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Monitoring Progressive Damage Development

in Laminated Fiber Reinforced Composite Materials

Arnab Gupta

(ABSTRACT)

With increasing applications of composite materials, their health monitoring is of

growing importance in engineering practice. Damage development in composite materials

is more complex than for metallic materials, because in composite materials (a) multiple

damage modes are simultaneously in play, and (b) individual ‘damage events’ that occur

throughout a component’s service life may neither noticeably affect its performance, nor

suggest future failure. Therefore, informed health monitoring of composite components

must include monitoring and analysis of their health state throughout their service life.

A crucial aspect of the health monitoring process of composites is the development

of tools to help with this goal of understanding the health state of composites throughout

their life. This knowledge can lead to timely anticipation of future failure in composite

components, and advance the state of current technology. One, timely maintenance can

be planned in advance. Two, each component’s service life can be determined based on

its individual health information, rather than empirical statistics of previously failed

components. This dissertation develops such tools and methods.

Composite specimens of multiple ply-layups are subjected to tensile loading schemes

until failure. Pencil Lead Breaks (PLBs) are used to simulate Acoustic Emission sources

and generate acoustic waves that are acquired by installed piezoelectric sensors. A numer-

ical method to estimate the arrival of wave modes from ultrasonic signals is presented.

Methods are also presented that utilize PLB signals to indicate approaching failure of

specimens under monotonic as well as cyclic loading. These processes have been developed

prioritizing simplicity and ease-of-execution, to be adapted for practical deployment.
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(GENERAL AUDIENCE ABSTRACT)

Composites are modern engineering materials comprising strong load-bearing

elements (such as carbon fibers) embedded in a binding polymer matrix (such as epoxy).

Material properties in composite materials are directional in nature, and composite plies

can be combined in layers to create components with specified engineering properties.

Composites are therefore increasingly being used in diverse engineering applications.

Composite materials, however, are relatively complex in their damage development

and failure. Unlike in metallic materials, damage in composites can progress via several

different mechanisms. Further, numerous small damage events may occur throughout the

service life of a composite component, which neither noticeably affect performance, nor

forewarn of impending failure. Therefore, it is of crucial importance to develop tools and

methods that improve the health analysis and anticipation of future failure in composites.

This dissertation develops such methods and tools. Composite specimens with

several different ply sequences are experimentally subjected to tensile loading schemes

until failure. Pencil Lead Breaks (PLBs) are used to simulate Acoustic Emission stress

waves throughout each experiment, and these ultrasonic waves are acquired for further

data analysis using installed piezoelectric sensors. A numerical method is developed

that automatically estimates the arrival times of two fundamental wave modes in sets of

acquired acoustic ultrasonic signals. Methods are also developed that utilize PLB signals

to anticipate future failure of composite specimens under two different loading regimes.

The contributions herein prioritize simplicity and easy execution, to be adapted for

practical deployment, and are applicable for a wide variety of fiber-reinforced composites.
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Chapter 1

Introduction

Every physical component evolves over time. Due to environmental conditions, service

loads or unexpected loading conditions over the life of the component, its performance

deteriorates until finally it can no longer provide acceptable performance. At this point,

the component is said to have failed. Evidently, it is desirable that impending failure be

predicted in advance for components in service, so that a replacement may be planned for.

Additionally, it is also desirable, considering economic reasons and efficiency of perfor-

mance, that a component not be removed prematurely from service, when considerable

useful life still remains. It is for these reasons that monitoring of damage and health

evolution is important.

1.1 Deterioration in Composites

Composite materials are increasingly being used in diverse engineering applications.

Among these, fiber reinforced polymer composites, which can be assembled to create

laminates of desired engineering properties, are most commonly used. The heterogenous

nature of these composites, comprising fibers made of carbon or glass or boron or other

1
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materials embedded in a polymer matrix such as epoxy, means that deterioration of

composite materials can occur through several different damage modes.

In a composite component, numerous minor deterioration events occur throughout

the life of the component, through some or all possible damage modes, such as fiber

breaks, matrix cracks, delaminations, and debonding between fibers and the matrix. These

deterioration events occur due to the inherent variation in local material properties within

the component, such as the distribution of strength and stiffness of the fibers, the localized

bonding between fibers and matrix, and localized bonding between different plies in the

laminate. These events are not severe enough to affect their immediate vicinities, and

since such localized variations are distributed throughout the component, no single event

has a significant effect on the component’s life or performance. For a major portion of

the service life of the component, these separate events have no measurable effect on the

performance of the component, nor do they indicate upcoming component failure. After a

point, however, accumulated deterioration events do begin to affect regions adjacent to

them. After this stage, they really are damage events— they adversely affect performance

and finally, cumulatively, lead to failure.

Health monitoring and failure prediction in composite components is complicated

by the occurrence of numerous deterioration events, none of which can specifically be

linked to impending failure of the specimen. In metallic materials, which are nominally

homogenous, damage usually develops in the form of a small number of cracks in regions

of high stress concentration. The health of the specimen can be correlated to the crack

size, and the developing cracks can be monitored to anticipate how much longer the

component can remain in service. In contrast, no specific cracks can be correlated to the

life or health of composite specimens. In the absence of such knowledge, the service life of

composite materials is often limited to a statistically safe service time keeping in mind

safety considerations. This system, while essential in the absence of more accurate life
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prediction, is inefficient and wasteful for components in good health.

1.2 Synopsis of Dissertation

This dissertation aims to develop tools and methods that improve the understanding of the

health of composite components, and help identify future failure of composite components

under various loading conditions. We proceed using the Acoustic Emission technique, and

specifically make use of simulated Acoustic Emission in the form of Pencil Lead Breaks.

We begin in Chapter 2 with an overview of the literature, summarizing the current

state of technology as related to Acoustic Emission, the use of Pencil Lead Breaks and their

behavior, and understanding the mechanics and wave propagation in composite laminates.

We also summarize the fundamental technologies and concepts needed to analyze the data

that we will acquire experimentally, and the current state of how such concepts are used

by other research groups.

In Chapter 3, we investigate damage development in crossply laminates subjected

to a slow, monotonically increasing load until failure. This research has been published in

Materials Evaluation journal. Here, acoustic waves generated due to Pencil Lead Breaks

performed in intervals during the experiment are acquired by piezoelectric sensors, and

are analyzed in several ways. We show that the difference in arrival times of the ex-

tensional and flexural wave modes can be used as an indicator of upcoming specimen

failure. We further show that the energy distribution within the acquired signals, observed

by performing a wavelet transform, changes in a fundamental way during the damage

development process.

In Chapter 4, we develop a numerical tool to algorithmically estimate the arrival

times of the extensional and flexural modes in experimentally acquired Acoustic Emission

signals. This research has been accepted for publication, pending minor revisions, in Ul-
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trasonics journal. An effective system to analyze the health state of composite components

must include fast, automated algorithms to perform essential procedures. Identifying the

arrival times of these wave modes is an essential but time consuming process in most

cases, and this research provides the numerical algorithm to perform this task reliably and

quickly. The relevant programming code is made available for public use on an internet

repository.

In Chapter 5, we describe research to accurately and reliably identify future failure

in composite specimens under slow cyclic loading. This research is ready to be submitted

for peer-review and publication. In most cases, the most representative real-world loading

regime is a cyclic load where components might fail in fatigue. This scenario is replicated in

this research, where composite specimens with multiple different ply-layups are subjected

to slow speed, i.e. very low frequency, cyclic loading until failure. Pencil Lead Breaks are

performed during the experiment, and the energy contribution of the acquired signals is

analyzed to develop a parameter that can indicate drastic changes in specimen health.

We conclude with Chapter 6, where we summarize this dissertation, and offer future

avenues of further research.



Chapter 2

Literature Review

With increasing use of complex composite materials in diverse engineering applications,

their health monitoring is of paramount importance. In composite materials, deterioration

may develop through several different mechanisms [Proctor et al., 1983, Garg and Ishai,

1985, Bhat et al., 1994, Yoji et al., 2010]. These mechanisms, such as fiber breaks, matrix

cracks, delaminations, and debonding between fibers and the matrix material, are driven

not only by the geometry of the specimens and the particular loading conditions [Reif-

snider et al., 2000, Subramanian et al., 1995, Reifsnider and Jamison, 1982, Reifsnider

and Talug, 1980], but also by the inherent variation in the localized properties of the

composite material. Some examples of such variation are in fiber stiffness and strength,

bonding between different layers of the composite material, and the bonding between

the fiber and the matrix material. This is very different from damage growth in metallic

materials [Plumbridge, 1972, Carpinteri, 2012, Pearson, 1975], where the size and growth

of a small number of cracks, usually occurring in areas of stress-concentration that are

calculated before-hand, can be monitored throughout the service life of the component.

One of the major techniques to investigate the health state of composite materials

is by the use of acoustic waves traveling within composites. These acoustic waves can

5
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be acquired by sensors and analyzed to understand and make predictions regarding

deterioration and future failure of composite components.

2.1 LambWaves

The characteristics of acoustic waves propagating in a plate were first studied by Horace

Lamb [Lamb, 1917]. Such waves, propagating in a ‘plate’, i.e. a three-dimensional structure

where one dimension is much smaller in magnitude than the other two, are called Lamb

waves. Unlike in an infinite medium, where acoustic waves only propagate in a finite

number (two or three) of modes [Achenbach, 1973], in a plate with finite thickness two

infinite sets [Viktorov, 1970, Nayfeh AH, 1989, Guo and Cawley, 1993] of Lamb wave

modes may propagate (Fig. 2.1). One of these sets comprise the family of symmetric waves,

whose motion is symmetrical about the mid-plane of the plate (Fig. 2.1a). Such waves are

also called longitudinal waves, as the overall particle motion is in the same direction as

wave propagation. The other set of Lamb waves are the anti-symmetric waves, where the

motion is asymmetrical about the mid-plane of the plate (Fig. 2.1b). Such waves are also

called transverse waves, as the particle motion here is perpendicular to the direction of

wave propagation. Simulated videos of the particle and wave motion of these two types of

waves are available on the internet [web, c].

Although Lamb’s original work only considered isotropic plates, his work has

been extended for anisotropic plates, for example by Nayfeh and Chimenti [Nayfeh AH,

1989] and Solie and Auld [Solie and Auld, 1973]. Lamb waves have been employed in

composite materials for a long time [Deighton et al., 1981, Alleyne and Cawley, 1992]

as a method to interrogate large plate-like structures [Guo and Cawley, 1993, Tan et al.,

1995, Smith, 2003], since Lamb waves have the property of permeating through the

entire width of the structure. More recently, propagating Lamb waves have been used for
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tomographic reconstruction [Hou et al., 2004, Keulen et al., 2014] and many other damage

detection and wave propagation applications in complex composite materials [Schmitt

et al., 2013, Janardhan and Balasubramaniam, 2014, Keulen et al., 2014, Schubert et al.,

2014, Clough and Edwards, 2015, Sause et al., 2013].

through thickness direction

Wave propagation direction

(a) Symmetric mode (S)

through thickness direction

(b) Anti-symmetric mode (A)

Figure 2.1. Schematic showing symmetric and anti-symmetric Lamb wave modes

The velocity at which Lamb waves propagate is a function of the frequency ν (or

wavelength λ) of each wave, as well as the elastic properties and density of the plate [Rhee

et al., 2007, Wang and Yuan, 2007]. However, the relationships may be reduced to only

depend on the ratio of the plate thickness d to the wavelength λ, i.e. to d/λ. The same

relationship may be expressed in terms of frequency ν as d · ν. This means that, since

wave velocity is not constant but depends on the wavelength, Lamb waves are in general

dispersive in nature.
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2.2 Extensional and Flexural Wave Modes

Still considering Lamb waves, of special interest is the case where the wavelength of the

propagating wave is greater than the thickness of the plate. In this ‘thin plate’ scenario,

equations derived from classical plate theory can be used to describe wave motion [Gorman,

1991]. Possible modes of wave propagation are now reduced to just two: extensional and

flexural [Gorman, 1991, Prosser and Gorman, 1994, Kaphle et al., 2012, Jeong and Jang,

2000b]. Both modes are composed of in-plane and out-of-plane displacement components,

due to the Poisson effect. For the extensional mode, the major displacement component is

in-plane, while for the flexural mode, the out-of-plane component is larger. It is found

that for both isotropic and anisotropic materials, the extensional mode is not dispersive,

while the flexural mode is dispersive. It can be shown that the velocities of the lowest

symmetric (extensional) and antisymmetric (flexural) modes reduce to the plate wave

solutions asymptotically as the plate thickness goes to zero [Viktorov, 1970, Gorman,

1991].

Out-of-plane vibration
modes: Sensitive

In-plane vibration
modes: Not Sensitive

Active Region

Sensor

Figure 2.2. Piezoelectric Sensor and its direction of sensitivity

The piezoelectric ultrasonic sensors used for signal acquisition are sensitive to

vibrations perpendicular to their ‘face’, i.e. vibrations that are out-of-plane to the plane of

the sensor (Fig. 2.2 shows a schematic of a piezoelectric ultrasonic sensor). When such
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a sensor is bonded or installed on the surface of a plate, it is therefore most sensitive to

plate modes that are out of plane. Because of Poisson effects, the sensor may still be able

to pick up vibrations due to in-plane vibration modes, but even in this case the sensor

is actually acquiring only the out-of-plane components. Flexural modes typically have

stronger out-of-plane components than extensional modes, and this is reflected in acquired

sensor data: the extensional modes have smaller amplitudes relative to flexural modes.

Additionally, the non-dispersive extensional modes generally travel at a greater velocity

than the dispersive flexural modes, and therefore arrive at a sensor before the flexural

components. An example can be seen in Fig. 2.3, where a sample acoustic emission signal

is shown and the arrival and magnitudes of the extensional and flexural modes can be

observed readily.

2.3 Acoustic Emission

Acoustic Emission (AE) waves are acoustic stress waves generated in a component due to

localized load redistributions, and are used extensively for structural health monitoring

applications [Curtis, 1974, Fleischmann et al., 1975, Breckenridge et al., 1975, Pao et al.,

1979]. Every deterioration event within composite materials, such as fiber breaks or

matrix cracks or delaminations, is accompanied by such AE waves that travel within

the component. AE waves comprise multiple wave modes. In a bulk medium, they

comprise longitudinal (p-wave), shear (s-wave) and Rayleigh wave modes as well as their

reflections [Ledbetter and Kriz, 1982, Nayfeh AH, 1989]. In case of laminated plates, AE

wave propagation is dominated by Lamb wave modes at different frequencies [Guo and

Cawley, 1993, Prosser et al., 1999, Curtis, 1974].

Wave propagation and the acoustic emission technique have traditionally been used

in structural health monitoring applications in one of two ways. The first application is to
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(a) Sensor nearer to the source of the signal.
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(b) Sensor farther to the source of the signal.

Figure 2.3. Sample Acoustic Emission signal. Extensional and Flexural modes are indicated.



Arnab Gupta Chapter 2. Literature Review 11

be able to locate a damaged region present in a laminate [Ziola and Gorman, 1991, Toyama

et al., 2001, Toyama et al., 2003b, Lympertos and Dermatas, 2007, Leone et al., 2012]. For

this, there must be a way to compute the distance of a source from a sensor. One way to do

this would be to triangulate the location based on the arrival times of a certain wave mode

at multiple sensors [Jingpin et al., 2008, Eaton et al., 2012]. Another way to achieve the

same result would be to note the difference in arrival times of two different wave modes at

the same sensor [Baxter et al., 2007]. If the dispersion characteristics of the laminate are

known, the difference in arrival times would then be used to compute the distance of the

source.

The second application of acoustic emission techniques is to characterize the damage

occurring in a laminate [Proctor et al., 1983, Garg and Ishai, 1985, Bhat et al., 1994, Ono

and Huang, 1995, Hamdi et al., 2013]. The signal acquired from a source is studied to

identify its unique properties, so that it may be used as a signature for a particular damage

type. Certain pattern recognition algorithms are often used, analyzing the time-amplitude

data or, more commonly, the frequency spectra obtained via FFT. In some cases, the

hypothesized damage types are forensically verified [Oskouei, 2009, Chang et al., 2010].

These schemes typically work very well for isotropic materials such as aluminium.

However, in case of composite laminates and other composite components, the signals

acquired at one or more sensors is not dependent solely on the characteristics of the source.

The stress wave generated at the source travels along a certain path within the laminate,

and the characteristics and health of the particular wave-path itself affects the signal

that the sensors finally receive [Aggelis et al., 2012b, Scholey et al., 2010]. Moreover,

since isolated damage events do occur on a global scale throughout the service life of the

laminate, locating and identifying each such damage is not useful in evaluating its health

state. Instead, the cumulative effect of all such damage events on the performance and

properties of the laminate, such as stiffness, residual strength, or energy attenuation of
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acoustic waves, is of more importance.

2.4 Acousto-Ultrasonics

The essence of using Acoustic Emission techniques is to acquire a spontaneously generated

signal comprising multiple frequency components and then analyzing the signal. The only

problem is that the signals cannot be produced on demand, either in particular instants of

time or in particular locations in space. One way around this is to use a signal generator to

introduce an excitation within the component, but then the wave traveling withing the

component is limited in its frequency components by the frequency components in the

signal generator. The excitation signal is never as “wide-band” in terms of frequency as

spontaneous acoustic emission signals are.

A better solution would be to identify a wide-band signal that could also be gener-

ated on demand. One way to produce such signals is by using piezoelectric patches [Chen

et al., 2011, Dong et al., 2011, La Saponara et al., 2011, Tang et al., 2011] directly attached

to the composite laminate. Another wide-band source, which produces predominantly

out-of-plane excitations, is the Pencil Lead Break (PLB). Response of PLBs (also called a

Hsu-Nielsen source [Hsu and Breckenridge, 1981]) have been shown to simulate acoustic

emission responses in composites, and a standard configuration to perform PLBs is present

in the literature [Gary and Hamstad, 1994]. The advantage of the PLB is that it is simple to

use and replicate, and does not require prior installation for proper use. A large flexural

component in the signal is also advantageous, as in most configurations used in experi-

ments the end conditions would affect the extensional modes far more than the flexural

components. Pencil Lead Breaks have previously been employed in health monitoring

applications, both in isotropic materials [Ernst and Dual, 2014, Gorman, 1991, Ziola and

Gorman, 1991, Prosser et al., 1999], as well as in composite materials [Jeong, 2001, Jeong
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and Jang, 2000b, Jingpin et al., 2008].

The properties of Pencil Lead Breaks have been studied in detail by Sause [Sause,

2011], who examined the effects of the lead length and the angle of breakage of pencil leads

through experiments and computer simulations. His findings are that the lead length and

the angle of breakage affect the load characteristics of the Pencil Lead Break performed —

but only in terms of the magnitude of the excitation. The waveform generated and the

loading and unloading characteristics of the Pencil Lead Break remain consistent even

when with changing lead length and angle of breakage. Therefore, the Pencil Lead Break

can be considered to be an acceptable method of simulating an acoustic source.

Aggelis et al. have published articles [Aggelis et al., 2010, Aggelis et al., 2012a]

on the subject of acoustic emission and wave propagation characteristics in composite

laminates. In one paper [Aggelis et al., 2012a], they study the acoustic emission and wave

propagation effects during tensile loading of cross-ply laminates. Loading involves ‘cycles’

of tensile loading and unloading, and in each cycle the maximum load is higher than the

previous one. They observe that the amount of acoustic emission activity correlates well

with the increasing load level, and conclude that:

“This phenomenological correlation is particularly important as (i) it allows

estimation of the load based on simple observation even if there is no physical

insight about the mechanisms behind the AE activity and (ii) it establishes

the direct relation of the acoustic activity to loading history and consequently

cumulative damage.”

It is not self-evident, however, that such a correlation would hold under all circum-

stances [Kaiser, 1950, Nair and Cai, 2010]. While it is expected that acoustic emission

activity would increase with increasing tensile loads, the same does not follow in the case

of cyclic loads when the load amplitude remains constant, or nearly constant, over time.
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For the same reason, while it is important to be able to connect acoustic emission and wave

propagation activity to loading history and cumulative damage, such a correlation cannot

be based on such simple parameters as only the amount of AE activity.

Under similar cyclic loading conditions, another paper by the same group [Aggelis

et al., 2010] compares the extent of acoustic emission activity during the loading and

unloading phases, and observe that the extent of acoustic emission activity during the

unloading phase increases significantly with increased loads (and increased damage).

However, as before, a similar effect may not occur when the loading amplitude does not

increase with every loading cycle.

2.5 Wavelet Analysis

Wavelet analysis (and the wavelet transform) is a numerical analysis technique to decom-

pose a time-series signal into time and frequency space simultaneously [Gröchenig, 2001].

This decomposition into both time and frequency space is important for signals that are

not stationary.

As an aside, stationary signals are those signals whose statistical parameters remain

constant over time [Proakis and Manolakis, 2007]. This means that if a signal is sampled

at different time intervals, the signal ‘fragments acquired would have constant statistical

parameters. For stationary signals, decomposition into frequency space is sufficient, and

the Fourier transform is used for this purpose.

However, for non-stationary signals, i.e. signals where the statistical parameters of

the signal are not uniform over periods of time, the temporal aspect of when each frequency

component occurred is important. Stress waves and acoustic emission signals are transient

waves and are non-stationary, and therefore wavelet analysis and the wavelet transform

are important tools in their analysis. There are numerous articles in the literature [Mallat,
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1989, Vetterli and Herley, 1992, Cohen and Kovacevic, 1996] that provide background

and a mathematical treament of the technique. Dr. Stephane Mallat’s book [Mallat, 2008]

provides a comprehensive study of the subject.

Wavelet analysis has found widespread use in the wider research community. As

an example, Nakken [Nakken, 1999] used the wavelet technique to study rainfall runoff

variability trends. Wink and Roerdink [Wink and Roerdink, 2004] utilized wavelet-

based denoising techniques in functional MRI applications. In the area of structural

health monitoring, La Saponara et al. [La Saponara et al., 2011, Tang et al., 2011], for

example, are a group that has recently made extensive use of wavelet analysis. Kessler et

al. [Kessler et al., 2002], Kishimoto et al. [Kishimoto et al., 1995], Jeong [Jeong, 2001] and

collaborator [Jeong and Jang, 2000b], Qi [Qi, 2000], Suzuki et al. [Suzuki et al., 1996], Jiao et

al. [Jiao et al., 2004, Jingpin et al., 2008] and others have also used the technique in various

applications. Ciampa and Meo [Ciampa and Meo, 2010] and Grabowska et al. [Grabowska

et al., 2008] have used wavelet analysis techniques for damage identification and source

location applications in composite materials.

Donoho et al. at Stanford University prepared a set of MATLAB routines called

WaveLab [web, i] to implement various wavelet analysis techniques (in conjunction with

MATLAB’s built-in routines). WaveLab is a popular, widely used, freely available toolset,

including in the structural health monitoring area [La Saponara et al., 2011, Tang et al.,

2011]. However, MATLAB’s own Wavelet toolbox [web, f] and the fundamental routines it

provides are quite powerful on their own, and may be used to implement different wavelet

algorithms.

The idea behind wavelet analysis can be understood by drawing an analogy with

windowed Fourier transforms, also known as Short Time Fourier Transforms (STFT). In

STFTs, the presence of a window function helps in a way to incorporate the time dimension.

Here, the Fourier transform is computed in each time window segment of the signal, thus
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providing an idea of when in time each frequency spectrum was observed. The drawback

here is that since the size of the window is fixed, wave modes with wavelengths larger

than the window size are lost and don’t appear in the Fourier transforms, i.e. STFTs don’t

work well for low frequencies.

Figure 2.4. Basis functions and time-frequency resolution of the Short Time Fourier Transform
(STFT), from [Vetterli and Herley, 1992]. (a) Basis functions, (b) Coverage of time-
frequency plane.

Where Fourier transforms only use sines and cosines as basis functions, wavelet

analysis uses a more general field of function as basis functions; these functions are known

as wavelets. The “mother” wavelet, when modified in shape (i.e. frequency, or “scale”) and

in position (i.e. time), provides the means to identify different frequency components and

when in time they appear. Essentially, the modified and translated wavelet is used as a
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template to “match” different frequency components. While this system is also not perfect,

it does provide far better resolution over time and frequency then does the STFT. Compare

Fig. 2.4 and Fig. 2.5, where it is observed that while for the STFT the frequency and time

resolutions remain constant, for the wavelet transform these resolutions change along both

axes. The mathematical differences between wavelet spectra and Fourier spectra are found

in a paper by Perrier et al. [Perrier et al., 1995].

Figure 2.5. Basis functions and time-frequency resolution of the Wavelet Transform, from [Vetterli
and Herley, 1992]. (a) Basis functions, (b) Coverage of time-frequency plane.

In wavelet analysis, resolutions in time and frequency come at the cost of one

another. This means that at regions of high temporal fidelity the frequency fidelity is

not as great, and conversely where the frequency spectra are of high resolution, temporal

information is more diffuse. The parameters chosen for a particular implementation
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determine the particular trade offs made, and thus it is possible to tailor the analysis

according to the requirements of the particular application. There are various different

“mother” wavelets that can be used, and the wavelet for a particular application is usually

chosen based on how well it matches the features of the signals being analyzed. Some

common wavelets are the Morlet wavelet, the Daubechies wavelet, the Haar wavelet, the

Mexican Hat (or Ricker) wavelet, and many others. Figure 2.6a and Fig. 2.6b show the

shapes of the Mexican Hat and Morlet wavelets.

In particular, the Gabor Wavelet Transform technique, which performs the Con-

tinuous Wavelet Transform (CWT) — as opposed to the Discrete Wavelet Transform —

has been shown [Tang et al., 2011, Büssow, 2007] to perform well with transient signals.

Among other choices of wavelets, the Morlet wavelet in particular, used with CWT has

been shown to produce excellent results [Shyu and Sun, 2002].

Mathematically, the continuous wavelet transform is given by:

Xw (a,b) =
1
|a|1/2

∫ ∞
−∞
x (t)ψ

(
t − b
a

)
dt (2.1)

where

• x(t) is the input signal as a function of time

• ψ(t) is the particular mother wavelet used, and must be continous both in the time

and frequency domains.

• a (>0) is called the “scale factor”, and either dilates or compresses the mother wavelet.

The scale factor can be converted to an equivalent set of frequency values.

• b is the “translational factor”, and moves the mother wavelet along the time axis.

• Xw(a,b) is the resultant output of the wavelet transform, and provides two-dimensional

data corresponding to (a,b) values.



Arnab Gupta Chapter 2. Literature Review 19

For example, if the Mexican Hat wavelet, shown in Fig. 2.6a, (used extensively in

processing seismic data) were to be used, ψ(t) above would be given by:

ψ(t) = (1− x2) · exp
(−x2

2

)
(2.2)

The real-valued Morlet wavelet, shown in Fig. 2.6b and which is used throughout

this dissertation, is given by:

ψ(t) = exp
(−x2

2

)
· cos5x (2.3)
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(b) Morlet Wavelet

Figure 2.6. Example of “mother wavelets” used in wavelet analysis

Wavelet analysis results, in the form of wavelet coefficients, may be used in different

ways. One way is to use the data to plot 3-dimensional plots with two horizontal axes

representing time and frequency, and the third vertical axis showing the magnitude of the

wavelet transform at that coordinate. The same representation may be made in 2-D plots

using so called “heat maps” — using color schemes (instead of height) to denote different

values of the wavelet coefficients. Such “heat map” style plots for wavelet-type data are

referred to as scalograms [Peng et al., 2002, He et al., 2011], and are a very efficient and
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Figure 2.7. Fast Fourier Transform (FFT) of a sample Pencil Lead Break (PLB) signal
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Figure 2.8. Scalogram plot of Continuous Wavelet Transform (CWT) using Morlet Wavelet, of same
signal used in Fig. 2.7. The colors indicate the percentage of total signal energy being
contributed by a particular (time, frequency) region.
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visually simple way of displaying wavelet data.

Wavelet data can also be used as an estimate of the energy content of the signal. This

can be obtained by computing and plotting the power spectrum of the data, or by using

other mean energy computations, remembering that the square magnitude of a Fourier-

or wavelet-type coefficient is proportional to local energy [Shyu and Sun, 2002, Büssow,

2007]. Dr. La Saponara’s group [Tang et al., 2011] have also developed MATLAB code to

further analyze wavelet data in terms of creating area plots from the contour plot that

MATLAB CWT computations normally produce.

Figure 2.7 and Fig. 2.8 show the FFT and the wavelet transform using the Morlet

wavelet for the same ultrasonic signal, in this case from a PLB. In Fig. 2.7 the frequency

spectrum is observed, but there is no information about the time instants for the arrival of

each frequency component. In contrast, in Fig. 2.8, the vertical axis shows the frequency

components while the horizontal axis shows when in time each frequency component

arrived. For analysis for transient signals such as acoustic emission or PLB signals, such

time-frequency information obtained from wavelet analysis is extremely useful.
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Deterioration Under Monotonic Loading
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3.1 Abstract

Acoustic emission testing (AE) is an important tool in structural health monitoring of

composite materials. Characterization of service-induced damage in a component in

service would be a major step in this technology. In this direction, the present study

examines simulated AE signals from cross-ply composite laminates. Tensile tests were

performed on test specimens, and pencil lead breaks (PLB) were done at various loads
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until failure. AE data were acquired using pinducer ultrasonic sensors, and the data were

analyzed in order to identify damage development in the specimens using variation in the

PLB data. It was seen that different analysis techniques can be used to monitor damage

development.

Keywords: acoustic emission, acousto-ultrasonics, damage mechanics, Lamb waves,

composite materials

3.2 Introduction

The performance of every component evolves over time, as localized variations in stresses

occur or as external loads arise that the material is not able to sustain. In either case, the

material reacts by undergoing certain internal rearrangements, and as a result the material

is said to deteriorate. In metals, this may occur through the formation of microcracks in the

material or the propagation of existing cracks; in fiber reinforced polymer materials, this

occurs through a number of mechanisms, such as delamination, matrix cracks, fiber matrix

debonding or fiber breaks [Stinchcomb, 1986]. Whatever the particular mechanism may

be (in metals and composites alike), this deterioration is accompanied by the generation

and propagation of stress waves — ultrasonic acoustic waves known as acoustic emission.

Accumulated deterioration, or deterioration in the same local region, can damage the

material to an extent that it finally undergoes failure.

Acoustic emission testing (AE) is characterized by having multiple wave modes

traveling at different frequencies and velocities [Fleischmann et al., 1975, Glennie and

Summerscales, 1986, Scruby, 1987]. The propagation, modes and frequencies are dictated

by material properties, loading conditions and boundary conditions. The detection and

analysis of AE forms a major method of nondestructive testing.

Damage development and ultimate failure of metallic materials usually originates
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wherever a microcrack forms and propagates. In the case of polymer composites, damage

development is a little more complex. Because of the inherent nature of composite

materials (numerous fibers embedded in a polymer matrix), a single deterioration event

does not control the performance of the material [Stinchcomb, 1986]. Small, singular

events can occur at various locations in the material over a prolonged service period

without having any effects in the performance of the material. Damage in composites

begins to occur when these events cease to be random and globally located, and begin to

be concentrated in particular regions; this phase is the damage development localization.

Only beyond this stage does the performance of the material begin to significantly diminish,

and failure of the component becomes probable.

It is important, for this reason, to follow damage development in a component made

of composites and how the component’s performance and properties deteriorate over its

life. It is also important to locate damage sources and identify the stage where damage

development localization begins. As long as the material properties, such as stiffness, do

not diminish, and as long as deterioration events are not concentrated in certain regions,

the material can remain in service.

AE is an important method in damage study and life prediction of composite

materials. AE can be monitored to study damage evolution (since AE characteristics are

dependent upon material properties), as well as to identify source locations (since different

wave modes travel at different velocities).

Previous and current research on AE monitoring focuses mostly on source location

and the characterization of AE signals to identify particular damage mechanisms [Gho,

2002, Gle, 1985, Rao et al., 2007, Ono and Huang, 1995, Surgeon and Wevers, 1999]. Some

work has been done on the cumulative effects of damage, but they are either to validate a

particular theory, or they use more indirect methods [Doctor et al., 1996, Subramanian

et al., 1995, Toyama et al., 2002]. Even with in-depth research on damage evolution, there
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is ample need for more work [Bussiba et al., 2008].

Lamb wave techniques are used extensively to detect damage, and various tech-

niques involving the energy content of the waves as well as their arrival times and wave

speeds are considered [Kessler et al., 2002, Lee and Staszewski, 2003a, Lee and Staszewski,

2003b, Lee et al., 2011, Valdes and Soutis, 2002]. However, most of such research focuses

on the detection of damage, rather than on identifying characteristics that can identify

transitions in precursor damage development.

The first step towards observing damage development is to be able to monitor

how stress wave propagation changes over the service life of a composite material. For

this purpose, a simulated AE source is needed that will be reproducible over multiple

repetitions. A pencil lead break (Hsu-Nielsen source; PLB) provides such a source [Gary

and Hamstad, 1994]. If a PLB can be done on a sample as it deteriorates and ultimately

fails, the changes, if any, in the PLB AE signals due to damage evolution in the material

can be observed. The source remains the same; therefore, any changes in the AE signals

acquired can be attributed to damage in the component.

In the present study, quasi-static tensile loading until failure of composite coupons

(dimensions 25mm × 300mm) was done, and PLBs were performed on the coupons at

the beginning and at various points during the loading process. PLBs were performed

using conventional 0.3mm 2H pencil leads in a mechanical pencil [Gary and Hamstad,

1994, Gorman, 1991, Hamstad, 1982]. AE signals from the PLB, as well as from damage

to the material, were recorded. The signals from the PLB were in particular analyzed for

changes over the course of the experiments.
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3.3 Procedure

An eight-ply [0°/90°3]S laminate was produced in-house, using a 5245C pre-impregnated

system (with G40-600 unidirectional carbon fibers), and then machined to create 25mm×
300mm coupons.

For each experiment, a coupon was loaded onto a standard tensile testing machine

fitted with a 50 kN load cell, and was loaded under displacement control at a rate of 1

mm/min.

Data acquisition was done using two standard pinducers, each of which had a

sensing region of less than 2 mm in diameter. The pinducers were each mounted in a

fixture that was built in-house, which in turn was attached to the coupon using rubber

bands (see Fig. 3.1). The attachment is such that the only contact points on the coupon are

the pinducer itself and two other support points on the fixture.

Pinducers

PLB Locations

300mm

38mm 76mm

 25mm 

0o fiber direction
on top surface

I

IV

II

VI

III

V

Figure 3.1. Schematic of experimental setup, showing position of pinducers and pencil lead break
locations.

PLBs were done at 5 kN load intervals, starting at zero load. The last set of PLBs was

done at 29 kN instead of at 30 kN, as some of the coupons failed around the 30 kN mark.

The PLBs were done at predetermined locations (Fig. 3.1), both between the two sensors,

as well as at the two extremities of the coupon gage section. The crosshead displacement

of the tensile testing machine was stopped while the PLBs were being performed. The PLB

locations were chosen so that in some cases (positions 1 to 3) the AE signal traveled along
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the 0° direction, while in others (positions 4 to 6) the AE signals traveled at an angle to the

0° direction before reaching the sensors.

An automated data acquisition system with two input channels was used. An

automated acquisition mode was set up where the software awaits a trigger signal and

then records data for a certain number of data points. The program was also capable

of retaining whatever signal was received before the trigger signal arrived (for a certain

number of data points, which can be specified), so these data could also be recorded

when a trigger signal arrives. This feature was enabled to ensure that a complete record of

detected signals from both sensors was always obtained. This is important when the source

is farther from the trigger sensor than the other sensor; in such a case, the signal passes

through the other sensor before the acquisition system is triggered. Data was acquired in

12-bit mode at 25 MHz with a range of ±2V, with 7168 data points post-trigger and 3072

data points pretrigger, for a total of 10240 data points, corresponding to 409.6µs for each

AE signal detected.

For ease of analysis and observation, the data obtained were digitally filtered. Since

it has a flat frequency response, a Bessel filter was used in bandpass mode, from 50 kHz to

1 MHz, with four poles. This band was chosen based on previous work, considering the

effects of mode superposition and allowing a wide enough frequency band for meaningful

analyses, while at the same time removing extraneous noise [Prosser et al., 1999].

The filtered signal is used to find the arrival times of acquired signals at the pinduc-

ers. This is done by plotting the signals over time and visually ascertaining their arrival

times; this is the most reliable technique. For each acquired signal, arrival times for two

wave modes are identified: an extensional mode and a flexural mode. As an example,

Fig. 3.2 shows the data record from a PLB done at location 2, after Bessel filtering. The

two plots correspond to the signals detected by the two piezoelectric sensors. As labeled

in the figures, the arrivals of the extensional and flexural modes are clearly identifiable.
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Figure 3.2. A pair of Bessel filtered pencil lead break data, showing extensional and flexural modes:
(a) from the first pinducer; (b) from the second pinducer.

Filtered signals were also used to perform wavelet transforms, which is a numerical

technique used to discriminate data both in terms of frequency and time [Kishimoto et al.,

1995]. This is in contrast to the usual fast Fourier transform, which only transforms the

data to a frequency domain. Data from the wavelet transform shows the amplitude of

the signal at each time instant in the data record over a frequency distribution. This is

a very handy tool, as both the arrival times of different signal components, as well as

their frequency distributions, can be observed from one plot. The wavelet transform is a

common tool used in AE monitoring applications [Jeong, 2001, Jiao et al., 2004, Qi, 2000].

It is assumed that the relative positions of the pinducers on the coupon under load



Arnab Gupta Chapter 3. Deterioration Under Monotonic Loading 29

remain constant as load increases. In reality, as the coupon extends under load, the relative

distance between the sensors increases slightly. Based on the present testing technique,

this translates to an increase in the distance over which AE calculations are done, and for

the same wave speed, should translate to an increase in the parameter ∆t, as described

in the next section. Since it will become evident that the results indicate precisely the

opposite effect (a decrease in ∆t) to be significant, it can be said that this assumption is a

safe one for the present study.

3.4 Results and Discussion

The coupons underwent deterioration as tensile load increased. The first spontaneous

AE from deterioration were recorded at approximately 8 kN load, and the rate of AE

increased with time, as damage developed. By 25 kN, there was visible damage to the

specimens (fibers broken along the surface), and there were loud, audible sounds from

further deterioration. The specimens finally broke spectacularly at approximately 31 kN.

From only visual and aural observation, there was serious damage to the specimen at 25

kN, and at this point failure was evidently a definite possibility.

As described earlier, arrival times of the extensional and flexural modes were found

for each pair of sensor data corresponding to a PLB. Further, the difference in the arrival

times (∆t) of the signals at the two sensors was also computed. The ∆t was calculated for

PLB positions 2 and 3, because in these two cases the signal travels along the same straight

line as it arrives first at one sensor and then the next. In the other cases, the signal travels

along different paths as it travels to the two sensors.

In Fig. 3.3 and Fig. 3.4, the difference in arrival times (∆t) is plotted over increasing

tensile load. Red and blue series correspond to two separate data sets. Bold lines represent

mean ∆t values obtained from multiple PLBs done at each load level; lighter lines show
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the upper and lower bounds from those multiple measurements.

Figure 3.3. Difference in arrival times, ∆t, for extensional mode. Red and blue represent two
different data sets. Bold lines indicate mean values; lighter lines indicate bounds.

Pinducers used in the experiments are essentially sensitive to out-of-plane vibra-

tions. The experiment was set up such that PLBs were initiated on the same surface to

which the pinducers are attached. This means that the flexural modes generated by the

PLBs are more energetic and have a larger amplitude than extensional modes generated.

The signal-to-noise ratio for the flexural modes is much better than that for extensional

modes, and this explains the slightly larger experimental variation in extensional mode

data than in flexural mode data.

For both extensional and flexural modes, it was observed that the ∆t values re-

mained uniform up to 10 kN. This is despite spontaneous AE being detected from ap-
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Figure 3.4. Difference in arrival times, ∆t, for flexural mode. Red and blue represent two different
data sets. Bold lines indicate mean values; lighter lines indicate bounds.

proximately 8 kN. This means that up to approximately 10 kN, there was no effect of note

on wave speeds and, hence, stiffness. The ∆t values increased at 15 kN, indicating that

there was enough deterioration in the coupon to affect wave speeds. However, the rate

of increase of ∆t dropped after this point (at 20 and 25 kN), and just before failure (29

kN) the slope was negative (that is, the ∆t decreased). In one case, a decrease in ∆t was

not observed before failure, but even in this case, the ∆t remained quite uniform between

20 and 29 kN. The behavior is counterintuitive in that it is expected that with increasing

damage, the ∆t should continue to increase significantly with increasing damage and

approaching failure.

The variations observed in ∆t indicate that the transition from global deterioration
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to localized damage development begins at approximately 15 kN. However, the subsequent

counterintuitive behavior indicates that the mechanism through which damage develops in

a localized region is not well understood, and that techniques based solely on wave speed

or material stiffness measurement may not be sufficient to accurately predict impending

failure.

Plots obtained from wavelet transform data show the amplitude (energy) of an

AE signal as a function of frequency and time, where red is the highest amplitude, and

purple is the lowest. It is observed that plots at 0, 10 and 15 kN (not shown due to space

constraints) display very similar features in terms of distribution of energy over time and

at different frequencies. Differences start appearing 15 kN onwards, where it is observed

that the energy distribution starts changing. Where at lower loads most of the energy

was concentrated towards the beginning of the data record, now the energy is much more

distributed over time (that is, over a much longer portion of the data record). Also, it can

be inferred visually that much of the energy appears at a lower frequency as load (and

damage) on the specimen increases.

The variation can be best summarized by comparing Figs. 3.5 and 3.6, which

compares wavelet transform plots at 0 and 29 kN respectively. Moreover, in each figure,

the plot at the top is for the case where the pinducer receives signals traveling along the 0°

direction (PLB at position 1); the bottom plot is when the signal travels at an angle to the

fiber direction in the top ply (PLB at position 4). Comparing Figs. 3.5 and 3.6, it is evident

that at 29 kN the energy is much more distributed over time than at 0 kN, and that the

distribution has also shifted, overall, towards lower frequencies. The plots from position 4

indicate that attenuation of AE signals is much higher when the signal travels at an angle

to the fiber direction.

Wavelet transform plots, as shown in Fig. 3.5 and Fig. 3.6, are not amenable to easy

comparison over different loads. Therefore, the wavelet transform data were further used



Arnab Gupta Chapter 3. Deterioration Under Monotonic Loading 33

Figure 3.5. Wavelet Transform for Pencil Lead Breaks, performed with 0 kN load on specimen, at
position 1 (top) and position 4 (bottom) as shown in Fig. 3.1

to calculate centroidal values of frequency, as well as total energy, for each time step in

the wavelet transform. This centroidal frequency can be described as a representative

value of frequency for that time step. The total energy content of signals as they propagate

through a certain region is also indicative of the health of material in that region; more

damage leads to more energy dissipation, as seen in the comparison between Fig. 3.5 and

Fig. 3.6. Thus, meaningful observations can be made by plotting the total energy and the

centroidal frequency over time and by noting how the plots change with increasing load.

Figures 3.7 to 3.9 are 3D plots with these parameters (time, frequency centroid and total

energy) as the three axes. The figures correspond to PLBs done at position 2 and acquired
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Figure 3.6. Wavelet Transform for Pencil Lead Breaks, performed with 29 kN load on specimen, at
position 1 (top) and position 4 (bottom) as shown in Fig. 3.1

at the sensor farther from the PLB location. They are representative of the case where the

signals travel along the 0° direction.

Figure 3.7 shows plots for 0 to 10 kN, where it is observed that the plots are quite

uniform, indicating as before that material health has not started to deteriorate. It is

expected that with increasing deterioration, energy content in the signals will diminish,

and this is observed in Fig. 3.9, which compares the plots at 0 and 29 kN. However, this

diminishing effect is not continuous throughout the loading process; the energy content

and frequency characteristics remain very similar from 20 kN up to just before failure at

29 kN (Fig. 3.8). In Fig. 3.8, the variation in amplitudes is not in order of increasing load;
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Figure 3.7. 3D plot of centroidal values of frequency and total energy content over time, with 0 kN,
5 kN and 10 kN load on specimen. Frequency centroids and energy content are derived
from wavelet transform data. Consistent behavior at different loads indicates lack of
deterioration. The maximum value on the vertical axis is 0.025, about double the value
in Fig. 3.8.

the highest amplitude corresponds to 25 kN, with those for 20 and 29 kN on either side of

it. Of course, all three values are very close to each other, approximately half the value at

0 kN load (Fig. 3.9).

This is a similar trend to what was observed with the difference in arrival times, ∆t,

and indicates that it may be insufficient to use only wave-speed and frequency characteris-

tics to accurately predict the onset of failure. Deterioration and damage can be observed,

but not damage development to the extent of being able to predict when failure will occur.

It must be remembered, however, that damage in the coupon can only be identified

based on variation, rather than through absolute numbers or properties. It is necessary to
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Figure 3.8. 3D plot of centroidal values of frequency and total energy content over time, with
20 kN, 25 kN and 29 kN load on specimen. Frequency centroids and energy content
are derived from wavelet transform data. Consistent behavior indicates that energy
content is not affected by progressive damage occurring at these loads. The maximum
value on the vertical axis is 0.014, about half the value in Fig. 3.7.

be aware of the properties being monitored with the coupon in its initial state (little or no

damage) to be able to infer later that damage has occurred. This is especially true of the

wavelet transforms. The relatively lower frequency, lower energy plots associated with a

damaged coupon can easily be accounted for in other circumstances to distance from the

sensor, or to a cross-fiber direction of the source. Both of those situations also attenuate

AE signals and shift their frequencies downwards. As an example, consider the wavelet

transform plots in Fig. 3.6 and Fig. 3.10. Fig. 3.6 shows data from PLBs done closer to

the sensor just before failure; Fig. 3.10 shows data from PLBs done further away from the

sensor, but at zero load. The characteristics seen in the two figures are similar, and it is not
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Figure 3.9. Similar to Figs. 3.7 and 3.8, this compares behavior with 0 kN and 29 kN load on
specimen. Energy content is about halved between negligible deterioration (Fig. 3.7)
and large damage (Fig. 3.8).

a simple matter to distinguish, without adequate extra information, between the two sets

and identify the one that indicates significant damage. Thus, it is important to monitor

and compare AE signals over time, as well as between neighboring sensors, to be able to

identify damage and remaining life.

It is also important to note that the observed parameters only indicate the damage

state of the region through which the particular AE waves propagate. This explains the

variations between individual PLB signals; some pathways, even adjacent to each other,

carried the waves better than others. Thus, it may be necessary to have multiple sensors in

different directions and locations, to be able to consistently monitor damage.
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Figure 3.10. Wavelet transforms for pencil lead breaks at 0 load at: (a) position 3; and (b) position
6. The features are similar to those in Fig. 3.6.

Conclusion

It is seen that simulated AE signals generated from PLBs do show varying AE parameters

over time. This shows that it is possible, by monitoring a component over time, to study

damage development. This process does not necessarily require the knowledge and

identification of each individual damage event; instead, a holistic view of the properties

and performance of the component can be adopted. It was seen that multiple parameters,

such as differences in arrival times and wavelet transforms, could be used for monitoring.

It is expected that this methodology can be ultimately extended and implemented using

real AE generated from samples during damage evolution. In this regard, further research

and analysis are ongoing to study the load-induced AE acquired during these experiments.
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In case of the PLB simulated AE signals, the difference in arrival times between the

two sensors stayed consistent as long as there was little damage in the coupon, even after

AE had started due to deterioration. The difference increased appreciably when there was

more damage. However, this technique did not indicate subsequent incremental damage

as load on the coupon increased.

In the case of wavelet transforms, there was variation in the frequency and energy

distributions with increasing damage, but it is important to note that such frequency and

energy distributions can also occur when the AE source is far from the sensor, and when

the source is in a cross-fiber direction. Thus, monitoring must be done over time and

between multiple sensors to find variations that indicate damage.

The only indication of approaching failure was a decrease in ∆t in Fig. 3.3 and

Fig. 3.4, and this phenomenon needs further analysis to ascertain its source and mech-

anisms. It was also observed that present techniques, while indicating the presence of

damage, are not well equipped to show incremental damage with increasing load and

indicate imminent failure of the material. New or modified techniques must be developed

to address these requirements.
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Chapter 4

Calculation of Wave Mode Arrivals
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A. Gupta* and J.C. Duke, Jr.† “Identifying the arrival of extensional and flexural wave

modes using wavelet decomposition of ultrasonic signals”.

4.1 Abstract

In health monitoring applications of composite materials, the health state of specimens

is often evaluated using naturally occurring and simulated Acoustic Emission stress

waves. For such applications, identifying the arrival times of the extensional and flexural

wave modes from acquired signals is a crucial step, and must be performed reliably and

potentially on large sets of signals. This article proposes using the wavelet decomposition
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of a signal to develop a fast, algorithmic and automated approach to estimate the arrival

times of the extensional and flexural wave modes. Algorithms are developed that estimate

the two arrival times using wavelet decomposition data, and which can be employed to

consistently and reliably identify the arrival times from large sets of signals iteratively.

MATLAB scripts to automatically execute the algorithms are also developed, and are made

available online.

Keywords: Arrival Time; Acoustic Emission; Composite Materials; Wavelet Analysis;

Data Analysis

4.2 Introduction

4.2.1 Acoustic Emission and LambWaves

One of the major methods of studying the health state of composite materials is to use

Acoustic Emission (AE) signals [Scruby, 1987, Fleischmann et al., 1975, Prosser and

Gorman, 1994]. The acoustic stress waves that are generated any time a localized load

redistribution or energy release event occurs in a material are referred to as Acoustic

Emission. In metallic materials, AE is generated any time a crack is created or propagated;

in composite specimens, AE is generated due to a variety of events, such as fiber breaks,

matrix cracks and delaminations [Proctor et al., 1983, Garg and Ishai, 1985, Bhat et al.,

1994]. In contrast with such natural AE, acoustic stress waves can also be generated by

the sudden removal of a small concentrated load on the specimen. Such a sudden load

removal can be used to generate simulated AE (since this simulates load-redistributions

that generate natural AE).

In specimens taking the shape of ‘plates’, i.e. where one dimension is much smaller

than the other two dimensions, Lamb wave modes dominate [Prosser et al., 1999, Guo and
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Cawley, 1993, Lamb, 1917] AE wave propagation. Specifically, two infinite sets of Lamb

wave modes propagate: (a) symmetric modes, or longitudinal modes, with vibrations

symmetrical about the midplane of the plate, and (b) anti-symmetric modes, or transverse

modes, with vibrations anti-symmetric about the midplane. When the propagating waves

have wavelengths greater than the thickness of the plate, the plate can be termed a ‘thin

plate’. In such plates, only two Lamb wave modes propagate: the Extensional and Flexural

mode [Gorman, 1991, Prosser and Gorman, 1994]. The extensional mode is dominated by

in-plane displacements and are not dispersive in nature. The flexural mode is dispersive,

i.e. their wave velocities vary according to frequency, and is dominated by out-of-plane

displacements [Jeong and Jang, 2000b].

In acoustic emission testing, these extensional and flexural modes are of most inter-

est, since many specimens under consideration satisfy the ‘thin plate’ criterion. Further,

since in most cases the sensors that acquire the signals are attached to the ‘face’ of the

plate, these sensors only detect the out-of-plane components of any propagating waves.

For the extensional mode, the out-of-plane component is much smaller than its in-plane

component; for the flexural mode this is exactly reversed. Therefore, for most cases, the

acquired signals have a small extensional mode component arriving first, followed by a

larger flexural mode component.

A sample AE signal, as acquired by two sensors along the same path traveled by

the stress wave, is shown in Fig. 4.1. The flexural mode in Fig. 4.1a arrives soon after

the extensional mode, indicating that the source is quite near to the sensor. On the other

hand, in Fig. 4.1b the time separation between the arrival of the two wave modes is larger,

showing that the sensor is farther from the signal source. Considering the same AE wave

being detected by two sensors, this difference in arrival between the extensional and

flexural modes, as well as the difference between the signal amplitudes, provide clues as

to the location of the signal source.
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(a) Sensor nearer to the source of the signal.
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(b) Sensor farther to the source of the signal.

Figure 4.1. Sample Acoustic Emission signal. Extensional and Flexural modes are indicated.
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4.2.2 Wavelet Analysis

Wavelet analysis [Mallat, 2008] is an important tool [Mallat, 1989, Vetterli and Herley,

1992] in the time-frequency analysis of transient signals such as ultrasonic stress waves.

The Fourier transform shows the frequency content of the entire signal, but the temporal

aspects of the frequency components are lost. The windowed Fourier Transform attempts

to improve on this, but has the disadvantage of using a time window of constant time

width, thereby losing any information about wave components whose wavelengths are

longer than the window width. The wavelet transform provides a versatile method to

discriminate signal components along both the time and frequency axes.

Similar to the Fourier transform, the basic idea of the wavelet transform is to use a

basis function (called the ‘mother wavelet’) to compare and characterize different portions

of the signal. Unlike the Fourier transform, which only uses sine and cosine waves as

basis functions and their higher harmonics to match higher frequency components, the

wavelet transform may use many different kinds of mother wavelets. The mother wavelet

has the property of being transient, i.e. having non-zero amplitude only for a small

duration in time. In addition, the wavelet transform performs two operations [Vetterli

and Herley, 1992] to identify different frequency components appearing in different time

positions in the signal: (a) translation of the mother wavelet along the time axis, and

(b) dilatation and contraction of the mother wavelet to match different frequencies. The

mathematical differences between Wavelet spectra and Fourier spectra are described by

Perrier et al. [Perrier et al., 1995].

The Gabor Wavelet Transform, or the Continuous Wavelet Transform (CWT), per-

forms well [Tang et al., 2011] with transient signals, and is given by:

Xw (a,b) =
1
|a|1/2

∫ ∞
−∞
x (t)ψ

(
t − b
a

)
dt (4.1)
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where

• x(t) is the input signal as a function of time

• ψ(t) is the particular mother wavelet used, and must be continous both in the time

and frequency domains. ψ(t) denotes the complex conjugate of ψ(t).

• a (>0) is called the “scale factor”, and either dilates or compresses the mother wavelet.

The scale factor can be converted to an equivalent set of frequency values.

• b is the “translational factor”, and moves the mother wavelet along the time axis.

• Xw(a,b) is the resultant output of the wavelet transform, and provides two-dimensional

data corresponding to (a,b) values.

Among many choices for mother wavelets that satisfy the necessary conditions, the

Morlet Wavelet in particular has been shown [Shyu and Sun, 2002] to produce excellent

results with transient signals. This article utilizes the real-valued Morlet Wavelet, shown

in Fig. 4.2a, which is given by

ψ(t) = exp
(−t2

2

)
· cos5t (4.2)

The relationship between the wavelet scale factors and the corresponding frequency

values is given by:

fa =
fc
a · t =

fc · fs
a

(4.3)

where

• fc is the center frequency of the particular wavelet in use. Referring to Eq. (4.2), the

Morlet wavelet reduces to cos5t when t = 0; therefore, the center frequency of the
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wavelet is given by 5
2πHz. This is confirmed in Fig. 4.2b, where a sinusoidal wave

with a frequency of 5
2π i.e. ≈ 0.7958Hz perfectly matches the center of the wavelet.

• a is the scale value being converted.

• t is the time period of sampling, i.e. the time duration between acquisition of

consecutive data samples.

• fs is the sampling frequency, i.e. number of times per second data is acquired.

Evidently, fs = 1/t.

• fa is the frequency value corresponding to the scale value a.
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(a) Real-valued Morlet wavelet
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(b) Matched Center Frequency

Figure 4.2. The solid blue curve in both figures shows the real-valued Morlet wavelet. In Fig. 4.2b
the dashed red curve shows the sinusoidal wave that perfectly matches the center of
the wavelet, having a frequency of ≈ 0.7958Hz.

The output obtained from the wavelet transform of a digital signal is in the form of

sets of coefficients, with (a) the number of sets equalling the number of scales specified,

and (b) each set containing the same number of elements as the original signal. (In terms

of matrices, a wavelet transform with s scales, performed on a signal with n data points,

produces as output a matrix of dimensions s ×n.) The ‘frequency matching’ with the scale
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values is not perfectly discrete, and each wavelet component contains signal components

‘around’ the matched frequency. Each set of coefficients (i.e. each row of the matrix, sized

1 × n) can therefore be thought to represent the portion of the signal that is centered

around the frequency corresponding to the specified scale value. The output of the wavelet

transform can therefore also be called the wavelet decomposition, since it decomposes the

original signal into components corresponding to frequencies represented by specified

scale values. For example, Fig. 4.3, discussed in more detail in Section 4.3.2, shows an AE

signal and its wavelet decompositions obtained through a Morlet wavelet transform.

4.2.3 Wave Mode Arrival Times

In analyzing Acoustic Emission signals, identifying the arrival times of the extensional and

flexural modes is a crucial step. The common use is in locating the source of AE events,

where a ‘triangulation’ of sorts is employed, using one or more wave modes acquired via

one or more sensors [Ernst and Dual, 2014, Lympertos and Dermatas, 2007, Toyama et al.,

2003b, Leone et al., 2012, Jeong and Jang, 2000a].

Only a few advanced methods to identify arrival times using the wavelet transform

are found in the literature. For example, Avanesians and Momayez [Avanesians and

Momayez, 2015] employ the synchro-squeeze technique and further algorithms, and need

to analyze each signal individually. This technique is useful for the particular situation

where the wave modes overlap completely, however in the vast majority of cases the

sensor is far enough from the source that the extensional and flexural modes have at least

some separation. Pomponi et al. [Pomponi et al., 2015] also utilize the wavelet transform,

but they focus their effort towards extremely noisy signals. Their process utilizes a

denoising algorithm in the form of ‘block thresholding’ and ‘neighboring concepts’, and

then attempts to model each signal to find the ‘Probability of Presence (PoP)’ [Pomponi
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(a) Acoustic signal for which extensional and flexural arrival times are to be determined.
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(b) Wavelet decomposition of the same signal (i) top: below sensor sensitivity range;
(ii) middle: at ‘lower’ frequencies; and (iii) bottom: at ‘higher’ frequencies. All three
figures share the same units along the horizontal axis.

Figure 4.3. A sample ultrasonic signal with extensional and flexural modes, and its wavelet decom-
position components. The arrival of the extensional and flexural modes are indicated
by red and black dashed vertical lines.
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et al., 2015] at each time instant.

This article proposes the use of the wavelet transform to design a novel, algorithmic,

and relatively simple method to identify the extensional and flexural modes. The method

only needs the specification of initial parameters, and can be implemented via scripting

methods on large sets of acquired data.

4.3 Method

4.3.1 Experiment and Data Acquisition

The ultrasonic signals used for this article are acquired through mechanical testing experi-

ments on composite test coupons. Using a composite pre-impregnated material (5245C)

with unidirectional carbon fibers (G40-600), the coupons are prepared in-house in the form

of thin plates about 2 mm thick, nominally measuring 12in× 12in (≈ 300mm× 300mm).

The panels are then machined into test coupons measuring 12in×1in (≈ 300mm×25mm).

The test coupons are created to have multiple different ply layups — [0°/90°3]S , [90°/0°3]S ,

[0°/ ± 60°]S and [90°/ ∓ 30°]S — and are tested under very low-frequency tensile-tensile

cyclic loading until they undergo fatigue failure. The loading limits of the cyclic loading

are different for coupons with different ply layups, and may additionally be slightly differ-

ent between coupons of the same ply layup. This is to account for varying strengths along

the direction of loading between different ply-layups and between specimens even with

the same layup, and to restrict the fatigue life of the specimens to a reasonably low value

(< 15000 cycles to failure).

Data acquisition is done using two piezoelectric ultrasonic sensors, specifically

model SE1000-H manufactured by Score-Atlanta [web, a] (a representative schematic is

shown in Fig. 4.4), that have a stable frequency response from ≈ 50kHz to ≈ 500kHz.
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Out-of-plane vibration
modes: Sensitive

In-plane vibration
modes: Not Sensitive

Active Region

Sensor

Figure 4.4. Piezoelectric Sensor and its direction of sensitivity

The sensors have an active region of a circle of diameter ≈ 2mm and are sensitive to

vibrations perpendicular to its ‘face’, as shown in Fig. 4.4. The sensors are held to the test

specimen using rubber bands and a simple wood support, and a silicone based grease-

like lubricant [web, d, web, b] is used in the interface between the sensor’s face and the

specimen to achieve consistent mechanical wave transfer from the specimen to the sensor.

This mounting method is secure enough to (a) ensure consistent contact between specimen

and sensor and (b) prevent sliding of the sensors along the specimen surface. A schematic

of the experimental setup is shown in Fig. 4.5, where the large blue circles represent the

piezoelectric sensors.

The data acquisition software is set to capture data every time the vibrations it

receives (out-of-plane to the specimen surface) rises above a minimal threshold. The

software is equipped with a circular buffer whereby once data capture is triggered, it

can capture data both after as well as before the trigger. This mechanism is utilized to

effectively capture data from both sensors, one of which is set as the ‘trigger’ sensor. When

the source of the signal is far from the trigger sensor but close to the second sensor, the

signal arrives at the trigger sensor after it has already reached the second sensor. In

this case, the entirety of the signal at the second sensor can only be acquired if the data

acquisition system can capture data at time points before data capture is triggered.



Arnab Gupta Chapter 4. Calculation of Wave Mode Arrivals 51

(a) (b) (c)

12 in

1 in

1.5 in 1.5 in 1.5 in 1.5 in

Figure 4.5. Schematic showing experimental sample with piezoelectric sensors attached. Locations
marked (a), (b) and (c) indicate locations where Pencil Lead Breaks are performed. Blue
circles represent locations where piezoelectric sensors are attached.

In addition to acquiring signals from natural Acoustic Emission events that occur

during the life of the specimen, signals from simulated Acoustic Emission events are

also acquired. These simulated events are created by performing Pencil Lead Breaks

(PLBs), also known as Hsu-Nielsen source, which have been long used [Gary and Hamstad,

1994, Sause, 2011] as a standard way to create wide-band simulated Acoustic Emission

signals. PLBs are performed using a mechanical pencil with 0.3mm 2H lead, and involve

extending a standard length of pencil lead from the pencil (≈ 4mm) and pressing the

lead on the surface of the specimen until it breaks. This process exerts a point load on

the specimen which is then suddenly removed; this closely resembles natural Acoustic

Emission events where accumulated stress is suddenly removed due to a damage event.

PLBs are performed at pre-determined locations, shown as positions (a), (b) and (c)

in Fig. 4.5.

4.3.2 Wavelet Transform

The real-valued Morlet wavelet is used to perform the wavelet transform. In doing so, the

scale values should be chosen such that the entire frequency spectrum of sensitivity is

covered. Therefore, the frequencies chosen (in kHz) are: 15, 40, 70, 120, 170, 220, 270,

310, 360, 420, 480, 530. These values are converted using Eq. (4.3) to the appropriate

scale values. Figure 4.3 shows a sample ultrasonic signal (Fig. 4.3a), as well as its wavelet
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decomposition in separate groups of frequency regions (Fig. 4.3b). The actual arrival times

of the extensional and flexural modes for the sample signal are also shown (in Figs. 4.3,

4.6 and 4.7) as red and black dashed vertical lines at the appropriate time positions.

It can be seen that the first two wavelet components, centered around 15 kHz and

40 kHz, only appear to be simple sinusoidal waves devoid of much information content

that correlates to the actual signal (Fig. 4.3b, top). The next group of wavelet components

(Fig. 4.3b, middle) centered around 70 kHz, 120 kHz, 170 kHz, 220 kHz and 270 kHz can

be classified as the ‘lower’ frequencies, where it is expected that the flexural mode will be

prominent. Here, it is evident that the small extensional mode component does not arrive

exactly at the red dashed line. On the other hand, the flexural mode components clearly

overlap with the black dashed line, although a clear and unambiguous arrival time for

these modes cannot be identified yet. Finally, the ‘higher’ frequency components centered

around 310 kHz, 360 kHz, 420 kHz, 480 kHz and 530 kHz are shown in Fig. 4.3b, bottom.

Here, it is evident that the wave components are of a higher frequency than those in

Fig. 4.3b, middle, and that here the arrival of the extensional mode coincides perfectly

with the actual arrival of the extensional mode (red dashed line).

4.4 Results

4.4.1 Arrival of Extensional Mode

The extensional mode always travels faster than the flexural mode, and is expected to

arrive at the sensor before the flexural mode arrives. Further, the extensional mode always

comprises higher frequency components. As already discussed above, it is observed in

Fig. 4.3b, bottom, that the first arrival of the ‘higher’ frequency wavelet components seem

to coincide with the arrival of the actual extensional mode. Therefore, any of these wavelet
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modes can be used to detect the arrival of the extensional mode. We choose the wavelet

component with the highest amplitude, which is centered around 310 kHz, and use this

waveform as a parameter to identify the time position where its amplitude first becomes a

non-negligible value.
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(a) The full waveform with length equal to length of the original signal.

100 110 120 130 140 150 160 170 180 190 200

−2

0

2

Time (µs)

W
av
el
et

C
oe
ffi
ci
en

t

(b) Magnified segment of the same waveform shown above, focusing on the portion
where the two wave modes arrive.

Figure 4.6. Waveform to determine the arrival of the extensional mode. Since each ‘higher fre-
quency’ decomposition in Fig. 4.3b (bottom) indicates this arrival reliably, any one of
those components can be used. The actual arrival times, identical to those in Fig. 4.3a,
are indicated by red (extensional) and black (flexural) dashed vertical lines.

This can be seen in Fig. 4.6, where the wavelet decomposition centered around

310 kHz is shown, along with the actual arrival times of the extensional and flexural

modes. Figure 4.6a shows the full waveform, while Fig. 4.6b focuses only on that segment
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of the waveform that contains the time positions of actual arrival of the two wave modes.

It is evident that the first non-negligible amplitude of the wavelet waveform coincides

perfectly with the arrival of the extensional mode. Therefore, the first non-negligible peak

in the waveform is used to identify the arrival of the extensional mode.

At the same time, it is evident that this waveform is not a good indicator for the

arrival of the flexural waveform. Therefore, we must identify a different parameter that

provides a similar easily-identified marker to identify the flexural wave mode.

4.4.2 Arrival of Flexural Mode

It is observed in Fig. 4.3b, middle, that the actual arrival of the flexural wave mode, marked

by the black dashed line, does not seem to coincide in an obvious way with any of the

wavelet components in view. From analysis of numerous ultrasonic signals with different

amplitudes and signal features, it is observed that the actual arrival of the flexural wave

mode coincides with the first peak in a wavelet component after the appearance of the

small extensional component. This is in contrast with Section 4.4.1 where the identification

parameter was first arrival, not the peak. However, it is also observed that this ‘first peak’

may appear in any one of the wavelet components classifies as being ‘lower’ frequency.

Therefore, to identify a parameter that reliably indicates the arrival of the flexural

mode, we find the element-wise product of all of the wavelet components that we identify

as ‘lower’ frequency. Mathematically this parameter q is given by:

qi =
∏
j

ωji (4.4)

where

• The set j denotes those wavelet decomposition components that are categorized as

belonging to ‘lower’ frequencies. ωj is the j-th wavelet decomposition of this set.
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(a) The full waveform with length equal to length of the original signal.
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(b) Magnified segment of the same waveform shown above, focusing on the portion where
the two wave modes arrive.
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(c) The same segment of signal as above, magnified further to show that the peak identified
is the first significant peak, not simply the first non-negligible one.

Figure 4.7. Waveform used to determine arrival of flexural mode. This is a product of each of the
wavelet decompositions in Fig. 4.3b (middle). The actual arrival times, identical to
those in Fig. 4.3a, are indicated by red (extensional) and black (flexural) dashed vertical
lines.
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In our case, the set j comprises wavelet decompositions centered around 70 kHz,

120 kHz, 170 kHz, 220 kHz and 270 kHz.

• ωji is the i-th element of the wavelet decomposition vector, where the total number

of elements equals the length of the original signal.

• qi is the i-th element-wise product of the vector q which is used as parameter to

identify the arrival of the flexural mode.

The resultant waveform q is shown in Fig. 4.7, where Fig. 4.7a shows the entire

waveform equalling the length of the original signal, and Fig. 4.7b focuses on the time

portion that includes the actual arrival of the extensional and flexural modes. It is observed

in Fig. 4.7b that with this parameter q, the actual arrival of the flexural mode indicated by

the black dashed line coincides perfectly with the first large peak in the vector. Figure 4.7c

magnifies the same portion of the signal further, whereby it is clear, from the presence

of several minor peaks, that the coinciding peak is not simply the first non-negligible

peak, but the first major one. Therefore, the appearance of the first large peak in the

calculated parameter q can be taken as indication of the arrival of the flexural mode. This

is in contrast from the case of the extensional mode where the first non-negligible peak

was the identifying feature.

4.4.3 Peak and Prominence of Waveforms

In every algorithm to find the arrival of different wave modes, we must eventually find

a way to identify either (a) a change in amplitude, using a threshold value, or (b) a local

‘peak’ value, i.e. where the waveform in question reaches a crest, or a trough, or either.

Using either method has its disadvantages. When using a threshold value, the choice

of threshold becomes important, and the reliability of the algorithm may depend on
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the probability of random noise to have a spike greater than the set threshold. When

identifying local peaks, the difficulty is in identifying the ‘correct’ peaks, i.e. peaks due to

signal amplitude rather than due to noise. After all, random noise also shows peaks and

troughs, however small, and any method to find peaks in a signal will catch those due to

noise too.
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Figure 4.8. Relevant height measures needed to calculate the prominence parameter for two peaks
in a sample curve.

A better method for such applications is to combine the two approaches. In this

approach, each peak is weighted by a ‘prominence’ value, which helps magnify the critical

peaks associated with signal content, and minimizes smaller peaks due to noise. The

prominence p of a peak is given by the minimum height from the peak to the nearest

trough on either side of the peak. If the signal ends before reaching a trough, the height to

the last signal element is used for comparison. An example is shown in Fig. 4.8, where

the relevant measurements of interest are shown for two peaks P1 and P2. For P1, the

prominence is given by p = min(h1L,h1R) = h1L, where the min() function returns the



Arnab Gupta Chapter 4. Calculation of Wave Mode Arrivals 58

lowest of its arguments. For P2, the prominence is given by p = min(h2L,h2R) = h2R.

Visually we can ascertain that h2R > h1L; therefore, we can say that P2 is a more prominent

peak than P1.

In finding changes in waveform amplitude to identify the arrival of wave modes, we

must identify all peaks in the waveform, and then particularly identify those peaks that

signify the waveforms arriving. In doing so, instead of using the peaks themselves (i.e. the

amplitudes of the peaks) for comparison with a threshold, we compare weighted values

of the peak amplitudes. In our example of Fig. 4.8, instead of comparing the amplitudes

a1 and a2, we instead compare a1 × h1L and a2 × h2R. This has the effect of automatically

amplifying the peaks of importance, and diminishing the peaks due to noise and otherwise

‘non-prominent’ peaks.

Therefore, the algorithm to find the arrival of the extensional and flexural wave

modes is as follows:

• Identify all of the crests and troughs in the applicable test waveform. With AE signals,

‘peaks’ may occur in both positive and negative amplitude directions, therefore both

crests and troughs are of importance.

• Compute the prominence p of each peak identified, as described above.

• Create the parameter vector mi = ai × pi , where ai and pi are the amplitude and

prominence of the i-th peak. This is the parameter that will be actually tested to

identify the arrival of the wave modes.

• Analyze the parameter vector m to automatically identify appropriate threshold

levels to identify the arrival of extensional and flexural modes. For the extensional

mode, where the first non-negligible amplitude is to be found, the threshold level

is determined based on an estimation of the noise level of the initial portion of the
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m vector. For the flexural mode, where the first major peak is to be identified, the

appropriate threshold value is determined based on how the amplitude properties of

the vector change over its length.

• Test the parameter vector m against the threshold values identified in the previous

step to identify the time position along the length of the vector when the two wave

modes arrive. These positions or vector index numbers are the output, which can be

converted to the appropriate time scale.

The algorithm presented here reliably identifies the signal features that it aims to

identify. If, in some cases, the arrival times that the algorithm identifies seem to be slightly

different than what is visually observed, then one of the following is true: (a) the two

wave modes superpose in such a way that it is not apparent visually from the resultant

wave where the actual arrivals occur, or (b) the underlying assumption of which wavelet

components carry the two wave modes needs modification.

Figures 4.9 and 4.10 show a variety of ultrasonic signals for which the arrival

times have been identified using the algorithm described in this article, implemented

in MATLAB software. In all examples, the red dashed line represents arrival of the

extensional mode, and the black dashed line represents the arrival of the flexural mode.

It can be seen in Fig. 4.9 that even for signals with different noise levels, the two wave

modes are reliably identified. In Fig. 4.10, it can be seen that identification of the two

wave modes occurs accurately for PLB signals with different peak amplitudes and wave

shapes (corresponding to attenuation due to distance of the source from the signal).

4.4.4 Programming and Performance

The process presented here is implemented using MATLAB software. Custom scripts

are used to achieve all relevant tasks, including finding the peaks and troughs, and their
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Figure 4.9. Representative signals from natural Acoustic Emission events, and algorithmically
identified arrival times of their extensional (red dashed vertical line) and flexural
(black dashed vertical line) modes.
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Figure 4.10. Representative signals from Pencil Lead Breaks, and algorithmically identified arrival
times of their extensional (red dashed vertical line) and flexural (black dashed vertical
line) modes.
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prominence values, from an input waveform, finding relevant threshold values to use for

flexural mode arrival, and finally to analyze and identify the arrival of the extensional

and flexural modes. These scripts require no input other than the test waveforms, and all

noise and threshold estimations are performed automatically. A minimum value for noise

is prescribed, and this should not need to be modified under most circumstances.

The developed MATLAB scripts were run on a MacBook Pro notebook computer

running MATLAB R2017a, reading and writing data files over a USB3.0 connection to

an external spinning disk hard drive. Using this configuration, the arrival times of both

extensional and flexural wave modes were calculated from previously computed wavelet

transform data at a rate of ≈ 40s per 1000 signals. Without considering the time to

read from and write to disk, executing the scripts using wavelet data already imported

into MATLAB requires ≈ 3.5s per 1000 iterations of calculating both extensional flexural

arrival times.

The MATLAB scripts developed have been made available as a Mathworks File

Exchange repository [web, e], as well as in a public repository hosted at BitBucket.org [web,

h]. Both repositories include all required MATLAB scripts, along with example MATLAB

code and accompanying example data.

4.5 Summary

The wavelet decomposition of ultrasonic signals is used to identify when extensional

and flexural wave modes arrive. For identifying each wave mode, a suitable waveform

is identified that can be used for further analysis. For the extensional wave mode, a

wavelet decomposition centered around a reasonably high frequency (310 kHz in our case)

is used, while for the flexural mode, several wavelet components centered around lower

frequencies are multiplied together to create a new waveform.
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In order to find the peaks from the test waveforms that indicate the arrival of wave

modes, the prominence of each peak in the waveform is calculated, and is used to create a

new parameter m that naturally amplifies the most prominent peaks and diminishes the

least prominent ones. This parameter is analyzed to automatically determine appropriate

threshold values, which are then used to identify the arrival of wave modes.

The algorithm presented here can be implemented in an automated manner to

identify the arrival of extensional and flexural wave modes in a large number of acquired

signals using wavelet transform data. The algorithm is easily fine-tuned to work with

signals involving different materials and applications, by choosing the wavelet components

that form the basis of the test waveforms.
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Chapter 5

Early Detection of Critical Damage
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A manuscript with the contents of this chapter is ready to be submitted for peer-review

and publication as:

A. Gupta* and J.C. Duke, Jr.† “Early detection of critical damage in composite materials

using simulated Acoustic Emission”.

5.1 Abstract

Composite materials are in increasing use in practical engineering applications, where it is

crucial to be able to anticipate future failure of the components. Without such knowledge,

components must be removed from service at a statistically safe service life, which leads to

wasted performance from perfectly healthy components. This article proposes a method

*Corresponding author, email: arnab@vt.edu. Ph.D. Candidate (Engineering Mechanics), Biomedical
Engineering and Mechanics Department (MC 0219), Virginia Tech, Norris Hall Rm. 128, 495 Old Turner
Street, Blacksburg, VA 24061, USA.

†Email: jcduke@vt.edu. Professor Emeritus, Biomedical Engineering and Mechanics (MC 0219), Virginia
Tech, Norris Hall Rm. 226, 495 Old Turner Street, Blacksburg, VA 24061, USA.

64



Arnab Gupta Chapter 5. Early Detection of Critical Damage 65

to monitor composite specimens over their service life, and observe the variation of certain

parameters that provide an early indication of future failure of the specimen. Pencil Lead

Breaks are used as a source of simulated AE waves that are acquired by two piezoelectric

ultrasonic sensors. Composite specimens of different ply layups are subjected to slow-

speed cyclic loading until failure, and Pencil Lead Breaks are performed at pre-determined

locations on the specimen periodically throughout the experiment. The energy of the

signals as acquired by both ultrasonic sensors is compared, both in terms of the total

signal energy, as well as in terms of wavelet component contributions. The ratio of energy

contributions allows the early detection of future failure in specimens of varied ply-layups,

and allows detection early enough in the specimen’s life to plan effective maintenance

strategies.

Keywords: Health Monitoring; Composite Materials; Pencil Lead Break; Wavelet

Analysis; Acoustic Emission; Data Analysis

5.2 Introduction

In practical engineering applications of composite components, it is of fundamental

importance to have a reliable understanding of the health state of the components in

service. This understanding must include knowledge of expected failure of the component,

or at least, a method to anticipate upcoming failure, beyond purely statistical inferences.

In metallic materials, component deterioration proceeds in the form of a small number

of cracks [Plumbridge, 1972, Carpinteri, 2012, Pearson, 1975]. The size and evolution

of these few cracks, usually occurring in areas of high stress-concentration which can be

pre-identified, and their growth rates can be reliably used to anticipate future failure of

the component. In contrast, failure in composite materials proceeds in a very different

manner than in metallic materials.
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Composite components undergo deterioration through several mechanisms such

as fiber breaks, matrix cracks and delaminations [Proctor et al., 1983, Garg and Ishai,

1985, Bhat et al., 1994, Yoji et al., 2010]. These modes of deterioration are precipitated by

not only the loading regime and component geometry, but also factors such as the fiber

orientation in different layers, the nature of the localized bonding between fibers and the

matrix, moisture and temperature during operation, and the distribution of strength and

stiffness among all the fibers that the component contains. Numerous small, insignificant

deterioration events occur throughout the life of the component, that have negligible effect

on the service life of the component, but which make it difficult to employ similar health

monitoring schemes as used for metallic materials [Reifsnider and Talug, 1980]. Towards

the latter stages of the component’s life, damage events in the very same modes will have

a more drastic effect on the performance of the component, and culminate in ultimate

failure. In composite components, it is crucial to be able to identify characteristics of the

component that indicate that such drastic damage events are occurring which may lead to

future failure.

One of the major methods to study composite materials is by utilizing acoustic

ultrasonic waves traveling within the material [Scruby, 1987, Fleischmann et al., 1975,

Prosser and Gorman, 1994]. Acoustic ultrasonic stress waves, known as Acoustic Emission

(AE) waves, are generated in a component every time a localized stress redistribution event

occurs, i.e. any time a deterioration event occurs within a component. Such waves can also

be generated artificially by simulating a stress redistribution, by subjecting the specimen

to a small point load and then suddenly removing the load. This load removal simulates a

load redistribution like a deterioration event, and generates simulated AE waves within

the component.

The acoustic stress waves traveling through a material can be acquired by installed

piezoelectric ultrasonic sensors. The acoustic waves are affected by the properties of the
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path through which they travel, and therefore the signal acquired by multiple sensors

reflects the health state of the material along the particular path traveled by the acoustic

wave. As the health state of the material changes, it may affect the traveling acoustic wave

differently, and this variation may be discernible in the acquired signals.

Detection of damage in composite materials is an active area of research. However,

much of the focus is in detecting the presence of specific damage, and their location, in

composite specimens [Toyama et al., 2003a, Kessler et al., 2002, Toyama et al., 2002].

However, identifying precursor indicators that help in predicting upcoming component

failure is of more importance than the identification and localization of any particular

damage event in composite components. This article proposes a method and specific

parameters to monitor composite specimens over its service life using simulated Acoustic

Emission and to enable early detection of upcoming specimen failure.

5.3 Background

5.3.1 Pencil Lead Breaks

Even though AE waves are generated in a specimen under load every time a deterioration

event occurs, they present a challenge in attempting to identify changes in acquired signal

data to understand the evolving health state of the component. First, the location of the

events that generate the AE waves are distributed throughout the specimen. Therefore,

the path and distance of the waves from the sensors that acquires the signals is different

for every deterioration event. Second, where the objective is to identify changes in sig-

nal characteristics, the very nature of the AE waves may be different between different

deterioration events. Therefore, property changes in signals that are acquired cannot be

definitely attributed to changing health state of the component.
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The way around this conundrum, of course, is to utilize simulated AE waves. In

experimental research, Pencil Lead Breaks (PLBs) — also known as the Hsu-Nielsen

source [Hsu and Breckenridge, 1981] — have long been used for this purpose [Gary

and Hamstad, 1994, Sause, 2011, Hamstad, 1982, Boczar and Lorenc, 2004], where a

mechanical pencil with a length of lead extended is pressed on the surface of the specimen

at a specific location, and then pushed down until the extended pencil lead breaks. This

process subjects the specimen to a small point load that is suddenly removed, providing the

source for the generation of simulated AE waves. PLBs satisfy the criterion of generating

acoustic waves that are wideband, i.e. the waves span a wide frequency range. This

is important because waves of different frequencies may travel differently through the

composite specimen, either in general, or even differently at different stages of life of the

specimen.

PLBs can be performed at particular locations on the specimen under scrutiny,

which means that the path of the acoustic waves to the sensors is always nominally the

same. If different wave-paths are desired, PLBs can simply be performed at multiple

locations as needed. PLBs also have the advantage of providing a steady, unchanging

source of simulated AE waves throughout the life of the specimen. Since it is known that

the nature of the acoustic waves generated by the PLBs themselves is nominally constant,

any changes observes in the acquired signals can be safely attributed to changing health

state of the specimen.

5.3.2 Wavelet Analysis and Signal Energy

In analyzing acquired experimental signals, the most fundamental question is the compo-

sition of the signals in terms of (a) frequency content and (b) when in time these different

frequency components arrive at the sensor. Any subsequent analysis and inference about
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the signals can proceed from this fundamental information. Wavelet Analysis [Mallat,

2008] is an excellent method to decompose signals into their frequency and temporal

components [Mallat, 1989, Vetterli and Herley, 1992].

The Wavelet Transform is conceptually similar to the Fourier Transform [Suzuki

et al., 1996, Serrano and Fabio, 1996]. The Fourier Transform uses a series of sine and

cosine functions as reference to correlate with the signal being tested, and returns as

its result the frequencies where it finds a match. However, since the sine and cosine

functions are independent of time, the Fourier Transform provides no information about

the temporal aspects of the matched frequencies. The windowed Fourier Transform is an

attempt at a workaround, but the constant width of the window means that any component

with a wavelength larger than the window width cannot be detected.

The Wavelet Transform also uses a reference function, but unlike the Fourier Trans-

form, this reference function can be chosen from among many options based on the

particular application. The reference function, called the ‘mother wavelet’, is not an

‘infinite’ wave like the sine and cosine waves (notice the name wave-let), but is transient

and only has non-zero values over a small time range. The Wavelet Transform matches

the mother wavelet with different frequency components and time segments of the signal

being analyzed by [Vetterli and Herley, 1992] (a) translation over various time segments of

the signal, and (b) dilation and compression to match various frequencies. The Wavelet

Transform is thus able to discriminate signal components across both the time and fre-

quency axes. Perrier et al. [Perrier et al., 1995] describes the mathematical differences

between Fourier spectra and Wavelet spectra.

For analysis of transient signals — such as short-lived acoustic waves in our case —

the Continuous Wavelet Transform (CWT) in particular performs well [Tang et al., 2011],

and is given by:
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Xw (a,b) =
1
|a|1/2

∫ ∞
−∞
x (t)ψ

(
t − b
a

)
dt (5.1)

where

• x(t) is the input signal as a function of time

• ψ(t) is the particular mother wavelet used, and must be continous both in the time

and frequency domains. ψ(t) denotes the complex conjugate of ψ(t).

• a (>0) is called the “scale factor”, and either dilates or compresses the mother wavelet.

The scale factor can be converted to an equivalent set of frequency values.

• b is the “translational factor”, and moves the mother wavelet along the time axis.

• Xw(a,b) is the resultant output of the wavelet transform, and provides two-dimensional

data corresponding to (a,b) values.

There are many choices for the ‘mother wavelet’, and the Morlet Wavelet in par-

ticular is known to work well with transient signals [Shyu and Sun, 2002]. We use the

real-valued Morlet Wavelet (Fig. 5.1), given by:

ψ(t) = exp
(−t2

2

)
· cos5t (5.2)

The wavelet scale factors a are related to equivalent frequency values fa by:

fa =
fc
a · t =

fc · fs
a

(5.3)

where

• fc is the center frequency of the mother wavelet. In Eq. (5.2), it is evident that the

Morlet wavelet reduces to cos5t when t = 0, which means that the center frequency
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of the wavelet should be 5
2πHz. This can be confirmed by comparing the Morlet

wavelet with a sinusoidal wave of frequency 5
2π i.e. ≈ 0.7958Hz, and observing

(Fig. 5.1b) that the sinusoidal wave matches perfectly the center of the wavelet.

• a is the scale value being converted.

• t is the time period of sampling, i.e. the time duration between acquisition of

consecutive data samples.

• fs is the sampling frequency, i.e. number of times per second data is acquired.

Evidently, fs = 1/t.

• fa is the frequency value corresponding to the scale value a.
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(a) Real-valued Morlet wavelet
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(b) Matched Center Frequency

Figure 5.1. The solid blue curve in both figures shows the real-valued Morlet wavelet. In Fig. 5.1b
the dashed red curve shows the sinusoidal wave that perfectly matches the center of
the wavelet, having a frequency of ≈ 0.7958Hz.

The output of the Wavelet Transform is a matrix of wavelet coefficients, correlating

to the contribution of the signal at specific (time, scale) pairs. Along one dimension, the

matrix is of the same length as the time length of the signal. Along the second dimension,

the matrix has as many elements as the number of scale values specified. Therefore, for
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a signal with n data points, and a wavelet transform with s scale values, the output is a

matrix of wavelet coefficients of size s ×n.

The wavelet coefficients provide an estimation of the signal components corre-

sponding to each scale value. The signal components are never constrained exactly by the

equivalent frequencies of the scale values; the signal components will rather be ‘centered

around’ the equivalent frequencies. For each scale value, the vector along the time dimen-

sion correlates to the signal contribution centered around the equivalent frequency. The

coefficients are only significant relative to other coefficients of the same wavelet decompo-

sition; it is meaningless to compare the wavelet coefficients of different signals by their

absolute values only.

However, the wavelet coefficients can be used as a measure of signal energy distribu-

tion. Since the square magnitude of a Fourier- or wavelet-type coefficient is proportional

to local energy [Shyu and Sun, 2002], the squared values of the wavelet coefficients can be

used to indicate the distribution of energy in the signal. It must be noted that this process

does not show the total energy in the signal, only the energy distribution at different

frequency and time points. This energy distribution can be computed using the following:

Sij = wij ×wij ∀i, j (5.4)

SCij = 100× Sij∑
i
∑
j Sij

(5.5)

where

• wij is the wavelet coefficient corresponding to the matrix position (i, j)

• (SC)ij is the energy contribution at the same (i, j) position

In the first step (Eq. (5.4)) each wavelet coefficient is multiplied by itself to create
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an intermediate matrix of values Sij . In the next step (Eq. (5.5)), these intermediate values

are converted to energy proportions by normalizing each element by the total sum of all

elements of Sij . The result is the matrix SC of the same dimensions as the original wavelet

coefficients. Here ‘SC’ stands for Scalogram, which is a visual representation of this exact

energy proportion.

The total energy content of a signal can also be calculated directly from the acquired

signal by taking the square of the amplitude at each data point [Stoica et al., 2005].

In this case, the result is a single number that indicates the total energy of the signal.

Mathematically, this operation is given by:

E =
∑
t

x2(t) (5.6)

where x(t) is the acquired signal amplitude as a function of time t, and E is the calculated

total energy.

5.4 Method

5.4.1 Experiments

Experiments are performed with rectangular coupons (dimensions: 300mm × 25mm)

machined from composite laminates (dimensions: 300mm×300mm) of various ply layups.

The laminates are prepared in-house by hand layup and subsequent curing under heat

and pressure of plies from a pre-impregnated material (5245C) with unidirectional carbon

fibers (G40-600). The ply layups of the coupons used were: (a) [0°/90°3]S , (b) [0°/ ± 60°]S ,

and (c) [90°/ ∓ 30°]S , where the 0° direction is along the length of each coupon. Figure 5.2

shows a schematic of an experimental coupon setup for an experiment.

Two piezoelectric ultrasonic sensors, specifically model SE1000-H manufactured by
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(a) (b)
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Figure 5.2. Schematic showing experimental sample with piezoelectric sensors attached. Locations
marked (a) and (b) indicate locations where Pencil Lead Breaks are performed. Blue
circles represent locations where piezoelectric sensors are attached.

Score-Atlanta [web, a], are used for data acquisition, and have an active region ≈ 2mm

in diameter (a schematic is shown in Fig. 5.3). The sensors are held securely to each

specimen at predetermined locations, using rubber bands and simple wood supports. A

silicone based grease-like lubricant [web, d, web, b] is applied to the active surface of

the sensors before installation for optimum contact and consistent transfer of mechanical

waves between the sensor and the specimen. The sensors are held securely enough to

ensure consistent contact with the specimen as well as avoid sliding during the experiment.

The position of the sensors is outlined using permanent marker during experiments, and

numerous observations over multiple experiments confirm that the sensors do not slide

over the course of an experiment. The fixed orientation of the wood supports also ensures

that the sensors are always oriented in the same manner when they are set up for an

experiment and for the duration of the experiment. If Fig. 5.2, the large blue circles

represent the piezoelectric sensors.

For data acquisition a dedicated circuit board, installed in a Windows PC, and its

associated software package is used. The circuit board has two data input channels into

which output from the two piezoelectric ultrasonic sensors are fed. The software includes

a circular buffer and is set to save data that arrives both before and after a triggered event.

One of the two piezoelectric sensors is used as trigger, and data is saved every time the

signal from this sensor rises above a minimal threshold. The use of the circular buffer is
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Figure 5.3. Piezoelectric Sensor and its direction of sensitivity

crucial for multi-sensor data acquisition. In the case when the acoustic wave source is

farther from the trigger sensor than the non-trigger sensor, the traveling wave reaches

the non-trigger sensor before data acquisition has been triggered. Therefore, in order to

capture the full signal received by the non-trigger sensor, data must be captured from

before the wave reaches the trigger sensor. Data is collected at 25 MHz, with 3072 data

points saved before the trigger activates and 7168 data points saved afterwards, for a total

of 10240 data points over 409.6 µs.

An MTS screw-driven electro-mechanical Universal Testing Machine [web, g] is

employed for mechanically loading the specimens. The specimens are loaded under a

slow speed tensile-tensile cyclic condition until they undergo failure under fatigue. The

machine is programmed to operate between specified upper and lower load limits and a

constant velocity for a specified number of cycles. The load limits and the loading rate

are decided based upon the expected strength of the coupon; for example, a coupon with

layup [0°/90°3]S , with fibers along 0°, is expected to be stronger and require a higher load

to undergo deterioration than a coupon with layup [90°/∓30°]S , with no fibers along the 0°

direction. For nominally stronger specimens, a loading rate of 40 mmmin−1 between load

limits of 10 kN to 32 kN is typical. For weaker specimens, a speed of 25 mmmin−1 and

loading limits of 3 kN to 12 kN is more typical. The parameters may differ slightly between
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specimens depending on how the particular specimen in perceived to be behaving.

For each specimen, the experiment is started gently with lower values of upper load

limit and loading rate, to avoid the specimen undergoing catastrophic damage during first

loading. Gradually, the loading limits and loading rate are increased to the intended levels.

Since even a ‘high’ loading rate translates to very low frequencies, the experiments are run

in low-cycle regimes, with specimens intended to have relatively short lives of < 15000

cycles to failure.

5.4.2 Pencil Lead Breaks

Pencil Lead Breaks (PLBs) are performed at the beginning of the experiment as well as

throughout the experiment at regular intervals. For the present study, PLBs are performed

at two pre-determined locations along the center-line of the specimen (green circles marked

(a) and (b) in Fig. 5.2).

A mechanical pencil equipped with 2H pencil lead is used to perform Pencil Lead

Breaks. The lead is extended from the mechanical pencil by a fixed amount (≈ 3mm),

after which the pencil is pressed manually against the specimen at a consistent angle

(≈ 45°) so that the point under the pencil is under compressive load. When the pencil

is pressed sufficiently, the pencil lead breaks, thereby releasing the compressive load

suddenly. This impulse release of load generates the simulated AE-type stress waves in the

specimen. For consistent generation of acoustic waves, the position and angle of the pencil

must be kept nominally consistent, as changing these parameters can cause differences

in the energy imparted to the specimen (Fig. 5.4). Towards the end of a specimen’s life,

deterioration in the health state of the specimen may attenuate the acoustic waves and

impede their detection by sensors that are farther away. In this case, the energy of the PLBs

is increased by making the angle of the PLB steeper (Fig. 5.4b), so as to enable satisfactory
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data acquisition by both sensors.

Experimental Specimen

θ
Pencil Lead

Pencil

(a) PLB at a shallow angle of incidence. Pen-
cil lead can only sustain a small load and
breaks very easily.

Experimental Specimen

θ
Pencil Lead

Pencil

(b) PLB at a steep angle of incidence. Pen-
cil lead can sustain a large load, and re-
quires significant force to break.

Figure 5.4. Performing a Pencil Lead Break at different angles of incidence θ

PLBs are performed before first loading each specimen, as well as every 200 cycles.

Initially when the loading rate and speed are still being gradually increased, PLBs are

performed every 100 cycles. When a set of PLBs is performed, the cyclic loading is paused

and the load is held steady at the lower load limit. A set of PLBs comprises at least 4 PLBs

at each location for redundancy. This way, even if a single PLB is administered incorrectly,

or the location of the PLB is inaccurate by a minute amount, the presence of multiple PLBs

ensures the integrity of the collected data as a whole.

For this study, the energy content of acoustic waves over the life of specimens will

be compared and analyzed. Therefore, PLB signals are exclusively used for this study, for

the reasons described in detail in Section 5.3.1.

5.4.3 Wavelet Analysis

A wavelet transform using the real-valued Morlet wavelet is performed on all signals. The

scale values for this transform should be chosen so that the equivalent frequencies as

given in Eq. (5.3) are spread over the entire spectrum where the sensor is expected to be
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sensitive. The frequencies chosen for this current work are, in kHz, 60, 100, 160, 220, 260,

300, 360, 430, 480, and 530 (total 10), which are converted to the equivalent scale values

using Eq. (5.3). The choice of these particular frequencies is informed by previous analysis

where the frequency spectra of acquired signals shows peaks in the neighbourhood of

the above-chosen frequencies. Figure 5.5 shows the normalized amplitudes of a Fast-

Fourier Transform (FFT), of each frequency component, of the wavelet transform of a

representative acoustic wave signal. It is evident that the peaks correspond, in kHz, to 60,

100, 160, 220, 300, 360 and 430. The higher frequencies — 480 kHz and 530 kHz — are

chosen so as to nominally cover the frequency regions that the sensors may possibly be

sensitive to.
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Figure 5.5. To observe the contribution of different frequency components, an FFT is performed
on each frequency component of the wavelet transform of a representative acoustic
signal. The amplitudes are normalized and plotted, which clearly shows the relative
peaks along the frequency axis. Lines of each different color correspond to a different
frequency component.

The energy distribution in each wavelet decomposition is also calculated for each

signal using Eq. (5.5). This wavelet energy distribution is of interest to us, and we want to

analyze how this energy distribution evolves over the life of various specimens. However,

in performing such analysis, the resolution along the time axis is too high for productive
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comparison. This is because of two reasons. First, with a sampling frequency of 25 MHz,

each data point along the time axis is separated by only 40 ns, and even the most random

variation in signal transmission within the material can cause variations at such a small

time scale. Second, with such a high time resolution, the contribution at each time instant

is very very small, and variations are hard to identify with such small numbers. Therefore,

the energy distribution values are consolidated along the time axis. Since the total energy

in the entire signal totals to 100%, we sum the contributions of adjacent time points such

that a smaller energy distribution matrix is obtained. This consolidation is performed

so that the time axis is divided into 40 segments, with each segment comprising ≈ 10µs.

Dividing the time axis into 40 segments is determined to be a good balance between

capturing important variation details, while also keeping the contribution from each time

segment significant. The energy distribution matrix SC is now updated into the new

energy distribution SC40.

5.4.4 Energy Peaks and Energy Ratios

With the objective of analyzing the variation in energy distribution of PLB signals, we

realize that comparison of entire SC40 matrices for numerous PLB signals is cumbersome

and impractical. Instead, we need to select specific parameters from each SC40 matrix

which will allow us to perform our analysis efficiently. We choose as our parameter the

peak value of energy corresponding each wavelet (frequency) component. Therefore, for

each PLB signal, the peak value corresponding to each of the 10 frequency components

mentioned in Section 5.4.3 is identified and saved.

Now, in analyzing the variation in these identified peak values, we postulate that

any change over the life of each specimen will be best observed by comparing the energy

peaks as received by both ultrasonic sensors due to the same PLBs. The reasons for this
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contention are as follows. First, for the same PLB, using data from both sensors provides a

better indication of the overall health state of the specimen, since the same acoustic wave

travels through more of the specimen material in reaching both sensors than in reaching

a single sensor. Second, using the ratio of peaks compensates for some of the variability

that may arise from even minute variations in PLB position and total energy content. For

example, if two successive PLBs have different acoustic wave energies, this variation will

be similarly reflected in signals from both sensors, and the energy ratio will maintain

better consistency than either single energy value.

For each PLB signal and each frequency component therein, the peak values as

acquired by the two sensors is compared, and their ratio is calculated. In addition to

comparing the peak values from the energy distributions, we would also like to compare

the total energy in the PLB signals. For this, we make use of the total signal energy

computed directly from the acquired signal, as described in Section 5.3.2. Once again, we

postulate that variations will be best observed by comparing the total energy as acquired

by both sensors, and we calculate the energy ratio.

5.5 Results

For each PLB signal, we plot the variation in energy ratio of different wavelet components,

as well as the energy ratio of the total signal energy. In calculating the energy ratios, the

contribution from the sensor nearer to the PLB location is kept in the numerator, so that

the calculated ratio is always positive. (The energy of the signal acquired always attenuates

with distance from the source.) Since PLBs are performed at two locations, as shown in

Fig. 5.2, two sets of data are plotted for each specimen.

As mentioned in Section 5.4.2, whenever PLBs are performed during each exper-

iment, several PLBs are performed (let’s call them ‘groups’ of PLBs) at each location to
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maintain data reliability and to account for any random variations. When plotting data,

we plot the median energy ratio values for each group of PLBs. The median value is

chosen in preference over the mean because the energy ratios are expected to be consistent

within any single group of PLBs, and therefore the ‘central’ value is more useful than

incorporating the contribution of ‘outliers’. The energy ratio values are also normalized

to span a range of 0 to 1. Since the calculated energy ratios are never < 1, the following

equation is used for normalization:

En =
E −min(E)

max(E)
(5.7)

where E is the set of energy ratio median values under consideration, min(E) and

max(E) are the minimum and maximum values, and En the normalized set of values

ranging from 0 to 1.

Figures are presented for representative specimens with different ply layups, viz.

[0°/90°3]S , [0°/ ± 60°]S , and [90°/ ∓ 30°]S , as mentioned in Section 5.4.1. Specimens with

different ply-layups undergo deterioration through different damage mechanisms, and

different modes of deterioration may play principal roles. Therefore, we are interested to

observe if a consistent set of parameters can be effective in identifying future failure in

specimens with several different ply layups, including ones without 0° fibers present.

For each specimen, we would like to observe the variation in energy ratios for the

total energy content in the signal, and each of the 10 frequency components. For the fre-

quency components, since it is cumbersome to visualize so many individual components,

we choose to focus on a few specific wavelet frequency components. It is observed in

Fig. 5.5 that the frequency components do have overlaps, and based on this knowledge and

observation of numerous signals, we select the following components: (a) centered around

100 kHz representing ‘lower’ frequencies, (b) centered around 360 kHz and 430 kHz rep-
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resenting ‘higher’ frequencies, and (c) centered around 220 kHz representing the ‘middle’

frequencies.

Specimens under cyclic loading fail at different numbers of cycles, and therefore

also have different numbers of PLBs performed on them. To be able to effectively compare

the variation in energy ratios over the life of the specimen, a ‘stage of life’ parameter must

be computed. For each specimen, the number of cycles at which each group of PLBs is

performed is normalized against the total number of cycles after which specimen failure

occurred. This ‘percentage of life’ scale is used to calibrate the location of each group of

PLBs in terms of the ‘stage of life’ of the specimen.

The nature and constraints of our experimental loading regime may affect the stage

of life of a specimen at which important changes in energy ratio are observed. Since our

specimens were loaded such that they would fail at relatively low fatigue cycles (< 15000

cycles), our loading limits were set higher than they would in practical service scenarios.

Consequently, in some specimens, major deterioration may occur relatively early in the

life of the specimen. In practical service scenarios, the specimen would be expected to

be removed from service beyond such deterioration, even though the specimen does not

immediately fail catastrophically, and our experiment proceeds until the specimen does

fail. Additionally, although acoustic waves from both sets of PLBs should travel through

nominally the same straight line between the two sensors, practically there may be small

differences between the wave paths for the two data sets. Therefore, variations in energy

ratio may appear at slightly different stages of a specimen’s life, as even adjacent segments

of the specimen undergo deterioration differently.

Figures 5.6 to 5.13 show the variation in energy ratio for a number of specimens of

different ply layups. In each figure, the two colors represent two sets of PLBs performed at

two different locations (Fig. 5.2) on each specimen. In each figure, sub-figure (a) shows

the ratio of the total signal energy. Sub-figures (b), (c) and (d) show the ratio of the
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wavelet component peaks corresponding to ‘lower’ frequency, ‘higher’ frequencies, and

‘middle’ frequency, respectively. Each figure also shows vertical dashed lines (one or more)

corresponding to observed major changes in the energy ratio. The vertical lines are drawn

at the same ‘percent life’ position in all sub-figures for easy comparison.

Figures 5.6 to 5.9 show the energy ratio for specimens with a [0°/90°3]S ply layup.

Figures 5.10 and 5.11 show the energy ratio for specimens with a [0°/ ± 60°]S ply layup,

and Figs. 5.12 and 5.13 shows specimens with a [90°/ ∓30°]S ply layup. In specimens with

different ply layups, there are no distinct characteristics observed in the plotted energy

ratios that appear to correspond to only particular ply layups. The characteristics observed

are consistent between specimens of all the ply-layups.

In all specimens, there is usually a change in energy ratio right at the beginning

of the experiment. This is expected: as the specimen in first loaded, small deterioration

events always occurs before the specimen ‘settles down’ to its service regime. These

initial events occur in those portions of the specimen that are weaker statistically than

the specimen as a whole, and this initial deterioration does not affect the service life of

the specimen. In the remainder of the specimen’s life, every specimen shows at least one

major change in the energy ratio in all plotted sub-figures, which indicates a major change

in the health state of the specimen in the middle portion of the specimen’s service life.

In Figs. 5.6 and 5.9, two distinct changes in energy ratio can be observed. In both

specimens, the first such changes occurs relatively early in the specimen’s life, while the

second change occurs much later. It is evident that the changes can be observed both in the

ratio of the total signal energy as well as in the wavelet components. It is also evident that

the same changes are more pronounced from wavelet components than from total signal

energy. For example, in Fig. 5.6, the first change is most evident in Figs. 5.6b and 5.6d,

while the second change is most prominent in Figs. 5.6c and 5.6d. Similarly, in Fig. 5.9,

while the first change is prominent in all sub-figures, the second change is most prominent
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in Figs. 5.9c and 5.9d.

In Figs. 5.7, 5.11 and 5.13, two distinct changes are also observed, but in these

cases, the changes appear with only a small percentage of specimen life elapsing between

them. For these specimens, it may so be the case that the same deterioration process is

responsible for both changes, but they appear at slightly different times in the two sets of

PLBs. In Figs. 5.7a and 5.7d, the two sets of PLBs both appear to undergo major changes,

but with a small offset in percent life. Figures 5.7b and 5.7c show simultaneous changes to

both PLB sets, but it is evident that the deterioration or evolution completes only after the

second of the observed changes.

In Figs. 5.8, 5.10 and 5.12, a single major change in the ratio of energy peaks is

observed. In Fig. 5.8, all sub-figures show the change, although the extent of the observed

change is varied amongst the different components and PLB sets. In Fig. 5.10, the changes

are best observed in Figs. 5.10a, 5.10c and 5.10d, where both PLB sets show the change

equally well. In Fig. 5.10b, however, only set of PLBs show the change, while the other

undergoes a gradual change over a long fraction of the specimen’s life without exhibiting

any specific marked change.

As summary, we can say from observing results from all of the specimens that:

• all of the specimens show distinct changes in the ratio of peak energies between two

ultrasonic signals.

• the extent of change may vary between different parameters being observed, but as a

whole the change is always easily observed.

• although the ratio of total signal energy does show the changes, individual wavelet

components show more distinct changes than the total signal energy. This makes

sense: if the shift in energy contribution is confined to certain frequency components
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and not others, the total combined effect on the total signal energy may be smaller

than in the individual frequency components.

• using multiple locations for PLBs is better than using a single PLB source. This is

because the wave path from different sources, even if they are only minutely different,

may show up deterioration changes in adjacent segments of the specimen. Such

minute differences may be important in terms of early detection of specimen health

deterioration.

5.6 Conclusions

Composite coupons with different ply layups are subjected to slow-speed cyclic loading

until the specimens undergo failure due to fatigue. During the experiments, Pencil

Lead Breaks are performed at two pre-determined locations on the specimen to generate

simulated AE ultrasonic waves that travel through the specimen. These waves are acquired

by two piezoelectric ultrasonic sensors, and the captured signals are used to determine the

energy ratio of different signal components in order to devise an early detection scheme to

indicate future failure of the specimens.

By observing changes in the energy ratio in all of the specimens, we conclude that

oncoming failure of composite components can be detected effectively with this method.

Specifically, the ratio of total signal energy as acquired by multiple ultrasonic sensors can

be used as an indicator. Alternatively, observing several frequency components of the

signal wavelet decomposition also provides excellent results.

In calculating the energy ratios, either due to total signal energy or from the

contribution of wavelet components, it is important to have as a baseline a signal that

remains consistent in terms of frequency content and signal energy at the source. For
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(d) Ratio of peak values of wavelet compo-
nent centered around 220kHz (middle fre-
quency)

Figure 5.6. Energy Ratios for specimen 1, with ply-layup [0°/90°3]S . Blue and Red curves denote
data from two different sets of PLBs.
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(d) Ratio of peak values of wavelet compo-
nent centered around 220kHz (middle fre-
quency)

Figure 5.7. Energy Ratios for specimen 2, with ply-layup [0°/90°3]S . Blue and Red curves denote
data from two different sets of PLBs.
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quency)

Figure 5.8. Energy Ratios for specimen 3, with ply-layup [0°/90°3]S . Blue and Red curves denote
data from two different sets of PLBs.
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(d) Ratio of peak values of wavelet compo-
nent centered around 220kHz (middle fre-
quency)

Figure 5.9. Energy Ratios for specimen 4, with ply-layup [0°/90°3]S . Blue and Red curves denote
data from two different sets of PLBs.
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(d) Ratio of peak values of wavelet compo-
nent centered around 220kHz (middle fre-
quency)

Figure 5.10. Energy Ratios for specimen 5, with ply-layup [0°/ ±60°]S . Blue and Red curves denote
data from two different sets of PLBs.



Arnab Gupta Chapter 5. Early Detection of Critical Damage 91

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Percent Life (%)

R
at
io

of
To

ta
lE

ne
rg
y

(a) Ratio of total energy contained in acoustic
waves

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Percent Life (%)

N
or
m
al
iz
ed

E
ne

rg
y
Pe

ak
R
at
io

(b) Ratio of peak values of wavelet component
centered around 100kHz (lower frequency)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Percent Life (%)

N
or
m
al
iz
ed

E
ne

rg
y
Pe

ak
R
at
io

(c) Ratio of peak values of wavelet compo-
nent centered around 360kHz and 430kHz
(higher frequency)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Percent Life (%)

N
or
m
al
iz
ed

E
ne

rg
y
Pe

ak
R
at
io
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nent centered around 220kHz (middle fre-
quency)

Figure 5.11. Energy Ratios for specimen 6, with ply-layup [0°/ ±60°]S . Blue and Red curves denote
data from two different sets of PLBs.
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nent centered around 220kHz (middle fre-
quency)

Figure 5.12. Energy Ratios for specimen 7, with ply-layup [90°/ ∓ 30°]S . Blue and Red curves
denote data from two different sets of PLBs.
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Figure 5.13. Energy Ratios for specimen 8, with ply-layup [90°/ ∓ 30°]S . Blue and Red curves
denote data from two different sets of PLBs.
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this purpose, simulated AE in the form of performed Pencil Lead Breaks performs well.

However, for practical applications, this method can be adapted to create automated

periodic point excitations that can create wide-band acoustic waves that travel within a

component of interest. If automated, those signals can also be acquired and processed

automatically.

The method presented in this article also shows that the indication of future failure

occurs early enough in the life of a specimen that a maintenance operation can be planned

if this method is used practically for component inspections. It is observed that even after

the indicated change in energy ratio, specimens do not under immediate catastrophic

failure; instead they continue to function under the same loading regime for some length

of time. This is crucial in practical scenarios, where a maintenance operation may involve

technicians traveling to remote locations to perform the necessary operations.



Chapter 6

Conclusions

6.1 Contributions of this dissertation

This dissertation makes the following contributions:

1. In Chapter 3, we show the effects of cumulative deterioration on cross-ply laminates,

with ply layup [0°/90°3]S , under slow but monotonically increasing tensile loading.

We show that signals acquired by installed piezoelectric sensors, by performing

Pencil Lead Breaks at pre-determined locations on specimens, can be employed to

gauge the health state of composite materials. We show that the difference in arrival

times of the extensional and flexural wave modes shows marked changes towards

the latter portion of a specimen’s life.

We also perform a Wavelet Transform on the acquired signals, and show that the

energy distribution over different frequencies and time regions of the acquired sig-

nals depend upon the signal attenuation that the traveling acoustic waves encounter.

For example, when considering acoustic waves traveling along the fiber direction,

we find that the signal energy distribution is very different at the beginning of a

95
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specimen’s life than towards the end. On the other hand, if we consider the acoustic

waves traveling at an angle to the fiber direction, and hence being attenuated more,

then the energy distribution even at the beginning of the specimen’s life resembles

the distribution in the previous case at the end of the specimen’s life.

Using the calculated Wavelet Transform of acquired signals, we observe the variation

over specimen life of centroidal frequency value and total energy at each time instant.

We show that these calculated parameters show a significant difference between the

beginning and towards the end of specimen life. However, we also show that the

parameters remain consistent over changing loads at the beginning of specimen life,

as well as towards the end of specimen life, confirming that a fundamental change

in material response occurs at a certain point in the specimen life, rather than a

consistent gradual change from the beginning to the end of specimen life.

2. One of the essential steps in any health monitoring process for composite laminates

is to identify from acquired ultrasonic signals the time of arrival of the extensional

and flexural modes. If any automated health monitoring system is to be developed

and deployed, there needs to be a fast and reliable method to estimate the arrival

times of large sets of acquired ultrasonic signals, whether the source of the signals be

natural Acoustic Emission activity or simulated by, for example, Pencil Lead Breaks.

In Chapter 4, we develop a method to perform this task automatically, and provide

the MATLAB code for use by others. The algorithm makes use of the wavelet decom-

position of acquired signals, and employs different frequency regions to estimate

the arrival of the extensional and the flexural mode. The algorithm automatically

chooses a threshold value taking into account the noise content in the initial portion

of each signal, and therefore requires no user input in general. Including the time-

intensive process of reading data from and writing data to a computer data storage
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drive, we show that our method can calculate the wave mode arrivals of signal at a

rate of 1000 signals in every ≈ 40s.

3. In practical applications of composite laminates, the loading scheme is more likely to

be cyclic, varying between certain lower and upper limit, than increasing monotoni-

cally in nature. Moreover, the layup of plies used in increasingly diverse engineering

applications is likely to be different from a simple cross-ply orientation. In Chap-

ter 5, we investigate the deterioration of composite specimens of various different

ply-layups under slow speed cyclic loading. We show that the ratio of certain en-

ergy components, between signals acquired by two piezoelectric sensors due to the

same acoustic wave traveling to both sensors, can be used as a marker to indicate a

fundamental change in material behavior that indicates future specimen failure.

This calculated peak energy ratio parameter shows similar easily observable changes

in value for specimens of all tested ply-layups, and therefore should be adaptable for

deployment in the field for composites with diverse ply sequences. Moreover, the

observed fundamental change in property is shown to occur when an appreciable

portion of service life remains in the specimen. For example, it would be an impracti-

cal marker that only indicates future failure with 5% of service life remaining, since

a practical maintenance schedule cannot be planned against such a marker. We show

that our calculated parameter undergoes observable changes with at least ≈ 20%

to 30% service life remaining, which makes this practically usable for planning

maintenance or replacement schedules.
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6.2 Future research directions

There are many avenues for future research to be conducted that would complement and

extend the contributions of this dissertation. A few such directions are as follows:

1. Investigate specimens with more complex shape and geometry, for example involving

T-section or I-sections, where the fibers and matrix materials are arranged very

differently than in usual laminates.

2. Subject specimens to cyclic loads at a higher loading frequency and moderate loading

limits using hydraulic testing machines. This experimental setup will allow:

• specimens to be run for much longer, and larger number of cycles, until failure.

• experiments to be performed on much larger number of specimens. For such

experiments, investigate the signals acquired from naturally occurring Acoustic

Emission events for detection of critical damage.
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