
Competitive Algorithms and System for Multi-Robot Exploration
of Unknown Environments

Aravind Preshant Premkumar

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

Pratap Tokekar
Sharath Raghvendra

Daniel J. Stilwell

Aug 1, 2017
Blacksburg, Virginia

Copyright 2017, Aravind Preshant Premkumar

Competitive Algorithms and System for Multi-Robot Exploration of
Unknown Environments

Aravind Preshant Premkumar

(ABSTRACT)

We present an algorithm to explore an orthogonal polygon using a team of p robots. This
algorithm combines ideas from information-theoretic exploration algorithms and computa-
tional geometry based exploration algorithms. The algorithm is based on a single-robot
polygon exploration algorithm and a tree exploration algorithm. We show that the explo-
ration time of our algorithm is competitive (as a function of p) with respect to the offline
optimal exploration algorithm. We discuss how this strategy can be adapted to real-world
settings to deal with noisy sensors. In addition to theoretical analysis, we investigate the
performance of our algorithm through simulations for multiple robots and experiments with
a single robot.

Competitive Algorithms and System for Multi-Robot Exploration of
Unknown Environments

Aravind Preshant Premkumar

(GENERAL AUDIENCE ABSTRACT)

In applications such as disaster recovery, the layout of the environment is generally unknown.
Hence, there is a need to explore the environment in order to effectively perform search and
rescue. Exploration of unknown environments using a single robot is a well studied problem.
We present an algorithm to perform the task with a team of p robots for the specific case of
orthogonal polygons, i.e. polygonal environments where each side is aligned with either the
X or the Y axis. The algorithm is based on a single-robot polygon exploration algorithm
and a tree exploration algorithm. We show that the exploration time of our algorithm is
competitive (as a function of p) with respect to the optimal offline algorithm. We then
optimize the information gain of the path followed by the robots by allowing local detours
in order to decrease the entropy in the map.

This work is supported by NSF through grant number 1566247.

To my family for their unwavering love and support.

iv

Acknowledgments

First and foremost, I would like to thank my advisor Dr.Pratap Tokekar for giving me
the opportunity to work with him in the Robotics Automation and Autonomous Systems
(RAAS) laboratory at Virginia Tech. His Advanced Topics in Robotics class kick started
my journey in robotics and was one of the best classes here. He has been a constant source
of inspiration and his knowledge in various areas is awe-inspiring. Honestly, He is the best
advisor anyone can ever hope for and I hope to work with him in the future.

I would also like to thank Dr.Sharath Raghvendra and Dr.Daniel Stilwell for being a part
of my comittee. Dr.Raghvendra’s Theory of Algorithms class was one of the best classes I
ever attended and it helped deepen my understanding of algorithms. I would also like to
thank Dr.Devi Parikh as well for her lectures in the computer vision, I learnt a lot during
the course and it was a lot of fun working on the assignments and the class project.

Special thanks to my lab-mate and co-author Kevin Yu for helping me with the real world
experiments and spending many sleepless nights in the corridors of the whittemore hall
running behind the robot. The others, Ashish, Zhongshun, Nahush, Yoon and Lifeng made
the lab a great place to work in.

I thank my friend Shriya Shah for being a guide and making amazing food for us. Also, my
friends Amith, Arpit, Nisheeth and Jai for making my journey as a graduate student less
stressful.

My heartfelt thanks to my parents, Prem and Shanthi (Love and peace), and my brother,
Ranjith, for always believing in me and pushing me to chase my dreams. They have been
extremely encouraging throughout my life and I owe everything that I have ever achieved to
them.

Lastly, I would like to extend my sincere thanks to my better half, Nayanika Sanga, for
enduring this journey with me. I know that these two years have been a lot more difficult
for her than me. She has been a constant source of support and she always believed in me,
even when I didn’t. Thank you and I can’t wait to spend the rest of my life with you.

v

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Background and Related Work . 2

1.2.1 Polygon Exploration . 2

1.2.2 Graph Exploration . 3

1.2.3 Information-Theoretic Exploration 4

1.3 Contributions of this Thesis . 5

2 Tree Exploration with Trajectory Optimization 6

2.1 Problem Formulation and Preliminaries . 6

2.2 Algorithm . 7

2.3 Competitive Ratio Analysis . 10

2.4 Incorporating Information-Theoretic Planning 13

2.4.1 Finding Blocking Vertices in Occupancy Maps 13

2.4.2 Information-Theoretic Subroutine . 15

2.4.3 General Environments . 16

3 Simulation Results 18

3.1 Simulations with goto as the shortest path 18

3.2 Simulations with goto as the submodular orienteering subroutine 20

4 Hardware Experiments 22

vi

4.1 System Description . 22

4.1.1 Robot Localization . 22

4.1.2 Online Map Building . 23

4.1.3 Multi-Robot Communication . 24

4.2 Experiments . 24

5 Conclusion and Future Work 28

vii

List of Figures

1.1 Frontier is the boundary between known free space and unknown space. . . . 4

2.1 Vertex b blocks the visibility of the robot and is known as a blocking vertex.
The robot has to cross the segment be (known as the extension) to increase
the visible boundary of the polygon P . The extension divides P into two
sub-polygons. The sub-polygon not containing the robot (overlap of red and
green areas) is known as the foreign polygon w.r.t. b and is denoted as FP (b). 7

2.2 An intermediate stage of exploration of a polygon by a team of 4 robots. Two
robots located at the location G and the other two are located at F 9

2.3 The tree corresponding to the stage of exploration shown in Figure 2.2. . . . 9

2.4 Plot of the growth of competitive ratio as a function of the number of robots. 13

2.5 (Left) Finite resolution of the laser leads to gaps in observations. (Right)
A blocking vertex (marked with yellow ‘X’) has four distinctive neighbors: an
occupied cell, an unknown cell, a free cell which is a frontier, one which is not. 14

2.6 The first figure (Top-Left) shows the input graph imposed on the shortest
path (blue line) between s and t. The other figures show the variation of path
taken with change in budget. 16

3.1 Simulation environments 1 – 5 from left to right, top to bottom. 18

3.2 Various stages while exploring environment 3 using four robots. The map
explored and built along with the corresponding trees are shown. 19

3.3 Final tree produced after exploring the five environments in Figure 3.1 with
four robots. The maximum distance traveled by a robot during exploration is
given in Table 3.1. 20

3.4 (Left) Final map produced and path taken by two robots with an orienteering
budget of 1d. (Right) Final map produced and path taken by two robots with
an orienteering budget of 2d. 21

viii

4.1 Pioneer P3-DX with the onboard Intel NUC i7, Hokuyo laser and Kinect2
sensor used for the experiments. The 2D Hokuyo laser was used for robot
localization and the Kinect2 sensor was used for mapping during exploration. 23

4.2 rqt graph showing communication between nodes. 24

4.3 Map of sixth floor of Whittemore hall built using rtabmap ros package. . . . 25

4.4 Bullet M3 antennas were used to setup global communication. 25

4.5 Map of sixth floor of Whittemore hall built and the path taken by the robot
after exploration of the environment. 26

4.6 Map of sixth floor of Whittemore hall built and the path taken by the robot
after exploration of the environment with a budget of 2d. 26

4.7 Map of RAAS Lab and part of sixth floor of Whittemore hall built and the
path taken by 2 robots. 27

ix

List of Tables

3.1 Maximum distance traveled by a robot to explore environments in Figure. 3.1. 20

3.2 Effect of budget while exploring first environment in Figure 3.1, where d is
the shortest distance between every start (s) and goal (t). 21

3.3 Average per step computation time for varying budget, where d is the shortest
distance between every start (s) and goal (t). 21

4.1 Effect of budget while exploring the corridor shown in Figure 4.3 using the
real robot, where d is the shortest distance between every start (s) and goal
(t). 25

x

Chapter 1

Introduction

1.1 Overview

Exploration of unknown environments using a single robot has been a well studied prob-
lem [46, 31]. The task can be performed faster if multiple robots are used. The challenge is
to come up with an algorithm to efficiently coordinate multiple robots to explore the environ-
ment in the minimum amount of time. The main contributions of this thesis is an algorithm
for multi-robot exploration of unknown environments with strong theoretical performance
guarantees.

There have been two types of approaches towards solving the exploration problem: geometric
and information-theoretic. In geometric approaches (e.g., [6]), it is typical to assume that
the robots have perfect sensing. Geometric algorithms typically give global guarantees on
distance traveled at the expense of restrictive assumptions about the environment and sen-
sor models. On the other hand, information-theoretic approaches (e.g., [10]) explicitly take
into account practical constraints such as noisy sensors and complex environments. How-
ever, these approaches are often greedy (e.g., frontier-based [55]) and typically do not yield
any guarantees on the total time taken. In this dissertation we investigate the challenges
in combining information-theoretic algorithms with geometric exploration algorithm while
preserving guarantees on exploration time.

We use competitive analysis [38] in order to analyze the cost of exploration. Competitive
ratio of an online algorithm is defined as the worst-case ratio (over all inputs) of the cost of
the online algorithm and the optimal offline algorithm

Competitive ratio = max
i ∈ input

Cost of online algorithm(i)

Cost of optimal offline algorithm(i)

The optimal offline algorithm corresponds to the case when the input (i.e., map of the
environment) itself is known. The goal is to find online algorithms with small, constant

1

2

competitive ratios. That is, algorithms whose online performance is comparable to algo-
rithms who know the input a priori. We present a algorithm for multi-robot exploration
with a constant competitive ratio for exploring with p robots, when p is fixed in orthogonal
polygons.1

1.2 Background and Related Work

In this section, we present the existing work related to the exploration problem. We organize
the related work into three broad categories: polygon exploration, graph exploration, and
information-theoretic exploration.

1.2.1 Polygon Exploration

The study of geometric problems that are based on visibility is a well-established field within
computational geometry. The classic problems are the art gallery problem [42], watchman
route problem [12], and target search [22] and shortest path planning [44] in unknown envi-
ronments.

Using a fixed set of positions for guarding a known n-sided polygonal region, i.e., a set of
points from which the entire polygon is visible, is known as the classical art gallery problem.
Chvatal [14] and Fisk [21] proved that bn/3c guards are always sufficient and sometimes
necessary to cover a polygon of n edges. The minimum number of guards required for a
specific polygon may be much smaller than this upper bound. However, Schuchardt and
Hecker [48] showed that finding a minimum set of guards is NP-hard, even for the special
case of an orthogonal polygon.

Finding the shortest tour along which one mobile guard can see the polygon completely
is the watchman route problem. Chin and Ntafos [12] showed that the watchman route
can be found in polynomial time in a simple orthogonal polygon. Wang et al. [53] showed
that the watchman route problem is for general environments is NP-hard and presented a
O(polylogn) approximation for the restricted case when each viewpoint is required to see a
complete polygon edge.

Exploring an unknown polygon is the online watchman route problem. Bhattacharya et
al. [6] and Ghosh et al. [24] approached the exploration problem with discrete vision, i.e., they
assume that the robot does not have continuous visibility and has to stop at different scan
points in order to sense the environment. They focus on the worst-case number of necessary
scan points. Their algorithm results in a competitive ratio of (r+1)/2, where r is the number
of reflex vertices in the polygon. For limited range of visibility, they give an algorithm where

1An orthogonal polygon is one in which all edges are aligned with either the X or the Y axes.

3

the competitive ratio in a polygon P can be limited by b8π
3

+ πR×Perimeter(P)
Area(P)

+ (r+h+1)πR2

Area(P)
c,

where h is the number of holes and R is the number of reflex vertices in the polygon.

Albers et al. [1] assume that the environment is modeled by a directed, strongly connected
graph and give a dO log dm competitive algorithm where where m is the number edges in
the graph and d is the minimum number of edges that have to be added to make the
graph Eulerian. The robot’s task is to visit all nodes and edges of the graph using the
minimum number R of edge traversals.For a simple polygon, Hoffmann et al. [26] presented
an algorithm which achieves a competitive ratio of 26.5. For the special case of an orthogonal
polygon, Deng et al. [17] presented a

√
2 competitive exploration strategy with one robot.

We show how to extend the single robot exploration algorithm by Deng et al. [17] to the
case of p robots. The resulting algorithm has a competitive ratio that is a function of p.

1.2.2 Graph Exploration

The problem of visiting all the nodes in a graph in the least amount of time is known as
the Traveling Salesperson Problem (TSP). Here, all nodes of the graph are known before-
hand and the objective is to determine the shortest path visiting all the nodes in the graph
exactly once. Finding the optimal TSP tour for a given graph is known to be NP-hard,
even for the special case where the nodes in the graph represent points on the Euclidean
plane [36]. For the Euclidean version of the problem, there exist polynomial time approxi-
mation schemes [36, 4], i.e., for any ε > 0, there exists a polynomial time algorithm which
guarantees an approximation factor of 1 + ε.

In the graph exploration version of the problem nodes are revealed in an online fashion.
The objective is to minimize the total distance (or time) traveled. Fraigniaud et al. [23]
presented an algorithm for exploration of trees using p robots with a competitive ratio of
O(p/ log p) and a lower bound of Ω(2 + 1/p). This lower bound was improved by Dynia
et al. [18] to Ω(log p/ log log p). They modeled the cost as the maximal number of edges
traversed by a robot and presented a (4 − 2/p)-competitive online algorithm. Higashikawa
et al. [25] showed that greedy exploration strategies have an even stronger lower bound of
Ω(p/ log p) and presented a (p+ log p/1 + log p) competitive algorithm.

Better bounds have been achieved for restricted graphs. Dynia et al. [19] presented an
algorithm that achieves faster exploration for trees restricted by a density parameter k
which forces a minimum depth for any subtree depending on its size. Trees embeddable
in d-dimensional grids can be explored with a competitive ratio of O(d1−1/k). For 2-
dimensional grids with only convex obstacles, Ortolf et al. improved the competitive ratio
to O(log2 d) [43]. Despite these strong restrictions on the graph, the same lower bound of
Ω(log p/ log log p) holds for all trees.

We show that the problem of exploring a polygon can be formulated as a multi-robot tree

exploration problem. Our algorithm yields a competitive ratio of 2(2
√
2p+log p)

1+log p
where p is the

4

number of robots.

1.2.3 Information-Theoretic Exploration

Geometric and graph-based approaches typically assume perfect sensing with no noise. In
practice, however, measurements are not perfect and we have to account for measurement
noise when exploring the environment. Such exploration strategies can be broadly classified
into frontier-based and information-theoretic strategies [31].

Information-Theoretic exploration strategies typically use an occupancy grid to represent
the maps generated from noisy and uncertain sensor measurement [20]. An occupancy grid
is a uniformly-spaced grid, with a binary random variable (per grid cell) representing the
probability of the cell being occupied by an obstacle. There are many existing occupancy grid
mapping techniques like gmapping [50], octomap [29], RTAB-Map [35] and ORGB-slam [40].
Frontier-based exploration strategies are largely greedy in nature and drive the robots to the
boundary between known and unknown spaces in the map. In occupancy grids frontiers are
cells determined to be free (Probability of occupancy close to zero) which are next to grid
cells that have not been observed (Probability of occupancy is set to be 0.5). Variants of
this strategy have been used to perform exploration of unknown 2D [55, 8, 49] and 2.5D
environments [9]. We refer the reader to the comprehensive study by Holz et al. [28] for
further details. Information-theoretic strategies seek to optimize some information measure

Figure 1.1: Frontier is the boundary between known free space and unknown space.

such as entropy (uncertainty) [54, 37] in the environment, or mutual information [3] while
exploring the environment. Mutual information [15] between two random variables X and
Y is given by,

I(X;Y) =
∑
x

∑
y

f(x, y) log
f(x, y)

f1(x)f2(y)

Mutual information in occupancy grid, predicts how much future measurements will decrease

5

the robots uncertainty associated with all grid cells. Julian et al. [32] studied the computation
of mutual information for range based sensors. While these algorithms produce better maps,
the planner is typically a one-step greedy algorithm or finite-horizon planners that cannot
give global guarantees on the total distance traveled.

In order to overcome this, a better approach may be to combine a global planner along
with a local planner. Davis et al. [16] proposed one such algorithm where the goal was to
plan a path from a start state to a goal state while the coverage of a user-specified region
while minimizing the control costs of the robot and the probability of collision with the
environment. Bai et al. [5] have used used an approach to predict mutual information
using Bayesian optimization in which the long-term goal is to reduce entropy throughout
the robot’s environment map, and the short-term goal is to perform the sensing action in
each iteration that will maximize mutual information. Choudhury et al. [13] have showed
that supervised learning could be used to predict informative actions without evaluating
the expected mutual information exhaustively for every possible action. Charrow et al. [10]
attempted to resolve this with a heuristic that uses a global planner for a single robot to
determine trajectories that maximizes the information-theoretic objective whilst employing a
gradient-based trajectory optimization technique to locally refine the chosen trajectory such
that the mutual information objective is maximized. We build on this work and present a
two-level planner that maximizes information locally while giving strong global performance
guarantees on the path length followed by the robots.

1.3 Contributions of this Thesis

We focus on the case of exploring unknown orthogonal polygons without any holes. Deng
et al. [17] showed that there is an algorithm with a constant competitive ratio for exploring
orthogonal 2-dimensional polygons with a single robot.We present an algorithm with constant
competitive ratio for exploring with p robots, when p is fixed (Chapter 2).

The analysis of this algorithm requires certain assumptions that do not necessarily hold in
practice. Our second contribution is to show how to adapt this purely geometric algorithm
for real-world constraints to incorporate sensing limitations and uncertainty (Chapter 2).
Thirdly, we extend this algorithm in order to improve the quality of the resulting map. We
add a local planner to our algorithm that optimizes the information gain of the path taken
by the robots while traversing in order to reduce the overall uncertainty in the map. We
evaluate our algorithm through simulations and experiments on a mobile robot (Chapters 3
and 4).

Chapter 2

Tree Exploration with Trajectory
Optimization

In this chapter, we present the details of our algorithm for exploring an orthogonal polygon
without any holes, P , using a team of p robots. Our algorithm builds on the algorithm by
Deng et al. [17] for exploring an orthogonal polygon with a single robot and extends it to the
case of multiple robots using the graph exploration strategy from [25]. Our main insight is to
show that the path followed by the robot using the algorithm in [17] can be used to construct
a tree, denoted by T , in P . That is, exploring the polygon is equivalent to visiting all nodes
in this tree. We show that a multi-robot tree exploration algorithm from [25] can be used to
explore and visit every node in this tree. Furthermore, we show that the competitive ratio
of our algorithm with respect to the optimal offline algorithm is bounded (as a function of
p).

2.1 Problem Formulation and Preliminaries

We assume all robots start at a common location. The cost of exploration is defined as the
time taken for all the robots to return to the starting location having explored the polygon.
We say that a polygon P is explored if all points in its interior and on the boundary were
seen from at least one robot. For the purpose of the analysis, we assume that the sensor on
the robot is an omni-directional camera with infinite sensing range which returns the exact
coordinates of any object in its field of view. We also assume that the robots move at unit
speeds and can communicate at all times. In the next section, we show how to adapt our
algorithm to realistic sensing models and evaluate it through experiments.

We introduce some terminology used in our algorithm (refer to Figure 2.1) before presenting
the details. The sub-polygon that is visible from a point x is known as the visibility polygon
of x and is denoted by V P (x). Some of the edges in the visibility polygon are part of the

6

7

Figure 2.1: Vertex b blocks the visibility of the robot and is known as a blocking vertex. The
robot has to cross the segment be (known as the extension) to increase the visible boundary
of the polygon P . The extension divides P into two sub-polygons. The sub-polygon not
containing the robot (overlap of red and green areas) is known as the foreign polygon w.r.t.
b and is denoted as FP (b).

boundary of P where as others are chords in the interior of P (e.g., segment gb in Figure 2.1).
A reflex vertex of P which breaks the continuity of the part of the boundary of P visible
from x is known as a blocking vertex. Vertex b in Figure 2.1 is a blocking vertex. Let bc be
the edge incident to b which is (partly) visible from x. The line segment perpendicular to bc
drawn from b till the boundary of P is known as the extension of the blocking vertex b for
an orthogonal polygon. The robot must cross the extension in order to “look beyond” the
blocking vertex and explore the polygon. Draw the line segment starting from the robot’s
position x perpendicular to the extension be. The point at which these two line segments
intersect (Eg) is known as the extension goal corresponding to the blocking vertex b. An
extension E divides P into two sub-polygons. The one which contains the robot is known
as the home polygon of the robot with respect to E. The other sub-polygon is known as the
foreign polygon of the robot with respect to E and is denoted as FP (E).

For two extensions E1 and E2, there may be no way to visit E1 without crossing E2. If so,
we can ignore E2, since it is automatically visited if we visit E1. More formally, E1 is said
to dominate E2 if E1 is totally contained FP (E2). A non-dominated extension is called a
critical extension.

2.2 Algorithm

The algorithm starts by creating a tree with the initial position of the robots as the root.
All robots start in one cluster located at the root node. We use three labels to keep track of
the status of any node in the tree: unexplored, under-exploration, and explored. Whenever a

8

1 Function explore()
Data: Cluster of robots, C, located at some node, A, in the tree.

2 if A is marked under-exploration then
3 A ← children of A not marked as explored ;
4 if A == ∅ then
5 if A == root of the tree then
6 Terminate exploration;
7 else
8 goto(C,parent(A);
9 end

10 else
11 Divide C equally among A;
12 When any cluster reaches a child of A, call explore;

13 end

14 else
15 Mark A as under-exploration;
16 if blocking vertices detected from A then
17 Sort in clockwise direction and add as children of A;
18 for p and q are distinct blocking vertices do
19 if FP (p) ⊆ FP (q) then
20 add p as child of q;
21 else
22 if FP (p) and FP (q) intersect then
23 add the vertex that appears first in the clockwise order as the parent

of the vertex that appears later;
24 end

25 end

26 end
27 Divide C equally among children of A;
28 When any cluster reaches a child of A, call explore;

29 else
30 Mark A as explored ;
31 goto(C,parent(A);

32 end

33 end

Algorithm 1: Multi-Robot Exploration Subroutine

9

Figure 2.2: An intermediate stage of exploration of a polygon by a team of 4 robots. Two
robots located at the location G and the other two are located at F .

Figure 2.3: The tree corresponding to the stage of exploration shown in Figure 2.2.

cluster of robots reach a node (using a subroutine goto not shown), we call the subroutine
shown in Algorithm 1. While navigating using goto, if two clusters run into each other, then
they merge and travel up the tree together.

The root is initially marked as under-exploration. We then check to determine any blocking
vertices visible from the current node. We add the extension goals corresponding to any
blocking vertices visible from the current node as its children. All of the corresponding
extension goals are added as children by sorting them in the clockwise direction. These
new children of the current node are adjusted according to the conditions mentioned. These
conditions define an ordering over the nodes, by rewiring the tree. The cluster of robots at
the current node is then divided as equally as possible and sent to visit the children of the
current node. If the current node doesn’t have any children, the current node is marked as
explored. The cluster moves to the parent of the current node to explore any of its other
children which are unexplored or under-exploration. If a node does not have any children that
are unexplored or under-exploration, then that node and its sub-tree is said to be explored.
The exploration is said to be completed if the root of the tree is marked as explored.

Consider an example where P has been explored partially by a team of four robots as shown
in Figure 2.2. All four robots {r1, r2, r3, r4} start off at the location A which is added as the
root of the tree as shown in Figure 2.3. Node A is marked as under-exploration. The robots
observe two blocking vertices, BV1 and BV2. The extension goals B and C corresponding

10

to BV1 and BV2, respectively, are added as the children of A in the tree. The robots split
into two clusters {r1, r2} and {r3, r4}. Cluster {r1, r2} moves towards B and cluster {r3, r4}
moves towards C. The corresponding nodes in the tree are marked as under-exploration.
At B, cluster {r1, r2} observes a new blocking vertex, BV3, and the corresponding extension
goal D is added as the child of B. Since there is only one child, the cluster does not split
and both robots move towards D. The corresponding node, D, in the tree is marked as
under-exploration.

At C, the cluster {r3, r4} observes a blocking vertex, BV3, and the corresponding extension
goal E is added as the child of C. Similarly, F is added as the child of D and G is added as
the child of E. At F , cluster {r1, r2} observes two blocking vertices, the cluster splits into
two clusters {r1} and {r2}. Cluster {r1} moves towards H and cluster {r2} moves towards I.
At G, cluster {r3, r4} observes that there are no more blocking vertices. Hence, no children
are added to G. G is marked as explored and the algorithm checks the predecessor in the
tree, E. Since E does not have any other children for exploration, E is marked as explored
as well.

Similarly, the algorithm checks its predecessor, C, and marks it as explored. Now the al-
gorithm checks A, it has a child B which is under-exploration. Since there is no blocking
vertex, the algorithm proceeds to check B. Similarly, the algorithm proceeds to check D and
subsequently F . At F , there are two blocking vertices since neither of the two clusters , {r1}
or {r2}, have reached their goals. Thus, cluster splits into two {r3} and {r4}. H is assigned
to {r3} and I is assigned to {r4}. The exploration algorithm proceeds in this manner up
until the root is marked as explored.

2.3 Competitive Ratio Analysis

In this section, we prove that the competitive ratio of our algorithm is bounded with respect
to the offline optimal algorithm. We divide our analysis into three steps. First, we show that
the paths followed by all the robots can be mapped to navigating on a tree. Next we bound
the sum of the costs of edges in the the tree with respect to the offline optimal cost. Finally,
we bound the cost of our algorithm with respect to the cost of the tree. The graph created
by the algorithm is a tree by construction because once a node is added to the graph it is
not added to the graph again.

When p = 1, the proposed algorithm is the same as the one given by Deng et al. [17] for
orthogonal polygons without holes. They showed that the competitive ratio of this algorithm
is
√

2. Let COPT denote the time taken by the optimal algorithm for a single robot to explore
P . Let CRECT denote the time taken by the strategy from [17] for a single robot to explore
P . We have CRECT ≤

√
2COPT from Theorem 3 in [17] and the assumption that the robots

travel with unit speeds. Let Cp
OPT be the time taken by the optimal p robot exploration

algorithm, and CALG be the time taken by the proposed algorithm. Our goal is to show

11

an upper bound for CALG/COPT. We will show this by relating both quantities with Cp
TREE

which is the sum of the lengths of edges in the tree created by p robots.

Lemma 1. C1
TREE ≤ CRECT ≤

√
2C1

OPT.

Proof. The inequality CRECT ≤
√

2C1
OPT holds from Theorem 3 of [17] for simple rectilinear

(orthogonal) polygons. The inequality C1
TREE ≤ CRECT holds because any robot will have to

back track on its path to reach previously unexplored areas and return back to the root.

Lemma 2. If p robots are used to explore P and Cp
OPT is the cost of the optimal offline

algorithm, then C1
TREE ≤

√
2C1

OPT ≤
√

2pCp
OPT.

Proof. Given the optimal algorithm for p robots, one can construct a tour for a single robot
that executes each of the p tours. The length of such a tour is upper bounded by pCp

OPT.
Since C1

OPT is the optimal cost for a single robot’s tour, we have C1
OPT ≤ pCp

OPT. The other
inequality follows from the previous lemma.

Lemma 3. The single robot visits the critical extensions of the sides that appear in the
clockwise order on the boundary of the polygon. In multi-robot exploration, the total order is
not preserved but the partial order is preserved.

Proof. For the single robot case, this holds from Proposition 4 of [17]. For the multirobot
case it holds by construction of the exploration algorithm (Line 17).

Lemma 4. If Cp
TREE is the cost of the tree created by p robots, then Cp

TREE ≤ 2C1
TREE.

Proof. Let the single robot following the strategy from [17] visit the critical extensions in the
clockwise order in which the sides associated with the extensions appear along the boundary
of the polygon, S1, S2, ..., Si, Sj, Sk, ..., Sm starting from root location r. Let C(a, b) denote
the cost of traversing from point a to point b following the rectilinear strategy. Therefore,

C1
TREE = C(r, S1) + C(S1, S2) + ...+ C(Si, Sj) + C(Sj, Sk) + C(Sm-1, Sm) (2.1)

From Lemma 3, we know that each of the p robots will visit the sides in a partial order. We
show that the cost of the tree constructed by p robots is upper bounded by the cost of the
partial order tours. Next, we show that the cost of the partial order tours is no more than
twice the cost of the total order tour. We will show this for the case of two partial order
tours. The same argument can be applied iteratively to convert all partial order tours to a
total order tour.

Now, let us assume that we have two robots in the exploration team and the first robot visits
the extensions in the following order S1, S2, ..., Si, Sk, ..., Sm and the second robot visits the
extension Sj. The cost of the combined tour is given by

Cp
TREE = C(r, S1) + C(S1, S2) + ...+ C(Si, Sk) + C(Sm-1, Sm) + C(r, Sj) (2.2)

12

By triangle inequality, we can see that,

C(r, Sj) ≤ C(r, S1) + C(S1, S2) + ...+ C(Si-1, Si) + C(Si, Sj) (2.3)

Also,

C(Si, Sk) ≤ C(Si, Sj) + C(Sj, Sk) (2.4)

Therefore from equation 2.3 and equation 2.4,

C(r, S1) + C(S1, S2) + ...+ C(Si, Sk) + C(Sm-1, Sm) + C(r, Sj) ≤ C(r, S1) + C(S1, S2)+

...+ C(Si-1, Si)

+ (C(Si, Sj) + C(Sj, Sk))

+ (C(r, S1) + C(S1, S2) + ...+

C(Si-1, Si) + C(Si, Sj)) (2.5)

From equation 2.2,

Cp
TREE ≤ 2(C(r, S1) + C(S1, S2) + ...+ C(Si, Sj) + C(Sj, Sk) + ...C(Sm-1, Sm)) (2.6)

From equation 2.1,

Cp
TREE ≤ 2C1

TREE (2.7)

Each such addition adds a factor of of 2 and hence we can do this for multiple tours without
increasing the cost of the tour by more than a factor of 2.

Theorem 1. If CEXPLORE is the cost of exploring the polygon using the proposed strategy
and COPT is the cost of exploring the polygon using an optimal offline strategy, then we have,

CEXPLORE

Cp
OPT

≤ 2(2
√

2p+ log p)

1 + log p
(2.8)

Proof. The cost of exploring a tree with a recursive depth-first strategy used in the proposed
algorithms is given by:

CEXPLORE ≤
2(Cp

TREE + dmaxlog p)

1 + log p
, (2.9)

where dmax is the maximum distance of a leaf node from the root in the tree. This bound
comes directly from the result in [25]. In our case, dmax corresponds to the maximum
distance of any extension goal from the starting position of the robots. It is easy to see that
dmax ≤ Cp

OPT.

13

From Lemma 2 and 4, we have:

CEXPLORE ≤
2(2
√

2pCp
OPT + Cp

OPTlog p)

1 + log p

which yields

CEXPLORE

Cp
OPT

≤ 2(2
√

2p+ log p)

1 + log p
(2.10)

Figure 2.4: Plot of the growth of competitive ratio as a function of the number of robots.

Thus, we show that the competitive ratio is bounded as a function of p. Figure 2.4 shows
a plot of this bound as a function of p. We note that while the analysis only holds for the
case of an orthogonal polygon without holes, the resulting algorithm can also be applied for
polygons with holes. However, in such a case, the underlying graph created by the robots is
not guaranteed to be a tree. Consequently, we would have to apply a bound for exploring
general graphs with multiple robots to yield a similar competitive ratio. In the simulations,
we show the empirical performance of our algorithm in environments with holes.

2.4 Incorporating Information-Theoretic Planning

Some of the assumptions made for the analysis do not hold in most practical scenarios. In
this section, we show how to extend our basic algorithm framework in order to incorporate
real-world constraints.

2.4.1 Finding Blocking Vertices in Occupancy Maps

The assumption we make is that of unlimited sensing range. In practice, the robot has a
limited sensing range. For example, the robot cannot sense a long corridor with a single
observation. Thus, in addition to blocking vertices, the robot has to move to frontiers at

14

the end of its sensing range to sense more of the environment. This increases the distance
the robot would have to cover compared to the distance it would have to cover if it had
an infinite sensor. The robot thus has to detect two types of frontiers, one due to blocking
vertices and the other due to sensing range. The only change to the algorithm is in Line 1
where we check for blocking vertices as well as frontiers due to sensing range.

We first detect blocking vertices in a given scan (as described below). Then frontier cells
are clustered together to form frontiers due to sensing range. Any frontier which has a
constituent frontier cell neighboring a blocking vertex is then discarded. For a blocking
vertex, the extension goal is added on its extension with a slight offset. For frontiers due to
sensing range, the middle frontier cell, after clustering, is chosen as the frontier goal.

Due to the sensing uncertainty, we represent the map built by the robots as a 2D occupancy
grid (OG) as opposed to a geometric map. An OG is a discretized representation of the
environment where each cell represents the probability of that space being occupied. Fig-
ure 2.5-right shows a representative OG. Cells with a lower probability of occupancy (< 0.5)
are designated as free cells (represented as white in the OG) and cells with a higher prob-
ability of occupancy (> 0.5) are designated as occupied cells (represented as black in the
OG). Cells which have not been observed are marked as unknown (represented as gray in
the OG).

Typical sensors such as cameras and laser range finders have finite angular resolution. Con-
sider three beams from the laser as shown in Figure 2.5-left. The beams intersect obstacles
at the cells marked as black and all the cells the ray intersect between the robot (marked
in blue) and the cell are marked as free. Due to the finite resolution of the laser (0.395◦ for
the hokuyo laser used in our system), the gray cells, even though they are in the field of
the laser, are unobserved and this leads to gaps in observations. This leads to false frontiers
being detected and hence such erroneous frontiers have to be discarded. We employ a simple
heuristic of checking the size of a candidate frontier and discard those below a threshold.

Figure 2.5: (Left) Finite resolution of the laser leads to gaps in observations. (Right) A
blocking vertex (marked with yellow ‘X’) has four distinctive neighbors: an occupied cell, an
unknown cell, a free cell which is a frontier, one which is not.

Consider the robot (and the laser) located at the blue circle in Figure 2.5-right. The red ray
represents one of the laser beams. In order to check for blocking vertices, occupied cells with
a neighboring frontier cell are shortlisted first. In the figure, the cells marked with yellow

15

and red ’X’ are identified. A blocking vertex, as defined earlier, is a reflex vertex. We can
detect a reflex vertex in an OG by checking its four neighbors. If the four neighbors are an
occupied cell, an unknown cell, a free cell which a frontier, and a free cell which is not a
frontier we mark it as a blocking vertex. In Figure 2.5-right, the cell marked with the yellow
’X’ is detected as a blocking vertex.

2.4.2 Information-Theoretic Subroutine

In the analysis for Algorithm 1, we assumed that we follow the shortest paths between A
and B when executing the goto(A,B) subroutine. Instead, we can add local detours that
will increase the info gain in order to improve the quality of the map. In order to maintain
a constant competitive ratio, the robot is given a certain budget. This is known as the
orienteering problem, i.e, given a start position, a goal position and a graph where each node
has an associated reward, the orienteering problem seeks to maximize a reward function
constrained to a certain budget [7]. Our objective is to minimize the uncertainty in the map,
hence mutual information was determined to be the most suitable reward function. Since
mutual information is known to be a submodular function. A submodular function is a set
function whose value, informally, has the property that the difference in the incremental
value of the function that a single element makes when added to an input set decreases as
the size of the input set increases. We use the recursive greedy algorithm for submodular
reward functions described in [11] while moving between nodes in the tree.

The orienteering subroutine takes as input: input graph, G, the start vertex, s, the goal
vertex, t, budget, B, visited set of nodes, X and returns a path that maximizes a sub-
modular reward function subject to the budget. The input graph is generated by imposing
a grid (add points above and below the path) on the shortest path between s and t as shown
in Figure 2.6.

Orienteering is known to be NP-complete, and so is submodular orienteering. Chekuri and
Pal [11] give a quasi-polynomial time recursive greedy algorithm that yields an O(log OPT)
approximation for this problem. We modify the subroutine in order to save computation
time by restricting the paths to be strictly moving forward, i.e, the path cannot have edges
moving back towards s. This reduces the computation time by an order of magnitude. This
is a heuristic and therefore the approximation ratio may not necessarily hold in this case.

Theorem 2. Let B be the assigned budget to the algorithm, i.e., the robot is allowed to take
a path of length B times the shortest distance between the nodes. Let CALG be the cost of
exploring the the polygon using the proposed algorithm along with the information theoretic
subroutine. We have,

CALG

COPT

≤ 2B(2
√

2p+ log p)

1 + log p
(2.11)

16

Proof. From Theorem 1, we have:

CEXPLORE

COPT

≤ 2(2
√

2p+ log p)

1 + log p
(2.12)

Each s− t path between nodes is allotted a budget B, hence the total cost of our algorithm
CEXPLORE is multiplied by a factor of B. Hence the total cost of the algorithm with the
information theoretic subroutine is given by,

CALG = BCEXPLORE (2.13)

Hence,we have,

CALG

COPT

≤ 2B(2
√

2p+ log p)

1 + log p
(2.14)

Figure 2.6: The first figure (Top-Left) shows the input graph imposed on the shortest path
(blue line) between s and t. The other figures show the variation of path taken with change
in budget.

2.4.3 General Environments

Our algorithm also works for environments which are not orthogonal when occupancy grids
are used as the underlying representation. Occupancy grids, typically, are orthogonal poly-
gons by construction. Furthermore, for environments with holes (i.e., obstacles) the algo-
rithm would create a tree and explore this tree. While this is correct, the distance traveled

17

by the robots can be much higher than the optimal cost and as such the competitive ratio
does not hold.

In the next chapter, we evaluate the empirical performance of our algorithm through simu-
lations in such scenarios.

Chapter 3

Simulation Results

We evaluate our algorithms via simulations and real world experiments. ROS [45] was used
extensively for our experiments. For the simulations, we used the gazebo simulator [33]
which is a physics-based simulator.

3.1 Simulations with goto as the shortest path

We first ran the experiments with the goto function as the shortest distance between s and
t. The five gazebo simulation environments used (Figure 3.1) are not all orthogonal and
simply-connected – assumptions required for the analysis. We ran experiments with varying
number of robots in all the environments and evaluated the performance of our algorithm. 1

Figure 3.1: Simulation environments 1 – 5 from left to right, top to bottom.

1Our implementation is available online at https://github.com/raaslab/Exploration.

18

19

Figure 3.2: Various stages while exploring environment 3 using four robots. The map ex-
plored and built along with the corresponding trees are shown.

Figure 3.2 shows various stages of exploration with four robots. The figure also shows the
partial exploration tree built by the algorithm. The final trees produced while exploring all
the environments is given in Figure 3.3. Table 3.1 shows the maximum distance traveled by
a robot (in meters) during exploration for all the environments.

The cost of exploring environments 1, 3, 4, and 5 remains almost the same when the number
of robots is increased from two to four. This is due to the fact that the exploration tree is
not a balanced tree (Figure 3.3). On the other hand, in environment 2, the tree contains
four or more under-exploration branches at all times. Consequently, the cost of exploration
decreases significantly when four robots are used as opposed to just two.

20

Figure 3.3: Final tree produced after exploring the five environments in Figure 3.1 with four
robots. The maximum distance traveled by a robot during exploration is given in Table 3.1.

Env. 1 Env. 2 Env. 3 Env. 4 Env. 5
1 Robot 214.11 362.29 124.77 135.62 156.03
2 Robots 121.95 223.50 76.87 82.69 74.50
4 Robots 127.78 152.18 83.39 63.51 64.36

Table 3.1: Maximum distance traveled by a robot to explore environments in Figure. 3.1.

3.2 Simulations with goto as the submodular orienteer-

ing subroutine

We replace the goto function and run the experiments in environment 1 and varying the
budget and number of robots. Table 3.2 shows the effect of varying the budget allowed to
different teams of robots. We observe that the entropy in the environment drops with increase
in budget, which is expected. We also observe that increase in budget increases the total
exploration time as well, this is due to the fact that that recursive greedy algorithm iterates
over all possible budgets and hence, the per step computation time increases with increase
in budget. Per step computation here refers to a single call to goto subroutine. Table 3.3
shows the increase in average (over multiple steps of a single run) per step computation time
with increase in budget for the case of a single robot. The graph is a 4-connected grid graph
and is restricted to have a maximum of 20 nodes, irrespective of the distance between s and
t. We use the approach of Charrow et al. [10] to compute the mutual information at each
location in the graph.

Figure 3.4 shows the final map after exploration using two robots with budgets 1d and 2d.
We observe that the robots take straighter paths to the goal when the budget is 1d and bend
their paths when the budget is increased in order to maximize the mutual information gain
of the path.

21

Budget Entropy Total Time
1 Robot 1d 24713 1131
1 Robot 2d 24479 2719
1 Robot 4d 24131 6187
2 Robots 1d 24400 949
2 Robots 2d 24267 3406
2 Robots 4d 24039 6584

Table 3.2: Effect of budget while exploring first environment in Figure 3.1, where d is the
shortest distance between every start (s) and goal (t).

Budget Computation Time(s)
1d 3.41
2d 7.12
4d 19.38

Table 3.3: Average per step computation time for varying budget, where d is the shortest
distance between every start (s) and goal (t).

Figure 3.4: (Left) Final map produced and path taken by two robots with an orienteer-
ing budget of 1d. (Right) Final map produced and path taken by two robots with an
orienteering budget of 2d.

Chapter 4

Hardware Experiments

4.1 System Description

In this chapter, we first describe the ground robot system for conducting the experiments.
We the present the results of our experiments using the ground robots on the sixth floor of
Whittemore hall and RAAS Lab.

4.1.1 Robot Localization

We carried out experiments using a Pioneer P3-DX robot mounted with a Hokuyo URG-
04LX-UG01 2D laser and a Kinect2 RGBD sensor (Figure 4.1). We used the RosAria

package [47] for interfacing with the robot. The laser was configured to use 180◦ field of view
and a resolution of 0.395◦. During the exploration experiments, the robot used the 2D laser
for localization using on a pre-built map. The map was generated using RTAB-map [35, 34] and
the localization was carried out using the amcl [2] package from ROS. amcl is a probabilistic
localization system for a robot moving in 2D. It implements the adaptive (or KLD-sampling)
Monte Carlo localization approach [51], which uses a particle filter to track the pose of a
robot against a known map. Figure 4.2 shows the rqt graph showing the communication
between various nodes used for localization, amcl localizes the robot by using the pre-built
map from map server, the laser scan from hokuyo node [27] and the odometry information
from RosAria. amcl also requires the transformation between the laser and the robot’s base,
which is provided by base link to laser node. We use a joystick for manual operation of
the robot while building the map offline. The joy [30] node publishes a joy message, which
contains the current state of each one of the joystick’s buttons and axes. The joy messages
are then converted into command velocity messages to control the robot. Note that having
a pre-built map is not a requirement for our algorithm. The amcl localization component
could be replaced by, for example, any SLAM implementation like gmapping [50].

22

23

Figure 4.1: Pioneer P3-DX with the onboard Intel NUC i7, Hokuyo laser and Kinect2 sensor
used for the experiments. The 2D Hokuyo laser was used for robot localization and the
Kinect2 sensor was used for mapping during exploration.

4.1.2 Online Map Building

The robots generated a new map during the exploration process using octomapping [29]
with the Kinect2 sensor. The OctoMap library implements a 3D occupancy grid mapping
approach. The map implementation is based on an octree data structure. This map (and
not the pre-built map) was used as the basis for finding blocking vertices in the proposed
exploration algorithm. The mapping and localization was performed on the pioneer P-3DX
robot with two onboard computers in a master/slave configuration. A single NUC is not
enough for processing the Kinect data and running the exploration algorithm. Hence, the
slave i7 Intel NUC was dedicated to processing the Kinect2 data and the master i7 Intel
NUC was dedicated to running the localization, mapping and exploration algorithm.

24

Figure 4.2: rqt graph showing communication between nodes.

4.1.3 Multi-Robot Communication

For multi-robot experiments, we setup global communication between the robots and a
central computer. In order to achieve this, they are connected to the same wireless network
setup using bullet m3 antennas [52] (Figure4.4). The antennas are setup in a mesh topology.
We use the multimaster fkie [39] package for setting up multiple masters on the intel
NUCs. multimaster fkie is a metapackage to combine the nodes required to establish and
manage a multimaster network. We use occupancy grid utils [41] to combine occupancy
grids and run the exploration algorithm.

4.2 Experiments

The sensor on the robot is more noisy than that in simulations. We modified the goal
selection by first checking whether a frontier goal (or extension goal) is reachable from the
robots current position. Figure 4.5 shows the results of an exploration experiment with a
single robot in a corridor environment along with the path followed by the robot.1

Table 4.1 shows the effect of budget on the entropy in the map using the exploration strategy
with the information theoretic subroutine. We observe that as with the simulations, increase
in budget decreases the overall entropy in the environment but increases the total exploration

1A video of the system in operation is available online at https://github.com/raaslab/Exploration.

25

Figure 4.3: Map of sixth floor of Whittemore hall built using rtabmap ros package.

Figure 4.4: Bullet M3 antennas were used to setup global communication.

time.

Figure 4.7 shows the result of exploration of part of Whittemore hall and the path followed
by the two robots. We were unable to conduct experiments with multiple robots while in-
corporating the information theoretic subroutine because we couldn’t combine the octomaps
produced by the two robots.

Budget Entropy Total Time(s)
1 Robot 1d 78493 1516
1 Robot 2d 78128 2453
1 Robot 4d 77917 5427

Table 4.1: Effect of budget while exploring the corridor shown in Figure 4.3 using the real
robot, where d is the shortest distance between every start (s) and goal (t).

26

Figure 4.5: Map of sixth floor of Whittemore hall built and the path taken by the robot
after exploration of the environment.

Figure 4.6: Map of sixth floor of Whittemore hall built and the path taken by the robot
after exploration of the environment with a budget of 2d.

27

Figure 4.7: Map of RAAS Lab and part of sixth floor of Whittemore hall built and the path
taken by 2 robots.

Chapter 5

Conclusion and Future Work

We presented an algorithm for exploring an unknown polygonal environment using a team of
p robots in the least amount of time. Our main theoretical contribution was to show that if
the underlying environment is an orthogonal polygon without holes then our algorithm yields
a constant competitive ratio for fixed p. Next, we showed how to adapt our algorithm so
that it can extend to real-world sensing constraints. Furthermore, to improve the quality of
the resulting map, while traveling to goal positions, the robots were alloted an extra budget
and we used an existing recursive greedy solution to solve for sub-modular orienteering to
maximize the mutual information gain locally. We verified the behavior of our algorithm
through simulations and experiments with a single robot.

Future work includes extending our analysis to more general environments. Handling general
polygons without holes, not necessarily orthogonal, is a direct extension of the algorithm
presented here. The notion of blocking vertices remains the same and the underlying graph
will still be a tree. However, the extension goal corresponding to the blocking vertex needs
to be carefully defined. An immediate avenue of future work is to leverage the algorithm
from [17] that allows for obstacles in orthogonal environments. For polygons with holes, the
underlying graph is no longer a tree. Hence, a general graph exploration algorithm would
have to be used.

28

Bibliography

[1] Susanne Albers and Monika R Henzinger. “Exploring unknown environments”. In:
SIAM Journal on Computing 29.4 (2000), pp. 1164–1188.

[2] AMCL ROS Packagel. http://wiki.ros.org/amcl. Accessed: 2016-10-30.

[3] Francesco Amigoni and Vincenzo Caglioti. “An information-based exploration strategy
for environment mapping with mobile robots”. In: Robotics and Autonomous Systems
58.5 (2010), pp. 684–699.

[4] Sanjeev Arora. “Polynomial time approximation schemes for Euclidean traveling sales-
man and other geometric problems”. In: Journal of the ACM (JACM) 45.5 (1998),
pp. 753–782.

[5] Shi Bai et al. “Information-theoretic exploration with Bayesian optimization”. In: In-
telligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on.
IEEE. 2016, pp. 1816–1822.

[6] Amitava Bhattacharya, Subir Kumar Ghosh, and Sudeep Sarkar. “Exploring an un-
known polygonal environment with bounded visibility”. In: International Conference
on Computational Science. Springer. 2001, pp. 640–648.

[7] Avrim Blum et al. “Approximation algorithms for orienteering and discounted-reward
TSP”. In: SIAM Journal on Computing 37.2 (2007), pp. 653–670.

[8] Wolfram Burgard et al. “Coordinated multi-robot exploration”. In: IEEE Transactions
on robotics 21.3 (2005), pp. 376–386.

[9] Kyle Cesare et al. “Multi-UAV exploration with limited communication and battery”.
In: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2015, pp. 2230–2235.

[10] Benjamin Charrow et al. “Information-theoretic planning with trajectory optimization
for dense 3d mapping”. In: Proceedings of Robotics: Science and Systems. 2015.

[11] Chandra Chekuri and Martin Pal. “A recursive greedy algorithm for walks in directed
graphs”. In: Foundations of Computer Science, 2005. FOCS 2005. 46th Annual IEEE
Symposium on. IEEE. 2005, pp. 245–253.

[12] Wei-pang Chin and Simeon Ntafos. “Optimum watchman routes”. In: Information
Processing Letters 28.1 (1988), pp. 39–44.

29

BIBLIOGRAPHY 30

[13] Sanjiban Choudhury et al. “Learning to Gather Information via Imitation”. In: arXiv
preprint arXiv:1611.04180 (2016).

[14] Vasek Chvatal. “A combinatorial theorem in plane geometry”. In: Journal of Combi-
natorial Theory, Series B 18.1 (1975), pp. 39–41.

[15] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley &
Sons, 2012.

[16] Bobby Davis, Ioannis Karamouzas, and Stephen J Guy. “C-opt: Coverage-aware tra-
jectory optimization under uncertainty”. In: IEEE Robotics and Automation Letters
1.2 (2016), pp. 1020–1027.

[17] Xiaotie Deng, Tiko Kameda, and Christos Papadimitriou. “How to learn an unknown
environment. I: the rectilinear case”. In: Journal of the ACM (JACM) 45.2 (1998),
pp. 215–245.

[18] Miroslaw Dynia, Jakub LopuszaŃski, and Christian Schindelhauer. “Why robots need
maps”. In: International Colloquium on Structural Information and Communication
Complexity. Springer. 2007, pp. 41–50.

[19] Miroslaw Dynia et al. “Smart robot teams exploring sparse trees”. In: International
Symposium on Mathematical Foundations of Computer Science. Springer. 2006, pp. 327–
338.

[20] Alberto Elfes. “Using occupancy grids for mobile robot perception and navigation”.
In: Computer 22.6 (1989), pp. 46–57.

[21] Steve Fisk. “A short proof of Chvátal’s watchman theorem”. In: Journal of Combina-
torial Theory, Series B 24.3 (1978), p. 374.

[22] Rudolf Fleischer et al. “Competitive online approximation of the optimal search ratio”.
In: SIAM Journal on Computing 38.3 (2008), pp. 881–898.

[23] Pierre Fraigniaud et al. “Collective tree exploration”. In: Networks 48.3 (2006), pp. 166–
177.

[24] Subir Kumar Ghosh et al. “Online algorithms with discrete visibility-exploring un-
known polygonal environments”. In: IEEE robotics & automation magazine 15.2 (2008),
pp. 67–76.

[25] Yuya Higashikawa et al. “Online graph exploration algorithms for cycles and trees by
multiple searchers”. In: Journal of Combinatorial Optimization 28.2 (2014), pp. 480–
495.

[26] Frank Hoffmann et al. “The polygon exploration problem”. In: SIAM Journal on Com-
puting 31.2 (2001), pp. 577–600.

[27] hokuyo node. http://wiki.ros.org/hokuyo_node. Accessed: 2017-07-24.

[28] Dirk Holz et al. “A Comparative Evaluation of Exploration Strategies and Heuristics
to Improve Them.” In: ECMR. 2011, pp. 25–30.

BIBLIOGRAPHY 31

[29] Armin Hornung et al. “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees”. In: Autonomous Robots 34.3 (2013), pp. 189–206.

[30] Joy ROS Package. http://wiki.ros.org/joy. Accessed: 2017-07-24.

[31] Miguel Juliá, Arturo Gil, and Oscar Reinoso. “A comparison of path planning strategies
for autonomous exploration and mapping of unknown environments”. In: Autonomous
Robots 33.4 (2012), pp. 427–444.

[32] Brian J Julian, Sertac Karaman, and Daniela Rus. “On mutual information-based con-
trol of range sensing robots for mapping applications”. In: The International Journal
of Robotics Research (2014), p. 0278364914526288.

[33] Nathan Koenig and Andrew Howard. “Design and use paradigms for gazebo, an
open-source multi-robot simulator”. In: Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on. Vol. 3. IEEE. 2004,
pp. 2149–2154.

[34] Mathieu Labbe and Francois Michaud. “Appearance-based loop closure detection for
online large-scale and long-term operation”. In: IEEE Transactions on Robotics 29.3
(2013), pp. 734–745.

[35] Mathieu Labbé and François Michaud. “Online global loop closure detection for large-
scale multi-session graph-based slam”. In: 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE. 2014, pp. 2661–2666.

[36] Joseph SB Mitchell. “Guillotine subdivisions approximate polygonal subdivisions: A
simple polynomial-time approximation scheme for geometric TSP, k-MST, and related
problems”. In: SIAM Journal on Computing 28.4 (1999), pp. 1298–1309.

[37] Stewart J Moorehead, Reid Simmons, and William L Whittaker. “Autonomous explo-
ration using multiple sources of information”. In: Robotics and Automation, 2001. Pro-
ceedings 2001 ICRA. IEEE International Conference on. Vol. 3. IEEE. 2001, pp. 3098–
3103.

[38] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman & Hal-
l/CRC, 2010.

[39] Multimaster fkie ROS Package. http://wiki.ros.org/multimaster_fkie. Accessed:
2017-07-24.

[40] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. “ORB-SLAM: a
versatile and accurate monocular SLAM system”. In: IEEE Transactions on Robotics
31.5 (2015), pp. 1147–1163.

[41] Occupancy grid utils. https://github.com/clearpathrobotics/occupancy_grid_
utils. Accessed: 2017-07-24.

[42] Joseph O’Rourke. Art gallery theorems and algorithms. Oxford University Press Ox-
ford, 1987.

BIBLIOGRAPHY 32

[43] Christian Ortolf and Christian Schindelhauer. “Online multi-robot exploration of grid
graphs with rectangular obstacles”. In: Proceedings of the twenty-fourth annual ACM
symposium on Parallelism in algorithms and architectures. ACM. 2012, pp. 27–36.

[44] Christos H Papadimitriou and Mihalis Yannakakis. “Shortest paths without a map”.
In: Theoretical Computer Science 84.1 (1991), pp. 127–150.

[45] M. Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA Workshop
on Open Source Software. 2009.

[46] Nagewara SV Rao et al. Robot navigation in unknown terrains: Introductory survey of
non-heuristic algorithms. Tech. rep. Citeseer, 1993.

[47] RosAria ROS Package. http://wiki.ros.org/ROSARIA. Accessed: 2017-07-24.

[48] Dietmar Schuchardt and Hans-Dietrich Hecker. “Two NP-Hard Art-Gallery Problems
for Ortho-Polygons”. In: Mathematical Logic Quarterly 41.2 (1995), pp. 261–267.

[49] Mac Schwager et al. “A multi-robot control policy for information gathering in the
presence of unknown hazards”. In: Proceedings of International Symposium on Robotics
Research, Aug. 2011.

[50] C Stachniss and G Grisetti. GMapping project at OpenSLAM. org. 2007.

[51] Sebastian Thrun et al. “Robust Monte Carlo localization for mobile robots”. In: Arti-
ficial intelligence 128.1-2 (2001), pp. 99–141.

[52] Ubiquiti Networks Bullet. https://www.ubnt.com/airmax/bulletm/. Accessed:
2017-07-24.

[53] Pengpeng Wang, Ramesh Krishnamurti, and Kamal Gupta. “Generalized watchman
route problem with discrete view cost”. In: International Journal of Computational
Geometry & Applications 20.02 (2010), pp. 119–146.

[54] Peter Whaite and Frank P Ferrie. “Autonomous exploration: Driven by uncertainty”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 19.3 (1997),
pp. 193–205.

[55] Brian Yamauchi. “A frontier-based approach for autonomous exploration”. In: Compu-
tational Intelligence in Robotics and Automation, 1997. CIRA’97., Proceedings., 1997
IEEE International Symposium on. IEEE. 1997, pp. 146–151.

