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View Point Planning for Inspecting Static and Dynamic Scenes with
Multi-Robot Teams

Ashish Kumar Budhiraja

ABSTRACT

We study the problem of viewpoint planning in static and dynamic scenes using multi-robot
teams. This work is motivated by two applications: bridge inspection and environmental mon-
itoring using Unmanned Aerial Vehicles. For static scenes, we are given a set of target points in a
polygonal environment that must be monitored using robots with cameras. The goal is to com-
pute a tour for all the robots such that every target is visible from at least one tour. We solve this
problem optimally by reducing it to Generalized Travelling Salesman Problem. For dynamic
scenes, we study the multi-robot assignment problem for multi-target tracking. The problem
can be viewed as the mixed packing and covering problem. We optimally solve the problem
using Mixed Quadratic Integer Linear Program to maximize the total number of targets cov-
ered. In addition to theoretical contribution, we also present our hardware system design and
findings from field experiments.

This material is based upon work supported in part by the National Science Foundation under
Grant No. 1566247 and NIFA grant 2015-67021-23857.



View Point Planning for Inspecting Static and Dynamic Scenes with
Multi-Robot Teams

Ashish Kumar Budhiraja

GENERAL AUDIENCE ABSTRACT

We study the problem of viewpoint planning in static and dynamic scenes using multi-robot
teams. This work is motivated by two applications: bridge inspection and environmental mon-
itoring using Unmanned Aerial Vehicles. For static scenes, we are given a set of target points
in a static 2D or 3D environment such as a bridge. Target points are key locations that we are
interested to monitor using cameras on the robots. The goal is to compute a tour for all the
robots such that every target location is visible from at least one robot’s tour. We want to mini-
mize the sum of lengths of all the robot’s tours combined. We find the best possible solution for
this problem. For dynamic scenes, we study the multi-robot trajectory assignment problem for
multi-target tracking. Here, the target points may be moving, e.g., expanding plumes in an oil
spill. The goal in this is to maximize the total number of targets covered at each time step. We
provide the best possible solution in this case. In addition to theoretical contribution, we also
present our hardware system design and findings from field experiments.

This material is based upon work supported in part by the National Science Foundation under
Grant No. 1566247 and NIFA grant 2015-67021-23857.
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Chapter 1

Introduction

In recent years, interest in Unmanned Aerial Vehicles (UAVs) has grown rapidly thanks to the
availability of lighter and compact sensors, lower cost of components and advancement in bat-
tery technology. There are many off-the-shelf products available [19]. These products pro-
vide some autonomous functionality e.g., "Position Hold" and GPS based waypoint navigation.
While these functionalities are useful in some applications, in order to make full use of capabil-
ities of UAV’s we need to advance the autonomous decision-making capabilities. In this thesis,
we present view point planning algorithms that do just that.

Our work is motivated by applications such as inspection of civil infrastructure and environ-
mental monitoring where UAVs are used as mobile cameras. For effective inspection, we need
algorithms that find paths that optimize the views obtained by the UAVs. For tracking applica-
tions, we need dynamic planning, since we cannot use existing solutions of clicking points on
the map to plan paths. This task is even more complicated when multiple UAVs need to coor-
dinate. The goal of this thesis is to address challenges associated with static and dynamic view
point planning for multi-robot teams.

1.1 Motivating Applications

Our main motivation for static view point planning is the application of UAVs to inspect bridges
and other civil infrastructure. This task is currently performed manually using harnesses from
bridge (see Figure 1.1(a)) or using cranes (see Figure 1.1(b)). Both methods have significant risk
and can be time-consuming (see Figure 1.1(c)). Data in the form of images and videos can be
used to assess the structural integrity of the bridge. UAVs become a prime candidate to address
this problem as they can collect a large amount of data in a relatively short amount of time.
They require a small crew and are relatively inexpensive. This could potentially save insurance
expenses and infrastructure costs such as cranes [84].

8



9

Bridges typically have critical target points that need to be inspected, such points can be iden-
tified by experts. These points can be inside or outside the bridge structure. In both cases there
are issues related to stability and control that are being addressed in the literature [15] [17] [49].
Given a navigation stack for UAVs similar to what is available for ground robots in Robot Op-
erating System(ROS) [82], the next stage of monitoring target points for inspection in a bridge
would be planning optimal tours for multi-robot teams. In Chapter 2, we discuss how we ad-
dress this problem. Specifically, we provide an algorithm that gives an optimal tour for multiple
UAVs so that every input point of interest is seen by at least one tour.

(a) Manual inspection [10]. (b) Crane inspection [11]. (c) Routine inspection gone
wrong [55].

Figure 1.1: Bridges are typically inspected manually using harnesses or cranes. Both methods
carry significant risk for human life and property.

(a) Skimmers come in various designs but all basi-
cally work by removing the oil layer from the sur-
face of the water (U.S. Coast Guard) [54].

(b) Burning oil "in place" (in situ) on the wa-
ter’s surface requires gathering a layer of oil thick
enough to sustain the burn (NOAA) [54].

Figure 1.2: Two major methods of cleaning an oil spill at sea. Effectiveness of these methods
depends on timely action, terrain and weather conditions [54].
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For dynamic viewpoint planning, our main motivation is to use UAVs for environmental mon-
itoring to effectively detect and track hazardous agents in aquatic environments. Sending hu-
mans alone to detect hazardous threats can be dangerous as well as an inefficient use of limited
resources [53]. The ability to have a fast response team of emergency responders and robots
that can detect, track and map expanding plumes of hazardous agents and respond accord-
ingly is needed. As an example, in the case of oil spills the method to contain it changes from
containment and skimming (See Figure 1.2(b)) to using sorbents and in situ burning in a matter
of hours [29] (See Figure 1.2(b)). Hazardous agents like oil can be detected rapidly using UAVs.
We need algorithms to define the interaction between aerial robots so that they can act as early
warning systems for hazardous agents such as chemicals and radioactive particles.

Teams of UAVs flying over these aquatic environments can provide a wider picture of expanding
plumes in water. Tracking these spatiotemporal plumes requires UAVs to be equipped with
autonomous detection and tracking capabilities. Our aim is to use multiple robots so as to
effectively track collection of targets in a moving environment. Target tracking can be further
divided into two categories: 1) actively controlling the sensor position to improve estimation,
and 2) estimating the position of a target using noisy sensor measurements. The first problem
is addressed in Chapter 3 and the second problem is addressed in Chapter 4.

1.2 Contributions of this Thesis

Figure 1.3: Using a UAV to inspect the
smart bridge at Virginia Tech [69].

Figure 1.4: UAV using a camera for envi-
ronmental monitoring at Claytor Lake.
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There are three main contributions of this thesis.

• We study the problem of computing tours for multiple robots in a polygonal environment,
such that, every target is visible from at least one tour. We present a practical solution that
finds an optimal solution in possibly exponential time. This work is presented in Chapter
2. A paper describing this work is currently under revision, after one round of reviews, at
the IEEE Transaction on Robotics [76].

• We provide an optimal baseline to the multi-robot assignment problem for multi-target
tracking. This problem can be viewed as mixed packing and covering problem. We opti-
mally solve the problem using Mixed Quadratic Integer Linear Program [80] to maximize
the total number of targets covered. This work is presented in Chapter 3 and is planned
to be submitted to a conference [72].

• We present hardware and software design for a quadrotor platform based on off-the-shelf
components that are suitable for the two applications mentioned above. We also present
results from preliminary field experiments. The design and preliminary experiments are
presented in Chapter 4. Figure 1.3 shows our inspection experiments at Virginia Tech
Transportation Institute’s (VTTI) smart road project [69]. Figure 1.4 shows our UAV with a
down-facing camera flying over Claytor Lake.

• We finally conclude with a discussion of future work in Chapter 5.



Chapter 2

View Point Planning For Static Scenes

2.1 Introduction

The problem addressed in this chapter is motivated by view point planning for bridge inspec-
tion, as described in Chapter 1. The algorithm presented solves for an optimal tour for multiple
UAVs to see all target locations of interest. These target locations can be specific load points
that are crucial to the safety of the bridge. The targets can be decided offline by expert civil en-
gineers using existing maps of the bridges or by other methods. The preliminary experiments
for bridge inspection are described in Chapter 4.

The above mentioned problem can be formalized as that of planning paths for a team of robots
tasked with visually monitoring complex environments. Visibility-based monitoring problems
commonly occur in many applications such as surveillance, infrastructure inspection [61], and
environmental monitoring [70]. These problems have received significant interest recently [42,
71, 89], thanks in part, to the technological advances that have made it easy to rapidly deploy
teams of robots capable of performing such tasks. For example, Michael et al. [50] demon-
strated the feasibility of carrying out persistent monitoring tasks with a team of Unmanned
Aerial Vehicles (UAVs) with onboard cameras.

A richer version of the problem where the points to be visited by the robots are not given instead
must be computed based on visibility-based sensing is studied by Tokekar et. al. [78]. In our
problem, we are given a set of target points in a polygonal environment. Each robot carries a
camera and can see any target as long as the straight line joining them is not obstructed by the
boundary of the environment. Our goal is to compute paths for m robots, so as to ensure that
each target is seen from at least one point. Figure 2.1 shows an example scenario for m = 2
robots, x = 3 targets, v = 4 viewpoints and b = 2 depot locations.

12
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b
1
b
1

bb

Figure 2.1: Problem formulation. We are given a set of target points (xi ) in a polygonal environ-
ment. Also, we are given discrete viewpoints (v j ) such that each target is seen from at least one
viewpoint. vb

m is robot depot location. Our goal is to find m = 2 tours, one for each robot. The
objective is to minimize the total length of tours traveled by robots.

2.2 Related Work

Persistent monitoring problems are typically studied when the points of interest are given as
input. The points may have associated weights representing their importance. A common ob-
jective is to find the order of visiting the points that minimize the weighted latency. Alamdari et
al. [3] showed that this problem is NP-hard and presented two log factor approximation algo-
rithms. In many settings, the path to be followed by the robots is given as input as well, and the
speed of the robot must be optimized to minimize the maximum weighted latency. Cassandras
et al. [14] presented an optimal control approach to determine the speed profiles for multiple
robots when their motion is constrained to a given curve. Yu et al. [88] presented an optimal so-
lution for computing speed profiles for a single robot moving along a closed curve to sense the
maximum number of stochastically arriving events on a curve. Pasqualetti et al. [62] presented
distributed control laws for coordination between multiple robots patrolling on a metric graph.

Our problem is a generalization of the Art Gallery Problem (AGP) [60] and the Watchman Route
Problem (WRP) [18]. The objective in AGP is to find the smallest set of “guard” locations, such
that every point in an input polygon is seen from at least one guard. AGP is NP-hard for most
types of input polygons [60], and very few approximation algorithms exist even for special cases.
The objective in WRP is to find a tour of minimum length for a single robot (i.e., watchman) so
as to see every point in an input polygon. There is an optimal algorithm for solving WRP in
polygons without any holes [13] and a O(l og 2n) approximation algorithm for n-sided polygons
with holes [51]. Carlsson et al [13] introduced m–WRP where the goal is to find m tours such
that each point in the environment is seen from at least one tour. The objective is to minimize
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the total length of m tours. They showed that the problem is NP-hard (in fact, no approximation
guarantee is possible).

Wang et al. [85] first introduced this objective function for WRP for the case of a single robot and
termed it the Generalized WRP (GWRP). They showed that GWRP is NP-hard and presented a
O(polylogn) approximation for the restricted case when each viewpoint is required to see a
complete polygon edge.

Tokekar et. al. [78] introduced the m robot version of GWRP. This problem, in general, is NP-
hard since it generalizes the NP-hard problems of GWRP and m-WRP. Hence, they consider
special instances of the problem and present a number of positive results. In particular, they
characterize the conditions under which the problem has an optimal algorithm, in Section III
of their paper and a present a constant-factor approximation algorithm for a special class of
environments, in Section IV of their paper.

As an extension to the work done by Tokekar et. al. [78], we study the case when the measure-
ment time for a sensor is zero (Chapter 2.3). We present a practical solution that finds paths for
m robots. Our solution can be applied for a broad class of environments (e.g., 2.5D, 3D) and can
incorporate practical sensing constraints (e.g., limited sensing range, and field-of-view). The
added generality comes at the expense of running time. Instead of a polynomial time solution,
our algorithm may take possibly exponential time. We show how to use existing, sophisticated
Traveling Salesperson Problem solvers to produce solutions in reasonable amounts of time (for
typical instances).

2.3 Problem Description

In this section, we address the general case for the multi-robot watchmen route problem. We
remove the restriction of street polygons and requiring a chain-visible curve as the input re-
quired by Tokekar et. al. [78]. However, the added generality comes at the expense of some
relaxations. We assume that a finite set of candidate measurement locations, V , is given as in-
put. The goal is to find tours for each robot visiting a subset of V such that they collectively
see all the targets. Note that there is no further assumption (e.g., chain-visibility) on V . Conse-
quently, V can be computed by simply discretizing the environment either uniformly or using
the strategy in Deshpande et al. [20]. Instead of minimizing the maximum times of the tour, we
resort to minimizing the sum of the length of all tours (i.e., tm = 0).

Our contribution is to show how to solve this general version of the multi-robot watchman route
problem by reducing it to a TSP instance. The resulting TSP instance is not necessarily metric,
and consequently existing polynomial time approximation algorithms cannot be directly ap-
plied. Instead, we directly find the optimal TSP solution leveraging sophisticated TSP solvers
(e.g., Concorde [4]). This is motivated by recent work by Mathew et al. [46] who used a similar
approach for solving a multi-robot rendezvous problem. We demonstrate that this algorithm
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finds the optimal solution faster than directly solving the original problem using an Integer
Linear Programming solver.

In the following, we describe our reduction and prove its correctness. We also present empirical
results from simulations for a 2D case. However, the following algorithm also works for 3D
problems and can incorporate additional sensing range and motion constraints.

2.4 Reduction to TSP

Let P denote the environment in which the targets points X are located. We are given a set of
candidate viewpoints V within P . We denote the j th viewpoint by v j ∈V where j = {1, ...,n}. For
each target xi ∈ X , we create cluster of viewpoints, Ci = {v j | vi ⊆V can see xi }. Without loss of
generality, we assume that V is such that each target xi is seen from at least one viewpoint (i.e.,
|Ci | ≥ 1 for all i ). One way of generating a valid set V is by sampling or discretizing the visibility
polygons for all xi . For the special case, when X is the set of all points in a 2D polygon, we can
generate V by imposing a grid inside P using the strategy from [20].

If a robot visits any viewpoint in cluster Ci , then it ensures that target xi is seen by the corre-
sponding robot. Therefore, the goal is to find a set of tours, one per robot, such that at least
one viewpoint in each Ci is visited. Note that the clusters need not be disjoint. This problem is
equivalent to the multi-robot Generalized Traveling Salesman Problem (GTSP) [44].

The input to GTSP is a set of clusters, each containing one or more nodes from a connected
graph. The goal in single robot GTSP is to find the minimum length tour that visits at least one
node in each cluster.1 GTSP is NP-hard [44] since it generalizes TSP.

Noon and Bean [56] and Lien and Ma [44] presented two polynomial time reductions of GTSP
into a TSP instance such that the optimal TSP tour yields the optimal GTSP solution. The re-
sulting TSP instance is not necessarily metric and consequently, the standard approximation
algorithms (e.g., [6]) cannot be applied. We can find the optimal solution of the TSP instance
directly using potentially exponential time algorithms. A number of sophisticated implemen-
tations have been developed for solving large TSP instances to optimality [4]. In particular, we
use the Concorde solver which yields the best-known solutions to large TSP instances [5]. In
Chapter 2.5, we compare this approach with a generic Integer Linear Programming solver.

The reductions from GTSP to TSP proposed by Noon and Bean [56] and Lien and Ma [44] are
for finding a single robot GTSP tour. In our case, we are interested in finding m tours – one for
each of the m robots. Mathew et al. [46] presented a multi-robot extension for the Noon-Bean
transformation. This transformation is applicable for the case when the clusters in the GTSP
instance are disjoint (i.e., |Ci ∩C j | = 0, for all i 6= j ). With slight modification, we can apply the

1There are versions of GTSP with additional restrictions of visiting exactly one node in each cluster or visiting
each cluster exactly once. We consider the less restrictive version where the robot is allowed to visit a cluster
multiple times while still ensuring a specific node is visited no more than once.
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transformation to the case of possibly overlapping clusters as given below.

We assume that the path for the i th robot must start at a specific vertex, v i
d , and end at a specific

vertex v i
f . We model three scenarios:

1. SAMEDEPOT: All robots start and finish their tours at the same location. That is, v i
d = v j

d =
v i

f = v j
f for all i and j .

2. SAMEFINISHDEPOT: All robots finish their tours at the same location but may have unique

starting locations. That is, v i
f = v j

f for all i and j .

3. INTERCHANGEABLEDEPOTS: There are m fixed depots and initially, there is one robot at
each depot. The robots can end their paths at any of the m depots with the restriction
that each depot must have one robot at the end.

For all the scenarios, the algorithm given below finds m tours such that the sum of the lengths
of all tours is minimized and each target is seen.

The reduction consists of five main steps. First, represent the given instance as a graph. Second,
form a metric completion of the graph and remove viewpoints that cannot see any target. Third,
convert the overlapping clusters to non-overlapping ones. Fourth, use a modified Noon-Bean
reduction [56] to convert the GTSP instance into a TSP instance. Fifth, add start and finish
depots as nodes in the graph. The detailed description of each step is given below.

1. (Figures 2.2(a)–2.2(b)) Represent P as a graph G g = (V ,E ,Ĉ ). The vertices are the view-
points V ∈P . Add an edge (vi , v j ) ∈ E where vi , v j ∈V and vi is visible from v j . The cost of
(vi , v j ) is the Euclidean distance between vi and v j . Define a set of clusters Ĉ = {Ci , . . . ,Ck }
where Ci = {v j | v j ∈V is visible from target xi }.

2. (Figures 2.2(b) to 2.2(c)) Complete the graph G g in Step-1 to give Gc = (V c ,E c ,Ĉ ). Cost of
an edge (vi , v j ) in E c is equal to the cost of shortest path between vi and v j in G g . Then,
remove isolated nodes V r that are not present in any cluster in Ĉ . This in turn removes
edges E r = {(vi , v j ) ∈ E c | ∀vi ∈ V r }. Above operations give us Gcr =(V cr ,E cr ,Ĉ ) where
V cr =V \V r and E cr = E c \ E r . 2

3. Carry out the first step in Noon-Bean transformation [56], the I-N transformation, as fol-
lows: Gcr=(V cr ,E cr ,Ĉ ) is converted to a graph G i n = (V i n ,E i n ,Ĉ i n) that has non-intersecting
set of clusters. We go through following steps:

• Create set of nodes V i n = {vi , j | ∀vi ∈V cr and ∀C j 3 vi ,C j ∈ Ĉ }.

• Create set of clusters Ĉ i n={C i n
j } where C i n

j = {vi , j | ∀i ∈ {1, . . . ,n}, vi , j ∈V i n}.

2The completion may result in some nodes to be visited multiple times in the final tour.
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• For all nodes of the form {vi , j , vi ,k }∈V i n where j 6=k, create an ‘intranode-intercluster’
edge (vi , j , vi ,k ) ∈E i n and assign a zero cost to this edge.

• For all nodes of the form {vi ,p , v j ,q }∈V i n create an edge {(vi ,p , v j ,q ) ∈E i n where p 6=q
and i 6= j }, and assign the cost of this edge equal to the cost of corresponding edge
(vi , v j ) ∈ E cr . Refer to Figures 2.2(c)–2.2(d).

• Choose α greater than the cost of any tour in P that visits all targets xi . Add this
penalty α to all edges in E i n except zero cost edges.3 The exact expression for α will
be defined in Step 5.

4. Complete the Noon-Bean reduction by adding intracluster edges, tail-shifting, and im-
posing another penalty. Convert G i n = (V i n ,E i n ,Ĉ i n) to a new graph G t = (V t ,E t ,C t ) as
follows:

• Copy the vertices, edges and clusters: V t =V i n , E t = E i n , and Ĉ t = Ĉ i n . Create edges
to connect all nodes in cluster C i n

j ∈ Ĉ i n by an intracluster cycle in any order. That is,

{vi1, j � vi2, j � . . . � vip , j � vi1, j | {vi1, j , . . . , vip , j } ∈ Ĉ i n
j ,∀ j ∈ {1, ...,k}}. Here vi1, j �vi2, j

represents an edge (vi1, j ,vi2, j ). To mark these edges we assign a cost of −1 to them.
Add these edges to E t .

• For all intercluster edges E t l ∈ E t where E t l = {(vi p , v j q ) | p 6= q, vi p ∈ C t
p , v j q ∈

C t
q ,C t

p ,C t
q ∈ Ĉ t }, we move the tail of all edges (vi p , v j q ) ∈ E t l to the previous node

vi-1p in the intracluster cycle defined above. That is, (vi p , v j q ) changes to (vi-1p , v j q ).

• We choose a cost β to be greater than the cost of any tour in the environment P that
visits all targets xi with a α penalty added to each of the edges in the tour. Add this
penalty β to all edges in E t except those marked with −1 costs. Replace the cost of
all the edges with cost −1 to a cost of zero.

5. Add robot depots to the graph. Create a new graph Gb = {V b ,E b}. For all the depots, add

vd
i and v f

i to V b . For the INTERCHANGEABLEDEPOTS we create two copies of each depot.
For SAMEDEPOT we create 2m copies of the depot, and for SAMEFINISHDEPOT we create
m copies of the finish depot. Create zero cost edges E b between all pairs of depot nodes.
We get the final directed TSP graph G f = (V f ,E f ). Here V f = V b ∪V t and E f = E b ∪E t .
We also add the following edges to E f :

• Create depot outgoing edges E o = {(vd
i , v j p ) | ∀vd

i ∈ V b ,∀v j p ∈ V t }. Assign a cost γi

to all edges (vd
i , v j p ) equal to the cost of the shortest path connecting vd

i to v j p in P

restricted to V . Also, add a penalty α+β to these edges. Add E o to E f .

3We use the cost of an arbitrary tour in the original GTSP for this step instead of using sum of the cost of all the
edges as used in P2 of Noon-Bean Method [56]. This is used to prevent numerical issues with large penalties in
Concorde.
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• Create tail shifted depot incoming edges E i = {(v j p , v f
i | ∀v j p ∈ V t ,∀v f

i ∈ V b}. Also,

add the cost γi to (v j p , v f
i ) as above but without penalty. Then we move tail of all

the edges (v j p , v f
i ) ∈ E i to the previous node v j-1p in the intracluster cycle defined in

Step 4 above. That is, (v j p , v f
i ) changes to (v j-1p , v f

i ). Add E i to E f .

• Define α=2(cost of MST in Gcr )+2m|cost in E i |max . Define β=2α(1+(#edges in MST
in Gcr ))+2m(1+α).
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Figure 2.2: Transforming the multi-robot watchmen route problem into an asymmetric TSP
instance.
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6. This gives us a directed TSP input instance. This can be converted to an undirected TSP
using transformation used by Karp [39].

The correctness of the algorithm follows from the correctness of the original Noon-Bean reduc-
tion [56]. The major change to the reduction is the addition of the complete graph between the
depot vertices, Vb . The only incoming edges to the start depots, vd

i , are from the finish depot

vertices, vd
j . Similarly, the only outgoing edges from the finish depot vertices are to the start

depot vertices. Consequently, whenever the optimal TSP tour visits a finish depot vertex it must
take a zero cost edge to a start depot vertex, from which it may either to a node in V t or to
another finish depot vertex. Therefore, the TSP tour visits an alternating sequence of start and
finish depot vertices with possibly non-zero viewpoints (i.e., V t vertices) in between. We can,
therefore, partition the TSP tour into m subtours from start depot to finish depots. This gives us
paths for the m robots. One or more of these subtours may be empty, in which case the optimal
solution uses fewer than m robots. This can happen since the algorithm minimizes the sum of
the path lengths and not the maximum path length of m robots.

2.5 Evaluation

We implemented the algorithm described in the previous section. Our implementation is avail-
able online at https://github.com/raaslab/watchman_route and uses the Noon-Bean im-
plementation from Mathew et al. [46] and VisiLibity library [57]. Figure 2.2 shows a 2D instance
solved using this algorithm.

The penalties added to the edges can cause their cost to become large enough to run into nu-
merical overflow issues. In our experiments, we encountered instances where the penalty re-
sulted in the edge costs becoming large than what can be represented with the data structure
used by Concorde. In such a case, we can use the reduction given by Lien and Ma [44] which
does not require the addition of any penalty. However, their reduction triples the number of
nodes in the TSP as compared to the Noon-Bean transformation. This results in larger instances
and slower running times. Our single robot implementation based on the Lien-Ma transforma-
tion is also available online.

An instance with 15 targets and 30 candidate viewpoints for one robot took 41s secs to solve
using Concorde, where as the same instance took 536s to solve directly using the Integer Linear
Programming solver in MATLAB. We use an iterative implementation [36] to find the tour in
MATLAB using the ILP function since specifying the full problem directly becomes too large to
hold in memory.

Table 2.1 gives the times required to solve some representative problems using the Lien-Ma
and Noon-Bean reductions with Concorde and MATLAB. As expected, the Noon-Bean reduc-
tion along with the Concorde solver is fastest among all options. The Lien-Ma reduction for
an instance with 15 targets and 30 candidate viewpoints could not be solved in 12 hours using
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Reduction Solver Problem Size Time (secs)
Lien-Ma Concorde (DFS) |V | = 20, |X | = 10 159.97
Lien-Ma Concorde (BFS) |V | = 20, |X | = 10 225
— MATLAB ILP |V | = 20, |X | = 10 40
Noon-Bean Concorde (BFS) |V | = 20, |X | = 10 2.7

Table 2.1: Time required to solve a representative problem with various implementations.

Concorde. An instance with |V | = 63 and |X | = 15 could not be solved using MATLAB’s ILP func-
tion in more than 16 hrs of computation. The same instance took 2411 secs with Concorde and
Noon-Bean reduction. An instance with |V | = 63, |X | = 15, and three robots was solved in 1599
secs with Concorde and Noon-Bean.

Figure 2.3: (a) Cost of the optimal solution with 10 targets as a function of the number of robots.
(b) Cost of the optimal solution with 3 robots as a function of the number of targets. (c) &
(d) Computational time for Figures (a) and (b), respectively. The dots show the costs/times
of individual random trials and the curve shows the mean of all trials. The robots and target
positions were randomly drawn in the environment shown in Figure 2.4.
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Length of Tour Computed Actual Distance Traveled
Robot 1 78.06 71.74
Robot 2 50.04 43.63

Table 2.2: Comparison of the lengths of the tour computed and the actual distance traveled by
the robots in the Gazebo simulation environment for Figure 2.4.

Figure 2.3(a) shows the effect of varying the number of robots on the optimal cost (sum of path
lengths). 10 target locations are randomly generated for each trial in the environment shown in
Figure 2.4. Figure 2.3(b) shows the effect of varying the number of targets. The number of robots
was fixed to 3. Figures 2.3(c)–(d) show the computation time required for finding the solution
using the Noon-Bean reduction with Concorde (BFS) solver, as a function of the number of
robots and the targets.

The resulting algorithm was also tested in the Gazebo simulation environment (Figure 2.4) us-
ing two Pioneer 3DX robots fitted with a limited field-of-view angle camera. The robots emulate
an omnidirectional camera by rotating in place whenever they reach a new vertex. Table 2.2
shows the comparison between the lengths of the tours on the input graph and the actual dis-
tance traveled by the robots in the Gazebo simulation environment. The actual distances are
shorter since the robot is not restricted to move on the input graph in the polygonal environ-
ment.

Figure 2.4: Two robot simulation in Gazebo. A video of the simulation is available online:
https://youtu.be/lvUyoFZBqxA. The targets are marked as black dots.



Chapter 3

View Point Planning For Dynamic Scenes1

3.1 Introduction

Work in this chapter is motivated by applications where UAVs are used for dynamic environ-
mental monitoring. Specifically, we are interested in tracking expanding plumes in aquatic en-
vironments using multiple robots. The hardware setup for this work is described in Chapter 4.
We abstract the problem by defining points of interest as mobile targets we want to track with
downward facing cameras on UAVs.

This work addresses the problem of assigning robots with limited Field-of-View (FoV) sensors
to track multiple moving targets. We assume that each robot has a number of motion primitives
to choose from. Motion primitive is the position a UAV can move to in one-time step. We can
discretize the direction a UAV can move into required resolution. The assignment of targets to
track is therefore coupled with the selection of motion primitives for each robot. We term this
as the distributed Simultaneous Action and Target Assignment (SATA) problem.

A motion primitive is defined as a control input from the given state of a robot. We can gen-
erate a local trajectory by applying a sequence of motion primitives [30]. Although we use the
term motion primitive throughout this thesis, we will interchangeable use it to refer to the lo-
cal trajectories as well as the final state on these local trajectories if the usage is clear from the
context. This naturally includes the collision avoidance as not to choose motion primitives that
may encounter other robots or obstacles.

A motion primitive can track a target if at the end of the primitive the robot has the (predicted
position of the) target in the FoV. Therefore, the set of targets tracked by different motion prim-
itives for the robot may be different (Figure 3.1). Our goal is to assign motion primitives to the

1This work is part of the paper- Sung, Yoonchang and Budhiraja, Ashish Kumar and Williams, Ryan K and
Tokekar, Pratap. Distributed Simultaneous Action and Target Assignment for Multi-Robot Multi-Target Tracking.
arXiv preprint arXiv:1706.02245.

22
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robots so as to track the most number of targets.

Figure 3.1: Description of multi-robot task allocation for multi-target tracking. In this illustra-
tion, the number of motion primitives for each robot is given by five.

This problem can be viewed as a set cover and its dual maximum cover [73] where every target
is covered by a FoV of at least one motion primitive of a robot. It is equivalent to find a set cover
of motion primitives of any robots with the minimum size. However, we have the additional
constraint that only one motion primitive per robot can be chosen at each step. This implies
that the relationship between a robot and the corresponding motion primitives turns out to
be a packing problem [73] where only one motion primitive can be “packed” per robot. The
combination of two aforementioned problems is called a Mixed Packing and Covering Problem
(MPCP) [86].

Figure 3.2: Communication graph of an anonymous network. The blue area indicates a radius-
2 neighborhood of the red node. The red node is unaware of the entire network topology. A
local algorithm that works for the red node only requires a local information of nodes in the
blue area. The same local algorithm is applied to all nodes in the network to achieve a global
goal of a given task.
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3.2 Related Work

The problem of target tracking in dynamic scenes can be viewed as MPCP. There are many works
in the literature that are studying the problem in this form. Young et. al. [86] provides a approx-
imate solution to the problem. The time complexity of the algorithm is polylogarithmic in the
input size. Jain et. al. [37] provide a faster parallel approximation algorithm for a special class
of MPCP problems called semidefinite programs. The work done by Azar et. al. [7] uses existing
framework of solving linear programs online and extends it to solve MPCP problems online.

There have been many studies on cooperative target tracking in both control and robotics com-
munities. We highlight some of the most closely related works in this section. A more compre-
hensive survey of multi-robot multi-target tracking see [40].

Charrow et al. [16] proposed approximate representations of the belief to design a control pol-
icy for multiple robots to track one mobile target. The proposed scheme uses a centralized
approach. Yu et al. [87] worked on an auction-based decentralized algorithm for cooperative
path planning to track a moving target. Capitan et al. [12] proposed a decentralized cooperative
multi-robot algorithm using auctioned partially observable Markov decision processes.

Morbidi et al. [52] studied a gradient-based control scheme for active multi-target tracking.
They study both cooperative and non-cooperative aspects of the problem. Ahmad et al. [2] pro-
posed a least squares minimization technique for cooperative multi-target tracking. However,
they focus on localization, not on the multi-robot multi-target assignment.

Tokekar et. al. [77] prove that maximum numbers of target covered by selecting the robot trajec-
tories greedily is 1/2 the optimal. Banfi et. al. [8] introduce new constraints in the optimization
which take fairness of tracking into account. Zhang et. al. [90] divide the problem into a two
level problem: at the top, robots use ranking and aggregation technique to allocate the target
to each observer and at the lower level each observer acts independently to track a target. Re-
cent work by Adamey et. al. [1] solves the problem by developing a data structure called region
allocation tree and then using a recursive processing strategy.

The works in [41], [9] and [22] proposed algorithms to solve simultaneous task allocation and
path planning, similar to SATA. They don’t consider the WinnerTakesAll version of the prob-
lem.

3.3 Problem Descrition

Let R be a set of robots and T be a set of targets. Considering that |R| robots are tracking
|T | targets, R(k) = {r1(k), ...,ri (k), ...,r|R|(k)} denotes the state of robots at time k and T (k) =
{t1(k), ...,t j (k), ...,t|T |(k)} denote the (estimated) state of targets at time k, where χR ⊆ Ren and
χT ⊆ Rem are robot state and target state spaces, respectively. It is assumed that targets can be
uniquely detected by a sensor attached to robots so that multiple robots know whether or not
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the same target is observed. This assumption excludes the necessity of data association over
multiple robots, which is not the scope of this work.

As shown in Figure 3.1, each robot is able to compute feasible motion primitives of its own
and detect multiple unique targets within the FoV. Then, the objective of the proposed problem
is to choose one of motion primitives for each robot, yielding either the maximum number of
targets being tracked by the robots or the best quality of tracking, depending on the application.
One possible quality of tracking can be measured by the summation of all distances between
selected primitives and the observed targets.

We first show how to formulate our problem as an Integer Program (IP). We define two unknown

binary variables: xi
m and y j

i . xi
m represents i -th robot selecting m-th motion primitive defined

by xi
m = 1 if pi

m is selected by ri and 0 otherwise. y j
i represents i -th robot assigned to track j -th

target defined by y j
i = 1 if ri is assigned to t j . It follows:∑

pi
m∈P i

xi
m ≤ 1 ∀ri ∈ R,

∑
ri∈R

y j
i ≤ 1 ∀t j ∈ T.

(3.1)

The objective is to maximize the number of targets that are tracked (alternatively, quality of
tracking):

argmax
xi

m ,y
j
i

∑
t j∈T

 ∑
ri∈R

y j
i

 ∑
pi

m∈P i

c j
i ,m xi

m

 , (3.2)

where c j
i ,m denotes weights on sensing edges ES between m-th motion primitive of i -th robot

and j -th target. c j
i ,m can represent, for example, the distance between t j and p i

m . Alternatively,

c j
i ,m ∈ {0,1} making the objective function equal to the number of targets tracked. Consequently,

an optimal motion primitive pi∗
m for all robots can be selected based on xi

m and y j
i . We term this

as the WinnerTakesAll version of SATA.

The SATA problem is NP-Hard [83]. The WinnerTakesAll version can be optimally solved us-
ing a Quadratic Mixed Integer Linear Programming (QMILP) solver in the centralized setting.

3.4 Experiments

We performed a comparison study between QMILP and the local algorithm proposed by Sung
et. al. [72]. QMILP solves for the optimal baseline objective that is WinnerTakesAll and lo-
cal algorithm solves for the Bottleneck objective. However, we compare the total number of
targets covered by both approaches. We used TOMLAB [79] to solve the QMILP problem. The
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toolbox works with MATLAB and uses IBM’s CPLEX optimizer in the background. On a laptop
with processor configuration of Intel Core i7-5500U CPU @ 2.40GHz x 4 and memory 16 GB the
maximum time to solve is around 4 seconds on a case with 200 targets and target average degree
2. Most of our cases were solved in less than 2 seconds.

We randomly generated graphs similar to Figure 3.3 with a given average degree for the com-
parison. We start with the upper half of the graph, connecting each robot to its two motion
primitives. Then we iterate through each of motion primitive and randomly choose a target
node to create an edge. Next, we iterate through target nodes and randomly choose a motion
primitive to create an edge. We also add random edges to connect disconnected components
(to keep the implementation simpler). We repeat this in order to get the required graph. If we
need to increase the degree of target nodes in the graph, we create new edges to random primi-
tives till we achieve the desired degree. We generated cases by varying the degree of targets, the
number of targets, and the number of robots using the method described above.

Figure 3.3: One instance of a graph for MPCP when there are three robot nodes, six motion
primitive nodes and three target nodes.

The comparative simulation results are presented in Figure 3.4. The plots show minimum, max-
imum, and average of the targets covered by the local algorithm and QMILP running 10 random
instances for every setting of the parameters. We also show the number of targets covered when
choosing motion primitives randomly as a baseline. We observe that the local algorithm pro-
posed by Sung et. al. [72] with h = 2 performs comparatively to the optimal algorithm and is
always better than the baseline. In all the figures, ∆R = 2, making random a relatively powerful
baseline.

In the case where the number of targets is 50 and 100 with degree 4 in Figure 3.4, the perfor-
mance of the local algorithm does not improve as the number of robots deployed increases,
which may seem counter-intuitive. We conjecture that the reason behind this is the locality
of the proposed algorithm. Even though more robots are used to track the same number of
targets, the average degree of the target remains the same. Consequently, the communication
graph for the robots becomes sparser. Since h is fixed for all cases, this implies that each robots
layered graph reaches a smaller subset of the total graph, leading to even more sub-optimal
performance. One avenue of future work is to analyze this in more depth.
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Figure 3.4: Showing the comparative results of QILP, proposed local algorithm by Sung et. al.
[72], and randomly choosing a motion primitive. To generate graph we vary the number of
robots, the total number of targets, and the average degree of a target.

3.5 Conclusion

This work gives an optimal baseline to solve the multi-robot multi-target assignment prob-
lem for any local algorithm. We want to address the scenarios where the robots would like
to reduce their communication to solve the given assignment problem while at the same time
maintaining some guarantees of tracking. Sung et. al. [72] worked on a powerful local com-
munication framework employed by Floreen et al. [24] to leverage an algorithm that can trade-
off the optimality with communication complexity. We empirically evaluated this algorithm
and compared it with the baseline greedy strategies. Our immediate future work is to solve the
WinnerTakesAll version of SATA and extend the QMILP framework to work in a decentralized
way. We can also add communication round between robots as another decision variable. We
are also working on implementing the resulting algorithms on actual aerial robotic systems to
carry out real-world experimentation. The preliminary field tests and hardware configuration
are described in Chapter 4.



Chapter 4

System and Calibration

In this chapter, we present the hardware and software design of the UAV platform developed to
support the two motivating applications. We also present results from preliminary field experi-
ments.

4.1 Design Requirements

The main requirements for the UAV platform were flexibility to add custom payloads and up-
grading the onboard sensors. The autopilot must be capable of operating in GPS-denied en-
vironments (in particular, for the bridge inspection application). Furthermore, the autopilot
must be able to support programming with Robot Operating System [66]. The platform must
have high endurance (>30 mins) because it can be time-consuming to retrieve and relaunch in
the environments we want to deploy our UAVs. We wanted a platform that can handle in-flight
communication between UAVs. The machine vision camera must give us the control over fix-
ing focus, exposure, aperture and frame rate. Control over exposure is particularly important
for the lighting conditions in the operating environment (for both applications) can change
dramatically. The camera must also be a global shutter one, since rolling shutter on a UAV may
lead to motion blurs. To enable onboard image processing, we need an onboard computer with
computing capabilities at par with consumer-grade laptops. In Chapter 4.2 we talk about how
our system can handle the above-mentioned requirements.

4.2 System Components

We choose the DJI-450 frame (Figure 4.1) as the base for our design. The frame has a diagonal
wheelbase of 450mm. This frame supports 12-inch propellers and has enough space to mount
an Intel NUC [75]. Components of the UAV are shown in Figure 4.2. This frame makes it easy to
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mount other peripherals such as the onboard camera and computer. We use 3D printed parts
to attach these peripherals (see Figure 4.3).

Figure 4.1: DJI-450 frame for our UAV.
Figure 4.2: Labeled components of
our UAV.

Figure 4.3: Shows in-house 3d printed components to mount camera and Intel NUC computer.

4.2.1 Autopilot and Propulsion

PixHawk flight controller: We choose PixHawk [48] autopilot for our platform. PixHawk is a
high-performance autopilot-on-module suitable for fixed wing, multi rotors, and helicopters
as well as many other robotic platforms. It is targeted towards high-end research, amateur, and
industry needs. The Pixhawk platform is commonly used by many existing systems and is well-
supported. PixHawk flight controller is shown in Figure 4.4.
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Figure 4.4: PixHawk Flight Controller. Image credits: [33].

GPS: We use the 3DR GPS module that has a u-blox NEO-7 module inside. The GPS provides
data at 5Hz and weighs 16.8 g with the casing. Though PixHawk autopilot has its internal com-
pass the one inside this module is more reliable.

Motor and motor controllers: We use the E800 Tuned Propulsion System [21] manufactured
by DJI in our system, as shown in Figure 4.5. This is the component of our system that provides it
the endurance we need. Each motor supports a 12-inch propeller and can provide a maximum
thrust of 1400 g. At hover, each motor provides around 600 g thrust. The overall weight of our
system is 2.4 kg. The current needed by the whole system at this thrust is approximately 12 A.
This efficiency in the system is mainly due to low Kv rating (350 Kv), single strand coils and most
importantly switching using sinusoidal back EMF.
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Figure 4.5: E800 Tuned Propulsion
System by DJI. Image credits: [21].

Figure 4.6: Tattu 8000mAh 22.2V 25C
6S1P lipo Battery pack used for UAVs.
Image credits: [35].

Battery: Another important factor in increasing the endurance is the battery. We used Tattu
8000mAh 22.2V 25C 6S1P Lipo Battery Pack as shown in Figure 4.6. The weight of this battery is
1160 gms. The final endurance is approximately 40 mins.

4.2.2 Camera

We use the PointGrey Flea3 [23] FL3-U3-20E4C-C camera for our system. The camera (see Fig-
ure 4.7) is mounted side-looking for bridge inspection and downwards-facing for plume track-
ing. The resolution of the images is 1600× 1200. The camera supports frame rates up to 59
frames per second. The camera uses sensor e2v EV76C5706F CMOS with a global shutter. The
lens used is shown in Figure 4.8. The lens provides wide viewing angle of 50.8 x 38.6° for 1/1.8"
megapixel cameras. It has an adjustable aperture range f /1.4−16 and fixed focal length 8mm.
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Figure 4.7: Flea3 2.0 MP Color USB3
Vision - FL3-U3-20E4C-C. Image
credits: [31].

Figure 4.8: Tamron M118FM08 Mega-
Pixel Fixed-Focal Industrial Lens. Im-
age credits: [34].

4.2.3 Onboard Computing

We use the Intel NUC7i7BNH Mini PC NUC Kit as shown in Figure 4.9, as our onboard com-
puter. This mini computer has 3.5 GHz Intel Core i7-7567U Dual-Core processor. We can run
high-level image processing algorithms required for our application on this processor. This
supports RAM up to 32GB and without the metal casing (see Figure 4.10) weighs around 100
gm. This weight to processing power ratio is appropriate for our application.

Figure 4.9: Intel NUC NUC7i7BNH.
Image Credits: [32].

Figure 4.10: Intel NUC with metal cas-
ing removed
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4.3 IMU-Camera Calibration

Our payload is a machine vision camera. Our eventual goal for the problem discussed in Chap-
ter 3 is to estimate the position of targets using noisy measurements from multiple UAVs. To
share the measurements amongst UAVs, we need to have a centrally agreed frame of reference.
The camera gives measurements relative to camera frame. We need to transform these mea-
surements to a global frame. This requires two calibration matrices. First, intrinsic camera ma-
trix that yields focal length, optical center, skew, and distortion. These parameters are needed
to convert an image point to camera frame [47]. Second, we need a static transformation matrix
between the camera frame and the autopilot, i.e., the IMU frame. The transformation is static
since the IMU and camera are rigidly mounted on the UAVs. See Figure 4.11 for a visualization
of the coordinate frames involved. If we know both matrices then we can express the measure-
ment in a global frame since we know position and orientation of IMU in a global frame from
a sensor fusion algorithm that runs inside PixHawk autopilot [48] autopilot on our UAV. The
fusion algorithm estimates the attitude of the UAV using accelerometer, gyroscope, and mag-
netometer. It also estimates the position of the UAV using GPS and Barometer.

Figure 4.11: We determine Tcamer a_to_I MU through Kalibr toolbox. This is a transform that con-
tains translation and rotation of IMU frame w.r.t camera frame. Image taken from PixHawk
project [63]

Determining the accuracy of calibration when integrated with the whole system was not pos-
sible especially with GPS in the loop. This can be attributed to the accuracy provided by GPS.
The part we want to verify is the IMU to camera transform on an actual test bed. To test this
we designed our own experiment where we used fake_gps [81] under motion capture to remove
the inaccuracies induced from GPS and know how our calibration is behaving as a standalone.
We talk more about this in Chapter 4.3.1.
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4.3.1 Measurement

As part of the preliminary testing for tracking over aquatic bodies project in Chapter 3, we
use Apriltag markers attached to foam buoys as a proxy for the expanding plumes (see Fig-
ure 4.12). Given the size of Apriltag marker, and the camera intrinsic parameters, an Apriltag
detection [58] gives us the position and orientation of the tag with respect to the camera op-
tical center. As discussed earlier we need a transformation from IMU frame to camera frame
to eventually give a global measurement of an Apriltag see Figure 4.11. Below we explain the
toolbox that we use, the data collection method and our test bed to verify calibration.

Figure 4.12: Showing Apriltag on foam buoys.

4.3.2 Toolbox

Kalibr [38] is a toolbox that solves for intrinsic and extrinsic calibration of multiple cameras
and spatial and temporal calibration of an IMU w.r.t. a camera system. In an extended version,
spatial and temporal calibration of a camera system w.r.t. multiple IMUs, as well as IMU intrin-
sic calibration, is supported. To make the calibration task more convenient and reproducible,
camera focus and calibration validator are also part of the toolbox. The calibration approaches
used in Kalibr are based on papers by Furgale et. al. [26] [27].

4.3.3 Data Collection

Input to the toolbox are three files:

1. IMU.yaml: contains sampling rate and constants for IMU noise model given in Eq. 4.1.

ω̃(t ) =ω(t )+b(t )+η(t ). (4.1)
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The constants are gyroscope noise density, accelerometer noise density, gyroscope ran-
dom walk and accelerometer random walk. We can find the noise density parameter usu-
ally from datasheet and the random walk parameters can be determined directly from
Allan standard deviation plot.

2. Camera.yaml: contains intrinsic parameters of the camera, we use Matlab camera cal-
ibration toolbox to find these intrinsic parameters. The toolbox is based on Zhang et.
al. [91]. The pinhole camera model as shown in the Figure 4.13 used by the toolbox. The
corresponding equations are given in Eq.4.2

Figure 4.13: The pinhole camera model. An oriented central projective camera. Image Cred-
its: [59]

P3×4 = K [R|t ] =
 f ∗ku cu

f ∗kv cv

1




tx

R3×3 ty

tz

0 0 0 1

 (4.2)

The description is taken from openmvg docs [59]. Eq. 4.2 the parameters are given as:

• Intrinsic parameters [ f ;cu;cv]:

– ku,kv : scale factor relating pixels to distance (often equal to 1),

– f : the focal distance (distance between focal and image plane),

– cu,cv : the principal point, which would be ideally in the center of the image.

• R : the rotation of the camera to the world frame,

• t : the translation of the camera. t is not the position of the camera. It is the position
of the origin of the world coordinate system expressed in coordinates of the camera-
centered coordinate system.
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A 3D point is projected in an image with the following formula (homogeneous coordi-
nates) in Eq. 4.3:
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3. Rosbag: recording containing IMU data and camera images. Rosbag is a set of tools for
recording from and playing back to Robot Operating System (ROS) topics. It is intended
to be high performance and avoids deserialization and reserialization of the messages.

4.3.4 Kalibr Algorithm and Output

The toolbox uses basis function approach for batch continuous-time state estimation as pre-
sented by Furgale et. al. [26]. Time-varying states are represented as the weighted sum of a
finite number of known analytical basis functions. Using the estimated states they write the
measurement model equations for the sensors involved namely camera, accelerometer and gy-
roscope. Also, they model IMU biases by zero-mean white Gaussian processes. There are five
quantities that need to be estimated namely, gravity direction, the transformation from camera
to IMU, offset between camera time and IMU time, pose of IMU w.r.t. world frame, accelerom-
eter and gyroscope biases. They use Levenberg-Marquardt (LM) [45] [43] algorithm, this is a
standard bundle adjustment algorithm. The objective function in turn minimizes the errors for
all the measurement and process models involved. The toolbox outputs a transformation from
IMU to camera. And also provides time offset estimate, camera reprojection errors, gyroscope
and accelerometer RMS error.

4.4 Calibration Verification

As discussed before we need a method to verify the quality of the calibration in the whole sys-
tem. We use motion capture (MOCAP) (see Figure 4.14) system to provide a fake GPS [81] lo-
cation to our PixHawk autopilot. We placed a grid of Apriltags in the MOCAP area on the floor
(see Figure 4.15). We recorded a rosbag containing transform of these Apriltags and UAV using
ROS package called tf [74]. Figure 4.16 shows a visualisation of the ROS computation graph. We
provide the code for our implementation [25]. In order to analyze the data from the Rosbag we
move it to Matlab Robotics Toolbox [67] where we plot the positions of the tags (Figure 4.17) in
the MOCAP coordinate frame. We compare the ground truth of Apriltags distances with mean
distances as shown in Figure 4.17 and in Table 4.1. To plot positions of the tag in MOCAP co-
ordinate frame we use the IMU to camera transformation we found above. Since we know the
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true distances between the tags we are able to analyze the mean and spread of the measure-
ment. While the error in the representative indoor trials is in the order of centimeters, a larger
scale evaluation must be performed outdoors by increasing the altitude of the aerial vehicle.

Figure 4.14: Screenshot showing a UAV with markers under MOCAP.
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Figure 4.15: Image from UAV camera
flying in MOCAP arena

Figure 4.16: Rosgraph showing the active
nodes. pg_17089332 is running the camera
driver, mocap_node is publishing UAV’s posi-
tion in MOCAP frame, apritags node is han-
dling the image processing task to read the
tags, mavros node takes MOCAP position in-
put and fakes it as GPS for PixHawk autipilot.
Other nodes perform supporting roles.

Figure 4.17: Shows position of Apriltag in MOCAP frame as seen by flying UAV.
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Ground Truth Distance (m) Mean Distance (m)
tag0 to tag1 0.0678 0.0684
tag1 to tag2 0.0678 0.0690
tag3 to tag4 0.0678 0.0690
tag0 to tag3 0.0864 0.0734
tag1 to tag4 0.0864 0.0737

Table 4.1: Comparing ground truth with distance between mean positions. MOCAP provides
minimum resolution of 8 mm.

4.5 Preliminary Experiments

To analyze the challenges and understand the limitations of our UAVs for bridge inspection
project we performed experiments at Virginia Tech Transport Institute’s (VTTI) smart bridge [69]
(see Figure 4.18) and George Coleman bridge [28] (see Figure 4.19). Through our experiments,
we realized that the GPS based position hold is unreliable flying inside or close to the bridge.
Figure 4.20 shows the UAV flying inside the smart bridge and George Coleman bridge. Head-
ing correction based on compass was more unreliable inside the bridge compared to outside.
Furthermore, owing to the more exposed metal in George Coleman bridge compared to VTTI’s
smart bridge, the compass is even more unreliable. UAVs experienced strong wind gusts flying
inside or near the George Coleman bridge. This is because the openness of the structure causes
wind channels between the trusses and being over a river causes excess winds. We flew the UAVs
in manual mode or in altitude hold mode [65]. In manual mode, the UAV holds the attitude and
we have to control the drift and thrust. In altitude hold mode we only have to control the drift
and UAV holds the height using the barometer. We used the images captured from the outside
of the bridge and used Pix4D [64] software to stitch them together to give us the reconstruction
shown in Figure 4.21. Figure 4.22 shows one of an image taken by our UAV while inspecting the
George Coleman bridge.
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Figure 4.18: A shot capturing our UAV
recording images from the side of the
George Coleman bridge.

Figure 4.19: A view of VTTI’s smart bridge
with our UAV in the scene recording the
images.

(a) Flight inside the George Coleman bridge (b) Flight inside VTTI’s smart bridge

Figure 4.20: Manual flights inside the bridge to assess the bridge health from inside.

Figure 4.21: Shows reconstruction of
the George Coleman bridge.

Figure 4.22: Image taken by the UAV
while flying.
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We also performed several experiments to test our setup and understand the problems of flying
UAVs over aquatic environments. In the initial phases of the experiments, we tested the UAV’s
image capturing and image processing capabilities. In Figure 4.23 we can see an Apriltag being
detected. We are able to record Apriltags measurements at 35 fps using a 59 fps camera. We
used personalrobotics/apriltags [68] repository for the Apriltag’s image processing.

Figure 4.23: Apriltag detected using onboard image processing algorithms.

Next round of experiments was performed at Claytor lake in Virginia. The most challenging
part of flying over the lake was not having water landing capabilities. We are currently working
towards enabling our UAVs for a water landing. Another important requirement to capture good
videos is the ability to control exposure. Water reflects a large amount of light on a sunny day, it
is impossible to read tags with auto exposure enabled. We also recorded the data with Apriltag
on a mannequin and an unmanned surface vehicle (USV) (See Figure 4.24). Figure 4.25 shows
the UAV flying over the mannequin and the USV.
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Figure 4.24: Apriltags mounted on a mannequin and a USV.

Figure 4.25: UAV recording the videos of the tags at Claytor lake.



Chapter 5

Conclusion

In this thesis, we study the problem of viewpoint planning in static and dynamic scenes using
multi-robot teams. For static scenes with polygonal environments, the goal is to compute tours
for multiple robots such that there is at least one tour that can see all the required targets in the
environment. We presented a practical solution that finds an optimal solution to the problem
in possibly exponential time. In the case of dynamic environments, we studied the multi-robot
assignment problem for multi-target tracking. We solved the problem optimally using Mixed
Quadratic Integer Linear Program to maximize the total number of targets covered. We also
discussed our system design, experiments for bridge inspection and tracking plumes in aquatic
environments.

The algorithm described in Chapter 2 finds the optimal solution by reducing it to GTSP. How-
ever, this is valid when the cost function is the sum of the travel times for all the robots. For
this algorithm, we discretize the environment to get the candidate viewpoint nodes. Instead
of naively discretizing, we can discretize only along the edges of the visibility polygon and add
these discrete points to the graph. We would also need to add vertices of the polygon/holes to
the graph. It can be proven that optimal tour that sees all the targets in the environment would
pass through the vertices of the polygon/holes and/or through the edges of the visibility poly-
gon. We leave this proof for future work. We also would like to extend this approach to account
for measurement time. Minimizing the makespan remains an open problem. Adding measure-
ment time can be done quite easily, we would need to add a measurement cost to each edge in
Gcr in Chapter 2.4 Step 2. The experimental evaluation also remains a part of our future work.

For dynamic viewpoint planning discussed in Chapter 3, we want to focus on scenarios where
the number of robots is large and consequently solving the problem locally rather than centrally
is desirable. The robots may have a limited communication range and bandwidth. As such, we
seek assignment algorithms that rely on local information and limited, local communication
with the neighboring robots. The eventual aim of this line of work is to maximize the total
number of targets while decreasing the communication rounds between the robots.

43
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In the decentralized problem framework, Floréen et al. [24] proposed a local algorithm to solve
MPCP using max-min/min-max LPs in a distributed manner. A local algorithm is a constant-
time distributed algorithm that is independent of the size of a network [73]. This enables a
robot only to depend on local inputs in the constant-radius neighborhood of robots. Figure 3.2
illustrates the gist of local algorithm. The scalability can be achieved by employing a local algo-
rithm, as no global information is required. In other words, each robot does not need to know
the total number of robots collaborating with. The work to analyze dynamic scenes in this the-
sis acts as a baseline to such algorithms. Our preliminary results on adapting an existing local
algorithm for tracking, performed along with Sung et al. [72], are promising.

Our immediate future work is an experimental validation of algorithms in Chapter 2 and 3 with
the hardware system described in 4.
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[75] The intelÂő nuc is a powerful 4x4-inch mini pc. https://www.intel.com/content/www/
us/en/products/boards-kits/nuc.html. Accessed: July’19 2017.

[76] Pratap Tokekar, Ashish Kumar Budhiraja, and Vijay Kumar. Algorithms for visibility-based
monitoring with robot teams. arXiv preprint arXiv:1612.03246, 2016.



51

[77] Pratap Tokekar, Volkan Isler, and Antonio Franchi. Multi-target visual tracking with aerial
robots. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Confer-
ence on, pages 3067–3072. IEEE, 2014.

[78] Pratap Tokekar and Vijay Kumar. Visibility-based persistent monitoring with robot teams.
In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages
3387–3394. IEEE, 2015.

[79] Tomlab: Optimization environment large-scale optimization in matlab. http://tomopt.
com/docs/quickguide/quickguide006.php. Accessed: 2017-01-03.

[80] Tomlab/cplex handles large-scale mixed-integer quadratic programming (miqp) prob-
lems with linear and quadratic constraints. http://tomopt.com/tomlab/products/

cplex/, 2017. [Online; accessed 14-July-2017].

[81] Use motion capture to fake gps for pixhawk platform. https://dev.px4.io/en/

advanced/fake_gps.html. Accessed: 2017-18-07.

[82] Uses odometry, sensor streams, and a goal pose and outputs safe velocity commands that
are sent to a mobile base. http://wiki.ros.org/navigation, 2017. [Online; accessed
13-July-2017].

[83] V.V. Vazirani. Approximation algorithms. Springer Publishing Company, Incorporated,
2001.

[84] Virginia unmanned systems article on use of uavs for infrastructure inspection. http:

//vus.virginia.gov/air/infrastructure/, 2017. [Online; accessed 18-July-2017].

[85] Pengpeng Wang, Ramesh Krishnamurti, and Kamal Gupta. Generalized watchman route
problem with discrete view cost. International Journal of Computational Geometry & Ap-
plications, 20(02):119–146, 2010.

[86] Neal E Young. Sequential and parallel algorithms for mixed packing and covering. In Foun-
dations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pages 538–546.
IEEE, 2001.

[87] Huili Yu, Kevin Meier, Matthew Argyle, and Randal W Beard. Cooperative path plan-
ning for target tracking in urban environments using unmanned air and ground vehicles.
IEEE/ASME Transactions on Mechatronics, 20(2):541–552, 2015.

[88] Jingjin Yu, Sertac Karaman, and Daniela Rus. Persistent monitoring of events with stochas-
tic arrivals at multiple stations. In IEEE International Conference on Robotics and Automa-
tion (ICRA), 2014.

[89] Jingjin Yu, Mac Schwager, and Daniela Rus. Correlated orienteering problem and its ap-
plication to informative path planning for persistent monitoring tasks. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 2014.



52

[90] Mengzhe Zhang and Sourabh Bhattacharya. Multi-agent visibility-based target tracking
game. In Distributed Autonomous Robotic Systems, pages 271–284. Springer, 2016.

[91] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions on
pattern analysis and machine intelligence, 22(11):1330–1334, 2000.


