Management Techniques To Improve Silage Quality

R. E. Muck
Retired, USDA, ARS
U.S. Dairy Forage Research Center
Madison, WI

Annual Costs Considering Loss
3072 T DM Stored - Good Management

DM Losses From Ensiling:
- Are all digestible
- Reduce the digestibility of the remaining silage

So How Do We Improve Silage Quality?
- Reduce dry matter losses
 - In other words, keep oxygen out!
- Goal-oriented use of silage additives

Scope of Talk
- Packing
- Sealing
- Feed Out
- Additives
Packing for Low Porosity

- **Porosity**
 - Gas volume surrounding the silage particles
 - Oxygen movement into silage proportional to porosity
 - So higher the porosity, the faster the rate of spoilage

Factors Related to Density in Bunker or Pile Silos
- Tractor weight
- Packing time/ton
- Layer thickness
- Silage height
- Particle size
- DM content

How Density Changes With DM Content For Identical Packing

Bottom line: 1) The drier the crop, the more you have to pack to keep porosity low. 2) Bulk density a better target.

Porosity as a Function of DM Content and Bulk Density

Bunker Silo Density Calculator

Goal: Minimum bulk density: 44 lbs./ft.³
Recommendations for Density in Bunkers and Piles:
- Minimum bulk density: 44 lbs./ft.³
- Packing tractor(s)
 - Heavy
 - Robust transmission with shuttle shift
 - Blade or bucket
 - Roll-over protection with seat belts
 - 4-Wheel drive or assist
 - Well-lugged tires
- Experienced operators

Recommendations for Density in Bunkers and Piles:
- Progressive wedge
- Thin layers (6 in.)
- Pack continuously
- Uniform coverage
- Drive slowly
- Avoid wheel slip

Packing Operation
With multiple packing tractors, have a plan to work together, avoiding accidents

SEALING

No Good Alternative to Plastic

Types of Plastic
- Polyethylene
 - Varying thicknesses, 4 to 8.5 mil
- Oxygen barrier films
 - Film with 10% or less of the oxygen permeability of polyethylene sandwiched between layers of polyethylene
- Polyethylene cling films, 1 to 2 mil
Polyethylene vs. Oxygen Barrier

- DM losses within 6 in. of the film:
 - 8.5 mil polyethylene = oxygen barrier
 - 6 mil polyethylene: 5 points greater loss
 - 4 mil polyethylene: 10 points greater loss
- Fermentation quality
 - Oxygen barrier better than 8.5 mil poly

Fermentation Products at the Top of Two Bunkers
- 8.5 mil White vs. Oxygen Barrier Film

<table>
<thead>
<tr>
<th>Depth, in.</th>
<th>pH</th>
<th>Lactic Acid</th>
<th>Acetic Acid</th>
<th>L:A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haylage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>6.6</td>
<td>4.93</td>
<td>2.5</td>
<td>4.6</td>
</tr>
<tr>
<td>Silostop</td>
<td>6.6</td>
<td>4.82</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>White</td>
<td>6.12</td>
<td>4.79</td>
<td>3.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Silostop</td>
<td>6.12</td>
<td>3.87</td>
<td>3.8</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Consistently better fermentation quality under Silostop even though no difference in DM loss.

Is Clinginess a Valuable Trait for Covering Bunkers, Piles?

- I haven’t seen good comparisons yet.
- Adding a cling film to a standard polyethylene sheet should reduce losses.

Equal Prevention of Spoilage?

- Left: two layers of white plastic and still pitching about 6 in. of spoiled silage
- Right: one layer of white plastic; no visible mold
- Moral: securing the plastic well is equally as important as choosing a good film.

How Many Tires Are Enough?

- Enough to keep the plastic from billowing in the wind.

Alternative to Tires

- Woven or mesh tarps anchored with gravel bags
 - At wall
 - At seams in plastic, tarps
Bunker, Pile Covering Problem
- Sides too steep to hold tires in place
- >3:1 (length:height) slope for safe packing and holding tires in place

Bunker Covering Problem
- Shoulder spoilage
- For a 100 ft. long, 10 ft. bunker wall: 10 tons dry matter within 12 in. of both walls

Estimated % DM Losses near the Wall - 2 Alfalfa Bunkers

<table>
<thead>
<tr>
<th></th>
<th>Top 6 in.</th>
<th>6 to 24 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>19</td>
<td>3.3</td>
</tr>
<tr>
<td>Silostop</td>
<td>0.7</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Reduced spoilage near the wall in top 6 in. with Silostop system using side-wall film vs. 8.5 mil white film applied only on the top.

Reduced Shoulder Spoilage Using Side-Wall Film
- Side-wall plastic
- Top sheet

The Plastic’s Secure. Can’t I Relax?
- A major contributor to losses are holes in plastic
- Scout routinely
- Patch with tape made for the plastic

FEED OUT
Goal in Unloading Silos
- Minimize oxygen exposure
- In a well-packed bunker or pile, oxygen moves back approx. 3 feet from face.
- So at 6 in./day removed from the face, silage is exposed to oxygen for 6 days before the cows get the silage.

Feed Out Face
- Smooth
- No loose piles at the bottom to heat overnight

Value of a Smooth Face
- Assume:
 - 1% reduction in DM loss (i.e., already good feed out rates)
 - 25 lbs. silage DM/cow/day
 - $200/ton DM
- Savings: ~$9.00/cow/year

Losses at Feed Out

Defacer vs. Bucket: Smooth vs. Rough Face

Silage Additives
Primary Roles of Additives
- Improve silage fermentation
- Enhance aerobic stability
- Avoid a clostridial fermentation

Homolactic Acid Bacteria
- Shift fermentation to lactic acid
- Lower pH
- Helps avoid clostridial fermentation
- Reduces DM losses
- Some strains have improved milk production more than others but not exactly sure why.

Homolactic Silage Inoculants – ROI
- Improved DM recovery, 2-3% on average
- Treat 1000 tons as fed: $1000
- Save 25 tons as fed
- If each ton saved is worth $60 or more, ROI = 1.5
- Improved animal performance 3-5% when effective
 - Assume 3 lbs. milk/cow/day when effective
 - If effective 50% of the time, 1.5 lbs. milk/cow/day
 - With milk at $16 per 100 lbs., $0.24 extra income/cow/day
 - If cow is eating 60 lbs. silage as fed/day, then inoculant cost is $0.03/cow/day.

Lactobacillus buchneri
- Heterolactic acid bacteria
- Ferments lactic acid to acetic acid
- Improves aerobic stability
- Alternative to the long-standing chemical approaches: propionic acid, acetic acid, potassium sorbate, sodium benzoate

L. buchneri Inoculants – ROI
- Improved DM recovery, 1-2% on average
- Treat 1000 tons as fed: $1500
- Save 15 tons as fed
- If each ton saved is worth $60, DM recovery alone won’t pay for using the product: $900 benefit at a cost of $1500.
- Improved animal performance
 - If silage would be cool normally, no animal benefit to using
 - If silage would be heating normally, assume a 4 lbs. DM reduction in TMR intake and a 3 lbs. loss milk/cow/day
 - Avoidance of heating gives $0.48 more milk income/cow/day with $16 milk at a cost of ~$0.045/cow/day, for a cow eating 60 lbs. as fed silage.

Combination Inoculants
- L. buchneri or L. brevis plus homolactic acid bacteria
- Improve silage fermentation and aerobic stability
- However, not for avoiding a clostridial fermentation
Combination Silage Inoculants - ROI

- Most expensive inoculants, ~ twice that of standard homolactic inoculants
- So DM recovery won’t be enough to cover the cost of these products
- A positive ROI depends on getting more milk.

Which Additive Should You Use, If Any?

Which Additive Should You Use?

Choice of additive depends on:
- Crop to be ensiled
- Goals

Goals An Additive May Address

- Aerobic stability problems
- Making a good silage better
- Avoiding a clostridial (butyric acid) silage

Aerobic Stability Problems

- Is the problem a management problem that can be solved without an additive? – density, feed out rate, sealing
- Corn Silage:
 - *L. buchneri* is a good alternative to propionic acid or other chemicals
 - Safer to handle
 - Competitive cost
 - Similar effects on DM recovery, animal performance
 - If you have multiple silos, use only on the silage to be fed in warm weather

Aerobic Stability Problems

- High Moisture Corn:
 - *L. buchneri* is a good alternative to propionic acid
 - However, if HMC is <25% moisture, inoculants less likely to succeed; propionic acid would be a better choice
Aerobic Stability Problems

Alfalfa:
- Below 45% DM, stability problems are almost always related to management issues
- Above 45% DM, you have a number of options:
 - Feed out in winter
 - Homolactic inoculants for sporadic warm weather issues should make small improvements in stability
 - *L. buchneri* or combination products for more consistent warm weather issues

Issues with *L. buchneri*
- However, slow grower that takes 45-60 days storage time before having much effect
- So, not an answer to heating problems with immature silage; propionic acid is the best solution for this case
- Not a solution at feeding time

Make a Good Silage Better

Homolactic inoculants are the best route to improve DM recovery, animal performance
- Good fit for hay crop silages, HMC
- Best success under:
 - Good harvesting conditions
 - Very good silo management

Make a Good Silage Better

Corn Silage:
- Homolactic inoculants can reduce aerobic stability
- Inconsistent success rate
- Best fit: silage to be fed in cool weather

HMC:
- Much higher success rate than corn silage
- Best fit: HMC to be fed in cool weather

Avoid a Clostridial Fermentation

Typical situations where a clostridial fermentation is possible:
- Rain-damaged hay crop
- Ensiling hay crop on the wet side to avoid rain damage

Steps to Avoid Clostridial Silage

1. Use a homolactic bacterial inoculant to get pH as low as possible
2. Ensile separately in a pile or bag
3. Feed out early. Start 2-4 weeks after ensiling before clostridia become established.
Issues with Any Additive

- Application rates below the recommended level compromise the effectiveness of the product.

Issues with Any Inoculant

- These products work only if the bacteria go on the crop alive!
 - Store them properly: generally cool and dry
 - Don’t use chlorinated water to dilute unless the chlorine level is less than 1 ppm
 - Watch out for high temperatures (> 100°F) in inoculant tank on chopper

- These bacteria cannot move around; they depend on you to spread them uniformly

Summary of Keys to Improve Silage Quality

- Packing
 - Minimum bulk density of 44 lbs./ft.³

- Sealing
 - High quality film held tightly to crop, patched regularly.

- Feeding
 - Design silos/piles for feed out rates of 12 in./day
 - Defacer improves DM recovery by 1 or more percentage points by making a smooth face.

Summary of Keys to Improve Silage Quality

- Steps to avoid heating silage
 - Review silage management first and correct.
 - Use chemical additive or L. buchneri inoculant.

- Making a good silage better
 - Use a homolactic inoculant except for corn silage, HMC to be fed in summer.

- Steps to avoid clostridial silage if ensiling too wet
 - Ensile separately using a homolactic inoculant.
 - Begin feed out within a month of ensiling.

Questions?