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ABSTRACT

Embedded systems are increasingly ubiquitous. Many of them have security requirements

such as smart cards, mobile phones, and internet connected appliances. It can be a challenge

to fulfill security requirements due to the constrained nature of embedded devices. This

security challenge is worsened by the possibility of implementation attacks. Despite well

formulated cryptosystems being used, the underlying hardware can often undermine any

security proven on paper. If a secret key is at play, an adversary has a chance of revealing

it by simply looking at the power variation. Additionally, an adversary can tamper with an

embedded system’s environment to get it to skip a security check or generate side channel

information.

Any adversary with physical access to an embedded system can conduct such implementation

attacks. It is the focus of this work to explore different countermeasures against both side

channel and fault attacks. A new countermeasure call Intra-instruction Redundancy, based

on bit-slicing, or N-bit SIMD processing, is proposed. Another challenge with implementing

countermeasures against implementation attacks, is that they need to be able to be combined.

Most proposed side channel countermeasures do not prevent fault injection and vice versa.

Combining them is non-trivial as demonstrated with a combined implementation attack.
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GENERAL AUDIENCE ABSTRACT

Consider a mechanical dial lock that must be opened without knowing the correct combi-

nation. One technique is to use a stethoscope to closely listen to the internal mechanical

sounds and try to pick out any biases in order to figure out the correct combination without

having to go through an exhaustive search. This is what a side channel is.

Embedded systems do not have mechanical sound side channels like mechanical locks but

they do leak information through power consumption. This is the basis for power analysis

attacks on embedded systems. By observing power, secret information from an embedded

system can be revealed despite any cryptographic protections implemented. Another side

channel is the behavior of the processor when it is physically tampered with, specifically

known as a fault attack. It is important that embedded systems are able to detect when

they are tampered with and respond accordingly to protect sensitive information.

Side channel and fault attack countermeasures are methods for embedded systems to prevent

such attacks. This work presents a new state of the art fault attack countermeasure and a

framework for combining the countermeasure with existing side channel countermeasures. It

is nontrivial to combine countermeasures as there is a potential for combined attacks which

this work shows as well.
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Chapter 1

Introduction

When implementing secure software on desktop computers or servers, there are sufficient

resources (computation, RAM, space) to implement a secure system. And adversaries typi-

cally won’t be able to get physical access to these types of machines. Most computer attacks

in these scenarios are remote or aren’t specific to any type of computer.

Embedded systems on the other hand, do not have these properties. Embedded devices are

much smaller and cheaper. They don’t have nearly the computational abilities, RAM, or

storage that a conventional computer would have. During NIST’s Lightweight Cryptography

Workshop in 2015, H. Tschofenig et. al showed that a conventional ARM M3 or M4 chip

can take between 100 and 620 miliseconds to compute a P-256 bit ECC signature [50]. This

is many times slower than a server computer. Not to mention, ARM is already on the high

end of embedded processors. Smaller 16 or 8 bit processors could take another 2-10x as

1
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long. This is important to consider because when implementing security measures on an

embedded system, it could very well become too costly in terms of time or money.

This challenge is further compounded by the possibility of implementation attacks and an

adversary’s ability to gain physical access to an embedded system. Embedded systems are

becoming ubiquitous. They are in cars, credit cards, door locks, TVs, cable boxes, and

other ordinary house hold items that are becoming internet connected. The chance for an

adversary to get physical access to something security sensitive is much easier than with

conventional computing platforms. With physical access, the adversary can passively tap

into the power consumption of an embedded device to conduct power analysis attacks. The

adversary can also actively tamper with the processor to try to get it to run into errors or

skip instructions, allowing him to bypass a security check or generate a new side channel.

1.1 Power Analysis Attacks

Power analysis started taking hold since the seminal work of P. Kocher et. al [33]. There

are different types of analytic techniques. Simple power analysis (SPA) is when individual

cryptographic operations can be clearly distringuished and attributed to specific key bits.

For example, RSA processes key bits individually and determines whether or not substeps

of a modular exponentiation is done. SPA will detect the substeps and deduce the outcome

of the conditional branches and hence derive the RSA secret key. Differential power analysis

(DPA) is a step up from that where the adversary makes key guesses and calculates some
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key-dependent intermediate value for all captured traces and their respective ciphertexts. He

then subtracts traces from each other and looks for the largest average difference between

the samples of the traces. The max difference should be correlated to the ciphertexts and

correct key guesses, allowing the adversary to converge on the correct key. Both techniques

require the adversary to have approximate knowledge of where the intermediate value gets

processed in the power trace.

A more powerful power analysis technique emerges later, called correlation power analysis

(CPA) [14]. It relies on some intermediate value and a power model to correlate the power

traces with. For example, for AES, a common intermediate value is the output of the first

S-box. A power model would then be some attribute of the intermediate value that is

expected to reflect in the power traces; hamming weight is a popular one. So a typical CPA

on AES would try to correlate the hamming weight of the first S-box with the power traces.

This is done 256 times for all possible key byte guesses and the key guess that provides the

best correlation is chosen for the final key guess. An adversary no longer needs to have close

knowledge of where the intermediate value is calculated in the power trace, as correlation can

be computed against every power sample, only taking the sample with the max correlation

in the end (provided there are enough traces to correlate with).

Power analysis techniques continue to improve and grow in statistical complexity. There are

also higher order power analysis (HODPA) techniques [36, 30], which will be touched on in

the related works section.
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1.2 Fault Injection Attacks

Fault injection generically refers to any way that the adversary can meddle with a device’s

environment to cause a hardware error. A few common methods for how an adversary can

do this are given.

Clock glitching: The adversary controls the clock input to a circuit. The adversary can

make at least one of the clock pulses shorter, which could violate a critical path of the circuit.

Increasing the intensity (making the pulse smaller) would likely cause more critical paths to

be violated.

Power glitching: The adversary controls the power input of a circuit. He can make a

transient where the power changes enough to make internal logic gate voltage signals fall in

an undefined range. For example, a 1.5V signal may not clearly evaluate to a logic ’1’ or ’0’

in a 3.3V circuit. The intensity of the fault is proportional to the time of the transient and

its magnitude.

Laser injection: The adversary has precise control over injecting laser pulses to an exposed

die. The radiation induces a current in the circuit or even destroys some part of the circuit.

Electromagnetic injection: A large transient is sent through a coil to try to induce a

current in some local part of the target circuit.

Clock glitching and power gliching are common and have the advantage of being relatively

easy to set up. Laser injection and electromagnetic injection inject faults local to some area
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of a circuit and have the potential to make a more precise fault injection. Any individual

wishing to learn more about fault injection should consult the Hardware Designer’s Guide

to Fault Attacks [31].

Using hardware faults to break cryptographic systems was first demonstrated by D. Boneh

et. al in 1996 [11]. Differential Fault Analysis (DFA) was soon formalized by E. Biham

et. al [10], which breaks generic secret key algorithms. DFA works by considering some

intermediate value, say, the output of the last S-BOX, and trying to cause errors in it by

injecting faults. One plaintext is encrypted without a fault and that same plaintext is

encrypted again with a fault that introduced an error. If the fault causes random n-bit

errors, where n is fixed to a small range, to the input of the last S-Box, then a relatively

small subset of key bytes could have been possible to create the faulty output. By collecting

multiple ciphertext faulty-ciphertext pairs, the intersect of all possible key sets will reveal

the correct key byte. The analysis depends on the location of the fault and the severity and

repeatability of the error caused by the fault.

After DFA, more efficent fault analysis techniques have been proposed like FSA [34] and

DFIA [21] which focus on the magnitude of the errors and the intensity of the fault, rather

than the error itself. Well targeted fault injection has been shown to break AES with just a

single fault [51].
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1.3 Purpose and Outline

In this work, we seek to develop a generic countermeasure that can protect embedded sys-

tems from side channel and fault injection attacks. First, we will give an overview of existing

countermeasures. Then, we will describe our countermeasure, intra-instruction redundancy,

which initially just protects against fault injection. Then, we will describe how our coun-

termeasure can be extended to protect against side channel analysis as well. Being able to

combine implementation attack countermeasures is nontrivial, as we demonstrate with an

overview of combined DPA and fault injection attacks and our own combined attack analysis.



Chapter 2

Related work

Here we will provide an overview of current fault injection (FI) and side channel analysis

(SCA) countermeasures. Some of this is based on related work discussion presented in [57].

B. Yuce, N. F. Ghalaty, H. Santapuri, C. Deshpande, C. Patrick, and P. Schaumont. Soft-

ware Fault Resistance is Futile: Effective Single-Glitch Attacks. In 2016 Workshop on Fault

Diagnosis and Tolerance in Cryptography (FDTC), pages 47–58. IEEE, aug 2016

2.1 Software fault injection countermeasures

Most FI countermeasures rely on some form of redundancy. If there’s redundancy, then it

is possible to check for errors and form a fault response. Instead of using redundancy, there

is the possibility of using sensors to detect for specific changes in the environment [56]. We

7
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cover software countermeasures specifically because they are flexible and do not require and

modification to the underlying hardware. Thus they could be applied to almost any embed-

ded system. We separate them into algorithm-level and instruction-level countermeasures.

Most countermeasure works do not go over a fault response. I.e., what do you do after you

detect a fault? This can be a hard question to answer, and is likely application dependent in

most cases. In all cases, however, it must make sure that no output is given to the adversary

to prevent him from conducting fault analysis. Ultimately, the countermeasure allows a

program to detect faults. What happens next is left to the designer.

2.1.1 Algorithm-level countermeasures

Algorithm countermeasures are those that work at the algorithm level and that do not focus

on low-level assembly changes. There are techniques that leverage basic temporal redundancy

such as executing an algorithm twice on the same data and asserting the output is the same

[6]. This can also be done in encryption by decrypting any output ciphertext and asserting

it is the same as the input plaintext [15].

An alternative to temporal redundancy is using information redundancy such as parity bits

and error detection codes. Medwed et al. redefine the operations in binary fields to use

AN+B codes for checking the integrity of data and control flows [35]. Karri et al. propose

low-cost, parity-based concurrent error detection techniques for substitution-permutation

network block ciphers. Their technique compares the parities of a block cipher’s input and
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output [32].

An honorable mention must be made for infective countermeasures [24] even though all

attempts at infective countermeasures have been broken [8]. They work by structuring an

algorithm such that if any error is introduced, it will be completely diffused into the output

such that it is (ideally) infeasible to do any fault analysis on it. If such a countermeasure

worked, it would be nice since it is completely stateless and does not need to make a fault

response.

As all of the algorithm-level techniques utilize redundancy, they can be broken by injecting

multiple faults such that each redundant copy experiences an equivalent fault. Using careful

timing, the adversary aims to inject identical faults in redundant copies of the data or the

algorithm. This effectively eliminates the possibility to detect faults. This is done to break

algorithm-level countermeasures implemented on RSA [4] and AES [20]. Another serious

threat to these countermeasures is skipping the execution of critical instructions by fault

injection [9, 44].

2.1.2 Instruction-Level Countermeasures

Instruction-level countermeasures are an improvement over algorithm-level. They will detect

or recover from a single fault injection. An adversary will not be able to successfully inject

multiple faults throughout the algorithm because any one of those faults will be immediately

detected or recovered from. All of these countermeasures make the assumption that it is
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infeasible to successfully inject consecutive faults that are a few clock cycles apart.

Most of the instruction level countermeasures are redundancy based. There is instruction

duplication (ID) and triplication (IT). ID and IT work by executing the same instruction

multiple times and checking to see if it produces the same output. Instruction duplication

(ID) and instruction triplication (IT), not surprisingly, increase the overhead in performance

and footprint by at least two-fold resp. three-fold [7]. ID and IT have been believed to have

100% fault coverage [7].

Another instruction-level method is using a fault-tolerant instruction sequence to prevent an

adversary from skipping instructions. In this countermeasure, each instruction is replaced

with a secure, functionally equivalent sequence of instructions that are still functional if any

one instruction is skipped. This scheme was implemented for ARM architecture by Moro et

al. [38], and for x86 architecture by Patranabis et al. [40]. The countermeasure was formally

verified by Moro et al. [38].

The ARM instruction replacement scheme was also physically tested by Moro et al. [37].

Using electromagnetic pulses, they demonstrated that the fault-tolerant sequences success-

fully protect control flow for 32-bit instructions. They also used the instruction replacement

scheme for a privilege checking function in FreeRTOS and they were unable to bypass it

using a single fault.

Despite these countermeasures being tested and formally verified, they can still be defeated

by injecting multiple faults that are back to back. It has been recently shown that a single
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fault can affect multiple adjacent instructions due to microarchitecture details [57]. The

single fault injection model used in previous works cannot be trusted.

2.2 Side channel analysis countermeasures

SCA countermeasures differ in that there is nothing to detect as SCA is passive. So they focus

on decoupling key-dependent operations from the power (masking) or reducing the signal-to-

noise ratio (hiding). Additionally there are key-rolling methods which rely on changing the

key frequently enough such that it isn’t possible to collect enough traces to break the key.

The current state of the art is called Keymill-LR [47]. State of the art key-rolling requires

protocol and hardware level changes which can challenging on most embedded systems, so

only masking and hiding techniques will be reviewed.

2.2.1 Hiding

Hiding refers to any method to “hide” the key-dependent power variation amongst non

key-dependent power variations (noise), hence reducing the signal to noise ratio.

Random delays Probably the most simple countermeasure is to add random delays, where

a delay can just be a few clock cycles. This makes power traces unaligned and unable to

be correlated without some preprocessing. A simple delay in the beginning of an algorithm

would be simple to defeat as the traces can be statically aligned later. Adding various random
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delays throughout the algorithm would make it harder, but not impossible. It becomes a

matter of the adversary conducting more preprocessing. This countermeasure should not be

used by itself to defeat SCA.

Wave dynamic differential logic Wave dynamic differential logic (WDDL) [58] is a

technique to make a digital circuit always consume constant power, regardless of the data it

operates on. For every logic gate A, there must be a dual, A′, with the same inputs. If A

and A′ are precharged to have the same initial inputs, then any following input combination

will always cause the same amount of switching and thus a constant power consumption. It

has been shown to be effective in significantly reducing side channel leakage [48]. However, it

requires considerable work during chip layout and has been shown to still have some leakages

due to manufacturing imbalances and timing differences between A and A′ [28].

Voltage regulators Another class of works focus on using internal voltage regulators to

decouple the chip power variations from the external power supply variations [55, 27, 46].

Most recently, [17] was able to create a power efficient design. They use a bond wire as the

voltage regulator inductor so it would be difficult for an adversary to tamper with. These

countermeasures can be challenging to implement as they require IC analog design. They

could be bypassed with physical tampering or probing of the die, although not all adversaries

may be capable of doing so.
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2.2.2 Masking

One of the setbacks with hiding countermeasures is that they are difficult to prove mathe-

matical security for. Many believe that hiding countermeasures can be defeated by taking

enough traces to overcome a relatively small signal to noise ratio.

Masking countermeasures shine over these setbacks as they are provably secure and taking

more traces will not help break a properly masked implementation with normal CPA. They

work at a higher level and use random numbers to decouple key-dependent operations from

power variation.

Boolean masking Boolean masking works by generating a random number, R, and

XOR’ing it with the input plaintext P to create masked plaintext M . Each linear oper-

ation L() is applied to M and the random number R. Let C be equal to the unmasked

intermediate variable calculated by L(P ). We have the following.

M = P ⊕R

M := L(M,key)

R := L(R, key)
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C := M ⊕R

Regular CPA won’t be able to use the calculation C to get correlation since R prevents a

power model from being created. This can be thought of splitting a secret variable C into 2

separate random shares, C0 and C1, where C = C0⊕C1. This isn’t a complete computation,

as it needs to be able to handle non-linear operations as well. As is formulated by Ishai et.

al [29], a non-linear masked AND can be performed using any amount of shares. It needs

to have (d + 1) additional random bits per AND, where d is the number of shares. Later,

E. Trichina showed how to do it using only one additional bit for a 2-share implementation

[49].

Consider an AND gate, with two inputs A and B, each of which are split into two secret

shares. Let R be a single random bit. Let C0 and C1 be the output shares.

C0 = R

C1 = ((((A0B0 ⊕R)⊕ A0B1)⊕ A1B0)⊕ A1B1

It is important to consider using more than two secret shares due to the possibility of higher

order DPA [36]. An adversary can do preprocessing on collected power traces to add together

the respective portions of the power trace that different shares are calculated under. Then

the samples are squared so the sign is always the same. The goal, is by combining the power
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samples of the separated shares, to cancel out the effect of the random mask and get a trace

that is correlated to the key-dependent variable. Nth order analysis would be used to try to

break (N-1) order masking. For HO-DPA attacks to work, close knowledge of where different

shares are computed is needed, and likely an additional magnitude of traces will need to be

collected to overcome the compounded noise. There are many statistical techniques that can

be employed for higher order analysis [23]. Generally, higher order attacks are much more

difficult to perform.

It is also possible to use multiplicative masking instead of boolean masking. For example,

in AES, the S-BOX can be multiplied by random numbers with respect to GF (256) [25].

This tends to be more computationally intense. The latest state of the art masking AES

implementation for ARM using boolean masking and requires 5,248 random bits per 128-AES

encryption and runs at 58 cycles/byte on ARM M4 [45].



Chapter 3

Intra-instruction redundancy

This chapter is based on work previously presented in [42].

C. Patrick, B. Yuce, N. F. Ghalaty, and P. Schaumont. Lightweight fault attack resistance in

software using intra-instruction redundancy. Cryptology ePrint Archive, Report 2016/850,

2016. http://eprint.iacr.org/2016/850

We propose a technique that enables the software to exploit redundancy for fault attack

protection within a single instruction; we propose the term intra-instruction redundancy to

describe it. Our technique is cross-platform and requires that an algorithm be bit-sliced. We

focus on block ciphers, as they all can be bit-sliced. To protect from computation faults,

we allocate some bit-slices as redundant copies of the true payload data slices. A data fault

can then be detected by the difference between a data slice and its redundant copy after the

encryption of the block completes. To protect the computations from instruction faults such

16
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as instruction skip, we also allocate some of the bit-slices as check-slices which compute a

known result. The intra-instruction redundancy countermeasure is thus obtained through

the bit-sliced design of a cipher, with redundant data-slices to detect computation faults and

check-slices to detect instruction faults. This basic mechanism is then further strengthened

against targeted fault-injection as follows. First, we pipeline the bit-sliced computation such

that each slice computes a different encryption round. Since a fault-injection adversary is

typically interested in the last or penultimate round, and since there will be only a few bits in

a word that contain such a round, the pipelined intra-instruction redundancy countermeasure

reduces the attack surface considerably. Second, we also randomize the slice assignment

after each encryption, such that a cipher round never remains on a single slice for more

than a single encryption. We show that this final countermeasure, the shuffled pipelined

intra-instruction redundancy, is very effective and requires an adversary who can control

fault injection with single-cycle, bit-level targeting chosen bits. We are not aware of a fault

injection mechanism that achieves this level of precision.

3.1 Fault Models

This section details the fault models that we used in this paper to evaluate our countermeasures.

The fault model is the expected effect of the fault injection on a cryptosystem. The ma-

nipulated data may affect instruction opcodes as well as data, and we distinguish these two

cases as instruction faults and computation faults.
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Computation Faults: These faults cause errors in the data that is processed by a program.

There is a trade-off between the accuracy by which an adversary can control the fault injec-

tion, and the required sophistication of a fault countermeasure that thwarts it. Therefore,

we assume four computational fault models:

1. Random Word : The adversary can target a specific word in a program and change its

value into a random value unknown to the adversary.

2. Random Byte: The adversary can target a specific word in a program and change a

single byte of it into a random value unknown to the adversary.

3. Random Bit : The adversary can target a specific word in a program and change a

single bit of it into a random value unknown to the adversary.

4. Chosen Bit Pair : The adversary can target a chosen bit pair of a specific word in a

program, and change it into a random value unknown to the adversary.

Instruction Faults: This fault model assumes that an attacker can change the opcode of

an instruction by fault injection. A very common model is the Instruction Skip fault model,

which replaces the opcode of an instruction with a nop instruction. Using this model, an

attacker can skip the execution of a specific instruction in the program.
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3.2 Proposed Software Countermeasures for Fault At-

tacks

The countermeasures are based on bit-slicing. As we will explain further, bit-slicing allows

for a program to dynamically select different data flows to be present in a processor word.

This is attractive for a fault attack countermeasure because it presents a new way to lever-

age redundancy. Each data word can be split amongst regular data streams and redundant

data streams, allowing redundancy to be present spatially in all instructions without actu-

ally having to re-execute anything. Because the redundancy is interleaved with the data in

every instruction, Intra-Instruction Redundancy (IIR). By never separating the data from

the redundancy in the processor word, we use pure spatial redundancy rather than com-

monly used time-based redundancy, which is vulnerable to repeated fault injections [19] and

microarchitecture effects [57].

In this work we consider two ways to detect faults using redundancy. First, if you are

computing data where the result is unknown, you can only detect a fault by recomputing

the data an additional time to compare the results. Second, if the result is already known

before computation, you can store a read only copy of the result and only need to execute

on the data once to reproduce the result and check that it is the same.

Our countermeasure scheme relies on making comparisons at the end of encryption rounds.

Because the comparisons are a very small part of the code, we assume we can cheaply

duplicate them enough such that an adversary may not reasonably skip all of them using



Conor P. Patrick Chapter 3. Intra-instruction redundancy 20

Figure 3.1: Transpose of 32 blocks to fit bitwise into 128 32-bit words.

faults. In the advent of a fault detection, a random cipher text is output and the program

may either restart encryption or enact a different, application-specific policy.

3.2.1 Bit-slicing without Fault Attack Protection

Bit-slicing is a technique used commonly in block ciphers and embedded systems to fully

utilize the word length of a processor for all operations, potentially increasing the total

throughput. Bit-slicing is also useful for timing side channel resistance because it is less

timing dependent. It involves decomposing all components into boolean operations and

orienting the data such that one bit can be computed at a time per instruction. If one bit

is computed at a time, then a 32 bit processor word can be filled with 32 different blocks,

computing all blocks simultaneously.
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Figure 3.2: Bit-slicing with Intra-Instruction Redundancy using 15 data (B), 15 redundant

(B’), and 2 known ciphertext (KC) slices. Each KC slice is aligned with its corresponding

round key slices in other words.

A prerequisite for bit-slicing is to transpose the layout of input blocks, as shown in Figure 3.1.

At the top, a traditional layout of blocks is depicted. There are 32 blocks, each composed

of 4, 32 bit data words. All of them must be transposed. In the transposed layout, each

word contains one bit from every block. In this format, each bit from 32 different blocks can

be computed simultaneously for any instruction. A slice refers to a bit location in all words

that together make up one block.

3.2.2 Intra-Instruction Redundancy

In traditional bit-sliced implementations, each slice is allocated to operate on a different input

block for maximum throughput (Fig. 1). Instead, we separate slices into three categories:

data slices (B), redundant slices (B′), and Known Ciphertext (KC) slices for fault detection

(Fig. 2). Data slices and redundant slices operate on the same input plaintext, and thus,
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they produce the same ciphertext if no fault occurs. If a fault occurs during their execution,

then it will be detected when results are compared at the end of encryption.

However, if both B and B′ experience the same fault, then both of them will have the same

faulty ciphertext and a fault cannot be detected. For example, this would always be the

case for instruction skips. To address this issue, we include KC slices in addition to data

and redundant slices. Instead of encrypting the input plaintexts with the run-time secret

key, KC slices encrypt internally stored plaintexts with a different key, each of which are

decided at design time. Therefore, the correct ciphertexts corresponding to these internally

stored plaintexts are known by the software designer beforehand. If no fault is injected

into the execution of a KC slice, it will produce a run-time ciphertext that is equal to the

known, design-time ciphertext. In case of a computation or instruction fault, the run-time

ciphertext will be different than the design-time ciphertext. Therefore, the run-time and

design-time ciphertexts of the KC slices are compared at the end of encryption for fault

detection. Because the round keys for the data slices and round keys for the KC slices

can be intermixed at the slice level, we can execute KC slices together with the data and

redundant slices. Figure 2 shows the slice allocation used in this work, which includes 15

data slices (B0− 14), 15 redundant slices (B′0− 14), and 2 KC slices (KC0− 1). All slices

are split across 128 words for a 128 bit block size.

A set of known plaintext-ciphertext pairs is included in the program from which KC slices

can be selected from randomly for an encryption. This is because each KC slice only has a

50% chance of detecting an instruction fault. If only a couple of them are used, then there
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Figure 3.3: Pipelined bit-sliced layout for 32 bit processor. RK0− 9 are ten different round

keys. B0− 9 are different input blocks and B′09 are their redundant copies. KC is a known

ciphertext slice. C0− 9 are the round keys used to produce the known ciphertext.

will likely be parts of the block cipher where instruction faults do not affect the KC slices.

By selecting from a larger set of ciphertext-plaintext pairs, we significantly reduce the chance

of an adversary finding such parts of the program. Each plaintext-ciphertext pair will be the

size of two blocks of the cipher.

An adversary can bypass this countermeasure by injecting two bit faults that are next to

each other in the processor word. The two bit fault has to align with any of the B slices

and the corresponding B′ slice. Then both will produce the same faulty ciphertext, going

undetected.
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3.2.3 Pipelined Intra-Instruction Redundancy

For an adversary to carry out a fault analysis attack, he must inject a fault into a target

round of the block cipher [22, 52]. It is not enough to cause an undetected fault in the

wrong round, as the faulty ciphertext will not be useful in analysis. Previously, all data and

redundant slice pairs in the target word operate on the same round. Therefore, an adversary

can target any combinations of these pairs to bypass IIR. Here we will explain how we can

make the rounds spatial by making them correspond to slices within each word, instead of

different words executed at different times. This makes fault injection harder as the faults

will have to target specific bit locations.

Because block cipher rounds differ only in the round key used, we can make different bits

correspond to different rounds by aligning slices with different round keys. Doing this means

blocks will be computed in a pipelined fashion as shown in Figure 3.3, which shows ten

rounds. The round keys are doubled and interleaved with the known ciphertext key before-

hand to align with the pipeline. Each block is transposed one at a time rather than 32 at a

time. For every iteration, 3 slices are shifted into the 128 word state (1 data, 1 redundant,

and 1 KC). Initially shifted in is B0. Running for one iteration will compute round one

of B0. Applying another shift aligns B0 for round 2 and shifts in B1 for round 1. This

eliminates the need to have a set of plaintext-ciphertext pairs as it will be okay to have one

pair. One pair will effectively make 10 different KC slices amongst the 10 rounds.

In this pipeline, because each set of 3 bits corresponds to a different round, any two bit fault



Conor P. Patrick Chapter 3. Intra-instruction redundancy 25

will not suffice to undo the countermeasure. There is now only one valid bit location to

successfully inject a 2 bit fault. For example, to fault round 9, a 2 bit fault must be injected

at bit location 27. It is non-trivial for an adversary to inject a fault that is in a target bit

location and consists of two adjacent bits.

Astute readers will point out that the last round in some block ciphers differs in more than

just the round key. For example, in AES, the last round does not have the mix-columns step.

Some additional masking can done to remove the effect of particular steps on any round(s).

To be able to pipeline rounds that differ in steps, we add the following computation to each

operation in the special step.

B = (BS & RM) | (B & ∼RM)

Where B is the block going through a particular step, BS is the computed result after the

step, and RM is a mask representing the rounds that use the step. By doing this, the step

will be applied to only the rounds that use it and leave the other round(s) the same.

3.2.4 Shuffled, Pipelined Intra-Instruction Redundancy

For our final countermeasure stage, we assume a highly skilled adversary who can inject

multiple bit faults into target bit locations. In our case, we need to protect from a targeted

2-bit fault.

For each plaintext, we can effectively apply a random rotation to all of the slices and their

corresponding round keys. The randomness is from an initial secret number that is con-
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tinually XOR’d with generated ciphertext. We can reasonably assume that the adversary

will not be able to predict the random rotation. Despite the adversary being able to inject

known bit location faults, he will not know which bit corresponds to what round, making

the attack much more difficult.

To support random shifts, we support dynamic allocation of each slice in the processor word,

rather than statically defining which bits correspond to each round. The transpose step will

have to support transposing into and out of any target bit location, rather than always

shifting into bit location 0 and shifting out of bit location 29.

3.2.5 Secure, Comparison-Free Fault Handling

Rather than checking the memory using excessively duplicated comparisons, fault handling

can be done in a purely computational approach. This approach is ideal because an appli-

cation no longer needs to have a secure response to a fault injection.

If either a block, B, or its respective redundant slice, B′, contain an error, we would expect

the XOR of them B ⊕ B′ to be nonzero. Whereas a non-faulty operation would always

produce zero. Building upon this, we can make a method such that when a fault is injected,

only a random number is output, foiling any attempt of fault analysis.

After encryption, we can compute the following mask.

MASK = (−(B ⊕ B’) >> 128)

If B and B′ are the same, then B⊕B′ will be zero and the signed shift will move in all zeros.
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If B ⊕ B′ is nonzero, then the signed shift will move in all ones. We can easily extend this

mask to check a KC slice as well for instruction faults using our known ciphertext KC ′.

MASK = (−(B ⊕ B’) >> 128) | (−(KC ⊕ KC’) >> 128)

As in our pipelined countermeasure, a redundant slice, data slice, and KC slice can be

shifted out every iteration to compute the mask. We can then use this mask to protect our

ciphertext block before it is output.

OUTPUT = (MASK & R) | (∼MASK & B);

By doing this, only our random number R will be output when a fault is detected. Otherwise,

the correct ciphertext B will be output. Because these computations are not covered by intra-

instruction redundancy, they would have to be duplicated using traditional approaches to

protect from instruction faults. They are a small part of the code, so they can easily be

duplicated without significantly increasing the footprint size. Computation faults need not

be protected from as they would either cause B ⊕ B′ or KC ⊕ KC ′ to be nonzero or just

flip bits in the already computed ciphertext.

3.3 Results

In this section we will cover our performance, footprint, and experimental fault coverage.

We verified our results in a simulation of a 32 bit SPARC processor called LEON3. We

used Aeroflex Gaisler’s LEON3 CPU simulator, TSIM. To inject faults and determine the
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Table 3.1: Performance and footprint of multilevel countermeasure. Unprotected AES is the

reference bit-sliced implementation with no added countermeasure.

Performance Footprint

Unprotected AES 469.3 cycles/byte 5576 bytes

IIR-AES 1055.9 cycles/byte 6357 bytes

Overhead IIR-AES 2.25 1.14

Pipelined IIR-AES 1942.9 cycles/byte 5688 bytes

Overhead Pipelined IIR-AES 4.14 1.02

Shuffled Pipelined IIR-AES 1957 cycles/byte 6134 bytes

Overhead Shuffled Pipelined IIR-AES 4.17 1.10

coverage, we wrote a wrapper program 1 for Gaisler’s TSIM simulator. The wrapper enabled

us to use TSIM commands to inject faults into any instruction, memory location, or register

during the execution of the code.

3.3.1 Performance and Footprint

Our performance and footprint results are presented in Table 3.1. We wrote a bit-sliced

implementation of AES in C and benchmarked it without any fault attack countermeasures

added to it. We made three forks of our reference AES implementation and added each stage

1The wrapper program may be accessed on Github: https://github.com/Secure-Embedded-Systems/tsim-

fault
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of our countermeasure to them 2. Performance was measured by running AES in CTR mode

and on a large input size. Footprint was calculated by measuring the compiled program size.

Overheads were calculated by dividing by the corresponding reference bit-sliced AES metric.

Using Shuffled Pipelined IIR-AES will be about four times as slow as the reference imple-

mentation. Considering it can protect against side channels from the most dangerous of fault

attacks, it is a good compromise.

The original AES metric is slow compared to other works because it is an unoptimized

implementation. Other works have been able to get bit-sliced AES implementations down

to about 20 cycles/byte on 32 bit ARM [3]. We believe the performance overhead for adding

IIR would scale with the reference performance.

3.3.2 Experimental Fault Coverage

We ran fault simulations that emulated our considered adversaries. We injected faults for

every register or instruction used in the S-box step of the last round. For data faults, our

simulation would enumerate each register, injecting 1 fault, then letting the program run

to completion to check the resulting ciphertext. For instruction skips, each instruction is

similarly enumerated for skipping and checking the resulting ciphertext.

The S-box step has 144 instructions, consisting of 18 memory operations and 126 computa-

2Our implementations can be accessed on Github: https://github.com/Secure-Embedded-Systems/fault-

resistant-aes
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Table 3.2: Experimental fault coverage averages for different fault injections. Every register

or instruction in the S-box stage in the last round was targeted one at a time per run for

fault injection.

Countermeasure
Computation Fault Models Instruction Fault Models

Random Word Random Byte Random Bit Chosen Bit Pair Instruction Skip

Unprotected AES 0.0% 0.0% 0.0% 0.0% 0.0%

IIR-AES 99.98% 91.45% 93.66% 53.96% 80.56%

Pipelined IIR-AES 100.0% 100.00% 100.0% 98.51% 98.6%

Shuffled Pipelined IIR-AES 100.0% 99.99% 100.0% 98.86% 98.6%

tional operations. Of the 144 instructions, 404 operands were registers. Each fault injection

simulation was repeated 50 times and averaged together. For each data fault simulation,

20,200 faults were injected. For each instruction skip simulation, 7,200 faults were injected.

Table 3.2 shows the average fault coverages for each countermeasure. Most of the experiments

match closely with our theoretical fault coverages. IIR-AES has slightly lower fault coverage

then theorized for random bit and byte faults because memory addresses stored in a register

can change to a different but valid location, resulting in a control fault. Because of this,

the theoretical fault coverage for data faults will be slightly averaged with the control fault

coverage. Random bit and byte coverage is slightly lower than expected and chosen bit pair

is slightly higher than expected for IIR-AES.

Instruction skip coverage in IIR-AES is 5.56% higher then expected, which is likely just

specific to the S-box and key constants we used.



Chapter 4

Adding side channel protection

If an adversary has physical access to an embedded system and it is his goal to reveal secret

information hidden inside, he isn’t limited to just SCA or just FI. The adversary is likely

to take the easiest path available to reveal wanted secrets. Thus, a designer really needs to

provide countermeasures against all types of attacks to be safe from physical implementation

attacks.

While IIR can provide good fault resistance, it doesn’t help against SCA. On the contrary, it

may even make power analysis easier because key-dependent variables have been duplicated

which may amplify the signal to noise ratio. So a designer shouldn’t use IIR by itself in the

general case as the block cipher would still be vulnerable to SCA. This is why we look into

adding SCA protection to IIR.

31
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Figure 4.1: a.) Private-slices bit-slice allocation for order-1 protection. A-D are 1 bit data

streams that are each represented by two shares. b.) Private-slices word after the custom

rotation operation is applied.

4.1 Private slices

Inspired by Ishai’s work on private circuits, we propose the use of private slices, which is

a formulation of secret shares in a bit-sliced format, as shown in Figure 4.1.a. This could

work on a processor with SIMD (same instruction multiple data) extensions, or on a regular

processor with bit-slicing techniques. We will assume a regular processor is being used.

For linear operations, everything works the same as with a regular bit-sliced implementation.

But for masked AND operations, recall that we need to calculate A0B1 and A1B0 which

require breaking the bit-slice format as the two variable are in different slice locations. We

are able to get around this by using a lookup table to implement a custom rotation operation,

as shown in Figure 4.1.b. The rotation allows aligns the variables in a different bit-slice word

so a masked AND can continue to be computed in bit-sliced fashion.

The code in Figure 4.2 shows how the masked AND can be implemented in C code. Note
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this is for a 32-bit processor and the random two bytes that are generated are formatted to

fit in every other bit of a 32-bit word.

4.2 Results

To evaluate the performance and the side-channel characteristics of Private Slices, we built

a prototype bit-sliced AES design in AES128-CTR mode. Our AES implementation com-

bined MixColumns and ShiftRows into one step and used a computational depth-16 S-BOX

implementation of depth 16 by Boyar and Peralta [13]. Using this design as a basis, we then

constructed five different versions as listed in Table 4.1.

For the masked designs, we assume the existence of a good-quality hardware random number

generator. Such a random number generator is a platform-specific design, and we did not

include any overhead, nor any random-number distribution imperfections in our evaluations.

We measured side-channel leakage from a 50MHz LEON3 core, configured in the main FPGA

of a SAKURA-G board. We used OpenADC [39] which is capable of 105 Msamples/second.

We configured it for low gain to achieve the best signal quality. Power traces for the different

countermeasures versions can be found in Appendix 1.A. We also tested our code on three

different platforms (ARMv7, LEON3 and Intel i7) and collected performance data.

Over the following subsections, we discuss the results from side-channel analysis, performance

analysis as well as additional insights obtained from this experimental evaluation.
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Table 4.1: We evaluated 5 different versions of AES128-CTR. Three of them (PS and PPS)

are proposed by this thesis, the other two (BS, BM) are for comparison.

Countermeasure Description

BS Unmasked bit-sliced AES128-CTR.

BM A first-order masked bit-sliced AES128-CTR. This

design uses separate processor registers for sepa-

rate shares, and it is similar to related work [5, 45].

PS A first-order Private Slices AES128-CTR.

PPS A first-order Pipelined Private Slices AES128-

CTR.

4.2.1 SCA Resistance

To make sure our implementations were vulnerable to SCA on our platform, we conducted a

DPA attack on our unprotected bit-sliced AES design (BS), from which all of our countermeasures

were forked from1. We found we could recover the full key of the unprotected AES imple-

mentation with about 300-500 traces. Our attacks aim at the first round, using the first

AddRoundKey and S-Box as the leakage model.

We performed Welch t-tests [26] to evaluate the side channel leakage of our countermeasures.

The Welch’s t-test can determine how well two different datasets can be distinguished from

each other. In our case, we took 12K measurement traces of each countermeasure during

1Our implementations will be released as open source.
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Table 4.2: First order Welch t-test for first round output bits. Values between -4.5 and 4.5

are considered to be side channel leakage secure with 99.999% confidence. Max and Min are

over the 128 output bits of the first round. Mins, Maxes, and Averages are conducted on

the absolute values.

Countermeasure Max Leakage Bit # Min Leakage Bit # Average

BS -87.422 99 -14.531 126 40.500

BM 4.139 106 1.595 81 2.648

PS 3.305 67 1.798 78 2.446

PPS 4.202 72 -1.632 91 2.573

the first AddRoundKey and S-Box. The plaintext was random and the key was fixed. The

traces were then filtered into two groups: group A, where state bit N was 1 after add round

key and S-Box, and group B, where state bit N was 0 after add-round-key and S-Box. The

t-test was then computed for all group pairs for all 128 state bits. This determines if group

A can at all be distinguished from group B for all samples in a trace. The maximum statistic

magnitude for each bit was taken. If the result for each bit is between -4.5 and 4.5, then

there is no leakage with a confidence of 99.999%. All tests were repeated multiple times with

different datasets to reduce noise and ensure our results are consistent.

First-Order Leakage In Table 4.2, the first-order leakage is shown. Unprotected AES, not

surprisingly, has the most leakage. The masking implementation passes as expected, albeit

some careful work to prevent the compiler from causing an accidental unmasking effect.
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Table 4.3: Second order Welch t-test for first round output bits. The same traces and

calculations are done as in Table 4.2 except preprocessing is done to make it suitable for

second order analysis.

Countermeasure Max Leakage Bit # Min Leakage Bit # Average

PPS -5.69 83 1.72 62 2.85

The compiled induced unmasking effect does not occur in Private Slices. The Private Slices

version (PS), as well as the Pipelined Private Slices (PPS) passes the 4.5/-4.5 condition.

Figure 4.3 shows the various t-statistics across a subset of trace samples. It shows that

standard unmasked bit-sliced design (BS) cross the 4.5/-4.5 boundary multiple times, while

masked (BM), private and pipelined-private do not.

Second-order Leakage In Table 4.3, the second-order leakage is shown for the Pipelined

Private Slices version (PPS). The test was done on the same traces after the zero-offset

preprocessing [53]. Pipelined Private Slices had one bit that failed with a t-statistic of -5.69,

along with others failing the 4.5/-4.5 bound. This was during the first round, so only one

mask and mask data slice was being processed at a time. We plan to investigate the hiding

effect of the Round Pipelining as future work.

The Danger of Regular Masking When we first implemented a regular bit-sliced mask-

ing scheme in C code (BM), we found that it kept getting residual side channel leakage.

This is because the compiler will overwrite registers, that previously held a share, with the
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other share. This share-on-share write causes leakage directly linked to the original data. We

wrote a simple assembler stage that zeros out registers in-between instructions that would

cause share-on-share writes. Figure 4.4 shows the t-test statistics for the pure C implemen-

tation of masking and the same implementation with the assembler stage fix. It is clear the

accidental leakage is significant. PS avoids this because shares are never aligned between

registers except in the isolated masked AND operation.

4.2.2 Performance

Lastly, we evaluated the performance of our countermeasures. We tested on three different

platforms: ARMv7, LEON3, and Intel i7. Our implementations are programmed in C, so

the same implementations are tested on each platform. We measured cycles/byte counts by

using a large enough plaintext input that would maximize the bit-sliced throughput. On a

32-bit implementation for AES-128, that is 512 bytes. We did not include the key schedule

computation in our measurements.

The performance and program size (footprint) results are shown in Table 4.4 and they are

ranked by cycles/byte. All designs are optimized for performance. The performance scales

with the complexity and security level of each countermeasure for each platform, as expected.

For PS and PPS countermeasures, the majority (> 90%) of the computation overhead

is spent in the S-box, mostly for the masked AND operation. Hence, the performance

improvement of a custom instruction for the share-rotate operation would be significant.



Conor P. Patrick Chapter 4. Adding side channel protection 38

Table 4.4: Throughput and program size metrics for all countermeasures on various plat-

forms. Units are in cycles/byte (c/b) and bytes (b). The same implementation of each

countermeasure is tested on each platform.

LEON3 Spartan6 50MHz Intel i7 4GHz ARMv7 850 MHz

Countermeasure Performance Footprint Performance Footprint Performance Footprint

(cyles/byte) (byte) (cyles/byte) (byte) (cyles/byte) (byte)

BS 398.0 9,280 80 25,544 181.04 11,424

Overhead 1 1 1 1 1 1

BM 877.2 14,516 130 - 457.79 -

Overhead 2.20 1.56 1.63 - 2.53 -

PS 1,565.3 13,588 315 - 735.71 -

Overhead 3.93 1.46 3.94 - 4.06 -

PPS 2,714.5 10,884 795 - 1,154.40 -

Overhead 6.82 1.17 9.94 - 6.38 -
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Footprint overhead is shown only for LEON3, as its compiler does not do advanced loop

unrolling and cache-sensitive optimizations. This gives a better estimate for constrained

devices.

On ARMv7, our Private Slices performance (4x) overhead improves upon previous masking

implementation overhead (5x) by Balasch et. al. [5]. Their implementation requires 6,048

random bits per encryption while ours requires 5,568. This includes 128 bits per block

for the initial mask and 544 bits per S-box (34 AND gates) operation per AES round.

Schwabe and Stoffelen in [45] implement a highly optimized masked AES implementation

on ARM M4. Their code size overhead is 3.29 and their throughput overhead is 3.27 (not

including random number generation). Since our implementation relies on an optimized

Secure AND construction and not optimized C code, this is an acceptable difference. Their

implementation uses 5,248 bits per block as they had 2 less AND operations in their S-BOX

than ours.

4.2.3 Further Analysis

The throughput overhead is mostly due to the masked AND operations in the S-box. When

removing the masked AND operation on the ARM platform for 3rd order PS, there is about

10x less overhead. A first-order masked AND only needs to do one bit-swap operation, while

a third order needs to do three. Since the bit-swap is unconventional for typical instruction

sets, it needs to be implemented in software. We choose to do it with a byte-wise lookup
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table, meaning a 32-bit word needs to complete 4 memory loads and 6 shifting operations

to complete one bit-swap. This could be greatly improved as the swap bits operation can be

implemented with just wires in hardware. A second reason for using the lookup table is that

the generation of side-channel leakage by overwriting shares between registers is minimized.

We could have used assembly programming to avoid this, but this results in a non-portable

solution. Private Slices therefore is better suited for implementation in a high-level language.

Additionally, we believe Private Slices will scale better with program size, when higher-order

masking is required. Using plain masking (BM), going to higher-order means introducing

additional variables for each share. In Private Slices, going to higher order means allocating

more bit-slices per bit and reducing the throughput.

4.3 Future Work

Private slices shows how private circuits can work in software, in a bit-sliced fashion like

IIR. We’ve shown that the implementation continues to be side channel resistant and has

comparable performance metrics to state of the art masking implementations. Note that

our metrics aren’t necessarily better, as that wasn’t the intended goal. We are trying to

formulate a combined countermeasure.

Private slices and IIR hasn’t been combined yet but we suspect it will be successful. It would

be a matter of adding the masked AND operation and the fault redundant slice management,

both of which are relatively small pieces of code. An example of how a bit-slice allocation
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could be made is given in Figure 4.5.

Ultimate goal The target application doesn’t have to be a block cipher but rather could

be any application. Any boolean operation implemented with private slices and IIR so

any hardware circuit can be virtualised in our software countermeasure. The performance

may not be good, but it may have the advantage of making any arbitrary program fault

injection resistant and side channel resistant on any platform. Our work could be made into

a primitive instantiated as virtualised software or hardware.
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static word t SAND(word t p, word t q)

{

word t r1 = random 2bytes();

word t n1 = p & q;

word t qswap = bitswap[(uint8 t)q]

| ((word t)bitswap[(uint8 t)(q>>8)] << 8)

| ((word t)bitswap[(uint8 t)(q>>16)] << 16)

| ((word t)bitswap[(uint8 t)(q>>24)] << 24);

word t n3 = p & qswap;

word t n4 = r1 ∧n1;

word t z = n3 ∧n4;

return z;

}

Figure 4.2: C code implementation of bit-sliced masked AND.
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Figure 4.3: Overlaid plots of the t-statistics for each countermeasure, each centered around

the maximum t-values. Regular bit-sliced (BS) fails the leakage test. Masked (BM), Private

Slices (PS), and Pipelined PS (PPS) pass as they stay between the boundaries.
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Figure 4.4: Welch t-statistics for all 128 output bit tests. (a) Masking implementation

purely in C allows compiler to cause accidental leakage. (b) The same implementation with

an assembly pass to fix compiler placed share-to-share register writes.

Figure 4.5: Example bit-slice allocation for combining IIR and private slices.



Chapter 5

Combined attacks

This chapter is based on work submitted to eprint [41].

C. Patrick, Y. Yao, and P. Schaumont. Addroundkey power model for fault injection enabled

cpa attacks. Cryptology ePrint Archive, Report 2017/xxx, 2017. http://eprint.iacr.org/

2017/xxx

We revisit the idea of combined fault injection and side channel analysis attacks (combined

attacks). More specifically, we run some experiments to test the feasibility of fault-enabled

SCA on masked implementations. As stated previously, perhaps the most popular SCA

countermeasure is masking. Nearly all masking implementations require a random mask to

be added at the start, right before AddRoundKey. We target faulting the mask addition

here to enable SCA on AddRoundKey. This type of attack could be applied to any masking

implementation, even with the presence of fault countermeasures. We show that the fault

45
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model is relatively simple and repeatable, as well as using AddRoundKey as a power model.

No previous combined attack, to the extent of our knowledge, has actually been demon-

strated on an masked, fault resistant implementation. We plan to explore the feasibility of

a combined attack that should be applicable to any masked block cipher implementation.

It should also be able to bypass most fault resistant block cipher designs. A typical masked

and fault tolerant block cipher implementation is potentially still vulnerable to combined

attacks.

The reason for this chapter is to demonstrate that combined attacks could be practical and

that the composability of FI and SCA countermeasures is not great. In other words, it is still

difficult to effectively combine FI and SCA countermeasures. In a typical threat model, an

adversary has physical access to an embedded device and desires to leak sensitive information

from it. If the device only has an SCA countermeasure, and no FI countermeasure, it

would likely suit the adversary to use DFA or some other fault injection attack. Thus

for most designers to ensure implementation attack security, they must include composable

countermeasures for both FI and SCA. As we show in this chapter, composability is not

a given – combined countermeasures must be tested against SCA and FI combined, not

separately.
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5.1 Previous combined attack works

Combined fault and side channel analysis work starts in 2006 with F. Amiel et. al’s work

on fault analysis of DPA resistant algorithms [1]. They give a number of techniques to use

faults to attack the initialization of a masked AES smart card implementation. Attacking

the initial masked AddRoundKey with faults skips the loop early so that only one of the

key bytes is used with one byte of random mask R. A search is done to find R by changing

the input plaintext byte that corresponds to R until a colliding value is found. Then R is

known and the first key byte can be found through brute force. This is repeated with all

key bytes. A. Boscher and H. Handschuh later improve this work [12] to show that fault

injection attacks can work regardless of any masking scheme. None of these attacks would

not work on a fault tolerant system as it would not have access to ciphertext in the advent

of a successful fault.

Soon after F. Amiel et. al’s initial work, they introduce Passive and Active Combined Attacks

(PACA) [2]. They demonstrate they can fault the initialization of a random mask in RSA

and use simple power analysis (SPA) to reveal the key. They make the point that even if

RSA detects the fault and doesn’t output ciphertext, it would be too late as it already did

the computation before finding the fault. C. Clavier et. al extend this further to work on

masked AES [16]. They use a similar collision search to figure out what the error differential

was introduced by the fault and discover the value of K ⊕ R. They then show they can

do correlation using key guesses and random number guesses; effectively a 16-bit correlation
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search rather than an 8-bit correlation search with regular CPA. It is a clever attack but

it requires a lot of computation and does not work if the target implementation has fault

resistance.

T. Roche et. al [43] in 2011 propose a combined attack that can defeat a masked block

cipher that is DFA resistant. So they do not need the output ciphertexts and only have

control over the input. They require two faults to be injected; each on the last two round

keys during the key schedule. They then make a 24-bit guess encompassing the key byte

guess and error bytes from each fault and do correlation on the faulty power traces. This

approach may not always be feasible because it requires the attacker to be able to inject a

fault during key schedule and synchronize it with a fault in a later round. The computation

required for correlation over 24-bits is relatively high as well. The required fault model is

simplified in 2012 [18] but the key schedule fault injection is still required. Both Roche’s

and Dassance’s works are theoretical in that no experiment is performed.

To the extent of our knowledge, we don’t know of any other relevant combined attacks works

on block ciphers since 2012. We propose a method that may be more practical. The fault

injection just needs to disable the application of the mask to one of the bytes at the start of

encryption and then CPA can be done on the AddRoundKey step. The practicality of this

is demonstrated.
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Figure 5.1: Attack model for proposed combined attack. The initial random mask is disabled

using a fault which allows side channel analysis to be conducted on the AddRoundKey step

of AES.

5.2 Attack Model

We assume that our target is AES, uses boolean masked, and has fault resistance such that

it will detect a fault at the end of encryption [6, 15, 32] or during encryption [7, 38]. Thus, an

adversary can never see faulty ciphertext but can observe the power variation of the faulty

ciphertext calculation. Latest first order boolean masking implementations require a 16 byte

random mask [45] at the start per encryption and 640 more bytes throughout the encryption

to cover the S-box computations, assuming one block being encrypted per encryption.

The target system is given plaintext input as controlled by the adversary. The generated

random mask must be applied to the plaintext at some point through XOR for the boolean

masking implementation to work. We assume that the adversary can successfully skip one of

these instructions, effectively leaving at least one plaintext byte unmasked as it goes through
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the AES AddRoundKey step. The AES encryption should continue after a successful fault as

no faulty ciphertext is created. Thus Pn ⊕Kn is potentially leaking key information, where

Pn is unmasked plaintext byte n and Kn is key byte n. Regular CPA can be conducted

to reveal Kn using Pn ⊕Kn as the target key-dependent intermediate value. This model is

depicted in Figure 5.1.

We address a few apparent challenges with this approach.

How to successfully skip the mask XOR? An adversary first has to locate the start of

encryption which can be done via via simple power analysis. Knowing the implementation

uses masking, the adversary can initially keep the input plaintext constant. By looking at the

variation across of many power traces, a few potential locations of the mask initialization can

be located. This is because the variation will be relatively high when random numbers are

handled even when the input is constant. Then the adversary has a short window of time to

enumerate for fault injection. To test if a particular fault injection was successful in skipping

a mask initialization, the adversary should make two tests. First, is the ciphertext correct?

Second, does the constant-plaintext power variation decrease? If yes to both, the fault

injection was likely successful. If a random byte was disabled, then the constant-plaintext

power variation would be expected to go down. For higher-order masked implementations,

there may need to be multiple fault injections, or a better targeted single injection [57].
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Why not try skipping masks in S-box? While this approach is possible, it may not be

feasible. Consider initial mask M and first S-box mask N . This attack requires the adversary

to not only skip the mask Mn but then inject a second fault for S-box Nn where Mn and

Nn correspond to the same byte n. The attacker doesn’t necessarily know the location of

where Nn is used and the constant-plaintext variation test may not help to test if the fault

was successful since it could provide false positives.

Is AddRoundKey leaky enough or not? AddRoundKey step of AES is just one XOR

operation for a particular key byte. Compared to the popular S-Box CPA target, AddRound-

Key is much smaller. It is also a linear operation, so there are going to be “ghost” keys that

will generate the same correlation as the correct key, as shown in the results section. It may

be easier to just perform a higher-order DPA; There could be a lot of factors that determine

what attack strategy is successful. We show that a combined attack could break a masked

AES application on a lightweight RISC-V FPGA implementation [54]. We compare it to

using the normal Hamming weight S-box model.

5.3 Results of AddRoundKey power model

Conducting CPA with a power model that is based on a linear operation like AddRoundKey

will have the unwanted effect of ghost keys. This is because for any particular key byte guess

K that has correlation s for all traces, its opposite ∼ K will have exactly −s correlation.
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Table 5.1: The number of traces needed to reveal an AES key on RISC-V processor for S-

box and AddRoundKey power models. * Ignores the ghost keys. Note this table is currently

incomplete and will be filled in later.

Power model Key bytes broken Number of traces

S-box 16 1000

AddRoundKey 16* 10000

This is because the Hamming weight of AddRoundKey pK , HW (pK), is linearly related to

∼ K by equation HW (pK) = 8 − HW (p∼K). So each key byte entropy can at best be

reduced to 1 bit, or 16 bits total for an AES-128 key.

Table 5.1 shows the results of a CPA attack on a AES implementation that runs on RISC-

V on an FPGA using C. Wolf’s lightweight RISC-V implementation [54]. It takes about

ten times more traces to break AES using an AddRoundKey Power model than it would

using an S-Box model on an unmasked implementation. Also the confidence margin for

AddRoundKey is much smaller. The table ignores the effect of the ghost keys, but really it

leaves 16 bits of entropy to brute force, which is trivial.

5.4 Potential improvements for combined countermeasures

One of the challenges with an attack like this is that it doesn’t aim to produce faulty

ciphertext. However, during setup and fault discovery for this attack, faulty ciphertext would

likely be triggered. So one countermeasure could be to have a destructive fault response,
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i.e. self-destruct, betting the adversary would trigger this accidentally. But this could be

presumptuous for some applications. An application could further protect itself by checking

the integrity of the generated mask or use a key rolling technique.

Additional Integrity Checking . The random number generation could provide some

means of redundancy such that the integrity of the mask can be checked after it has been

applied to the plaintext. If the same random number is generated twice, a redundant check

could be made. Although a designer should still be careful as fault injection can bypass

multiple checks with a single fault [57]. A design that can incorporate spatial redundancy

would be appropriate [42].

Key rolling . If the core source of entropy (the key) can be secured from implementation

attacks, combined attacks should no longer be practical. Keymill-LR [47] was recently

presented at HOST and shows promise as a side channel resistant key rolling technique. It

is not a complete solution by itself as it does not has fault resistance. If it incorporates

redundancy in such a way it is non-trivial to bypass with a fault, it could be a potential

combined countermeasure. It could require some more work to implement as key-rolling

requires some protocol level changes.

We show a potential practical method to defeat a “canonical” combined countermeasure.

The fault model relies solely on being able to skip an instruction in the beginning and

it is possible to test if it was successful without using faulty ciphertext. It relies on the
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AddRoundKey power model and we’ve shown it is viable to use, albeit requiring many more

traces than with a S-box model. It may be a good alternative to performing a higher-order

DPA attack. We believe that this combined attack is practical and that there needs to be

more work on combined countermeasures.



Chapter 6

Conclusion

With this thesis we introduce a method to counter fault injection attacks in software. Hard-

ware solutions are slow to market which leaves designers to try to develop countermeasures in

software. Many conventional countermeasures are based on temporal redundancy and can be

broken, which sets the stage for intra-instruction redundancy which is based solely on spatial

redundancy despite being implemented in software. We’ve shown IIR can be extended to

protect against side channel analysis using our implementation of masking and can be safely

implemented in a higher level language without the compiler causing accidental leakage. It

is important for an implementation attack resistant design to be protected from both SCA

and FI as any realistic adversary would be capable of both. We provide a review of combined

attacks as they are applicable to combined countermeasures and present the practicality of

doing a combined attack that uses AddRoundKey as a power model. We conclude that a

combination of spatial redundancy and integrity checking at the entropy source or key rolling

55
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as a potential countermeasure to end SCA and FI based attacks.
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