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Abstract 

  

 

To meet the requirements for the next generation of space missions, a paradigm shift is 

required from current structures that are static, heavy and stiff, to innovative structures 

that are adaptive, lightweight, versatile, and intelligent. This work proposes the use of a 

novel morphing structure, the thermally actuated anisogrid morphing boom, to meet the 

design requirements by making the primary structure actively adapt to the on-orbit 

environment. The proposed concept achieves the morphing capability by applying local 

and global thermal gradients and using the resulting thermal strains to introduce a 6 

Degree of Freedom (DOF) morphing control. To address the key technical challenges 

associated with implementing this concept, the work is broken into four sections. First, 

the capability to develop and reduce large dynamic models using the Data Based 

Loewner-SVD method is demonstrated. This reduction method provides the 

computationally efficient dynamic models required for evaluation of the concept and the 

assessment of a vast number of loading cases. Secondly, a sensitivity analysis based 

parameter ranking methodology is developed to define parameter importance. A five 

parameter model correlation effort is used to demonstrate the ability to simplify complex 

coupled problems. By reducing the parameters to only the most critical, the resulting 

morphing optimization computation and engineering time is greatly reduced. The third 

piece builds the foundation for the thermal morphing anisogrid structure by describing 

the concept, defining the modeling assumptions, evaluating the design space, and 

building the performance metrics. The final piece takes the parameter ranking 

methodology, developed in part two, and the modeling capability of part three, and 

performs a trust-region optimization to define optimal morphing geometric configuration. 

The resulting geometry, optimized for minimum morphing capability, is evaluated to 

determine the morphing workspace, the frequency response capability, and the minimum 

and maximum morphing capability in 6 DOF. This work has demonstrated the potential 

and provided the technical tools required to model and optimize this novel smart 

structural concept for a variety of applications.  
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General Audience Abstract 

 

 
To meet the requirements for the next generation of space missions, a paradigm shift is 

required from current structures that are static, heavy and stiff, to innovative structures that 

are adaptive, lightweight, versatile, and intelligent. This work proposes the combination of a 

unique structure with a new control method to provide a novel way to achieve smart 

structural adaptive (morphing) capability. This concept takes advantage of the natural 

expansion and contraction of materials caused by temperature changes (Coefficient of 

Thermal Expansion) to bend and twist the structure of interest into the desired configuration. 

By applying local heat (thermal energy) to induce temperature differences in the structure, 

the temperature induced material expansion (thermal strain) can be used to control and direct 

the structure into all different planes and rotations(X, Y, and Z displacements as well as the 

rotations in the X, Y, and Z axis). This structure is called an anisogrid boom. The potential 

applications of model range from passive thermal mitigation system to an active precision 

low frequency vibration control system. The anisogrid boom is a low mass and efficient 

structural configuration with a long history in aerospace applications. The thermally 

morphing anisogrid structure is made up of helical members (these members are heated and 

cooled to actively bend and twist the structure) and circumferential members (these members 

provide stability and rigidity to the structure). This work details the methods used to move 

and control the structure as well as the development of the technical capabilities required to 

effectively demonstrate the limits of the concept. To address the key technical challenges 

associated with implementing this concept, the work is broken into four sections. First, the 

method is detailed that is used to generate the large dynamic computer models and the 

method to reduce them using a model reduction method, Data Based Loewner-SVD. This 

reduction method provides the computationally-efficient dynamic models required for 

evaluation of the concept. Secondly, a novel methodology is discussed identifying the impact 

of an input parameter change on the resulting output, such that the parameters of importance 

can be ranked. This ranking provides insight into what parameters should be the focus for 

further evaluation and optimization. The last two sections address how these tools are used to 

demonstrate the performance of this novel morphing structure as a function of the geometric 

input parameters relative to multiple developed performance metrics. Finally, the structure is 

optimized to achieve the most accurate morphing possible so that the limits of the capability 

can be better understood. This work has demonstrated the potential and provided the 

technical tools required to model and optimize this novel smart structural concept for a 

variety of applications. 
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Preface 

The intent of this effort is to demonstrate the thermal morphing anisogrid system’s ability to 

provide novel high precision morphing capability needed to meet the design requirements of 

future space systems. The purpose of this work is to expand the capability of current adaptive 

structures by building smart structure systems that meet the on-orbit design requirements by 

actively adapting to the changing environment. This shift in methodology provides significant 

mass savings potential allowing, not only for cost savings, but also for enabling new mission 

architectures. Significant effort has been expended on the development of smart structures to 

address vibration, thermal distortion, deployment control, and overall intelligent environment 

control capability [1-15]. This concept has the potential to increase the capability of gossamer or 

large space structures [16, 17], where the mass is the driving design constraint [9, 16-23], by 

meeting the high precision displacement requirements of spacecraft systems more efficiently. To 

provide this capability, the thermal anisogrid concept achieves the morphing control through the 

use of thermal strain to actuate the individual helical members in the anisogrid structure. 

Properly controlling the temperatures of multiple helical members can introduce 6 Degrees of 

Freedom (DOF) morphing control. This system couples the use of low Coefficient of Thermal 

Expansion (CTE) materials with precise thermal control to provide the high precision morphing 

capability. The focus of this work is to define the limits of the morphing accuracy achievable by 

the novel thermal morphing anisogrid smart structure. 

 

This work details the technical developments used to model, evaluate, and optimize the 

morphing performance of this novel morphing structural concept, the thermally actuated 

anisogrid morphing boom. Four key technical tasks were completed in order to develop the 

technical capability and optimize this complex structure. The first technical effort investigates 

the dynamic structural modeling of these complex dynamic structures and the reduction of the 

dynamic model through the use of the data based Loewner-SVD method.  Not only does the 

model reduction reduce the cost of evaluating the structure, but it also enables future efforts to 

more efficiently investigate the dynamic properties of the complex anisogrid structure. The 

second technical challenge was the development of new sensitivity analysis methods to reduce a 

complex correlation, or optimization problem, to its most essential inputs. This method enables 

efficient optimization by eliminating all but the critical parameters required to identify the 

optimal geometry performance. The third challenge was focused on the development of the 

modeling requirements, the building of performance metrics, and investigation into the design 

space of the system. These developments build the required technical capability that allows for 

the fourth and final effort to efficiently find the optimal morphing capability of this complex 

morphing system.   

 

While there are a significant number of FEM model reduction methods proposed in the literature, 

the approach demonstrated in this effort provides an opportunity unattained in currently adopted 

reduction methods. The work herein can be extended to model generation using experimental 

measurements by simply replacing the FEM output data used in this investigation with actual test 

measurements.  This method will be demonstrated on two thermally morphing structures to 

determine properties of the reduction. This chapter, titled “Dynamic Model Reduction Using 

Data-Based Loewner-SVD Methods applied to Thermally Morphing Structures,” details the 

method and identifies the benefits of the reduced model methodology. 
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In an attempt to reduce the complexity of highly coupled multi-parameter problems, such as 

model correlation, a methodology is demonstrated on the ranking and reduction of correlation 

parameters using model reduction techniques and an iterative FEM is discussed and evaluated. 

The proposed methodology attempts to use established model reduction methods to determine 

the parameters that are most mathematically independent, so that redundant, or low impact 

parameters, are not required for correlation and can thus be truncated. These techniques, when 

used in conjunction with classic or state-of-the-art correlation methods, identify the minimum 

number of parameters required to achieve the majority of the correlation, resulting in a faster, 

more efficient model correlation effort. This study focuses on expanding the capability of 

sensitivity analysis by adding intelligence to the ranking method.  This work is demonstrated in 

the chapter titled “Improved Model Correlation through Optimal Parameter Ranking using 

Model Reduction Algorithms: Augmenting Engineering Judgment.” 

 
To evaluate the design space and perform the morphing optimization, a parameterized Finite 

Element Model (FEM) is developed to generate, run, and evaluate the morphing output. This 

model is used to calculate the performance of the nominal geometry and to perform a parameter 

sweep for all nine geometric parameters to better quantify the variations within the design space. 

The parameter ranking methodology, described in the second chapter, identifies the critical 

parameters for optimization so a reduced optimization set can be defined. The optimal geometry 

is then evaluated, using this reduced parameter set, to define the workspace quality, the 

minimum and maximum morphing capability for multiple materials, and to define the frequency 

response capability as a function of available power.  This effort is detailed in the third and 

fourth chapters titled “Thermal Morphing Anisogrid Smart Space Structures Part 1 Introduction, 

Modeling, and Performance of the Novel Smart Structural Application” and “Thermal Morphing 

Anisogrid Smart Space Structures Part 2 Ranking of Parameter Importance, Trust Region 

Optimization, and Performance Evaluation.”   

 

This dissertation demonstrates the technical developments required to evaluate the capability of 

the thermal morphing anisogrid structure. This work uses these tools to answer the key technical 

questions regarding the morphing concepts minimum morphing capability, morphing range, 

workspace quality, and the frequency response capabilities. 
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Abstract: The work herein proposes the use of the Loewner-Singular Value Decomposition (SVD) data-based 

reduced method as applied to dynamic Finite Element Models (FEM) of thermally morphing structures. This method 

is computationally efficient and accurately reduces models using analytical output data from a FEM. This paper 

details the two-step process proposed in the Loewner-SVD approach. First, a random vibration FEM simulation is 

used as the input for the development of a Single Input Single Output (SISO) data-based dynamic Loewner state 

space model. Second, an SVD-based model reduction technique is used on the Loewner state space model, such that 

the minimal, dynamically representative, state space model is achieved. For this, varying levels of reduction are 

generated and compared. The work herein can be extended to model generation using experimental measurements 

by simply replacing the FEM output data in the first step and following the same procedure.  This method will be 

demonstrated on two thermally morphing structures, a rigidly fixed hexapod in multiple geometric configurations 

and a low mass anisotropic morphing boom. This paper is working to detail the method and identify the benefits of 

the reduced model methodology. 

 

Keywords: Data Based Loewner Method, Model Reduction, FEA, Thermal Actuation, Morphing Systems 

1. Introduction 

While there are a significant number of FEM model reduction methods proposed in the literature, this method 

provides an opportunity unattained in currently adopted reduction methods. The Loewner-SVD reduced model can 

be built with frequency response transfer functions generated using test data rather than the simulated FEM data as 

is shown in this feasibility study. This provides an additional approach as it removes the requirement to have an 

accurate predictive model as the baseline for the reduced model generation. The use of test data to produce high-

quality predictive models provides significant advantages in model development, model correlation, and test 

development. This can also have significant benefits when the models are too complicated, time-consuming to 

develop and/or non-linear in nature. While models have been generated using test data before, using the 

Eigensystem Realization Algorithm (ERA) [1, 2] for modal parameter identification as well as to identify stiffness 

and other dynamic structural parameters [3, 4], the method discussed in this paper provides several advantages. The 

Loewner-SVD method described in this paper is specifically suited to produce dynamic transfer functions. This 

method provided a platform to develop a reduced model using the Loewner and shifted Loewner matrices without 

the need to compute the full state space model, allowing for an efficient iteration and reduced scale optimization. 

The work in this paper is a demonstration and qualification of this method applied to complex modeling applications 

for a large number of geometries.  

The field of model reduction has had important advances, and significant efforts have been placed into forming a 

generalized model reduction approach [5] as well as specific FEM reduction methods. The reader is encouraged to 

see [3] for a comprehensive approach to general model reduction. The classic Guyan FEA reduction [6] acts directly 

on the mass and stiffness matrix removing elements not loaded in the system.  System Equivalent Reduction 
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Expansion Process (SEREP) [7-9] takes advantage of the eigenmodes and eigenfrequencies of the system to provide 

a reduced model that contains the dynamic behavior of the system.  Craig-Bampton [10] methods provide high-

quality correlation through the reduction of the Degrees of Freedom (DOF) of the system to only constrained nodes 

and recovery nodes.  Then the constrained eigenmodes and eigenfrequencies are calculated and included in the 

reduced model to provide a highly accurate dynamic model.  This method provides a simple method to reduce the 

number of DOF in a complex system to only the DOF of interest, but these methods require the use of the full mass 

and stiffness matrix of a FEM.  While this method can be used for FEA reductions, the purpose of this paper is not 

to provide a more efficient FEM reduction method, but to demonstrate a new versatile tool that can be implemented 

to reduce FEM as well as generate reduced models in the case where a model does not exist. 

This paper details the implementation of the Loewner-SVD data-based model reduction method through its 

application to two separate structures under single axis, random vibration excitation. The reduced model of interest 

is a representative SISO model in the bandwidth of 20 to 2000 Hz for the hexapod and anisogrid geometries shown 

in Fig. 1 and Fig. 3, respectively. The Loewner-SVD model generates a state space model of size n × n, where n is 

the length of the frequency response functions (FRF) output by the FEM. This n × n model is subsequently reduced 

using an SVD truncation methodology. For all geometries, multiple truncation points are evaluated to study the scale 

and accuracy of the reduced models as a function of geometric input parameters. The reduced model serves as a 

dimensionally smaller system on which to optimize the dynamic structural configuration. With this in mind, a 

parameter sweep of 125 unique hexapod geometric cases is developed, and a reduced model is created for all 125 

dynamic responses as a parametric analysis on the reduction methodology. An investigation is done to identify the 

geometric effects on the quality of the various model reduction sizes. The goal of this study is not the development 

of a parameterized model reduction as seen in [11] but rather to evaluate the Loewner-SVD method. A single 

anisogrid geometric configuration is evaluated to demonstrate the method on a system with more complex geometry 

and dynamic response.   

To justify the computational cost of using FEM inputs to develop a Loewner-SVD data-based model the system 

must be subjected to a high number of dynamic loading cases. Otherwise, the cost of reduced model development 

could exceed the cost of multiple full FEM calculations. However, this method provides significant benefits when 

used in conjunction with test data by reducing testing configurations and by generating accurate models in cases 

where the geometries or test cases are difficult to accurately capture. 

The paper provides an introduction to the model generation, reduction method, the structures of interest, and the 

resulting FEM development. Likewise, the paper discusses the reduced hexapod geometry and the accuracy as a 

function of the geometric parameter inputs and resulting model scale.  An investigation is completed on the 

anisogrid structure to demonstrate the ability to produce a reduced model using more complex dynamic systems. 

Finally, the methodology and results are summarized. 

2. Structural Modeling and FEM 

Thermally actuated morphing structures are researched in an attempt to build and provide high precision deflection 

capabilities that are not possible using conventional means. The Naval Research Lab has been heavily invested in 

lightweight adaptive structures as well as high fidelity morphing applications such as the structure investigated here 

specifically for space applications. The use of thermal strain as the actuation mechanism has been studied at the 

micro [12-17] and macro level [18], but the use of standard materials applied on the micro scale to enable high 

precision morphing is a novel investigation. This paper looks to advance the field of structural modeling by 

developing modeling methods that reduce the overall complexity and allow for easier model optimization while 

maintaining accurate dynamic behavior.  

The classic hexapod geometry is a parallel robot with six actuators providing six DOF morphing control. The first 

hexapod geometry, also called a Stewart platform, was presented in 1965 [19]  by D. Stewart for flight simulators. In 

recent years significant effort has been put into structural optimization [20]  and workplace optimization [21-23].  
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Further work has been the development and implementation of the Hobby-Eberly Telescope morphing structures 

[24-26].  These structures provide the baseline for the development of the thermal morphing hexapod.  The thermal 

morphing hexapod structure allows for the development and evaluation of the tools required for this system in a 

system that is simple enough yet representative to carry out parametric iterations.  A secondary, more complex 

thermal morphing system of interest is the anisogrid boom which is more indicative of the leading edge in ultra-

lightweight thermally morphing structures, but its complexity limits a thorough parametric analysis. Here the 

anisogrid structure is used to test the methodology on a highly complex system.  

Anisogrid tubular structures have shown great promise in structural applications where a lightweight structure is of 

critical importance [27-34].  These systems provide significant potential for reduced mass structural applications, 

specifically in the large space structures field. Similarly to the thermal morphing hexapod structure the anisogrid 

structure has the potential for high-performance thermal morphing applications.  The anisogrid structure will be used 

as a demonstration of the method on a complex dynamic system.   Before the dynamics of the full design space for 

the highly complex anisogrid morphing system can be understood, the dynamics of the simpler hexapod system need 

to be investigated.   

Given the complexity of these structures, the purpose of this reduction is to provide an efficiently reduced model to 

use for dynamic structural optimization. The key design characteristics for optimization are the geometric 

parameters listed in Table 1 for the hexapod and the anisogrid system. The full design space for the hexapod system 

is investigated through the evaluation of 125 geometries.  To generate those 125 geometric cases, the three 

geometric parameters (L1, L3, and Z) are swept between 2.5 and 30cm (2.5, 9.375, 16.25, 23.125 and 30 cm). For 

the Anisogrid system, there are 11 parameters of interest for the structural optimization. This paper will not 

investigate the full design space of the anisogrid system and instead will demonstrate the approach on a single 

anisogrid geometry. Extension of this work could lead to the generation of the optimization tools for the anisogrid 

structure presented here.  

Table 1 Geometric parameters of interest for each thermal morphing structure. 

 
 

2.1 Hexapod Structure 

Kinematic morphing hexapods classically consist of two parallel plates connected using six linear actuators. The 

actuators are connected using a pinned-pinned boundary condition on either plate as shown in Fig. 1. The thermally 

actuated hexapod concept is a novel variation on the classic design where a hexapod is connected using fixed-fixed 

rigid struts where global and local thermal gradients are applied as the actuation mechanism. The thermal gradients 

provide individual strut actuation to obtain six degrees of freedom high precision control. The investigation into the 

Hexapod Anisogrid

Length 1 Height

Length 3 Pitch

Height Hel Cross Section 1

Hel Cross Section 2

Cir Cross Section 1

CirCross Section 2

# of Helicals

Base Radius

Tip Radius

Modulus

Fixity
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hexapod will only focus three critical parameters, L1, L3, and Z, which define the geometry. Other parameters such 

as beam cross section are held constant for this investigation. These three parameters of interest, L1, L3 and Z define 

the bottom plate size, top plate size, and the height of the system, respectively. To investigate the design space, each 

of the three parameters is swept through five values resulting in a total of 125 different hexapod geometries. 

Following this, an FEM and consequently a reduced model is generated for each geometry case.  

MSC Nastran dynamic solution set 111 is used to model the hexapod structures under an X-axis random vibration 

excitation, with a flat input of 1.25e-4 𝐺2/𝐻𝑧 from 20 to 2000 Hz measured at 1181 frequency points. The center 

node of the active platform is “measured” and the X-axis input and platform response is used as the output for the 

SISO model. The Hexapod model in Fig. 1 contains 56 nodes with 51 linear beam elements and a total of 336 

independent degrees of freedom, resulting in a stiffness and mass matrix that is 336 × 336. The top plate and bottom 

plate in Fig. 1 (b) and (c) are represented by a rigid element ensuring coupled responses of the top and bottom 

interfaces 

 

 

Fig. 1 (A) Detail of the Geometric Parameters for the Hexapod (L1, L3, and Z). (B) FEM developed for a given 

geometry case. (C) Top View of FEM  

The resulting dynamic analysis shows 72 modes in the frequency range of interest for a nominal geometry. Five of 

the representative modes are shown in Fig. 2. The length of each of the three parameters is set to every possible 

combination of 5cm, 11.25 cm, 17.5cm, 23.75cm, and 30cm. To ensure accurate modeling, a convergence study 

demonstrated that the FEM is appropriately sized. This structure functions as an appropriate test bed to evaluate the 

method proposed herein but does not produce an oversimplification in complexity such that the structure is no 

longer representative. Furthermore, the base building block for the six helical anisogrid is a hexapod configuration 

lending itself to further evaluation.  To obtain a deeper understanding of the geometry and the reduction capability 

of the proposed technique, the more complex anisogrid structure is also investigated and described in the following 

section. 
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Fig. 2 (A) Mode 1 at 15 Hz,(B) Mode 2 at 87.9 Hz, (C) Mode 3at 87.9 Hz, (D) Mode 4 at 213 Hz, (E) Mode 15 at 

336 Hz. 

2.2 Anisogrid Structure  

The morphing anisogrid model reduction operates on the same methodology as the hexapod with local and global 

thermal gradients providing the anisogrid structure the required actuation strain to achieve high precision morphing. 

The anisogrid model of interest is 1.0 meters tall with a 0.25-meter radius. MSC Nastran dynamic solution set 111 is 

used to model the anisogrid structure under an X-axis random vibration excitation, with a flat input of 1.25e-4 

𝐺2/𝐻𝑧 from 20 to 2000 Hz measured at 1181 frequency points. The top center node, located at Z = 1 of the active 

platform, is “measured” and the X-axis input and response is used as the output for the SISO model. The anisogrid 

model seen in Fig. 3 contains 1,712 nodes with 1,889 elements and 10,272 independent degrees of freedom resulting 

in a stiffness and mass matrix that is 10,272 × 10,272. The reduced model will provide a reasonable measure of the 

ability of this approach to reduce a complex dynamic model while still conserving the dominant dynamics of the 

system. 

 

 

Fig. 3 Anisogrid, 1 meter tall with a .25 meter radius, FEA Model requiring 1889 Elements.  

The anisogrid structure has 213 modes in the frequency range of interest as compared to the 72 modes for the 

baseline hexapod geometry. The increase in structural complexity requires a significant increase in modeling effort 

from 336 DOF to 10,272 to capture all of the dynamics in the FEM. A representative segment of the modal content 

of the anisogrid structure is shown in Fig. 4.  This structure was chosen specifically to act as a baseline to evaluate 

the methodology on more complex structures so that the reduced model scale and quality can be assessed. 
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Fig. 4 Select modes of the anisogrid structure: Mode 1, 2, 3, 5 and 6 at160, 164, 377, 466 and 493 Hz, respectively. 

 

3. Loewner-SVD Model Reduction Development and Implementation 

The Loewner matrix and the shifted Loewner matrix used in this work are detailed in the literature as the divided-

difference matrix and the null-pole coupling matrix used for solving rational interpolation problems [35]. This 

method is an efficient Hermite interpolation method that can generate a state space model from a given set of 

frequency response functions. The Loewner matrices’ application for time and frequency domain interpolation has 

been heavily researched in [36] and [37]. The application of interest is the data-based approach model reduction 

applied to the state-space Loewner matrices that are obtained from an FEM via simulated frequency response 

functions. Notice that the method can be extended in a straightforward manner to actual experimental data instead of 

the simulated frequency response functions used in this study. These simulated or experimental generated FRF’s are 

used to produce the Loewner-SVD Data-based model. The use of the generalized Loewner method itself is not a 

reduction, but rather generates a model in a state space form such that model reduction methods can be applied to it. 

In this study, an SVD model reduction approach is applied to generate the reduced model. This process is detailed in 

Fig. 5. 
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Fig. 5 Methodology framework development using FEA transfer functions or experimental data followed by an 

SVD model reduction method to achieve a dynamically relevant reduced model. 

As is detailed in Fig. 5, one of two input transfer functions (FEA or test data) is used to develop the Loewner-SVD, 

state-space model.  The resulting model is reduced using an SVD model reduction approach resulting in a reduced 

model of scale r. This paper evaluates the capabilities of the method as applied to the two morphing configurations 

described previously and 126 individual FEMs. The intent is to detail the implementation of a standard SISO 

interpolation model reduction problem using FEM outputs as the input transfer function. 

3.1 Data Based Loewner-SVD Method 

The method used here, covered in depth in [38] and briefly included here for completeness, requires solving the 

generalized realization problem. The problem requires transfer matrix evaluations ℋ(𝜎𝑖) and ℋ′(𝜎𝑖) from a linear 

system, to construct a state space model that is controllable and observable. For this evaluation, a FEM is used to 

develop the transfer function at 1181 frequency points as described in the previous section.  This formulation takes 

advantage of the symmetric Loewner (𝐿) and shifted Loewner (𝐿𝑠) matrices and creates a state space model using a 

Hermite Interpolate 𝜎𝑖 evaluated at 𝜎1 … 𝜎𝑛 as detailed in [39]. The Hermite Interpolation ensures that generated 

transfer functions match the FEA transfer function both in value and in slope at the chosen interpolation points. 

Those 1181 frequency points, defined in the FEM, are then used as the interpolation points to develop the full 

Loewner matrix. The full Loewner matrix transfer function is calculated in the form as  
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ℋ𝐿(𝜎𝑖) = 𝐶𝐿(𝜎𝑖𝐸𝐿 − 𝐴𝐿)−1𝐵𝐿 ,       (1) 

𝑤ℎ𝑒𝑟𝑒 𝐴𝐿 , 𝐸𝐿 ∈ ℝ𝑛×𝑛 , 𝐵𝐿 ∈ ℝ𝑛×𝑚, 𝐶𝐿 ∈ ℝ𝑝×𝑛 ,     (2) 

where 𝜎𝑖 is the 𝑖th interpolation point. For this single input single output case m=p=1 and n = 1181 resulting in a 

SISO system evaluated at 1181 points. To develop the Loewner and shifted Loewner matrix, projection matrices are 

required. The projection matrices 𝑉 and 𝑊 are developed from the FEM transfer function evaluated at the n 

frequency values as   

𝑊 = [ ℋ(𝜎1), … , ℋ(𝜎𝑛)],  𝑉𝑇 = [ ℋ(𝜎1), … , ℋ(𝜎𝑛)] ,     (3) 

𝑤ℎ𝑒𝑟𝑒 𝑊, 𝑉𝑇 ∈ ℝ1×𝑛       (4) 

moreover, the Loewner Matrix and shifted Matrix can be defined as  

𝐿(𝑖, 𝑗) =
ℋ(𝜎𝑖)−ℋ(𝜎𝑗) 

𝜎𝑖−𝜎𝑗
 if i ≠ j, and if i = j, 𝐿(𝑖, 𝑖) = ℋ′(𝜎𝑖)        (5) 

  𝐿𝑠(𝑖, 𝑗) =
𝜎𝑖ℋ(𝜎𝑖)−𝜎𝑗ℋ(𝜎𝑗) 

𝜎𝑖−𝜎𝑗
 if i ≠ j, and if i = j, (𝑖, 𝑖) = 𝜎𝑖ℋ′(𝜎𝑖)   where 𝐿 𝑎𝑛𝑑 𝐿𝑆 ∈ ℝ𝑛×𝑛.  (6) 

The conversion back to the state space transfer function is given by 

𝐸𝐿 = −𝐿, 𝐴𝐿 = − 𝜎𝐿, 𝐵𝐿 = 𝑊𝑇 , 𝐶𝐿 = 𝑊      (7) 

The resulting full Loewner matrix is sized 1181 × 1181 and the transfer function ℋ(𝑠) perfectly represents the FEM 

at all frequencies used for interpolation. This results in a perfect correlation between the full Loewner matrix and the 

FEM at all the frequencies evaluated in the FEM. For this investigation the SVD truncation reduction, explained in 

the following section, is used to produce a reduced state space model. 

4. SVD Model Reduction 

As noted previously, the state space matrices obtained via the Loewner method result in a system of equations of 

size n × n, where n is the number of frequency values used as interpolation points. For this case, the method results 

in an 1181 × 1181 Loewner matrix and subsequent Loewner state space model. As discussed in [40] the SVD-based 

reduction is an appropriate method for the evaluation of this problem. To define the appropriate truncation point r, 

an SVD analysis is performed and plotted for all the hexapod geometries as shown in Fig. 6. In the same manner, the 

decomposition for the anisogrid structure is shown in Fig. 12. The scale of the SVD value provides the insight used 

to choose the reduced model size that balances reduction efficiency and model accuracy. This method is 

straightforward to implement and simple to test multiple r values to find the optimally reduced model. Once the 

reduction scale is chosen from the SVD investigation, it is not necessary to generate the full Loewner State Space 

model in Eqn. 7, rather the reduced model can be developed directly from the Loewner matrix as 

ℋ𝐿(𝜎) = 𝐶𝐿(𝜎𝐸𝐿 − 𝐴𝐿)−1𝐵𝐿      (8) 

where the Loewner transfer function is exactly equal to the FEM transfer function at the interpolation points 

𝐹𝑜𝑟 𝑖 = 1: 𝑟  ℋ𝐿(𝜎𝑖) = ℋ𝐹𝐸𝐴(𝜎𝑖) .     (9) 

The reduced model ℋ𝑟  can be developed by preforming the SVD on the Loewner matrix 

𝐿 = 𝑈𝛴𝑉′ .        (10) 
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Once the SVD is completed on the Loewner matrix, the singular vectors can be truncated at r resulting in a reduction 

of the left singular vectors 𝑈 ∈ ℝ𝑛×𝑛  to produce 𝑈𝑟 ∈ ℝ𝑛×𝑟and a reduction in the right singular vectors 𝑉 ∈

ℝ𝑛×𝑛 to produce 𝑉𝑟 ∈ ℝ𝑛×𝑟. These reduced singular values are used, in conjunction with the left and right singular 

matrices, to develop the reduced model as, 

𝐸𝑟 = −𝑈𝑟 ′𝐿𝑉,   𝐴𝑟 = −𝑈𝑟  ′𝐿𝑠𝑉𝑟 ,    𝐵𝑟 = 𝑈𝑟  ′𝜎,  𝐶𝑟 = 𝜎′𝑉𝑟  .   (11) 

Reconstruction of the transfer function using the reduced state space model produces 

ℋ𝑟(𝜎𝑖) = 𝐶𝑟(𝜎𝑖𝐸𝑟 − 𝐴𝑟)−1𝐵𝑟  .     (12) 

This method provides the opportunity to efficiently generate reduced state space models using FEM or test data as 

the primary input. It also demonstrates the ability to test with ease multiple reduced model sizes by increasing or 

reducing r to ensure that optimally reduced models are generated.  To evaluate the quality of the resulting reduced 

model, a relative error 𝑒 is calculated between the FEM and the reduced model.   The FEM and reduced model 

transfer function is evaluated at all 1181 frequency points.  The 𝐻2 norm of the difference between the two transfer 

functions is used to evaluate the reduced model error as seen in Equation 12.   

𝑒 = |𝐻𝐹𝐸𝐴 − 𝐻𝑟|2       (13) 

To define the optimally reduced model multiple r values are used to balance accuracy and computational efficiency. 

For the hexapod and anisogrid geometries, accurate models, detailed in the next section, where achieved using the 

SVD reduction method. For a system with orders of magnitude increased complexity, the generation of the highly 

reduced and well-correlated models may require a more advanced reduction method than SVD. Particular cases are 

examined to bring attention to some of the intricacies of the method and the dynamical response.  

 

5. Hexapod 125 Case Model Reduction 

To better understand the dynamic behavior of the reduced models and how they are affected by the truncation a 

process, multiple reduction models are generated for each of the 125 hexapod structure configurations. As seen in 

Fig. 6, there is a significant variation in the hexapod geometries’ singular value decay resulting in different optimal 

reduction scales for individual geometries. Overall, these geometric variations indicate that no single r value will 

provide an optimally reduced model for all the geometries of interest. This is to be expected as a generalization 

across multiple dynamic behaviors due to geometric changes should not be expected. Having said that, there is a 

general trend that can be exploited if necessary. 
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Fig. 6 The normalized singular values for all 125 hexapod configurations.  

The investigation into the resulting max and minimum error provided by the H2 norm for all hexapod geometries 

demonstrates the variability in the reduced model accuracy as a function of reduction scale. The results of this study 

can be seen in Table 2 for several discreet reduction values. This is carried out to provide insight into the geometric 

parameters’ impact on system dynamics and define a method to determine the optimal r value for each geometry. 

Table 2 Comparison of Max and Min H2 norm for all runs 

 
H2 Norm for all 125 Hexapod Geometries 

 

r = 10 r = 15 r = 30 r = 45 r = 60 

Max For all Geom. 1.09 5.54E-01 1.12E-01 7.31E-01 2.56E-02 

Min For all Geom. 6.98E-05 1.06E-05 5.80E-07 1.70E-07 2.30E-07 

 

The geometries that were chosen provide an opportunity to evaluate the variety of correlation accuracies given a 

range of the Loewner-SVD model reduction sizes. We can see that in Table 2, a sufficiently accurate model is 

obtained for all geometries with a given reduction of r = 15.  To better understand the FRF responses generated from 

a variety of 𝐻2 norm error comparison, six representative geometries are evaluated in Fig. 7. 
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Fig. 7 Model Responses for a representative set of geometries for various error bounds for Geom. 18 (A), Geom. 

119 (B), Geom. 8 (C), Geom. 84 (D), Geom. 81 (E), and Geom. 21 (F).  
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The reduced dynamic model for geometry 18 (L1 = 2.5 (cm) L3 = 23.13 (cm) Z = 16.25 (cm)) demonstrates a high 

correlation for all r values as shown in Fig. 7 (A). Geometry 119 (L1 = 30 (cm) L3= 23.13 (cm) Z= 23.13 (cm)) and 

geometry 8 (L1 = 2.5 (cm) L3 = 9.38 (cm) Z = 16.25 (cm)) shown in Fig. 7 (B) and (C) respectively, are the 

maximum error cases for r = 10. It can be seen that despite the high 𝐻2 norm error the dynamics of the system with r 

= 10 are accurate below 1000Hz. Above 1000 Hz, where the accuracy of the FEM is greatly diminished, the reduced 

model does not accurately predict the dynamics of the system. This is an important finding indicating a frequency 

dependent accuracy that can be exploited for applications with lower frequency range requirements. The maximum 

error case for r = 15 demonstrates an error introduced in the prediction of the high-frequency modal responses for 

geometry 84 (L1 = 23.13 (cm) L3 = 9.38 (cm) Z = 23.13 (cm)), shown in Fig. 7 (D). Shown in Fig. 7 (E), geometry 

81 (L1 = 23.13 (cm) L3 = 9.38 (cm) Z =  2.5 (cm)) is the maximum error case for r = 30. As can be seen geometry 

81, the max error case, produces an accurate prediction with the use of r =30 demonstrating the quality of all 

reduced models using r = 30. As the scale of the model increases to r = 45 the maximum error, found in geometry 

21 (L1 = 2.5 (cm) L3 = 30 (cm) Z = 2.5 (cm)), shows a high-quality frequency response plotted in Fig. 7 (F) that 

cannot even be perceived by observation.  

Based on this study, the r = 30 model would be chosen for all geometries based on the resulting balance between 

model errors and the scale of the model. If high-frequency responses are not of interest, smaller order models could 

provide sufficient accuracy in the frequency range of interest. For a model with a reduced bandwidth of interest, a 

truncation of the frequency range used to develop the reduced model could reduce the model further without 

introducing errors in the frequency range of interest.  .  

This study has shown that the primary shortcomings of concern with this methodology are that the system has the 

potential to ignore (i.e., Fig 7. D last mode for r =10,15) or introduce modes (i.e., Fig 7 C) if the model does not 

have a representative size to model all relevant dynamics.  This method has been shown to develop accurate, 

reduced, state-space models of order r = 30 for all of the studied geometries with some of the representative 

responses are shown in Fig. 7. This has produced accuracies well within the needs of this system while minimizing 

the model complexity. The mythology proposed herein has been shown to keep the relevant dynamics while 

reducing the system by 91% (original FEM model 336 DOF to a reduced Loewner-SVD system with r = 30). 

6. Results as a Function of Geometric Input Parameters 

To better understand the cause of the variation in reduced model quality an investigation was conducted into the 

variations caused by the geometric inputs. To evaluate this, several key metrics are investigated and plotted against 

the geometric inputs. The error provided by the H2 norm as a function of geometry and the reduced model size is 

evaluated to provide better insight into the hexapod design space. An investigation into the H2 norm error for all 125 

geometries is presented in Fig. 8 (A).  It can be seen in Fig. 8 (A) that there is a general trend of reduced H2 norm 

error as r increases, but this does not hold for all geometries or reduced model scales. To better understand the H2 

norm error as a function of geometric inputs, the accuracy is evaluated as a function of the geometric inputs for 

reduced model sizes 10, 15, 30, 45 and 60 in Fig. 8 (B) through Fig. 8 (F).   
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Fig. 8 Impact on H2 norm for increasing r values for all 125 geometries (A), Response as a function of geometry for 

r=10 (B), r=15 (C), r=30 (D), r=45 (E), r=60 (D)  

While it is difficult to identify the quality of the resulting models based on H2 norm error alone as seen in Fig. 8 it 

can be seen that generally, the models get better as the reduced model increases in size.   That trend of decreased H2 

norm error when r increases does not hold for individual geometries but is shown to hold generally as seen in Fig. 9.   
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Fig. 9: Sorted error rankings for all reduced hexapod models. 

As is demonstrated in Fig. 9 the sorted error for each reduction size highlights the trend where increased model size 

reduces the 𝑯𝟐 norm. The key point is that this does not hold for specific geometries but the overall trend is true. To 

define an optimal model size for all geometries is not possible.  That being said, overall increased model size 

generates reduced H2 norm error as is demonstrated in Table 2 and Fig. 8(A). 

To better quantify the dynamic model reduction capability, relative to geometric inputs, the H2 norm errors for each 

reduced model scale is summed and evaluated in Fig. 10 (A). It can be seen, when compared to Fig. 8 (A), that the 

large errors are driven by a single outlier in the reduced model size. By investigating the resulting model quality as a 

function of geometric inputs, seen in Fig. 10 (B), it can be seen that no single region of the design space performs 

poorly. However, it can be observed that the larger errors are located at the extremes of the design space. This 

finding provides information about geometries with lower dynamic complexity and more accurate model generation. 
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Fig. 10 (A) Sum of the Five Reduced Models H2 Norm (B) Sum as a function of Geometric Inputs 

Now that the resulting reduction quality has been evaluated as a function of the input geometry, a study into the 

reduced models minimum singular value is performed to gain insight into the resulting dynamics of the geometry 

and the reduced models.  The SVD is first evaluated for each geometry at each model reduction size as demonstrated 

in Fig. 11 (A). As can be seen, models with r = 10 result in a truncation at the 10
th

 singular value have large 

remaining singular values.  As can be seen in Fig. 11 (A) the singular value drops off significantly for these models 

as r is increased to 30.  To further investigate this, a plot demonstrating the singular values for each of the five 

reduced scales as a function of each geometric parameter is shown in Fig. 11 (B) through Fig. 11 (F).  
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Fig. 11 Investigation into the rth Singular Value for various reductions and all 125 Geometries (A), for r =10 (B), 

for r =15 (C), for r =30 (D), for r =45 (E), for r = 60 (F). 

The expected response of this system would be that the larger the individual geometric parameters are (L1, L3 and 

Z), the lower the frequencies and, therefore, the more modes in the frequency range of interest.  This increase in 

dynamics in the range of interest would be expected to increase the singular values at all truncation points.  In this 

case, it can be seen that the maximum singular values do not occur when L1, L3, and Z are at their largest value, but 

instead, there are two regions where larger singular values are seen.  Looking at the responses seen in Fig. 11 (B) 
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and Fig. 11 (C) the peak singular value occurs when L3 and Z are at their maximum and L1 is at its minimum.  This 

is indicative of an unexplained complexity in the dynamics of this geometric case.  In Fig. 11 (D) through Fig. 11 

(F) it can be seen that a secondary region of high singular values develops.  This region occurs when L3 and Z are 

minimized at a range of L1 values.  These regions are indicative of locations in the design space with complex 

dynamics.  These regions provide insight into regions of the design space that need to be investigated further to 

improve the understanding of the local dynamics.  

 

7. Anisogrid Model Reduction 

Using the same methodology applied to the hexapod geometries, the anisogrid FEM is evaluated using multiple 

reduced models. To quantify the scale of the reduced anisogrid model, the singular values of the Loewner matrix 

were plotted in Fig. 12. By observing the decaying singular values, there does not seem to be a clear cut-off section 

where the reduction scale should be set. Although r = 600 could be a possible cut-off condition, it is expected that a 

considerably smaller system can be found which is representative. For this reason, a study is carried out on the size 

of the reduction r and the resulting accuracy is compared to the full FEM.  

 

Fig. 12 Anisogrid normalized singular values. 

A frequency domain comparison of the dynamics needs to be completed to ensure that the modes of interest and the 

dynamics of the system are being captured in the bandwidth of interest.  Compared to the hexapod, the anisogrid 

decay of the singular values is much slower.  This drives the use of larger r values to ensure the dynamics of the 

system are captured.  To study these effects r = 10, 15, 30, 45, 60, and 75 are considered to investigate larger 

reduced models for this more complex system. 
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Fig. 13 Anisogrid Response Predictions compared to FEA response. 

As previously carried out the response of the system is plotted against the full FEM model fore comparison. As seen 

in Fig. 13, the reduced model with r = 10 produces an unrepresentative dynamic response and introduces non-real 

responses to the system’s dynamic not present before.  A reduction using r = 15 does not have the ability to model 

the structural dynamics over 1000 Hz and misses critical dynamic behavior at the high-frequency range. As the 

reduced model increases in scale to r = 30, the system dynamics are matched, and the high-frequency dynamics are 

modeled with relatively good accuracy.  From the 𝐻2  norm error shown in Table 3 and the qualitative FRF 

comparison, it can be seen that for  r = 30 the model produces a high correlation between the reduced model and the 

FEM. This reduced model is capable of capturing all the dominant  dynamics of the system in the bandwidth of 

interest. This approach successfully reduces the 10,272 × 10,272 FEM model to a 30 × 30 state space model with 

accurate predictive capability. 

The dynamics of the anisogrid structure and its 213 modes can be reduced to a model of size 30 × 30 with a 

resulting H2 norm error of 3.02×10
-1

. Table 3 details the reduction size and its corresponding H2 norm error for the 

other reductions cases. Increasing r beyond r = 30 does not significantly reduce the H2 norm, thus, it can be 

confidently stated that balance between accuracy and reduced model size is achieved for this geometry using a value 

of r = 30. This result proves the reduction capabilities of this method on highly complex structures and provides a 

basis for future work on data based Loewner-SVD model reduction methods.  

Table 3 H2 norm for all r value choices for multiple frequency Ranges 

 
H2 Norm for Anisogrid Structure 

 

r =10 r =15 r =30 r =45 r =60 r =75 

H2 Norm 2.65E+02 6.64E-01 3.02E-01 3.75E-01 2.30E-03 1.38E-02 
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Conclusions 

This paper has shown that a Loewner-SVD data based model reduction approach can be used to model complex 

dynamical systems accurately. Through a computationally efficient method, the work has shown the ability to iterate 

and generate a large number of reduced models while retaining high modeling accuracy. This paper has 

demonstrated the reduced model development methodology using a FEM transfer functions and provided the 

opportunity for test data based reduction by following the same procedure. An investigation was performed on the 

hexapod geometry providing insight into the system dynamics as a function of geometry and yielding an optimal 

reduced order evaluation. 

For the hexapod system, five reduction sizes are applied to 125 geometries resulting in 625 individual reduced 

models were generated allowing for an optimally reduced model while balancing accuracy and reduce model size. 

Through this investigation, it was determined that the trend of decreased H2 norm error as r increases does not hold 

for individual geometries so no general rule for the size of r can be . It was also determined that the geometries that 

exist at the extremes of the design space introduce the largest average reduction errors. For all hexapod geometries, 

a modest reduction was demonstrated enabling the generation of an accurate model under 1000 Hz with a reduced 

size of r = 10 from the original n = 336. Above 1000 Hz, the dynamic predictions were shown to be more error 

prone, but the use of r = 30 produces high accuracy models for the full frequency range of interest for the hexapod 

system. This results in a reduction of the 336 × 336 stiffness and mass matrix to a 30 × 30 state space model capable 

of capturing all the dominant dynamics. The anisogrid structure demonstrated the ability to generate a highly 

correlated model with significant reduction compared to the FEM. The 10,272 × 10,272 stiffness and a mass matrix 

of the anisogrid system were reduced to an accurate 30 × 30 state space model. This represents a significant 

reduction in the scale of the original model. 

This model reduction method has been shown to provide an opportunity to improve on the state of the art reduced 

models for FEA model reduction problems as well as provide unique opportunities to develop reduced models from 

test data. The method is computational efficient enabling the calculation of multiple reduces.  This enables the 

identification of the optimally reduced model.  Furthermore, it has been shown that this method is simple to use and 

can provide valuable model reduction capability without the need for a priori accurate model development. 
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Abstract: As the complexity and scales of dynamic models increase, novel and efficient model correlation 

methodologies are vital to develop accurate models. Classically, to correlate a Finite Element Model (FEM) to a 

dynamic test, an experienced engineer chooses a small subset of input parameters that are surmised to be crucial, 

sensitive and/or possibly erroneous. The operator will then use engineering judgment, or a model updating technique 

to update the parameters until the error between the FEM and the test article is reduced to within a set bound. In 

order to reduce the intricacy and difficulty of model correlation, a model reduction methodology is proposed to 

evaluate parameter sensitivity but also the parameter sequence of importance. Thus, in this work the following 

methods are applied to such a methodology to study this selection process: the Discrete Empirical Interpolation 

Method (DEIM), Q-DEIM, Projection Coefficient and Weighted Projection Coefficient. This reduced and prioritized 

scale is achieved by decreasing the number of FEM input parameters used for the subsequent correlation. These 

model reduction methods identify and rank critical parameters, which results in reduced computational resources 

and engineering effort required to generate a correlated model. The insight gained using these methods is essential in 

developing an optimal, reduced parameter set that provides high correlation capability with minimal iterative costs. 

A representative set of academic and industry experts provided their engineering judgment for comparison with the 

methodology presented. A comprehensive investigation of the robustness of this methodology is performed on a 

simple system for demonstration. The scale of the model has expressly been chosen to allow for all potential ranking 

variations to be evaluated so that these ranking methods can be understood relative to the true optimal ranking. The 

ranking robustness to incorrect engineering judgment, resulting in uncertainty in the assumed size of the design 

space and, therefore, the error bounds, is investigated. The methodology presented identifies the most useful 

parameters for correlation, enabling a straightforward and computationally efficient model correlation approach as 

compared to other methods presented. To quantify the ranking quality, a metric, the Correlation Norm error, is 

developed. For the problem discussed, blind random assessments result in a Correlation Norm Error of 413.3. 

Engineering judgment has been shown to improve upon blind random assessments, reducing the Correlation Norm 

Error to 334.3. The best performing model reduction method, Q-DEIM using 10 FEM runs as the input, was able to 

identify the optimal ranking correctly, reducing the Correlation Norm Error to zero.  

Keywords: Model Reduction, Model Correlation, Discrete Empirical Interpolation Method (DEIM), Q-DEIM, 

Finite Element Model (FEM) 

1. Introduction 

In an attempt to provide highly precise and representative FEMs, a methodology to reduce correlation efforts using 

model reduction techniques and an iterative FEM is discussed and evaluated. Classically, correlation is achieved by 

an experienced engineer using judgment to identify parameters of interest and iteratively modifying those 

parameters in order of perceived importance. Parameters are then changed until the error between the FEM and the 

test article is reduced to some acceptable threshold and correlation is achieved. In this work, model reduction 
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methods are used to identify the parameters required, i.e., the dimensions of the problem, that are required to best 

match the dynamics of the system. In this case, the proposed methodology attempts to use reduction methods to 

determine the parameters that are most mathematically independent, so that redundant, or low impact parameters, 

are not required for correlation and can thus be truncated. These techniques, when used in conjunction with classic 

or state of the art correlation methods, provide the minimum number of parameters required to achieve correlation, 

resulting in a faster, more efficient model correlation effort.  

In the past few decades, many improvements have been made in model updating [1-8] to automate the correlation 

process, enabling accurate models that were previously nearly impossible to achieve. In addition, recent structural 

health monitoring [9-11] and surrogate system design [12] techniques have employed machine learning to learn 

relationships between FE model responses and the modeling parameters. The method herein can be leveraged to 

improve the efficiency of these updating methods by optimally reducing the size of the problem and providing 

insight into the most relevant parameters for correlation. This is particularly important for scaling these methods to 

larger and more complex structures. Parameter identification using sensitivity analysis [6-8, 13-15] has been 

robustly demonstrated to aid in this process of parameter selection. In recent years, a clear division between two 

methods of sensitivity analysis, the local and global methods, have been developed in [15]. The key difference 

between the two is succinctly described as follows: local sensitivity analysis techniques examine the local response 

of the output by varying a single parameter and keeping all other parameters at their nominal value; global 

sensitivity techniques examine the global response averaged over variations due to all parameters by exploring a 

finite region of the defined design space. This study focuses on local sensitivity analysis while implementing some 

aspects of a global sensitivity evaluation.  

Once the method to vary the input parameter set is defined, multiple methods can be used for evaluating and 

quantifying the variations in the output due to the input uncertainties. The reduction, or truncation, of the degrees of 

freedom using SVD methods and Principle Component Analysis (PCA) has been documented in [16-18]. 

Identification of the parameters of specific geometric importance relative to test hardware using statistical methods 

has also been employed in [5]. Methods have also been implemented using projection coefficient [7, 19] to provide a 

ranking of parameter importance. These methods provide insight into the parameters of importance. Work by the 

authors [20] has provided some basic understating on the possible use of newly developed reduction methods, such 

as DEIM and Q-DEIM, for parametric sensitivity analysis. These methods have shown significant promise for the 

identification of optimal input sets for other applications such as optimal sensor placement [21]. In addition, this 

paper also introduces a modification of the Projection Coefficient for a simple five parameter system, the Weighted 

Projection Coefficient, and examines the resulting quality of the parameter ranking as compared to engineering 

judgment. The Correlation Norm Error, discussed herein, is development and used to provide a metric by which to 

compare relative rankings. To expand on previous work, and improve the model reduction algorithm 

implementation, a study is performed on the impact of an increased scale Sensitivity Matrix. This study is performed 

by capturing higher order parameter coupling. This is used to identify the optimal input set size to be used in 

conjunction with the model reduction methods. Additionally, a comparison is made between the quality of the 

rankings and the required computational cost. As there are initial error bound assumptions specified for use in this 

methodology, the effects of uncertainty in those initial error bound assumptions is investigated in order to 

understand the robustness of the methodology. It is not the intent of this paper to provide a model correlation 

methodology, but instead, to provide a method for improving the implementation of the correlation method of 

choice by providing an optimally reduced parameter set.  

A methodology explanation is presented in Section 3 along with the process of developing the appropriate input 

matrix and the use of the model reduction algorithms. An overview of the modelling reduction Projection 

Coefficient, Weighted Projection Coefficient, SVD-DEIM, and Q-DEIM is briefly provided in Section 4. A case 

study is performed using a ‘simple’ five-parameter model to demonstrate the process and discuss the outcomes of 

this methodology in Section 6. To examine the quality of the dynamic correlation metric used, an investigation into 
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the 𝐻2 norm correlation, as compared to first and second mode frequency, and an amplitude error is performed in 

Section 7. Additionally, the engineering judgment ranking, set development, and quality are discussed. The resulting 

quality of the methodology is presented for all of the proposed ranking methods in Section 7. To ensure that the 

methodology is valid for larger systems, an investigation into the computational cost of the resulting methods as a 

function of the resulting correlation quality was completed. Finally, an investigation is performed into the ranking 

variability when given uncertain error bounds to ensure system robustness in Section 8.  

2. Established Parameter Identification Methods 

 

To provide a comparison for this methodology, established parameter identification methods and tools are discussed. 

The examined methods are: engineering judgment, sensitivity analysis and SVD analysis. Engineering judgment and 

sensitivity analysis are established parameter ranking methods, where SVD is used as an indicator of the ability to 

truncate the problem to remove unnecessary parameters. 

2.1 Engineering Judgment 

Engineering judgment is critical for any model correlation effort. For this method, engineering judgment is required 

to identify the initial parameter set under investigation and identify the error bounds, or design space, of the system. 

Through previous work by the authors, it has been shown that engineering judgment is not always a reliable method 

to identify the critical parameters of complex models. In this case, the simple five parameter system provides an 

opportunity to study engineering judgment responses for a dynamically simple case. The engineering judgment 

evaluation is done to offer a baseline for comparison to better understand the reduction of correlation effort through 

the use of the proposed ranking methodology. To develop a robust engineering judgment data set, 16 experienced 

engineers in industry and academia were asked to examine the case study in Section 6 and rank the parameters by 

their perceived importance in correlation.  

2.2 Sensitivity Analysis 

Sensitivity analysis is the study of how the uncertainty in the output of a model can be allocated to different sources 

of uncertainty in the model inputs. In the case of model correlation and parameter ranking, sensitivity analysis is 

used to identify the input parameters that exhibit the largest model sensitivity to input changes relative to the given 

error bounds. In sensitivity analysis methods the first step is to decide to vary either a single parameter, multiple 

parameters, or randomly varying multiple input parameters as well as the scale of those variations. The second step 

is to identify the method of ranking quantitatively parameter importance from the output. Over the years, there have 

been many attempts to define the optimal method to quantify parameter importance. A detailed example can be 

found in [8]; here, the first twelve eigenvalues are evaluated against 149 stiffness input parameters that were 

assessed at the maximum error bound value. The top ten parameters are defined by the sum of the variations over all 

of the evaluated modes. Another key advance in this paper was the ‘condensing’ of multiple parameters that 

demonstrated the same normalized sensitivity into a single stiffness parameter. This reduced the overall complexity 

of the correlation effort; however, this required the condensed parameters to be the same input parameter type. 

Methods have also been implemented where each input is quantified simply by the output responses maximum 

deviation percent [19, 22] or the dimensionless gradient [23]. More specific to the dynamic excitation frequency 

domain, eigenvalues are used as a robust comparison [24]. In cases where the amplitude is critical, frequency and 

amplitude correlation functions [25] have been implemented. The first order reliability methods (FORM) has been 

defined in [26] and used in [27] where a given performance function is defined to quantify the importance of a 

parameters effect on the system. New methods, such as the use of orthogonalization and Mean-Squared Error 

methods, as a parameter ranking method, in conjunction with sensitivity analysis, can be seen in [28, 29]. Further 

investigation into the use of perturbation analysis to estimate the sensitivity-related importance measures of the 

parameters has also been attempted in [30].  
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While sensitivity analysis is a prolific field, little consensus exists among experts on the single best methodology to 

use. This paper introduces a new cost function and a new step in the classic sensitivity analysis process. The cost 

function used to compare the output responses, is an evenly weighted difference calculation that uses the Frequency 

Response Function (FRF) and the nominal FRF response, which is evaluated at all frequencies. This generates a cost 

function of length associated with the evaluation of the FRF. In the approach presented here this is a ℝ1×1458
 vector 

for each FEM evaluation. Thus, by analyzing the effect of different parameters, these vectors can then be 

concatenated into a matrix which will be referred to as the Sensitivity matrix. In order to fully study the 

methodology only five parameters have been chosen as possible modeling error locations or uncertainties; two 

thickness, two lumped masses and damping (fully described in Table 2 and Fig 8). The choice of only five 

parameters enabled the full design space to be evaluated using a brute force approach in order to benchmark the 

proposed methodology described herein. The use of five parameters balances the computational cost with ensuring 

the methodology is evaluated on a reasonable scaled problem. The next step in the development of the ranking is the 

application of model reduction techniques to condense the ℝ5×1458 
Sensitivity matrix into a five parameter ranking. 

Overall, the efforts discussed in this paper are focused on providing low computational cost, enabling the removal of 

redundant design space parameters, providing a single metric to evaluate all parameters, and ensuring that negative 

and positive uncertainties are captured. This paper expands on sensitivity analysis, with a particular focus on the 

novel use of model reduction algorithms to quantify the importance of individual parameter responses measured in 

the Sensitivity matrix.  

2.2.1 Sensitivity Analysis Investigation 

To evaluate the sensitivity analysis method, eleven FRF responses are generated for comparison, one for the 

nominal case, five for each parameter at the maximum of the error bound, and five for each parameter at the 

minimum of the error bound. The data provides valuable insight into the qualitative importance of each parameter, 

and is shown in  Fig. 14. (Table 2 and Fig 8 will aid in the meaning of the legends of this figure). 
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 Fig. 14 Frequency Response Function (FRF) for all Parameters at the ends of the error bounds. 

As can be seen, there is a broad range of responses based on the various inputs. By investigating  Fig. 14, it can be 

seen that thickness 1 (T1) and mass 1 (M2) have a significant effect on the dynamics, but the generation of a full 

ranking of parameter importance for this simple system is challenging. A note worth discussing is that the variation 

in the dynamic behavior associated with parameters is that positive and negative sides of the error bounds is not 

symmetric and varies significantly. For this reason, it is important to evaluate both extremes of the error bound to 

understand the parameters’ impact on the system dynamics.  

2.3 Singular Value Decomposition Analysis 

Once the Sensitivity matrix has been calculated, it is used as the input to model reduction methods as well as the 

input to an SVD pre-analysis. The SVD analysis is critical to identify the decomposition of the system via its 

singular values that would yield an approximate reduced order of the system while still maintaining the most 

important information of the matrix. In particular, it is favored to see large drops in the singular values assuring that 

only a small number of singular values contain most of the valuable information needed, and the rest play a less 

significant role in the matrix information. This is of major importance as this not only ranks the parameters but 

informs of their relative importance. This then allows the system to be reduced by truncation. The SVD for the 

Sensitivity matrix is shown in  Fig. 15 for five vectors at the positive error bounds. 
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 Fig. 15 Normalized SVD for the five parameter system 

Normalized singular values that are significantly smaller are indicative of parameters that are less relevant to the 

dynamics of the system. The SVD identifies the number of independent inputs in the system, which allows the 

identification of redundant or unnecessary degrees of freedom. The SVD values for this problem are such that no 

parameters can be ignored or truncated during correlation without reduced correlation capability. While this simple 

model allows for examination of the proposed methodology, this model does not exemplify the situations where this 

methodology provides the most impact. The most impact would be seen in cases with larger exponential decay due 

to unnecessary parameters resulting in clear opportunities for truncation. This would be especially true when less is 

known about the system so a large number of parameters are included resulting in an obvious truncation point. In the 

five parameter case under investigation, all five parameters are shown to be relatively significant so no truncation is 

performed. 

 

3. Parameter Ranking Methodology 

 

The first step in developing a robust parameter ranking is to identify the parameters in the FEM that sufficiently 

represent all significant system physics. All though all parameters can be chosen, this has historically proven to be 

computationally prohibitive especially with modern day complex models. Through a verification process [31] there 

are parameters that can be identified as crucial for an updating analysis. Regardless, this process can always be 

restarted with new or additional parameters at this stage in the method. The computational cost of ranking a 

parameter is low compared to the cost of leaving out a critical parameter as correlation would become impossible 

and further updating would be required. At this stage, the computational cost of including too many parameters is 

low compared to the cost of leaving out a critical parameter as correlation would become impossible and further 

updating would be forced on incorrect parameters. For this reason, over parameterization is encouraged, within 

reason. Once all parameters of interest are identified, a reasonable error bound for each parameter needs to be 

carefully chosen. The error bound, if chosen well, conservatively defines the appropriate design space that 

encompasses all potential test geometries. Otherwise, the resulting ranking quality will be reduced as is discussed in 

section 8.1. The second step is to develop the Sensitivity Input matrix, 𝑆𝑖𝑛𝑝𝑢𝑡, which is used to evaluate the dynamic 

impact of a parameter change. The Sensitivity Input matrix enables independent parameter investigation by 
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developing ‘on/off’ FEM input sets, shown in  Fig. 16. In the case of the five parameter test model, six FEM inputs 

provide the minimal size input set. The first input vector of the Sensitivity Input matrix is made up of the five 

nominal parameter inputs (row 1 in  Fig. 16). For each other vector, all parameters are set to its nominal value 

except for a single parameter that is increased to the maximum value in the error bound as detailed in Equation 1. 

The parameters 𝑃1 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑃𝑛 , are changed relative to the nominal parameter input values by the associated 

parameter error bound 𝑒1 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑒𝑛. This method is detailed by 

𝑆𝑖𝑛𝑝𝑢𝑡(1: 6, : ) = [𝑃1, 𝑃2, … , 𝑃5] 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑖 = 1: 5 𝑆𝑖𝑛𝑝𝑢𝑡(𝑖 + 1, 𝑖) = 𝑃𝑖(1 + 𝑒𝑖) .   [1] 

The visualization of the resulting difference between the parameter values in the Sensitivity matrix and the nominal 

parameter values is shown in  Fig. 16. The plot displays the parameters’ magnitude, at the maximum value in the 

error bounds, relative to the nominal normalized parameter value used to develop the Sensitivity Input matrix. The 

use of a larger order Sensitivity input matrix to improve ranking quality will be discussed further in Section 5. 

 

 Fig. 16 Sensitivity Input matrix development relative to the nominal parameters. 

The flowchart in Fig. 5 summarizes the flow of data from the Sensitivity Input matrix to the correlated model. Each 

row of the 𝑆𝑖𝑛𝑝𝑢𝑡 matrix is the vector used as the input parameter vector for each of the n FEM models where n is 

the number of rows in the 𝑆𝑖𝑛𝑝𝑢𝑡 matrix. The resulting FRF outputs from the FEM model are all normalized by the 

nominal response resulting in n-1 normalized FRFs. These FRFs are combined in a single matrix to generate the 

Sensitivity matrix, 𝑆, as graphically depicted in  Fig. 18. The model reduction algorithms use the Sensitivity matrix 

as an input to generate the parameter ranking. A SVD analysis is then used to determine the number of parameters to 

be used for an initial correlation attempt. The optimal ranking and minimum number of parameters required are used 

to help correlate the model efficiently. If model correlation is unachievable to a desired level of accuracy given the 

parameters used, more parameters can be included or even altered (e.g., drop the parameters corresponding to the 

lowest singular values and add new parameters). To better explain the method by which these reduction algorithms 

are used for parameter ranking, the methodology is illustrated in  Fig. 17.  
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 Fig. 17 Methodology for Parameter Ranking Development for Correlation. 

Each row of the 𝑺𝒊𝒏𝒑𝒖𝒕 matrix is used to generate a single FEM input set resulting in a single FRF. The resulting n 

FEM’s outputs are concatenated into a ℝ
n×1458

 matrix, S, where n is the number of parameters, and 1458 is the 

dimension of the FRF. As shown in  Fig. 18, the FEA output is subtracted by the nominal input to generate the FRF 

response difference between the ℝ
n×1458 

FRF response matrix and the nominal input. The resulting matrix is the 

Sensitivity matrix. This Sensitivity matrix is used with the four proposed model reduction methods to generate four 

different parameter rankings. Those rankings are then used to inform the order and the number of parameters used 

for correlation using the engineer’s preferred correlation method. The most important parameters decided by the 

ranking should be the parameters correlated first. The true correlated values are known for this methodology 

demonstration, so once the parameter ranking is identified, correlation is trivial herein and not the focus of the work.  
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 Fig. 18 Data flowchart from Sensitivity Input matrix development to model correlation. 

As can be seen, the Sensitivity matrix is an evenly weighted difference calculation using the FRF response and the 

nominal FRF response evaluated at all frequencies. This results in a Sensitivity matrix of size ℝ5×1458 
for the five 

input cases. Classical sensitivity methods would use a deviation percent or frequency and amplitude correlation 

function to calculate the parameter importance. In this case, the use of model reduction methods is implemented to 

provide a novel look at the ranking and uniqueness of each parameter for correlation. The use of model reduction 

methods inherently removes redundant, or low impact, parameters from the correlation effort. The various model 

reduction methods are discussed in Section 4. 

4. Model Reduction Methods 

To determine the optimal method for ranking the critical parameters, previously used methods, such as a projection 

coefficient and engineering judgment, are compared to three model reduction methods known as Discrete Empirical 

Interpolation Method (DEIM), Q-DEIM and Weighted Projection Coefficient. The Sensitivity matrix S is used as 

the input for the Projection Coefficient, Weighed Projection Coefficient, DEIM and Q-DEIM evaluations. To better 

understand the differences between these methods, a brief discussion detailing each method is provided. 

4.1 SVD DEIM 

DEIM was proposed by Chaturantabut and Sorensen in [32] for use in the reduction of dynamic systems. Sorensen 

and Embree in [33][4] used a database search as an example similar to the proposed use in this work to find 

representative web pages from two geographic areas. The methodology in this work uses an SVD of the acceleration 

output of the parameter sweep and then a greedy search algorithm DEIM.  

DEIM is an efficient method to project high-dimensional, non-linear functions into a lower dimensional space for 

the purpose of data reduction [32]. The DEIM algorithm (found in [32]) iteratively minimizes the error of the 

approximation or projection onto a lower dimensional space via a selected index. The first entry is chosen by 

determining the index of the largest magnitude of the left eigenvector. Other entries are chosen by selecting the 

index associated with the largest residual error. The residual is effectively the error between the input basis and its 

approximation due to interpolating the basis. The SVD-DEIM methodology allows for the determination of the most 

independent parameters for every trial. 
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4.2 Q-DEIM 

The Q-DEIM method, which is an alternate formulation of the DEIM, was developed using a QR matrix 

factorization for the purpose of large-scale systems. Previous applications of this methodology are found in [34], 

where various dynamic systems are reduced as examples for comparison to the DEIM method. The Q-DEIM method 

offers an improved theoretical bound on the error of the projection on a lower dimensional space compared to DEIM 

[34]. 

As stated earlier, the formulation of this method is through the QR factorization of the Sensitivity matrix. The QR 

transformation, further explained in [35], is the factorization of a matrix, S (in our case), into the form: 

𝑆 = 𝑄𝑅 ,       [2] 

where Q is an orthogonal matrix and R is an upper triangular matrix. The algorithm for Q-DEIM can be found in 

[34].  

4.3 Projection Coefficient 

The projection coefficient method is often used in the dynamics modeling field to determine the degree to which an 

experimental and analytical mode shape match. Perinpanayagam, Ewins, and Chen [36, 37] show examples of using 

such formulation in sub-structural testing. This is proposed in order to determine the most relevant modes to test of 

the subcomponents toward the importance and relevance of the condition of the assembled structure. The 

formulation of the projection coefficients requires examining the angle between the original singular vectors (in this 

case, the acceleration with one parameter set to its maximum error value) and the left eigenvectors produced by the 

SVD.  

The coefficient is calculated as the cosine of the angle between two vectors (in this case, a single left eigenvector 

and a single vector of the Sensitivity matrix). Seen in the following equation as, 

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 𝑃𝐶 = cos(𝜃) =
𝑎∙𝑏

|𝑎||𝑏|
 ,     [3]  

where θ is the angle between the two vectors, a is the left eigenvector and b is the original data vector. The 

coefficient varies between 1 and 0, where 1 represents a high degree of alignment of the two vectors and 0 

represents orthogonality between them.  

Understanding how the first left eigenvector relates to the original data, allows for an investigation of which 

parameters are most independent. A seemingly arbitrary selection of the first eigenvector is justified by the 

previously mentioned singular value decay. For this inquiry, the first singular value accounts for an average of 63 % 

of the sum of all singular values. The first eigenvector is chosen as it represents the largest amount of the original 

data set while enabling the data to be reduced to a single vector (for the angle of alignment comparison). 

4.4 Weighted Projection Coefficient 

The insight for the Weighted Projection Coefficient method comes from the fact that, in using only the first 

eigenvector in developing the Projection Coefficient, there is an undervaluing of other certain parameters. If the 

second eigenvector were used in the formulation of the Projection Coefficient, then a completely different ranking 

would result. Weighted Projection Coefficients are proposed to account for the value of each parameter as 

determined by the similarity measure from all but the first eigenvector. The first eigenvector is very representative 

of the data, which is apparent by the largest associated singular value. Therefore, the choice was made to weigh each 

of the similarities between respective eigenvectors and the original vectors by the associated singular value. These 

weighted similarity coefficients are then summed over the respective parameter to provide a ranking that accounts 
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for the importance of a parameter as seen by the remaining eigenvectors. To our knowledge, this proposed extension 

of the Projection Coefficient is not present in the literature.  

The output of these methods, the Weighted Projection Coefficient, Projection Coefficients, DEIM, and Q-DEIM, is 

a ranking of the parameters from most independent to most redundant. The ordering of the parameters were tested 

against the engineering judgment ranking to show the variations between each ranking process as well as against all 

possible correlation orders. 

 

5. Expansion of Proposed Ranking Methodology  

Many sensitivity methods make the assumption that the single positive parameters, used to generate the Sensitivity 

Input matrix (shown in  Fig. 16), is sufficient to produce an acceptable ranking via the methods previously 

discussed. To expand on this work, an examination of that assumption is performed by providing various Sensitivity 

Input matrices that include increasing amounts of coupling between parameters. In the originally discussed 

Sensitivity Input matrix, no parameter coupling is captured as only one parameter at a time is set to a non-nominal 

value. The increase in complexity is evaluated to improve the quality model reduction ranking by providing more 

coupled system dynamics. To develop a Sensitivity Input matrix that can evaluate both the positive and negative 

parameter changes, the positive change Sensitivity Input matrix was appended with the negative changes, as can be 

seen in  Fig. 19 (B). Using the previous methodology, the ranking algorithms would output a ten-parameter ranking. 

Three weighing methods are employed to condense the ten-parameter ranking back into a five-parameter ranking. 

 

 Fig. 19 Sensitivity input matrix. (A) Five parameters with all parameters at their max error bound. (B) Ten 

parameters with all parameters at max and min of their error bound. (C) Fifty parameters with all possible 

combinations of two parameters. 

The critical physics that is not included in the five parameter input data set that is provided for the model reduction 

methods, is the subsequent coupling that exists between multiple parameters. For the five parameter system, it is 
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possible to evaluate all potential coupling combinations associated with each parameter at three values: its maximum 

error bound, the nominal value, and the minimum error bound. This evaluation results in 35 or, alternatively, 243 

potential combinations of parameter inputs. To investigate the quality of the resulting ranking as a function of the 

computational cost, reduced sets are also studied. Sets combining one parameter, two parameters (seen in Fig. 19), 

three parameter and four parameters simultanouesly were chosen as the coupling subdivision cases for evaluation. 

For this assessment, all higher order coupling cases include all previous cases, as seen in Table 4. This analysis 

allows for a better understanding of the relationship between the input data size and the resulting ranking quality. 

Balance must be made as enough input data must be generated to have a meaningful ranking; but the more input 

data generated, the larger the computational cost associated with this methodology. 

Table 4 Representative Breakdown of all 17 Weighting and Ranking Methods for Each Model Reduction Method. 

  

5.1 Weighted Ranking of Model Reduction Methods 

A study is performed into the expansion of the input data used in the development of the original Sensitivity Input 

matrix. The multiple rankings that result from each of the methods must be combined to succinctly still target only 

the five parameters used. Rank aggregation is the field of study associated with combining multiple rankings and 

there has been significant study in this field with several methods to be employed; further reading on the subject is 

available in [38]. While further examination of the rank aggregation method can be completed, this work studies 

modified Borda methods that produce a ranking based on a scaling that rewards a high ranking and punishes a lower 

ranking [39]. The weighting methods chosen are linear, log and the singular values output from the previously 

mentioned SVD analysis, shown in Fig. 15. The quality of these resulting methods is studied further in this work.  

In total, this work examines four model reduction methods as applied to seven Sensitivity Input matrix formulations. 

For five of the seven Sensitivity Input matrices, three weighting scales are implemented, resulting in 68 unique 

rankings combinations. This paper details the effort to identify the optimal size of the Sensitivity input matrix, the 

optimal weighting method, and the optimal model reduction method under a variety of conditions.  

 

# of Params
Sensitivity Matrix Input 

Description

Weighting 

Method
Rank #

5 Positive - 1

5 Negative - 2

10 Pos+Neg  (All Singles) Linear 3

50 Singles+Pairs Linear 4

130 Singles+Pairs+Trips Linear 5

210 Singles+Pairs+Trips+Quads Linear 6

243 All Linear 7

10 Pos+Neg  (All Singles) Log 8

50 Singles+Pairs Log 9

130 Singles+Pairs+Trips Log 10

210 Singles+Pairs+Trips+Quads Log 11

243 All Log 12

10 Pos+Neg  (All Singles) SVD 13

50 Singles+Pairs SVD 14

130 Singles+Pairs+Trips SVD 15

210 Singles+Pairs+Trips+Quads SVD 16

243 All SVD 17

Ranking Evaluations Applied to Each Model Reduction Method
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5.2 All Possible Ranks Evaluation 

To develop a baseline understanding so that all ranking methods such as engineering judgment, DEIM, Q-DEIM, 

Projection, and Weighted Projection can be compared, 120 possible parameter rankings are computed. By evaluating 

all possible rankings, the true optimal ranking, the blind random ranking and the mean engineering judgment 

ranking can be calculated. Knowledge of all possible rankings allows for an examination of the overall effectiveness 

of a given method.  

6. Case Study: Five Parameter Cantilever Beam 

The test geometry for this study is comprised of a fixed base cantilever beam made out of AL 6061, 18
1

16
 inches 

long with a cross section of 
1

8
 inches by 1 inch. Five parameters are evaluated for this system. Two unknown point 

masses are located at the center point (𝑥 = ½ 𝐿) and the tip (𝑥 =  𝐿) and, two unknown beam thicknesses are 

applied at (𝑥 = 0 𝑡ℎ𝑟𝑜𝑢𝑔ℎ ½ 𝐿), and (𝑥 =  ½ 𝐿 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝐿). The final parameter of interest is the global damping 

value. These five parameters directly affect the mass, stiffness, and damping matrix of this system while providing a 

straightforward correlation problem.  

In the development of any model, there are both a standard deviation and an uncertainty in the input parameter 

values obtained from the manufacturer (i.e., Young’s Modulus) or introduced through variations in assembly (i.e., 

damping). Thus, these parameters have a set uncertainty associated with the ‘real-world’ system that needs to be 

updated to be able to correlate the FEM results. The inputs that are required from the user are the FEM input 

parameters of interest and the reasonable error bounds (seen in Table 5) for those parameters. The error bound, if 

chosen well, conservatively defines the appropriate design space that encompasses all potential test geometries. Five 

parameters are used to define the system, as shown in  Fig. 20. 

Table 5 The parameter list with applied error bounds. 

Parameter 

Description 

ID 

# 

Nominal 

Value 
Units 

Error 

Bound 

Mass 1 1 0.0625 lb 100% 

Mass 2 2 0.0625 lb 100% 

Thickness 1 3 0.125 in 50% 

Thickness 2 4 0.125 in 50% 

Damping 5 0.01 in/in 50% 

 

This beam is modeled using a FEM, and large error bounds have been assumed to provide an interesting, albeit 

large, design space so that the proposed methodology can be investigated. This work compares FEM simulation 

results to FEM simulation. The nominal, or baseline, input values for the FEM can be seen in Table 5. The FEM 

used to evaluate the system, shown in  Fig. 20, is developed in MSC Nastran using SOL 111 for random vibration 

excitation, from 1 to 2000Hz in the Y-axis with an amplitude of 1.25x10
-4𝑔2/𝐻𝑧. The model uses 100 linear beam 

elements. Two mass elements are used to represent the variable mass parameters 1 and 2, resulting in an FEM 

consisting of 101 nodes and 606 Degrees of Freedom (DOF). The frequency response function is recovered for the 

base input excitation and tip response for all six DOF. The Y axis response of interest is the beam tip response 

located at 𝑥 = 𝐿. These five parameters do not encompass all potential FEM input parameters, but do provide a 

reasonable parameter set for initial investigation. This system provides a good basis for methodology verification 

due to its simplicity, in terms of the number of parameters, enabling for the calculation of the “true” optimal 

parameter set. The relative simplicity also allows a reasonable basis for comparison to engineering judgment. 
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 Fig. 20 FEM with Parameters and Points of Interest Highlighted. 

While the error bounds used in this problem are for demonstration purposes, the specific error bound choice has a 

significant effect on the resulting parameter ranking. When calculating the parameter importance, the algorithm 

evaluates variations in the response FRF due to parameters set to the maximum and minimum values allowed by the 

prescribed error bound. The use of parameter specific error bounds rather than global error bounds provides the 

opportunity to define a more representative design space for the particular test hardware. In this case, an FEM to 

FEM comparison is used, so the hardware design space is precisely specified by the applied error. To ensure the 

system is robust to errors between the error bound and the actual hardware design space, an investigation is done 

into the impact of uncertainties in the assigned error bound, discussed in Section 8. A discussion of the parameter 

ranking methodology follows. 

7. Ranking Methodology Verification through Correlation 

A baseline is required to compare the quality of the correlation produced through the use of these ranking algorithms 

so that the quality of the methodology can be verified. To evaluate the rankings, all potential rankings need to be 

developed and correlated. The output ranking provided by the various model reduction algorithms are then 

compared on 90 test geometries that represent ‘real’ geometries requiring correlated FEMs. Ninety representative 

test cases were correlated on each ranking independently. These ‘real’ geometries are developed using parameters 

that are randomly distributed within the given error bounds. For example, the thickness of the first test geometry is, 

𝑇1 = 𝑇𝑛(1 + 𝛼𝑒𝑇)       [4] 

where 𝑇𝑛 is the nominal thickness, 𝛼 is the randomized scale factor, 𝑒𝑇 is the error bound for the thickness, and 𝑇1 is 

the new randomized thickness for the 1
st
 geometry. The resulting five parameters, randomized within the error 

bounds, are then used to produce FRFs using an iterative FEM code developed for this investigation. As can be seen 

in Fig. 21, the frequency and dynamic responses for each of these test geometries vary greatly, representing a large 

design space. To ensure that the full design space of the five parameter model is well represented, an arbitrary but 

statistically significant number of test geometries is used. 
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 Fig. 21 All 90 geometries frequency responses used to validate the methodology. 

The use of this methodology enables the simulation of a high number of test results and provides a sufficient 

statistical basis to validate the parameter ranking methodology, without carrying out a similar number of hardware 

tests. To evaluate one ranking on a given geometry, five FEM runs are created. For the five FEM runs labeled 

𝑛 = 1: 5, the top 𝑛 ranked parameters for a given ranking are set to the exact parameter value of the test geometry. 

This is repeated for all 90 geometries and all 120 possible rankings resulting in 54000 runs. The methodology to 

generate the input parameters for the FEM correlation runs for a single geometry (geometry 49) and one ranking 

case (the optimal ranking) is shown in Table 6. The starting point for this ranking evaluation is at the nominal 

geometry where all five parameter values are set to the nominal parameter value. To evaluate the 𝑖𝑡ℎ parameter 

correlation case, the 1 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑖𝑡ℎ most important parameters are perfect correlated by being set to the 

intended geometries parameter value. Once all five parameters are correlated, the correlated geometry exactly 

matches the inputs for geometry 49.  
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Table 6 Correlation inputs for FEM runs for the optimal rank order (P3, P2, P4, P1, P5) with correlated values 

shown in black. 

 

As can be seen with the optimal ranking in  Fig. 22 (A), each parameter correlated shifts the FRF from the nominal 

geometry toward the response of the test geometry. At five parameters correlated, the correlated FEM exactly 

matches the test response. To simplify the plot the five parameters correlated model is not plotted. At two correlated 

parameters in  Fig. 22 (A), the first mode is well matched, but the second mode is uncorrelated; however, as each 

subsequent parameter is correlated, the frequency response behaves more closely to that of the test geometry.  Fig. 

22 (B) shows the worst ranking order possible. It can be seen that the ranking order of parameters introduces 

significant differences in correlation quality when compared to the best ranking order. This example demonstrates 

the benefits associated with identifying and using the optimal correlation order. 

 

 Fig. 22 (A) Correlation using the best ranking. (B) Correlation using worst Ranking. 

.  

7.1 Correlation Metric Comparison Between H2 norm and Peak Modal Response 

The chosen correlation metric used to compare the test geometry and the correlated geometry FRFs is the H2 norm. 

The H2 norm provides a method to determine the total error between the two frequency response functions so that 

the resulting correlation can be evaluated consistently. To evaluate the quality of H2 norm as a correlation metric, 

other correlation metrics (such as peak response frequency and amplitude) are compared to H2 norm in  Fig. 23 for 

several test geometries.  

Description Mass 1 (P1) Mass 2 (P2) Thickness 1 (P3) Thickness 2 (P4) Damping (P5)

Nominal 0.0625 0.0625 0.125 0.125 0.01

1 Param Correlated 0.0625 0.0625 1.33E-01 0.125 0.01

2 Param Correlated 0.0625 5.82E-02 1.33E-01 0.125 0.01

3 Param Correlated 0.0625 5.82E-02 1.33E-01 1.24E-01 0.01

4 Param Correlated 1.12E-01 5.82E-02 1.33E-01 1.24E-01 0.01

5 Param Correlated 1.12E-01 5.82E-02 1.33E-01 1.24E-01 5.68E-03

Geom 49 Params. 1.12E-01 5.82E-02 1.33E-01 1.24E-01 5.68E-03

Correlation Run Inputs for Optimal Rank Order on Geometry 49
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 Fig. 23 H2 norm comparison against Peak and Amplitude Error for First Two Modes for an arbitrary correlation 

order with (A) Geometry 31, (B) Geometry 60, and (C) Geometry 86. 

The H2 norm correlates well with the frequency and amplitude error calculated for the first two modes. The H2 norm 

can also be seen as more stringent as the entire FRF bandwidth is required to be correlated and not a single point 

(natural frequency). The H2 norm does not linearly reduce as the number of parameters is correlated, highlighting 

the complexity of this simple problem. That being said, Geometry #60, as seen in  Fig. 23 (B), only requires four 

correlated parameters to reach an H2norm of 21 and less than 5% error in both frequency and amplitude for the first 

two modes. This identifies that parameter five is not required to accurately correlate the full model for geometry 60. 

An inherent issue with the H2 norm is the importance placed on the higher modes which may not be of interest in 

some applications. The final parameter correlated in the case shown in  Fig. 23 is the global damping parameter. As 

can be seen, the amplitude error for all cases (except Geometry #60) is significant until all five parameters are 
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correlated. This is a key discovery that demonstrates a difference between the 𝐻2 norm and the classic correlation 

method associated with modal frequency and amplitude error. This identifies a problem inherent in the use of the 𝐻2 

norm evaluated across the full frequency spectrum. While this method is still sufficient for model correlation efforts, 

further investigation could be done to focus the correlation efforts on the lower modes by weighting the frequency 

spectrum to shift the importance towards the lower frequencies or possibly truncating the spectrum used for the 

actual Sensitivity matrix. 

7.2 Evaluation of all Potential Ranking Correlations 

The correlation methodology detailed in Table 6 is used to generate the data to evaluate the quality of all possible 

rankings. The output of this analysis is a 𝐻2 norm for 120 different rankings applied to 90 different geometries with 

6 correlation states from 0 to 5 parameters correlated. This results in 64,800 individual FEM runs to generate an 

objective truth for this system. The metric used to compare the relative rankings is defined as the Correlation Norm 

Error metric. The Correlation Norm Error is generated by evaluating the plots seen in Fig. 24 and calculating the 

area under the curve or, equivalently, the sum of the H2 norm for 1: 𝑛 parameters correlated. To generate a 

normalized value, the area under the curve is reduced by the minimum area under the curve. This ensures that the 

optimal path has zero Correlation Norm Error. The results for specific geometries 13, 27, and 79 can be seen in  Fig. 

24 (A), (B), (C), respectively. The average result for all 90 geometries can be seen in  Fig. 24 (D). 
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 Fig. 24 All possible rankings as a function of parameters correlated for (A) Geom. #13, (B) Geom. #27, (C) Geom. 

#79, and (D) Averaged for the 90 Geometries of interest 

As expected, the effectiveness of individual ranking varies significantly as a function of the geometry being 

analyzed. This variation is due to the random input parameters resulting in variability in the optimal ranking order 

for individual geometries. This is easily explained; in the example test case there is minimal change in a given 

parameter and the correlation impact of that parameter is expected to be minimal. For specific geometries like 

geometry 13, there is a clear path that can slowly decrease the error between the model and the test geometry. In  

Fig. 24 (B) and (C), the correlation of one or two parameters does not increase the correlation of the system due to 

the large initial correlation error. As seen in  Fig. 24 (C), all of the correlation error is due to four parameters, so the 

only significant improvement occurs after all four parameters are correlated. Given that the “test” specimen is a 

simulation in which to test the methodology, it is also expected that the fifth parameter will always yield zero error. 

Given these rankings, the Correlation Norm Error is used to determine the optimal correlation path. Using this 

methodology, it can be determined that the “true” optimal ranking order is [Thickness 1, Mass 2, Thickness 2, Mass 

1, Damping]. The worst correlation path can be calculated to be [Mass 1, Damping, Thickness 2, Mass 2, Thickness 
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1]. It is worth noting, that the best and worst rankings are not exactly reverse orders of each other. For this five 

parameter geometry, the resulting optimal and worst ranking paths can be seen in  Fig. 25.  

 

 Fig. 25 Optimal and worst correlation path for all test geometries. 

As was originally hypothesized, no single path is optimal at all points. If a single path existed, it would decrease the 

number of rankings of importance from 120 to 25, for instance if parameter #2 is in the single optimal parameter set, 

it must also be contained in the optimal two parameter set. As shown, this simplification cannot be made for this 

problem, requiring a significantly more complex and computationally expensive effort to determine the optimal 

correlation path. The resulting optimal path identification method for a five parameter system requires the 

generation of 64,800 models. This makes the identification of the optimal ranking through the use of brute force 

calculation too expensive for practical use. To achieve “truth” for a ten-parameter system, using the same method 

requires 3.6×10
9
 FEM runs. This highlights the impractical nature of the use of truth for anything but the 

methodology investigation. This result further informs the need for effective, computationally inexpensive methods 

to determine a ‘good enough’ ranking of parameters.  

7.3 Engineering Judgment 

Engineering judgment alone for the use of parameter identification has several flaws, but nevertheless it is required 

to identify the initial parameter set and determine the error bounds in this methodology. To better understand the 

variability in the engineering judgment ranking, 16 engineers were asked to provide their ranking of parameter 

importance. The engineers chosen for this investigation represent an experienced and well-educated group in the 

field of vibrations, testing, and modelling. Their responses are shown in Table 7. 
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Table 7 Engineering Judgment ranking by 16 experienced engineers with resulting Correlation Norm Error.  

 

The engineering judgment ranking, detailed in Table 7, has significant variation. Furthermore, Engineer 7 was able 

to match correctly three of the five parameters in the optimal parameter rank, but the ranking resulted in the worst 

overall Correlation Norm error. This is indicative that a high-quality ranking is reliant on the identification of the 

most and least important parameters. To better understand how these rankings perform relative to all potential 

rankings, the engineering ranking paths are plotted in  Fig. 26 (A) and the Correlation Norm Error is plotted in  Fig. 

26 (B).  

 

 Fig. 26 Engineering judgment investigation into (A) All correlation paths. (B) Correlation Norm Error vs. 

engineering rankings. 

As shown, the median professional engineering judgment ranking correlates better than random choice, but for a 

simple system engineering judgment was expected to perform better. The random ranking results in a Correlation 

Norm Error of 413.3 while engineering judgment produces a Correlation Norm Error of 334.3, resulting in an 

improvement in the relative Correlation Norm Error of 79 compared to random. As the number of parameters 

increase, a corresponding decrease in the quality of the engineering judgment is expected.  

7.4 Ranking Method Evaluation 

While the quality of the ranking is of paramount importance, the computational cost must also be taken into account. 

While large numbers of runs were used to investigate the quality of the reduction methods in question, relatively few 

computations were required to generate the ranking for this simple system. For this geometry, the full set of all 

possible coupled parameters was investigated resulting in a total of 35 or 243 coupling combinations. As 

demonstrated in Table 4 and  Fig. 19, several subdivisions were chosen for further investigation. These include 

simultaneous two parameter coupling cases, three parameter coupling cases, four parameter coupling cases and, 

finally, all potential variations of the parameters set to the max-min and nominal values as dictated by the error 

 Eng 1  Eng 2  Eng 3  Eng 4  Eng 5  Eng 6  Eng 7  Eng 8  Eng 9  Eng 10
 Eng 

11

 Eng 

12
 Eng 13  Eng 14

Eng 

15

Eng 

16

 Correlation Param 1 3 1 2 3 5 5 5 5 5 5 2 2 2 2 5 2 3 2

 Correlation Param 2 2 5 1 4 2 3 3 2 2 2 3 1 4 4 2 1 4 5

 Correlation Param 3 4 4 5 2 4 4 4 1 4 1 5 4 3 5 3 3 2 3

 Correlation Param 4 1 2 3 5 3 2 2 3 1 4 1 3 1 3 1 4 1 4

 Correlation Param 5 5 3 4 1 1 1 1 4 3 3 4 5 5 1 4 5 5 1

Correlation Norm 0.0 770.0 560.9 215.0 512.1 378.7 378.7 495.1 699.5 664.7 315.4 348.1 163.3 585.9 362.8 184.7 20.3 440.4

Optimal 

Ranking

Worst 

Ranking

Correlation Order Provided by Experienced Engineers
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bounds. These subdivisions result in 10, 50, 130, 210 and 243 individual FEM runs that are used to generate the 

input data set. To evaluate the quality of the ranking against the computational cost the ranking quality vs. the 

number of FEM runs required to produce that ranking are plotted in  Fig. 27.. The calculation used to generate the 

True ranking requires the most FEM run (64800), and the engineering judgment ranking requires the least (0). Each 

ranking and weighting method combination computational cost is based on the six different sized sensitivity matrix 

sizes, detailed in Fig. 19 and Table 4. This allows the selection of a method and an input size that balances the 

computational cost with the resulting ranking quality. The resulting quality and computational cost from the 68 

ranking method combinations are seen in  Fig. 27.  

 

 Fig. 27 Area under the Curve Error as a function of Computational Effort Required to Calculate Ranking. 

From Fig. 27, the resulting ranking quality for engineering judgment, truth, and the proposed methodology can be 

seen. For all cases, an increase in the size of the input set increases the quality of the correlation up to a point. The 

optimal location varies with each method, but all cases have a poorer correlation using 210 input points than the 130 

input case. While this is not entirely understood, it is suspected that the inclusion of higher order coupling provides 

no valuable insights into the dynamics of the problem, instead deteriorating the quality of ranking. The 

computational cost of the methodology presented, highlights the impracticality of defining the optimal ranking using 

“True” as it requires 64,000 FEM model evaluations. 

As can be seen, the lowest error method is either the Q-DEIM or DEIM method. However, the robustness of the 

method to errors in the inputs needs to be understood before identification of the optimal ranking method is possible. 

For this reason, an investigation into the ranking quality as a function of uncertainty in the error bounds is 

performed. This determines if the methodology presented herein is robust to incorrect assumptions concerning the 

initial error bounds. This simple system requires only the low computational cost of solving between 5 and 243 

FEM, depending on the method chosen. For a system with an increased number of parameters, the required increase 
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in computational cost would be significant. For larger parameter sets, there is a practical limit to the number of 

possible FEM iterations. This will be discussed in reference to the resulting quality and robustness of the various 

methods proposed for future use.  

8. Error Bound Investigation 

The error bounds in this example are subject to manufacturing tolerances, material uncertainty and user judgment 

errors. The error bound choices have a significant effect because the scale of the parameter change used in this 

methodology is based on the error bound assumptions. To better understand the impact of the error bounds on this 

methodology, a further investigation into the uncertainty in the initial error bound assessment is completed. The 

resulting ranking robustness is evaluated on ten randomly generated error bounds with the randomized uncertainty 

contained within [5%, 10%, 25%, 50%, and 75%]. To generate the ten unique 5% error bound uncertainty cases, 

each parameter’s error bound input is randomly varied between 95% and 105% of the original error bound value. 

The ten resulting Sensitivity Input matrices are used to generate 68 new parameter rankings. The resulting ranking 

from this evaluation examines the change in ranking quality as a function of the Correlation Norm Error. This is 

done for all model reduction methods, all weighting methods and for all five error bound uncertainty values as can 

be seen in Fig. 28.  



 

48 

 

 

Fig. 28 Evaluation of Model Reduction Methods Quality with Errors in Initial error bound Assumptions 

The resulting quality of the correlated model is dependent on the initial assumptions regarding the assumed error 

bounds. As error bound uncertainty increases, the ranking quality decreases, as expected. Overall, the quality of the 

resulting ranking is high even with large uncertainties associated with the original error bound assumptions. While 
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the figure provides information regarding the resulting ranking quality under a variety of error bound uncertainties, 

hypothesis testing is used to investigate the quality of each ranking method. 

8.1 Hypothesis Testing 

Upon completion of the error bound investigation, the 68 ranking variations were run on ten geometries for each of 

the five uncertainty values. This results in a total of 40,80 unique runs. To determine what method is best, a 

statistical investigation is done. An analysis of variance (ANOVA) is carried out followed by a multiple comparison 

test (Tukey test). All other variables are held constant during this analysis.  

  

The ANOVA analysis is used to analyze the differences in group means and ultimately if a difference between 

group means exists [40, 41] the mean correlation errors are examined. In this analysis, a null hypothesis is tested and 

is either accepted or rejected. The null hypothesis is that all treatments of the data will result in the same mean 

correlation error. That is, there is no difference between using any model reduction algorithm to rank the parameters. 

ANOVA rejects the null hypothesis if the recorded mean error is statistically improbable under the assumption that 

all the means are the same. The threshold to determine what is statistically significant is chosen to be 95 %, which is 

customary in an ANOVA analysis.  

  

The purpose of completing multiple comparison tests is to understand which group performed best if the ANOVA 

concludes that there is a difference in performance between groups. A Tukey multiple comparison test is chosen for 

the analysis as it has been proven to be robust to recognizing power differences for a small number of groups and is 

a commonly used comparison test [42]. The Tukey test compares all pairs of means for similarity within some 

confidence interval, again chosen as 95 % in this analysis. 

  

Hypothesis testing on the data, as seen in Fig. 29, is done to quantify the results shown in Fig. 28. This provides 

insight into the statistical properties of the resulting rankings as a function of weighting, model reduction method, 

the input data size and the uncertainty in the error bound. This is done for all of the ten randomized geometries used 

to generate the average responses seen in Fig. 28. This work defines the optimal operating cases and identifies the 

best operating methods for this process.  
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 Fig. 29 Hypothesis testing to statistically evaluate the optimal Weighting Method (A), the optimal Model Reduction 

Method (B), the optimal Amount of Included Data (C) and the Error Impact due to the error bound Uncertainty (D).  

As seen in  Fig. 29 (A), the linear weighting method produces reduced 𝐻2 norms relative to the other weighting 

methods. The model reduction method in  Fig. 29 (B), highlights that the Q-DEIM and DEIM method are not 

statistically distinguishable from each other, but instead, both perform better than Projection and Weighted 

Projection. The results from  Fig. 29 (C) indicate that the 10 parameter input and the 5 parameter positive input are 

the best performing data inputs. This is interesting as it is not understood why the input case using the positive end 

of the error bounds produces better results than the use of the negative side of the error bounds. As is expected, in  

Fig. 29 (D) the quality of the models follows a general trend of reduced quality as the uncertainty is increased. The 

variations are due to the random nature in the development of the error bound uncertainty. 

Through the hypothesis testing, the optimal cases for all input variations can be deduced. As shown in  Fig. 29 (A), 

linear weighting provides the best weighting method. The use of Q-DEIM and DEIM are statistically shown to be 

the best reduction algorithms in conjunction with five positive inputs. The two best input scale cases for each 

reduction method are plotted in Fig. 30. 
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Fig. 30 Best performing parameter ranking algorithms averaged over ten geometries compared to errors in the Error 

bound assumptions. 

As seen in Fig. 30, all methods reduce in quality as the uncertainty in the error bounds increase. It can be seen that 

Q-DEIM and DEIM produce similar results as was expected from hypotheses testing. A significant reduction in 

quality occurs for Projection and Weighted Projection. This demonstrates that Projection at 130 points and 

Projection Weighted are worse than engineering judgment with a given uncertainty of 10%. Overall it can be seen 

that the use of Q-DEIM and DEIM produce high-quality rankings even with large uncertainties in the error bounds. 

To better understand this, Fig. 31 investigates the response for each of the 10 test geometries used to generate the 

data seen in Fig. 30 using Q-DEIM as the ranking method.  
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Fig. 31 Maximum, minimum, and average errors using two ranking methods for the ten rankings using Q-DEIM as a 

function of errors in the error bound Assumptions 

By investigating the individual test geometries, it can be seen that outliers exist, but all cases below 75% uncertainty 

improve on engineering judgment. It should also be noted that there is no practical way to evaluate the uncertainty 

effect on engineering judgment, which would be expected to also increase with increased uncertainty but it is not 

addressed in this work. This study has shown robustness to errors and uncertainty in the engineering judgment 

associated with error bound development. Overall, this system has shown improvement on current methods with low 

computational cost. 
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Conclusion 

The methodology for parameter ranking, described in this paper, has been shown to be accurate, computationally 

efficient and reliable. The ranking used shows significant improvement over engineering judgment. This paper also 

demonstrates an improvement in the field of sensitivity analysis and has proven to be a viable method for parameter 

ranking. The resulting correlation method has been demonstrated and quantified using the Correlation Norm Error. 

Every possible ranking was calculated such that the optimal and worst case could be known, and the methodology 

could be compared. For this system, it was shown that the optimal ranking is [Thickness 1, Mass 2, Thickness 2, 

Mass 1, Damping]. This optimal ranking is correctly predicted through the use of the methodology proposed. The 

use of Q-DEIM in conjunction with a ten-parameter input set and linear weighting can predict the optimal case. 

Further work is needed to ensure that this specific ranking method proposed for this geometry holds for other more 

complex geometries but a substantial statistical analysis has confirmed its potential. 

The quality of engineering judgment was quantified with the help of 16 engineers who provided their assessments of 

the optimal correlation order for this problem. To compare with engineering judgment, the true optimal and worst 

ranking were calculated by generating results for all 120 possible rankings as a function of the number of parameters 

correlated. Blind random evaluations lead to a Correlation Norm Error of 413.3 and engineering judgment produces 

a Correlation Norm Error of 334.3. This results in an improvement of the Correlation Norm Error of 79 compared to 

random with the use of engineering judgment. The use of Q-DEIM with a linear weight and ten input parameters 

produces a relative Correlation Norm Error of 0 resulting in an improvement of 413.3 over random and 334.4 

improvement over engineering judgment. As shown, the quality of the ranking degrades as larger uncertainties are 

applied to the initial error bounds. 

The robustness of the method is evaluated against uncertainty in the initially applied error bound. To achieve this, 

ten error bounds were generated using a randomly varied error bound with the variance limited between 0%, 5%, 

10%, 25%, 50%, and 75%. These newly developed error bounds were used to generate 68 unique rankings. Those 

68 rankings were calculated for each of the ten geometries and each of the six uncertainty values resulting in 4080 

rankings. Through hypothesis testing, the Q-DEIM and DEIM rankings using linear weighting and five positive or 

10 inputs is proven to be robust to changes in the uncertainty of the error bounds, proving the robustness of the 

method. 
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Abstract: To meet the requirements for the next generation of space missions, a paradigm shift is required from 

current structures that are static, heavy and stiff, to innovative structures that are adaptive, lightweight, versatile, and 

intelligent. The largest benefit provided by this new structural concept is in the ability to deliver high precision 

position stability. The conventional high precision structural design uses two decoupled systems to achieve 

positional stability. First, a high mass structure delivers the effectively infinite stiffness and thermal stability so that 

no deformations occur under all operational loading conditions. Second, to meet the morphing and on-orbit 

positional requirements, a supplementary mechanisms provide the micro and macro displacement control required. 

This paper proposes the use of a novel morphing structure, the thermally actuated anisogrid morphing boom, to meet 

the design requirements through actively morphing the primary structure in order to adapt to the on-orbit 

environment and meet both requirements in a consolidated structure. The proposed concept achieves the morphing 

control through the use of thermal strain to actuate the individual helical members in the anisogrid structure. 

Properly controlling the temperatures of multiple helical members can introduce six Degree of Freedom (DOF) 

morphing control. This system couples the use of low Coefficient of Thermal Expansion (CTE) materials with 

precise thermal control to provide the high precision morphing capability. This concept has the potential to provide 

substantial mass reductions relative to current methods and provide a way to meet the high precision displacement 

requirements of spacecraft systems. This paper will detail the concept itself, demonstrate the modeling procedure, 

and investigate the design space to quantify the potential of the thermally morphing anisogrid smart structure.  

1. Introduction 

While the field of smart adaptive structures has been well established in the spacecraft community, new adaptive 

structures are essential to meet the requirements for the next generation of space missions. In recent years, 

significant effort has been expended on the development of smart structures to address vibration isolation, thermal 

distortion, deployment control, and to provide intelligent environment control capability [1-17]. The introduction of 

adaptive, or morphing, capabilities to address the system requirements, relaxes the structural stiffness requirements 

resulting in significant mass savings. This mass saving provides significant cost savings and enable new mission 

architectures. The purpose of this work is to expand the capability of current adaptive structures, in order to build 

smart structure systems that meet the on-orbit design requirements by actively adapting to the changing 

environment. The present structural paradigm is to achieve static displacement, thermal distortion stability, and 

dynamic design requirements through the application of stiff, thermally invariant, heavy primary structures with 

secondary adaptive systems. This work is focused on developing a mass-efficient, integrated and active structure 

that can provide low-frequency vibration isolation and thermal distortion corrective control, while also meeting 

high-precision alignment and position control requirements. This morphing capability can be used to correct on-orbit 

alignment, manufacturing error, and structural, or thermal, distortion. The primary motivation of this initial study is 

to define the performance limits of the thermal morphing anisogrid structures.  

The anisogrid morphing concept expands on well-established smart structural systems like the hexapod; also known 

as the Steward platform [18]. The anisogrid structure taken to its most basic element is a hexapod system. Hexapods 

have been implemented to deliver 6 DOF morphing control. The traditional kinematic hexapod system consists of 

six actuating legs that are connected with unconstrained rotational degrees of freedom to two parallel surfaces. As 

the six legs are actuated, the two surfaces’ relative position and angle can be controlled in all six degrees of freedom. 

A recent example of the hexapod technology can be seen in the implementation of the hexapod system in telescopes 
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[19]; specifically the Hobby-Eberly Telescope [20-22]. The thermal morphing hexapod, discussed by the authors in 

[23], introduces rotational constraints in conjunction with thermal strain actuation to improve the minimum 

morphing capability. The thermal morphing anisogrid boom concept discussed here, expands and improves upon the 

thermal morphing hexapod concept through the introduction of increased structural coupling and a more complex 

actuation vector. These changes result in a distributed actuation force that reduces global deformation through the 

dissipation of strain energy in local deformations. A significantly reduced morphing displacement relative to the 

length of the input actuation can be achieved by this method.  

This work proposes the use of thermal strain as the sole actuation mechanism to achieve six Degree of Freedom 

(DOF) morphing capability. The ability to achieve high precision morphing is possible through the use of low 

Coefficient of Thermal Expansion (CTE) materials in conjunction with a highly accurate thermal control system. To 

morph to the desired position, thermal gradients are applied to the helical members in the system to generate local 

and global thermal strains, which pushes and pulls the system into the desired configuration. The use of thermal 

strain as an actuation mechanism has been studied at the micro [24-31] and macro level [31-34] for both bi-material 

[31-35] and bistable structures [30, 36, 37]. This paper will investigate the capability of this novel thermal morphing 

anisogrid structure which can deliver both micro and macro morphing deformations. This paper will demonstrate the 

novel anisogrid concepts ability to meet design requirements through precise structural morphing control.  

A parameterized Finite Element Model (FEM) was developed to generate, run, and evaluate the geometric 

configurations of interest for this work. The FEM is developed using linear assumptions where temperatures are 

directly applied to the system. These modeling assumptions allow superposition to be used to combine the base set 

of FEM outputs to create the large set of displacements used to evaluate the workspace and calculate the minimum 

morphing capability in all six degrees of freedom. This parameterized FEM code is used to sweep through the 

critical geometric parameters such that the parameters impact on the morphing quality and scale is defined. This 

parameter sweep will be used to indicate the morphing potential of the concept as well as better define the design 

space. 

This paper will work to detail the concept, discuss the anisogrid geometry’s heritage, and detail the structures 

potential for this thermal morphing concept. The parameterized FEM was developed to evaluate the material 

normalized single helical unit thermal strain morphing cases; the workspace and minimum morphing capability will 

also be discussed. A study into the thermal control requirements versus geometric morphing accuracy will be 

performed for three materials: low CTE carbon composite, invar, and aluminum. Finally, the nine parameter design 

space will be investigated and future work will be discussed. 

2. Morphing Concept Explanation 

The intent of the thermal morphing anisogrid concept is to replace the current structural paradigm, that consists of a 

heavy and rigid primary structure coupled with a secondary morphing system by using smart adaptive primary 

structure. This is achieved by integrating the adaptive capability directly into the primary structure. The adaptive 

structural concept achieves design requirements by predicting and adapting to thermal and structural loading 

environments in real time. This adaptive capability is achieved through the use of thermal strain as the active 

actuation mechanism to control the lengths of helical members in the anisogrid structure. High precision morphing is 

created through the use of low CTE materials and precisely controlled applied temperatures. The thermal morphing 

anisogrid structure is an evolution of the thermal morphing hexapod concept previously detailed by the authors [23]. 

The thermal morphing hexapod uses thermal gradients in each of its six legs to provide thermal strain as the 

actuation mechanism to enable six DOF morphing capabilities. The anisogrid structure uses each helical member as 

an active actuator to provide a multi-directional thermal strain vector in a constrained structure. By introducing 

structural coupling and a multi-directional thermal strain, the system can produce smaller displacements per applied 

thermal strain. While the introduction of structural coupling improves the structural control capability, it also 

introduces thermal coupling. In the intended space-based environment, standard radiation shielding and the absence 

of an atmosphere removes the radiation and convective coupling thermal losses. The conductive coupling that 

occurs at helical interface locations will have a significant effect, but it can be mediated through the material or 

structural choices that limit the conduction at those interfaces. Future work must address the impacts and mitigation 

of the convective coupling effects. 
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3. Anisogrid Structure 

The tubular anisogrid structure is the complex structure under investigation. This geometrically complex structure 

has recently become more viable due to improvements in manufacturing capabilities [38, 39] and has shown great 

promise in structural applications where a lightweight structure is of critical importance [38-48]. The anisogrid 

structure is made up of three structural components, the clockwise helical tubular members, the counterclockwise 

helical tubular members, and the circumferential tubular members, as seen in Figure 32. The anisogrid has four 

buckling failure modes: global buckling, global wall buckling, local tube buckling, and local tube wall buckling. For 

structural applications, the overall geometry, including the helical and cylindrical cross sections, would be sized to 

achieve optimally reduced mass by ensuring all buckling failure load cases occur at the same input load. The low 

mass thermal morphing anisogrid case will not be constrained by the optimal mass condition to evaluate the limits of 

the morphing capability. 

3.1 Anisogrid Geometric Parameters of Interest 

To investigate this concept, a one-meter tall anisogrid structure’s morphing capability is evaluated as a function of 

its geometric parameters. These parameters are listed in Table 8. The nine parameters, detailed in Figure 32, are 

given both maximum and minimum allowed values. The model uses material normalization in the load and model 

development, when possible, to allow for the evaluation of multiple materials using a single FEM. This is not 

possible in the development of the element stiffness parameters where the Young’s Modulus for invar is used. The 

use of any other material requires scaling of the cross sections to ensure element axial and bending stiffness values 

are correct, and to ensure the same predicted morphing characteristics. To evaluate this design space, each parameter 

will be independently investigated. 

Table 8. Parameter Nominal, Maximum, and Minimum allowed value in the design space. 

Param. 

Number 

Parameter 

Name 

Nominal 

Value 

Max 

Value 

Min 

Value  
Units 

1 # of Helicals 20 34 6 - 

2 Radius 0.25 0.5 0.0625 (m) 

3 Pitch π 3.25 π .25 π (m) 

4 Hel ID 0.01 0.05 0.001 (m) 

5 Hel Thickness 0.01 0.05 0.001 (m) 

6 Cyl ID 0.01 0.05 0.001 (m) 

7 Cyl Thickness 0.01 0.05 0.001 (m) 

8 

Base 

Constraint 123 123456 123 DOF 

9 Top Constraint 123 123456 123 DOF 
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Figure 32. Anisogrid Geometry with all nine Geometric Parameters of Interest and the Smallest Repeated Anisogrid 

Section shown in Detail. 

4. Parameterized Finite Element Model 

A code was developed to utilize the nine geometric parameters listed in Table 8 as inputs and outputs of the 

corresponding FEM text. The Matlab parameterization code uses the geometric parameters as inputs, generates a 

text-based MSC Nastran input file, tells MSC Nastran to run the file, and then reads the text based results file back 

into Matlab for post-processing. The resulting output from the parameterized FEM model, as seen in Figure 33, is 

comprised of linear CBEAM elements, which make up the helical and circumferential members of the system. Two 

rigid RBE2 elements are used to model the two boundary conditions at the tip and base of the anisogrid boom. The 6 

DOF fixed boundary condition, is located at the center base node, attached to each of the base interface nodes with 
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all translational degrees of freedom fixed. The tip node displacement defines the morphing displacement and is 

connected to the tip interface nodes in all translational degrees of freedom. One of the parameters evaluated in this 

study is the rotational fixity between the tip and base nodes to their respective rigid elements.  

 

 

Figure 33. Finite Element Anisogrid for the 20 Helical Nominal Structure, (a) Side View, (b) Top View, (c) 

Isometric View. 

In the development of the parameterized FEM code, the number of elements between each intersection point is 

defined as an adjustable variable in the FEM development code. While a convergence study was performed, the use 

of nine elements was more than the required to achieve convergence. The driving factor behind the choice for ten 

nodes per intersection was to simplify the discretization of the pitch angle. As the number of elements between each 

intersection increases, the variability or noise measured in the gradient of the cost function is reduced.  The decision 

to use ten nodes between intersection points reduces future optimization complexity by increasing the number of 

stable pitch angles.  

4.1 FEM Loading Environment and Assumptions 

Several key assumptions have been made to simplify the model’s complexity associated with the applied thermal 

load. Given that the operational conditions are in an on-orbit space environment where standard radiation shielding 

is used, both convective and radiative coupling between the active members is assumed to be zero. The second key 

modeling simplification is that conductive losses within the structure are assumed to be negligible. This assumption 

is a valid first approximation if specific care is placed to limit the thermal conduction in the design. Two methods to 

limit the coupling exist through the use of anisotropic conductive material properties or the design of low conduction 

structural interfaces. These assumptions simplify the computation by allowing for the thermal strain to be directly 

applied to the system rather than calculated from external thermal loading. Under these conditions, static linear 

modeling can capture the various morphing configurations with minimal computational resources using 

superposition. These assumptions can later be relaxed once the structural behavior has been fully understood. 
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To directly apply this thermal strain in the FEM, each helical member is independently loaded with 1℃ ∆𝑇 in 

conjunction with a Coefficient of Thermal Expansion (CTE) of 1 m/m/℃ resulting in a unit thermal strain 𝜀∆𝑇 of 1 

m/m. A single FEM output is therefore able to compute the true displacements of multiple material CTE values and 

thermal control capabilities by appropriately scaling the FEM results. Future work will include the incorporation of 

more realistic thermal loading environments to quantify the errors associated with these assumptions. 

4.2 Superposition 

Superposition is used to combine the individual helical loading cases into higher order loading cases and thus reduce 

the computational costs of developing multiple loading cases within the FEM code. These combined loading cases 

are used to evaluate the quality of the workspace and to find the minimum displacement capability resulting from a 

desired response. The linear modeling used does not require an evaluation of the accuracy of the superposition, one 

was performed for completeness, but is not detailed here. An example of the combination of two single helical 

loading cases (heated members shown in red) into a two-member loading case can be seen in Figure 34. 
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Figure 34. Finite Element Model Response to Three Loading Cases with the Heated Elements shown in Red. (a) 

Unloaded Geometry (b) Single Counter Clockwise Helical Loading, (c) Single Clockwise Helical Loading, (d) A 

Symmetric Combination of Clockwise and Counter Clockwise Helical Loading. 

The clockwise and counter-clockwise helical loadings, as seen in Figure 34 (a) and (b), have symmetric 

displacement vectors. Two displacment vectors with compontents in all six DOF can be combined to generate a 

displacement in only the X and Z axis, as seen in Figure 34 (c). Multiple combinations of loadings will be evaluated 

in more depth in Section 5.2. 
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5.  Nominal Geometry Investigation 

The first step in the evaluation of this concept, is to explore the performance of the nominal geometry. The first 

phase of this investigation requires the assessment of the single helical morphing performance. The single helical 

morphing outputs can then be used to calculate the workspace and the minimum morphing capability.  

5.1 Single Helical Loading Case 

To evaluate the structure, each helical member is independently loaded with a thermal strain of ± 1m/m. To 

calculate all possible loading combinations, the linear FEM is only required to calculate 2𝑛 single helical morphing 

cases, where 𝑛 is the number of helical members. This significantly reduces the overall computational costs, which 

enables iterative evaluation. Through the development of these base displacements, the full workspace can be 

constructed by combining and scaling these 40 inputs, as seen in Figure 35. 

 

Figure 35. All 40 Positive and Negative Nominal Geometry Single Helical Morphing Displaced Positions Under a 

Unit thermal strain load. 

5.2 Workspace Evaluation 

The workspace size and properties can be computed from the single helical displacement cases to define the 

operational or reachable volume. For this complex anisogrid structure, which has 20 helical members, the number of 

possible loading combinations can be computationally prohibitive. To limit the computational cost of this 

investigation, the evaluation is restricted to only 4 combined helical loadings at a given time. Additionally, a 

globally applied temperature change loading case, which induces a uniform thermal strain, is included. The global 

thermal strain loading is combined with the single helical loading, as seen in Figure 36, to develop the overall inputs 

used to frame the workspace. A short study is performed to evaluate the impact that the scale of the applied thermal 

strain has on the shape and size of the workspace. The first workspace evaluation, as seen in Figure 37 (a), 

investigates the workspace under all possible permutations of 4 of the 20 helical members loaded with a thermal 

strain of [-2ε, -1ε, 0, 1ε, 2ε] m/m resulting in 2.6𝑥106 loading cases. The second evaluation, as seen in Figure 37 
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(b), expands the thermal loading to [-3ε, -2ε, -1ε, 0, 1ε, 2ε, 3ε] m/m resulting in 12𝑥106 loading cases. The third 

and final evaluation, as seen in Figure 37 (c), expands the thermal loading to [-4ε, -3ε, -2ε, -1ε, 0, 1ε, 2ε, 3ε, 4ε] 

m/m resulting in 36𝑥106 loading cases.  

 

 

Figure 36. All Input Loading Cases for the Workspace and Minimum Morphing Evaluation Cases. 
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Figure 37. The Nominal Geometry Workspace with (a) An Applied Thermal Strain Sweep from -2 to 2 m/m, (b) An 

Applied Thermal Strain Sweep from -3 to 3 m/m, (c) An Applied Thermal Strain Sweep from -4 to 4 m/m. 

As expected, the larger the applied thermal strain is on the system, the larger the resulting workspace. It can also be 

seen that gaps in the smaller strain sweep cases exist in the Z axis. For the larger loading cases, where more cases 

are evaluated, a sufficient loading set is provided to fill the gaps between the global thermal loading displacements. 

The workspace developing the full thermal strain sweep of [-4ε, -3ε, -2ε, -1ε, 0, 1ε, 2ε, 3ε, 4ε] m/m is used for future 

evaluation of the structure. 

5.3 Minimum Morphing Capability 

To quantify the minimum morphing capability in each of the six degrees of freedom, the 34𝑥106 morphing cases 

developed for the workspace evaluation using a thermal strain sweep of [-4ε, -3ε, -2ε, -1ε, 0, 1ε, 2ε, 3ε, 4ε] m/m is 

used. The workspace pointcloud is searched to find the single axis minimum morphing cases for all non-zero 

morphing positions, where the in axis term is an order of magnitude larger than all the off-axis terms. The minimum 

single axis displacement for each axis can be seen in Table 9.  
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Table 9. Minimum Displacement Vectors for all Six Degrees of Freedom Loaded using a Material Normalized Unit 

Strain of 1 m/m. 

 

Minimum Morphing Displacement Vector 

 

Response to a Material Normalized Unit Strain of 1m/m 

 

X Y Z RX RY RZ 

X Min Displacement Case 0.3014 0.0000 0.0000 0.0000 0.0000 0.0000 

Y Min Displacement Case 0.0000 0.5733 0.0000 0.0000 0.0000 0.0000 

Z Min Displacement Case 0.0000 0.0000 0.2958 0.0000 0.0000 0.0000 

RX Min Displacement Case 0.0000 0.0093 0.0000 0.3728 0.0000 0.0000 

RY Min Displacement Case 0.0176 0.0000 0.0000 0.0000 0.7091 0.0000 

RZ Min Displacement Case 0.0000 0.0000 0.0000 0.0000 0.0000 1.5519 

 

Depending on the application, the design space could change the search parameters to define the application specific 

minimum morphing capability. This investigation also calculates the helical members that, when loaded, produce the 

minimum displacement case. Figure 38 is an example of the minimum morphing control case in the X axis, where 

two helical members are loaded with a positive thermal strain (shown in red) and two members loaded with a 

negative thermal strain (shown in blue).  

 

Figure 38. Visualization of the Loaded Helical Members and the Resulting X Axis Minimum In-Plane 

Displacement Capability for the Nominal Geometry. 

5.4 Representative CTE and Thermal Control Evaluation 

The use of a normalized unit input loading, allows scaling of the workspace and minimum displacement results to 

evaluate systems with a variety of material choices, displacement control goals, and thermal control requirements. 

The method to scale the original unit thermal strain and to calculate the properties of a specific material and thermal 

control capability is detailed in Equation 1 through Equation 3. The classically applied thermal strain calculation can 

be seen in Equation 1 as, 

𝜀 = 𝛼∆𝑇 ,      [1] 

where 𝜀 is the resulting thermal strain (m/m), α is the material CTE (m/m/°C), and ∆T is the thermal control 

capability (°C). For the development of the model α = 1 m/m/°C and ∆𝑇 = 1 °𝐶 resulting in a thermal strain of 

1m/m. To calculate the required thermal strain needed to achieve a specific displacement, the output of the FEM is 
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scaled. Once the required thermal strain is known, the required material and thermal control capability can be 

calculated.  

𝐷𝐹𝐸𝑀

𝜀𝑖𝑛𝑝𝑢𝑡
=

𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝜀𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 
=

𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝛼∆𝑇
  ,                                                                 [2] 

where 𝐷𝐹𝐸𝑀 (m) is the FEM output from a unit 𝜀𝑖𝑛𝑝𝑢𝑡 = 1 𝑚/𝑚, the desired output is 𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑  (m) and the 

required material and control properties are 𝛼 (m/m/°C)and ∆𝑇(°C). For a given thermal control capability, the 

resulting equation can be rearranged to produce a relationship between the desired morphing control, and the 

required thermal control for a given material as, 

∆𝑇 =
𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝜀𝑖𝑛𝑝𝑢𝑡

𝐷𝐹𝐸𝑀𝛼
                                                                                 [3] 

Using the FEM output detailed in Section 5.2, 𝐷𝐹𝐸𝑀, the other properties of the system can be evaluated. The first 

investigation is into the thermal control as a function of material CTE for a given displacement goal of 1 μm. The 

thermal control versus CTE evaluation in the six morphing DOF can be seen in Figure 39 

 

Figure 39. Evaluation of the Six DOF Thermal Control and Material CTE Required to Achieve 1 μm Displacement 

Control. 

Low CTE carbon composite, invar, and aluminum are the three materials chosen to represent the overall CTE range. 

The three materials can achieve 1 μm displacement control in all six degrees of freedom, through the use of a 

thermal control system with an accuracy of, 20 °C, 2 °C, and .1 °C, respectively. To investigate the full geometric 

control for these three material properties, a study is performed relating thermal control capability versus 

displacement control capability. To define the maximum morphing capability, the maximum allowed ∆T is set to ten 

times the thermal control capability. The limiation of the maximum thermal load limits the total allowable system 
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∆T to twenty times the thermal control capability.  The minimum and maximum control capabilities for the three 

material properties for the X axis can be seen in Figure 40. 

 

Figure 40. X Axis Displacement Control Accuracy vs. Thermal Control for the Minimum Control and 

Maximum Displacement for Each Material. 

The distance between the minimum morphing line and the maximum morphing line in the X-axis represents the full 

morphing design space. The displacement control for the 1 °C control case for all 6 DOF can be seen in Table 10. 

This study provides the key pieces of information that can be used to evaluate the morphing capability of a system 

developed using one of the three chosen materials.  The complex nature of the non-symmetric morphing capability 

will have to be addressed in the control system. 
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Table 10. Minimum and Maximum Displacement Control for all Three Materials of Interest and all 6 DOF given a 

thermal control capability of 1 °C. 

 

Displacement Control Capability given a Thermal Control of 1 C (meters) 

 

Minimum Displacement Capability Maximum Displacement Capability 

 

Composite Invar Aluminum Composite Invar Aluminum 

X Disp. 3.01E-08 3.62E-07 6.96E-06 9.75E-07 1.17E-05 2.25E-04 

Y Disp. 5.73E-08 6.88E-07 1.32E-05 9.28E-07 1.11E-05 2.14E-04 

Z Disp. 2.96E-08 3.55E-07 6.83E-06 3.70E-06 4.44E-05 8.54E-04 

RX 

Disp. 
3.73E-08 4.47E-07 8.61E-06 1.21E-06 1.45E-05 2.79E-04 

RY 

Disp. 
7.09E-08 8.51E-07 1.64E-05 1.15E-06 1.38E-05 2.65E-04 

RZ 

Disp. 
1.55E-07 1.86E-06 3.58E-05 1.55E-06 1.86E-05 3.58E-04 

 

Although the performance of the nominal geometries is now well understood, the design space is not.  To better 

define the capability of this system, alternate geometries need to be investigated.  The first investigation into this 

structure is performed by sweeping each of the nine parameters through the design space to determine each 

parameters effect on the morphing behavior.  

6. Design Space Investigation 

Further insight can be gained by evaluating the impact that each of the nine geometric parameters has on the overall 

system’s performance. A cost function is developed to quantify the size of the displacement vector of the single 

helical morphing case so that a geometries morphing performance can be quickly evaluated. To investigate the 

resulting single helical loading morphing pattern as well as the geometries cost function, a parameter sweep is 

performed. 

6.1 Cost Function Development 

The helical system’s minimum morphing loading input is given by a complex combination of helical loading 

combinations. To define the minimum control capability, an optimization would need to be performed on each 

geometry. Rather than implement this complex optimization, the geometry’s minimum morphing capability will be 

quantified by evaluating the single helical displacement vector. Minimizing the cost function, as seen in Equation 4, 

will minimize the displacement vector length of single helical displacement vectors that are combined to generate 

geometry specific minimum morphing case.  

𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
𝐷𝑥

2 + 𝐷𝑦
2 + 𝐷𝑧

2 + 𝐷𝑟𝑥
2 + 𝐷𝑟𝑦

2 + 𝐷𝑟𝑧
2

6
,                                             [4] 

where 𝐷 is the six degree of freedom single helical loading displacement vector, measured at the master RBE2 node 

located at the tip of the anisogrid boom. This cost function can be calculated on any of the 𝑛 singular helical 

displacements; this is because the overall length of each single helical displacement is constant for a given 

geometry, as seen in Figure 35. 

6.2 Parameter Sweep 

The impact that each geometric parameter has on the resulting single helical morphing position can be quantified 

through a parameter sweep. To perform the parameter sweep, each of the nine parameters of interest, as seen in 

Table 8, were swept through the full design space. The parameter sweep morphing position, calculated from the nine 

parameter sweeps, and their resulting cost functions are shown in Figure 41 through Figure 49. 
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Figure 41. Number of Helical Member Parameter Sweep: Tip Displacement and Resulting Cost Function Under all 

n Helical Actuations with a unit thermal load applied using a 1 °C ∆T and a CTE of 1 m/m. 

 

Figure 42. Radius Parameter Sweep: Tip Displacement and Resulting Cost Function Under all n Helical Actuations 

with a unit thermal load applied using a 1 °C ∆T and a CTE of 1 m/m. 
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Figure 43. Helical Member Pitch angle Parameter Sweep: Tip Displacement and Resulting Cost Function Under all 

n Helical Actuations with a unit thermal load applied using a 1 °C ∆T and a CTE of 1 m/m. 

 

Figure 44. Helical Member Inner Diameter Parameter Sweep: Tip Displacement and Resulting Cost Function Under 

all n Helical Actuations with a unit thermal load applied using a 1 °C ∆T and a CTE of 1 m/m. 
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Figure 45. Helical Member Pitch angle Parameter Sweep: Tip Displacement and Resulting Cost Function Under all 

n Helical Actuations with a unit thermal load applied using a 1 °C ∆T and a CTE of 1 m/m. 

 

 

Figure 46. Cylindrical Member Inner Diameter Parameter Sweep: Tip Displacement and Resulting Cost Function 

Under all n Helical Actuations with a unit thermal load applied using a 1 °C ∆T and a CTE of 1 m/m. 
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Figure 47. Cylindrical Member Thickness Parameter Sweep: Tip Displacement and Resulting Cost Function Under 

all n Helical Actuations with a unit thermal load applied using a 1 °C ∆T and a CTE of 1 m/m. 

 

Figure 48. Base Boundary Condition Parameter Sweep: Tip Displacement and Resulting Cost Function Under all n 

Helical Actuations with a unit thermal load applied using a 1 °C ∆T and a CTE of 1 m/m. 
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Figure 49. Tip Boundary Condition Parameter Sweep: Tip Displacement and Resulting Cost Function Under all n 

Helical Actuations with a unit thermal load applied using a 1 C° ∆𝑻 and a CTE of 1 m/m. 

The nine parameter sweeps demonstrate the various parameter’s impact on the overall morphing of the system. 

While each of these parameters has an effect on global stiffness, the effect of the parameter on the overall input 

loading can be discussed with increased depth. An increase in the number of helical members is expected to increase 

the system stiffness, through, not only the greater number of helical members, but also through an increase in the 

number of cylindrical members required to maintain anisogrid hexagonal pattern. These factors result in an 

exponential growth in overall stiffness. This impact can be seen in an exponential reduction in the cost function as 

the number of helical members increase, as demonstrated in Figure 41. The pitch angle affects multiple components 

in the morphing evaluation. Firstly, the pitch angle has a coupled stiffness effect between the axial, circumferential, 

and bending stiffness. Secondly, the pitch angle dictates the angle of the thermal strain vector. Finally, the pitch 

angle affects the length of the helical member resulting in control over the overall thermal strain applied to the 

system. The complex coupling between the pitch angle and the cost function, as seen in Figure 43, is due to the 

complex coupling of these multiple factors. As the radius increases, the total bending stiffness increases; but, an 

important secondary effect is the change in the effective thermal strain direction by changing the circumferential 

travel distance of the helical. These complex dynamics can be seen in Figure 42. The impact of the helical cross-

section inputs, seen in Figure 44 and Figure 45, as well as the cylindrical cross section, as seen in Figure 46 and 

Figure 47, have local and global effects. The overall helical and cylindrical stiffness has an impact on the total 

stiffness and the axial stiffness of the helical member. This dictates the effective actuation force provided by the 

applied thermal strain and the effective global stiffness acting against that actuation force. Due to the nature of the 

top and base fixity parameters, as seen in Figure 48 and Figure 49, no distinct pattern appears in the cost function 

parameters sweep. Identifying the parameters’ effect on the cost function, as well as the nature of the structural 

coupling, provides insight into the importance of each of these parameters.  Once a basic understanding of the 

parameters’ impact on the system is obtained, an investigation into the full design space of the system can begin.  

7. Heuristic Optimization / Design Space Evaluation 

A full optimization would have to be performed on all nine parameters to develop the true optimal geometry that 

maximizes the structures performance capability. Further complicating the optimization task, the design space 

contains three non-continuous parameters: the number of helical members, top constraint, and bottom constraint. 

Therefore, a more basic method will be employed to evaluate the scale of the design space, and the full optimization 

is left for future work. This simplified heuristic optimization is not a fully coupled optimization, but rather an 

uncoupled parameter optimization where each of the nine parameters are optimized independently. To generate this 
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heuristic optimization, the minimum and maximum cost function in each parameter sweep is recorded.  To then 

generate the global minimum cost function system, each of the nine minimum values from the nine parameter 

sweeps are used to generate the minimum cost function geometry. This is repeated for the maximum cost function in 

the nine parameter sweep to generate the maximum cost function geometry.  These two cases are then evaluated to 

generate the heurstic optimized cost function cases.  

Table 11. Evaluation of Each Parameter Maximum and Minimum Cost Function in the Parameter Sweep and the 

Resulting Total Change in the Cost Function. Highlighted Entries Exist at the Borders of the Design Space. 

 

 

Minimum C-F In 

Design Space 

Maximum C-F In 

Design Space   

 

Param 

Value  

Cost 

Function 

Param 

Value 

Cost 

Function 
Units 

Cost 

Function ∆ 

# of Helical Members 34 0.02078 6 0.7699 - 0.74912 

Radius 0.4402 0.04648 0.0625 0.7612 (m) 0.71472 

Pitch Angle 1.898π 0.03634 0.25π 0.215 (m) 0.17866 

Hel Inner D 0.05 0.05192 0.001 0.06991 (m) 0.01799 

Hel Thickness 0.05 0.05076 0.001 0.06705 (m) 0.01629 

Cyl Inner D 0.05 0.06204 0.001 0.06668 (m) 0.00464 

Cyl Thickness 0.05 0.06156 0.005893 0.06564 (m) 0.00408 

Base Constraint 1236 0.06485 12345 0.06549 DOF 0.00064 

Top Constraint 1234 0.06476 1235 0.06528 DOF 0.00052 

Nominal Geometry - 0.0649 - - - - 

Heuristic Optimization - 0.007697 - 513.083 - 513.07528 

 

The minimum morphing case, which uses the nine minimum cost functions, found in the nine parameter sweeps, 

was calculated to have a cost function value of 0.007697. The maximum morphing case that uses the maximum cost 

functions found in the nine parameter sweeps was calculated to have a cost function of 513.083. These cost 

functions do not demonstrate the true potential of the system, but rather provide an indication of the performance 

range in the design space. It can be seen that a five order of magnitude overall displacement length difference can be 

seen within the design space. This is indicative that this geometry can solve a wide variety of morphing problems. 

Future efforts will address the full geometric optimization and further investigate the design space. 

Conclusions 

This paper has shown that the thermal morphing anisogrid high precision morphing concept has significant promise 

for high precision thermal control in the space environment.  This method for modeling and evaluation is shown to 

be feasible and have a low computational cost. Assuming linearity and directly applying thermal strains allows for 

computationally efficient evaluation of the structure; however, further expansion of the model is needed to include 

more complex thermal loads and will improve the performance of model predictions.  The parameterized FEM 

development code, used in this initial study, has been validated through these initial efforts and can provide further 

study into the structure’s performance. 

The thermal morphing anisogrid structure has been demonstrated to be a potential replacement for the current 

structural highly precise paradigm.  For this structure to demonstrate sufficient improvement on current capability, 

the true limits of the system need to be identified. A robust optimization is required in the future to evaluate the 

coupling of the input parameters. Current evaluation of the nominal geometry, which uses low CTE composite was 

shown to have a minimum morphing capability of 30 nm in the X-axis given a thermal control capability of 1 °C. 
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The maximum displacement capability for the same system could deliver a maximum X displacement of 1 μm. 

While further investigation is required, the current thermal morphing anisogrid structure has shown great potential to 

deliver significantly improved performance relative to the existing capability.  

Through the parameter sweep, a deeper understanding of the current structure and the potential of the concept has 

been developed. The parameter sweep also provides a rough estimate on the overall importance of each of the 

parameters. By looking at the cost function range, it can be seen that the number of helical members, the radius, and 

the pitch angle has a more significant effect on the systems performance.  For future optimization efforts, these 

parameters should be a focus. 

A cost function was developed to quantify all nine parameters impact on the morphing capability of the structure.  

The cost function associated with the nominal geometry was shown to be 0.065. Through the simplified Heuristic 

optimization, it was shown that the minimum cost function in the design space was found to be 0.007697.  The 

maximum cost function was found to be 513.083.  This represents structures with five orders of magnitude variation 

in the overall displacement vector. This demonstrates the morphing range that the anisogrid thermal morphing 

system can address. The potential for improvement over the nominal geometry has been demonstrated and a full 

optimization to define the minimum morphing capability is the next step in the evaluation of this concept. The work 

in this paper has laid a solid foundation for further investigations into this concept.  Future work to address the 

complex optimization problem will improve the understanding of the limits of this concept. The ability for the 

concept to achieve nano, micro, and macro displacements through further optimization should be investigated. A 

limiting factor that needs to be addressed is the frequency response capability as a function of the available power.  

The frequency response study will identify the possible range of vibration isolation and provide limits to the 

concept’s applications. Overall, these efforts will provide a complete view of the thermal morphing anisogrid 

structures capability to address the structural needs of future space systems. 
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Abstract: As future space mission structures are required to achieve more with scarcer resources, new structural 

configurations and modeling capabilities will be needed to meet the next generation space structural challenges. A 

paradigm shift is required away from the current structures that are static, heavy and stiff, to innovative lightweight 

structures that meet requirements by intelligently adapting to the environment. As the complexity of these intelligent 

structures increases, the computational cost of the modeling and optimization efforts become increasingly 

demanding. Novel methods that identify and reduce the number of parameters to only those most critical, 

considerably reduce these complex problems allowing highly iterative evaluations and in-depth optimization efforts 

to be computationally feasible. This parameter ranking methodology will be demonstrated on the optimization of the 

thermal morphing anisogrid boom. The proposed novel morphing structure provides high precision morphing 

through the use of thermal strain as the sole actuation mechanism. The morphing concept uses the helical members 

in the anisogrid structure to provide complex constrained actuations that can achieve 6 Degree of Freedom (DOF) 

morphing capability. This structure provides a unique potential to develop an integrated structural morphing system, 

where the adaptive morphing capability is integrated directly into the primary structure. To identify parameters of 

interest, the Q-DEIM model reduction algorithm is implemented to rank the model parameters based on their impact 

on the morphing performance. This parameter ranking method provides insight into the system and enables the 

optimal allocation of computational and engineering resources to the most critical areas of the system for 

optimization. The methodology, in conjunction with a Singular Value Decomposition (SVD), provides a ranking and 

identifies parameters of relative importance. The SVD is used to truncate the nine parameters problem at two 

locations, generating a five parameter optimization problem and a three parameter optimization problem. To 

evaluate the ranking a parameter sweep in conjunction with a simple minimum cost function search algorithm will 

compare all 120 five parameter ranking orders to the Q-DEIM ranking. This reduced parameter set significantly 

reduces the parameter complexity and the computational cost of the model optimization. This paper will present the 

methodology to define the resulting performance of the optimal thermal morphing anisogrid structure, minimum 

morphing control, and the systems frequency response capability as a function of available power.  

1. Introduction 

The intent of this work is to define the limits of the morphing accuracy achievable by this novel thermal morphing 

anisogrid smart structure, initially discussed by the authors in [1] and [2]. Previous work has introduced the 

morphing concept, identified the geometric parameters of interest, defined the modeling and loading requirements, 

developed the thermal morphing performance metrics, and demonstrated the capability of the parameterized finite 

element model used (FEM) to optimize this complex structure. The Matlab code used to develop the FEM model 

and loading input can be found at (https://github.com/A-Phoenix/Anisogrid-Model). The critical technical 

challenges to be addressed include morphing accuracy, power requirements, workspace quality, and thermal control 

accuracy requirements. These challenges associated with the thermal morphing anisogrid smart structure are to be 

addressed through a reduced optimization methodology [3, 4] used to define minimum morphing performance. The 

intent of this investigation is to contribute an alternate morphing concept to address the smart structural challenges 

in future space missions.  

The field of adaptive smart structures has been established in the vibration isolation, thermal distortion, deployment 

control, and intelligent control fields [5-20]. Adaptive smart hexapod systems [19] have been implemented in high 

precision applications [20]; specifically the Hobby-Eberly Telescope [21-23] with great success. The intent of this 

https://github.com/A-Phoenix/Anisogrid-Model
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concept is to expand on the hexapod concept by providing a significantly reduced global morphing displacement 

relative to the length of the input actuation. This high morphing capability is achieved through the use of thermal 

strain as the sole actuation mechanism. Thermal strain has been implemented as the actuation mechanism at the 

micro and macro scales with both biomaterial and bi-stable structures [24-36]. Depending on the morphing 

application, this concept can be implemented using low Coefficient of Thermal Expansion (CTE) materials to 

achieve high precision morphing, or use high strain materials, such as shape memory alloys, to achieve large 

displacement morphing capability. Shape memory alloys have been shown to provide the force and large 

displacements required for high displacement applications [37-41]. While the large displacement application shows 

potential, this effort is focused on the high precision morphing application more closely related to large-scale optics 

control [11, 42-44]. Low CTE materials in conjunction with precise thermal control capability are conceptually 

implemented in this work to achieve high precision morphing. These thermal strains are applied to helical members 

through the direct application of local and global temperature gradients. These thermal strains push, pull and twist 

the system providing 6 DOF morphing capability. 

This paper looks to develop methods that reduce the overall complexity of the model optimization while maintaining 

accurate behavior through identifying and allocating resources to the most critical input parameters. The model 

reduction methodology used herein was initially developed by the authors in [3, 4] to reduce the number of 

parameters used for a complex model correlation processes.  

The complex morphing optimization with six continuous and three non-continuous parameters is computationally 

expensive. This is addressed by implementing a method to reduce the number of optimization parameters. The 

method chosen to reduce the optimization is a parameter ranking method using the model reduction method Q-

DEIM [45] to generate a parameter ranking as detailed in [2] and [4]. The resulting ranking, in conjunction with a 

Singular Value Decomposition (SVD) analysis, defines two reasonable truncation points, reducing the number of 

parameters to three and five parameters, respectively. A parameter sweep is used to define approximate optimized 

cost functions for all possible combinations of the 120 ranking paths. This paper will demonstrate and determine the 

resulting quality of this novel parameter ranking methodology as applied to the thermal morphing optimization.  

There is a significant body of work on the various sensitivity analysis sampling methods[46-51]  focused on both 

deterministic methods [52] and statistical methods[53]. To solve this problem local, rather than global, sensitivity 

analysis methods [54] were chosen because the computational cost of the FEM prohibits the use of global or 

statistical methods due to the many more simulations required to obtain representative results. The sampling choice 

to use the minimum and maximum allowed parameter value in the design space was chosen based on the sampling 

choice study provided in [3]. This specific choice is important as this sampling method, in conjunction with the Q-

DEIM method, enables an engineer to develop a ranking using only 2𝑛 + 1 FEM runs, where 𝑛 is the number of 

parameters to be ranked. The Q-DEIM ranking inputs can be generated by hand and prevents the development of an 

iterative FEM capability for all parameters to be ranked. The Q-DEIM method in conjunction with the chosen 

sampling method is computationally efficient and provides quality ranking results without the need for iterative 

FEM capability. 

A trust-region optimization code is implemented to solve the non-convex optimization problem. Due to the nature of 

the non-continuous parameter, independent optimization problems are solved for feasible, fixed numbers of helical 

members, then corresponding optimal results are compared to select the final design. The optimization is performed 

on the three and the five parameter design space, and the resulting morphing quality is discussed.  

This paper will detail the morphing concept and the modeling decisions in Section 2. The method to define the 

parameter importance and parameter reduction method is described in depth in Section 3, and the parameter ranking, 

shown in Section 4, is used to determine the resulting ranking quality in Section 5. The optimization method is 

outlined in section 6. The resulting optimized geometry and the corresponding performance of the concept are 

covered in Section 7. 

2. Morphing Concept Configuration 

The morphing concept used in this study is based on the configuration described and detailed in [2]. The 

configuration and all input parameters, seen in Figure 50, will be discussed briefly for completeness. The anisogrid 

morphing structural FEM is built by defining the nine geometric parameters, listed in Table 8, with a parameterized 

Matlab code to generate the element-by-element model. The design space is limited to ensure satisfaction of model 
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assumptions to guarantee the final structure is coherent. Material normalization is used to enable the output of a 

single FEM to represent a wide variety of material choices by scaling the results. The only parameters affected by 

the initial material selection of invar are those parameters defining the cross section of the individual helical and 

cylindrical members. If a material is chosen other than invar, the helical and cylindrical cross sections will need to 

be scaled to provide the same axial and bending stiffness values. 

Table 12. Parameter Nominal, Maximum, and Minimum allowed value in the design space. 

Param. 

Number 
Parameter Name 

Nominal 

Value 

Max 

Value 

Min 

Value 
Units 

1 # of Helicals 20 34 6 - 

2 Radius 0.25 0.5 0.0625 (m) 

3 Pitch π 3.25 π .25 π (m) 

4 Hel IR 0.005 0.05 0.001 (m) 

5 Hel Thickness 0.005 0.05 0.001 (m) 

6 Cyl IR 0.005 0.05 0.001 (m) 

7 Cyl Thickness 0.005 0.05 0.001 (m) 

8 Base Constraint 123 123456 123 DOF 

9 Top Constraint 123 123456 123 DOF 
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Figure 50. Anisogrid Geometry with all 9 Geometric Parameters of Interest. 

3. Parameter Ranking 

A sensitivity analysis provides insight into an individual parameter’s impact on the system and quantifies the 

relative parameter importance. The methodology used here takes advantage of the Q-DEIM model reduction method 

[55] to identify the parameters that have the most independent impact on a set of normalized single helical loading 

output displacement vectors. In this case, that independence is used as an indicator for the parameters relative 

importance for a subsequent geometric optimization. The ranking is used in conjunction with an SVD analysis to 

identify the minimum number of required parameters for optimization, thereby reducing the computational cost and 

the resulting optimization complexity. This methodology has been previously demonstrated by the authors on model 

correlation in [3] and [4], as well as ranking sensor importance [56].  

The first step in the parameter ranking is the development of the Sensitivity Input Matrix as seen in Figure 51. 

Through previous work [3, 4], it was discovered that the evaluation of each parameter’s individual importance could 
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be done by calculating the normalized parameter impact at the maximum and minimum values in the design space. 

This small input set has been shown to produce accurate parameter ranking with minimal computational cost. To 

build an input for the Q-DEIM reduction method, the maximum and minimum parameter values are evaluated 

independently, as detailed in Equation 1 and seen in Figure 52.  

𝑆𝑖𝑛𝑝𝑢𝑡(1: 19, : ) = [𝑃1, 𝑃2, … , 𝑃9] , 𝑓𝑜𝑟 𝑖 = 1: 9 𝑆𝑖𝑛𝑝𝑢𝑡(𝑖 + 1, 𝑖) = 𝑃𝑖
𝑀𝑎𝑥                            [1] 

𝑎𝑛𝑑 𝑓𝑜𝑟 𝑖 = 10: 19 𝑆𝑖𝑛𝑝𝑢𝑡(𝑖 + 1, 𝑖 − 9) = 𝑃𝑖−9
𝑀𝑖𝑛                                             [2] 

Where 𝑆𝑖𝑛𝑝𝑢𝑡 is the Sensitivity Input Matrix, 𝑃𝑖 is the 𝑖𝑡ℎ input parameter, and 𝑃𝑖
𝑀𝑎𝑥  and 𝑃𝑖

𝑀𝑖𝑛 are the max and 

minimum allowed value for the 𝑖𝑡ℎ input parameter. Equation 1 and 2 are used to develop the Sensitivity Input 

Matrix (𝑆𝑖𝑛𝑝𝑢𝑡) as visualized in Figure 51. 

 

Figure 51. Sensitivity Input Matrix Visualization. 

Each row of the 𝑆𝑖𝑛𝑝𝑢𝑡 matrix is the nine parameter inputs for each of the n FEM models where n is the number of 

rows in the 𝑆𝑖𝑛𝑝𝑢𝑡 matrix. The resulting  6 DOF outputs from the FEM model are all normalized by the nominal 

response (seen in yellow in Figure 52) resulting in 18 normalized 6×1 displacement vectors that are concatenated 

into a single matrix to generate the 9×12 Sensitivity matrix, 𝑆, as seen in Figure 52. This sensitivity matrix is then 

input to a Q-DEIM reduction algorithm that generates a 9 parameter ranking. The process is schematically laid out 

in detail in Figure 52.  
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Figure 52. Parameter Ranking Data flow from the Sensitivity Input matrix to the Parameter Ranking with the 

Nominal Geometry shown in Yellow, the Maximum Input values shown Red and the Minimum Input Values shown 

in Green. 

Equation 3 shows the normalization method used on the raw FEM output. The 𝑖𝑡ℎ 6 DOF displacement vector is 

normalized by the nominal displacement vector. The difference is then scaled by the percentage of the 𝑖𝑡ℎ parameter 

change versus the nominal 𝑖𝑡ℎ parameter value as, 

𝐷(𝑖) − 𝐷1

(𝑃𝑖 − 𝑃1)/𝑃1 
,                                                                             [3] 

where 𝐷(𝑖) is the 𝑖𝑡ℎ displacement vector, 𝐷1 is the nominal displacement vector, 𝑃𝑖 is the 𝑖𝑡ℎ parameter value, and 

𝑃1 is the nominal parameter value. To identify the number of important parameters in the system an SVD analysis, 

shown in Figure 53, is performed on the 9×12 Sensitivity matrix.  

 

 

Figure 53. Normalized Sensitivity Matrix SVD using all Positive Parameter Changes with the Two Possible 

Truncation Points Identified. 
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While the Q-DEIM algorithm provides a ranking of the parameters, the relative importance of the parameters can 

only be determined in conjunction with the SVD analysis. The SVD analysis decomposes the system via its singular 

values and vectors to identify and maintain the most important modeling information in the reduced model. This 

importance is linked to the relative values associated with the singular values of the decomposition. To incorporate 

the dominant behavior of the total model relative to the scale of the reduced model, truncation points are placed 

where a drop in the singular values occur. In this case, as seen in Figure 53, a truncation at five and three parameters 

should be evaluated as candidate points. Thus, through a Q-DEIM and SVD analysis, the parameters are ranked, and 

a relative importance can be found allowing for a parameter reduction to take place via truncation of the model. The 

resulting ranking from the Q-DEIM method can be seen in Table 13. 

 

Table 13. The Q-DEIM Parameter Ranking from Most Independent to Least Independent Parameter. 

 
 

While previous work indicated that the number of helical members, the helical pitch angle, and the radius were 

important parameters the rest of the ranking does not match intuitive assessments. This was the experience in 

previous work [3, 4] where the intuitive order was not often the correct order. This demonstrates the need for 

algorithms that provide parameter ranking due to the complexity of this relatively simple system. It is possible that 

the parameter may be ranked higher than it should due to the method evaluating both the scale of the effect and the 

uniqueness of the effect on the morphing. To prevent incorrect rankings, parameters with a unique but minimal 

effect, like the top and base constraint parameters, could be evaluated further.  

 

 

4. Parameter Sweep 

Now that the parameters of importance have been identified in Section 3, a parameter sweep is performed to gain 

further insight into the cost function (developed in [2] and shown in Equation 4) relative to the three parameters and 

five truncation points. The first design space contains the top three parameters of interest: the number of Helical 

Members, the Helical Pitch Angle, and the Radius. The second design space includes the first three ranked 

parameters as well as the Helical Member Thickness, and the Cylindrical Member Thickness. The sweep provides 

insight into appropriate initialization points and locations for potential local and global optimization minima. The 

five parameter sweep also provides the opportunity to quantify the ranking quality of Q-DEIM relative to all other 

possible five parameter ranking orders. 

The geometry’s minimum morphing capability will be quantified by evaluating the single helical displacement 

vector. Minimizing the cost function, as seen in Equation 4, will minimize the displacement vector length of single 

helical displacement vectors that are combined to generate geometry specific minimum morphing case.  

𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
𝐷𝑥

2 + 𝐷𝑦
2 + 𝐷𝑧

2 + 𝐷𝑟𝑥
2 + 𝐷𝑟𝑦

2 + 𝐷𝑟𝑧
2

6
,                                             [4] 

Param. 

Number

Parameter 

Name

Param. 

Number

1 # of Helicals 1

2 Pitch 3

3 Radius 2

4 Hel Thickness 5

5 Cyl Thickness 7

6 Base Constraint 8

7 Hel ID 4

8 Top Constraint 9

9 Cyl ID 6
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where 𝐷 is the six degree of freedom single helical loading displacement vector, measured at the tip of the anisogrid 

boom.  

4.1 Three Parameter Sweep 

To generate the three parameters sweep, 13 radius values, 13 pitch angles, and 15 different helical numbers were 

combined to generate 2535 unique geometries. The parameter sweep in Figure 54, is a 4D plot with the number of 

helical members, the anisogrid radius, and the helical pitch angle on the X, Y, and Z axis, respectively. The size and 

color of the marker is plotted as the inverse of the cost function to visualize the cost function as the 4
th

 dimension. 

As can be seen in Figure 54 (b) through (c), the plot allows viewing of the variation through the thickness of the plot 

showing change along each axis and allowing the identification of the regions of local and global optimal cost 

functions.  

 

Figure 54. (a) Cost Function in the Three-Parameter Design Space, (b) Helical Pitch vs. Anisogrid Radius, (c) 

Anisogrid Radius vs. # of Helical Members, (d) Helical Pitch Angle vs. # of Helical Members. 

4.2 Five Parameter Sweep 

Since it is computationally prohibitive to develop a five parameter sweep while maintaining the sweep density used 

in the three parameter sweep, a reduced sweep density is used. This reduced sweep density, for the five parameter 

system, consists of a total of 5000 evaluation points. This is a sweep of five parameters for Helical Pitch Angle, 

Anisogrid Radius, Helical thickness, and Cylindrical thickness, with an eight parameter sweep for the number of 

Helical Members. To plot this increased density data with six dimensions, Figure 55 consists of six figures; the 

overall system plot and a plot for each anisogrid sweep. At each sweep point in Figure 55 (a) 25 cost functions are 

plotted, one for each of the possible combinations of helical thickness and cylindrical thickness. To visualize the 
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variation in the cost function as the fourth and fifth parameters are varied, Figure 55 (b) through Figure 55(f) 

demonstrate the change in the cost function as the radius is held constant and all other parameters are varied. 

 

 

Figure 55. Five Parameter Sweep Design Space for (a) Full Isometric View, (b) Anisogrid Radius of .0625 m, (c) 

Anisogrid Radius of .2 m, (d) Anisogrid Radius of .36 m, (e) Anisogrid Radius of .5 m, (f) Anisogrid Radius of .65 

m. 

5. Parameter Ranking Quality Evaluation 
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To better understand the effect that the optimization parameter order has on the morphing quality, and define the 

quality of the Q-DEIM ranking, it is important to comprehend how the optimized cost function varies as a function 

of the number and order of parameters optimized. The intent of this investigation is to find the minimum 

optimization path from the nominal geometry to a sufficiently optimized structure. A true optimization of all 

possible parameter orders is computationally too expensive, so the simple method of searching is used through the 

five-dimensional parameter space, developed in Section 4.4.2. For the Q-DEIM ranking [1, 3, 2, 5, 7] the parameter 

ranking method searches through the top ranked parameters dimension (the # of Helical Members) in the five-

dimensional parameter sweep. The minimum value in this search defines the Q-DEIM ranking’s one parameter 

optimized cost function. This is repeated for the two parameter sweep dimensions associated with the top two 

ranked parameters (number of Helical Members, Helical Pitch Angle), generating the two parameters optimized cost 

function. This is then repeated for the top 3, 4, and all five parameters. These values are plotted for all 120 possible 

ranking orders in Figure 56.  

 

Figure 56. All 120 Parameters Optimization Orders and the Resulting Optimized Cost Function. 

Through this investigation, it is apparent that the parameter ranking order used to optimize the structure has a 

significant effect on the resulting quality of the optimization. All 120 rankings follow a path from the nominal 

geometry to the five parameters optimized cost function, but the area under that curve indicates how efficiently that 

path was taken. The use of an efficient optimization path reduces the overall optimization effort by identifying the 

right optimization parameters and the correct number of optimization parameters upon initial assessment. While the 

Q-DEIM does not provide the absolute optimal ranking, the Q-DEIM three parameter ranking achieves 97.9% of the 

total five parameters ranking cost function reduction. This justifies the use of Q-DEIM ranking and the three 

parameter truncation point. The best, worst, and Q-DEIM rankings results are detailed in Table 14.  
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Table 14. The Percent of Cost Function Reduction Relative to the 5 Parameter Optimized Cost Function Sweep for 

the Q-DEIM ranking, the Best Overall Ranking, and the Worst Overall Ranking. 

 

% of Total Cost Function Reduction For Three Param Ranking Orders 

 
Q-DEIM Ranking Best Ranking Worst Ranking 

# of 

Params 

Optimized 

% of 

Total 

Reduction 

Param 

Optimized 

% of Total 

Reduction 

Param 

Optimized 

% of Total 

Reduction 

Param 

Optimized 

1 78.9 1 78.9 1 8.0 7 

2 90.8 3 93.2 2 23.5 5 

3 97.9 2 99.1 5 57.8 3 

4 99.8 5 99.8 7 82.6 2 

5 100 7 100 3 100 1 

 

The Q-DEIM ranking method performs well compared to the optimal ranking for this specific design space resulting 

in a difference of less than 3% of the total cost function reduction capability. Further study is required to better 

define the ability of this methodology as applied to the ranking of optimization parameters. The differences between 

the optimized cost function and the Q-DEIM ranking could be due to the differences between the minimum 

parameter sweep search value, used here, and a true optimization. A larger set of data where the Q-DEIM ranking is 

used on various optimization problems could provide a much more detailed representation of the ranking capability.  

6. Optimization  

This geometry does not present a simple optimization problem due to the variable design space limits, non-

continuous parameters, structural discontinuities, and the black box nature of the FEM algorithm. Furthermore, as 

we describe below, changes in geometry through the finite element mesh leads to numerical noise in the objective 

function, cf. [56].To address these issues, a trust-region optimization is used to optimize the morphing capabilities 

[57]. Further complicating the optimization problem, parameter bounds need to be functions of the input parameters, 

such as the number of helical members, to ensure only reasonable geometries are developed. Bound constraints on 

the optimization parameters are applied to ensure consistent geometric outputs, resulting in a reduced design space 

for the helical pitch angle as well as the cylindrical and helical outer radii as functions of the number of helical 

members. A trust-region optimization algorithm with bound constraints is implemented through the use of the 

Matlab optimization code entrust based on the pseudocode in [58]. This software is open source code and can be 

found at (https://github.com/jborggaard/entrust). 

6.1 Trust Region Optimization Method 

The trust-region algorithm described in [57, 58] develops a quadratic approximation of the cost function in the 

constrained optimization problem. If the predicted reduction in the model does not match the actual reduction of the 

function within a sufficient tolerance, the trust region radius is reduced until the reduction obtained with the 

quadratic model adequately matches the actual reduction of the function. Once the simplified quadratic model is 

verified, it is used to choose the next step direction, and the process is repeated until the overall optimization criteria 

are met.  Likewise, if the predicted reduction is found to be a good representation of the actual reduction, the trust 

region radius is increased. The key factors for the trust-region algorithm are the initial values for the 𝑛 parameters, 

the 𝑛 optimization bounds, the trust region radius, the 𝑛 parameter gradients, the initial cost function, the step size 

used to evaluate the gradient, and the convergence tolerances. Given the large number of parameters, the hessian is 

too computationally expensive to calculate for this problem. Thus, we make use of a Secant method (we selected the 

BFGS algorithm), to replace the second derivative with a suitable approximation. The BFGS algorithm is 

implemented as described in [59].  

Due to the nature of the FEM development, numerical noise in the optimization is to be expected. It has been shown 

that numerical noise issues can be mitigated through careful selection of the step size used to calculate the gradient 

[59-61]. A gradient study is performed in Section 6.2 to choose an appropriate step size. The intent of the gradient 
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evaluation is to find a step size that accurately predicts the local gradient despite the numerical noise and 

discontinuities. This method effectively provides an implicit filtering mechanism, as described in [62], by smoothing 

the cost function to combat the known structural discontinuities and numerical noise inherent in the FEM.  

For each optimization run, 1 + 𝑛 files, where 𝑛 is the number of optimization parameters, are created to calculate 

the cost function and the 𝑛 gradients. The first FEM simply evaluates the cost function at the point requested by the 

optimization code. Then for 𝑖 = 1: 𝑛 parameters of interest, 𝑛 additional FEMs are generated with a delta applied to 

the 𝑖𝑡ℎ parameter. This delta or step size is an important choice to ensure stability of the optimization code, as is 

discussed in Section 906.2. The resulting 𝑛 cost functions are used to generate the gradient in each of the 𝑛 

parameters of interest using a simple forward difference calculation.  

6.2 Gradient Evaluation 

A study was performed to identify the proper step size for the gradient calculation in the optimization analysis. 

There is a known discontinuity associated with the helical pitch angle and the global stiffness properties. As the 

pitch angle increases beyond π rad, the end segment of the helical member acts as a cantilever beam of increasing 

length until another helical member is intersected. As the beam intersects the next helical member, the local stiffness 

increases, resulting in a minor increase in global stiffness and a discontinuity in the cost function. A dense pitch 

sweep was performed through 1% of the helical pitch angle design space using 1000 points located around a value 

of π rad. The resulting cost function can be seen in Figure 57.  

 

Figure 57. Dense Pitch Angle Sweep to Identify the Minor discontinuity in the cost function. 

The resulting impact on the cost function is more complex than expected due to local imperfections in the modeling 

of the region directly around the discontinuity. These imperfections are caused by the merging of nodes that do not 

perfectly align and result in short or angled elements. These modeling choices have little to no effect on the actual 

cost function, but introduce minor discontinuities at the scale investigated in this parameter sweep. While the overall 

cost function in the full pitch parameter sweep changes less than 5𝑥10−6 at that discontinuity, the small variation 

around the discontinuity induces gradient issues if the step size is not chosen intelligently. The gradient study is 

performed using an input pitch angle step of 1 × 10−4 𝑟𝑎𝑑 and 1000 steps. This allows a variety of step sizes to be 

evaluated. The step sizes chosen for the evaluation are listed in Figure 58 (a). 
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Figure 58. Gradient Investigation under a variety of Gradient Step Sizes Calculated Using Forward Difference for 

(a) all Possible Step sizes, (b) View of Numerical Noise and the Step Sizes that are Sufficiently Small to Represent 

the Step Sizes Accurately. 

The choice in step size has a significant effect on the optimization as is proven in Figure 58 (a). If the step size is too 

small, local deviations introduce false gradient values, and if the step size is too large, local effects can be missed. 

By investigating the numerical noise in the system, demonstrated by the .0001 rad step size, a step size of .02 

radians was chosen. This choice ensures that the errors associated with the discontinuity are less than the numerical 

noise measured in the smallest step size seen in Figure 58 (b). The step size choice is made for the discontinuity in 

the helical pitch angle but is applied to all variables in the optimization for simplicity.  

6.3 Three Parameter Optimization  

The first optimization evaluates three parameters: the number of helical members, the helical pitch angle, and radius, 

given by the Q-DEIM ranking. Due to the nature of the number of helical members, this variable is optimized 

iteratively by performing 15 two-parameter optimizations at all even values of the parameter in the design space. A 

limit is applied to the design space, as described in Section 6.3.1, to ensure all geometric configurations are 

reasonable. The resulting limits and optimized geometries can be seen in Table 16. 

6.3.1 Three Parameter Design Space Limit Development 

The original design space contains geometric combinations that exceed the limits of feasibility and result in breaches 

in modeling assumptions. This occurs when the cylindrical and helical members are close enough, or the radius is 

large enough that they fill the majority of the volume. The FEM assumptions loose viability and manufacturing 

becomes impossible. Therefore, a cylindrical vertical fill factor ( detailed in Equation 6) is limited to 66%. A design 

space limit is developed as a function of the Number of Helical Parameters. The number of cylindrical members can 

be calculated using the number of helical members and the helical pitch angle as 

𝑁𝐶𝑦𝑙 = 𝑁𝐻𝑒𝑙

𝑃𝑖𝑡𝑐ℎ

2𝜋
    ,                                                              [5] 

where the number of cylindrical members is 𝑁𝐶𝑦𝑙 , the number of helical members is 𝑁𝐻𝑒𝑙 , and 𝑃𝑖𝑡𝑐ℎ is the helical 

pitch angle in radians. A second key factor in defining the radius limit is identifying the ratio of the radius to the gap 

between cylindrical members, also known as the Fill Factor and described as, 

𝐹𝑖𝑙𝑙 𝐹𝑎𝑐𝑡𝑜𝑟 =
2𝑅𝐶𝑦𝑙

𝑍𝐶𝑦𝑙(2) − 𝑍𝐶𝑦𝑙(1)
                                                           [6] 
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where the Radius of the cylindrical members in meters is 𝑅𝐶𝑦𝑙, and  𝑍𝐶𝑦𝑙(𝑖) is the 𝑍 axis location of the 𝑖𝑡ℎ 

cylindrical member. This Fill Factor is a dimensionless parameter used to limit the structure to ensure reasonable 

geometric configurations. Another way to evaluate this equation is listed below. 

𝐷𝑚𝑎𝑥 =
𝐻𝑒𝑖𝑔ℎ𝑡

𝑁𝐶𝑦𝑙
∗ 𝐹𝑖𝑙𝑙 𝐹𝑎𝑐𝑡𝑜𝑟,      𝑅𝑚𝑎𝑥 =

𝐷𝑚𝑎𝑥

2
                                              [7] 

where 𝐷𝑚𝑎𝑥 is the maximum diameter in meters, 𝑅𝑚𝑎𝑥 is the maximum radius in meters, and 𝐻𝑒𝑖𝑔ℎ𝑡 is the 

anisogrid boom height in meters. This equation can be used to generate a given limit to the design space. This is 

demonstrated for the three parameter case where the helical and cylindrical parameters are held at the nominal value. 

To meet the desired 𝐹𝑖𝑙𝑙 𝐹𝑎𝑐𝑡𝑜𝑟, and maintain the helical and cylindrical radius above the nominal value, the 

helical pitch angle is limited as a function of the number of helical members. This limit only occurs when the 

number of helical members exceeds 20 as seen in Figure 59 and Table 15.  

 

Figure 59. Three Parameter Optimization Design Space with the Limit On the Design Space Shown in black where 

𝑹𝑴𝒂𝒙 ≤ 𝑹𝑵𝒐𝒎𝒊𝒏𝒂𝒍 resulting in a Fill Factor of Less than 66% for the Nominal Geometry. 

This discrete parameter (Number of Helical Members) is evaluated through iterative optimization to limit the 

optimization complexity. This provides a simple method to limit the three parameter optimization. The bound on the 

three parameter optimization, applied for the Max Helical Pitch angle, is updated for all fifteen iterations of the 

Number of Helical Members. The resulting Helical Pitch Angle Limits are seen in Table 15.  
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Table 15. Max Helical Pitch Angle to Achieve a Fill Factor of 66% as a Function of Number of Helical Members 

with Global Design Space Parameter Limits Highlighted in Black. 

 

Using the parameter space limits in conjunction with the Entrust optimization code, a three parameter optimization 

can be performed. This optimization requires 15 unique optimization runs, one for each of the number of helical 

members under investigation. The results from the 15 optimization runs are seen in Table 16. 

Table 16. Global Optimal Results for the 3 Parameter Optimization with Pitch Angle Limits Highlighted in Black.  

3 Parameter Optimization 

Design Space Limit 
Global Optimum 

Number  of 

Helicals 

Max Helical 

Pitch Angle 

Optimized 

Radius  

Optimized 

Pitch Angle 
Cost Function 

34 1.96 π 6.250E-01 1.030E+00 8.288E-03 

32 2.07 π 6.250E-01 1.006E+00 9.387E-03 

30 2.21 π 6.250E-01 1.008E+00 1.070E-02 

28 2.36 π 6.250E-01 1.018E+00 1.231E-02 

26 2.56 π 6.250E-01 1.012E+00 1.431E-02 

24 2.77 π 6.250E-01 1.019E+00 1.683E-02 

22 3.01 π 6.250E-01 1.012E+00 2.006E-02 

20 3.25 π 6.250E-01 1.006E+00 2.435E-02 

18 3.25 π 6.250E-01 1.021E+00 3.012E-02 

16 3.25 π 6.250E-01 9.944E-01 3.823E-02 

14 3.25 π 6.250E-01 1.016E+00 5.014E-02 

12 3.25 π 6.250E-01 1.018E+00 6.860E-02 

10 3.25 π 6.250E-01 1.023E+00 1.004E-01 

8 3.25 π 6.250E-01 9.899E-01 1.594E-01 

6 3.25 π 6.250E+00 9.429E-01 2.974E-01 

 

The three parameter optimal geometry is found to have 34 helical members, a radius of .625 m, and a helical pitch 

angle of 1.03 radians. This geometry results in an optimal cost function of 8.288e-3. The resulting optimal geometric 

configuration is seen in Figure 60.  

Max Helical 

Pitch Angle (π 

rad)

1.96 2.07 2.21 2.36 2.56 2.77 3.01 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25

Number  of 

Helical 

Members

34 32 30 28 26 24 22 20 18 16 14 12 10 8 6

3 Parameter Optimization Design Space Limit
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Figure 60. Three Parameter Global Optimal Geometry with 34 Helical M Radius of .625 m and a Helical Pitch 

angle of 1.03 rad. 

6.4 Five Parameter Optimization 

The five parameter optimization adds the two additional optimization parameters, helical member thickness, and 

cylindrical member thickness. The addition of the member thickness increases the complexity of the required design 

space limit. To ensure reasonable geometries, cylindrical and helical member radius will be limited along with the 

allowed helical pitch angle. The three parameter optimized value will be used as the initial point to define the 

member radius limit, as described in Section 946.4.1, to achieve reasonable geometries.  

6.4.1 Five Parameter Design Space Limits 

The five parameter limits use the helical pitch angle from the three parameter optimization to provide an initial 

estimation on the cylindrical and helical maximum allowed radius, as seen in Figure 61. A given three parameter 

optimization point is projected onto the 66% fill factor maximum radius curve to define the maximum allowable 

radius at that point in the design space. The corresponding radius limit of the projected point is used to set the initial 

cylindrical thickness and helical thickness limits for the five parameter optimization. If the resulting five parameter’s 

optimal geometry does not meet the design space limit, the resulting cylindrical thickness and helical thickness limit 

will be updated, and the optimization will continue to iterate until design requirements are met.  
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Figure 61. Five Parameter Optimization Design Space Limit. 

There are three separate regions as a function of helical pitch angle and the number of helical parameters. The first 

region, shown in black in the upper right of Figure 61, is a region that is unable to meet the maximum fill factor of 

66% through the use of the nominal parameter values. The second region, shown in red in the bottom left of Figure 

61, is only limited by the full design space. The third region, shown between the first and second region, can create 

viable geometric cases but requires limiting the maximum helical and cylindrical radius. To calculate a specific 

limit, an initial limit on the design space is dictated by the optimal three parameter optimization value. In this case, 

the three parameter optimization value occurs where the limit is defined as the design space limit. Therefore, the 

design space limit is the assumed initial limit for the five parameter optimization. The resulting optimization 

geometries, shown in Table 17 and plotted in Figure 62, remains within the design space ensuring a fill factor of less 

than 66%. 

Table 17. Five Parameter Optimal Geometry with the Resulting Cost Function. 

 

Number  

of Helicals

Max Helical 

Pitch Angle 

(rad) 

Radius  

(m)

Pitch Angle 

(Rad)

Helical Member 

Thickness (m) 

Cylidrical 

Member 

Thickness (m) 

Cost 

Function

34 1.96 π 0.63 1.024 0.05 0.05 0.0066

5 Parameter Optimal Geometry
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Figure 62. Five Parameter Optimized Geometry with 34 Helical M Radius of 0.625 m, a Helical Pitch angle of 1.03 

rad, Helical member thickness of 0.05 m and a Cylindrical member thickness of 0.05 m. 

The five parameter optimization and the three parameter optimization produce the same optimal number of helical 

members, the helical pitch angle, and the radius. This results in similar loading cases with minimum variations in the 

single helical loading displacement. These two optimized geometries morphing workspace, minimum morphing 

capability, and frequency response capability are evaluated in Section 7.  

7. Optimized Geometry Evaluation 

The morphing parameters of interest that are investigated here are: the workspace evaluation, the minimum 

morphing capability, configuration specific performance, and the frequency response capability. The development of 

the metrics is covered in more detail in [2]. 

7.1 Workspace Evaluation 

The workspace is evaluated by applying local and global strains equal to [-4ε, -3ε, -2ε, -1ε, 0, 1ε, 2ε, 3ε, 4ε] m/m. 

These eight individual helical loading inputs are combined to generate every possible combination of four loaded 

helical members. An additional loading case of global thermal strains with the same input loading case is also 

applied. The resulting point cloud is plotted to determine the workspace shape and size and can be seen in Figure 63. 

A full description of the workspace loading development can be found in [2]. 
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Figure 63. Workspace Evaluation for (a) 3 Parameter Optimization Isometric View, (b) 3 Parameter 

Optimization Side View, (c) 5 Parameter Optimization Isometric View, and the (d) 5 Parameter Optimization 

Side View. 

7.2 Minimum Morphing Evaluation 

The workspace is searched for the smallest displacements in each of the 6 DOF to evaluate the minimum morphing 

capability of the geometry. The minimum morphing case for both the three and five parameter optimized structures 

is achieved through balanced positive and negative thermal loads as demonstrated in Figure 64. The resulting 

minimum morphing capability in all 6 DOF for both the three and five parameter optimal geometries are seen in 

Table 18. The intent of this investigation is to determine the morphing limit associated with the geometric 

configuration. This allows material properties to be incorporated in post processing rather than requiring multiple 

FEM runs. 
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Figure 64. Minimum X Axis Morphing Control Case with a Positive Strain applied to Helical 15, and 22, and a 

Negative Strain applied to Helical 17 and 20. 

Table 18. Optimized Minimum Morphing Vector for each of the 6 DOF and both Optimized Geometries. 

 

 

7.3 Scaled Morphing Capability 

Once a baseline geometric response to a unit thermal strain input has been determined in Section 7.2, the specific 

morphing accuracy for a given material in conjunction with a given thermal control capability can be evaluated. As 

can be seen in Figure 65, each material property provides a different application displacement range. The carbon 

composite, invar, and aluminum structures can achieve 1μm displacement control in the X-axis with thermal control 

system accuracy of 100 °C, 8.5 °C, and 4.5 °C respectively. The resulting morphing control capabilities for the three 

materials in the 6 DOF, given a thermal control capability of 1°C, are documented in Table 19 and Table 20. 

X Y Z RX RY RZ X Y Z RX RY RZ

X Min Disp. Case 0.100 0.000 0.000 0.000 0.004 0.000 0.100 0.001 0.000 0.010 0.008 0.000

Y Min Disp. Case 0.009 0.099 0.000 0.004 0.000 0.000 0.001 0.097 0.000 0.001 0.010 0.000

Z Min Disp. Case 0.008 0.016 0.165 0.030 0.015 0.000 0.008 0.015 0.227 0.030 0.015 0.000

RX Min Disp. Case 0.000 0.020 0.000 0.461 0.000 0.000 0.033 0.029 0.000 0.449 0.008 0.000

RY Min Disp. Case 0.020 0.002 0.000 0.043 0.459 0.000 0.044 0.027 0.000 0.032 0.447 0.000

RZ Min Disp. Case 0.005 0.012 0.000 0.034 0.013 0.408 0.056 0.051 0.038 0.062 0.024 0.626

Response to a Unit Strain of 1m/m Response to a Unit Strain of 1m/m

3 Parameter Optimal Geom Minimum Morphing 

Displacement Vector

5 Parameter Optimal Geom Minimum Morphing 

Displacement Vector
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Figure 65. The Minimum and Maximum Morphing range for the X Axis Given a Maximum Applied Loading Equal 

to Ten Times the Control Capability for the (a) 3 Parameter Optimized Geometry and the (b) 5 Parameter Optimized 

Geometry.  

Table 19. The 3 Parameter Optimized Displacement Control given a 1°C Thermal Control Capability for Carbon 

Composites, Invar, and Aluminum Material Properties. 

 

Table 20. The 5 Parameter Optimized Displacement Control given a 1°C Thermal Control Capability for Carbon 

Composites, Invar, and Aluminum Material Properties. 

 

 

Composite Invar Aluminum Composite Invar Aluminum

X Disp. 1.00E-08 1.20E-07 2.30E-06 6.00E-07 7.00E-06 1.35E-04

Y Disp. 1.00E-08 1.20E-07 2.29E-06 6.00E-07 7.00E-06 1.35E-04

Z Disp. 2.00E-08 3.00E-07 5.71E-06 3.20E-06 3.85E-05 7.42E-04

RX Disp. 7.00E-08 8.00E-07 1.54E-05 5.00E-07 6.00E-06 1.16E-04

RY Disp. 7.00E-08 8.30E-07 1.59E-05 5.00E-07 6.00E-06 1.16E-04

RZ Disp. 6.00E-08 7.40E-07 1.42E-05 4.00E-07 4.90E-06 9.43E-05

3 Param Displacement Control Capability (m) with 1 C Control 

Minimum Displacement Capability Maximum Displacement Capability

Composite Invar Aluminum Composite Invar Aluminum

X Disp. 1.00E-08 1.20E-07 2.31E-06 5.00E-07 6.20E-06 1.20E-04

Y Disp. 1.00E-08 1.20E-07 2.23E-06 5.00E-07 6.20E-06 1.20E-04

Z Disp. 2.00E-08 2.70E-07 5.24E-06 3.20E-06 3.85E-05 7.42E-04

RX Disp. 4.00E-08 5.40E-07 1.04E-05 5.00E-07 5.50E-06 1.06E-04

RY Disp. 4.00E-08 5.40E-07 1.03E-05 5.00E-07 5.50E-06 1.06E-04

RZ Disp. 6.00E-08 7.50E-07 1.45E-05 4.00E-07 4.30E-06 8.27E-05

Minimum Displacement Capability Maximum Displacement Capability

5 Param Displacement Control Capability (m) with 1 C Control 
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7.4 Frequency Response vs. Power Requirements 

 

The final performance metric to be evaluated is the frequency response capability of this system as a function of the 

available power. The specific heat capacity, for each material, is multiplied by the volume of a given active member 

and by the temperature change in °C to calculate the total energy required. In this case, the minimum morphing case 

contains four active helical members actuated by 1°C. The total energy to heat the four members by 1°C is used to 

calculate the power and frequency response capability for the two materials and three geometric configurations. 

 

Figure 66. Frequency Response Capability for the Nominal Geometry, the Three-Parameter Optimized Geometry, 

and the Five Parameter Optimized Geometry. 

The key driver in the frequency response capability is the helical mass. The variation in the three geometric 

frequency response capabilities is highly correlated to the helical cross-section. As can be seen, the three parameters 

optimal geometry can deliver 1 Hz frequency response capability using 6 kW.  

Conclusion 

This paper successfully demonstrates an efficient optimization methodology for the thermal morphing anisogrid 

smart structure. This work applies a parameter ranking and parameter reduction methodology previously 

implemented on model correlation to rank and identify the parameters critical for optimization. The ranking from 

this method was compared to all possible ranking orders to quantify the ranking quality. The following ranking 

method was used to reduce the nine parameter problem to a three and five parameter optimization problem. The 

resulting reduced problems are optimized using a trust-region optimization algorithm. A gradient study is done to 

ensure the forward difference gradient calculation step size produces stable results before optimization. The 

optimized geometries are then evaluated for the resulting morphing workspace, minimum morphing capability, and 

the frequency response capability. 
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The ranking methodology used in this paper was verified through the utilization of a simplified minimum search 

algorithm applied to five parameter design space sweep. This simplified optimization algorithm was able to quantify 

the relative ranking quality of all 120 possible ranking orders relative to the Q-DEIM ranking. It was shown that the 

Q-DEIM ranking was not the optimal ranking for the second and third parameter optimization, but the relative 

ranking difference was minor. Further use of this method on other problems, using a more accurate comparison may 

show the Q-DEIM ranking performs better than this initial evaluation. The three parameter optimized geometries 

cost function achieves 98.2% of the five parameters optimized cost function reduction. This justifies the use of the 

three parameter truncation of normalized singular values below 0.01. This methodology has been shown to 

accurately identify the critical pieces of complex problems and allow a more optimal use of computational and 

engineering resources to solve these complex problems. 

The Entrust trust-region optimization method has been demonstrated with a complex optimization problem. The 

gradient evaluation was shown to be a successful method for identifying an appropriate step size to address 

discontinuities and numerical noise in a difficult optimization problem. This optimization was performed on 16 

different geometric cases to ensure the full design space was evaluated. 

The thermal morphing anisogrid structure was optimized to define the minimum morphing capability of the 

structure. The resulting three parameters and five parameter optimized geometries have been assessed for the 

workspace, minimum morphing capability, and the frequency response function capabilities. It was shown that the 

resulting five parameter geometry had a slight improvement over the three parameter optimization’s performance. 

The three parameter system was shown to be able to achieve 10 nm displacement control in the X and Y axis with 

1°C thermal control using low CTE composite materials. The available morphing design space for this structure was 

shown to range from 10 nm to 600 nm given an allowable maximum input loading of 10°C. A larger morphing 

workspace could be achieved through the use of larger temperature gradients, or through combinations of material 

properties in the structure itself, to provide the nano, micro, and macro morphing capabilities. Finally, this system 

was shown to be able to achieve 1 Hz frequency response capabilities given an input power of 6 kW.  

This work has demonstrated the foundation and tools required to provide an optimized thermal morphing anisogrid 

structure for a wide variety of potential applications. Once a specific application is defined, the methodology in this 

paper can be implemented to provide an optimized structure with a broad range of power, workspace size, mass, 

frequency response, and minimum morphing constraints.  
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 Summary, Path Forward, and Contributions 

 
This paper has demonstrated the foundation and tools required to provide an optimized thermal morphing anisogrid 

structure for a wide variety of potential applications. Once a specific application is defined, the methodology in this 

paper can be implemented to provide an optimized structure with a broad range of power, workspace size, modal 

properties, mass, frequency response, and minimum morphing constraints. This capability has been achieved 

through three different efforts: Dynamic model reduction parameter importance calculations, and, finally, a full 

evaluation of the concepts morphing performance and an optimization of the minimum morphing capability. 

 

This effort has shown that the Loewner-SVD data based model reduction approach can efficiently model and reduce 

complex dynamical systems. This work has demonstrated the reduced model development methodology using FEM 

transfer functions and demonstrated the method for development of test data based reductions. The 10,272 × 10,272 

stiffness and mass matrix of the anisogrid system were reduced to an accurate 30 × 30 state space model with a 

resulting 𝐻2 𝑛𝑜𝑟𝑚 error of 0.3. This model reduction method has been shown to provide an opportunity to add to 

the state-of-the-art in reduced models for finite element model reduction problems as well as provide unique 

opportunities to develop reduced models from test data. The method is computationally efficient, enabling the 

calculation of multiple reduction sizes to ensure that the optimal reduction model is chosen.  Furthermore, it has 

been shown that this method is simple to use and can provide valuable model reduction capability without the need 

for a prior accurate model development. 

 

The methodology for parameter ranking has been shown to be accurate, computationally efficient and robust to 

engineering errors. The ranking used shows significant improvement over engineering judgment and demonstrates a 

potential improvement in the field of sensitivity analysis through the addition of advanced algorithms to evaluate the 

importance rather than simply the scale of a parameter’s impact. Hypothesis testing was used to determine the best 

performing methodology between all variations of: the inputs used to generate the sensitivity input matrix, the model 

reduction method used, the weighting method chosen, and a sweep evaluating the effect of errors between the 

expected and real design space.  From this study, the Q-DEIM linear weighted method using inputs at the maximum 

and minimum of the design space demonstrated itself as the best ranking method. The robustness of all ranking 

methods are evaluated against 0%, 5%, 10%, 25%, 50%, and 75% uncertainty in the initially applied error bound. 

The resulting ranking has been shown to be robust to substantial uncertainty in the error bound showing value in the 

method even if there is little knowledge of the problem. 

 

Furthermore, this paper successfully demonstrates an efficient optimization methodology for the thermal morphing 

anisogrid smart structure. This method for modeling and evaluation is shown to be feasible and to have a low 

computational cost. This paper has shown that the thermal morphing anisogrid high precision morphing concept has 

significant promise for high precision thermal control in the space environment. The nominal geometry using low 

CTE composite was shown to have a minimum morphing capability of 30 nm in the X-axis given a thermal control 

capability of 1°C and a maximum displacement capability of 1 μm.  A simple evaluation of the design space found 

the minimum cost function to be 0.0077 and a maximum cost function of 513. The resulting five orders of 

magnitude variation in the cost function demonstrates the range of applications that the anisogrid thermal morphing 

system can address. 

 

The parameters ranking methodology was verified, and the three parameter optimization achieved 98% of the 

overall cost function reduction that the five parameter optimization effort provided. The minimum morphing X and 

Y axis control was found to achieve a minimum control of 10 nm and a maximum control of 600 nm, given a 

thermal control capability of 1°C and an allowable maximum input loading of 10°C. Finally, this system was shown 

to be able to achieve 1 Hz frequency response capabilities given an input power of 6 kW.  This work has 

demonstrated the foundation and tools required to provide an optimized thermal morphing anisogrid structure for a 

wide variety of potential applications. Once a specific application is defined, the methodology in this paper can be 

implemented to provide an optimized structure with a broad range of power, workspace size, mass, frequency 

response, and minimum morphing constraints. 

 

This effort contributed to the field of model reduction by demonstrating the Data Based Loewner method on a 

variety of classical engineering problems to identify computational cost and quality of the resulting reduction. An 

iterative method was identified as a valid method to define the optimally reduced model scale.  The overall reduction 
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capability of the Data-Based Loewner model reduction method has been quantified on complex FEM structures. To 

expand beyond the work done here, the implementation of this model reduction method, to provide a state space 

model based on test data, could provide unparalleled model coupling predictions in the high-frequency regime.   

 

Through this investigation, an opportunity to expand upon the use of the Loewner method was identified. A 

fundamental limit in current reduced models is that their accuracy is limited based on the accuracy of the modeling 

method being reduced.  The use of test data provides opportunities to generate accurate models where the 

development of an accurate model is difficult or impossible.  One of the classic issues with the current modeling 

methods is the capturing of high-frequency dynamics. The effort shown in this work can be expanded to provide an 

alternative method to develop highly accurate dynamic models that could provide unparalleled coupled model 

predictions using test data. An opportunity exists to expand the method by generating the reduced model in the form 

of a stiffness and a mass matrix, rather than by the state space representation. This would enable simple integration 

of the reduced models into well-established FEM code, allowing for untested structures to be coupled with the high-

frequency Loewner Data Based models and providing increased accuracy coupling dynamic predictions. 

 

The parameter ranking methodology described here expands on the capability of classical sensitivity analysis by 

adding an intelligent ranking algorithm to the classic sensitivity method.  This approach has been shown to be robust 

for use in model correlation efforts as well as for the selection of parameters for optimization.  To improve the 

performance of this methodology and to ensure its validity on other cases, further investigation into the best data to 

provide to the algorithm and a study into the normalization methods are needed.  The method demonstrated here 

used parameter values at the edges of the design space, but further investigation into alternative methods could 

improve performance. Alternate weighting methods and normalization techniques should also be applied to evaluate 

potential performance improvements. An additional application of interest for this methodology is in the ranking of 

parameter importance for the generation of neural networks and other machine learning methods trying to solve 

complex problems, such as model correlation.  As non-critical parameters are removed from the machine learning 

effort, the quality of the model performance improves and the method’s computational costs reduce.  Identifying the 

right truncation point to maximize model accuracy greatly increases the potential of machine learning algorithms. 

The author is currently investigating the improvements in computational cost and the neural network performance 

improvement when this methodology is applied. This effort may enable machine learning algorithms, trained on 

FEM data, to instantly predict parameter values that would correlate a dynamic FEM to test data. This has the 

potential to identify errors in the FEM or failures in the test specimen during low energy testing so that FEM issues 

or structural failures can be addressed before the application of high energy environments.  

 

To improve on the current methods used to evaluate the thermal morphing anisogrid structure, the combined loading 

cases need to be better understood. Current efforts in assessing the minimum morphing capability took a brute force 

approach requiring the search area within the design space to be limited. A significant advance in performance could 

be found through a deeper understanding of the optimal morphing configurations for 6 DOF control. To achieve this, 

a greater understanding of the relationship between the geometric inputs and the minimum morphing loading 

combination case needs to be investigated. This would also provide the required insight needed to build a better 

optimization cost function and improve on the minimum morphing geometry. Several other morphing performance 

criteria have yet to be addressed, including: corrective force capability, dynamic properties as a function of 

geometry, manufacturing tolerance effects, thermal morphing specific failure modes, and the calculation of 

convective losses. Through addressing these needs, the concept can be applied to a specific morphing application 

with greater success. 

 

A significant portion of the work associated with this effort was focused on the development of the parameterized 

Matlab code used to build and run the FEM. To encourage further efforts in this field, the parameterized Matlab 

code is published openly at (https://github.com/A-Phoenix/Anisogrid-Model) to allow others to build upon this 

work.   

 

This work has addressed issues in the fields of model reduction, sensitivity analysis, FEM development, 

optimization, and adaptive morphing structures. While future investigations are required, through this effort, the 

thermal morphing anisogrid structural performance has been quantified. 

https://github.com/A-Phoenix/Anisogrid-Model

