, engine speed and elevation. For more details on data
collection procedure, the reader is recommended to see [158]. It should be noted that the
primary goal of this section is to model fuel consumption and CO2 emissions, and modeling
CO, HC and NOx emissions is out of the scope of this research effort.

The raw fuel consumption rates were in g/s and then converted to l/s in order to use the VT-
CPFM framework to develop the proposed model. Also, the unit of velocity was converted
from mi/h to km/h for the modeling purpose. Upon comparing second-by-second CO2

emissions with engine control unit (ECU) data (i.e. velocity, fuel rate and engine speed),
a time delay was detected. Consequently, a time alignment was needed to synchronize the
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Table 3.2: Parameters required for truck model calibration

Parameter Value Source

Drag coefficient (CD) 0.78 [88]

Altitude correction factor (Ch) NAa Computed from field data
Vehicle frontal area (Af ) 10.0 m2 Computed from truck dimensions
Vehicle speed (v) NAa Measured in field
Mass (m) NAa Manufacturer website
Rolling coefficient (Cr) 1.25 [88]
c1 0.0328 [88]
c2 4.575 [88]
Road grade (G) NAa Computed from field data
Acceleration (a) NAa Computed from field data

Driveline efficiency (η) 0.94 [88]
aThe parameter is not a single value.

raw data. Since fuel rates have a strong relationship with emissions, they were utilized to
determine the value of the required time shift. The proper time shift was determined through
a cross-correlation analysis by which the correlation coefficients between CO2 and fuel data
were estimated by a correlation function for a range of lag times. The lag times with the
highest correlations were selected as the optimal events. It should be noted that the CO2

emission data collected for two of the trucks (HDDT 4 and HDDT 5) were invalid due to an
error in the emission sensors of MERL during data collection, and the CO2 model thus did
not cover these vehicles.

3.3.2 Model Development

Each tested truck was individually modeled. Table 3.2 gives a generalization of the model
inputs along with their sources. Some of the variables are capable of being gathered in the
field (e.g. vehicle speed), and some can be obtained from either the literature or manufacturer
websites (e.g. drag coefficient, vehicle mass).

As demonstrated by Figure 3.1, the empirical fuel consumption points to a concave function
of vehicle power for the positive power condition. The model was calibrated with general
linear regression analysis, and modeling results are summarized in Table 3.3. The second-
order parameters (α2) are negative, demonstrating that fuel consumption indeed varies as
a concave polynomial function of vehicle power and that exhibits a mild growth with the
increasing power. This is similar to the transit bus model developed by the author of the
dissertation [41, 160].

Nonetheless, the concave model may produce unrealistic driving recommendations as demon-
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Figure 3.1: Vehicle power vs. fuel consumption functional form (truck)

Table 3.3: Truck concave model
Truck classification α0 α1 α2

HDDT 1 1.13E-03 1.11E-04 -1.71E-07

HDDT 2 1.88E-03 1.01E-04 -1.27E-07
HDDT 3 1.56E-03 1.09E-04 -1.24E-07
HDDT 4 1.42E-03 1.03E-04 -1.22E-07
HDDT 5 1.38E-03 1.10E-04 -1.64E-07
HDDT 6 1.02E-03 1.06E-04 -9.28E-08
HDDT 7 9.18E-04 1.06E-04 -8.75E-08

HDDT 8 2.02E-03 8.78E-05 -3.33E-08
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Figure 3.2: Fuel consumption vs. cruise speed at different grade levels (truck concave model)

strated by the sensitivity of estimated optimum fuel economy cruise speed to road grade and
vehicle weight, as illustrated in Figure 3.2 and Figure 3.3, respectively. The road grade
varies from -8% to 8% with a span of 2%, and the vehicle weight varies from 17,000 kg to
38,000 kg by having a identical span of 1000 kg. Figure 3.2 characterizes the variation of
fuel consumption over cruise speed at different grade levels, demonstrating that the optimum
fuel economy cruise speed increases with the rising gradients. This implies that drivers have
to maintain a higher speed on steeper roads to minimize their fuel consumption levels, which
is not realistic in reality. Figure 3.3 also gives unrealistic results that heavier vehicles result
in higher optimum cruise speeds, implying that, drivers of heavier vehicles, compared to
those driving lighter vehicles, are recommended to achieve higher cruise speed to minimize
their fuel consumption levels. Given that the concave model generates a mild increase of
fuel consumption with the growth of vehicle power, the unrealistic driving recommendations
cannot be avoidable.

Given the deficiency of the concave model, an enhancement was considered to make the model
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Figure 3.3: Impacts of vehicle weight on the optimum fuel economy cruise speed at different
grade levels (truck concave model)
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Table 3.4: Truck convex model
Truck classification α0 α1 α2

HDDT 1 1.56E-03 8.10E-05 1.00E-08
HDDT 2 2.48E-03 7.14E-05 1.00E-08
HDDT 3 2.26E-03 7.82E-05 1.00E-08
HDDT 4 1.80E-03 7.96E-05 1.00E-08
HDDT 5 2.02E-03 7.59E-05 1.00E-08
HDDT 6 1.45E-03 8.48E-05 1.00E-08
HDDT 7 1.31E-03 8.63E-05 1.00E-08
HDDT 8 2.16E-03 7.98E-05 1.00E-08

more applicable in reality. The convex model had been developed for LDVs and validated
to be capable of generating reasonable driving instructions in existing eco-driving and eco-
routing systems [24, 161, 162]. Consequently, the model was alternatively developed for the
tested trucks (linear model has not been considered given that it produces the bang-bang
control).

To develop a convex model, the order of magnitude of the second-order parameter, which
impacts the degree of convexity of the function, needs to be determined. Basically, a lower
order of magnitude generates estimates of the convex model less consistent with those of
the concave model. However, a higher order of magnitude, although more accurate, is very
similar to a linear model. A trade-off is thus needed between the accuracy of the model and
the degree of convexity. The performance of the convex model in terms of R2 values has been
comprehensively investigated by varying the order of magnitude from 1E − 05 to 1E − 11,
as illustrated in Figure 3.4. For each model, the R2 value increases with the growth of the
order of magnitude, while the performance achieves little improvement when the coefficient
is higher than 1E−08. Consequently, 1E−08 was considered as the best order of magnitude
in balancing the model performance and the degree of convexity of the model. The convex
model is summarized in Table 3.4.

The effects of road grade and vehicle weight on the optimum fuel economy cruise speed were
also evaluated for the convex model. As illustrated in Figure 3.5, the model produces a
bowl-shaped curve as a function of cruise speed and higher road grades result in higher fuel
consumption levels, which is similar to LDVs. Specifically, Figure 3.6 reveals that, when
moving downhill, high cruise speeds can minimize fuel consumption levels, yet not recom-
mended for safety purposes. For uphill, steeper roads result in lower optimum cruise speeds,
implying that drivers have to reduce their cruise speed to minimize their fuel consumption
levels with an increase in the road gradient.

Heavier vehicles, as demonstrated in Figure 3.7, have higher optimum cruise speeds when
moving downhill while lower when moving uphill. It should be noted that, in Figure 3.7a,
optimum cruise speeds remain constant with an increase in vehicle weight when the road
grade is -8%, -6% and -4%. This is because the sensitivity analysis was performed only for the
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Figure 3.4: Model performance vs. order of magnitude of the second-order parameter (truck
model)
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Figure 3.5: Fuel consumption vs. cruise speed at different grade levels (truck convex model)

speed range of 0-100 km/h and the optimum cruise speeds already reached the maximum level
when vehicle weights were at a low level (e.g. 17,000 kg). Furthermore, Figure 3.7b clearly
demonstrates that the optimum cruise speeds are more sensitive to vehicle weight at higher
grade levels. In short, the convex model can provide reasonable driving recommendations
and thus be applicable to eco-driving and eco-routing systems.
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Figure 3.6: Impacts of road grade on the optimum fuel economy cruise speed (truck convex
model)
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Figure 3.7: Impacts of vehicle weight on the optimum fuel economy cruise speed at
different grade levels (truck convex model)
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Table 3.5: Comparison of truck model performance
Truck VT-CPFM (concave) VT-CPFM (convex) CMEM MOVES
classification R2 Slope R2 Slope R2 Slope R2 Slope

HDDT 1 0.82 0.93 0.80 0.87 0.87 0.78 0.72 0.42
HDDT 2 0.83 0.81 0.81 0.76 0.87 0.75 0.76 0.39
HDDT 3 0.84 0.92 0.83 0.81 0.90 0.78 0.77 0.42
HDDT 4 0.87 0.91 0.86 0.88 0.90 0.77 0.78 0.42
HDDT 5 0.66 0.75 0.64 0.69 0.71 0.65 0.57 0.39
HDDT 6 0.78 0.89 0.77 0.86 0.83 0.72 0.72 0.38
HDDT 7 0.81 0.82 0.81 0.78 0.85 0.64 0.74 0.35
HDDT 8 0.84 0.86 0.84 0.84 0.89 0.79 0.78 0.43

3.3.3 Model Validation

A rigorous validation procedure was designed using an independent dataset. The validation
process was firstly initiated by comparing the model estimates with field measurements along
with CMEM and MOVES estimates at an instantaneous level. Furthermore, the variation
of fuel estimates over cruise speed was compared between the proposed model and CMEM.
Finally, CO2 emissions were computed using fuel estimates and validated against in-field
measurements.

Figure 3.8 provides two example illustrations of the instantaneous model validation, demon-
strating that the model estimates in general provide a good agreement with in-field mea-
surements as well as CMEM and MOVES predictions by following the peaks and valleys of
the fuel rates. Specifically, Table 3.5 statistically summarizes the performance of different
models. Basically, CMEM performs the best in terms of R2 values, whereas it produces a
bang-bang type of control. Although convex models have a slightly lower R2 value compared
to concave models, they can provide realistic driving recommendations. MOVES performs
the worst among the models given that it is designed for conformity use instead of instan-
taneous analysis; however, it can reflect a large proportion of transient fuel consumption
behavior by producing relatively high R2 values.

Based on the slopes of the regression lines between model estimates and field measurements,
all of the models tend to underestimate fuel consumption levels by having slopes smaller
than 1.0, while the VT-CPFM model produces better approximation to measurements with
higher slope values than CMEM and MOVES. MOVES has extremely low slope values given
that the MOVES database has no trucks as heavy as the combination of the test truck plus
the MERL trailer. The researchers at UC Riverside used MERL to collect data which was
accounted for as part of truck load, which makes the total truck load extremely high.

In validating the proposed model, the variation of fuel predictions over cruise speed was also
compared against CMEM results, as illustrated in Figure 3.9 which gives one example result.
The two models have highly consistent bowl shaped curves as a function of cruise speed,
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Figure 3.8: Instantaneous truck model validation

demonstrating that the proposed model can produce robust fuel estimates. Specifically, the
optimum cruise speed ranges between 32∼52 km/h (lower than LDVs: 60∼80 km/h) for all
of the test trucks varying the grade level from 0% to 8%, and moves towards the negative
direction with the increase of vehicle load and grade level.

The validation effort was also conducted for CO2 estimation. CO2 basically can be esti-
mated from the carbon balance equation using the fuel consumption, HC and CO estimates.
Given that the magnitude of CO2 emissions is significantly higher than HC and CO emis-
sions, the fuel consumption level is thus the primary factor that affects CO2 emissions. As
demonstrated in [12], CO2 emission is linearly related to fuel consumption. Equation (3.5)
was used to capture the relationship between CO2 and fuel predictions. The model was first
calibrated for each truck individually with CO2 in g/s and fuel consumption in l/s, and the
resulting model coefficient (θ) values were then averaged over individual models to generate
the average model given that the relationship between CO2 and fuel consumption is only
relevant to fuel type rather than vehicle type. The average θ value was found to be 2070.
CO2 estimates were demonstrated to be consistent with field measurements, as the example
results illustrated in Figure 3.10. The results of other validation efforts are summarized in
Table 3.6 which has an R2 values ranging between 0.74 and 0.85. In general, the model
provides reliable CO2 predictions. Noticeably, the model cannot be validated for HDDT 4
and HDDT 5 due to a lack of valid CO2 field data, and the model performance is thus not
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Figure 3.9: Impact of cruise speed on truck fuel consumption levels: VT-CPFM vs. CMEM
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Figure 3.10: CO2 estimation using fuel consumption rate (HDDT 1)

discussed for these vehicles.

θ =
CO2(t)

FC(t)
(3.5)

Table 3.6: The performance of truck CO2 models
Truck Classification Coefficients of determination (R2) Slope
HDDT 1 0.78 0.95
HDDT 2 0.85 0.72
HDDT 3 0.81 0.82
HDDT 4 NAa NAa

HDDT 5 NAa NAa

HDDT 6 0.74 0.73
HDDT 7 0.81 0.65
HDDT 8 0.79 0.82
aCO2 model cannot be validated due to the invalid CO2 in-field measurements.
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3.4 Diesel and Hybrid-Electric Bus Fuel Consumption

Modeling

This section presents the procedure and results of fuel consumption modeling for conventional
diesel and hybrid-electric transit buses. The resulting models will be used to estimate bus
trip energy consumption in support of door-to-door trip energy estimation.

3.4.1 Data Preparation

The field data were collected by test driving the buses around the town of Blacksburg,
Virginia. The test was conducted on two types of roads: US 460 (highway with a speed limit
of 65 mi/h (104 km/h)) and local streets with speed limits ranging between 25 mi/h and
45 mi/h (40–72 km/h) in order to cover a wide range of driving conditions. The test routes
comprised a variety of uphill and downhill sections, and thus provided a suitable environment
to test different engine load conditions.

A total of 22 transit buses (14 diesel buses and 8 hybrid buses) were tested under similar
ambient temperature conditions to minimize the impact of other external factors on the data.
Specifically, the diesel buses were classified into four series (19XX, 62XX, 630X, and 632X).
The hybrid buses were categorized into two series (601X and 602X). Within the same series,
buses have identical vehicle properties, as illustrated in Table 3.7 in which bus specifications
were provided.

The Hydraulics + Electrical + Mechanical (HEM) logger was used for data acquisition given
its portability and capability of collecting data autonomously without any maintenance.
The data were collected from ignition-on to ignition-off, and saved on a microSD card to
be uploaded to a server via Wi-Fi. Up to 46 parameters were collected, six of which were
employed for the proposed study: time stamp, vehicle speed, fuel consumption rate, latitude,
longitude, and altitude. The data were recorded at a frequency of either 2 Hz or 5 Hz and
converted to a second-by-second basis. 75% of the data set of each bus was taken for
calibration and 25% for validation.

3.4.2 Model Development

Each bus was individually modeled, resulting in an individual parameter set. The parameter
sets for all buses in the same series were then averaged to generate a composite (series)
model. Table 3.8 summarizes the parameters needed for model development. Some of the
parameters, such as rolling resistance coefficient and driveline efficiency, were obtained from
the literature; others were estimated based on the field data. It should be noted that the
total mass of the bus is the sum of the vehicle curb weight and passenger load which is
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Table 3.8: Parameters required for bus model calibration
Parameter Value Source
Drag coefficient (CD) 0.78 [88]
Altitude correction factor (Ch) NAa Computed from field data
Vehicle frontal area (Af ) 6.824 m2 Computed from truck dimensions
Vehicle speed (v) NAa Measured in field
Mass (m) NAa Computed from field data
Rolling coefficient (Cr) 1.25 [88]
c1 0.0328 [88]
c2 4.575 [88]
Road grade (G) NAa Computed from field data
Acceleration (a) NAa Computed from field data
Driveline efficiency (η) 0.94 [88]
Ridership NAa Measured in field
aThe parameter is not a single value.

computed as the product of the ridership and the average weight of an individual passenger.
In this study, 179 lb (81.5 kg) was assumed to be the average passenger weight. Road grade
was computed using Equation (3.6) with Elv(·) the altitude at t and t+ ∆t respectively and
D(·) the distance a bus travels in one second. The measured elevation data was corrected
using GIS given the unsatisfied measurement accuracy.

G(t) =
Elv(t+ ∆t)− Elv(t)√

(D(t+ ∆t)−D(t))2 − (Elv(t+ ∆t)− Elv(t))2
(3.6)

Given the limitation of the concave model as discussed in section 3.3, fuel consumption
should be restricted to a convex function of vehicle power. To develop a convex model, the
order of magnitude of the second-order parameter, which impacts the degree of convexity
of the model, needs to be determined. Basically, a lower order of magnitude suggests a
higher degree of convexity and results in larger difference between the model estimates and
field measurements given that empirical fuel consumption points to a concave function of
vehicle power. A higher order of magnitude, however, results in an asymptotically linear
model that produces a bang-bang type of control. Accordingly, a trade-off is necessarily
achieved between the accuracy of the model and the degree of convexity. The performance
of the convex model is thoroughly investigated by varying the order of magnitude from 1E-05
to 1E-11, as demonstrated by Figure 3.11. Each bus series shows similar behavior, as R2

increases with the growth of the order of magnitude up until 1E-08, beyond which the model
achieves little improvement. 1E-08 is thus taken as the best compromise between model
accuracy and the degree of convexity, resulting in the convex model shown in Table 3.9.

The effects of road grade and vehicle load on fuel consumption as it varies with cruise speed,
have been analyzed. As demonstrated by Figure 3.12, the model, in general, represents
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Figure 3.11: Model performance vs. order of magnitude of the second-order parameter (bus
model)
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Table 3.9: Bus fuel consumption model

Bus series number α0 α1 α2

19XX 1.66E-03 8.68 E-05 1.00E-08

62XX 1.13E-03 5.69 E-05 1.00E-08
630X 9.76E-04 6.44 E-05 1.00E-08
632X 1.41E-03 8.21 E-05 1.00E-08
601X 1.00E-03 5.18 E-05 1.00E-08

602X 1.38E-03 6.22 E-05 1.00E-08

fuel consumption as a bowl-shaped function of vehicle speed at non-negative grade levels,
suggesting that optimum cruise speeds are achieved within the lower bound and upper bound
of the speed range. Specifically, Figure 3.13 characterizes the optimum cruise speed as it
varies with road grade, demonstrating that higher uphill grades result in a lower optimum
cruise speed, whereas steeper downhill roads require a higher cruise speed to minimize fuel
consumption level (which is not recommended for safety purposes).

Figure 3.14 summarizes the impact of vehicle load on the optimum cruise speed. Basically,
heavier vehicles accrue lower optimum speeds when moving uphill and higher when moving
downhill. It is worth noting that, as demonstrated by Figure 3.14b, the optimum speeds
remain constant with an increase in vehicle weight when the road grade is −4%, −6% and
−8%. This is attributed to the fact that the analysis is performed only for the speed range
of 0 − 100 km/h, and, at these grade levels, the optimum speeds reach the maximum level
at a low vehicle load. In addition, the optimum speeds are demonstrated by Figure 3.14b
(uphill) to be more sensitive to vehicle load at higher grade levels.
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Figure 3.12: Fuel consumption vs. cruise speed at different grade levels (bus model)
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Figure 3.13: Impacts of road grade on the optimum fuel economy cruise speed (bus model)
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Figure 3.14: Impacts of vehicle weight on the optimum fuel economy cruise speed at
different grade levels (bus model)
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Table 3.10: Comparison of bus model performance
Bus VT-CPFM (concave) VT-CPFM (convex) CMEM MOVES
Series Number R2 Slope R2 Slope R2 Slope R2 Slope

19XX 0.81 0.78 0.82 0.81 0.81 0.66 0.74 0.82
62XX 0.78 0.77 0.80 0.88 0.80 0.76 0.74 1.20
630X 0.75 0.83 0.76 0.75 0.72 0.73 0.68 1.06
632X 0.79 0.80 0.80 0.85 0.80 0.69 0.70 0.60
601X 0.63 0.79 0.63 0.75 0.63 0.67 0.57 1.13
602X 0.69 0.90 0.69 0.90 0.70 0.82 0.67 0.76

3.4.3 Model Validation

The validation efforts were made using the data set independent of calibration. The fuel
estimates resulted from each series model were compared against the field measurements of
a real bus in that series as well as the predictions from CMEM, MOVES, and the concave
model. Furthermore, the variation of fuel consumption with cruise speed was also tested and
compared with the results derived from CMEM.

As summarized in Table 3.10, VT-CPFM and CMEM can generate approximately accurate
estimates by having proximate R2 values; however, CMEM produces a bang-bang type of
control and also cannot be easily calibrated and implemented given the need of engine data for
model calibration. The convex model does not entail a significant decrease of R2 compared to
the concave model, demonstrating that the model maintains precision in enabling realistic
driving recommendations. MOVES produces the least accurate estimates given that it is
designed for conformity use instead of instantaneous analysis. Furthermore, the slopes of
the regression lines of model estimates versus field measurements demonstrate that VT-
CPFM and CMEM, in general, underestimate fuel consumption levels, while VT-CPFM can
provide better estimates by having higher slope values. MOVES generates an underestimate
for some series while overestimating for others, which is explained by the fact that the buses
employed by the MOVES database are a composite of numerous bus categories rather than
the specific type used in this study.

In validating the model, a comparison was made to CMEM, as demonstrated in Figure 3.15,
which illustrates two example results. The proposed model generates an optimum cruise
speed consistent with CMEM and produces the same bowl-shaped curve as a function of
cruise speed. Specifically, the optimum cruise speed ranges between 39 and 47 km/h (lower
than LDVs: 60–80 km/h) for all of the tested buses varying grades from 0% to 8%, and
decreases with the rise of grade and vehicle load.
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Figure 3.15: Impact of cruise speed on fuel consumption levels: a. conventional diesel bus;
b. hybrid-electric bus
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3.5 Conclusions

This chapter develops the fuel consumption models for HDDTs, conventional diesel and
hybrid-electric buses, circumventing the bang-bang type of control in the modeling practice.
Given a lack of publicly available data, the models were calibrated using field data. Eight
trucks and six bus series (four diesel series and two hybrid series) were tested. The validation
efforts were made by comparing the model estimates against field measurements as well as
the predictions of CMEM and MOVES.

The results demonstrate that the predictions of the VT-CPFM model are consistent with
field observations as well as the estimates of CMEM and MOVES, and that the model can
provide realistic driving suggestions in control systems. The optimum fuel economy cruise
speed ranges between 32 and 52 km/h for tested trucks and between 39 and 47 km/h for
tested buses on grades varying from 0% to 8%, and decreases with the rise of grade and
vehicle load. This demonstrates that steeper uphill roads and heavier vehicles result in a
lower optimum cruise speed, which is justified in reality. These optimum cruise speeds are
significantly lower than those for LDVs (60-80 km/h).

Given the simple model specification, the VT-CPFM model can be readily calibrated with-
out any engine data which typically are not available, and easily implemented in traffic
microsimulation software and in-vehicle or smartphone eco-routing and eco-driving systems.
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Chapter 4

Electric Train Dynamics and Energy
Consumption Modeling

This chapter is based on the papers listed below:

1. Wang, J. and Rakha, H. Electric Train Energy Consumption Modeling. Journal of Applied
Energy, 2017.

2. Wang, J. and Rakha, H. Train Dynamics Model for Rail Transit Simulation System.
Transportation Research Part C: Emerging Technologies. (In Review).

4.1 Introduction

The urban transportation system has been deteriorating with regards to the environment
given the higher residential density and travel demand, growth in automobile ownership and
worsening of traffic conditions. Many cities, especially metropolis areas, are served by a
mixture of multiple traffic modes comprised of passenger cars, transit buses, trucks and rail
transit. Accordingly, to reduce city-wide energy consumption and GHG emissions, not only
are effective strategies required for each mode, but also integrated strategies considering the
interaction of these modes are required. To enable the efficient and cost-effective design and
testing of new strategies, a multi-modal energy-efficient system is being developed.

As aforementioned, system development requires the design of multiple submodules. This
chapter focuses on subway electric train dynamics and energy consumption modeling. The
developed models will support the overall modeling framework in estimating rail-induced
energy consumption, and designing and testing eco-friendly strategies customized to urban
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rail transit systems, such as energy-efficient timetables [163, 164] and eco-speed control
[165, 166].

4.2 Dynamics Modeling

The proposed model was developed based on Fadhloun-Rakha’s [91] and Hay’s modeling
framework [56]. Consequently, their theoretical backgrounds are necessarily introduced to
give a general picture of the modeling approach.

4.2.1 Fadhloun-Rakha Traction Dynamics Model

The dynamics model for estimating acceleration can be mathematically generalized by Equa-
tion (4.1), with a the acceleration level (m/s2), M the total vehicle mass (kg), Ft the tractive
effort (N) and R the resistance force (N) which is the combination of rolling, grade and aero-
dynamic resistive forces. The tractive effort is constrained by the maximum tractive effort
to ensure that it does not approach infinity at low speeds, as formulated in Equation (4.2),
where η is the the mechanical efficiency of the transmission and gear, Pmax is the maximum
engine power (kW ), u is the vehicle speed (mi/h), 1.61 is the unit conversion factor from
mi/h to km/h, µ is the coefficient of friction between tire and road surface for motor vehicles
(or between the wheel and the track for trains), Mta is the vehicle mass on the tractive axle
(kg), g is the gravitational acceleration (9.8066 m/s2), λ is the throttle level (0 ≤ λ ≤ 1)
which was assumed to be either 1 [88, 89] or a constant reduction [90] before Fadhloun et
al.’s study [91]. It should be noted that the coefficient of friction µ is different from the
aforementioned coefficient of friction f that quantifies the friction between the wheel and
the brake shoe.

a =
Ft −R
M

(4.1)

Ft = min(3600ηλ
Pmax

(u · 1.61)
, µMtag) (4.2)

It is well known that delivered engine power is sensitive to the throttle level, which itself
is empirically demonstrated by [91] to hyperbolically vary with the ratio of vehicle speed
to the desired speed, demonstrating, in Figure 4.1, that the throttle level first increases
up to the maximum throttle level with the increasing speed and then decreases when the
speed approaches the facility desired speed. The hyperbolic throttle function is presented in
Equation (4.3):
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Figure 4.1: Variation of throttle level as a function of speed

λ(
u

ud
) =


u
ud

t1+
t2

1− u
ud

+t3
u
ud

, 0 ≤ u ≤ um

max

(
u
ud

t1+
t2

1− u
ud

+t3
u
ud

, λ∗
)
, um < u ≤ ud

(4.3)

where ud is the facility desired speed (mi/h), um is the speed at the maximum throttle
(mi/h), t1, t2, and t3 are model parameters to be calibrated, and λ∗ is the minimum throttle
that is allowed when achieving the desired speed to avoid zero throttle during free driving
(zero throttle cannot maintain the desired speed). λ∗ can be estimated by assuming that
acceleration equals zero when the desired speed is achieved, as illustrated in Equation (4.4).
The first term of the numerator in Equation (4.4) is the tractive force at the desired speed,
and the second term R(ud) is the resistance force (N) at the desired speed. Other parameters
in the function were earlier defined.

min(3600ηλ∗ Pmax
(ud·1.61)

, µMtag)−R(ud)

M
= 0 (4.4)

The Fadhloun-Rakha dynamics model has been demonstrated to address typical acceleration
behavior more accurately than other dynamics and kinematics models [167, 168, 169, 170]
by introducing the variable throttle mechanism into the modeling framework, and thus is
employed as the basis to model train dynamics in this chapter. Noteworthy here is that rail
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trains are controlled by several discrete throttle notches; resulting in the throttle changing
abruptly from one level to another with the running speed rather than varying continuously
as is the case with motor vehicles. A discretization procedure is thus needed for the model
to capture discrete events, which is introduced in section 4.2.3.

4.2.2 Hay Brake Dynamics Model

The general dynamics modeling framework for deceleration estimation is presented in Equa-
tion (4.5) based on the Newton Motion Law, with ad the deceleration (m/s2), Fb the brake
force (N), R and M defined earlier. According to [56], the brake force is linearly related
to the coefficient of friction between the wheel and the brake shoe, as illustrated in Equa-
tion (4.6), with Rb the braking ratio (constant for passenger trains), W the weight per rail
car (lb), e the efficiency of the brake lever system (usually 90-95%), and f the coefficient
of friction between the wheel and the brake shoe. The model implies that the brake force
varies with speed similar to (e × f) given a constant RbW for a specific train type. e × f
is treated as a variable, specified as the coefficient of friction f hereinafter. In addition, the
application of the model requires an upper bound constraint on the friction force (µMtag)
to avoid wheel slippage.

ad =
Fb +R

M
(4.5)

Fb = RbWef (4.6)

Based on the studies by [56, 83], the brake force is a piecewise function of train speed,
as illustrated in Figure 4.2. In general, the brake force first increases to the maximum
retardation with increasing speed, and is limited at the steady force level within a specific
speed range, then decays at high speed levels. As demonstrated in [83], the early locomotive
design does not have the steady force region, while designers have been trying to achieve
full dynamics brake force at as low velocity as possible so that the regions of maximum
retardation become large in modern locomotive packages (different curves in Figure 4.2
represent different locomotive packages). Given the empirically piecewise features of the
brake force, the coefficient of friction f should also be a piecewise function of train speed.
The proposed modeling framework is analytically addressed in section 4.2.3.

4.2.3 Proposed Dynamics Model

The modeling framework was developed for acceleration and deceleration respectively. As
was mentioned, the acceleration model was developed based on Fadhloun-Rakha’s throttle
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Figure 4.2: Dynamic brake characteristics

function by a combination of discretization procedure, and deceleration was characterized as
a piecewise function of running speed.

4.2.3.1 Acceleration Modeling Approach

Acceleration is generally computed based on the Newton Law of Motion, as formulated in
Equation (4.7) in which the tractive force Ft is estimated using Equation (4.8) and instanta-
neously varies with train speed and throttle level. It is noteworthy that m in the two models
is the weight per rail car (kg) instead of total train weight (unlike M in Equation (4.1) refers
to the total vehicle weight), given that the Electric Multiple Units (EMUs) tested in this
study enclose electric traction motors within each of the carriages so that each rail car is
self-propelled. It is unlike the trains propelled by a single locomotive. In addition, the mass
of the railcar is fully acted on the tractive axles for EMUs, so that the weight acting on the
tractive axles (Mta in Equation (4.2)) equals the railcar mass (m). Other parameters in the
models were defined earlier.

a(t) =
Ft(t)−R(t)

m
(4.7)

Ft(t) = min(3600ηλ(t)
Pmax

(u(t) · 1.61)
, µmg) (4.8)
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4.2.3.2 Resistance Force Module

The resistance force acting on a train is demonstrated in Equation (4.9) in which the first four
terms are the modified Davis equation [171] where wp is the weight per railcar axle (tons)
consisting of empty railcar weight and total passenger weight, K is train drag coefficient,
np is the number of axles per rail car, θ is the track gradient (%), 1000 is the mass unit
conversion from kg to ton, and 4.4482 is the unit conversion coefficient from lb to N . Given
that the Davis equation generates the resistance force in lbs, the unit conversion (4.4482) is
necessary for the model to be integrated into the dynamics model.

R(t) =

[
(0.6 +

20

wp
+ 0.01u(t) +

Ku(t)2

wpnp
+ 20θ)

]
× m

1000
× 4.4482 (4.9)

4.2.3.3 Throttle Discretization Procedure

The continuous throttle function in Equation (4.3) cannot directly capture train discrete
throttle notches. A discretization procedure is thus introduced to the modeling framework.

According to [83], the discrete throttle level λd can be computed by ( N
Nmax

)2 as demonstrated
in Equation (2.7). However, it is difficult to address how λd or N relates to train operation
conditions (e.g. speed) without the being reported by the engine manufacturer. Accordingly,
the Fadhloun-Rakha model was first used to generate the continuous throttle level, which
was then discretized to approximate the discrete events. Specifically, the continuous throttle
λ estimated by Equation (4.3) was instantaneously compared to each level of the discrete
throttle λd, and the discrete throttle that minimized the difference between λ and λd was
selected as the final throttle level for the time instant. Assuming that there are (Nmax +
1) notches, resulting in the discrete throttle levels: λd(1), λd(2), ..., λd(Nmax), λd(Nmax+1), the
discretization procedure is presented in Table 4.1.

4.2.3.4 Deceleration Modeling Approach

Deceleration behavior is mathematically addressed in Equation (4.10); again, m refers to the
weight of each railcar (kg). The brake force Fb in the model is formulated using a combination
of Hay’s model and the friction force constraint (µmg), as illustrated in Equation (4.11) with
f the (e× f) as mentioned in Section 4.2.2. Other parameters were defined earlier.

ad(t) =
Fb(t) +R(t)

m
(4.10)
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Table 4.1: Throttle discretization procedure
Procedure DISCRETIZATION (time duration of driving cycle: T; time instant: t;
discrete notch level: i; the difference between λ and λd: D)

for all t←1, 2, ..., T do
if u(t) ≤ um, instant speed smaller than the speed at the maximum throttle

λ(t)←
u(t)
ud

t1+
t2

1−u(t)ud

+t3
u(t)
ud

else

λ(t)← min(
u(t)
ud

t1+
t2

1−u(t)ud

+t3
u(t)
ud

, λ∗)

end if
for all i←1, 2, ..., Nmax + 1 do

D(i)← |λ(t)− λd(i)|
end for
Index← min(D), find the minimum-difference discrete throttle
λ(t)← λd(Index), discretized final throttle

end for
end procedure

Fb(t) = min(RbWf(t), µmg) (4.11)

Dynamic braking is usually controlled as a continuous mode rather than a discrete notch [83].
Thus, a continuous brake function was proposed by characterizing the coefficient of friction
(f) as a piecewise function of train speed. The piecewise feature of the brake force is not only
suggested by the literature (as shown in Figure 4.2), but also empirically confirmed by this
study. Figure 4.3 presents the empirical relations in the domains of coefficient of friction (f)
versus speed and brake force versus speed. Basically, the braking dynamics is a three-stage
piecewise function of speed with a linear feature for the first stage, a steady level for the
second phase and an approximately exponential decay mechanism for the last stage. The
modeling framework for the coefficient of friction is represented in Equation (4.12), where
θ, u1, u2, β are model parameters to be calibrated. It should be noted that u1, u2 are the
critical speeds (mi/h) at which the model specification would be changed.

f(t) =


θu(t), 0 ≤ u(t) < u1

θu1, u1 ≤ u(t) < u2

θu1e
−β(u(t)−u2), u(t) ≥ u2

(4.12)
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Figure 4.3: Piecewise feature of braking dynamics
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Table 4.2: Rolling stock characteristics

Parameter Values Data source

Weight of empty railcar 54.5 tons Manufacturer website

Number of axles per railcar (np) 6 Manufacturer website

Drag coefficient (K) 0.07 ([56]) Literature

Seating capacity per railcar 64 Manufacturer website

Daily passenger loading 43% Transit agency or National Transit Database

Number of cars per train 2 Transit agency

Mechanical efficiency (η) 0.96 ([56]) Literature

Maximum engine power (Pmax) 580 kW Manufacturer website

Braking ratio (Rb) 0.9 ([56]) Literature

Coefficient of friction (µ) 0.2 ([56]) Literature

4.2.4 Data Preparation

The model calibration and testing require comprehensive data including rolling stock infor-
mation, train trajectory, and route characteristics. The data were provided by researchers
at Georgia Tech who requested the data from the Tri-County Metropolitan Transportation
District of Oregon (TriMet), the public agency that operates mass transit in the Portland
Metropolitan area. TriMet responded with the information for the Metropolitan Area Ex-
press (MAX) Blue Line where the train trajectories were collected instantaneously.

The test train was representative of the typical train fleet in the Portland light rail transit
system. The information on the rolling stock is summarized in Table 4.2, which presents the
main characteristics of the test train and related parameters for use in the dynamics model.
Some of the information (e.g. the weight per empty rail car, the number of axles per car, the
maximum power, seating capacity) can be easily obtained from manufacturer websites. The
drag coefficient, mechanical efficiency, braking ratio and the coefficient of friction between
the wheel and the track were based on recommended values suggested in the literature for
electric passenger trains. The information on passenger loading can be acquired from either
the transit agency or a national transit database. Noticeably, the weight per rail car (W and
m) in the dynamics model requires to include passenger weights in addition to the weight of
the empty car.

The test section covers an entire trip of the MAX Blue Line from the starting station to the
terminus with a total distance of 32.4 miles. The vertical layout of the section demonstrates
a combination of upgrade (up to 4.3%) and downgrade (up to −4.5%) sections. The train
was tested on 115-lb good rails with good cross ties at normal temperature on sunny days.
The test was conducted under normal operational conditions, given that it is technically
impossible to perform an on-site test in a continuous acceleration/deceleration mode. The
trajectory data were collected by TriMet using GPS equipment and recorded on a second-by-
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Figure 4.4: The driving cycle for the MAX Blue Line

second basis, which enables the characterization of detailed train dynamics. As illustrated in
Figure 4.4, the trip driving cycle lasts for approximately 6000 s. In addition, the information
on route characteristics was provided in terms of station name, milepost and elevation in
order to generate the track segment-specific grade as the input of the train dynamics model.

Given that the train was tested in normal operational conditions, identifying acceleration
and deceleration events was not a straightforward process. Specifically, the train may oc-
casionally decelerate or cruise while starting from a station and accelerating to the target
speed. Similarly, a train may accelerate or cruise while decelerating from the target speed
to a complete stop at the next station. To accurately model the train dynamics behavior,
the straightforward acceleration and deceleration events were identified respectively using
the train trajectories.

There are 47 micro-trips (a micro-trip refers to the trip from one complete stop to the next)
for the driving cycle in Figure 4.4. The acceleration event for each micro-trip was recognized
by continuously tracking the trajectories from the complete stop at the starting point to the
time instant when a cruise or deceleration event occurred, so that the trajectories refined
from each micro-trip captured only acceleration events. Likewise, the deceleration event for
each micro-trip was identified by tracking the trajectories backward from the complete stop
at the ending point to the moment when a cruise or acceleration event occurred. Neither the
acceleration events starting from a non-complete stop nor the deceleration events ending at
a non-complete stop were selected. The events lasting only a few seconds (e.g. < 10 seconds)
were removed in order to ensure sufficient data samples in each event, resulting in a total of
42 acceleration events and 11 deceleration events.

The constructed acceleration and deceleration datasets were respectively divided into two
sections, 70% of each dataset was used for model calibration and 30% for validation purposes.
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4.2.5 Model Calibration

The model was calibrated and tested only for light rail electric trains given a lack of data
for other classifications, but the modeling framework would be applicable to the entire train
fleet.

4.2.5.1 Acceleration Model Calibration

Based on the modeling framework introduced in Section 4.2.3.1, a total of three parameters
need to be calibrated: t1, t2, t3. The three parameters are mathematically related to the
maximum throttle level (Tm) and the ratio of speed (u) to the segment target speed (ud) at
the maximum throttle (specified as αm hereinafter), as illustrated in Equation (4.13-4.15).
The functions were determined through implementing boundaries on the partial derivative
of throttle with respect to the ratio u

ud
, see [92]. The mathematical transformation clarifies

the physical implications of t1, t2, t3. On the one hand, the parameters affect the maximum
throttle that would be implemented; on the other hand, they manipulate the critical u

ud
ratio

(αm) beyond which throttle would commence to decrease. This implies that the parameter
values may be sensitive to driver behavior. However, the train manipulation is significantly
less heterogeneous compared to motor vehicles. In addition, the functions enable the con-
version from calibrating t1, t2, t3 to calibrating t1, Tm, αm, simplifying the calibration given
that the ranges of αm and Tm are deterministic (αm, Tm ∈ [0, 1]).

0 ≤ t1 ≤
2αm − 1

αmTm
(4.13)

t2 =
(1− αm)2

2αm − 1
t1 (4.14)

t3 =
1

Tm
− t1

2αm − 1
(4.15)

Model calibration work can be formulated as a constrained non-linear optimization problem,
as illustrated in Equation (4.16). The objective is to minimize the sum of the squared
error (E) between the estimated (û) and observed (u) speeds for each observation i. The
constraints ensure that the estimated speeds and distances (x̂) satisfy the system of the first-
order ordinary differential equations (ODEs) in addition to the non-negativity constraints.
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min E =
n∑
i=1

(û(i)− u(i))2 (4.16a)

s.t. : û(i) = û(i− 1) + â(i− 1)∆t (4.16b)

x̂(i) = x̂(i− 1) + û(i− 1)∆t (4.16c)

û(i), x̂(i) ≥ 0 (4.16d)

The solution to the optimization problem results in the following model parameters: the
maximum throttle level of 1.0 (Tm = 1.0), the maximum-throttle u

ud
ratio of 0.6 (αm = 0.6),

and t1 = 0.190, t2 = 0.152, t3 = 0.050.

4.2.5.2 Deceleration Model Calibration

The proposed model requires four parameters to be calibrated: θ, u1, u2, β as illustrated in
Equation (4.12). θ characterizes the linear feature of the model, and u1, u2 are the critical
conditions upon which the model specification would be determined. β is used to quantify
the exponential decay feature.

Likewise, the calibration work can be formulated as a constrained non-linear optimization
problem as demonstrated by Equation (4.16). It should be noted that the estimated accel-
eration (â) in the first constraint is negative given the braking manipulation. The resulting
model generates 0.0217 as the slope of the linear function (θ = 0.0217), 6 mi/h and 21 mi/h
as the two critical speeds respectively (u1 = 6, u2 = 21), and 0.10 as the exponential decay
parameter (β = 0.10).

4.2.6 Model Validation

To assess the validity of the dynamics model, the model predictions were compared against
the instantaneous field observations in conjunction with an exponential smoothing procedure,
as shown in Equation (4.17), where â is the exponentially smoothed acceleration/deceler-
ation, a is the instantaneous acceleration/deceleration estimates, and α is the smoothing
parameter. The model was also tested in the domains of acceleration/deceleration versus
speed and acceleration/deceleration versus distance in order to evaluate the robustness of
the model in capturing the train dynamics behavior.

â(t) = α · a(t) + (1− α)â(t− 1) (4.17)
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Figure 4.5: Instantaneous model validation (acceleration)

4.2.6.1 Acceleration Modeling Results

A smoothing factor of 0.10 appeared to produce an optimum fit (minimum error of estimated
trajectory) to field data by having the coefficient of determination (R2) of 0.96. As illustrated
in Figure 4.5, the acceleration model generates the results consistent with the empirical
measurements. Although the model occasionally either overestimates or underestimates at
some time instants; in general, however, the predicted trajectory follows the major trend of
the measured data.

Figure 4.6 evaluates the model performance in the domains of acceleration versus speed and
acceleration versus distance, demonstrating good fits to the field observations. Specifically,
acceleration, in general, varies as a concave function of speed and decreases with the increas-
ing distance, which is similar to previous studies on motor vehicles [88, 90, 91, 105]. It is
worth noting that, unlike the studies of motor vehicles, there are valleys in the domain of
acceleration vs. speed at the speed levels of 10 - 20 mi/h and 30 - 40 mi/h respectively,
implying that higher speed levels may achieve higher acceleration, or vice versa. This is
attributed to the fact that acceleration (or throttle level) is determined not only by the in-
stantaneous speed level but also by the segment desired speed. For instance, a train running
at 40 mi/h on the track segment (desired speed: 50 mi/h) may achieve higher acceleration
levels than when it is running at 35 mi/h yet on the segment with lower desired speed
(e.g. 35 mi/h), given that the lower desired speed results in higher u

ud
ratio (1.0) and thus

69



J. Wang

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

Speed (mi/hr)

Ac
ce

ler
at

ion
 (m

/s2 )

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Distance (mi)

Ac
ce

ler
at

ion
 (m

/s2 )

 

 

Model Estimates
Empirical Observations

Figure 4.6: Model evaluation: acceleration versus speed and acceleration versus distance

generates significantly lower throttle levels (λ∗).

4.2.6.2 Deceleration Modeling Results

Through minimizing the model error, a smoothing factor of 0.26 was achieved to provide the
optimum fit to the field observations, demonstrating a coefficient of determination of 0.94.
Figure 4.7 demonstrates a good model fit to field observations by following the peaks and
valleys of the measured data.

The evaluation in the domains of deceleration versus speed and deceleration versus distance,
as illustrated in Figure 4.8, also demonstrates a good fit to the field measurements. Decel-
eration, likewise, varies as a concave function of speed and decreases with the cumulative
distance. The model goodness-of-fit demonstrates its strong ability to capture deceleration
behavior precisely.

4.2.7 Simulation Test

The proposed model has been demonstrated to adequately capture train dynamics. The ob-
jective of the model development is to support railway simulation and trip energy estimation.
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Figure 4.7: Instantaneous model validation (deceleration)
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Figure 4.8: Model evaluation: deceleration versus speed and deceleration versus distance
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Figure 4.9: Instantaneous simulation test

Thus, the adequacy of the model for simulator development was tested in this section.

Two important parameters are needed for testing purposes, namely: the segment target
speed and the average deceleration which were used to determine where a train should
start to decelerate in order to ensure a complete stop upon arrival at the various stations.
According to the Newton Motion Law, the distance required by complete a stop can be
computed by the quadratic difference of the initial speed (target speed) and the final speed
(0) divided by double the average deceleration level, as illustrated in Equation (4.18), where
D is the distance required for a complete stop, ud and ād are the segment target speed and
average deceleration level respectively. Each micro-trip in Figure 4.4 respectively represents
the motions on a track segment, so that, for simplicity, the target speed for each segment can
be assumed to be the maximum speed of each micro-trip trajectory. Likewise, the average
deceleration of each micro-trip was taken as the segment-specific average deceleration rate
(ād).

D =
u2
d

2ād
(4.18)

Through a combination of the proposed dynamics model and the determined segment-specific
target speeds and average deceleration, the test was conducted by comparing the simulated
trajectories against the field observations on a second-by-second basis. Figure 4.9 demon-
strates a good fit of the simulation results to the field trajectories, with a R2 value of 0.86.
Combined with the energy consumption model developed in section 4.3, the proposed subway
system will be used to estimate rail trip energy consumption.
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4.3 Energy Consumption Modeling

The proposed model was developed based on the VT-CPEM framework [13], characteriz-
ing electric power as two piece-wise functions as demonstrated in Equation (4.19) (energy
consumption) and Equation (4.20) (energy regeneration). The description of the model
parameters is summarized in Table 4.3. Basically, the energy is computed on a second-by-
second basis. When the train is in traction mode, the energy flows from the electricity power
system to the wheels with the power at the wheels being positive (P > 0). Alternatively,
when the train is in regenerative braking mode, the energy flows from the wheels back to
the power system and the power at the wheels is negative (P < 0). Noteworthy here is that,
to compute regenerated energy (ECre), only negative power is considered.

(α01 × β1 + α02 × β2) in Equation (4.19) refers to the head-end power (HEP) in which β1

and β2 are dummy variables equal to either 0 or 1. α01, in most cases, is applied to HEP
(β1 = 1 and β2 = 0) except when a train is about to start moving and waiting at the initial
route station where only a small fraction of HEP (α02) is applied (β1 = 0 and β2 = 1). This
accounts for the fact that trains only keep the ventilation system and lights on while waiting
to load passengers before a trip begins and thus only consumes a small fraction of HEP.

EC(t) =

{
α01 × β1 + α02 × β2 + P (t), ∀P (t) > 0

α01 × β1 + α02 × β2, ∀P (t) ≤ 0
(4.19)

ECre(t) =

{
P (t)× ηrb(t), ∀P (t) < 0

0, ∀P (t) ≥ 0
(4.20)

The aggregated energy consumption for an entire trip is then estimated by summing the
instantaneous energy rates and then dividing by the trip length, as illustrated in Equation
(4.21), with d being the trip length (km).

ECd

[
kWh/V · km

]
=

∑
t[EC(t) + ECre(t)]

d
(4.21)

4.3.1 Tractive Power and Tractive Effort

Tractive power is computed using Equation (4.22) in which u is the instantaneous speed
(km/h), 0.746 is used to convert the power from horsepower to kilowatt. F is the tractive

effort as formulated in Equation (4.23) [56]. The first four terms, (0.6 + 20
wp

+ 0.01u(t)
1.61

+
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Table 4.3: Description of model parameters
Name Description Unit

E Annual energy consumption kWh
Ep Annual energy consumed per passenger kilometer kWh/P · km
Es Annual energy consumed per seating kilometer kWh/S · km
Ev Annual energy consumed per vehicle kilometer kWh/V · km
Mp Annual passenger kilometer P · km
Ms Annual seating kilometer S · km
Mv Annual vehicle kilometer V · km
C Train capacity -
β Line loss factor -
EC(t) Instantaneous energy consumption kW
ECre(t) Instantaneous energy regeneration kW
P (t) Instantaneous tractive power kW
α01 Head-end power (HEP) kW
α02 Fraction of HEP (0.05 is suggested by [57]) kW
β01, β02 Dummy variable -
ηre Instantaneous regenerative efficiency -
ECd Trip energy consumption per unit distance kWh/V · km
F (t) Instantaneous tractive force N
u(t) Instantaneous speed km/h
wp Weight per railcar axle ton
np Number of axles per railcar -
K Train drag coefficient (0.07 suggested by [56]) -
θ Road grade %
L Distance a train moved in one second m
M Total train weight ton
α Regenerative efficiency model parameter -
a(t) Instantaneous deceleration level m/s2

d distance covered by the entire driving cycle km
ECNTD NTD energy rate kWh/V · km
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K(u(t)/1.61)2

wpnp
), in the model are the modified Davis equation [172], referring to the train re-

sistance comprised of rolling, journal, track, flange and aerodynamic resistance. wp is the
railcar weight per axle (ton), including passenger weight (an average of 68 kg is assumed
for each passenger in this study). The Davis equation was tested through a large amount
of field experiments [172, 173, 174]. In addition, as demonstrated by [56, 57, 175], only
positive gradient contributes to the grade resistance with an increase of 20 lbs/ton (0.01
N/kg) per percentage grade. It should be noted that curve resistance has been converted to
the equivalent grade resistance by assuming that unit resistance of a 1◦ curve is the same
as the resistance that a 0.04% grade would offer [56]. The last term in the bracket is the
force exerted for acceleration or braking. M is the average weight of the moving train (ton),
including the train curb weight and total passenger weight. 4.4482 is used to convert the
tractive effort from lbs to N .

P =
Fu

375× 1.61
× 0.746 (4.22)

F (t) =

[
(0.6 +

20

wp
+

0.01u(t)

1.61
+
K(u(t)/1.61)2

wpnp
+ 20θ)

+ 70
u(t)2 − u(t− 1)2

8.4× L

]
×M × 4.4482 (4.23)

4.3.2 Starting Tractive Effort

It is worth noting that the tractive force in Equation (4.23) only addresses the effort exerted
to move the train while in motion. However, a different tractive force is needed to move a
train from a complete stop. The starting tractive effort typically consists of the grade resis-
tance, bearing resistance, track resistance, weather resistance, and the resistance resulting
from poor track conditions. When a train is starting from a complete stop, the tractive effort
is estimated as the sum of these resistance forces rather than using Equation (4.23).

The grade resistance can be estimated as set forth. The typical values of other resistance
forces were suggested by [57]. Specifically, the bearing resistance is 10 lb/ton (0.005 N/kg)
at 122 ◦C (50 ◦F), and increases by 0.1 lb/ton (0.0005 N/kg) for 1 ◦F decrease below 50 ◦F
and decreases by 0.1 lb/ton (0.00005 N/kg) for 1 ◦F increase above 50 ◦F. Track resistance
depends on track type. There is no resistance force for 130 lb (59 kg) rail, and 1 lb/ton
(0.0005 N/kg) resistance for 115 lb (52 kg) rail and 2 lb/ton (0.001 N/kg) for 100 lb (45 kg)
rail. Weather resistance is affected by the humidity of the rail. Basically, there is no weather
resistance for dry rail, while the wet rail produces a 2 lb/ton (0.001 N/kg) resistance. The
resistance of icy or snowy rail goes up to 10 lb/ton (0.005 N/kg). The resistance relative
to track conditions is 2 lb/ton (0.001 N/kg) for poor rails and fair cross ties, and 7 lb/ton
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(0.0035 N/kg) for poor rails and poor cross ties. There is no such resistance if both rails
and cross ties are in good condition.

4.3.3 Regenerative Braking Efficiency

Regenerative braking efficiency accounts for the portion of the total braking energy available
for recovering. It determines the amount of the energy recovered by a regenerative braking
system. The trains operating on an urban rail transit system frequently accelerate and
decelerate given the short distance between two stations, so that a large amount of energy
may potentially be recovered. Failing to account for energy recovery may thus result in large
deviation in energy prediction for trains with regenerative braking.

The regenerative efficiency (ηre) is characterized as an exponential function of the decel-
eration level for electric vehicles [13, 176], as formulated in Equation (4.24). The model
demonstrates that higher deceleration levels result in larger regenerative efficiency and thus
more energy recovery. This functional form was used in the proposed model to compute
the train regenerative energy. The calibration of the model parameter (α) is presented in
Section 4.3.4.

ηre(t) =

{
1

e
α
|a(t)|

, ∀a(t) < 0

0, ∀a(t) ≥ 0
(4.24)

4.3.4 Model Calibration

Having introduced the modeling framework, the next step is to calibrate the proposed model,
which requires only one parameter to be calibrated.

The data required for calibration were classified into four categories: train information, travel
activity data, route characteristics, and the information required to estimate the starting
tractive effort. The data were provided by researchers at Georgia Tech who requested the
data from the Tri-County Metropolitan Transportation District of Oregon (TriMet), the pub-
lic agency that operates mass transit in the Portland Metropolitan area. TriMet responded
with the information for the Metropolitan Area Express (MAX) Blue Line.

The MAX light rail trains are powered by built-in-place electric substations (ESS) located
along the system route using the overhead contact line [177] with a nominal Voltage of 825
V DC. The system under study is similar to that investigated by [178, 179]. As illustrated
in Figure 4.10, the electric power is transferred from ESS to trains through the contact
line. The brake system of the MAX trains is a blending of regenerative braking and friction
braking. The regenerative braking is the primary method of braking used when the train is
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Figure 4.10: A simplified representation of the MAX light rail traction system

going faster than 3 mph (4.8 km/h), and the friction braking is also applied when the speed
of the train is slower than 4.8 km/h to ensure sufficient power supply for emergency stopping.
In addition, when the train is in braking mode, the electric motors operate like generators,
taking the forward motion of the train and converting it into electricity. The regenerated
electricity is then partly sent to other trains and partly stored in lineside storage systems
for later usage, which significantly improves the system power efficiency. For example, as
demonstrated by Figure 4.10, the braking power from train A is partly sent to train B and
partly stored in the storage system around ESS 2.

A typical train model (SD 660), as shown in Figure 4.11, manufactured by Siemens, was
tested in the field by TriMet to construct the calibration dataset. The test vehicle had two
connecting cars each of which provided with 64 seats. The specific information of the testing
rolling stock is illustrated in Table 4.4, including the empty railcar weight, number of axles
per rail car, drag coefficient, seating capacity, passenger loading, number of cars per train,
and HEP. The HEP was simplified to three operational levels: normal, high and maximum.
The normal level operates at one-third of the maximum load (25 kW ), and the high level
functions at two-thirds followed by the maximum level that operates at full load. It should
be noted that the Chicago train in the table was used for validation purposes.

The characteristics of the testing route are provided in Table 4.5 in terms of station name,
milepost, elevation and gradient profiles (the curvature has been converted to its equivalent
grade as mentioned in section 4.3.1). The trip starts from the Hatfield Government Center
Station and ends at Cleveland station, covering an entire trip of the line with a total distance
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Figure 4.11: Portland MAX light rail vehicle

Table 4.4: Test train characteristics
Values

Parameter MAX blue Chicago Brown

Weight of empty car (ton) 54.5 27.15

Number of axles per car 6 4

Drag coefficient 0.07 0.07

Seating capacity per car 64 49

Percentage loading (peak period) na 87.5%

Percentage loading (off-peak period) na 25%

Daily percentage loading 43% 45%

Number of cars per train (peak period) 2 6

Number of cars per train (off-peak period) 2 4

Maximum HEP per car (kW ) 25 25

HEP operating level Normal Normal
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of 32.4 miles (52.16 km). The vertical layout of the section demonstrates a combination of
upgrade (up to 4.26%) and downgrade (up to -4.46%) sections.

Table 4.5: Track information for the MAX Blue Line

Milepost Elevation

Station Name mile kilometer foot meter Grade to
Next Station

Hatfield Government Center Station 0.000 0.000 200.000 60.960 0.00049
Hillsboro Central /SE 3rd TC 0.360 0.579 200.940 61.247 -0.00122
Tuality Hospital/SE 8th 0.701 1.128 198.745 60.577 -0.00580
Washington/SE 12th 1.117 1.799 185.995 56.691 0.00320
Fair Complex/Hillsboro Airport 2.348 3.781 206.789 63.029 -0.00079
Hawthorn Farm 3.116 5.016 203.609 62.060 0.00310
Orenco/NW 231st 3.845 6.190 215.559 65.702 -0.00095
Quatama/NW 205th 5.265 8.477 208.439 63.532 0.00095
Willow Creek/SW 185th 6.250 10.063 213.379 65.038 0.00047
Elmonica/SW 170th 7.273 11.709 215.894 65.804 0.00210
Merlo/SW 158th 7.860 12.654 222.419 67.793 0.00037
Beaverton Creek 8.409 13.539 223.499 68.122 -0.00532
Millikan Way 9.110 14.667 203.829 62.127 0.00122
Beaverton Central 9.848 15.856 208.594 63.579 -0.00124
Beaverton TC 10.170 16.374 206.494 62.939 0.02039
Sunset TC 12.197 19.637 424.711 129.452 0.00325
Washington Park 15.426 24.836 480.081 146.329 -0.04455
Goose Hollow/SW Jefferson 16.818 27.077 152.648 46.527 -0.01191
Kings Hill/SW Salmon 17.045 27.443 138.358 42.171 0.00804
JELD-WEN Field 17.159 27.626 143.183 43.642 0.00690
13 th st 17.424 28.053 152.838 46.585 -0.02200
Galleria/SW 10th 17.557 28.266 137.438 41.891 -0.02200
Pioneer Square North 17.727 28.541 117.638 35.856 -0.02200
Mall/SW 5th 17.841 28.724 104.438 31.833 -0.01100
SW 3rd 18.030 29.029 93.438 28.480 -0.00895
Oak/SW 1st 18.220 29.334 84.488 25.752 -0.00117
Skidmore Fountain 18.447 29.700 83.088 25.325 0.00334
Old Town/Chinatown 18.574 29.904 85.328 26.008 0.03266
Rose Quarter TC 19.085 30.727 173.498 52.882 0.04261
Convention Center 19.218 30.941 203.328 61.974 0.01174
NE 7th 19.545 31.468 223.638 68.165 0.00500
Lloyd Center/NE 11th 19.634 31.611 225.988 68.881 0.00051
Hollywood/NE 42nd TC 21.377 34.417 230.673 70.309 0.00681
NE 60th 22.381 36.033 266.773 81.312 0.00398
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NE 82nd 23.782 38.289 296.213 90.286 0.02047
Gateway/NE 99th TC 24.559 39.540 380.133 115.864 -0.01174
E 102nd 25.402 40.896 327.873 99.936 0.00250
E 122nd 26.585 42.802 343.468 104.689 0.00331
E 148th 27.708 44.610 363.068 110.663 -0.00660
E 162nd 28.371 45.678 339.968 103.622 -0.00808
E 172nd 28.864 46.470 318.968 97.221 -0.00552
E 181st 29.299 47.172 306.268 93.350 0.00275
Rockwood/E 188th 29.678 47.782 311.768 95.027 0.00584
Ruby Junction/E 197th 30.227 48.666 328.718 100.193 0.00866
Gresham City Hall 31.610 50.892 391.918 119.456 0.01529
Gresham Central TC 32.121 51.715 433.198 132.039 0.01419
Cleveland 32.538 52.386 464.408 141.551 0.01419
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Table 4.6: Parameter set for starting tractive effort

Values

Parameter MAX Blue Chicago Brown

Ambient temperature (◦F) 74 74

Weather condition Dry Dry

Track type 115 lb (52 kg) rail 115 lb (52 kg) rail

Track condition Good rails and crossties Good rails and crossties

The information required to estimate the starting tractive effort, as illustrated in Table 4.6,
consists of weather condition, ambient temperature, track type and conditions. The test
runnings in Portland and Chicago were both conducted on 115-lb good rails with good cross
ties at normal temperature on sunny days. The test in Portland delivered the MAX Blue
Line driving cycle with a maximum operational speed of 88 km/h and a total duration of
around 6000 s, as illustrated in Figure 4.4. For each between-station running, the train, in
general, was first accelerated from a complete stop at one station to a specified target speed,
then cruised at the target speed for a spell, and decelerated until achieving a complete stop
at the next station.

The exponential feature of the regenerative efficiency in Equation (4.24) results in a non-
linear energy consumption model, and thus the calibration procedure was formulated as an
unconstrained non-linear optimization problem as shown in Equation (4.25), where D is the
model prediction difference relative to the NTD estimates, and ECNTD is the NTD average
energy rate. The NTD energy rate was used to calibrate the model because the field energy
consumption was unavailable at the moment of model development. The data in the NTD
2011 demonstrated an average energy consumption of 13.57 kWh/V ·mi (8.48 kWh/V ·km).
The model was calibrated by varying the model parameter (α) value to achieve the minimum
prediction error.

min D = (ECd − ECNTD)2 (4.25)

The calibration result generates the optimum model parameter of 0.65 (α = 0.65). The
resulting regenerative efficiency, as demonstrated in Figure 4.12, exponentially decays with
a decrease in the deceleration level. In particular, the decay becomes dramatic when the
deceleration level is less than 2 m/s2.

4.3.5 Model Validation

The model was validated using the data from the Chicago heavy rail system. The validation
effort was first made by comparing model predictions against the NTD 2011 estimates,
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Figure 4.12: Regenerative braking efficiency varies as a function of the deceleration level

followed by a further discussion of modeling results. The NTD energy consumption for the
Chicago rail system was 36.44 kWh/VM (22.63 kWh/V · km) and 0.13 kWh/SM (0.08
kWh/S ·km). A train on the Chicago “L” system was tested by Georgia Tech researchers to
collect the trajectory data for energy prediction. The Chicago rail has the similar traction
and brake system, track infrastructure and vehicle aerodynamics compared to the Portland
rail system. The information for the testing vehicle is illustrated in Table 4.3. Compared
to the train running on the MAX Blue Line, the Chicago train has lower empty car weight,
seating capacity and the number of axles while more connecting cars. The testing route,
as demonstrated in Table 4.7, starts from the Kimball station and ends at the Merchandise
Mart station, covering 8.7 mi (14.01 km) section of the Chicago Brown Line. The vertical
layout of the section demonstrates a combination of upgrade (up to 2.37%) and downgrade
(up to -2.55%). The test was completed under the same weather and rail conditions as those
on the MAX Blue Line in order to ensure the identical bearing, track and weather resistance
between calibration and validation processes. The test results in the Chicago Brown Line
driving cycle with a maximum operational speed of 75 km/h and a total duration of around
2000 s, as illustrated in Figure 4.13. It is worth noting that the number of cars and passenger
load differ between the peak and the off-peak periods, resulting in different train weights
at different periods. Consequently, energy consumption was first estimated for each period
respectively, and then the average of the two periods was compared against the NTD data.

Table 4.8 demonstrates that the model predictions are consistent with the NTD estimates,
generating a predicted error of 1.87% (kWh/V ·mi) and -2.31% (kWh/S ·mi). Not mod-
eling regenerative braking (“No regeneration” as shown in Table 4.8) results in a significant
prediction error (27.39% and 21.54%). Modeling the regenerative efficiency as a constant
also produces much higher prediction errors compared to the proposed model (16.11% and
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Figure 4.13: The driving cycle for the Chicago Brown line

Table 4.7: Track information for the Chicago Brown Line

Station Name Milepost Elevation Grade to

mile kilometer foot meter Next Station

Kimball 0.000 0.000 548.314 167.126 -0.0255
Kedzie 0.252 0.406 514.337 156.770 -0.0169
Francisco 0.626 1.008 481.030 146.618 -0.0011
Rockwell 0.983 1.583 479.016 146.004 0.0094
Western 1.322 2.128 495.863 151.139 0.0025
Damen 1.766 2.844 501.795 152.947 0.0106
Montrose 2.245 3.614 528.681 161.142 0.0196
Irving Park 2.747 4.423 580.702 176.998 -0.0223
Addison 3.222 5.187 524.777 159.952 0.0072
Paulina 3.592 5.784 538.858 164.244 0.0067
Southport 3.955 6.368 551.759 168.176 -0.0030
Belmont 4.692 7.554 539.964 164.581 0.0125
Wellington 4.897 7.885 553.511 168.710 -0.0052
Diversey 5.155 8.300 546.453 166.559 -0.0187
Fullerton 5.642 9.084 498.304 151.883 -0.0071
Armitage 6.106 9.831 480.804 146.549 0.0237
Sedgwick 7.180 11.560 615.272 187.535 -0.0110
Chicago 8.230 13.250 554.058 168.877 0.0091
Merchandise Mart 8.711 14.024 577.077 175.893 0.0091
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Table 4.8: Validation on Energy Prediction

NTD
esti-
mates

Instantaneous regeneration Constant regeneration No regeneration

Predicted
energy

Error Predicted
energy

Error Predicted
energy

Error

kWh/V ·
mi

36.44 37.12 1.87% 42.31 16.11% 46.42 27.39%

kWh/V ·
km

22.63 23.06 26.28 28.83

kWh/S·
mi

0.13 0.127 -2.31% 0.144 10.77% 0.158 21.54%

kWh/S·
km

0.08 0.079 0.089 0.098

10.77%). Furthermore, the constant assumption deems the model incapable of capturing
instantaneous energy regeneration so it is not suitable for a microscopic level analysis.

Figure 4.14 demonstrates the adequacy of the model at an instantaneous level. The light
blue area represents the energy consumed for the entire cycle. The area delimited by the
blue edge line refers to the energy consumption without energy regeneration during braking,
and the red edge line represents the case considering energy regeneration. When the train
is in traction mode, the electric power is positive and the energy flows from the overhead
catenary to the wheels; alternatively, when the train is in brake mode, the power is negative
and the energy is sent back to the overhead catenary. The instantaneous variation in the
cumulative energy consumption demonstrates the ability of the model in adequately predict
electric consumption and energy recovery on an instantaneous basis. Figure 4.14 also reveals
that energy recovery significantly reduces the overall power consumption.

4.3.6 Discussion of Modeling Results

The model predictions in Table 4.8 also demonstrate that regenerative braking achieves an
energy saving of 20% by reducing the energy consumption from 46.42 kWh/V · mi (28.83
kWh/V · km) to 37.12 kWh/V ·mi (23.06 kWh/V · km). This predicted energy saving is
consistent with what is reported in the literature [180, 181, 182], which demonstrated an
energy saving of up to 30%.

Furthermore, the proposed modeling approach is able to account for the impact of train
parameters (number of cars, seating capacity) on energy consumption. A comparative anal-
ysis of predicted energy consumption between the MAX Blue Line and the Chicago Brown
Line demonstrates that the Chicago train consumes approximately 174% more energy in
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Figure 4.14: Chicago Brown Line: speed and electric power on the entire cycle

kWh/V ·mi (13.57 vs. 37.12), while only consumes 20% more for per seating mile (0.106 vs.
0.127). This demonstrates that the Chicago train has significantly more per-train seats. The
Chicago train has lower car seating capacity (49 as shown in Table 4.3) yet more connecting
cars, resulting in higher per-train seating.

In addition, the sensitivity of the model predictions to train weight and road grade was
analyzed. It should be noted that the energy consumption increments in Table 4.9 and Table
4.10 are relative to the base case in which the empty car weight is 27.15 tons and the number
of cars is 6 for the peak period and 4 for the off-peak period; and the increments in Table
4.11 are relative to the case with level grade. As illustrated in Table 4.9, the original empty
car weight (27.15 tons) was either decreased or increased by 5 and 10 tons, respectively,
generating an identical energy consumption increase of 5.6 kWh/V ·mi (3.48 kWh/V · km)
for every 5 ton increment. For the original car weight, the number of cars for the base case
was either decreased or increased by 1 at a time. The increasing number of cars results
in an identical electric consumption increment of 6.19 kWh/V ·mi (3.84 kWh/V · km), as
demonstrated in Table 4.9. Either increasing car weight or adding more connecting cars leads
to linear and identical growth of energy consumption. However, increasing the road grade,
from 0% to 4% as illustrated in Table 4.11, produces a non-linear feature by having higher
energy consumption increments on steeper roads. For example, the energy consumption
increases by 9.2% (from 27.11 to 29.61 kWh/V · km) with the grade varying from 3% to
4%, while increases by only 5.3% (from 22.25 to 23.44 kWh/V · km) with the grade varying
from 0% to 1%. This implies that, on steeper roads, the identical gradient increase results
in larger energy consumption increases. The sensitivity analysis demonstrates the model’s
ability to capture energy consumption differences associated with vehicle weight and route
characteristics.
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Table 4.9: Sensitivity of model predictions to railcar empty weight

Predicted energy consumption Energy consumption increment

Car weight Empty car
increment
(ton)

weight
(ton)

kWh/V ·
mi

kWh/V ·
km

kWh/V ·
mi

kWh/V ·
km

-10 17.15 25.92 16.10 -11.20 -6.96
-5 22.15 31.52 19.58 -5.60 -3.48
0 27.15 37.12 23.06 0.00 0.00
5 32.15 42.72 26.53 5.60 3.48
10 37.15 48.32 30.01 11.20 6.96

Table 4.10: Sensitivity of model predictions to the number of railcars

Number of cars Predicted energy consumption Energy consumption increment

Number of cars
increment Peak Off-

peak
kWh/V ·mi kWh/V ·

km
kWh/V ·mi kWh/V ·

km

-2 4 2 24.74 15.37 -12.38 -7.68
-1 5 3 30.93 19.21 -6.19 -3.84
0 6 4 37.12 23.06 0.00 0.00
1 7 5 43.31 26.90 6.19 3.84
2 8 6 49.50 30.75 12.38 7.68

Table 4.11: Sensitivity of model predictions to road grade

Road grade Predicted energy consumption Energy consumption increment

kWh/V ·mi kWh/V · km kWh/V ·mi kWh/V · km
0% 35.83 22.25 0.00 0.00
1% 37.74 23.44 1.91 1.19
2% 40.31 25.04 4.48 2.78
3% 43.65 27.11 7.82 4.86
4% 47.68 29.61 11.85 7.36
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Figure 4.15: Instantaneous acceleration levels

Finally, the MAX Blue Line driving cycle was applied to the Chicago train, generating an
average energy consumption of 23.10 kWh/V ·mi (14.35 kWh/V ·km), which is significantly
lower than that for the Chicago Brown Line cycle (37.12 kWh/V ·mi). A further analysis, as
illustrated in Figure 4.15, demonstrates that the higher electric consumption for the Chicago
driving cycle is attributed to more aggressive running that produces higher acceleration
levels. The model thus can reflect the energy consumption differences between rail lines
by accounting for the impact of operational conditions on energy prediction, which is very
important for multi-modal transit planning purposes.

Although the model was calibrated against the Portland light rail, it was demonstrated to
have good performance for the Chicago heavy rail as well, implying that similar levels of
model accuracy could be expected for other transit systems if there is no significant difference
in the energy consumption-related system components, such as propulsion technologies, brake
systems, train aerodynamics and track infrastructure.

4.4 Conclusions

The chapter develops electric train dynamics and energy consumption models in support of
rail-induced trip energy estimation. Both models can be easily calibrated using non-engine
data and implemented in simulation systems and eco-transit applications. The dynamics
model varies throttle and brake level with running speed rather than assuming constants
as is done by previous studies. The energy consumption model considers instantaneous
energy regeneration by formulating regenerative efficiency as an exponential function of
deceleration level. Model calibration work is formulated as non-linear optimization problems.
The dynamics model is tested on an instantaneous basis, and also evaluated in the domains
of acceleration/deceleration versus speed and acceleration/deceleration versus distance. The
energy consumption model is tested through comparing model estimates against NTD data
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given a lack of instantaneous field energy measurements.

The results of dynamics modeling demonstrate that the proposed model can adequately
capture instantaneous acceleration/deceleration behavior and thus produce realistic train
trajectories. The model is also demonstrated to provide good fit in the domains of accelera-
tion/deceleration versus speed and acceleration/deceleration versus distance. Furthermore,
simulation results provide a good fit between the simulated trajectories and the field data,
demonstrating the adequacy of the proposed dynamics model in support of railway simula-
tion system.

The results of the energy consumption modeling demonstrate that the model estimates are
consistent with the NTD results, resulting in a predicted error of 1.87% and -2.31%. Not
modeling regenerative braking produces a significant prediction error (27.39% and 21.54%).
It is also found that energy recovery reduces the overall power consumption by 20%, sig-
nificantly improving the system energy efficiency. The results also demonstrate that the
proposed modeling approach is able to capture the energy consumption differences associ-
ated with train, route and operational characteristics, and thus is applicable for project-level
analysis.

The resulting models will be used to estimate rail trip energy consumption and thus signifi-
cantly support route decision-making in the multi-modal eco-routing system.
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Chapter 5

Comparison of car-following Models:
An Energy and Environmental
Perspective

This chapter is based on the paper:

Wang, J., Rakha, H., and Fadhloun, K. Comparison of car-following Models: A Vehicle
Fuel Consumption and Emissions Estimation Perspective. Transportation Research Part D:
Transport and Environment. (In Review).

The multimodal eco-routing system is proposed to be developed and tested in a simulation
testbed before it can be used in real application. INTEGRATION was identified in chapter
2 as the micro-simulator that outperformed VISSIM, AIMSUM, PARAMICS and CORSIM
in terms of the accuracy and simplicity of the built-in energy consumption and emissions
models (VT-CPFM and VT-CPEM). However, the validity of INTEGRATION simulated
vehicle trajectories for energy and environmental analysis has not been investigated yet. This
chapter aims to address this research need. The car-following model of a micro-simulator
controls longitudinal vehicle motions and thus determines the resulting vehicle trajectories.
Therefore, the research effort in this chapter mainly focuses on the performance of the car-
following model in INTEGRATION from the energy and environmental perspective.

5.1 Introduction

Coupling microscopic traffic simulation models with fuel consumption and emission (FC/EM)
models has become increasingly attractive in evaluating the environmental impact of trans-
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portation management strategies. However, recent studies [109, 183] have empirically dis-
puted the validity of traffic simulation models in representing realistic driving characteristics,
arguing that instantaneous vehicle trajectories derived from a simulation model could not
accurately capture the real operating conditions associated with vehicle dynamics and thus
fail to guarantee the accuracy of simulated FC/EM profiles.

The car-following model, as the internal mechanism of a traffic simulation model, has been
demonstrated to be a major error source given its unrealistic acceleration and inappropriate
regime thresholds [21, 22, 23]. Although Song et al. [22] proposed improving the procedure
by optimizing the maximum acceleration model and regime thresholds, their solutions could
not guarantee a global optima and the results remain to be further verified. Another study
conducted by [90] also pointed out that most state-of-the-practice car-following models could
not ensure realistic acceleration, which is the FC/EM’s most sensitive parameter.

To the authors’ best knowledge, the RPA car-following model, embedded in INTEGRATION,
is, to date, the only model capable of simulating actual acceleration behavior by incorporating
a realistic vehicle dynamics mechanism [88]. The validity of the model for FC/EM estimation,
however, has not been studied. This chapter is primarily concerned with investigating the
applicability of the model for FC/EM estimation and with a comparison of its performance
in that regard with the most widely-used car-following models.

As the best explanatory variable of FC/EM, VSP distribution was thoroughly compared
between real world and model numerical simulation in order to capture the ability of each
car-following model to represent realistic vehicle trajectories associated with FC/EM. An
additional study was subsequently conducted to investigate how much FC/EM estimation
error was induced by unrealistic VSP distributions.

The chapter proceeds as follows. Section 5.2 thoroughly investigates the internal mechanisms
of car-following models. Section 5.3 introduces data preparation work and the method of
VSP distribution comparison, followed by the comparative results illustrated in section 5.4.
The estimation of FC/EM error is analyzed in section 5.5, followed by a discussion in section
5.6, and the final section presents the conclusions and implications of the study.

5.2 State-of-the-practice Car-following Models

A car-following model, as the core component of a microsimulator, characterizes the lon-
gitudinal motion of vehicles, modeling steady-state and non-steady-state behavior. The
steady-state car-following mechanism controls the overall traffic stream behavior, determin-
ing the desired speed at different levels of congestion and roadway capacity, as well as the
spatial qualities of queues [184]. The non-steady-state mechanism governs the transition
from one steady-state to another through the use of acceleration and deceleration models.
Accordingly, the car-following model embedded within a microsimulator dominates the sim-
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ulated traffic operating conditions associated with vehicle dynamics, and thus governs the
validity of the vehicle trajectories as the input to FC/EM models.

Numerous car-following models have been proposed since the 1950’s, such as the Pipes model
[108], the General Motors (GM) model [185], the Gazis-Herman-Rothery (GHR) model [186],
the optimal velocity model (OVM) [187], the full velocity difference model (FVDM) [188],
the Newell model [189], the intelligent-driver model (IDM) [170], the Wiedemann model
[107], [113], the Fritzsche model [115], and the RPA model [121]. Some of these have been
incorporated into commercial traffic simulation software. Specifically, the models developed
by [107] and [115] have been used in VISSIM and PARAMICS respectively, which are two of
the most prevalently-used traffic micro-simulators. The Gipps model has been integrated into
AIMSUN [190], which has thousands of licensed users in government agencies, consultancies
and universities worldwide. The RPA model was coupled with INTEGRATION, which is
a trip-based microscopic traffic assignment, simulation, and optimization model capable of
tracing vehicle movements at a level of resolution of one deci-second. This study selects the
most widely-used car-following models – Wiedemann, Gipps, and Fritzsche – as the state-of-
the-practice controls of the RPA model. The internal mechanism of each model is discussed
in the following subsections.

5.2.1 Wiedemann Model

The Wiedemann car-following model is essentially a psycho-physical model that indicates
certain thresholds on relative speed (∆v) and distance (∆x) for drivers of the lagging ve-
hicle to take an action. When approaching a slower leading vehicle, some action points
are recognized by the driver for conscious reaction. There are four stages (four regimes) of
following a lead vehicle, as defined by five action points (regime thresholds) in Equations
(5.1)-(5.5). RND1, RND2, RND3, RND4 and NRND are normally distributed driver
dependent parameters; AX is the desired distance between stationary vehicles consisting of
the physical length (Ln−1) of the lead vehicle and the desired front-to-rear distance, AXadd

and AXmult are model parameters; ABX is the desired minimum following distance at low
speed differences computed by Equation (5.2) where BX = (BXadd +BXmult ×RND1)

√
u

with BXadd, BXmult the model parameters and u = min(un, un−1); SDX is the maximum
following distance varying between 1.5 and 2.5 times ABX as specified in VISSIM, formu-
lated in Equation (5.3) where EX = EXadd + EXmult × (NRND − RND2) with EXadd,
EXmult the model parameters; SDV is the approaching point where a driver has awareness
of approaching a slower vehicle ahead, and CX is assumed to be 40 [191]; CLDV is the
decreasing speed difference modeling perception of small speed differences at short and de-
creasing distances, and is typically assumed to equal SDV, as is done in VISSIM; OPDV
is the increasing speed difference describing the point where a driver realizes that they are
traveling at a slower speed than the preceding vehicle, OPDVadd and OPDVmult are model
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parameters.

AX = Ln−1 + AXadd +RND1× AXmult (5.1)

ABX = AX +BX (5.2)

SDX = AX + EX ×BX (5.3)

SDV =

(
∆x− Ln−1 − AX

CX

)2

(5.4)

OPDV = CLDV × (−OPDVadd −OPDVmult ×NRND) (5.5)

Figure 5.1a illustrates the regimes of the Wiedemann model. Specifically, when front-to-
rear distance (∆x − Ln−1) is smaller than ABX, the vehicle operates in the “Emergency”
regime in which the deceleration dn is assigned, as formulated in Equation (5.6) where dn−1

is the deceleration of the leading vehicle and dmax = −BMINadd − BMINmult × RND3 +
BMINmult×un with BMINadd and BMINmult the model parameters. When ∆x−Ln−1 ≥
ABX and ∆v ≥ SDV , the vehicle is in the regime of “Closing in”, and a deceleration of d′n
is assigned as defined in Equation (5.7). The combination of the thresholds of ABX, SDX,
OPDV and SDV constitutes the “Following” regime, for which the acceleration −anull is
assigned when a vehicle is passing from either SDV or ABX into this regime and anull is
assigned when passing from either OPDV or SDX. anull is computed by Equation (5.8)
where BNULLmult is the calibration parameter. For “Free Driving,” namely ∆x− Ln−1 ≥
SDX and ∆v ≤ SDV , the maximum acceleration amax is initially assigned to achieve
the desired speed; after the desired speed is reached, either anull or −anull is used. The
maximum acceleration is computed by Equation (5.9) where umax is the maximum speed
and BMAXmult and FAKTORV are model constants.

dn = 0.5× ∆v2

ABX − (∆x− Ln−1)
+ dn−1 + dmax ×

ABX − (∆x− Ln−1)

BX
(5.6)

d′n = 0.5× ∆v2

ABX − (∆x− Ln−1)
+ dn−1 (5.7)
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(a) Wiedemann [21] (b) Fritzsche [21]

Figure 5.1: Regime of car-following models

anull = BNULLmult(RND4 +NRND) (5.8)

amax = BMAXmult × (umax − un × FAKTORV ) (5.9)

Noticeably, both maximum acceleration and deceleration models are linear decay functions.
As specified in [191], 3.5− 3.5

40
u is used to determine the maximum acceleration, and −20+ 1.5

60
u

is used to determine the maximum deceleration level. These calculations are therefore used
in this study.

5.2.2 Gipps Model

The Gipps model [113] is constrained by a combination of three conditions. The first condi-
tion ensures that the vehicle speed does not exceed the facility free-flow speed; the second
assumes that acceleration initially increases with vehicle speed and then decreases to zero
when approaching the desired speed; and the third introduces a safety mechanism for colli-
sion avoidance. The combination of the first two conditions controls the vehicle acceleration
when vehicles are distant from each other. When a vehicle is traveling close to the leader
vehicle, the third condition becomes dominant and controls acceleration behavior of the fol-
lower vehicle. In such a case, the speed of the follower vehicle is affected by driver reaction
time, spacing headway between the leader and follower vehicles, the speed of the leader and
follower vehicles, and the deceleration rates the drivers are willing to use [113, 184].
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Considering the aforementioned constraints, the speed of the following vehicle can be deter-
mined by:

un(t) = min

[
un(t−∆t) + 2.5adesmax∆t

(
1− un(t−∆t)

uf

)√
0.025 +

un(t−∆t)

uf
,

ddesmax∆t+

√
(ddesmax∆t)

2 − ddesmax
(

2(∆x(t−∆t)− sn−1)− un(t−∆t)∆t−
u2
n−1(t−∆t)

d̂

)]
(5.10)

where adesmax and ddesmax are the desired maximum acceleration and deceleration respectively
(m/s2); sn−1 is the effective length of the lead vehicle (physical vehicle length plus safety
margin); d̂ is the estimate of the maximum deceleration of the lead vehicle (for d̂ estimation,
see [113]). Basically, if a vehicle is traveling in an unconstrained traffic situation where the
vehicle can travel at its desired speed, the first component of the model dominantly deter-
mines the vehicle speed. Alternatively, in congested traffic conditions, the second argument
of the model is applied to limit the speed estimated by the first argument.

5.2.3 Fritzsche Model

The Fritzsche car-following model is also a psycho-physical model which has a modeling
framework similar to the Wiedemann model. The actions taken by drivers of follower vehicles
also depend on the defined thresholds relative to speed difference (∆v) and spacing headway
(∆x). The Fritzsche model defines five regimes (i.e., danger, closing in, following I, following
II, and free driving) based on six regime thresholds, as illustrated in Equations (5.11)-(5.16).

AR = sn−1 + Trun−1 (5.11)

AS = sn−1 + Tsun (5.12)

AD = sn−1 + TDun (5.13)

AB = AR +
∆v2

∆bm
(5.14)
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PTP = −kPTP (∆x− sn−1)2 − fx (5.15)

PTN = kPTN(∆x− sn−1)2 + fx (5.16)

where AR, AS, AD, AB, PTP , and PTN are the regime thresholds; kPTP , kPTN , fx, Tr,
Ts, TD and ∆bm are model parameters; and ∆v is speed difference. Other parameters were
defined hereinbefore.

Figure 5.1b presents a general view of the Fritzsche model. Specifically, when ∆x ≤ AR,
the vehicle operates in the regime of “Danger” and the driver has to adopt the maximum
deceleration (dmax) for collision avoidance. When AR < ∆x ≤ AD and ∆v > PTN or AR <
∆x ≤ AB and ∆v > PTN , the vehicle is in the regime of “Closing in”, and acceleration
an is assigned as formulated in Equation (5.17), where dc = ∆x − AR + un−1∆t. In the
“Following I” regime, namely AR < ∆x ≤ AD and PTP < ∆v ≤ PTN or AR < ∆x ≤ AS
and ∆v < PTP , the model constant anull or −anull is assigned as the acceleration. In the
“Following II” regime, namely ∆x > AD and ∆v > PTN or ∆x > AB and ∆v > PTN ,
the vehicle takes no action given the large spacing headway. For the “Free Driving” regime
in which ∆x > AD and ∆v ≤ PTN or ∆x > AS and ∆v ≤ PTP , the vehicle takes the
maximum acceleration (amax) to reach the desired speed and thereafter is assigned anull or
−anull to be responsible for the inadequate control over the acceleration and brake pedal.

an =
u2
n−1 − u2

n

2dc
(5.17)

It should be noted that, as demonstrated by [115], the maximum acceleration is assumed to
be a given constant, which is not realistic.

5.2.4 Rakha-Pasumarthy-Adjerid Model

The RPA model is a simplified behavioral vehicle longitudinal motion model comprised of
three components: steady-state car-following behavior, a collision avoidance mechanism, and
vehicle dynamics constraint. The steady-state component controls vehicle speed based on
the relative speed and distance between the follower and leader vehicles. When the follower
vehicle is traveling close to the leader vehicle, the collision avoidance model becomes more
important to determine speed in order to maintain a minimum safe distance when the leader
vehicle suddenly comes to a complete stop. The acceleration derived from the first two
components is constrained by vehicle dynamics given that, at each speed level, the realistic
acceleration cannot exceed the maximum acceleration that is allowed by vehicle dynamics.
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Consequently, the minimum speed of the three components is finally taken as the velocity
for a given instant in time.

The steady-state component of RPA was first proposed by [119] and [120] as formulated as
a single-regime non-linear functional form in Equation (5.18):

∆x = c1 + c3u
′
n +

c2

uf − u′n
(5.18)

where ∆x is the spacing headway (m) between the following vehicle n and its predecessor
n−1; u′n is the velocity of the follower determined by the steady-state model (m/s); uf is the
facility free-flow speed (m/s); c1 is a fixed distance headway constant (m); c2 is a variable
headway constant (m2/s); c3 is a variable spacing headway constant (s). Considering the
boundaries [192] that the derivative of traffic flow with respect to speed equals 0 at speed-at-
capacity (uc) and that speed equals 0 at jam density (kj), c1, c2, c3 can be computed using
Equation (5.19):

c1 =
uf
kju2

c

(2uc − uf ); c2 =
uf
kju2

c

(uf − uc)2; c3 =
1

qc
− uf
kju2

c

(5.19)

where qc is the facility capacity (veh/s). To clarify the speed formulation, Equation (5.18)
generates a variant as computed by Equation (5.20):

u′n(t) =
−c1 + c3uf + ∆x(t)−

√
(c1 − c3uf −∆x(t))2 − 4c3(∆x(t)uf − c1uf − c2)

2c3

(5.20)

Noticeably, to ensure the validity of Equation (5.20), the square root term should be non-
negative. Namely, (c1 − c3uf −∆x(t))2 − 4c3(∆x(t)uf − c1uf − c2) ≥ 0, assuming that

A = (c1 − c3uf −∆x)2 − 4c3(∆xuf − c1uf − c2)

= (c1 − c3uf )
2 + ∆x2 − 2(c1 − c3uf )∆x− 4c3uf∆x+ 4c1c3uf + 4c2c3

= (∆x− (c1 + c3uf ))
2 + 4c2c3

(5.21)

The first term of Equation (5.21) ensures non-negativity by having a quadratic component;
however, the sign of the second term 4c2c3 remains to be determined given that c2 is a non-
negative, while c3 may either be positive or negative. Therefore, the conditions that make
A < 0 would be 4c2c3 < 0 and−4c2c3 > (∆x−(c1+c3uf ))

2. The speed formulation (Equation
(5.20)) should guarantee that the spacing headway is ∆x /∈ (c1 + c3uf −

√
−4c2c3, c1 + c3uf +√

−4c2c3) in order to ensure its validity. To this concern, the next objective is to find
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the maximum possible value of the term B = c1 + c3uf +
√
−4c2c3 in order to achieve

∆x > Bmax. Assuming that the first-order and second-order derivatives of B with respect
to c3 equal 0, B is found to reach its maximum at the point c3 = − c2

u2f
. Substituting c3 by

− c2
u2f

in c1 + c3uf +
√
−4c2c3:

Bmax = c1 −
c2

u2
f

uf +

√
4c2

c2

u2
f

=
uf
kju2

c

(2uc − uf ) +

uf
kju2c

(uf − uc)2

uf

=
1

kj
= ∆xj

(5.22)

where ∆xj is the spacing headway at jam density (m). Consequently, the condition ∆x ≥
∆xj ensures the validity of the model. Specifically, ∆x = c1 + c3u

′
n+ c2

uf−u′n
≥ ∆xj = c1 + c2

uf
,

so that c3 ≥ − c2
uf (uf−u′n)

. The final condition for model validity is therefore given by Equation

(5.23) formulated as:

1

qc
− uf
kju2

c

≥ −
uf
kju2c

(uf − uc)2

u2
f

qc ≤
kjufuc

2uf − uc

(5.23)

Equation (5.23) ensures that the minimum spacing occurs at jam density [123]. The model
calibration effort requires the estimation of four traffic stream parameters (qc, uc, uf , kj). For
a detailed calibration procedure, see [124].

The aforementioned steady-state model (Equation (5.20)) cannot guarantee safe driving
given that the velocity estimated by the model may exceed the permissible maximum value
at which the follower is capable of maintaining a minimum safe distance behind a lead vehicle
when coming to a complete stop. For safety purposes, the steady-state model is improved
by adding a collision avoidance constraint as formulated in Equation(5.24):

u′′n(t) =
√
un−1(t)2 + 2dmax(∆x(t)−∆xj) (5.24)

where u′′n(t) is the maximum speed of the follower required to avoid collision (m/s); un−1(t)
is the speed of the leading vehicle (m/s); dmax is the maximum deceleration level (m/s2).
This constraint applies only when the following vehicle travels at a higher speed than the
lead vehicle.
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An accurate acceleration model is the requirement of a car-following model in simulating
realistic vehicle activity. Various kinematic acceleration models have been developed and
applied by researchers, such as the duel-regime model [193], the linear decay model, and
the polynomial model [168]. However, none of these models can adequately capture realis-
tic acceleration behavior given that they do not explicitly model the actual components –
tractive force and resistance force opposing a vehicle’s motion – which affect the motion of
a vehicle. Rakha et al. [90] developed a vehicle dynamics model as the second constraint of
the RPA model, demonstrating that the model can provide a better fit to field observations
than kinematic models. The model is formulated in Equation (5.25) where amax is the maxi-
mum acceleration level associated with vehicle dynamics (m/s2); M is the vehicle mass (kg);
R is the total resistance force (N) being a combination of aerodynamic, rolling and grade
resistance; and F is the residual force (N), computed by Equation (5.26) where η is engine
efficiency; β is the variable power factor (estimation of β see [90]); P is the vehicle power
(kW ); Mta is the mass of vehicle on tractive axles (kg); g is the gravitational acceleration
(9.8066 m/s2); and µ is the coefficient of friction between tires and pavement.

amax(t) =
F (t)−R(t)

M
(5.25)

F (t) = min

(
3600ηβ

P

un(t)
, gMtaµ

)
(5.26)

Constrained by vehicle dynamics, the maximum speed that a vehicle could reach for a given
time interval ∆t is formulated in Equation (5.27):

u′′′n (t) = un(t−∆t) + γamax(t−∆t)∆t (5.27)

where u′′′n is the maximum speed level that a vehicle could reach during ∆t (∆t taken as 1 s
in this study); γ is the throttle level that a driver wishes to take (ranging from 0.0 to 1.0).

Consequently, the velocity of the follower vehicle (un) is the minimum of the speeds deter-
mined by the steady-state model (u′n), collision avoidance model (u′′n) and vehicle dynamics
model (u′′′n ); namely, un = min(u′n, u

′′
n, u

′′′
n ).

5.3 Test Scenario

The ability of the four car-following models (RPA, Gipps, Fritzsche, and Wiedemann) in gen-
erating realistic vehicle trajectories associated with FC/EM estimation was thoroughly inves-
tigated. First, the field car-following trajectory was identified from a naturalistic database.
Secondly, the simulated trajectory of each car-following model was generated by numerical
simulation. Finally, the consistency of simulated VSP distributions with field observations
was analyzed, and the error of distributions was compared between models.
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5.3.1 Field Data Preparation

The field car-following trajectory was identified from the 100-Car Naturalistic Driving Study
database. This study was conducted by Virginia Tech Transportation Institute (VTTI) in the
Washington D.C. metropolitan area between 2002 and 2004, and is the first instrumented
vehicle study designed to collect a large volume of naturalistic driving data for a large
number of drivers over an extended period of time [194]. Test vehicles were equipped with
instruments and sensors and driven as ordinary vehicles. Drivers, without any experimenters
accompanying them, were not given any instructions during test driving. For more details
about data collection, see [194]. Statistically, a total of nearly 337,000 hours of data were
collected across 207,000 trips, resulting in more than 12 billion observations at a frequency
of 10 Hz. The data used in this study is a subset of the naturalistic data gathered along
an 8.75 mi (14-km) section of Dulles Airport Access Road (with a speed limit of 55 mph),
ensuring facility homogeneity. The car-following events were identified via visual inspection,
see [195], with a total of 1,732 events identified (789 minutes of trajectories collected by four
test vehicles).

The identified trajectories were used to estimate VSP distributions. VSP, referring to the
vehicle power per unit mass of the vehicle, can be formulated by dividing the power by vehicle
mass, as formulated in Equation (5.28) with all parameters defined in Equation (2.3). Grade
is assumed to be zero in this study given that the test terrain is flat.

V SP (t) =

(
g ·cos(θ)· Cr

1000
(c1v(t)+c2)+g ·sin(θ)+a(t)+0.5ρair

AfCD
m

v2(t)

)
·v(t)· 1

ηd
(5.28)

5.3.2 Numerical Simulation

For numerical simulation, the identical field trajectory was applied as the input of the leading
vehicle to each car-following model, ensuring that the follower’s driving course of events
constrained by the same leader. The facility free-flow speed (uf ) was estimated specific to
each car-following event, instead of configuring a constant, given the great heterogeneity of
the driver behavior during free driving, resulting in a distribution illustrated in Figure 5.2.
Specifically, most free-flow speeds range between 55 and 75 mph; namely, free driving may
occur when speed is higher than 55 mph (speed limit). To maintain the homogeneity of
road facility and driver behavior, each car-following model employs the same desired speed
distribution provided by Figure 5.2. Jam density (kj), capacity (qc) and speed-at-capacity
(uc) were estimated in order to generate RPA simulated trajectory. For estimation procedure,
see [124]. The throttle level γ in Equation (5.27) is taken as 0.6 based on field observations.
The vehicle-specific parameter values used by RPA can be obtained from manufacturer
website, as illustrated in Table 5.1 (the identified car-following trajectories were collected by
the four vehicles as shown in the table). The parameter values relative to Gipps, Fritzsche,
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Figure 5.2: Desired speed distribution

Wiedemann were obtained according to test vehicles and references [113, 115, 190, 191], as
illustrated in Table 5.2.

Again, the VSP values were estimated using Equation (5.28) on a second-by-second basis as
a simulated counterpart of the field observations.

5.3.3 Comparison of VSP Distribution and Vehicle Dynamics

Given that average speed is the only factor affecting the peak of VSP distribution for a given
facility and vehicle type [196], the vehicle trajectories were grouped into various speed bins

Table 5.1: Testing vehicle characteristics
Test vehicle Power (P

(kW ))
Mass (M
(kg))

Drag Co-
efficient
(CD)

Frontal
area
(Af (m

2))

Engine effi-
ciency (η)

Maximum
tractive
force
(gµMta

(N))

Vehicle 1 90 1190 0.36 2.06 0.86 3.24

Vehicle 2 90 1090 0.40 2.00 0.86 3.24
Vehicle 3 145 1375 0.40 2.18 0.86 3.24

Vehicle 4 119 1900 0.50 2.94 0.86 3.24
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Table 5.2: Model parameter values for Gipps, Fritzsche and Wiedemann

Model Parameter value Parameter value Parameter value

Gipps adesmax 2.5 m/s2 ddesmax -5.0 m/s2 d̂ -4.0 m/s2

τ 1 s sn−1 6 m
Fritzsche kPTN 0.001 kPTP 0.002 fx 0.5

Tr 0.5 s Ts 1.0 s TD 1.8 s
amax 2.0 m/s2 ∆bm 0.4 m/s2 anull 0.2 m/s2

sn−1 6 m dmax -6.0 m/s2

Wiedemann RND1 N(0.5,0.15) RND2 N(0.5,0.15) RND3 N(0.5,0.15)
RND4 N(0.5,0.15) NRND N(0.5,0.15) AXadd 1.25
AXmult 2.5 BXadd 2.0 BXmult 1.0
EXadd 1.5 EXmult 0.55 OPDVadd 1.5
OPDVmult 1.5 CX 40 BNULLmult 0.1

amax 3.5− 3.5
40
u dmax −20 + 1.5

60
u Ln−1 4.5 m

in order to investigate the consistency of speed-specific VSP distributions. Specifically, 766
pieces of 60-s speed segments were identified and grouped based on the average speed of each
segment into 14 speed bins ranging between 0 and 70 mph (few over-70 mph data samples)
with an identical speed interval of 5 mph. VSP distribution is defined as Equation (5.29),
with n the integer from -30 to 30 kW/ton given that 98% of the VSP values belongs to this
range.

V SP ∈ (n− 0.5, n+ 0.5), V SPbin = n (5.29)

Acceleration behavior was also evaluated to capture the error of VSP distribution associated
with vehicle dynamics, as defined in Equation (5.30) with m restricted between -2 and 2
m/s2 varying with an interval of 0.1 m/s2 given 99% of acceleration levels within this range.

Acceleration ∈ (m− 0.05,m+ 0.05), AccelerationBin = m (5.30)

Furthermore, Root Mean Square Error (RMSE) was computed to quantify the accuracy
of simulated VSP- and acceleration- distribution, as defined in Equation (5.31) and Equa-
tion (5.32) where RMSEV SPk and RMSEACCk are respectively the RMSE of VSP- and
acceleration- distribution for speed bin of k; SimuV SPi,k and ObsV SPi,k are the fraction
of simulated and field VSP distribution for VSP bin i of speed bin k; SimuACCj,k and
ObsACCj,k are the fraction of simulated and field acceleration distribution for acceleration
bin j of speed bin k. Basically, lower RMSE demonstrates higher consistent distributions
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between real world and numerical simulation.

RMSEV SPk =

√√√√( n∑
i=1

(SimuV SPi,k −ObsV SPi,k)2

n

)
, k = 1, 2, ...14. (5.31)

RMSEACCk =

√√√√( m∑
j=1

(SimuACCj,k −ObsACCj,k)2

m

)
, k = 1, 2, ...14. (5.32)

5.4 Results for VSP Distribution and Vehicle Dynam-

ics

Given the space limitation, six speed bins covering various speed levels (5-10, 15-20, 25-30,
35-40, 45-50, and 55-60 mph) were selected to visually illustrate the consistency of simulated
VSP- and acceleration- distributions with field observations. RMSE was then analyzed for
the entire speed range as the quantitative metrics of the consistency.

5.4.1 VSP Distribution

The resulting field VSP distributions, as illustrated in Figure 5.3a, are approximately nor-
mally distributed and present consistent behavior with [196] by having VSP mean values
move towards the positive direction with the increase of vehicle speed. RPA, in general, pro-
vides more consistent VSP behavior than the other models, although relatively less consistent
for free driving (speed bin 12: 55-60 mph). Given that drivers behave highly heterogeneously
during free driving, it is hard for a car-following model to capture realistic free driving be-
havior. Gipps, at low speed levels, overestimates VSP distributions in the central area and
underestimates in other areas; during free driving, the model also cannot generate realistic
VSP distributions. However, relative to Fritzsche and Wiedemann, Gipps captures the VSP
behavior more consistent with that of RPA. Wiedemann behaves inconsistently at low speed
levels (speed ≤ 20mph) by differing VSP means but presents a good fit with the increasing
speed level. Fritzsche behaves worst among the four models.

5.4.2 Acceleration Behavior

Given that acceleration is the most sensitive parameter to vehicle power, the acceleration
behavior was thus thoroughly investigated to uncover the underlying error source of VSP
distribution induced by the internal mechanism of a car-following model.
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Figure 5.3: Comparison of VSP and acceleration distributions: (a) VSP distribution and (b)
Acceleration distribution
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Figure 5.3b presents the consistency of acceleration distributions across various speed levels.
Specifically, RPA generates highly consistent acceleration distributions but a poorer fit for
free driving (speed bin 12). Gipps, with a consistency similar to that of VSP distributions,
appears to overestimate in the central area and underestimate in other areas for the low-
speed operation as well as free driving; this model also provides a relatively better match
with RPA than the other two models. Wiedemann offers highly inconsistent distributions at
low speed ranges while producing a better fit at moderate- and high- speed levels. Fritzsche
generates the most inconsistent acceleration behavior by differing means of distributions for
the entire speed range. In summary, the inconsistency of acceleration distributions provides
an overriding explanation of inadequate representation of realistic VSP behavior.

Because they impose unrealistic vehicle dynamics constraints on acceleration behavior, the
majority of state-of-the-practice car-following models cannot ensure realistic acceleration.
Figure 5.4 gives the acceleration behavior derived from the internal acceleration model em-
bedded in each car-following model. Intuitively, RPA, incorporating the realistic vehicle
dynamics model (Equation (5.25)), generates highly consistent acceleration behavior with
field observations. Conversely, the other three models do not provide a good fit. Although
Gipps presents a similar concave-shaped curve varying maximum acceleration with vehicle
speed, the peak shifts to the negative direction. Fritzsche employs a constant to constrain
the acceleration behavior, resulting in behavior that is inconsistent for the entire speed
range. Wiedemann applies a linear decay model having the maximum acceleration decrease
monotonously with vehicle speed, resulting in large acceleration behavior error, especially
for low speed levels.

Acceleration model, however, is not the only factor that results in unrealistic acceleration
behavior. According to recent studies [22, 23], the regime structure of the Wiedemann and
Fritzsche models is another major error source given the unsmooth transition of acceleration
between regimes. For the Gipps model, it offers a suboptimal fit of the speed-flow relationship
to the field data [184] so that results in less accurate steady-state car-following behavior
compared to the RPA model which has been demonstrated to reflect the field data fairly
well for both steady-state and non-steady-state behavior [122, 124].

5.4.3 Root Mean Square Error

To obtain quantitative clarification, RMSE was computed, as illustrated in Figure 5.5. In
general, the variation of VSP RMSE with speed is highly consistent with that of acceleration
RMSE, quantitatively demonstrating that unrealistic acceleration behavior is the primary
trigger of inadequate representation of VSP distribution. In particular, RPA overall outper-
forms the other models by having the lowest level of RMSE (no more than 1%) for both VSP
and acceleration distributions in the car-following regime (speed bin ≤ 11, speed ≤ 55mph),
although the increasing error observed for free driving (speed bin ≥ 12, speed > 55mph).
Gipps, compared to RPA, produces larger error especially at low speed levels (speed bin
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Figure 5.4: Maximum acceleration behavior (m/s2)
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Figure 5.5: Root mean square error

smaller than 6; i.e., 0−30mph); and the error is asymptotically consistent with that of RPA
with the increase of speed. This is attributable to the fact that Gipps shifts the peak of
the acceleration behavior to the negative direction, as demonstrated in Figure 5.4. Fritzsche
has overall higher RMSE compared to other models except under low speed levels where
Wiedemann produces extremely high RMSE given the tremendous deviation of acceleration
behavior. Further, Wiedemann’s RMSE differs insignificantly from that of RPA when the
speed bin is larger than 6 (speed > 30mph). In a nutshell, RPA outperforms the other
models for FC/EM estimation especially in the low speed range (0− 30mph).

Figure 5.6 quantifies how much more error of VSP distribution induced by other models
relative to that of RPA. Intuitively, Gipps and Fritzsche initially generate 5 times the RPA
RMSE while Wiedemann approximately 30 times. The difference of the error overall de-
creases with the increasing speed level. Specifically, RMSE of Gipps and Wiedemann differs
insignificantly from that of RPA with the speed higher than 30mph (speed bin higher than
6), whereas Fritzsche produces significantly higher error except for free driving. Accordingly,
RPA outperforms the other three models in terms of FC/EM analysis especially at low speed
levels.

5.5 Fuel Consumption and Emissions

To gain insight into how much error the VSP distribution may introduce to FC/EM estima-
tion, the Environmental Protection Agency (EPA) MOVES was utilized to generate FC/EM
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Figure 5.6: Relative difference of VSP distribution RMSE between RPA and other car-
following models

profiles. Given that passenger cars collected the field trajectory, light duty gasoline vehicle
with conventional internal combustion engine technology was selected in MOVES. According
to [194], the test vehicles for the naturalistic driving study were manufactured between 1995
and 2003, and 1999 was thus selected as an average of the model years. Further, as a point
of comparison to older cars, the model year 2015 was chosen as representative of new cars
in order to achieve an insight into how sensitive the applicability of simulated trajectories
for FC/EM estimation is to vehicle model year. Table 5.3 and Table 5.4 show the generated
energy and emission inventories for each model year. Carbon monoxide (CO), Hydrocarbon
(HC) and Nitric Oxide (NOx) were also analyzed as representative of emissions.

FC/EM were analyzed primarily relative to the car-following regime given that the major
concern of a car-following model is the ability to emulate car-following behavior; results for
free driving were employed as a control. As illustrated in Figure 5.2, speed limit (55mph)
is the demarcation of car-following (u < 55mph) and free driving (u ≥ 55mph) regimes.
Accordingly, the field trajectory, along with each simulated trajectory, were divided respec-
tively into two speed bins: u < 55mph and u ≥ 55mph, generating a total of 10 trajectories.
The instantaneous FC/EM rates relative to each trajectory were first estimated based on
MOVES mean base rates (Table 5.3 and Table 5.4) for each model year, and then averaged
across the specific trajectory.

As a follow-up, the absolute values of the relative differences between simulated average rates
and field rates were computed, resulting in Table 5.5. Basically, RPA generates the most
accurate FC/EM estimates for both model years with a relative error of, at most, 2.97%
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Table 5.3: MOVES energy/emission rate (model year: 1999)

Operating mode ID Energy rate (KJ/hr) HC (g/hr) CO (g/hr) NOx (g/hr)

0 50080.5 1.23 6.96 1.13
1 44269.9 0.30 1.20 0.48
11 68600 0.84 23.92 1.67
12 90758 0.64 39.06 2.55
13 136573 1.22 36.01 5.98
14 178006 1.65 51.67 10.55
15 219270 2.31 74.93 18.71
16 278661 3.68 126.43 39.01
21 85709.5 1.26 31.18 3.31
22 105849 1.15 41.32 5.37
23 137124 1.24 53.13 8.12
24 179231 2.37 77.67 13.69
25 229004 2.37 88.15 19.20
27 301831 3.74 132.38 30.23
28 406833 5.67 232.03 47.25
29 557151 10.06 491.40 82.96
30 699354 16.61 1725.90 109.15
33 135268 1.21 23.41 7.05
35 215174 1.68 39.98 19.45
37 280198 2.15 58.85 27.18
38 365379 3.83 212.67 40.12
39 486672 5.55 224.40 59.73

40 621048 7.26 659.51 75.23
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Table 5.4: MOVES energy/emission rate (model year: 2015)

Operating mode ID Energy rate (KJ/hr) HC (g/hr) CO (g/hr) NOx (g/hr)

0 42199.5 0.10 1.98 0.07
1 39039.4 0.02 0.34 0.03
11 61388.6 0.07 6.80 0.10
12 84766.5 0.05 11.11 0.16
13 117806 0.09 10.24 0.37
14 148855 0.13 14.69 0.65
15 177506 0.18 21.31 1.15
16 214392 0.29 35.95 2.40
21 83515.7 0.10 8.87 0.20
22 95064.2 0.09 11.75 0.33
23 115783 0.10 15.11 0.50
24 148541 0.18 22.09 0.84
25 198229 0.18 25.07 1.18
27 261323 0.29 37.65 1.86
28 352244 1.96 126.33 6.86
29 482576 3.47 267.54 12.04
30 606011 5.73 939.67 15.84
33 118985 0.09 6.66 0.43
35 190794 0.13 11.37 1.20
37 248541 0.17 16.73 1.68
38 324084 1.32 115.79 5.82
39 431674 1.92 122.18 8.67

40 550281 2.51 359.07 10.92
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Table 5.5: The FC/EM estimation error (%) by numerical simulation

Fuel and Model Speed < 55mph (car-following) Speed ≥ 55mph (free driving)

emission
type

year RPA Gipps Fritzsche Wiedemann RPA Gipps Fritzsche Wiedemann

Fuel 1999 0.90 3.98 15.50 2.37 2.33 0.98 6.26 5.28

2015 0.89 3.96 14.81 2.95 2.32 0.94 6.34 5.36

HC 1999 0.76 8.71 16.31 7.53 3.82 2.54 0.14 9.70

2015 2.97 42.02 19.75 33.58 16.15 12.80 21.95 41.43

CO 1999 0.52 36.25 14.45 21.21 9.45 6.29 15.50 35.12

2015 2.88 62.14 13.48 40.79 14.82 10.64 31.01 56.28

NOx 1999 1.15 13.19 25.32 4.91 3.37 0.96 10.12 8.92

2015 2.77 28.89 26.12 18.59 9.43 6.36 1.98 23.85

in the car-following regime. For free driving, RPA gives relatively high yet tolerant error
given the increasing RMSE of the VSP distribution. It is worth noting that three paradoxes
have been identified. First, Gipps somehow provides higher emission error than Fritzsche
does; however, the RMSE of VSP distributions for Gipps is lower than that for Fritzsche in
most cases illustrated by Figure 5.5. Secondly, Wiedemann generates lower FC/EM error
for car-following than for free driving, which contradicts the fact that higher RMSE of VSP
distributions is observed for car-following, demonstrated in Figure 5.5. Thirdly, for free
driving, Wiedemann, in most cases, produces higher FC/EM error than other models do,
although the model captures a lower RMSE of VSP distributions. On the one hand, these
issues can be attributed to an offset that is achieved between overestimating VSP distribution
in some areas and underestimating in other areas. On the other hand, as demonstrated by
Table 5.3 and Table 5.4, some of the operating modes gain more weights to determine
FC/EM estimates by having significantly higher mean base rates than other modes, such as
ID = 28, 29, 30, 38, 39, 40 where VSP is at a high level. It was found, through the inspection
of operating mode distributions, that the inconsistencies in these distributions at high weight
operating modes (high VSP levels) were the major trigger for lower VSP RMSE leading to
higher FC/EM error. In addition, the emission error is amplified from model year 1999 to
2015, given that the high weight operating modes gain more weights for the new vehicle,
which intensifies the associated error. An exception is observed in the emission error induced
by Fritzsche (for the car-following regime), which is insensitive to the model year; this may
be attributed to the offset of overestimation and underestimation. In addition, the variation
in fuel consumption error is insensitive to model year given that, for energy rate, the weights
of high VSP levels differ insignificantly with the variation of the model year, as demonstrated
in Table 5.3 and Table 5.4.

To validate the robustness of RPA model performance, the VT-CPFM model was applied.
The model has been demonstrated, by recent studies [12, 40, 41, 160, 197], to generate
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Table 5.6: Comparison of simulated fuel consumption error (%) between MOVES and VT-
CPFM
Fuel con-
sumption

Speed < 55mph (car-following) Speed ≥ 55mph (free driving)

model RPA Gipps Fritzsche Wiedemann RPA Gipps Fritzsche Wiedemann

MOVES 0.89 3.96 14.81 2.95 2.32 0.94 6.34 5.36

VT-CPFM
(Toyota)

0.60 0.91 18.42 5.20 3.66 4.19 3.05 4.09

VT-CPFM
(Ford)

0.25 1.84 21.71 8.47 3.93 5.09 1.84 3.79

more robust and realistic fuel estimates at a microscopic level compared to other state-
of-the-practice fuel consumption models. It should be noted that, to date, validation has
been made only for fuel consumption given a lack of VT-CPFM based emission models.
Additionally, two model year 2015 LDVs, a Toyota Corolla and a Ford Taurus, were selected
as the representatives of small- and large- displacement passenger cars respectively. The
comparison of fuel consumption error between MOVES and VT-CPFM was conducted only
for the model year 2015. Table 5.6 presents consistent results between MOVES and VT-
CPFM, showing that RPA generates the lowest level of fuel consumption error in the car-
following regime although the error values differ, demonstrating that the applicability of RPA
for fuel estimation is robust to different fuel consumption models. The deviation of error
values results from the differences of fuel estimates and vehicle types employed between the
two models; specifically, MOVES employs a composite LDV stored in EPA database while
VT-CPFM employs two specific LDVs, namely Toyota and Ford.

5.6 Discussion

A calibration procedure, similar to that of the RPA model, was used to improve the perfor-
mance of the Gipps, Fritzsche and Wiedemann models. After calibration, it is demonstrated,
in Figure 5.7, that the RMSE of the Gipps and Fritzsche models decreases compared to the
results before calibration as illustrated in Figure 5.5. For the Wiedemann model, however,
the RMSE decreases only at low speeds (0-20 mph: speed bin smaller than 4) while in-
creases at most speed levels. The improvement of the Gipps and Fritzsche models partly
results from the enhancement of acceleration behavior, as shown in Figure 5.8 which presents
better model fits to the field observations (except for the Wiedemann model) compared to
Figure 5.4 (before calibration).

Notwithstanding that the Gipps and Fritzsche models have been improved after calibration,
the prediction error resulted from the models is yet at significantly higher levels relative to
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Figure 5.7: Root mean square error (after model calibration)

the RPA model. Furthermore, although they present a good model fit in terms of acceleration
behavior, the high prediction error empirically demonstrates that the acceleration model is
not the only factor that results in unrealistic vehicle trajectories and thus VSP behavior.
In addition, the Wiedemann model produces the highest level of prediction error without
significant improvement by calibration.

5.7 Conclusions

The RPA car-following model has been demonstrated to provide realistic acceleration be-
havior by incorporating a vehicle dynamics model; however, as of yet no research has been
undertaken to assess its validity for FC/EM estimation. This chapter thoroughly investigates
the ability of the RPA model to generate realistic vehicle trajectory for FC/EM analysis and
compares its performance in this regard with the most widely-used car-following models:
Gipps, Fritzsche and Wiedemann. VSP distributions are compared between real world and
numerical simulations, and the consistency of VSP behavior is thoroughly analyzed. Fi-
nally, the FC/EM error is computed to quantify the implications of car-following models for
FC/EM estimation.

The results demonstrate that the RPA model outperforms the Gipps, Fritzsche and Wiede-
mann car-following models in generating realistic VSP distributions, especially at low speed
levels (0 − 30mph) where car-following is most common, and is the most robust model for
FC/EM analysis. The study also suggests that the built-in acceleration model is one of the
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Figure 5.8: Maximum acceleration behavior (m/s2)(after model calibration)
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major factors in determining the adequacy of simulated VSP distributions. Furthermore,
the study demonstrates that aggregated results may produce erroneous conclusions given
that second-by-second errors may cancel each other out thus producing a low overall error.
Lower VSP distribution errors occasionally may result in greater bias in FC/EM estimates
given the large deviation of the distribution at high VSP levels. Finally, it is found that
sophisticated calibration improves the performance of the Gipps and Fritzsche models while
not significantly enhancing the Wiedemann model. However, the Gipps and Fritzsche models
produce significantly higher prediction error as ever relative to the RPA model.

Given that the RPA model is used in the INTEGRATION software, the results of this
study demonstrate the validity of the INTEGRATION software in generating realistic vehicle
trajectories, and thus in FC/EM estimations. Due to the adequacy of the resulting VSP
distribution as well as the accuracy and simplicity of the built-in energy consumption and
emissions models, INTEGRATION is selected as the simulation testbed for the multimodal
eco-routing system.
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Chapter 6

Eco-routing Formulation and System
Development for On-board
Navigation Applications

This chapter is based on the papers:

1. Wang, J. and Rakha, H. An Eco-Routing Model for Multi-Modal Transportation Systems.
(Working Paper).

2. Wang, J., Rakha, H., and Elbery, A. Dynamic Multi-modal Eco-routing System: Model
Development and Testing. (Working Paper).

This chapter aims to develop an eco-routing system for in-vehicle navigation applications
that is able to comprehensively incorporate microscopic elements and route vehicles in real
time while at the same time differentiate eco-routes between vehicle models. The proposed
system in this chapter, as mentioned before, is a submodule of the multi-modal eco-routing
system, and only applies to the on-road vehicles which do not have fixed routes. A link cost
function was first developed, followed by the eco-routing formulation. The system was then
developed and tested in the INTEGRATION simulation testbed.

6.1 Link Cost Function

The majority of the existing eco-routing systems utilized the parameters such as average
speed and fixed link-specific grade as the inputs of link cost function, and thus cannot
produce accurate link cost factors given the inadequacy in considering microscopic elements.
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Our approach to estimating link cost factors is built on the VT-CPFM and VT-CPEM mod-
els. The VT-CPFM model is used to estimate the fossil fuel consumption for conventional
gasoline and diesel vehicles, and the VT-CPEM model is applied to estimate electric power
for electric vehicles. These models are used because they provide robust energy estimates in-
stantaneously and also can be easily implemented in the in-vehicle eco-routing systems given
their simple model specifications. The VT-CPFM model is demonstrated in Equation (3.1).
A variant of the model is generated for the formulation purpose, as illustrated in Equation
(6.1). The V SP in the model refers to the vehicle specific power as defined in Equation
(5.28). Likewise, the VT-CPEM model is also formulated based on VSP, as demonstrated
in Equation (6.2). It should be noted that during deceleration the VSP is negative and a
portion of electric power can be recovered given the regenerative braking. The regenerative
efficiency ηre is defined in Equation (2.1).

FC(t) =

α0 + α1
mV SP (t)

1000
+ α2

(
mV SP (t)

1000

)2

, ∀V SP (t) ≥ 0

α0, ∀V SP (t) < 0

(6.1)

EC(t) =

{
mV SP (t)

1000
, ∀V SP (t) ≥ 0

mV SP (t)
1000

× ηre(t), ∀V SP (t) < 0
(6.2)

Equations (6.1) and (6.2) estimate energy consumption at an instantaneous level. The link-
level energy cost is thus calculated by accumulating the instantaneous model estimates, as
illustrated in Equations (6.3) and (6.4) respectively:

FClink = TT × α0 + α1
m

1000

∑
t

V SP (+)(t) + α2(
m

1000
)2
∑
t

V SP 2(+)(t) (6.3)

EClink =
m

1000

(∑
t

V SP (+)(t) +
∑
t

(V SP (−)(t)× ηre(t))
)

(6.4)

where FClink and EClink are link-based conventional fuel (l) and electric energy (Wh) con-
sumption respectively, TT is the link travel time (s), V SP (+) and V SP (−) are positive and
negative power respectively, and V SP 2(+) is the power square for the positive power con-
dition. Four link-based parameters are generated by the equations: TT ,

∑
t V SP

(+)(t),∑
t V SP

2(+)(t), and
∑

t(V SP
(−)(t) × ηre(t)). The VSP-based link parameters successfully

include microscopic characteristics, given that the VSP generated by the engine is a function
of the forces acting on a vehicle which include aerodynamic, rolling, grade and accelera-
tion forces so that is able to adequately capture traffic conditions, road attributes, vehicle
specifications and the interactions between them.
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Figure 6.1: Comparison of vehicle power between vehicle models

Nonetheless, the eco-routing based on the three VSP-based parameters cannot differentiate
vehicle power between different vehicle models, which may also result in estimation bias
in link energy cost. This is because power behavior, similar to energy consumption, also
differs between vehicle models. Namely, under the same traffic and road conditions, different
vehicle models may require different levels of power to overcome resistance forces and move
forward. Specifically, the result in Figure 6.1, resulted from test running different vehicle
models on the identical driving cycle, demonstrates that the truck produces significantly
higher power level than the other tested vehicles, especially at high speeds. That is because
higher aerodynamic force is generated for the truck which requires more power exerted to
overcome. The tested Mercedes passenger car produces the lowest level of power given its
small drag coefficient. Intuitively, to avoid estimation bias, the three VSP-based parameters,
similar to energy consumption, should be estimated and updated relative to vehicle models
for each link. However, this would result in that the vehicle model-specific link parameters
are updated only when a vehicle within this model departs from the link, implying that
eco-routing relative to a specific vehicle model is only affected by the operation conditions
of the vehicles within this model but irrelevant to other vehicles. This results in that link
cost and eco-route updating is not based on real time information. In summary, the vehicle
model-specific parameters (e.g. energy consumption and the three VSP-based parameters)
are not suitable for being link cost factors in the dynamic eco-routing system.

In adequately achieving real time applications, it is critically important to identify the link
parameters that are irrelevant to vehicle specifications and can be dynamically updated
without leading to energy estimation bias. Noticeably, VSP consists of four components: 1.
the power to overcome rolling resistance (g · cos(θ) · Cr

1000
(c1v(t) + c2)× v(t)

ηd
); 2. the power to

overcome grade resistance (g · sin(θ) × v(t)
ηd

); 3. the power exerted to accelerate the vehicle

(a(t)v(t)
ηd

); and 4. the power to overcome aerodynamic resistance (0.5ρair
AfCD
m

v2(t)× v(t)
ηd

).
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It is interesting to see that the summation of the first three components, denoted as V SPrga,
of the VSP function is irrelevant to vehicle specifications. Specifically, gravitational acceler-
ation (g) is a constant relative to a specific geographical location. Road grade (θ) depends
on the terrain of the road network. The rolling coefficients (Cr, c1 and c2) are determined by
pavement type and vehicle tyre which could be assumed to be a constant for the majority of
vehicle fleet. Speed (v) and acceleration (a) are related to traffic conditions, and driveline ef-
ficiency (ηd) is also assumed to be a constant (0.9 is suggested by the literature [12, 88, 198])

for most of vehicle models. For the fourth component,
AfCD
m

is the term relevant to vehicle
specifications. ρair is the air density only affected by the air pressure of the test location
(1.2256 kg/m3 is suggested for the sea level air density in this study). For simplicity, Equa-
tion (5.28) is re-formulated as demonstrated by Equation (6.5) which separates VSP into
two components: 1. the first component V SPrga is irrelevant to vehicle model; and 2. the

second part 0.5ρair
ηd

AfCD
m
· v3(t) is related to vehicle model.

V SP (t) = V SPrga(t) + 0.5
ρair
ηd

AfCD
m

· v3(t) (6.5)

Substituting Equation (6.5) into Equations (6.3) and (6.4), the three VSP-based link parame-
ters are re-formulated as demonstrated in Equations (6.6)-(6.8) with (+) and (−) the positive
and negative power conditions respectively. It is worth noting that seven link aggregated
parameters irrelevant to vehicle models are identified in Equations (6.6)-(6.8):

∑
t v

3(t)(+),∑
t v

6(t)(+),
∑

t V SP
(+)
rga (t),

∑
t V SP

2(+)
rga (t),

∑
t(V SP

(+)
rga (t) ·v3(t)(+)),

∑
t(V SP

(−)
rga (t) ·ηre(t)),∑

t(v
3(t)(−) · ηre(t)). These parameters as well as link travel time (TT ), namely, a total of

eight parameters, can be dynamically updated without triggering the bias in eco-route cal-
culation, and thus are suitable for dynamic eco-routing that differentiates vehicle models.

∑
t

V SP (+)(t) =
∑
t

V SP (+)
rga (t) + 0.5

ρair
ηd

AfCD
m

·
∑
t

v3(t)(+) (6.6)

∑
t

V SP 2(+)(t) =
∑
t

(
V SP (+)

rga (t) + 0.5
ρair
ηd

AfCD
m

· v3(t)(+)

)2

=
∑
t

[
V SP 2(+)

rga (t) +

(
0.5

ρair
ηd

AfCD
m

)2

· v6(t)(+)

+
ρair
ηd

AfCD
m

· V SP (+)
rga (t) · v3(t)(+)

]
=
∑
t

V SP 2(+)
rga (t) +

(
0.5

ρair
ηd

AfCD
m

)2

·
∑
t

v6(t)(+)

+
ρair
ηd

AfCD
m

·
∑
t

(
V SP (+)

rga (t) · v3(t)(+)

)
(6.7)
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∑
t

(V SP (−)(t)× ηre(t)) =
∑
t

[(
V SP (−)

rga (t) + 0.5
ρair
ηd

AfCD
m

· v3(t)(−)

)
· ηre(t)

]
=
∑
t

(
V SP (−)

rga (t) · ηre(t)
)

+ 0.5
ρair
ηd

AfCD
m

·
∑
t

(
v3(t)(−) · ηre(t)

)
(6.8)

The up-to-date eight parameters are taken as the input of energy consumption models to
estimate vehicle model-specific link energy costs and eco-routes. The resulting link cost
functions are demonstrated in Equations (6.9) and (6.10). In the functions, (·)p represents
the parameters relative to vehicle model p, and (·)l refers to the parameters specific to link
l; FCl,p and ECl,p are the aggregated conventional fuel and electric energy costs for vehicle
model p on link l. Consequently, the use of the eight parameters enables link energy costs
and eco-routes to be updated based on most recent information and simultaneously provides
realistic eco-routing suggestions that are able to differentiate vehicle models.

FCl,p = TTl × α0,p + α1,p
mp

1000

[(∑
t

V SP (+)
rga (t)

)
l

+ 0.5
ρair
ηd

Af,pCD,p
mp

·
(∑

t

v3(t)(+)

)
l

]
+ α2,p(

mp

1000
)2

[(∑
t

V SP 2(+)
rga (t)

)
l

+

(
0.5

ρair
ηd

Af,pCD,p
mp

)2

·
(∑

t

v6(t)(+)

)
l

+
ρair
ηd

Af,pCD,p
mp

·
(∑

t

(V SP (+)
rga (t) · v3(t)(+))

)
l

]
(6.9)

ECl,p =
mp

1000

[(∑
t

V SP (+)
rga (t)

)
l

+ 0.5
ρair
ηd

Af,pCD,p
mp

·
(∑

t

v3(t)(+)

)
l

]
+

mp

1000

[(∑
t

(V SP (−)
rga (t) · ηre(t))

)
l

+ 0.5
ρair
ηd

Af,pCD,p
mp

·
(∑

t

(v3(t)(−) · ηre(t))
)
l

]
(6.10)

6.2 Eco-routing Model

With the developed link cost functions, the eco-routing model is formulated in this section
in support of the proposed dynamic eco-routing system. Consider a network G(N,L) that
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consists of a set of nodes N and a set of links L, assuming that there are P vehicle models in
the network. The objective of the proposed eco-routing problem is to find a route between
an origin (O) and a destination (D) that minimizes the trip energy cost for each specific
vehicle model, as demonstrated in Equation (6.11).

Min Z =
∑
l∈L

(
FCl,pxp + ECl,p(1− xp)

)
yl (6.11a)

subject to :ηre(t) =

{
1

e
0.0411
|a(t)|

, ∀a(t) < 0

0, ∀a(t) ≥ 0
(6.11b)

|a(t)| ≤ 6 (6.11c)

xp ∈ (0, 1),∀p ∈ P (6.11d)

yl ∈ (0, 1),∀l ∈ L (6.11e)

In this formulation, the vehicle model-specific link costs FCl,p and ECl,p are calculated using
Equations (6.9) and (6.10). Constraint (6.11b) demonstrates that energy regeneration only
occurs during deceleration. Constraint (6.11c) limits acceleration level to 6 m/s2 to ensure
realistic acceleration behavior. xp is used to specify whether a vehicle is an electric vehicle
or a conventional vehicle (0 for electric vehicle; otherwise conventional vehicle). yl is the
dummy variable that depicts routing decisions.

Upon the proposed eco-routing model, the optimum routes can be generated relative to each
vehicle model. Therefore, the vehicles within different categories may be assigned to different
routes. Also, the model enables electric vehicle eco-routing which has not been investigated
in traditional eco-routing systems. In addition, give that the minimum path is calculated
based on the most recent information (eight parameters updated by every vehicle’s departure
from a link), the model is suitable for real time navigation system.

6.3 Numerical Experiment

6.3.1 Sample Network

In this section, a numerical experiment is designed to test the proposed eco-routing model.
A sample network with 4 nodes and 5 links was constructed as illustrated in Figure 6.2.
Each node refers to a location where vehicles depart or arrive. Each of the links represents
a roadway street and all of the streets in the network are one-way streets. It is also assumed
that there is only one O-D pair in the network. Node 1 is the origin and node 4 is the
destination, and all vehicles travel from node 1 to node 4. No traffic control was considered
in order to simplify traffic conditions in the network.

Table 6.1 presents network characteristics. Specifically, all of the links are one-lane roads
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Figure 6.2: A sample network

Table 6.1: Network characteristics
Link ID Starting Node Ending Node Number of Lanes Link Length (km) Speed Limit (km/h)

1 1 2 1 2 45
2 1 3 1 4 70
3 1 4 1 6 100
4 2 3 1 2 45

5 3 4 2 2 45

except for link 5 which has two lanes. Given that there are two links converging at node 3,
two lanes were designed for link 5 in order to eliminate bottleneck. Three of the links (link
1, 4, 5) have an identical length of 2 km, and link 2 has a length of 4 km and link 3 is 6
km long. The configuration of the link length ensures an identical distance of 6 km for each
path. The network contains three paths. Path 1 (1-2-3-4), consisting of link 1, link 4 and
link 5, has a speed limit of 45 km/h, which is typically considered as a local street route.
Path 2 (1-3-4), however, conceives an arterial link with a speed limit of 70 km/h followed by
a local street link (link 5). Path 3 (1-4), with a speed limit of 100 km/h, is a freeway route.
In short, the network conceives three route alternatives: local street, arterial and freeway.
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Table 6.2: Tested vehicle specifications
Vehicle Model Mass (kg) Nominal power (kW) CD Af Cr c1 c2

Honda Accord 1469 138 0.325 2.3 1.75 0.0328 4.575

Mercedes C300 1550 180 0.24 2.2 1.75 0.0328 4.575
Ford Expedition 2626 272 0.41 3.88 1.75 0.0328 4.575
Truck (International/ 9800 SBA) 7239 261 0.78 8.9 1.75 0.0328 4.575
Transit Bus (19XX) 12864 336 0.78 8.8 1.75 0.0328 4.575
Tesla S 2108 310 0.24 2.67 1.75 0.0328 4.575
BMW i3 1477 80 0.28 2.33 1.75 0.0328 4.575

Nissan Leaf 1297 125 0.29 2.38 1.75 0.0328 4.575

6.3.2 Test Scenario

In order to achieve link traffic data, a simulation run was conducted to the sample network
using INTEGRATION. 8 vehicle models were loaded to the network, covering a wide range
of energy consumption behavior. The specifications of the tested vehicles are provided in
Table 6.2. Honda Accord and Mercedes C300 are the representatives of sedan passenger car,
and Ford Expedition is the full size sport utility vehicle (SUV). One of the modeled trucks in
section 3.3, International/ 9800 SBA, was tested to represent typical truck fuel consumption
behavior. A bus within the series 19XX was selected as the representative of transit bus. It
should be noted that the bus was tested here only for the purpose of demonstrating the ability
of the proposed eco-routing model in differentiating eco-routes between vehicle models, but
not used in the dynamic eco-routing system given that buses cannot be re-routed in real
time. Tesla S, BMW i3 and Nissan Leaf are three of the most widely used electric vehicles.

A total demand of 6400 veh/h traveling from node 1 to node 4 was loaded onto the simulation
network for the first 1200 s. Each vehicle model has an equal demand of 800 veh/h. After
the simulation run, the eight link parameters experienced by each vehicle exiting a link were
calculated based on the simulated trajectory data. Upon each of the five links, there were
multiple sets of eight parameters (each vehicle generates a set of eight parameters) which
were sorted according to the departure time of each vehicle. The sorted parameters of each
link were then smoothed respectively through an exponential smoothing procedure, and the
last set of the parameters of each link were exactly the most recent information at the end
of simulation run. Assuming that eco-routes were updated at the moment of simulation
end, the real time eight parameters were used as the input of energy consumption models to
generate the vehicle model-specific link energy costs and eco-routes.

Upon the simulated trajectory data, link energy costs and eco-routes were also calculated
using the traditional eco-routing method (Rakha’s eco-routing [24]) in order to compare
the performance of the traditional and proposed eco-routing. The traditional eco-routing
model basically utilizes energy consumption (instead of eight parameters) as the real time
information which is also updated by every vehicle’s departure from a link. The model
assumes that all vehicle types have the same link energy cost and eco-route.
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Furthermore, a discussion on the traditional eco-routing model was proposed based on the
assumption that link energy cost relative to a specific vehicle model was only affected by
the vehicles within this category. Namely, the vehicle model-specific link costs and eco-
routes are updated only when a vehicle within the same type departs from the link and
irrelevant to the vehicles of other categories. This assumption, as discussed in section 6.1,
may result in that eco-routing relative to a specific vehicle model is only affected by the
operation conditions of the vehicles within this type but irrelevant to the vehicles within
other categories. Consequently, the resulting eco-routes may not be based on real time
information, given the probably ever-changing traffic conditions during the time gap in which
the two vehicles within the same type successively depart from a link. The link costs and
eco-routes resulted from this method were also compared with those from the proposed
model.

In addition, the results derived from the four parameters-based approach (TT ,
∑

t V SP
(+)(t),∑

t V SP
2(+)(t) and

∑
t(V SP

(−)(t) × ηre(t))), were investigated as well to identify the bias
in eco-routing calculation resulted from not considering the effect of vehicle specifications on
vehicle power.

6.3.3 Results Analysis

The resulting link energy costs and eco-routes were compared between different vehicle mod-
els and eco-routing methods, as demonstrated in Tables 6.3-6.5. Method 1 in the tables
refers to the proposed eco-routing method, Method 2 is the traditional eco-routing method,
Method 3 represents the approach assuming that the eco-routing relative to a specific vehicle
model is only affected by the vehicles within the same category, and Method 4 is the four
parameters-based approach.

Table 6.3 demonstrates that, for Methods 1, 3 and 4, link energy costs differ between differ-
ent vehicle models with the same method. For example, for the conventional fuel-powered
vehicles, the truck and bus produce significantly higher fuel consumption levels than the
LDVs: Honda Accord, Mercedes C300 and Ford Expedition; and for the electric vehicles,
Tesla in general requires more power consumption than BMW i3 and Nissan Leaf. Also,
the electric power is in the unit of Wh resulting in significantly different numerical values
relative to conventional fuel in l. Therefore, Method 2 in this study generated energy costs
for conventional and electric vehicles respectively rather than mixing them up, resulting in
that conventional vehicles are routed separately from electric vehicles. However, all vehicle
models in either the cluster of conventional vehicles or the cluster of electric vehicles yet
have the same link cost and cannot be differentiated for eco-routing. For a specific vehicle
model, Methods 2, 3 and 4 produce different link costs relative to the proposed method,
demonstrating that failing to use real time information or to capture the effect of vehicle
model on either energy consumption or vehicle power results in the estimation error in link
cost factors.
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Table 6.3: Link energy cost
Link ID Vehicle Model Link Energy Cost (Conventional fuel in l, electric power in Wh)

Method 1 Method 2 Method 3 Method 4

Link 1 Honda Accord 0.129 0.312 0.125 0.13

Mercedes C300 0.119 0.312 0.115 0.122
Ford Expedition 0.153 0.312 0.147 0.153
Truck (International/ 9800 SBA) 0.52 0.312 0.516 0.49
Transit Bus (19XX) 0.663 0.312 0.659 0.671
Tesla S 154.547 117.649 162.881 177.198
BMW i3 116.043 117.649 116.465 124.156
Nissan Leaf 106.375 117.649 109.281 109.025

Link 2 Honda Accord 0.183 0.475 0.177 0.182
Mercedes C300 0.182 0.475 0.179 0.189
Ford Expedition 0.252 0.475 0.252 0.241
Truck (International/ 9800 SBA) 1.066 0.475 1.091 0.873
Transit Bus (19XX) 1.379 0.475 1.4 1.329
Tesla S 407.844 366.064 422.723 471.068
BMW i3 323.31 366.064 343.146 330.061
Nissan Leaf 305.562 366.064 331.348 289.837

Link 3 Honda Accord 0.242 1.162 0.244 0.246
Mercedes C300 0.26 1.162 0.261 0.299
Ford Expedition 0.437 1.162 0.454 0.414
Truck (International/ 9800 SBA) 2.062 1.162 2.089 1.539
Transit Bus (19XX) 2.608 1.162 2.742 2.589
Tesla S 848.627 769.088 854.441 1109.99
BMW i3 708.914 769.088 732.037 777.731
Nissan Leaf 688.441 769.088 706.085 682.95

Link 4 Honda Accord 0.107 0.439 0.001 0.11
Mercedes C300 0.102 0.439 0.001 0.112
Ford Expedition 0.134 0.439 0.135 0.143
Truck (International/ 9800 SBA) 0.506 0.439 0.515 0.503
Transit Bus (19XX) 0.653 0.439 0.004 0.751
Tesla S 174.147 171.696 171.696 253.851
BMW i3 134.198 171.696 2.998 177.864
Nissan Leaf 124.867 171.696 2.789 156.188

Link 5 Honda Accord 0.082 0.354 0.082 0.085
Mercedes C300 0.086 0.354 0.087 0.1
Ford Expedition 0.135 0.354 0.127 0.136
Truck (International/ 9800 SBA) 0.626 0.354 0.612 0.51
Transit Bus (19XX) 0.799 0.354 0.764 0.844
Tesla S 254.889 196.126 229.275 352.266
BMW i3 209.863 196.126 198.048 246.82

Nissan Leaf 202.321 196.126 186.678 216.741
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Table 6.4: Path energy cost

Vehicle Model Path ID Method 1 Method 2 Method 3 Method 4

Honda Accord1 1 0.3179 1.1052 0.2076 0.3253
2 0.2651 0.8284 0.2589 0.2672
3 0.2421 1.1624 0.2439 0.2458

Mercedes C3001 1 0.3075 1.1052 0.2025 0.3348
2 0.2686 0.8284 0.266 0.2899
3 0.2599 1.1624 0.2611 0.2989

Ford Expedition1 1 0.4219 1.1052 0.4084 0.4314
2 0.3874 0.8284 0.3791 0.3772
3 0.4369 1.1624 0.4544 0.4138

Truck (International/ 9800 SBA)1 1 1.6518 1.1052 1.643 1.5023
2 1.6922 0.8284 1.7031 1.3825
3 2.0621 1.1624 2.0888 1.5394

Transit Bus (19XX)1 1 2.1152 1.1052 1.4276 2.2658
2 2.178 0.8284 2.164 2.1726
3 2.6083 1.1624 2.742 2.5891

Tesla S2 1 583.5833 485.4716 563.8517 783.3154
2 662.7326 562.1901 651.9976 823.3346
3 848.6269 769.0876 854.4408 1109.9905

BMW i32 1 460.1037 485.4716 317.511 548.841
2 533.173 562.1901 541.1933 576.8811
3 708.9137 769.0876 732.0366 777.7305

Nissan Leaf2 1 433.5625 485.4716 298.747 481.9545
2 507.8838 562.1901 518.0252 506.5773

3 688.4415 769.0876 706.0848 682.9495
1Conventional fuel: l. 2Electric energy: Wh.

The link cost error leads to the differences in path costs between the proposed method and
the other three methods, as demonstrated in Table 6.4. Likewise, for Methods 1, 3 and
4, path costs differ between vehicle models, while Method 2 cannot differentiate vehicle
model-specific path costs.

The eco-routes were calculated based on the path costs, as illustrated in Table 6.5. In general,
either different vehicle models or eco-routing methods may result in different eco-routes.
Specifically, according to the results of the proposed method, Honda Accord and Mercedes
C300 (sedan passenger car) are suggested to choose path 3 (freeway route: 1 - 4) to minimize
their fuel consumption levels; while Ford Expedition (SUV) is provided with path 2 (arterial
route: 1 - 3 - 4) as the optimum route, and the truck and bus (HDVs) as well as Tesla S, BMW
i3 and Nissan Leaf (electric vehicles) are routed to path 1 (local street: 1 - 2 - 3 - 4). The
routing results are reasonable, given that Honda Accord and Mercedes C300 have an optimum
fuel economy cruise speed of around 80 km/h which is higher than those of Ford Expedition
(58 km/h), HDVs (30-50 km/h) and electric vehicles (15-25 km/h, [199]). Therefore, the
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Table 6.5: Comparison of eco-routes
Vehicle Model Method 1 Method 2 Method 3 Method 4

Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum

Path cost Path cost Path cost Path cost

Honda Accord1 1–4 0.2421 1–3–4 0.8284 1–2–3–4 0.2076 0.2458 1–4

Mercedes C3001 1–4 0.2599 1–3–4 0.8284 1–2–3–4 0.2025 0.2899 1–3–4
Ford Expedition1 1–3–4 0.3874 1–3–4 0.8284 1–3–4 0.3791 0.3772 1–3–4
Truck (International/ 9800 SBA)1 1–2–3–4 1.6518 1–3–4 0.8284 1–2–3–4 1.643 1.3825 1–3–4
Transit Bus (19XX)1 1–2–3–4 2.1152 1–3–4 0.8284 1–2–3–4 1.4276 2.1726 1–3–4
Tesla S2 1–2–3–4 583.5833 1–2–3–4 485.4716 1–2–3–4 563.8517 783.3154 1–2–3–4
BMW i32 1–2–3–4 460.1037 1–2–3–4 485.4716 1–2–3–4 317.511 548.841 1–2–3–4

Nissan Leaf2 1–2–3–4 433.5625 1–2–3–4 485.4716 1–2–3–4 298.747 481.9545 1–2–3–4
1Conventional fuel: l. 2Electric energy: Wh.

tested passenger cars are assigned to the freeway route which generates a prevailing speed
closer to their optimum cruise speeds; while the arterial route, consisting of two links with
the speed limits of 70 km/h and 45 km/h respectively, provides the prevailing speed closer
to the optimum speed of Ford Expedition. HDVs and electric vehicles, however, are routed
to local streets given their significantly lower optimum cruise speeds. It should be noted
that, to simplify traffic operations, no traffic control occurred in the sample network, so that
the prevailing speed of each route dominantly determines the resulting energy consumption.
In reality, however, traffic operations are more complex, and the route with the prevailing
speed closer to the optimum cruise speed may not always be the environmentally best. For
example, the freeway route may become the best for Ford Expedition if there are many
traffic signals on the arterial route with frequent stop-and-go activities.

For the specific vehicle model, the other three methods, however, produce different routing
results relative to the proposed method. Specifically, method 2 assigns all conventional
vehicles to the arterial route (1 - 3 - 4) given the inability of differentiating eco-routes between
vehicle models. Also, method 3 assigns Honda Accord and Mercedes C300 to the local street
given that the resulting eco-routes are not based on real time information. Method 4 also
provides inconsistent results by routing Mercedes C300, the truck and bus to the arterial
route, given that the method is unable to capture the effect of vehicle specifications on vehicle
power.

6.4 Dynamic Eco-routing System

With the resulting eco-routing model, this section is primarily to develop the proposed
dynamic eco-routing system for in-vehicle navigation applications. The INTEGRATION
framework for routing logic is first introduced. The architecture of the proposed system is
then developed, followed by the testing work.
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6.4.1 INTEGRATION Framework for Traffic Assignment

INTEGRATION is basically an agent-based microscopic traffic assignment and simulation
software. Within the software, the selection of the next link to be taken by a vehicle is deter-
mined by the model’s internal routing logic [200, 201]. Before the study of this dissertation,
there were 10 built-in routing methods in INTEGRATION as illustrated below:

1. Time-Dependent Method of Successive Averages (MSA)

2. Time-Dependent Sub-Population Feedback Assignment (SFA)

3. Time-Dependent Agent Feedback Assignment (AFA)

4. Time-Dependent Dynamic Traffic Assignment (DTA)

5. Time-Dependent Frank-Wolf Algorithm (FWA)

6. Time-Dependent External Routing 1 – File 8 (ER1)

7. Time-Dependent External Routing 2 – File 9 (ER2)

8. Distance Based Routing

9. ECO-Subpopulation Feedback Assignment (ECO-SFA)

10. ECO-Agent Feedback Assignment (ECO-AFA)

Some of these methods are static and deterministic (e.g. MSA, FWA, Distance Based Rout-
ing), and some of them are dynamic and stochastic (e.g. SFA, AFA, ECO-SFA, ECO-AFA).
Regardless of the particular method that is used to route vehicles, the selection of the next
link that a vehicle should take is done using a vehicle-specific array that lists for the vehicle
the entire sequence of links from its origin to its destination. Upon the completion of any
link, a vehicle simply queries this array to determine which link it should utilize next to reach
its ultimate destination in the most efficient manner. When traveling across this next link
is in turn completed, the selection process is then repeated until a link whose downstream
node is the vehicle’s ultimate trip destination is reached [24].

Among these routing options, ECO-SFA and ECO-AFA are the eco-routing algorithms that
dynamically estimate and update eco-routes based on the feedback information reported
by the vehicles departing from each link. Specifically, ECO-SFA is a subpopulation-based
routing logic which equally divides all routing vehicles into five sub-populations. The min-
imum paths for each of the five subpopulations are updated by every user-specified time
interval, which demonstrates that path updates may often be several seconds or minutes
old and thus not based on the most recent information. Alternatively, ECO-AFA assigns
vehicles individually. Link costs and eco-routes are updated by every vehicle’s departure
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from a link, rather than by average time interval. This agent-based routing logic enables the
resulting eco-routes to be generated based on the most recent information. Consequently,
the proposed eco-routing system is built at the agent-based level.

6.4.2 System Architecture

The routing logic of the proposed system is similar to ECO-AFA. However, ECO-AFA cannot
differentiate vehicle models given that the system utilizes energy consumption as the real
time information being updated by every vehicle’s departure from a link regardless of vehicle
models. This demonstrates that all vehicle models share the same link-specific energy costs to
calculate eco-routes, resulting in that all vehicles have the same eco-route. This is not realistic
in reality. The proposed system, alternatively, was developed using the eco-routing model
as proposed in section 6.2 which is able to estimate and update the eight link parameters to
achieve real time information as the input of energy consumption model and thus to generate
vehicle model-specific link costs and eco-routes. Also, the eight parameters, as mentioned,
comprehensively incorporate microscopic characteristics into the link cost function.

The general architecture of the proposed system is presented in Figure 6.3. The system was
developed in the INTEGRATION simulation framework which requires the input of road
characteristics, signal information, OD demands and vehicle specifications for the simulation
run. The eco-routing logic starts from an initialization procedure in which routes are selected
based on the energy consumption estimated using facility’s free flow speed. The use of free
flow speed is attributed to the fact that the network is initially empty without experienced
traffic information reported. Upon the initial vehicle routing, the traffic is assigned to the
network. Once the route is selected, INTEGRATION updates the vehicle longitudinal and
lateral motions every deci-second using the built-in RPA car-following model and lane chang-
ing model respectively. The RPA car-following model has been demonstrated in chapter 5
to generate realistic vehicle trajectories that result in accurate VSP distributions and energy
estimates. The lane changing logic was described and validated against field data in an
earlier publication [202], demonstrating an adequate capture of vehicle lateral motions. The
vehicle locations and speeds are recorded on an instantaneous basis while at the same time
input to the power module to estimate the instantaneous eight parameters. Once a vehicle
departs from the origin or from a link, the instantaneous eight parameters of that vehicle
are accumulated to achieve link-level statistics:
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3(t)(−) · ηre(t)). These
aggregated parameters are then updated respectively to serve as the real time informa-
tion through an exponential smoothing procedure using Equation (6.12), where [·]′n,l is the
smoothed link parameters when vehicle n is departing from link l, [·]′n−1,l is the smoothed
link parameters when vehicle n − 1 is departing from link l, and [·]n,l is the observed link
parameters for vehicle n going through link l. It should be noted that the eight parameters
as well as the optimum routes are only updated upon a vehicle’s departure from the origin
or from a link; otherwise, route selection is based on the original routing solutions.
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TT ′n,l = (1− α)TT ′n−1,l + αTTn,l (6.12h)

The up-to-date eight parameters are introduced to the built-in energy consumption model
(VT-CPFM and VT-CPEM) to estimate vehicle model-specific link energy costs using Equa-
tions (6.9)-(6.10). The outputs from the energy module are then used to compute eco-routes
relative to each vehicle model in the module of the shortest path algorithm. Routes are se-
lected based on the resulting eco-routing suggestions, assuming that all drivers would always
choose the best routes. Therefore, the proposed system is essentially a deterministic routing
method.

The routing results change traffic conditions in the network, and the new traffic conditions
may in turn affect the eco-routing solutions of the next iteration, and so forth. Accordingly,
the system is essentially a loop which is able to generate routing suggestions in real time
adaptable to the evolution of traffic conditions.
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Figure 6.3: INTEGRATION framework for the dynamic eco-routing system
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Figure 6.4: QNET sample network configuration

6.4.3 System Testing

The proposed system was tested in a sample network and a real world network respectively
which were built in INTEGRATION. Four vehicle models were selected as the representa-
tives of typical vehicle fleet: Honda Accord (gasoline sedan car), Ford Expedition (gasoline
SUV), International/ 9800 SBA (diesel truck), and Tesla S (electric LDVs). It should be
noted that transit bus is not selected in this chapter given that buses operate on fixed routes
and cannot be dynamically re-routed based on real time traffic conditions. The performance
of the system in terms of energy consumption, travel time and distance traveled was com-
pared to Rakha’s traditional eco-routing system (ECO-AFA) and travel time (TT) routing
logic (AFA) both of which are built-in agent-based routing methods in INTEGRATION as
mentioned before. In addition, the resulting measures of effectiveness (MOEs) from the three
routing systems as a function of congestion level have been investigated as well.

6.4.3.1 System Testing in Sample Network

The testing effort was first conducted in a sample network which was entitled “QNET”.
QNET consists of 10 zones, 32 nodes, 68 links, and 196 O-D pairs. The network includes
traffic control infrastructures such as traffic signals and stop signs and thus covers the impact
of traffic control on vehicle operations. As illustrated in Figure 6.4, the two central horizontal
roads are freeways with a free flow speed of 110 km/h and other roads are arterial roads
with the free flow speed of 60 km/h. The freeways have 3 lanes in each direction connected
by one-lane on-ramps and off-ramps, and each of the arterial roads has 2 lanes per direction.

An original demand of 2513 veh/h was loaded onto the network for the first 1800 s, and
the simulation was continued until all of the loaded vehicles cleared the network. This
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resulted in a total of 1257 vehicles being simulated. Noticeably, the demand for each O-D
pair was equally shared by the four tested vehicle models in order to exclude the impact of
disproportionate vehicle lineup on testing results. The simulation was run with ten random
seeds for each of the three routing methods to eliminate the perturbance of simulation
stochasticity. The MOEs relative to each routing system were calculated by dividing the total
network statistics by total number of vehicles, and then averaged over the ten random seeds,
as demonstrated in Table 6.6 that summarizes the network-wide average statistics including
travel distance (km), travel time (s), conventional petroleum fuel consumption (l), and
electric energy consumption (Wh). The negative relative differences (Relative Diff.) in the
table demonstrate the savings from the proposed eco-routing in either energy consumption
or travel time or distance.

According to the mean values in Table 6.6, the proposed eco-routing system on average
produces the conventional fuel of 0.453 l and an electric energy of 88.907 Wh. This results
in the energy savings of 4.5% (conventional fuel) and 10.32% (electric power) respectively
compared to the ECO-AFA system, and 4.22% (conventional fuel) and 22.09% (electric
power) respectively compared to the TT-AFA system. Furthermore, the lower and upper
95% confidence intervals (CIs) between the proposed eco-routing and the other two routing
systems do not overlap, demonstrating that the proposed eco-routing significantly improves
energy efficiency. In addition, the TT-AFA routing results in lower travel time and fewer
distances traveled yet more energy consumption, implying that the minimum travel time or
shortest distance route may instead produce higher energy consumption levels. This result
is consistent with [6].

The proposed eco-routing was also tested at multiple demand levels in order to quantify
the impact of congestion level on the system performance. Specifically, nine demand levels
were tested varying from 5% to 200% of the original demand. At each demand level, the
simulation was run with ten random seeds for each of the three routing methods (a total of 30
simulation runs were completed for each demand level). The MOEs were then averaged over
the random seeds. The average statistics were compared between the proposed eco-routing
and the other two routing methods.

The results are presented in Table 6.7 in which the negative relative differences also demon-
strate an either energy saving or travel time or distance saving by the proposed system.
Basically, the proposed eco-routing produces lowest levels of energy consumption for both
conventional and electric vehicles at all demand levels, demonstrating that the system in
general outperforms the traditional eco-routing and travel time routing systems in terms of
energy saving. In particular, with the increasing demand level, the conventional fuel sav-
ings on average vary from 3.33% to 9.57% relative to the Eco-AFA system and from 6.92%
to 0.76% relative to the TT-AFA system. The decreasing fuel savings relative to the TT-
AFA routing are mainly attributed to the fact that fewer route alternatives are available
for conventional vehicles when the network is getting congested. In addition, relative to the
Eco-AFA routing, although more fuel savings are observed with the increasing demands for
the proposed system, it is not secure to draw the conclusion that the proposed eco-routing
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achieves more fuel savings in a congested network. This is because the higher fuel consump-
tion levels for the Eco-AFA routing are resulted from the fact that the traditional eco-routing
system cannot differentiate link costs between vehicle models and thus may generate incor-
rect link costs and eco-routes which may route vehicles to the sub-optimal paths. Such
estimate error is not monotonously related to the demand level.

For the electric power, the increasing demand level does not demonstrate monotonous in-
crease or decrease in energy saving. Specifically, the savings relative to the Eco-AFA system
in general increase at first and then decrease with the increasing demand level. Alternatively,
the savings relative to the TT-AFA system do not significantly change with the variation
of demand level. This is, on the one hand, attributed to the fact that, in an uncongested
network, electric vehicles in most cases would choose local roads to minimize their energy
consumption levels given the significantly low optimum energy economy cruise speed (15-25
km/h, [199]), while choose the routes with high prevailing speeds such as freeway to min-
imize travel time. This may result in significant differences in prevailing speeds and thus
energy consumption between the two routing methods. On the other hand, in a congested
network, electric vehicles enable more energy regenerated given frequent deceleration events.
Accordingly, electric vehicles may achieve significant energy savings at both low and high
demand levels. This implies that the electric vehicle eco-routing that only considers mini-
mizing energy consumption may assign vehicles to congested networks, which makes traffic
conditions even worse. Some constraints on other factors such as travel time are thus needed
in the future study.

Despite the energy savings, the proposed system requires significantly more trip travel time
compared to the travel time routing (20% to 30% more travel time as illustrated in Table
6.7). Consequently, energy saving may be at the cost of travel time in some networks.

6.4.3.2 System Testing in Real World Network

The proposed system is also tested in a real world network. Figure 6.5 shows the testing area
located in the downtown of Doha city in Qatar which was originally built in INTEGRATION
to evaluate transportation operational strategies. The Doha network consists of 48 zones, 174
nodes, 302 links, and 54144 OD pairs. The network can reflect real-world traffic conditions
in large metropolitan areas and also includes a large amount of traffic control infrastructures.
There are three road types in the network, including the freeway with a free flow speed of
105 km/h and the arterial roads with the free flow speeds of 80 and 65 km/h respectively.
The two central horizontal roads are freeways and other roads are arterial roads. The testing
area has relatively flat terrain and thus the grade was assumed to be zero in this study.

For the base test scenario, the realistic one-hour traffic demand was loaded onto the network,
and the simulation was continued until all vehicles cleared the network. Again, the demand
for each O-D pair was equally shared by the four tested vehicle models. The simulation was
run with ten random seeds for each of the three routing methods, and the resulting MOEs
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Figure 6.5: Doha network configuration
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were generated by averaging the statistics over the random seeds.

Table 6.8 presents the simulation results. The proposed eco-routing on average produces
the conventional fuel consumption of 0.49 l and electric power of 67.822 Wh, resulting
in the energy savings of 2.04% (conventional fuel) and 7.57% (electric energy) respectively
relative to the ECO-AFA system, and 6.12% (conventional fuel) and 12.53% (electric energy)
respectively relative to the TT-AFA system. Furthermore, similar to the QNET sample
network, the non-overlapped CIs demonstrate a significant improvement by the proposed
system in terms of energy efficiency. It is worth noting that, compared to the TT-AFA
routing, the proposed eco-routing also results in shorter distance and the travel time without
significant difference (0.04%). This result is different from that generated in the QNET
network in which the proposed eco-routing results in longer distance and higher travel time.
This implies that, in some of the networks, the shortest distance or the minimum travel
time could be achieved on the most energy-efficient routes; while this might not be the case
in other networks. Consequently, network configuration significantly affects the eco-routing
benefits.

The testing effort was also conducted at multiple demand levels. Again, nine congestion
levels were tested varying from 5% to 200% of the realistic demand. At each demand level,
the simulation was run with ten different random seeds for each of the routing systems. The
MOEs were then averaged over the random seeds and compared between routing methods.
The results are illustrated in Table 6.9.

Similar to the results in the sample network, the proposed eco-routing achieves energy savings
for both conventional and electric vehicles at all demand levels. In particular, the conven-
tional fuel savings on average vary from 1.68% to 10.2% relative to the Eco-AFA system and
from 0.83% to 7.69% relative to the TT-AFA system; the electric energy savings vary from
1.02% to 9.09% relative to the Eco-AFA system and from 2.44% to 15.44% relative to the
TT-AFA system. With the increasing congestion level, the conventional fuel savings relative
to the travel time routing in general decrease although slight fluctuation is observed at some
of the demand levels; while for electric vehicles, the energy savings in general increase given
that more deceleration events occur to regenerate energy in a congested network. Noticeably,
with the increasing demands, the conventional fuel savings relative to the Eco-AFA system
do not demonstrate a monotonous increase as is the case in the sample network. This con-
firms that the energy saving of the proposed system relative to the traditional eco-routing is
not monotonously related to demand level.

It is worth noting that the electric energy savings relative to the TT-AFA system are signif-
icantly more in the QNET network (shown in Table 6.7) than in the Doha network (shown
in Table 6.9). This is probably attributed to the difference in network configuration. Specif-
ically, there are three road types in the Doha network with the difference in free flow speed
(65 km/h, 80 km/h, and 105 km/h) less significant than that in the QNET network which
conceives only two road types (60 km/h and 110 km/h). As demonstrated by a recent study
[199], electric power was highly sensitive to cruise speed as illustrated in Figure 6.6. The
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Figure 6.6: Electric energy consumption vs. cruise speed

vehicles cruising on freeways thus produce significantly higher energy consumption levels
than those cruising on arterial roads with lower prevailing speeds. In the QNET network,
the majority of vehicles traveled on freeways as suggested by the travel time routing while
traveled on arterial routes during eco-routing, resulting in significant difference in energy
consumption between the two routing methods. In the Doha network, however, the less
significant difference in prevailing speeds results in lower energy savings.

For the conventional fuel savings, there is no significant difference between the two networks.
This is because conventional fuel consumption is less sensitive to cruise speed compared to
the electric power. Specifically, as demonstrated in Figures 3.9 and 3.15, fuel consumption
produces a milder variation with the cruise speed at most of the speed levels, compared to
the electric power as demonstrated in Figure 6.6.

However, network configuration also significantly affects conventional fuel savings of eco-
routing systems. For example, a grid network, given more route alternatives, may generate
more fuel savings compared to a freeway corridor network [126]. Also, the steep roads with
high grade levels may be less attractive than the flat roads with level grade. In addition,
as demonstrated in Table 6.9, the proposed eco-routing also results in shortest distances
and minimum travel time, which is different from the QNET results illustrated in Table 6.7.
Consequently, in some of the networks, the most energy-efficient routes may also achieve
minimum travel time and distances traveled; while in some other networks, energy saving
may be at the cost of longer distances or higher travel time.
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6.5 Conclusions

This chapter first formulates the eco-routing problem which is able to comprehensively con-
sider microscopic elements and calculate eco-routes based on most recent information while
at the same time differentiate eco-routes between vehicle models. A numerical experiment
is designed to test the benefit of the model. With the developed eco-routing model, the
dynamic eco-routing system is then constructed, and tested in the INTEGRATION simu-
lation testbed at different congestion levels. To test the eco-routing benefit, the MOEs of
the proposed eco-routing are compared to those derived from the traditional eco-routing and
travel time routing systems.

The results of the numerical experiment demonstrate that the proposed eco-routing model
is able to generate reasonable routing suggestions based on real time information and also
differentiate vehicle models. The eco-routing methods that fail to capture the effect of vehi-
cle specifications on energy consumption and vehicle power may produce incorrect routing
results. In addition, the method, assuming that the vehicle model-specific link energy costs
and eco-routes are only affected by the vehicles within the same type, may also generate
unrealistic routing suggestions given that the routing results are not based on real time
information.

The testing results of the dynamic eco-routing system demonstrate that the proposed eco-
routing achieves lower network-wide energy consumption levels compared to the traditional
eco-routing and travel time routing at all congestion levels. It is also found that the conven-
tional fuel savings relative to the travel time routing decrease with the increasing congestion
level given fewer route alternatives in a congested network. For the electric power, how-
ever, the savings relative to travel time routing do not monotonously vary with congestion
level given that significant energy savings could be achieved at both low and high demand
levels. Furthermore, the energy savings relative to the traditional eco-routing are also not
monotonously related to congestion level. In addition, the results also demonstrate that
network configuration significantly affects the eco-routing benefit. For example, in some of
the networks, energy savings may be achieved at the cost of more travel time or distances
traveled; while in other networks, the most energy-efficient routes simultaneously minimize
travel time and distances.

The proposed system in this chapter will be integrated into the higher-level multimodal eco-
routing system in the future study in support of intermodal routing suggestions. Although
the system is developed in the simulation environment, it is also applicable for real appli-
cation where the network-wide vehicle-to-vehicle (V2V) communication is available. With
the extensive development of connected vehicle techniques, the application of the proposed
system in reality is anticipated to be realized in the near future.

Additionally, as mentioned before, the proposed system is a deterministic routing method
with the assumption that all drivers would always choose the best routes. However, whether
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would drivers completely conform to the routing suggestions in reality? How does the real
time route information affect drivers’ route choice behavior? The following chapter attempts
to answer these questions.
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Chapter 7

Effect of Dynamic Route Information
on Driver Route Choice Behavior

This chapter is based on the papers:

1. Wang, J. and Rakha, H. Empirical Study of Effect of Dynamic Travel Time Information
on Driver Route Choice Behavior. Transportation Research Part F: Traffic Psychology and
Behaviour. (In Review).

2. Wang, J. and Rakha, H. Impact of Dynamic Route Information on Day-to-Day Driver
Route Choice Behavior. Presented at 94th Transportation Research Board Annual Meeting,
Washington D.C. 2015.

The chapter aims to study how drivers response to the received real time route information
and how the information affects their route choice behavior. The study is a follow-up ex-
periment of Tawfik’s study [148] in which participants were not provided with information.
The results of the two studies are compared to provide significant implications to the behav-
ioral effect of route information. The achievements of this chapter will be insightful for the
enhancement to the design of routing systems.

7.1 Experimental Design

As aforementioned, Tawfik et al. identified four route choice patterns observed in a real
world experiment. This chapter attempts to quantify the influence of route information on
traveler route choice behavior by comparing the choice patterns between Tawfik et. al.’s
experiment and the experiment conducted in this study. Occasionally, drivers prefer a route
they frequently choose instead of switching to the actually faster route; or may deviate
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from the habitual route to the alternative route which is on average worse, only because
the performance of the usually-taken route becomes bad on a random day. These irrational
behaviors may probably be caused by a lack of precise information. Travel time information
was provided to participants in this study given that travel time is easily collected in real
world. The study attempts to address a number of questions: will travel time information
make drivers behave more rationally? Will the effect of information be different among
individuals? What type of information will be most effective?

A total of 20 participants were recruited within two age groups (18-33 and 55-75)1, 10 male
and 10 female. Each of them was required to accomplish three sectors of the experiment: a
pre-run questionnaire, on-road test and a post-run questionnaire. The pre-run questionnaire
was conducted before the beginning of the on-road test, which gathered the participants’ de-
mographics, driving experiences, preferences, habits, information usage and the perception
of route performance. Noticeably, each participant was demonstrated to have little knowl-
edge of the route performance according to the results of pre-run questionnaire. The on-road
test was conducted around the areas in Blacksburg and Christiansburg, VA for the morning,
noon and evening peak from October 2013 to April 2014. The participants were asked to
drive as if 2 they were commuting in order to ensure that travel time was an important con-
sideration when they were to make choices. Each participant was asked to drive 10 trials, 5
of which provided participants with strict information (average travel time) and 5 provided
with range information (travel time variability). It should be noted that the information
was provided one time with average travel time and one time with travel time variability
in order to eliminate the bias on each of the information type. The average travel time
information provided to each trial was estimated by averaging the experienced travel time of
three previous trials 3, and travel time variability was estimated using the average value and
standard deviation (average travel time± 2 ∗ standard deviation), so that the information
could be dynamically updated each day to enhance the reliability of the information. For
each trial, there were five O-D trips each of which had two alternative routes, one route
was on average faster in travel time than the other. The characteristics of each route are
specified in Table 7.1. The participants’ task was to repeatedly make choices between the
two alternatives on each trip. Statistically, 55 choice observations were collected for each
participant, 100 observations by each trial and 220 on each trip. Upon the completion of 10
trials of the on-road test, the post-run questionnaire was thereafter conducted, whereby the
participants were asked whether the provided information was beneficial. The accuracy of

1These two age groups were selected because the authors wanted to investigate the impact of drivers’ age
on the information effectiveness in changing choice behavior. The big difference of drivers’ age in the two
age groups may more easily distinguish the difference of information effect resulted from drivers’ age.

2When drivers were doing the test, they were asked to drive from one predefined origin to the destination
during every trip, and they actually did not commute during the test. But the researchers wanted to emulate
the trip as a commute trip on which travel time may probably be the first consideration by the drivers. So
“as if” here means that drivers were asked to behave like commute.

3The experienced travel time was recorded by GPS during the testing; three previous trials were selected
to be averaged because the trails before has little impact on the decision based on the literature [148];
information used for the first trail was obtained from the experiment in [148]
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travel time perception would be compared between the two questionnaires in order to have
a knowledge of whether the participants’ perception was improved as a result of providing
them with information.

The logical choice rate—the proportion of times in which the faster route is chosen as a
function of time (trial number), participant and trip, respectively—was selected as the indi-
cator of the positive role of information in facilitating rational behavior. The inertial choice
rate—the proportion of participants remaining on their habitual but slower route—served
to evaluate whether the information contributed to enhancing participant attitudes of risk
seeking in the gain domain. The choice data collected by Tawfik was applied to estimate the
choice rates specified as “without information” group. Tawfik’s experiment was conducted
on the same trips in Blacksburg and Christiansburg in 2012, which was also a day-to-day
commuting test in which participants were asked to repeatedly make choice between the
two alternative routes on each trip. The difference between the two experiments was that
the proposed study provided participants with travel time information. For more details of
Tawfik’s study, see [148].

7.2 Results Analysis

By comparing the perceived travel time of the pre-run questionnaire to the actual travel time
collected during the on-road tests, it was demonstrated that the accuracy of participants’
perception of travel time ranged from 5% to 55% for all five trips, with an average accuracy
of only 38%. Consequently, it would be safe to conclude that the participants had limited
knowledge of the route performance prior to the start of the experiment. Based on the results
of participants’ perception in the post-run questionnaire, the average accuracy increased from
38% to 62% with an increase of 24%. Consequently, it would be interesting to see whether
participants behave more rationally with higher perception accuracy.

Figure 7.1 presents the proportions of logical- and inertial- choices as a function of time,
identified as trial number. As expected, the logical choice rates are on average around 10%
higher in the “with-information” group than “without-information” group, especially for the
first two trials in which the enhancement is up to 15%. This demonstrates that the positive
effect of information becomes more evident when travelers have limited knowledge of route
performance. Although there are some oscillations at some of the trails, in general, the
logical rates between the two groups are getting closer from the beginning to the end. The
inertial choice rates are basically lower with the provision of information, implying that it
is more likely for travelers to risk switching to the faster route when they are informed.
However, regardless of being informed or not being informed, the inertial behavior is not
reduced in day-to-day variation, which is different from the results in the simulation study
[135]. This may be attributed to the habit or other decision considerations.

In reality, the behavioral effect of information varies from person to person. One may
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Figure 7.1: Logical- and inertial- choice rates over trials.

probably have more confidence in his/her experiences than the acquired information; or
travel time is not his/her top consideration. Accordingly, the insights gained from previous
analyses are needed. Nine of the participants in this study attended Tawfik and Rakha’s
experiment. The choice results of these participants were specifically compared between
the two experiments in order to see how the effect of information differentiated individually
and how well they learned from the information. Figure 7.2 compares the behavioral types
(introduced in Table 2.1 which was proposed by [140]) for each of the nine participants
between with- and without-information. The degree of the fluctuation of each line gives an
explicit generalization of participants’ behavioral aggressiveness. The more fluctuated in the
lines, the more aggressively the participants behave. In general, the information significantly
changes behavioral types either from risk-seeking to risk-aversion or vice versa. Some of the
participants exhibited a high preference for one route when information was not provided
and switched frequently when they were informed; whereas some switched more without
information and maintained a single route when informed. Overall, the effect of information
significantly differs at an individual level.

Figure 7.3 summarizes the behavioral tendency of participants. According to Figure 7.3a,
participants 1, 2, 3, 5, 8 basically moved their choices towards rationality with the assistance
of information, whereas participants 4, 6, 7, 9 behaved more irrationally when they were
informed. In Figure 7.3b, participants 6, 7, 9 instead have higher inertial rates with the
provision of information, implying that they behaved even more risk aversive whey they
were provided with information.

Based on the results of the post-run questionnaire, participants 6, 7 and 9 mentioned that
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(a) Choice patterns without route information
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(b) Choice patterns with route information

Figure 7.2: Participants choice patterns without vs. with route information.

148



J. Wang

travel time information had little impact on their route choices. Specifically, participant
6 preferred rural roads due to his preference on route scenery, although travel time was
important to him as well. Participant 7 held the point that, instead of travel time, the
number of intersections was the overriding factor she considered for route choice decisions.
Participant 9 preferred to stick to her current route without any route-switching, which is
the first type of the typical behavior shown in Table 2.1. Noticeably, participant 4 had
both logical and inertial rates decreased with the provision of travel time information. That
was because travel time was not the only consideration to this participant. Based on the
results of the questionnaire, “avoid traffic lights” was the other equally important factor
to him, which highly impacted his choice behavior. Occasionally, participant 4 switched
to the slower route instead in order to avoid traffic lights even though he was informed
the alternative route was better in terms of travel time, which increased the proportion of
compromising behavior (the other type of illogical choice other than inertial choice) and
decreased the logical choice rate. In general, travel time may have little effectiveness in
enabling drivers to behave logically when drivers do not take travel time as their foremost
factor in planning their routes. Additionally, participants 4, 6, 7, 9 are all senior persons
from the age group of 55-75 year old. This implies that elder drivers are preferable to make
choices based on their preferences or habits rather than received information, which confirms
the results in [136].
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(a) Logical choice rates
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(b) Inertial choice rates

Figure 7.3: Logical- and inertial- choice rates over participants.

In addition to individual traits, trip characteristics may also affect the positive role of in-
formation. To study such effects, the choice rates were aggregated by trips. As illustrated
in Figure 7.4, information enhances behavioral rationality only for the first three trips. For
trip 4, logical rates decrease while inertial rates increase when information is provided. On
trip 5, the choice rates do not change significantly between with- and without- information.
According to the route characteristics addressed in Table 7.1, route 7 and route 8 (on trip
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(b) Inertial- choice rates

Figure 7.4: Logical- and inertial- choice rates over trips

4) are almost identical in travel time, whereas many participants pointed out that they were
reluctant to take route 7 even though it occasionally took less travel time since they did
not want to risk being caught on campus by pedestrian flows. The provided information
was considered to be less reliable for this trip. Interestingly, travel time is very close as
well between the two routes on trip 1; however, the effect of information appears to be very
positive. That is because there is no distinct advantage for one route over the other on this
trip. Although route 1 is on a highway system with a 20 km/h higher speed limit than route
2, there are five more signalized intersections on it. The provided travel time information for
this trip was considered reliable by participants. For trip 5, route 10 distinctively outper-
forms route 9 in terms of travel time, directness, less traffic and fewer intersections. Tawfik et
al. [148] clearly indicated that drivers were able to precisely perceive the route performance
and to make correct decisions on this trip without any assistance of information. Overall,
information provides little benefit if one route visibly outperforms the other.

Figure 7.5 and Figure 7.6 provide a broad view of the effect of different information types on
route choice behavior. In Figure 7.5, the comparative analysis was performed between strict
information (average travel time) and range information (variability). According to Figure
7.5a, strict information results in higher logical rates with lower inertial rates for the first trial,
demonstrating that strict information is more effective than range information when drivers
are lack of experience. For the following trials, however, there is no significant distinctiveness
between the two scenarios. This may be attributed to the fact that the effect of information
type tends to be identical after drivers gain experience. As illustrated in Figure 7.5b, strict
information results in higher logical rates and lower inertial rates on average. Nonetheless,
to some of the participants, range information performs better, implying that the responses
to different information types, to a large extent, are dependent on individual traits, although
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(b) Choice rates over participants

Figure 7.5: Choice rates with strict information vs. with range information

strict information overall performs better in this study.

Figure 7.6 presents the effect of different range information scenarios. As illustrated in Figure
7.6a, “Risky-fast” scenario refers to the faster route (lower average travel time) with higher
variability while “safer-fast” represents the faster route with lower variability. Interestingly,
the risky-fast scenario appears to have higher logical rates and lower inertial rates in the first
two trials; whereas the positive effect decreases in the following three trials. This implies
that, when drivers have limited knowledge of route performance, the faster route with high
variability is more attractive and subject to make drivers take risk in the gain domain. Once
drivers gather experience, however, they are reluctant to risk seeking in the gain domain
under higher uncertainty; instead, the safer-fast route becomes preferable. This confirms the
results of [131, 132, 133, 134]. Figure 7.6b demonstrates that there is no consensus between
participants on which scenario is more effective. Some of the participants have higher logical
rates and lower inertial rates for the risky-fast scenario while some exhibit the opposite
pattern.

7.3 Conclusions

This chapter empirically investigates the effect of dynamic travel time information on day-
to-day commuter route choice behavior by designing and running a real world experiment.
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Figure 7.6: Choice rates with risky-fast scenario vs. safer-fast scenario

The experiment confirms some of the results obtained from previous simulation studies,
demonstrating that, in general, real-time information significantly enhances behavioral ra-
tionality especially when drivers lack long-term experience. Simultaneously, inertial choice
rates decrease with information provision, demonstrating that drivers are more willing to risk
switching to faster routes when they have more information about these routes. Nonetheless,
the positive role of information is, to a large extent, dependent upon the individual’s age,
preferences, and route characteristics. The results demonstrate that travel time information
may not have positive impacts on driver route choice behavior if they value other factors
in making their decisions, such as route scenery, habit, number of intersections and traffic
signals. The results also reveal that the information effect is less evident for elder drivers,
which is consistent with [136]. In addition to personal traits, route characteristics are found
to be another important factor influencing the effectiveness of information. Specifically, in-
formation may not add value if one route is significantly better than the other given that
drivers would be able to identify the optimum route on their own through their experiences.

The effect of the information type on route choice behavior was also studied. The experiment
generates the results consistent with the results of simulation studies, demonstrating that,
when drivers have limited experiences, information on expected travel times is in general more
effective than information on travel time variability in enhancing rational behavior. After
drivers gain sufficient knowledge of the alternative routes, however, the benefit of providing
strict information appears to diminish. The results also demonstrate that drivers prefer to
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take the faster less reliable route as opposed to the slower more reliable route when they
lack historical experience. However, as drivers accumulate experience, they become more
willing to take the more reliable route, demonstrating that they become less risk seeking in
the gain domain at higher uncertainty once experience is gained. In addition, the effect of
information types significantly differentiates from person to person. The subject that which
type of information is most effective to what group of travelers remains to be investigated
in future research.

The experiment also demonstrates that, regardless of being informed or not being informed,
the drivers’ inertial behavior does not reduce in day-to-day variation, which is different from
the results obtained by simulation studies. This may be attributed to the habit or much
more decision considerations in actual driving conditions.

The results of this chapter will be used to model route choice behavior under information
environment, and thus enable to adequately consider choice stochasticity in routing systems.
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Chapter 8

Conclusions and Recommendations
for Further Research

This chapter summarizes the main findings of the dissertation. Also, the recommendations
for the future research are proposed.

8.1 Dissertation Conclusions

The dissertation is a building block of a multi-modal energy-efficient routing system, at-
tempting to develop four submodules of the system including energy consumption modeling,
subway system module, on-road vehicles dynamic eco-routing system, and information effect
on route choice behavior. Towards this goal, the study first models energy consumption
in support of link cost and eco-route calculation. Given that gasoline LDVs and electric
vehicles had been modeled in previous studies [12, 13], this dissertation mainly focuses on
the HDDV and train modeling. Secondly, the study develops a railway simulation system
through modeling train dynamics, which will be combined with the train energy model to
estimate rail-induced trip energy consumption. Thirdly, given that the system is proposed
to be developed and tested in the simulation environment before it can be used in real appli-
cations, the most suitable microsimulation testbed is identified. The eco-routing problem for
the on-road vehicles dynamic eco-routing system is then formulated, followed by a numer-
ical experiment designed to test the benefit of the model. With the developed eco-routing
model, the dynamic eco-routing system is developed for in-vehicle navigation applications,
and tested at multiple congestion levels. Finally, the dissertation investigates the effect of
dynamic route information on route choice behavior in order to provide significant impli-
cations to route choice modeling under information environment and thus to enhance the
routing system in terms of choice stochasticity.

The research findings are presented as follows:
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The conventional fuel consumption models are developed in chapter 3 for HDDTs, conven-
tional diesel and hybrid-electric buses. The model circumvents the bang-bang type of control,
and also can be easily calibrated and implemented in traffic simulation software, in-vehicle
or smartphone eco-routing and eco-driving applications. It is found that the estimates of the
proposed VT-CPFM model are consistent with field observations as well as the estimates of
CMEM and MOVES, and that the models can provide realistic driving suggestions in control
systems. The optimum fuel economy cruise speed ranges between 32 and 52 km/h for the
tested trucks and between 39 and 47 km/h for the tested buses on grades varying from 0%
to 8%. The results also demonstrate that steeper roads (uphill) and heavier vehicles result
in lower optimum cruise speeds. These optimum cruise speeds are significantly lower than
those of LDVs (60-80 km/h). In addition, a recent study [199] on electric vehicle eco-routing
generated the optimum cruise speed ranging between 15 and 25 km/h which is significantly
lower than the conventional vehicles. Consequently, optimum cruise speeds differ between
vehicle models, and may result in different vehicle model-specific eco-routes.

Chapter 4 develops electric train dynamics and energy consumption models in support of
railway microsimulator development and trip energy estimation. Both models can be easily
calibrated using non-engine data and implemented in simulation systems and eco-transit
applications. The dynamics model varies throttle and brake level with running speed rather
than assuming constants as was done by previous studies. The energy consumption model
considers instantaneous energy regeneration by formulating regenerative efficiency as an ex-
ponential function of deceleration level. The results of the dynamics modeling demonstrate
that the proposed model can adequately capture instantaneous acceleration/deceleration
behavior and thus produce realistic train trajectories. The model is also demonstrated
to provide good fit in the domains of acceleration/deceleration versus speed and accelera-
tion/deceleration versus distance. In addition, simulation results provide a good fit to the
field data, demonstrating the adequacy of the proposed dynamics model in support of rail-
way simulation system. The results of the energy consumption modeling demonstrate that
the model estimates are consistent with the NTD results. Significant prediction error is
observed without modeling regenerative braking. It is also found that the proposed energy
model is able to capture the energy consumption differences associated with train, route and
operational characteristics, and thus is applicable for project-level analysis.

Chapter 5 identifies the applicability of the state-of-the-art microsimulation models (IN-
TEGRATION, VISSIM, AIMSUM, PARAMICS) to serve as the testbed for the proposed
study. Given that the car-following model of a micro-simulator controls longitudinal vehicle
motions and thus determines the resulting vehicle trajectories, the research efforts in this
chapter mainly focus on the performance of the built-in car-following models from the energy
and environmental perspective. The VSP distributions resulted from the car-following mod-
els used in each of the microsimulation software are compared to the field observations. The
results demonstrate that the RPA model (INTEGRATION) outperforms the Gipps (AIM-
SUM), Fritzsche (PARAMICS) and Wiedemann (VISSIM) models in generating realistic
VSP distributions, especially at low speed levels (0 − 30mph) where car-following is most
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common. It is also found that the RPA model produces the lowest level of prediction error
in terms of fuel consumption and emissions. The conclusions of this chapter demonstrate the
advantage of the INTEGRATION software over the other three widely-used simulation mod-
els for energy and environmental analysis. Accordingly, INTEGRATION is used to develop
and test the proposed eco-routing system.

Chapter 6 formulates an eco-routing model for in-vehicle routing applications. The model
comprehensively considers microscopic elements and is able to calculate eco-routes based
on most recent information while at the same time differentiate eco-routes between vehi-
cle models. A numerical experiment is designed to test the benefit of the model. With
the developed eco-routing model, the dynamic eco-routing system is then constructed, and
tested in the INTEGRATION simulation testbed at different congestion levels. The results
of the numerical experiment demonstrate that the proposed eco-routing model is able to
generate reasonable routing suggestions based on real time information and also differen-
tiate vehicle models. The testing results of the dynamic eco-routing system demonstrate
that the proposed eco-routing achieves lower network-wide energy consumption levels com-
pared to the traditional eco-routing and travel time routing at all congestion levels. The
results also demonstrate that the conventional fuel savings relative to the travel time routing
decrease with the increasing congestion level given fewer route alternatives in a congested
network. For the electric power, however, the savings relative to travel time routing do
not monotonously vary with congestion level given that significant energy savings could be
achieved at both low and high demand levels. Furthermore, the energy savings relative to the
traditional eco-routing are also not monotonously related to congestion level. In addition,
network configuration is demonstrated to significantly affect the eco-routing benefits.

In order to enhance the design of the eco-routing system from the choice stochasticity per-
spective, Chapter 7 empirically investigates the effect of dynamic route information on day-
to-day commuter route choice behavior by designing and running a real world experiment.
The experiment confirms some of the results obtained from previous simulation studies,
demonstrating that, in general, route information significantly enhances behavioral ratio-
nality especially when drivers lack long-term experience. The results also demonstrate that
the effectiveness of information in routing rationality depends upon individual’s preferences,
age, and route characteristics. Specifically, the provided information may not have positive
impacts on choice rationality if travelers value other considerations in decision-making such
as route scenery, habit, number of intersections and traffic signals. It is also found that the
information effect is less evident for elder drivers. Furthermore, information may not add
value if one route is significantly better than the other given that drivers would be able to
identify the optimum route on their own through their experiences. The results also demon-
strate that the strict information is, in general, more effective than the variability information
when travelers have limited experiences, and that the difference becomes insignificant with
experience accumulation. Finally, the results reveal that the faster less reliable route is more
attractive than the slower more reliable route when drivers lack experience, while with cu-
mulative experiences, travelers become more willing to take the more reliable route given
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that they are reluctant to become risk seekers once experience is gained.

8.2 Recommendations for Further Research

To extend the research work of this dissertation, several efforts should be made in the future
which are presented in this section.

First, the dissertation develops four submodules as partial fulfillment of the multimodal
eco-routing system. Other submodules such as pedestrian and bicycle modeling should be
investigated in the future study. Upon the completion of all submodules, the system will
be used to estimate door-to-door trip energy consumption in support of intermodal route
planning. After simulation testing, the system will be proposed for real applications.

Secondly, the eco-routing system developed in this dissertation is deterministic assuming
that travelers always choose the actually best route as suggested, which is not realistic in
reality. Based on the results in chapter 7, travelers may not always choose the suggested
optimum routes. For example, some of the travelers do not prefer the routes traversing
downtown areas or university campus even though they are informed that these routes are
the best; some of them prefer to choose habitual routes or rural routes. These stochastic
factors may significantly affect eco-routing benefits. Incorporating behavioral stochasticity
into the proposed system would be an important concern in the future.

Furthermore, the dynamic eco-routing system developed in Chapter 6 ultimately achieves the
User Equilibrium (UE) in which all drivers minimize their own energy consumption rather
than achieving the System Optimum (SO). UE is more realistic in capturing real-world
route choice behavior given that drivers in reality always consider minimizing their own
travel costs instead of trying to optimize system-level measure of effectiveness. However,
investigating the SO solutions will be providing insightful implications to moving routing
rationality towards system-wide optimum.

Another issue is that the minimum energy consumption does not necessarily guarantee the
optimum in pollutant emissions such as CO, NOx, HC, given that these emissions are
nonlinearly related to energy consumption [203]. Consequently, further study should be
recommended specifically on emission-optimized routing to reduce air pollutants from the
route planning perspective.

Finally, the proposed eco-routing system in this study takes energy consumption as the single
objective without considering other factors such as travel time. In reality, travelers may not
be willing to either spend significantly more travel time or make a big detour to minimize
their energy consumption levels. Consequently, some constraints with respect to travel time
or distance should be added to the optimization problem, so that users are able to specify
their tolerance of extra travel time and distances traveled in reducing energy consumption.
Another way of constraining the eco-routing problem is to consider more objectives and
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achieve a compromise solution through superimposing weight on each objective. Both ap-
proaches enable travelers to reduce their energy consumption within reasonable travel time
or distances traveled.
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