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ABSTRACT 
This dissertation examined the differences in group mean scores of traditional and pilot groups 

on  the  students’  motivational  beliefs  and  their  intention  to  pursue  majors  and  careers  in  

engineering. The difference between the two groups was in terms of instruction techniques used. 

The instructional techniques used for the traditional group was that of traditional engineering 

design (TED), while the technique used for the pilot group had more features of an active 

learning approach. Further, it tested the tenability of the domain identification model. The 

domain  identification  model  was  used  to  understand  students’  decision-making processes in 

committing to engineering majors and engineering careers. The data for this study was collected 

via online survey from first-year engineering students enrolled in an introductory engineering 

course at a research-intensive university located in southeastern US. The sample sizes of the 

traditional group and pilot group at the beginning of the semester were 875 and 188, 

respectively. The sample sizes of the traditional group and pilot group at the end of the semester 

were 812 and 242, respectively. The mean differences between the two groups were computed 

using t-tests via SPSS version 22.0. The causality hypothesized among variables in the domain 

identification model were tested using structural equation modeling (SEM) techniques. The 

measurement and structural models were estimated using LISREL version 9.1. This study 

followed the two-step SEM approach that Anderson and Gerbing (1988) suggested. A 

measurement model with an acceptable fit to the data was obtained followed by an estimation 
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and evaluation of structural models. All the independent sample t-tests were not statistically 

significant indicating that the mean scores of students in the two groups did not differ 

significantly on any of the motivational and intention variables. The hypothesized measurement 

and structural models provided a good fit to the data. A few post-hoc revisions were made to the 

models. This study brought empirical evidence that the domain identification model can be used 

to  understand  students’  major-and career-decision making processes. Engineering identification 

was a better predictor of major intention and career intention compared to engineering program 

utility, engineering program belonging, and engineering program expectancy.   
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Chapter 1: Introduction 

Background 
 The US needs a sufficient number of graduates and professionals in the Science, 

Technology, Engineering, and Mathematics (STEM) fields for it to succeed in the 21st century, 

to maintain a leading position in the global marketplace, and to solve pressing issues related to, 

energy, the environment, and national security (Rollins, 2011). However, the US struggled with 

shortages of STEM professionals over the last six decades. Serious attention to science and math 

education by policy makers in the US began with the 1959 launch of the Sputnik satellite by the 

former Soviet Union (Drew 2011; Miller & Kimmel, 2012). Some of the major initiatives to 

improve education in the scientific fields as a result of serious attention science and math 

education received led to the creation of the National Defense Education Act (NDEA) and the 

National Science Foundation (NSF). These organizations channel federal money to colleges and 

universities to support various research initiatives, including increasing enrollment of students in 

STEM majors and reducing attrition rates from these majors.    

 Extensive research in the area of STEM fields, specifically those factors that contribute to 

students continuing in or switching out of STEM majors, has been conducted over the last six 

decades (Steinberg, 1949; Lucena, 2005). This research has resulted in a large body of 

knowledge, which can be broadly classified as focused on cognitive and non-cognitive factors. 

The literature in this area demonstrates that there are numerous cognitive and non-cognitive 

variables  that  influence  students’  decisions  to  commit  to  engineering  majors  and  engineering  

careers.  

  Some  of  the  cognitive  factors  investigated  to  understand  and  to  predict  students’ 
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intentions  to  pursue  engineering  majors  were  students’  GPA  (Tyson,  2011;;  Zhang,  Anderson,  

Ohland, Carter, & Thorndyke, 2004), math ability (Grandy, 1998; Kokkelenberg & Sinha, 2010; 

Pascarella & Terenzini, 2005), and ACT/SAT scores (Adelman, 1985; Suresh, 2006; Zhang et 

al., 2004). These cognitive factors have been found to have strong predictive relationships with 

students’  persistence  in  STEM  majors  (French,  Immekus, & Oakes, 2005; Schaefers, Epperson, 

& Nauta, 1997; Suresh, 2006; Tyson, 2011; Zhang, Anderson, Ohland, & Thorndyke, 2004). 

  Similarly, researchers have studied non-cognitive factors, specifically the impact of 

motivational theories (Eccles et al., 1983; Eccles & Wigfield, 2000; Osborne & Jones, 2011; 

Lent, Brown, & Hackett, 1994) and proactive personality (Major, Holland, & Oborn, 2012) on 

students’  academic  decisions  to  pursue  STEM  degrees.  Some  of  the  motivational  theories  that  

were used were social cognitive career theory (SCCT; Lent, Brown, & Hackett, 1994), 

expectancy-value theory (Eccles et al., 1983; Eccles & Wigfield, 2000), and the domain 

identification model (Osborne & Jones, 2011). Through these motivational theories, research has 

consistently shown  that  motivation  has  a  significant  impact  on  students’  persistence  in  STEM  

fields.  

In addition to motivational beliefs, other non-cognitive variables studied included 

classroom and academic climate, social pressures, departmental culture, and institutional 

structures in STEM programs (Geisinger & Raman, 2013; Goodchild, 2004). Many authors have 

looked at attrition issues in the late 1980s and early 1990s (e.g., Brush, 1991; Hewitt & Seymour, 

1991; Manis, Thomas, Sloat, & Davis, 1989). These researchers found that a traditional lecture 

format  in  classes  for  STEM  majors  was  detrimental  to  students’  persistence  in  the  fields  (e.g.  

Bernold, Spurlin, & Anson, 2007; Cabrera, Colbeck, & Terenzini, 1998; Seymour & Hewitt, 

1997). Similarly, other issues found to be associated with attrition were lack of opportunity for 
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questioning, poor teaching, and unresponsive faculty members (Lichtenstein, Loshbaugh, Claar, 

Bailey, & Sheppard, 2007; Seymour & Hewitt, 1997; Strenta, Elliott, Adai, Matier, & Scott, 

1994).    

As a result of the findings of the studies cited above, many innovative initiatives have 

been undertaken to overcome retention and attrition issues. For instance, in many Colleges of 

Engineering, new programs have been developed to respond to the greater need for more 

engineers and some of the efforts in this area have been through programmatic design. Numerous 

innovative programs, such as learning communities, pre-college programs, summer bridge 

sessions, supplemental courses, externally funded undergraduate research programs, and 

mentoring  have  been  initiated  to  increase  students’  interest  in  STEM  and  to  ultimately  retain  

them (Brewe, Kramer, & Sawtelle, 2012; Fortenberry, Sullivan, Jordan, & Knight, 2007; Koenig, 

2009; Maton, Hrabowski, Schmitt, 2000; Pierrakos, Beam, Constantz, Johri, & Anderson, 2009). 

These programs were designed to give students increased opportunities to learn through 

interactive activities, more interaction with faculty members, and larger engagement in 

collaborative learning. Further, several major universities established Departments of 

Engineering Education and/or Schools of Engineering Education within Colleges of Engineering 

to develop and research new ways of teaching engineering subjects. Some of the new 

developments included starting doctoral programs in Engineering Education. For instance, 

Purdue University and Virginia Tech started their doctoral programs in Engineering Education in 

2005 and 2008, respectively (Haghighi et al., 2008).  

In addition, innovative instructional pedagogies, such as active learning, were 

experimented  with  to  counter  the  issue  of  students’  poor  experiences  in  their  introductory  STEM  

courses. The problem-based learning (PBL) and peer instruction (PI) are a part of active learning 
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pedagogies. These instructional pedagogies have repeatedly been shown to have positive 

influences  on  students’  experiences  in  their  introductory  classes  (Felder,  Forrest,  Baker-Ward, 

Dietz, Mohr, 1993; Hoit & Ohland, 1998; Matusovich et al., 2012; Watkins & Mazur, 2013). 

These teaching techniques directly address most of the issues identified by Seymour and Hewitt 

(1997) and Strenta et al. (1994), such as poor teaching, unresponsive faculty members, and lack 

of opportunity for questioning. When used appropriately, they boost students’  motivation  (Jones,  

Epler, Mokri, Bryant, & Paretti, 2013; Matusovich et al., 2012), enhance their skills in areas, 

such as problem-solving, communication, and teamwork (Knight, Fulop, Marquez-Magana, & 

Tanner, 2008), and increase their chances of persisting in STEM fields (Hoit & Ohland, 1998; 

Springer, Stanne, & Donovan, 1997; Jones, Osborne, Paretti, & Matusovich, 2014; Watkins & 

Mazur, 2013). Even though these instructional pedagogies have different names, they are closely 

related (Knight et al., 2008). Many studies have found that positive experiences in a single 

course  could  influence  students’  decisions  to  stay  in  the  STEM  majors  (Hoit  &  Ohland,  1998;;  

Springer, Stanne, & Donovan, 1997; Watkins & Mazur, 2013).   

Further, to improve scholarly research and teaching in engineering education and to 

improve the learning of engineering and science, numerous centers were established at 

universities, such as the University of Washington Center for Engineering Learning and 

Teaching in 1998, the Colorado School of Mines Center for Engineering Education in 2000, and 

the NSF funded Center for the Advancement of Engineering Education in 2003 (Haghighi, 

Smith, Olds, Fortenberry, & Bond, 2008). In addition to these centers, some universities started a 

common first-year program. The purpose of such a program was to help students make 

connections among engineering, science, and mathematics (Froyd & Ohland, 2005). These 
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initiatives were often described as integrated curricula and are often taught using active learning 

strategies (Froyd & Ohland, 2005; Roedel et al., 1995).   

A large body of research has accumulated on cognitive and non-cognitive factors that 

affect  students’  decisions  to  continue  in  STEM  majors  or  switch  out  of  those  majors  and  the  

research in this area continues to grow. Researchers have a better understanding of the nature of 

problems affecting recruitment and retention efforts as a result of decades of research. They have 

found some workable and innovative solutions to the problems.  

However, the problem of recruitment and retention in STEM fields given increasing 

demand has not been fully resolved. A demand-supply gap exists and continues to enlarge 

because of problems affecting recruitment and retention of students in those fields. The 

concerted efforts at the national and institutional level have not been entirely successful in 

preventing decreased enrollment in engineering fields (Pierrakos et al. 2009) and also in 

increasing retention (Watkins & Mazur, 2013). The National Science Foundation (2010) 

published the Science and Engineering indicators and it showed that the number of students 

enrolled in science and engineering is unchanging, while jobs in those fields are on the rise. 

Additional evidence has pointed in the same direction. For instance, it was projected that it 

would be hard to replace STEM positions vacated because of retirements and also because of 

students’  reduced  interests  in  STEM  fields  (Bureau  of  Labor  Statistics,  2005;;  2010;;  Melsa,  

2007).  Students’  reduced  interest  in  STEM  fields,  which is leading to a dearth of students joining 

STEM fields, was highlighted by Chang (2009), the National Science Foundation (2007), and 

Ohland et al. (2008).  

Despite the fact that a body of research is growing, all the research findings are not 

consistent. One of the major inconsistencies was that some of those who defected from 
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engineering were performing well academically (Besterfield-Sacre, Atman, Shuman, 1997; 

Seymour & Hewitt, 1997). The results of these studies indicate that students switch out to other 

majors for reasons other than academic performance and an acceptable level of preparedness. 

What complicates the context further is that studies have found that a degree in engineering does 

not necessarily translate into an engineering career (e.g., Lichtenstein et al., 2009; Ngambeki, 

Dalrymple, & Evangelou, 2008).  

Rationale for the Study 
The continuing problems of shortages of STEM professionals and inconsistent research 

findings demonstrates a need for more research in this area. The decision-making process to 

commit to engineering majors and careers is complex, involving many cognitive and non-

cognitive factors. Lichtenstein et al. (2007) pointed out that multiple bodies of research in the 

last few decades have produced knowledge that outlined complexities  associated  with  students’  

decision-making, but definitive insight is still lacking.  

Therefore, there continues to be a need for more research to further understand factors 

that  influence  students’  decision-making processes related to joining, continuing, and/or 

switching out of STEM majors. Further, more research on the effectiveness of the innovative 

instructional pedagogies should be conducted so that the federal government can promote the use 

of effective instructional practices, such as active learning, on a wider scale. Gates Jr. and Mirkin 

(2012) recommended that the federal government encourage educational institutions to embrace 

active learning approaches in introductory STEM courses because they are empirically validated 

to be effective. 

There  are  many  theories  regarding  students’  decision  to  discontinue  their  college  

education (e.g., Tinto, 1987;), their persistence in chosen majors (e.g., Eccles, 2009; Seymour 
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Hewitt, 1997) and making their career choices (e.g., Lent, Brown, & Hackett, 1994, 2000). 

Identity  and  values  have  been  demonstrated  to  have  a  positive  influence  on  students’  goal  

intentions in numerous domains (Eccles et al., 1983; Kaplan & Flum, 2009; Ruff, 2013), such as 

engineering (e.g., Jones et al., 2010). Domain specific identification is not a part of many 

theories, such as expectancy-value theory and social cognitive career theory (SCCT), but has 

potential to contribute to the existing body of knowledge on major and career decision-making. 

Therefore, the domain identification  model  can  be  a  new  lens  to  study  factors  related  to  students’  

goal intentions and can contribute to the current literature on commitment to STEM majors and 

career theory.  

The problems of recruitment and retention are equally prevalent in the field of 

engineering as in other STEM areas, and lead to shortages of qualified engineers in the market. 

Therefore,  this  study  focuses  on  engineering  majors,  specifically  on  students’  intention  to  

continue in engineering majors and pursue engineering careers using the domain identification 

model (Osborne & Jones, 2011) as a theoretical framework. This study also investigates the 

impact  of  active  learning  as  an  instructional  technique  by  comparing  the  level  of  students’  

academic motivation, as measured with five components of the MUSIC Model of Academic 

Motivation (Jones, 2009) and other motivation-related variables.    

The  domain  identification  model  has  been  applied  to  study  students’  choices  in  many  

majors. For instance, this model has been used to investigate the impact  of  students’  motivational  

beliefs on their intention to pursue majors and careers in engineering  (e.g, Jones, Osborne, 

Paretti, & Matusovich, 2014) as well as in other careers, such as music teaching and performance 

(e.g, Jones & Parkes, 2010). This model can also be applied to study other specific academic and 
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non-academic domains, such as job performance, mathematics, and statistics (Osborne & Jones, 

2011).  

The present study extends the prior work of Hoit and Ohland (1998), Osborne and Jones 

(2011), Springer, Stanne, and Donovan (1997), and Watkins and Mazur (2013) by testing the 

model with two different groups—traditional and pilot groups—in an introductory engineering 

class. The instructional techniques used in the pilot group had more features of an active learning 

approach and, therefore, students in that group were expected to have higher motivation. The 

other important goal of this study is to contribute to understanding complex decision-making 

processes of students to persist in their engineering majors.    

Research Questions (RQs) 
The following research questions were formed for this study: 

R-Q-1. Are there mean differences between the two types of instruction on motivation-related 

beliefs, engineering identification, the three engineering-related motivational factors, and the two 

intention variables (major intention and career intention)?   

R-Q-2.  Do  students’  motivation-related beliefs in an introductory engineering course influence 

engineering identification and the three engineering-related motivational factors?   

R-Q-3. Do engineering identification and the three engineering-related motivational factors 

affect  students’  intentions  to  pursue  majors  and  careers  in  engineering? 

R-Q-4. To what extent are the relationships in research questions two and three different across 

the two different types of instruction?   

Domain Identification Model 
The Domain Identification model is used as a conceptual framework for this study. 

Domain  identification  refers  to  “the  extent  to  which  an  individual  defines the self through a role 
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or  performance  in  a  particular  domain”  (Osborne  &  Jones,  2011,  p.  132).  The  domain  

identification model has identified a number of antecedents and consequences of a domain 

specific identification. Some of the antecedents are school climate, group membership, and 

formal and informal educational experiences. The formal and informal educational experiences 

as  antecedents  were  included  in  the  model  used  in  this  study.  Specifically,  students’  motivation-

related beliefs (i.e., the five components of the MUSIC Model of Academic Motivation) in an 

introductory engineering class were used as antecedents of engineering identification and three 

engineering-related motivational factors. The three engineering-related motivational factors took 

the  place  of  “goals,  beliefs,  and  self-schemas”  in  the  original  model.  According  to  the  original  

model, other consequences of domain specific identification and motivational beliefs are 

“choices,  effort,  and  persistence.”  Major  intention  and  career  intention were used in place of 

“choices,  efforts,  and  persistence”.  In  sum,  the  partial  domain  identification  model  hypothesized  

that the five factors of the MUSIC model can predict engineering identification and three 

motivational beliefs. And these four variables  in  turn  are  hypothesized  to  predict  students’  

engineering major intention and engineering career intention. The causal relationships 

hypothesized among these variables is presented in Figure 1.1.   

 

Figure 1.1. Variables included in the present study and paths examined. Structural paths are 
present from each component of the MUSIC model to engineering identification and three 
motivational beliefs, as well as from engineering identification and three motivational beliefs to 
major and career intention.    
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Outline of the Dissertation 
This study was organized into five chapters. The first chapter begins with an introduction, 

underscores the rationale for the study, and presents the research questions and theoretical 

framework. The second chapter consists of the literature review related to all of the variables 

included in the partial domain identification model tested in this study. This chapter contains 

definitions and the intellectual history of the five components of the MUSIC Model of Academic 

Motivation. Similarly, definitions and the historical background of engineering identification, 

engineering utility, engineering program belonging, and engineering program expectancy, and 

their effects on the outcome variables of interest are also discussed. Further, the meaning and 

components  of  active  learning  and  its  usefulness  in  enhancing  students’  positive  experiences  are  

covered in the second chapter. The methodology of the study is presented in chapter three, which 

contains information about the sample and instrument. Further, it highlights the data collection 

techniques and analytical procedures. In chapter four, results of the data analyses are presented. 

This included descriptive statistics for all the variables in the study, intercorrelations among 

them, construct  reliability  of  each  scale  with  Cronbach’s  alphas,  and  fit  indices  of  the  

measurement and structural models. The final chapter covers the conclusions of the study and 

included discussions of the results, implications for practice,  limitations, and directions for 

future research.         
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Chapter 2:  Review of Literature 

Introduction 
This chapter deals with review of relevant scholarly literature that provides the 

background and theoretical framework for this study. This review process is organized into three 

major divisions. First, the history of shortages of STEM graduates and professionals in STEM 

fields are presented. This is followed by the problems identified for declining enrollments in 

STEM programs and increasing attrition rates in these fields and the attempts made to ameliorate 

the underlying problems. Second, literature related to an innovative instructional technique, 

specifically Active Learning, will be examined. In this review process, the definition of Active 

Learning, its origin, its uses in the STEM programs, and its impact on student motivation and 

creating a conducive learning environment will be described. Third, this section is related to the 

definition of domain identification and intellectual history of the domain identification model. 

Further, definitions of the components of the domain identification model and their influence on 

students’  persistence  in  STEM  fields  will  be  explored.  The  latent  variables  that  are  included  in  

this study as part of the domain identification model are the five components of the MUSIC 

Model of Academic Motivation (eMpowerment, Usefulness, Success, Interest, and Caring), 

Engineering Identification, three motivational beliefs (engineering utility, engineering program 

belonging, and engineering program expectancy), engineering major intention, and engineering 

career intention. The relationships among these latent variables in the domain identification 

model are presented in Figure 1.  

The following three research questions guided the process of this literature review.  

1. Do five elements of the MUSIC Model influence engineering identification and specific  

engineering related motivational factors?    

2. Do engineering identification and specific engineering related motivational factors affect  
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students’  intentions  to  pursue  a  major  and  career  in  engineering?   

3. Are these relationships the same in the two groups (traditional vs. treatment group)? 

4. Are there mean differences between treatment and control groups on MUSIC Model,  

domain identification, specific engineering related motivational factors and intention variables?  

Shortages of Professionals in STEM Fields 
American technological leadership came into question when the Soviet Union, during the 

height of the Cold War, successfully launched Sputnik in space in 1957 (Drew, 2011; Miller & 

Kimmel,  2012).    Sputnik  was  a  satellite  measuring  22  inches  in  diameter,  which  by  today’s  

standard is a tiny satellite. However, its psychological and political impacts on Americans were 

huge. Since then the issue of whether or not a sufficient number of individuals pursue careers in 

STEM fields has been continually discussed. Science education became a national priority with 

the voyage of Sputnik. Some of the measures undertaken in support of scientific education and 

scientific research included instituting the National Defense Education Act (NDEA) and the 

National Science Foundation (NSF). These organizations provide funding to colleges and 

universities to investigate techniques that would help improve a science and mathematics 

education in America, a trend that continues today.   

A science and mathematics education in America is significant because an adequate 

number of STEM professionals are essential for the future prosperity of the US (The National 

Academies, 2007). The quality of STEM education in the US will determine whether it can 

continue to be one of the technological leaders in the world and be capable of solving challenges 

in the areas of national security, energy, environmental protection, and health (Rollins, 2011). 

Therefore, it is important to produce a highly capable and flexible workforce in the STEM fields 

to be competitive in a globalized, high-tech information economy.  
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Historically, the US has an astonishing record of achievement. However, US students lag 

behind their foreign counterparts in STEM education, especially at the elementary and secondary 

level  (Drew  2011;;  Rollins,  2011).  Specifically,  our  students’  rankings  have  been  low  in  most  of  

the international standardized tests, such as The Trends in International Mathematics and Science 

Study (TIMSS) and the Program for International Student Assessment (PISA). TIMSS surveys 

focus on fourth and eighth grades in the areas of mathematics and science. The PISA assesses the 

ability of students to apply the science and technological knowledge they have gained. The 

purpose of this assessment is to test whether or not students have the requisite knowledge to be 

competitive  in  today’s  workplace.  The  ranking  of  the  US  students  were  at  the  bottom  among  

those nations that participated in the test in 2006 (Rollins, 2011). The two other international 

surveys  that  the  United  States’  students  participate  in  are  the  Adult  Literacy  and  Life  Skills  

Survey (ALL) and Progress in International Literacy Study (PIRLS). The former survey is 

intended for those between 16 and 65 years old, while the latter is intended for fourth graders. 

Table 2.1 demonstrates the historical ranking of the U.S in mathematics and science assessments.  

In  addition  to  US  students’  participation  in  those international surveys, they participate in 

the national assessment program called the National Assessment of Educational Progress 

(NAEP).  It  is  also  called  the  Nation’s  Report  Card.  Unfortunately, less than one-third of eighth 

graders have attained proficiency in mathematics and science (Rollins, 2011).  
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Table 2.1 

Performance of American High School Students in International Mathematics and Science 

Achievement Assessment 

Year No. of Countries in Study US Rank 

Math Assessments   

1965 12 12 

1989 12 12 

1991 15 12 

2003 29 24 

Science Assessments   

1973 14 14 

1988 (biology) 13 13 

1988 (Chemistry) 13 9 

1991 (Physics) 15 13 

2003 29 19 

Source: Drew (2011). STEM the Tide: Reforming Science, Technology, Engineering, and Math 

Education in America. 

  The  US  students’  lack  of  interest  and  poor  performance  in  science  and  

mathematics fields at the elementary and secondary schools level is reflected in the proportion of 

American students interested in graduate studies in STEM fields. More than 50% of the graduate 

students enrolled in science and engineering programs in US universities are from foreign 

countries (Rollins, 2011). Due to a lack of qualified professionals in the country, US businesses 
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have been hiring non-US citizens to fill hundreds and thousands of positions of scientists and 

engineers every year for the last few decades (Drew, 2011).      

 In light of the problems plaguing STEM education, many commissions, committees, and 

task forces have been established to investigate the underlying problems and are assigned the 

responsibility of making recommendations to overcome those problems. For instance, 

presidential commissions, congressional committees, national academy task forces, disciplinary 

societies, and business groups investigated the issue and came up with several recommendations 

(The national Academies, 1993; 1999; National Academy of Engineering and the National 

Research Council, 2005; National Research Council, 1999a, 1999b, 2001; National Science 

Board, 2006).   

An eminent group of scientists and business leaders, which the National Academy of 

Sciences commissioned, produced a report entitled Rising Above the Gathering Storm: 

Energizing and Employing America for a Brighter Economic Future in late 2005 (Byko, 2007; 

Drew, 2011; Rollins, 2011).  This  report  lists  four  recommendations  (Byko,  2007):  (1)  “10,000  

Teachers  10  Million  Minds”  aimed  at  adding  10,000  qualified  K-12 math and science teachers in 

US  schools;;  (2)  “Sowing  the  Seeds”  looked  for  increased  federal  funding  for  basic  research;;  (3) 

“Best  and  Brightest”  recommended  increasing  the  numbers  of  US  citizens  earning  science,  

engineering, and math degrees and making it easier for international students to study in the 

United  States;;  and  (4)  “Incentives  for  Innovation”  addressed  economic  policies that reward 

innovation.   

The Gathering Storm report emphasized the importance of young adults entering 

scientific, engineering, and related fields as this is the precursor to the future prosperity of the 

country (The National Academies, 2005 as cited in Miller and Kimmel, 2012). It is essential to 
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maintain a competitive scientific workforce to prevent a decline in the standard of living. The 

report was important because it associated the decline in math and science education with 

national security and its consequences on future economic prosperity (Byko, 2007). US 

Representative  Sherwood  Boehlert’s,  comment  best  exemplified  this:  “This  report  took  

Washington  by  surprise.  I  can’t  remember  another  report  on  another  subject…that  so  

immediately intensified  and  gave  focus  to  a  policy  discussion.”  (as  cited  in  Byko,  2007).     

Problem Identification (Cognitive and Non-Cognitive Factors) 
Researchers investigated both cognitive and non-cognitive factors in understanding 

students’  interest  in  pursuing  majors  in the STEM fields and also in predicting their retention in 

STEM fields. Research in these areas has been conducted for more than 50 years (Steinberg, 

1949). Researchers in the last few decades have produced a body of literature. For instance, some 

of the reasons why students leave engineering degree programs and how the rate of retention can 

be increased has been associated with classroom and academic climate, grades and conceptual 

understanding, and self-efficacy and self-confidence (Geisinger & Raman, 2013).   

Cognitive Factors 
Both cognitive and non-cognitive factors were found to explain variability in engineering 

retention. In terms of cognitive factors, sufficient mathematics preparation at the high school 

level has been found to be important because it is related to attrition or retention (Grandy, 1998; 

Kokkelenberg & Sinha, 2010; Steinberg, 1949). Some researchers have also found that enrolling 

in and obtaining high grades in sciences classes (Grandy, 1998), chemistry (Levin & Wyckoff, 

1990), social sciences (Moller-Wong & Eide, 1997), calculus (Levin & Wyckoff, 1990), and 

physics (Levin & Wyckoff, 1990; Moller-Wong & Eide, 1997) are significant in explaining 

variations in retention in engineering programs. Further, some argued that the overall high school 

GPA (Tyson, 2011; Zhang, Anderson, Ohland, Carter, & Thorndyke, 2004) and high school 
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class rank (French, Immekus, & Oakes, 2005; Moller-Wong & Eide, 1997) had predictive 

relationships with retention in engineering program. Still others found ACT scores (Adelman, 

1985) and SAT scores (Suresh, 2006; Zhang et al., 2004) to be predictive of student persistence 

in engineering programs, particularly the SAT math score (French et al., 1997; Suresh, 2006; 

Zhang et al., 2004). Beyond high school preparation in mathematics and science, numerous 

studies  indicated  that  students’  performances  in  those  subjects  in  college,  such  as  physics,  

chemistry,  and  calculus  also  predict  students’  attrition  from  engineering  (Leuwerke,  Robbins,  

Sawyer, & Hovland, 2004; Levin & Wyckoff, 1990; McDade, 1988). 

Non-Cognitive Factors 
In addition to proactive personality, numerous motivational theories have been tested to 

understand  students’  motivation  to  continue  in  STEM  majors,  such  as  the  social  cognitive  career  

theory (SCCT; Lent Brown, & Hackett, 1994), the expectancy-value theory (Eccles et al., 1983; 

Eccles & Wigfield, 2000), and the domain identification model (Osborne & Jones, 2011).   

Proactive personality. According to Bateman and Crant (1993), a person with a 

prototypic proactive  personality  is,  “one  who  is  relatively  unconstraint  by  situational  forces,  and  

who  effects  environmental  change”  (p.  105).  People  with  a  proactive  personality  look  for  

opportunities, exhibit initiative, take action, and persist until they effect substantive changes in 

their area of living (Bateman & Crant, 1983). It has been demonstrated that a proactive 

personality  is  a  better  predictor  of  individuals’  motivation  to  learn  when  compared  with  the  Big  

Five personality factors (neuroticism, extraversion, openness, conscientiousness, and 

agreeableness; Major, Turner, & Fletcher, 2006). The proactive personality has been investigated 

mainly in workplace settings and it has been shown to have strong relationships with positive 

outcomes, such as higher quality exchange relationships with leaders, job satisfaction, number of 

promotions, and job performance (Chan, 2006; Li, Liang, & Crant, 2010; Seibert, Crant & 
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Kraimer, 1999). The features of proactive personality that enable individuals to succeed in the 

workplace should likewise enable individuals to be successful in challenging majors at the 

university level (Major, Holland, & Oborn, 2012). Individuals with a proactive personality see 

challenges as learning opportunities (Elliot & Harackiewicz, 1996). Therefore, they have the 

tendency to engage in building new skills. Such an attitude could be valuable in rapidly changing 

technology fields. Major et al. (2012) found that a proactive personality was strongly related to 

students’  commitment  to  STEM  majors.   

Social cognitive career theory (SCCT). The SCCT (Lent, Brown, & Hackett, 1994) has 

been  widely  used  as  a  theoretical  framework  in  studying  students’  decisions  regarding  their  

academic majors and career choices in a wide variety of fields (Betz, 2008; Lent et al. 2005; 

Lindley, 2005; Patrick, Care, & Ainley, 2011; Wang, 2013). The application of this theory to 

engineering students (Lent et al., 2003; Lent et al., 2008; Trenor, Yu, Waight, Zerda, & Ting 

Ling,  2008)  included  students’  persistence  in    engineering  fields and focused on 

underrepresented groups (Carrico & Tendhar, 2012; Lent et al., 2005; Trenor et al., 2008). The 

SCCT has a number of variables in its model and the relationships among those variables are 

specified a priori. However, the model was rarely tested with all the variables. The researchers 

test only select variables of the SCCT at a time depending on their research interests and research 

questions. For instance, Carrico and Tendhar (2012) tested relationships among self-efficacy, 

outcome expectations, interests, and goals. In their model, self-efficacy was hypothesized to 

predict outcome expectations, interests, and goals. Outcome expectations were expected to 

predict interests and goals. Interests, in turn, were hypothesized to predict goals.     

The  SCCTemerged  from  Bandura’s  Social  Cognitive  Theory  (SCT;;  Lent  et  al.,  1994).  

The SCT describes human behavior in terms of triadic reciprocal causation (Bandura, 1986).  In 
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this dynamic model of reciprocal determinism, cognitive, external environment, and behavior 

influence one another bidirectionally. The authors stated that bidirectionality does not occur 

simultaneously. Further, the sources of influences cannot be assumed to be of equal strength in 

reciprocality. Wood and Bandura (1989) further stated that the influence of causality takes time 

and so does activation of reciprocal influences. The reciprocality of influence makes people both 

products and creators of their environment. In this reciprocal causal structure, cognitive, 

vicarious, self-regulatory, and self-reflective processes are the key elements of the SCT.    

Expectancy-value theory of motivation.  Similarly, there are other motivational 

theories, such as the expectancy-value theory (Eccles et al., 1983; Wigfield & Eccles, 2000), that 

are  employed  to  study  students’  choice  of  domain  and  their  performance  in  those  domains.  

Eccles’  et  al.  (1983)  expectancy-value theory of achievement performance and choices was 

initially tested in the mathematics achievement domain. The model hypothesizes relationships 

between numerous variables. However, the partial model has been often tested using expectation 

of success, subjective task value, and achievement-related choices as variables. Ability and 

expectancy are crucial aspects of this model. The operational definitions of these variables vary 

slightly across theoretical perspectives. Therefore, measures of these constructs also vary, 

especially with regard to the specificity of beliefs being measured and the question regarding the 

exact nature of ability. In terms of the values part of the model, Eccles et al. (1983) described 

different aspects of achievement values: attainment value, intrinsic value, utility value, and cost 

(Eccles et al., 1983; Wigfield & Eccles, 1992). The attainment value was defined as the 

importance of performing well on given tasks. The authors defined intrinsic value as the 

enjoyment one derives from doing the given task. Utility value indicates how a task aligns with 



20 
 

one’s  short- and long-term goals. Cost in the value aspect of the model refers to other activities 

that one has to forego for choosing to be engaged in a certain activity.  

Domain identification model. Yet another motivational theory that was recently 

introduced and used to understand processes through which students make decision to pursue 

majors and careers in engineering was the domain identification model (Osborne & Jones, 2011). 

The definition of domain identification model, its intellectual history, and its positive association 

with other variables will be discussed later in this chapter.   

Causes of Attrition – Non-Cognitive Factors  
In addition to high school GPA, math ability, ACT and SAT scores, there are other 

factors that predict attrition, such as classroom and academic climate, self-efficacy and self-

confidence, social pressures, departmental culture, institutional structure, and interest and career 

goals (Geisinger & Raman, 2013; Goodchild, 2004). Some of the major studies that investigated 

the retention problems were carried out by Brush (1991), Hewitt and Seymour (1991), Manis, 

Thomas, Sloat, & Davis, (1989), Tobias (1990), and Widnall (1988). The major themes that 

emerged  from  these  studies  were  that  science  and  engineering  courses  were  considered  as  “too  

large, too competitive and critical, and not very  open  to  student  input”  (Strenta,  Elliot,  Adair,  

Matier, & Scott, 1994, p. 532). In an extensive review of the literature related to retention of 

engineering students published over the last five decades, Geisinger and Raman (2013) listed 

five major factors that are associated with weak retention in engineering programs: classroom 

and academic climate, grades and conceptual understanding, self-efficacy and self-confidence, 

interest and career goals, and race and gender.  

Within the broader classroom and academic  climate,  Geisinger  and  Raman’s  (2013)  

research  synthesis  identified  many  factors  that  are  detrimental  to  students’  persistence  in  STEM  

fields. For instance, a traditional lecture format in STEM courses does not appear to suit the 
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learning needs of the students in these fields (Bernold, Spurlin, & Anson, 2007; Cabrera, 

Colbeck, & Terenzini, 1998; Felder & Silverman, 1988; Seymour & Hewitt, 1997). Students find 

the course less alluring, for instance, when it is not interactive, and when it does not involve team 

projects. Many studies revealed that science and engineering students perceived a lack of 

opportunities for them to engage with other engineering students in particular and with 

engineering communities in general (Fleming, Engerman, & Williams, 2006). According to 

Manis,  Thomas,  Sloat,  and  Davis  (1989),  students’  experiences  in  their  first  year  courses  

determine whether students will stay in STEM fields or switch to non-STEM majors. Seymour 

and Hewitt (1997) found that students exit STEM majors during their first two years in college. 

The attrition in the first two years is mostly attributable to adverse experiences in their 

introductory  courses,  such  as  poor  teaching,  “coldness”  of  the  classroom,  lack  of  opportunity  for  

questioning, and unresponsive faculty members (Seymour & Hewitt, 1997; Strenta, Elliott, Adai, 

Matier, & Scott, 1994). The findings on poor teaching were consistent with Lichtenstein, 

Loshbaugh,  Claar,  Bailey,  &  Sheppards’  (2007)  study.  Lichtenstein  et  al.  found  that  poor  

teaching in preengineering courses can lead the students to think that courses in engineering 

fields would also be poorly taught. This in turn makes them reconsider their decision to continue 

in STEM majors. Interestingly, most of the courses in colleges of engineering are still taught in a 

lecture format, an instructional technique that does not help gain insight into the way people 

learn and where engagement with students is minimal (Haghighi et al., 2008).   

Common First Year Program 
One of the major responses by institutions to combat the problems of the mismatch 

between demand and supply for qualified engineers was to initiate a common first year program. 

One of the factors that affected high attrition rate was the fact that students spent the first two 
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years studying math and science before they were exposed to engineering. Therefore, one of the 

purposes of first-year engineering courses was to familiarize students with the engineering 

profession at the beginning of their engineering program so that they could see how engineering 

is different from math and science (Sorby & Hamlin, 2001). Students took common courses in 

colleges and universities where first-year programs were established. The goal was to help 

students make connections among engineering, science, and mathematics (Froyd & Ohland, 

2005). These initiatives are often described as integrated curricula and are often taught using 

active learning strategies (Froyd & Ohland, 2005; Roedel et al., 1995).  

Several universities started experimenting with an integrated curricula to enhance student 

learning. For example, Drexel University began an enhanced educational experience for 

engineering students in 1988 (Quinn, 1995), the Colorado School of Mines (CSM) initiated the 

Connections program in 1994 (Olds & Miller, 2004), Louisiana Tech University started an 

integrated freshmen engineering program in 1997 (Nelson & Napper, 1999), and Michigan 

Technological University (MTU) initiated a first year engineering program in 2000 (Hein et al., 

2003). Further, the NSF sponsored a number of Coalitions around the country, one of which was 

an Engineering Education Coalition called the Foundation Coalition. The Coalition had been 

tasked with number of activities one of which was to develop new and high quality curricula (Al-

Holou et al., 1998). Some of the member institutions of the Foundation Coalition were Arizona 

State University, Texas A&M University, and University of Alabama (Roedel et al., 1995). The 

member institutions were required to implement integrated engineering curricula at their 

universities. The learning outcomes specified by the Coalition, as an example, were (1) improved 

learning in the fundamentals, (2) improved teamwork skills, and (3) improved communication 

skills (Pendergrass et al., 2001). 
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It was believed that a one-size fits all approach would not work due to the variations in 

prevailing culture, mission, and student population at each university (Al-Holou et al., 1998). 

Therefore, Al-Holou et al. further added that, many different models of integrated curricula have 

been adopted at different colleges. Efforts of individual universities and the NSF lead to a 

proliferation of first-year engineering programs in the country. In the absence of a common 

definition for first year models, materials covered and expected outcomes vary widely (Reid & 

Reaping, 2014). They believed that first-year engineering programs are not successfully 

incorporated into an engineering curriculum even though they are prerequisites to courses in the 

second year. In order to overcome the diversity of first-year engineering courses, Reid and 

Reaping  attempted  to  establish  a  common  framework.  Their  goal  was  to  enable  “universities,  

community colleges, funding agencies, etc. to use the developed classification scheme to 

accurately determine specific course content when considering credit awarded for transfers, to 

develop introductory engineering coursework, formulate course foci, and to identify and fund 

efforts  towards  appropriate  assessment  gaps”  (p.  1).               

Innovative Instructional Techniques 
 Innovative instructional techniques such as Active Learning received serious attention 

from researchers in the last few decades because they have been shown to have a predictive 

association with retention of students. Active Learning is considered a meaningful method for 

increasing  students’  academic  performance  and  building  supportive  relationships  among  students  

and between instructors and students. This teaching technique was also found to be useful for 

promoting  students’  interests  in  STEM  majors (Al-Bahi, 2006; Johnson, Johnson, & Smith, 1998 

as cited in Schneider et al., 2008). Active Learning is defined as a technique employed in the 

classroom that uses student-student and student-facilitator interaction in numerous forms to alter 



24 
 

the learning environment from passive to active (Al-Bahi, 2006). This teaching technique was 

found suitable to meet the requirements of the Accreditation Board of Engineering and 

Technology’s  (ABET)  Engineering  Criteria  2000  (EC2000;;  Felder  &  Brent,  1992).  Some  of  the 

significant features of the Active Learning strategies are (Bonewell & Eison, 1991): (1) students 

are involved in more than passive listening, (2) students are engaged in activities (e.g., reading, 

discussing, and writing), (3) there is less emphasis placed on information transmission and 

greater emphasis placed on developing student skills, (4) there is greater emphasis placed on the 

exploration  of  attitudes  and  values,  (5)  students’  motivation  is  increased  (especially  for  adult  

learners), (6) students can receive immediate feedback from their instructors, and (7) students are 

involved in higher order thinking skills (analysis, synthesis, and evaluation).   

Such an instructional technique alleviates the problems of attrition to some extent 

because it has the potential to address numerous concerns associated with lecture format and 

other perceived detrimental features found in the learning environment in engineering programs. 

This  teaching  style  significantly  predicted  students’  success  in  the  classroom  (Cabrera et al. 

1998).  This  suggests  that  engineering  instructors  and  students’  perceptions  of  success  can  lead  to  

increased retention (Cabrera et al. 1998; Tendhar & Jones, 2014). Further, it was believed that a 

nominal change in instructional techniques could increase the chances of students completing 

their degrees in engineering (Lichtenstein et al. 2007). In terms of innovative instructional 

techniques, the active learning approaches such as problem-based learning (PBL) and peer 

instruction (PI) have been associated with an increased motivational level and a better 

understanding of conceptual knowledge in addition to providing positive experiences in 

introductory STEM courses for students (Matusovich et al., 2012; Watkins & Mazur, 2013). 

Lichtenstein et al. (2007) and Watkins and Mazur (2013) found that constructive and 
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encouraging  experiences  in  a  single  course  could  have  a  positive  impact  on  students’  decision  to  

continue with engineering.  

The influence of active learning methods, such as problem-based learning (PBL), peer 

instruction (PI; Watkins & Mazur, 2013), and the Karplus learning cycle (Hake, 1992; Karplus, 

1964)  on students for getting and keeping them interested in STEM fields have been 

investigated, and those studies produced positive results. These are student-centered instructional 

techniques wherein their participation in class discussions and interactive and group projects are 

normally key features. These instructional techniques differ from a traditional instructional 

technique wherein lectures, exams, and individual assignments are used more often. These 

different instructional techniques go by different names, but they are closely related (Knight, 

Fulop, Marquez-Magana, & Tanner, 2008). The definitions of PBL and PI, their distinctive 

features, and consequences are discussed below.   

Problem-Based Learning (PBL) 
The PBL as an instructional method was first used in medical schools. However, this 

method was later used in a variety of educational settings, such as secondary and post-secondary 

education (Barrows, 2000; Hmelo-Silver, 2000). Using this instructional technique (Hmelo-

Silver, & Barrows, 2006; Hmelo-Silver, 2004), instructors assume the role of a facilitator of 

knowledge, rather than a supplier of knowledge. This instructional technique requires that 

students work in groups on complex and ill-structured problems. Such problems rarely have one 

correct answer. Students normally do not possess the requisite knowledge and skills to solve the 

problems assigned to them. However, by engaging in self-directed learning and receiving 

appropriate guidance from the instructors, students gather the necessary information and 

knowledge  to  solve  the  problems.  Students’  reflection  on  the  process  they  used  to  find  solutions  

is also an important aspect of the learning process in this kind of instructional technique.  
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Peer Instruction (PI)  
PI is an instructional technique that engages students through activities during the class 

and addresses challenging parts of the course material (Crouch & Mazur, 2001; Crouch, 

Watkins, Fagen, & Mazur, 2007; Mazur, 1997; Watkins & Mazur, 2013). Using PI, instructors 

design several short presentations with each focusing on a single concept. Each presentation is 

then followed by a conceptual question called a Concept Test. The idea behind a concept test is 

to gauge students understanding of the materials presented and also to provide them with 

opportunities to think about difficult concepts. After each presentation, students are generally 

given one or two minutes to develop their answers. After they are done thinking, students report 

their answers to instructors through clickers, flashcards, a simple raising of hands, or writing 

down the answers on a piece of paper. This is followed by students discussing answers among 

themselves. Such a discussion generally lasts two to four minutes. Depending on how many 

students had a good grasp of the materials presented, the instructor would make a decision 

whether to revisit the concept or not. An instructional technique like this promotes student 

interaction  leading  to  reduced  “coldness”  and  increased  “openness”  in  introductory  STEM  

courses.  Students  would  find  class  less  “dull”  when  they  are  engaged  in  learning  throughout  their  

class time. Such an instructional technique helps students gain positive experiences (Lichtenstein 

et.  al.,  2007).  Further,  this  teaching  style  boosts  students’  scores  on  concept  tests  (Crouch  &  

Mazur, 2001; Hake, 1998) and enhances the rate of retention (Watkins & Mazur, 2013).   

Domain Identification Model 
Domain Identification 

Domain identification has a long history. More than a century ago, William James 

(1892/1968)  discussed  the  ideas  of  “self”  and  identity.  According  to  James,  individuals  can  have  

an unlimited number of possible selves. However, one pursues a manageable set of selves that 
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influence their overall self-perceptions and self-feelings, specifically those that have a higher 

probability of producing positive results for the self. Energy is then directed towards improving 

those selves. Similarly, one of the assumptions in the self-esteem literature is that individuals 

identify themselves with numerous domains at various levels. It is not, however, healthy to 

commit oneself to several domains at the same time because it is not feasible to excel in all the 

domains simultaneously, and this can lead to a decreased level of motivation to perform 

(Osborne & Jones, 2011). On the other hand, it may not be healthy for an individual to be 

identified with just one domain. The over-reliance on one domain could bring significant 

instability  in  one’s  self-esteem, especially if obtaining desirable outcomes in that one domain is 

difficult. In the absence of other valuable alternative domains, it is difficult to switch to other 

domains when the conditions in the domain that one was originally pursuing change. There does 

not appear to be any research on this subject yet, but Osborne and Jones opined that being 

strongly identified with 5-10 domains is perhaps reasonable for healthy functioning.  

The notion of domain identification and its relationship with the concept of the self has 

been  seriously  debated  since  William  James’  time  by  psychologists.  The  domain  identification  is  

also referred to as domain relevance, psychological centrality, and selective valuing in the 

literature.  Domain  identification  refers  to  “the  extent  to  which  an  individual  defines  the  self  

through  a  role  or  performance  in  a  particular  domain”  (Osborne  &  Jones,  2011,  p.  13).  Domain  

identification was found to have associations with many positive outcomes, such as deep 

cognitive processing of course material and self-regulation (Osborne & Rausch, 2001; Walker, 

Greene, & Mansell, 2006), grade point average and academic honors (Osborne, 1997), classroom 

participation and achievement (Voelkl, 1997), decreased behavioral referrals and absenteeism 
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(Osborne & Rausch, 2001), and intention to pursue majors and careers in engineering (Jones et 

al., 2010).  

In addition to investigating the positive impacts of domain identification, several studies 

were conducted examining a wide array of factors to investigate how domain specific 

(engineering) professional identities were developed (e.g., Beam, Pierrakos, Constantz, Johri, & 

Anderson, 2009). Eliot and Turns (2011) for example found that certain learning activities shape 

engineering professional identities. However, the value component was missing from both of 

these studies, i.e., the values students assign to building professional identities and the value of 

“fitting”  within  engineering.  Aside  from  research  on  how domain specific identities were 

impactful, there does not appear to be any research on how domain identification is developed 

and the ways in which it influences other variables.  

The model explains the mechanism through which social and academic factors influence 

students’  domain  identification  and  motivational  beliefs  and  how  these  variables  in  turn  impact  

behavioral and academic outcomes. In other words, this model lists precursors and consequences 

of academic identification. This model, however, can be applied to other domains as well, such 

as parenting (e.g. Pasley et al., 2002) and job performance (e.g., Kanungo, 1979). Osborne and 

Jones’  domain  identification  model  is  presented  in  Figure  2.1.  
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MUSIC Model of Academic Motivation 
 The MUSIC Model of Academic Motivation contains five motivation components: (1) 

eMpowerment; (2) Usefulness; (3) Success; (4) Interest; and (5) Caring. These components are 

well established motivational theories. Therefore, the MUSIC Model is not a new theory in itself. 

However,  Jones’  (2009)  unique  contribution  in  introducing  the  MUSIC  Model  of  Academic  

Motivation was having all those five components in one cohesive model. The author calls this 

model an academic motivation model because the focus of application was in academic settings. 

However, this model can be applied to a variety of behaviors, including those in athletics and 

work settings, because of the research and theoretical foundation on which the MUSIC Model 

was built. This will become clearer later when definitions of each component, its related 

constructs, and its consequences are described.  

 The purpose of developing a model of academic motivation was to assist instructors in 

designing  their  courses.  Designing  courses  in  a  way  that  boosts  students’  academic  motivation is 

critical  for  students’  learning  outcomes.  Motivation  is  a  process  that  can  be  inferred  from  
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activities and expressions, whereby one is engaged in a sustained physical or mental activity to 

achieve the goals (Schunk, Pintrich, & Meece, 2008). The five components were included in the 

MUSIC Model based on the current motivation research and theories because each MUSIC 

element  explains  distinct  features  of  students’  motivation  (Jones,  2009).  An  exact  figure  cannot  

be put on the number of components to be  activated  for  students’  motivation  and  there  is  no  

evidence to suggest that all the five components are essential at the same time. On the other 

hand, research indicates that students become more engaged in their learning environment when 

at least one or more of the MUSIC components are fostered (Jones, 2009). The five components 

of the MUSIC Model of Academic Motivation are discussed below.    

eMpowerment. Empowerment  refers  to  students’  perceptions  of  the  degree  to  which  

they have control over their learning. Research in this area has been undertaken by those who 

study self-determination theory (Deci & Ryan, 1985, 1991; Ryan & Deci, 2000). A key tenet of 

this theory states that people enjoy activities when they perceive that they have some control 

over them. Those who are highly self-determined (autonomous) will have more choices in 

managing their activities or goals, while those on the other end of the continuum would have 

fewer or no choices. Therefore, individuals who are fully self-determined are said to have an 

internal locus of control, while those whose perception of self-determination is low are said to 

have an external locus of control. Students who felt empowered and were given some autonomy 

reaped several benefits, such as enhanced conceptual learning, a higher sense of self-worth and 

self-esteem, a more positive emotional tone, greater perceived academic and social competence, 

a preference for challenging tasks, greater creativity, increased school attendance, and higher 

grades (Amabile, 1985; Boggiano, Main, & Katz, 1988; Csikszentmihalyi, 1985; deCharms, 
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1976; Deci, Schwartz, Sheinman, & Ryan, 1981; Filak & Sheldon, 2008; Flink, Boggiano, & 

Barrett, 1990; Grolnick & Ryan, 1986; Shapira, 1976, Vallerand & Bissonnette, 1992).    

Usefulness. The usefulness refers to the extent to which students perceive the coursework 

to be helpful for reaching their short- or long-term goals. Research in the area of usefulness has 

been of interest to future time perspective theorists in their study of the instrumentality construct 

(De Volder & Lens, 1982; Kauffman & Husman, 2004; Lens, 1987; Tabachnick, Miller, & 

Relyea, 2008). Eccles and her colleagues have also investigated this construct in connection with 

their work on the expectancy-value model of motivation (Eccles et al., 1983; Eccles & Wigfield, 

1995; Wigfield & Eccles, 2000). It was found that students who perceived their school work to 

be less relevant to their future goals were less motivated than those who did see the association 

between the two. That resulted in positive outlook on their future for those students (Simons, 

Vansteenkiste, Lens, & Lacante, M et al., 2004; Van Calster, Lens, & Nuttin, 1987). In first-year 

college students, those who perceived a course to be highly useful were found to be internally 

regulated, and they attained more positive learning outcomes (as cited in Simons et al., 2004).  

Success. Success is defined as the extent to which students believe that they can attain 

success  if  they  invest  necessary  effort.  Individuals’  self-perception of ability is a key part of 

many motivation theories, such as the theories of self-concept (Marsh, 1990; Marsh & Yeung, 

1997; Schavelson & Bolus, 1982), self-efficacy (Bandura, 1986), self-worth (Covington, 1992), 

goal orientation (Ames, 1992), and expectancy-value (Wigfield & Eccles, 2000). Instructors can 

design  courses  in  ways  that  promote  the  development  of  students’  success  belief  in  a  number  of  

ways. Some of the things that instructors can do in this regard, according to Jones (2009), are 

communicating course expectations clearly and explicitly to students, challenging students at a 

level suitable to them, and giving them feedback regularly. Meeting with both success and failure 
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are important so that the feedback can be used to assess and adjust their sense of competence. 

The perception of success fostered in students can lead them to expend more energy in an 

activity, persist with that activity longer despite challenges, be strong in the face of tough 

situations, find the activity enjoyable, set challenging goals and be committed to them, approach 

difficult tasks without much anxiety, and achieve more than others (see Schunk & Pajares, 

2005).           

Interest. Interest has a few different definitions in the literature (Krapp, Hidi, & 

Renninger, 1992). However, one general definition is provided by Schraw and Lehman (2001): 

“liking  and  willful  engagement  in  a  cognitive  activity”  (p.  23).  Often,  interest  is  distinguished  

between situational interest and individual interest. Situational interest refers to immediate, 

short-term enjoyment induced by instructional activities. Therefore, such an interest is not of 

long-term value, because they are environmentally activated and specific to context (Jones, 

2009). Individual interest, on the other hand, refers to personal enduring values activated 

internally on a specific topic (Schraw & Lehman, 2001; Hidi & Renninger, 2006). It is feasible 

to develop situational interest in students through instruction and coursework by incorporating 

novelty, games, social interactions, surprising information, humor, and/or emotional content 

(Bergin,  1999).  Jones  (2009)  believes  that  instructors  can  influence  students’  interest.  Hidi  and  

Renninger  (2006)  put  this  aptly  when  they  wrote,  “The  potential  for  interest  is  in  the person but 

the content and the environment define the direction of interest and contribute to its 

development”  (p.  112).  Interest  was  found  to  have  positive  associations  with  outcomes,  such  as  

attention, memory, comprehension, deeper cognitive engagement, thinking, goal setting, learning 

strategies, and achievement (Hidi & Renninger, 2006; Schunk, Meece, & Pintrich, 2014).      
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 Caring. Caring consists of two components: (a) academic caring, and (b) personal caring. 

Academic caring refers to the extent to which students perceive that their instructors and/or 

colleagues care about their success in academia. Personal caring, on the other hand, refers to the 

extent to which students perceive that their instructors and friends care about their welfare 

(Johnson, Johnson, & Anderson, 1983; Jones et al., 2012). The concept of caring is similar to 

other constructs, such as belongingness, relatedness, connectedness, affiliation, involvement, 

attachment, commitment, bonding, and sense of community (e.g., Baumeister & Leary, 1995; 

Noddings, 1992; Ryan & Deci, 2000). Many researches show that all humans have a need to get 

into caring relationships with others and sustain them (Baumeister & Leary, 1995; Ryan & Deci, 

2000). Caring relationships have several positive outcomes, which include intrinsic motivation, 

positive coping, relative autonomy, engagement in school, expectancies, values, effort, cognitive 

engagement, self-efficacy, persistence, and performance (Freeman, Anderman, & Jenson, 2007; 

Furrer & Skinner, 2003; Goodenow, 1993; Hyde & Gess-Newsome, 1999/2000; Levett-Jones, 

Lathlean, Higgins, & McMillan, 2009; Murdock, 1999; Osterman, 2000; Seymour & Hewitt, 

1997; Ryan, Stiller, & Lynch, 1994; Walker & Greene, 2009). Instructors can demonstrate 

academic caring by showing that it is important for them to see that students meet all the course 

objectives. Personal caring can be supported by instructors making reasonable accommodations 

for students when they are faced with difficult situations in their lives and by demonstrating 

interest  in  students’  lives  (Jones,  2009).   

Engineering-Related Motivational Beliefs 
The three motivational beliefs that were tested in this study as a part of the domain 

identification model are engineering utility, engineering program belonging, and engineering 

program expectancy. These constructs were included in the domain identification model because 



34 
 

they have been shown to have positive associations with engineering persistence (Marra, Bogue, 

Shen, & Rodgers, 2007; Marra, Shen, Rodgers, & Bogue,  2009;;  Stevens,  O’Conner,  Garrison,  

Jocuns, & Amos, 2008). However, the influence of these variables on students engineering 

persistence were inconsistent when tested in a single model (Jones et al., 2012; Tendhar & Jones, 

2014). The definitions of these constructs, their historical backgrounds, and related constructs are 

presented below. 

Engineering Program Utility 
Utility value was derived from the Eccles and Wigfield (1995) value component of the 

expectancy-value theory. Their values could be divided into three groups: intrinsic interest value, 

attainment value, and extrinsic utility value. Of these, the utility value was investigated as a part 

of the wider domain identification model along with two other motivational beliefs. Wigfield and 

Eccles (2000)  define  the  general  utility  value  as  “utility  value  or  usefulness  refers  to  how  a  task  

fits  into  individual’s  future  plan  (p.  72).  However,  engineering  utility  in  particular  refers  to  “the  

usefulness  of  engineering  in  terms  of  reaching  one’s  short- and long-term  goals”  (Jones  et  al.,  

2010, p. 320). Utility values have been shown to predict occupational and future course choices 

(Eccles, 2005; Meece, Wigfield, & Eccles, 1990; Wigfield, Tonks, & Eccles, 2004). Specifically, 

engineering utility predicted students’  intention  to  pursue  engineering  careers  for  first  year  

engineering students (Jones, et al., 2010).  

Engineering Program Belonging 
Belonging refers to the degree to which an individual has a psychological connection to a 

group (Brown, Alpert, Lent, Hunt, & Brady, 1988; Mallinctrodt & Wei, 2005). Goodenow 

(1993)  defined  it  as  “the  extent  to  which  students  feel  personally  accepted,  respected,  included,  

and  supported  by  others  in  the  school  social  environment”  (p.  80).  Specifically,  engineering  

program belonging  refers  to  “the  degree  to  which  students  perceive  that  they  feel  accepted,  



35 
 

respected, included, and supported by the engineering students and faculty in the engineering 

program  at  the  university”  (Jones  et  al.,  2012,  p.  8).  Finn  (1989)  underlined  the significance of 

school belongingness. Belongingness is similar to other concepts, such as relatedness, affiliation, 

involvement, attachment, commitment, and bonding. However, belongingness is theoretically 

distinct from identification in that the social connection to a group is highlighted in 

belongingness, while identification highlights the value of the domain to sense of self (Jones, et 

al., 2012). With a sense of belongingness to a class, students feel openness and encouragement 

from their faculty members (Freeman, Anderman, & Jensen, 2007). Further, a sense of 

belongingness  in  engineering  contributes  to  students’  positive  learning  experiences  (Trenor,  Yu,  

Waight, Zedra, & Sha, 2008) and predicts their performance on standardized tests (Fast et al. 

2010). Conversely, a lack of sense of belonging in engineering and social and academic fit have 

been  associated  with  students’  intentions  to  switch  to  other  majors  (Marra,  Rodgers,  Shen,  &  

Bogue, 2012; Wao, Lee, & Borman, 2010). Researchers have shown that students’  sense  of  

belongingness can be nurtured by teachers (Furrer & Skinner, 2003; Ryan & Patrick, 2001) as 

well as their classmates (Juvonen, 2006). Teachers can promote belongingness through building 

caring relationship with their students. Four teacher characteristics have been listed that were 

said to promote high-quality student-teacher relationships: attunement; relatedness; 

supportiveness; and gentle discipline (see Reeve, 2006 for details). In addition to student-teacher 

relationships, classmates can promote belongingness by socially accepting students with high 

academic  achievement,  especially  if  that  achievement  has  value  to  students’  peer  groups  

(Wentzel, 2005).       
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Engineering Program Expectancy 
Expectancy is a part of the expectancy-value theory (Eccles et al. 1983; Eccles, Adler, & 

Meece, 1984; Eccles & Wigfield, 1995; Wigfield, 1994; Wigfield & Eccles, 1992). This theory 

hypothesizes  that  expectancies  for  success  and  value  affect  students’  performance.  This  theory  

was built on the expectancy and value constructs originally developed by Tolman (1932), Lewin, 

(1938), and Atkinson (1957, 1966). Within the engineering program expectancy construct, the 

expectancy part of the theory is of relevance. The expectancy belief is related to self-efficacy 

theory (Bandura, 1986). Expectancy for success has been defined as the expectation one has over 

one’s  performance  on  upcoming  tasks  in  domains,  such  as  mathematics  or  engineering  (Wigfield  

& Eccles, 2000). Specifically, engineering program expectancy has  been  defined  as  “one’s  belief  

in  the  possibility  of  his  or  her  success  in  engineering”  (Jones  et  al.,  2010,  p.  320).  The  empirical  

testing  of  the  theory  shows  that  it  predicted  students’  performance  on  tasks  (Eccles,  1984a;;  

1984b; Meece et al., 1990) and also predicted subsequent grades for junior high school students 

(Meece  et  al.,  1990).  Further,  the  expectancy  beliefs  have  also  been  shown  to  affect  students’  

grades, persistence, and career intention (Lent, Brown, & Larkin, 1986; Wright, Jenkins-

Guarnieri, Murdock, 2013).  

Summary 
This review of literature covered the history of discussions revolving around the 

shortages of STEM professionals and attempts made to overcome this problem. It also went over 

the intellectual history of the domain identification model, theoretical framework of this study, 

and the latent variables used as a part of this model. Many factors, both cognitive and non-

cognitive,  have  been  found  to  have  an  impact  on  students’  to  decisions  persist  in  STEM  majors  

and their career intentions. Some of the cognitive variables that had predictive relationships with 

persistence  and  career  intention  were  students’  GPA,  math  ability,  and  ACT/SAT  scores.  In  the  
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case of non-cognitive variables, numerous motivational theories have been used to understand 

students’  decision  making  process  and  have  been  found  to  have  a  positive  influence  on  the  

outcome variables. Further, the role of proactive personality has recently been investigated in 

connection  with  students’  major  persistence.  Change  in  first-year engineering curriculum and 

teaching pedagogy lead to positive results on many fronts. However, the problem of workforce 

shortages in the STEM fields continues, including in engineering. The domain identification 

model, therefore, adds to the current literature on major persistence and career theory, and it 

gives a new lens through which to study old problems.   
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Chapter 3: Method 

Introduction 
 There are three major purposes in this study. The first is to evaluate mean scores of 

students in two sections of an introductory engineering course—a traditional version and a pilot 

version—by  comparing  students’  motivation-related beliefs (i.e., the five components of the 

MUSIC Model of Academic Motivation), engineering identification, the three engineering-

related motivational factors (engineering utility, engineering program belonging, and engineering 

program expectancy) and the two intention variables (major intention and career intention). The 

students were assessed on engineering identification, three engineering-related motivational 

factors, and the two intention variables, both at the beginning and the end of the semester, while 

they were assessed on the five components of the MUSIC Model only at the end of the semester.   

The second purpose was to examine the tenability of the domain identification model, 

specifically causality hypothesized among the variables as presented in Figure 1. The third 

purpose was to compare individual structural paths in the domain identification model between 

the two groups of students. The domain identification model tested in this study was a causal 

model that consisted of 11 latent variables; five of them were exogenous variables and six were 

endogenous variables. The five components of the MUSIC Model form the five exogenous 

variables of the causal model. They are eMpowerment, Usefulness, Success, Interest, and Caring. 

These five components were hypothesized to predict the four mediating endogenous variables, 

which were engineering identification, and three engineering-related motivational factors. Those 

four mediating endogenous variables in turn were hypothesized to predict the final two 

endogenous  variables,  namely  students’  intention  to  pursue  majors  and  careers  in  engineering.  

This study, therefore, addressed the following four research questions. 
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Research Questions (RQs) 
R-Q-1. Are there mean differences between the two approaches to instruction on motivation-

related beliefs, engineering identification, three engineering-related motivational factors, and the 

two intention variables (major intention and career intention)?   

R-Q-2.  Do  students’  motivation-related beliefs in an introductory engineering course influence 

engineering identification and three engineering-related motivational factors?   

R-Q-3. Do engineering identification and three engineering-related motivational factors affect 

students’  intentions  to  pursue  majors  and  careers  in  engineering? 

R-Q-4. To what extent are the relationships in research questions two and three different across 

the two groups of different types of instruction?   

 This chapter contains information about samples and instruments. Further, the data 

collection technique is explained in this chapter. The procedures followed in analyzing the data 

are also included in this chapter, including conducting t-tests, Exploratory Factor Analysis 

(EFA), Confirmatory Factor Analysis (CFA), and Structural Equation Modeling (SEM). Finally, 

this chapter includes a discussion on the differences between the traditional and pilot groups.      

Research Design 
 A quasi-experimental design was adopted in this cross-sectional study. Using a survey, 

information  about  students’  demographics  were  collected.  In  addition,  their  responses  to  

motivation-related beliefs, engineering identification, three engineering-related motivational 

factors, and the two intentional variables were collected through online surveys. Cross-sectional 

data is not the best option to investigate any causal relationships; inferences from such studies 

should be cautiously drawn, especially with regard to making causal statements. However, such 

studies can be helpful in gaining understanding of plausible realtionships between numerous 

variables in a priori or a prespecified causal model. 
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 This was a quasi-experimental study, in that there were two different groups: a traditional 

group and a pilot group of an introductory engineering class. Students were not randomly 

assigned to the two groups following any random sampling approach. However, a treatment was 

administred to students in the pilot group. The treatment administered was an innovative 

instructional pedagogy called active learning approach. Students in the traditional group were 

taught the way that this class had been taught in prior years, while instructional techniques used 

in the pilot group had some features of an active learning appraoch. More differences between 

the two groups will be discussed in greater detail later in this chapter. In short, a quasi-

experiment is an experiment that shares most features of a true experimental design except that 

research participants were not assigned to different groups randomly (Pedhazur & Schmelkin, 

1991).     

Research Participants 
 The data for this study were collected from students in the two groups—a traditional 

group and a pilot group—of an introductory engineering course at a research-intensive university 

located  in  southeastern  U.S.  This  study  examined  students’  experiences  in  their  first-year 

engienering courses and its impacts on their motivational beleifs and their engineering major and 

engineering career intentions. The administrators of the large engineering program at the said 

university collected data regularly from students in their introductory engineering course for their 

internal, departmental assessment purposes. Completing such a questionnaire is a part of a class 

assignment for students. An administrator of the engineering program was approached and it was 

discussed with her the possibility of including additional measures of interest to the researcher in 

the questionnaire that the administrators were going to administer as a part of the introductory 
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engineering course. The administrator accepted the request to add measures of relevance to this 

study in their questionnaire.  

The engineering  program’s  administrator specifically included an item in the 

questionnaire asking students whether or not they would allow their data to be used for research 

purposes. Data from students who have consented for their data to be used for research purposes 

were used for the final analyses. It was also made known to students that they could discontinue 

their participation in the research study at any point without any consequences.  

The descriptions of the samples from the two groups (traditional and pilot groups), 

specifically from the data collected at the beginning of the semester are provided below.    

Beginning of Semester Sample—Traditional Group  
One thousand eighty seven (1,087) students responded to the questionnaire administered 

at the beginning of the semester where students responded to questions measuring six constructs: 

(1) major intention; (2) career intention; (3) engineering identification; (4) engineering utility; (5) 

engineering program belonging; and (6) engineering program expectancy. Of those 1,087 

students, 188 did not provide permission to use their data for research. Further, 20 of the research 

participants did not provide any data. and four of them completed the survey twice. Therefore, 

those three groups of students were excluded and the final analyses of descriptive and t-tests 

were performed on 875 cases. A second response sets of students who completed the survey 

twice were deleted.   

 In terms of gender, 655 (74.86%) of them were male, while 205 (23.43%) of them were 

female. There were 15 (1.71%) students who did not report their gender. The race composition of 

this data was: 602 (68.8%) were white; 155 (17.7%) were Asian; 47 (5.4%) were Hispanic; 21 

(2.4%) were African Americans; 13 (1.5%) were Native American; and 37 (4.2%) of the 

respondents did not report their race.  
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Beginning of Semester Sample—Pilot Group 
In the beginning of the semester survey, 247 students from the pilot group participated in 

the survey. However, students did not provide consent to use their data for research. Further, 24 

students had missing information of over 80%. Therefore, excluding students from those two 

groups, 188 of them have been included in the final analyses. Student in the pilot group were 

also assessed on those six constructs that students in the traditional group were assessed on. 

Out of 188 students retained for the final analyses from the pilot group, 161 (85.6%) were 

male, and 26 (13.8%) were female. One of them one (0.5%) did not report his/her gender. In 

terms of race, 144 (76.6%) identified as white, 25 (13.3%) were Asian, nine (4.8%) indicated 

that they were Hispanic/Latino, two (1.1%) of them were African Americans, and one (0.5%) 

was Native American. Seven (3.7%) of the participants did not report their race.  

The purpose of assessing students in the two groups in the beginning of the semester on 

those six construct was to investigate the mean differences between the two groups. This 

baseline information collected at the beginning of the semester will enable us to determine the 

impact of an instructional design, that had some features of an active learning approach on the 

pilot group at the end of the semester. Specifically, the baseline information was used to 

determine whether or not students in the pilot group had more favorable perceptions of the five 

elements of the MUSIC Model in addition to the six constructs.  

  The descriptions of the samples from the two study groups (traditional and pilot groups), 

specifically from the data collected at the end of the semester are provided below.    

End of Semester Sample—Traditional Group  
The total number of students from the traditional group that responded to the survey at 

the end of the semester was 1,084. However, in the final analyses, only 812 cases were retained. 

Of 1,084 students, 188 students did not permit their data to be used for research. Further, 18 
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participants did not provide any information. In other words, they started the process of 

completing the survey, but quit it without responding to any of the survey questions. It was 

difficult to figure out what really happened with those 18 research participants, but it is possible 

that they got distracted by something when they began the survey process. Two of the 

participants completed the survey twice. Therefore, it was decided to exclude them from the final 

data analyses (1) who did not provide consent for their data to be used for research, (2) those 

who did not provide any response to the survey questions, and (3) the second response set of 

those participants who completed the survey twice.   

 The 812 cases retained for the final analyses were randomly divided into three groups 

using a systematic sampling approach. This was achieved using the MOD(#CASENUM) 

function in SPSS 22.0. This function resulted in creating three groups by assigning the first case 

to group two, the second case to group one, and the third case to group zero. This pattern of 

assigning cases to the three groups were then repeated throughout the data. This grouping 

variable was later arranged in an ascending order using the Sort Cases function in the SPSS. All 

273 cases that were assigned to group zero came on the top and this group was used to conduct 

exploratory factor analysis (EFA) for all the latent variables. This group was called an estimation 

sample. All the 539 cases that were in groups one and two were then separated from those 

belonging to group zero and were used as the validation sample. The factor models obtained 

through the EFA using the estimation sample was then validated on the validation sample using 

the confirmatory factor analysis (CFA) approach. An acceptable measurement and structural 

models obtained using data from the traditional group was cross-validated on the data from the 

pilot section.  
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Of those included in the final analyses (validation sample), 411 (76.3%) were male, while 

128 (23.7%) of them were female. In terms of race, 385 (71.4%) constitutes White, 90 (16.7%) 

indicated themselves as Asian, 29 (5.4%) of them were Hispanic, 14 (2.6%) identified 

themselves as African American, and six (1.1%) of them were Native Americans. Fifteen (2.8%) 

participants chose not to report their race.   

End of Semester Sample—Pilot Group  
The pilot section was the treatment group and had a smaller sample size compared to the 

traditional section. The idea was to check the impact of active learning approach and other 

changes  envisaged  on  students’  learning  outcomes  and  motivational  beliefs  on  a  small  group  of  

students to determine if such an approach can be widely implemented. Three hundred fourteen 

students from the pilot group responded to the survey. However, 242 of them were used for final 

analyses. Of those 72 cases deleted from the final analyses, 35 of them did not consent their data 

to be used for research purposes. Further, 10 research participants started the process of 

completing the survey, but did not respond to any of the questions. Again, it is difficult to 

determine what really happened, but it is possible that those 10 students got distracted by 

something when they started the survey and then did not finish it. Three respondents completed 

the survey twice and their second set of response was deleted. The final measurement and 

structural models arrived at using the data from the traditional group was cross-validated on this 

sample.  

Of 242 research participants, 36 (14.9%) of them were female, and 206 (85.1%) of them 

were male. In terms of race, 177 (73.1%) were White, 37 (15.3%) were Asian, 16 (6.6%) were 

Hispanic/Latino, 3 (1.2%) were African Americans, and 2 (0.8%) were Native American. Seven 

(2.9%) of them did not report their race.  
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Measures 
 As Figure 1 in Chapter one shows, there are a total of 11 latent variables in the partial 

domain identification model tested in this study: (1) five components of the MUSIC Model of 

Academic Motivation—eMpowerment, Usefulness, Success,  Interest,  and  Caring  (students’  

motivation-related beliefs); (2) engineering identification and three engineering-related 

motivational factors (engineering utility, engineering program belonging, and engineering 

program expectancy); and (3) two intention variables (engineering major intention and 

engineering career intention). The complex relationships among those 11 variables were 

determined a priori and also depicted in Figure 1. 

 There are five exogenous variables and six endogenous variables in the causal model 

tested  in  this  study.  The  five  exogenous  variables  are  the  students’  motivation-related beliefs in 

an introductory engineering class, and the six endogenous variables consisted of engineering 

identification and three engineering-related motivational factors, and two intention variables.   

 All the 11 latent variables in the model were assessed by a six-point agreement scale. 

Descriptions of the six-point rating scales are uniform for all of the 11 latent variables used in the 

domain identification model as presented in Table 3.1.  

Table 3.1 

A Description of the Six-Point Rating Scale  

1 2 3 4 5 6 

Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

     

 Extant scales were used to measure all of the 11 constructs employed in this study. 

Specifically, the five elements of the MUSIC model were assessed by the MUSIC Model of 

Academic Motivation Inventory (Jones & Skaggs, 2012). The five elements (Empowerment, 
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Usefulness, Success, Interest, and Caring) were measured with five  (α=.91),  five  (α=.96),  four  

(α=.93),  four  (α=.95),  and  six  items  (α=.93),  respectively.  Students’  perception  of  engineering  

identification was assessed with the four-item of Identification with Engineering from Jones et 

al.  (2014;;  α=.92).  Similarly,  research  participants’  perceptions  of  engineering  utility  (α=.97),  

engineering  program  belonging  (α=.86),  and  engineering  program  expectancy  (α=.93)  were  

measured with scales used by Tendhar and Jones (2014). The three constructs were measured 

with six, eight, and five items, respectively. Two items each used to measure the two intention 

variables were based on indicator variables used in Jones (2010) and Jones et al. (2012). Eleven 

variables with their respective items are presented in Table 3.2.  

Table 3.2 

Fifty-Three Item Domain Identification Model Scale    
Domain  Identification  Model’s  Scales 
eMpowerment 

1. I had the opportunity to decide for myself how to meet the course goals.   
2. I had the freedom to complete the coursework my own way.   
3. I had options in how to achieve the goals of the course.   
4. I had control over how I learned the course content.   
5. I had flexibility in what I was allowed to do in this course.  

Usefulness 
1. In general, the coursework was useful to me.   
2. The coursework was beneficial to me.   
3. I found the coursework to be relevant to my future.   
4. I will be able to use the knowledge I gained in this course.   
5. The knowledge I gained in this course is important for my future.   

Success 
1. I was confident that I could succeed in the coursework. 
2. I felt that I could be successful in meeting the academic challenges in this course. 
3. I was capable of getting a high grade in this course. 
4. Throughout the course, I felt that I could be successful on the coursework. 

Interest 
1. The coursework held my attention. 
2. The instructional methods used in this course held my attention. 
3. I enjoyed the instructional methods used in this course.  



47 
 

4. The instructional methods engaged me in the course. 
5. I enjoyed completing the coursework. 
6. The coursework was interesting to me. 

Caring 
1. The instructor was available to answer my questions about the coursework. 
2. The instructor was willing to assist me if I needed help in the course. 
3. The instructor cared about how well I did in this course. 
4. The instructor was respectful of me.  
5. The instructor was friendly. 
6. I believe that the instructor cared about my feelings. 

Engineering Identification 
1. Being good at engineering is an important part of who I am. 
2. Doing well on engineering tasks is very important to me.  
3. Success in engineering school is very valuable to me. 
4. It matters to me how well I do in engineering school. 

  
Domain  Identification  Model’s  Scale  Continued 

Engineering Utility 
1. Knowing about engineering does not benefit me at all. 
2. I see no point in me being able to do engineering. 
3. Having a solid background in engineering is worthless to me 
4. I have little to gain by learning how to do engineering.  
5. After graduation, an understanding of engineering will be useless to me. 
6. I do not need engineering in my everyday life. 

Engineering Program Belonging 
1. I feel like a real part of the General Engineering program. 
2. Sometimes  I  feel  as  if  I  don’t  belong  in  the  General  Engineering  program. 
3. People in the General Engineering program are friendly to me. 
4. I am treated with as much respect as other students in the General Engineering program. 
5. I feel very different from most other students in the General Engineering program. 
6. The instructors in the General Engineering program respect me. 
7. I wish I were in a major other than engineering. 
8. I feel proud of belonging in the General Engineering program.  

Engineering Expectancy/Ability 
1. Compared to other engineering students, I expect to do well in my engineering-related 

courses this year. 
2. I think that I will do well in my engineering-related courses this year. 
3. I am good at math, science, and engineering. 
4. Compared to other engineering students, I have high engineering-related abilities. 
5. I have been doing well in my engineering-related courses this year. 
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Major Intention 
1. I  don’t  intend  to  change  my  major  from  engineering  to  a  non-engineering major. 
2. I plan to continue on in an engineering program.  

Career Intention 
1. My eventual career will directly relate to engineering. 
2. In the future, I will have a career that requires me to have engineering skills. 

 

Definitions of 11 Latent Variables 
Empowerment denotes the level of control that students think they have over their 

learning  environment  (Jones,  2009).  Usefulness  represents  students’  perception  of  the  usefulness  

of  engineering  courses  for  their  future  use.  Success  refers  to  the  students’  perception of their 

ability  to  succeed  if  they  invest  the  required  effort.  Interest  is  a  students’  perception  that  the  

course  content  and  instructional  techniques  are  interesting.  Caring  was  defined  as  students’  

perception that their instructors in their engineering courses care about their success. Engineering 

identification was defined as valuing engineering as part of their identity. Engineering Utility 

was  defined  as  “the  usefulness  of  engineering  in  terms  of  reaching  one’s  short- and long-term 

goals”  (Jones  et  al.,  2010,  p.  320).  Engineering  program  belonging  refers  to  “the  degree  to  which  

students perceive that they feel accepted, respected, included, and supported by the engineering 

students  and  in  the  engineering  program  at  the  university”  (Jones  et  al., 2014, p. 1343-1344). 

Jones  et  al.  (2010)  described  engineering  program  expectancy  as  “one’s  belief  in  the  possibility  

of  his  or  her  success  in  engineering”  (p.  320).  Engineering  major  intention  was  students’  

intention to remain in engineering majors. Engineering  career  intention  refers  to  students’  

intention to pursue careers in the field of engineering post-graduation.    
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Data Collection 
 The administrator of a large engineering program at a research-intensive university 

located in southeastern U.S. had agreed to include the measures to be used in this study. They 

had  already  obtained  the  Institutional  Review  Board’s  (IRB)  approval  for  their  survey  research.  

The administrator of the engineering program advised the researcher to submit an independent 

IRB  application  requesting  permission  to  use  data  already  collected  under  their  department’s  IRB  

application. Therefore, a separate IRB application was filed and it was approved by the IRB.  

 As mentioned earlier, completing the questionnaire was a part of students’  assignment  in  

this class. They were given access to the online survey for one week; the web-based survey 

software called Qualtrics was used for the online survey. In other words, they had to complete 

the questionnaire within one week of it becoming available to them. However, within a period of 

that one week, there was no specific limit on the length of the time they could take to finish it. 

The overall questionnaire was intended to take about 15 minutes. The questionnaire was 

administered twice, one at the beginning of the semester and one at the end of the semester. The 

only  difference  between  the  two  surveys  was  that  students’  motivation-related beliefs in an 

introductory engienering course was not included in the beginning of the semester survey.      

Data Analysis 
The data analysis began by performing preliminary analyses, such as descriptive 

statistics, intercorrelations among the latent variables, and reliabilities for all of the 11 latent 

variables used in the domain identification model. The preliminary data analyses were conducted 

using a statistical software called Statistical Package for the Social Sciences (SPSS) version 22.0.    

The  mean  scores  of  students’  motivation-related beliefs, engineering identification, three 

engineering related motivational factors, and the two intention variables in the two groups were 
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compared using t-test via SPSS version 22.0. The comparisons of the mean scores between the 

two groups on those 11 latent variables pertain to the first research question.   

Based on the research questions two through four, the appropriate data analytic strategy 

for this study was Structural Equation Modeling (SEM). The measurement and structural models 

were estimated using variance-covariance matrix and the Maximum Likelihood (ML) estimation 

method in LISREL version 9.1, to estimate SEM models and compare these across groups. 

SEM describes a set of tools for data analysis. From a statistical perspective, traditional 

techniques for data analysis such as the analysis of variance, the analysis of covariance, multiple 

linear regression, canonicial correlation, and expoloratory factor analysis—and also measured 

variable path and confirmatory factor analysis—can be seen as special cases of SEM (Muller & 

Hancock, 2008). According to Mueller and Hancock, these data analytic techniques enable 

testing of theoretically derived causal hypotheses specified a priori. SEM allows for testing of a 

theoretical model that hypothesizes how certain items define factors and the relationships among 

the factors in the model (Schumacker & Lomax, 2010). Such hypothesis testing helps us gain 

insights into the complex relationships among factors. Therefore, SEM is an appropriate 

technique to be used in this study to examine relationships among those 11 latent variables, 

specified a priori, inlcuded as a part of the domain identification model tested.   

 The factor structures of the scales were investigated in this study on an estimation 

sample using the Exploratory Factor Analysis (EFA). The purpose of EFA is to find a theoretical 

model that provides a good fit to the data. Its analyses are considered data-driven. An estimation 

sample is a small percentage of the actual data that was randomly selected. In this study, one-

third (1/3; 273 participants) of the sample from the traditional group, specifically from the end of 

the semester data was used as an estimation sample. An estimation sample was used to test the 
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initial factor structure and the decisions to modify the model was made based on the results 

obtained. The principal component analysis with promax rotation was used to extract factors for 

each scale. The promax rotation is one of the oblique rotation methods. This rotation method is 

used when it is expected that correlations between factors could range from minor to moderate 

(Dimitrov, 2012). In other words, this rotation method does not require the rotation process to 

have uncorrelated factors (Meyers, Gamst, & Guarino, 2006), unlike orthogonal rotation method. 

The purpose of factor rotation is to obtain a simple structure for easily interpretable factors 

(Thurston, 1947). The goal of a simple structure is materialized when an item loads highly on 

one factor and its factor loading was negligible on all other factors.  There exists many rules to 

determine the number of factors to be retained (cf. Zwick & Velicer, 1986), but in this study 

eigenvalue > 1 rule (Kaiser, 1960) was followed. The decision to delete items from the revised 

factor structure were made based on (1) items having high loadings on more than one factor, and 

(2) items with factor loadings below .4.   

Then the CFA was used to confirm the revised factor structure on the validation sample. 

A validation sample is a sample that does not include those research participants who were a part 

of the estimation sample. A validation sample is used to confirm the model obtained from the 

estimation sample. In this study, two-third (2/3; 539 participants) of the sample from the 

traditional group, specifically from the end of the semester data was used as the validation 

sample. Unlike EFA, CFA is considered theory-driven. Its analyses strive to determine if the 

observed data provide a good fit to a prespecified theoretical model. The total expected number 

of factors, which manifest variable loads on which factor, and correlations, or lack thereof, 

between factors are determined a priori (Schumacker & Lomax, 2010).   
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To evaluate plausibility of proposed models, fit indices from the three major index 

classes were used, namely: absolute fit index, parsimonious fit index, and incremental fit index. 

Those three fit indices were represented by standardized root mean square residual (SRMR), root 

mean square error of approximation (RMSEA), and comparative fit index (CFI), respectively. 

There are different opinions on the cut off scores for the fit indices to retain a measurement 

model. For example, according to Hu and Bentler (1999), data-model fit is considered acceptable 

when SRMR and RMSEA values are equal to or less than .08 and .06, respectively. The CFI 

value, according to them, should be equal to or greater than .95. However, other authors such as 

Browne and Cudeck (1993) suggested that RMSEA value greater than .06 but less than .08 can 

be considered an adequate model fit, while MacCallum, Browne, and Sugawara (1996) 

contributed to these guidelines by suggesting that RMSEA value between .08 and .10 can be 

considered a mediocre fit. Browne and Cudeck (1993), however, suggested that any model with 

RMSEA value equal to or greater than .10 should be rejected. The chi-square difference test 

(James, Mulaik, & Brett, 1982) was used to compare different measurement and structural 

models.  

The analyses of the measurements model was followed by the estimation and evaluation 

of structural models. This was the two-step SEM approach that Anderson and Gerbing (1988) 

suggested. It is imperative that any misspecification in the measurement model is fixed before 

analyzing the structural model because it is important to ensure that observed variables 

accurately reflect the constructs they are supposed to measure. In many instances, issues in the 

structural model are often related to measurement models and so they should be addressed with 

CFA before proceeding to analyze the structural models (Brown, 2006).   



53 
 

The measurement and structural models validated on the two-third (2/3; 539 participants) 

of the sample from the traditional group was then cross-validated on data from the pilot group 

with a sample size of 242. It is to be noted that the same fit indices and cut-off scores were used 

to assess the model data fit for both the measurement models and the structural models.  

The model estimation and model evaluation may lead to model modification. One of the 

unique features of SEM is model modification. Modifications could include excluding non-

significant parameters and/or adding unidirectional and/or bidirectional structural paths. This 

procedure is the final step in the SEM analyses. Modifications are performed to achieve a better 

model data fit. These techniques are technically data-driven.  Model modifications should be 

considered cautiously and frugally. It is important that modifications are done one at a time 

whenever a decision to do so is made. The decision to modify an existing or a prespecified or 

evolving model should make both theoretical and statistical sense, however.  

Distinction Between the Traditional and Pilot Group 
 
Lecture and Workshop Groups 

The data for this study was collected from an introductory engineering education class. 

This class had two versions: traditional and pilot. The pilot version was the treatment group. 

Both courses used lecture/small workshop format. With a lecture and a 

workshop, the class met twice a week. The lecture meetings were for 50 minutes, while 

workshop meetings were for one hour fifty minutes. There were 160 students in each traditional 

lecture group and 120 students in each pilot lecture group. The size of the workshop groups were 

smaller. Specifically, there were 32 students in each workshop group that were a part of the 

traditional version and 30 students in each workshop group that were a part of the pilot version. 

The traditional version had nine lecture groups and four workshop groups per lecture, while the 
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pilot version had three lecture groups and four workshop groups per lecture. Lecture sessions in 

both  the  groups  were  taught  by  faculty  members.  In  the  case  of  workshops,  traditional  group’s  

workshops were led by instructors and graduate teaching assistants (GTAs), while the pilot 

group’s  workshops  were  led  by  faculty,  instructors,  and GTAs.  

Design and Intention of the Class 
The major differences between the two versions of an introductory engineering class 

were their overall design and intention of the class as reflected in Appendices A through D. 

Specifically, the pilot version intentionally drew on research regarding student motivation (the 

MUSIC model), metacognition, problem-solving, and problem-based learning to plan both the 

lecture and workshop sessions. Some of the content and their differences will be presented in the 

subsequent few paragraphs.   

Course objectives. Course objectives of the two classes are presented in Appendix A. 

Some of the objectives of the pilot version were to (a) compare and contrast the contributions of 

different types of engineers in the development of a product or process, (b) communicate 

information effectively, (c) synthesis information from several sources in addressing an issue, 

and (d) contribute to team efforts. Likewise, some of the objectives of the traditional version 

were to (a) demonstrate a basic understanding of the engineering design process, (b) demonstrate 

a knowledge of the disciplines of the Virginia Tech College of Engineering, (c) graph numeric 

data and derive simple empirical functions, and (d) demonstrate an understanding of professional 

ethics and application to real life situations.  

Explicit similarities and differences. Explicit similarities and differences between the 

two versions of the class are presented in Appendix B. Some of the differences are in the areas of 

design, teamwork, and general problem sets. In the traditional version, there was one class on 

design where students were assigned readings on how to design a sustainable energy project. On 
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the other hand, students in the pilot version spent a considerable amount of time on a problem 

solving project where they were given instructions on how to solve a problem rather than 

instructions on a design process. In terms of team, students in the traditional version spent one 

workshop session on a team activity. On the other hand, performing in teams were a part of 

several workshop sessions in the pilot version where students engaged in role playing and 

collectively dealing with conflicts. In the lecture sessions, opportunities were created for 

interaction between students, and students and instructors in both versions of the class. However, 

the pilot section typically involved a greater number of small group work and interactions. With 

the general problems, some knowledge of trigonometry and geometry and other knowledge were 

sufficient to solve problem sets presented to students in the traditional version. Students in the 

pilot version, on the other hand, were presented seven open-ended and ill-structured problems. 

Solutions to these problems were presented by students in a group of three to five. Students in 

this case had the autonomy to choose projects of their liking. The amount of knowledge in 

trigonometry and geometry required to resolve issues in those seven projects varied from project 

to project.     

Course outline. Course outline of the traditional and pilot versions are presented in 

Appendix C and D, respectively. Topics covered differed between the two groups in a number of 

ways. Two such differences are as follows: first, a lecture session was devoted on information 

sources  in  the  pilot  section  of  the  classes.  The  engineering  college’s  librarian  was  invited  to  the  

class and made a presentation on using the library, and finding and evaluating sources. How to 

cite sources was also presented. Second, students in the pilot version had a guest speaker from 

the Career Services at their university. The speaker went over what their center could do for 

students and how to look up jobs relevant to engineering students. 
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Conclusion. Based on the differences between the two versions of the class presented 

above, we can conclude that the pilot version had more features of active learning. Active 

learning is defined as a technique employed in the classroom that uses student-student and 

student-facilitator interaction in numerous forms to alter the learning environment from passive 

to active (Al-Bahi, 2006). Therefore, active learning is considered a meaningful method for 

increasing  students’  academic  performance  and  building  supportive  relationships  among  

students, and between instructors and students. There are different instructional techniques (e.g., 

active learning, problem-based learning, and peer instruction) and they go by different names, 

but they are closely related (Knight, Fulop, Marquez-Magana, & Tanner, 2008).  

The fact that the pilot version had more problem solving activities, team activities, and a 

greater number of small group work and interaction showed that it had more features of active 

learning. Further, the fact that students had autonomy to choose one of the seven open-ended and 

ill-structured problems would more than likely have an impact on their perceptions of 

empowerment, which is one of the components of the MUSIC Model of Academic Motivation. 

Students feel empowered when they perceive that they have a great amount of control over their 

learning (Jones, 2009). Similarly, a session with a guest speaker from the Career Services where 

students looked up job advertisements related to engineering degrees could increase perceived 

usefulness of their engineering degrees especially when they saw that there are plenty of job 

opportunities for engineering graduates. Usefulness is another component of the MUSIC model.    
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Chapter 4: Results 

Introduction 
 There are five sections in this chapter. In the first section, descriptive statistics of the 

traditional and pilot groups from the beginning and end of the semester data are presented. 

Correlations among the 11 latent variables for the two groups at the end of the semester are also 

presented in this section. In the second section, results of the group mean differences between the 

two groups at the beginning and the end of semester on those 11 latent variables computed using 

t-test via SPSS version 22.0 are presented. This section pertains to research question one. In the 

third section, in order to answer research questions two and three, a discussion of the normality 

of the data is presented in addition to the results of the exploratory factor analyses (EFA). This 

section also contains a presentation of the comparisons between different measurement models. 

Students in the traditional group were divided into two parts. The estimation sample consisted of 

the one-third (273 participants) of the traditional sample. The EFA was conducted on the 

estimation sample to find a good-fitting solution. The revised factor model obtained as a result of 

the EFA was validated on two-third (539) of the traditional sample. This validated model was 

then cross-validated using the pilot sample.   

In the fourth section, results of the relationships between  students’  motivation-related 

beliefs and engineering identification and three engineering-related motivational factors are 

presented and examined in this section. The relationships between these variables pertain to 

research question two. Further, results of the relationships between engineering identification 

and three engineering-related motivational factors and the two intention variables (major 

intention and career intention) are also presented and examined in this section. This part pertains 

to research question three. The two-step SEM approach suggested by Anderson and Gerbing 

(1988) was followed where an acceptable fit of the measurement model was first established 
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before proceeding to estimating the structural model. Based on the types of research questions 

being addressed, the two major analytic techniques used were t-tests and structural equation 

modeling (SEM). The model data fit in the case of both measurement models and structural  

models were based on the fit indices of three major index classes—absolute fit index, 

parsimonious fit index, and incremental fit index—as represented by standardized root mean 

square residual (SRMR), root mean square error of approximation (RMSEA), and comparative 

fit index (CFI), respectively. Different measurement models and structural models were 

compared using the sequential chi-square difference test (James, Mulaik, & Brett, 1982).    

The fifth and final section pertains to research question four. This question deals with 

comparing individual structural paths for the two groups.    

Descriptive Statistics and Correlations among the 11 Latent Variables 
In this section, descriptive statistics of the traditional and pilot groups from the beginning 

and end of semester data are presented. Correlations among the 11 latent variables for the two 

groups at the end of semester are also presented in this section. 

Descriptive Statistics—Beginning of Semester 
 Descriptive statistics and reliabilities of the six scales for both the traditional group and 

pilot group are presented in Table 4.1 and Table 4.2, respectively. The descriptive statistics, 

specifically means and standard deviations, for the six constructs were obtained using their 

average scores. Major intention had two indicator variables, career intention was measured by 

two items, and engineering identification, engineering utility, engineering program belonging, 

and engineering program expectancy were measured by four, six, five, and five items, 

respectively.  
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Table 4.1 

Descriptive Statistics and Reliabilities of Traditional Group—Beginning of the Semester 

Variables N Mean Standard 
Deviation 

Cronbach’s  
Alpha  (α) 

Major Intention 875 5.35 0.77 .85 

Career Intention 875 5.08 0.85 .84 

Engineering Identification 875 5.24 0.66 .84 

Engineering Utility 875 5.49 0.68 .90 

Engineering Program Belonging 875 4.97 0.62 .73 

Engineering Program Expectancy 875 4.83 0.69 .88 

 

Table 4.2 

Descriptive Statistics and Reliabilities of Pilot Group—Beginning of the Semester 

Variables N Mean Standard 
Deviation 

Cronbach’s  
Alpha  (α) 

Major Intention 188 5.37 0.84 .92 

Career Intention 188 5.08 0.84 .85 

Engineering Identification 188 5.22 0.73 .85 

Engineering Utility 188 5.32 0.95 .95 

Engineering Program Belonging 188 4.94 0.63 .76 

Engineering Program Expectancy 188 4.93 0.66 .87 

 

Out of a maximum score of six for each latent variable, mean scores for the six latent 

variables ranged between 4.83 and 5.49 for the traditional group. Their scale reliabilities ranged 
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between  .73  and  .90.  On  the  other  hand,  the  pilot  group’s  mean  scores  of  those six latent 

variables ranged between 4.93 and 5.37. Their scale reliabilities ranged between .76 and .95.  

Descriptive Statistics—End of Semester 
Descriptive statistics and reliabilities of the 11 scales for both the traditional group and 

pilot group, from their end of semester data, are presented in Table 4.3 and Table 4.5, 

respectively. The descriptive statistics (specifically means and standard deviations) for the 11 

constructs were obtained using their average scores. Major intention had two indicator variables, 

career intention was measured by two items, and engineering identification, engineering utility, 

engineering program belonging, and engineering program expectancy were measured by four, 

six, five, and five items, respectively. The five components of the MUSIC Model 

(Empowerment, Usefulness, Success, Interest, and Caring) were measured with five, five, four, 

six, and six items respectively. The correlation matrices of the two groups are presented in 

Tables 4.4 and 4.6, respectively.   

Out of a maximum score of six for each latent variable, mean scores for the 11 latent 

variables ranged between 4.05 and 5.39 for the traditional group. Their scale reliabilities ranged 

between  .78  and  .94.  On  the  other  hand,  the  pilot  group’s  mean  scores  on  those  11 latent 

variables ranged between 3.98 and 5.41. Their scale reliabilities ranged between .78 and .96.  
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Table 4.3 

Descriptive Statistics and Reliabilities of Traditional Group—End of the Semester  

Variables N Mean Standard 
Deviation 

Cronbach’s  
Alpha (α) 

Major Intention 539 5.39 0.89 .88 

Career Intention 539 5.13 0.93 .87 

Engineering Identification 539 5.17 0.73 .86 

Engineering Utility 539 5.22 1.03 .96 

Engineering Program Belonging 539 4.90 0.67 .78 

Engineering Program Expectancy 539 4.72 0.77 .89 

Empowerment 539 4.24 0.98 .90 

Usefulness 539 4.08 1.12 .94 

Success 539 4.64 0.85 .89 

Interest 539 4.05 1.07 .93 

Caring 539 4.98 0.78 .91 

 

Table 4.4 (p. 61-62) 

Correlations Among Latent Variables of Traditional Group—End of the Semester 
 

 MI CI Idnt Uti Bel Exp Emp Use Suc Int Car 

MI -           

CI .67** -          

Idnt .56** .62** -         

Uti .40** .42** .43** -        

Bel .30** .34** .50** .31** -       

Exp .46** .40** .46** .22** .34** -      
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Emp .18** .24** .32** .09* .51** .26** -     

Use .23** .28** .34** .14** .50** .22** .70** -    

Suc .44** .38** .38** .25** .42** .62** .50** .46** -   

Int .24** .30** .36** .12** .55** .27** .76** .88** .51** -  

Car .20** .25** .31** .25** .53** .21** .39** .32** .41** .38** - 

 
Note. MI-Major Intention; CI=Career Intention; Idnt=Engineering Identification; 
Uti=Engineering Utility; Bel=Engineering Program Belonging; Exp=Engineering program 
Expectancy; Emp=Empowerment; Use=Usefulness; Suc=Success; Int=Interest; Car=Caring; *p 
< .05; **p < .01 
 

Table 4.5 

Descriptive Statistics and Reliabilities of Pilot Group—End of the Semester 

Variables N Mean Standard 
Deviation 

Cronbach’s  
Alpha  (α) 

Major Intention 242 5.41 0.87 .89 

Career Intention 242 5.21 0.81 .84 

Engineering Identification 242 5.23 0.74 .89 

Engineering Utility 242 5.25 1.08 .96 

Engineering Program Belonging 242 4.98 0.69 .79 

Engineering Program Expectancy 242 4.82 0.67 .84 

Empowerment 242 4.20 1.00 .91 

Usefulness 242 4.08 1.15 .94 

Success 242 4.53 0.91 .90 

Interest 242 3.98 1.14 .93 

Caring 242 5.09 0.77 .91 
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Table 4.6 
 
Correlations Among Latent Variables of Pilot Group—End of the Semester 
 

 MI CI Idnt Uti Bel Exp Emp Use Suc Int Car 

MI -           

CI .72** -          

Idnt .62** .69** -         

Uti .32** .33** .32** -        

Bel .35** .32** .44** .15** -       

Exp .55** .55** .54** .12 .24** -      

Emp .08 .05 .18** -.07 .48** .10 -     

Use .10 .10 .26** -.03 .44** .05 .67** -    

Suc .29** .30** .38** .07 .31** .46** .58** .46** -   

Int .09 .08 .23** -.09 .47** .10 .76** .84** .53** -  

Car .12 .10 .12 .01 .50** .11 .51** .36** .39** .40** - 

 
Note. MI=Major Intention; CI=Career Intention; Idnt=Engineering Identification; 
Uti=Engineering Utility; Bel=Engineering Program Belonging; Exp=Engineering program 
Expectancy; Emp=Empowerment; Use=Usefulness; Suc=Success; Int=Interest; Car=Caring; *p 
< .05; **p < .01 
 

 The difference between the measurement of six and 11 latent variables between the two 

time-points was that the student-related motivational factors (MUSIC Model) was not assessed 

during the beginning of the semester. However, students were assessed on those five variables at 

the end of the semester to determine the impact of active learning approach used in the pilot 

group on those five variables. The correlation tables (4.4 and 4.6) exhibit high correlations 

among some of the variables. For example, the correlation between usefulness and interest was 

.88 in Table 4.4 and .84 in Table 4.6. Similarly, correlations between empowerment and interest, 
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and major and career intentions were over .7. There appears to be issues of multicollinearity. 

Therefore, different measurement models will be compared where, for example, usefulness and 

interests would be collapsed into one factor.   

Group Mean Differences 
Group Mean Differences—Beginning of Semester 

The first research question pertains to investigating the mean score differences between 

students in the traditional and pilot groups on the six variables at the beginning of the semester 

and on all of the 11 latent variables at the end of the semester.   

Six independent sample t-tests were conducted to compare scores on six different 

constructs between students in the traditional and pilot groups at the beginning of the semester. 

The results of the t-tests are presented in Table 4.7, which included the names of the constructs, 

mean scores of the two groups, mean differences, t statistics, p values, and 95% confidence 

intervals (CI). Except for a difference in the mean scores between the two groups on engineering 

utility, no significant differences were found on the five other constructs. This suggests that 

students in the two groups had similar levels of perceptions of major intention, career intention, 

engineering identification, engineering program belonging, and engineering program 

expectancy) at the beginning of the semester.   
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Table 4.7 

Group Mean Differences Between the Two Groups—Beginning of Semester 

      95% CI   
Variables Traditional 

(Mean) 
Pilot 

(Mean) 
Mean 

Differences 
t p(two-

tailed) 
Lower Upper 

Major Intention 5.35 5.37 -.02 -.28 .77 -.14 .10 

Career Intention 5.08 5.08 .00 -.03 .98 -.14 .13 

Engineering 
Identification 

5.24 5.22 .02 .45 .65 -.08 .13 

Engineering 
Utility 

5.49 5.32 .17 2.27 .02 .02 .31 

Engineering 
Belonging 

4.87 4.94 -.07 .58 .56 -.07 .13 

Engineering 
Expectancy 

4.83 4.93 -.10 -1.89 .06 -.21 .00 

Note. CI=Confidence Interval 

 First, an independent-samples t-test was conducted to assess differences in the major 

intention mean scores for students in the traditional and pilot groups at the beginning of the 

semester. The data suggest that there were no significant differences in the mean scores for their 

perceptions of major intention between the traditional group (M = 5.35, SD = .77) and the pilot 

group (M = 5.37, SD = .84), t(1063) = -.28, p = .77 (two-tailed). The mean difference was -.02 

with a 95% confidence interval (CI) of -.14 to .10.   

Second, an independent-samples t-test was conducted to assess differences in the career 

intention mean scores for students in the two groups at the beginning of the semester. The data 

suggest that there were no significant differences in the mean scores for their perceptions of 

career intention between the traditional group (M = 5.08, SD = .85) and the pilot group (M = 

5.08, SD = .84), t(1063) = -.03, p = .98 (two-tailed). The mean difference was -.001 with a 95% 

confidence interval (CI) of -.14 to .13.   
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Third, an independent-samples t-test was conducted to assess differences in the 

engineering identification mean scores for students in the two groups at the beginning of the 

semester. The data suggest that there were no significant differences in the mean scores for their 

perceptions of engineering identification between the traditional group (M = 5.24, SD = .66) and 

the pilot group (M = 5.22, SD = .73), t(1063) = .45, p = .65 (two-tailed). The mean difference 

was .02 with a 95% confidence interval (CI) of -.08 to .13.   

Fourth, an independent-samples t-test was conducted to assess differences in the 

engineering utility mean scores for students in the two groups at the beginning of the semester. 

The data suggest that there were significant differences in the mean scores for their perceptions 

of engineering utility between the traditional group (M = 5.49, SD = .68) and the pilot group (M 

= 5.32, SD = .95), t(1063) = 2.27, p=.02 (two-tailed). The mean difference was .17 with 95% 

confidence interval (CI) of .02 to .31.   

Fifth, an independent-samples t-test was conducted to assess differences in the 

engineering program belonging mean scores for students in the two groups at the beginning of 

the semester. The data suggest that there were no significant differences in the mean scores for 

their perceptions of engineering identification between the traditional group (M = 4.87, SD = .62) 

and the pilot group (M = 4.94, SD = .63), t(1063) = .58, p = .56 (two-tailed). The mean difference 

was .07 with a 95% confidence interval (CI) of -.07 to .13.   

Sixth, an independent-samples t-test was conducted to assess differences in the 

engineering program expectancy mean scores for students in the two groups at the beginning of 

the semester. The data suggest that there were no significant differences in their perceptions of 

engineering program expectancy between the traditional group (M = 4.83, SD = .69) and the pilot 
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group (M = 4.93, SD = .66), t(1063) = -1.89, p = .06 (two-tailed). The mean difference was -.10 

with a 95% confidence interval (CI) of -.21 to .00.    

Group Mean Differences—End of Semester 
Eleven independent sample t-tests were conducted to compare scores on 11 different constructs 

between students in the traditional and pilot groups at the end of the semester. The results of the 

t-tests are presented in Table 4.8, which includes the names of the constructs, mean scores for the 

two groups, mean differences, t statistics, p values, and 95% confidence intervals (CI). None of 

the 11 t-tests were significant. This suggests that students in the two groups had similar levels of 

perceptions of motivation related beliefs, engineering identification, engineering-related 

motivational factors, and the two intentional variables.   

Table 4.8 

Group Mean Differences Between the Two Groups—End of Semester 

      95% CI 
Variables Traditional 

(Mean) 
Pilot 

(Mean) 
Mean 

Differences 
t p(two-

tailed) 
Lower Upper 

Major Intention 5.39 5.41 -.02 -.29 .77 -.15 .11 

Career Intention 5.13 5.21 -.08 -1.22 .22 -.22 .05 

Engineering 
Identification 

5.17 5.23 -.05 -.92 .36 -.16 .06 

Engineering 
Utility 

5.22 5.25 -.03 -.34 .73 -.19 .13 

Engineering 
Belonging 

4.90 4.98 -.08 -1.62 .11 -.19 .02 

Engineering 
Expectancy 

4.72 4.82 -.10 -1.94 .05 -.21 .00 

Empowerment 4.24 4.20 .04 .52 .60 -.11 .19 

Usefulness 4.08 4.08 .00 .01 .99 -.17 .17 

Success 4.64 4.53 .11 1.63 .10 -.02 .24 

Interest 4.05 3.98 .07 .93 .36 -.09 .24 

Caring 4.98 5.09 -.11 -1.79 .07 -.23 .01 

Note. 95% confidence interval used 
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First, an independent-sample t-test was conducted to assess differences in the mean 

scores of major intention for students in the traditional and pilot groups at the end of the 

semester. The data suggest that there were no significant differences in the mean scores for their 

perceptions of major intention between the traditional group (M = 5.39, SD = .93) and the pilot 

group (M = 5.41, SD = .87), t(781) = -.29, p = .77 (two-tailed). The mean difference was -.02 

with a 95% confidence interval (CI) of -.15 to .11.  The active learning approach did not seem to 

have positively and sufficiently affected students in the pilot group to have higher scores than 

students in the traditional group on major intention. 

Second, an independent-sample t-test was conducted to assess differences in the mean 

scores for career intention between students in the traditional and pilot groups at the end of the 

semester. The data suggest that there were no significant differences in mean scores for their 

perceptions of career intention between the traditional group (M = 5.13, SD = .89) and the pilot 

group (M = 5.21, SD =.81), t(781) = -1.22, p =.22 (two-tailed). The mean difference was -.08 

with a 95% confidence interval (CI) of -.22 to .05.  The active learning approach did not seem to 

have positively and sufficiently affected students in the pilot group to have higher scores than 

students in the traditional group on career intention.  

Third, an independent-sample t-test was conducted to assess differences in the mean 

scores for engineering identification between students in the traditional and pilot groups at the 

end of the semester. The data suggest that there were no significant differences in the mean 

scores for their perceptions of engineering identification between the traditional group (M = 5.17, 

SD = .73) and the pilot group (M = 5.23, SD =.74), t(781) = -.92, p = .36 (two-tailed). The mean 

difference was -.05 with a 95% confidence interval (CI) of -.16 to .06.  The active learning 
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approach did not seem to have positively and sufficiently affected students in the pilot group to 

have higher scores than students in the traditional group on engineering identification. 

Fourth, an independent-sample t-test was conducted to assess differences in the mean 

scores for engineering utility between students in the traditional and pilot groups at the end of the 

semester. The data suggest that there were no significant differences in the mean scores for their 

perceptions of engineering utility between the traditional group (M = 5.22, SD = 1.03) and the 

pilot group (M = 5.25, SD = 1.08), t(781) = -.34, p = .73 (two-tailed). The mean difference was -

.03 with a 95% confidence interval (CI) of -.19 to .13.  The active learning approach did not 

seem to have positively and sufficiently affected students in the pilot group to have higher scores 

than students in the traditional group on engineering utility. 

Fifth, an independent-sample t-test was conducted to assess differences in the mean 

scores for engineering program belonging between students in the traditional and pilot groups at 

the end of the semester. The data suggest that there were no significant differences in the mean 

scores for their perceptions of engineering program belonging between the traditional group (M 

= 4.90, SD = .67) and the pilot group (M = 4.98, SD = .69), t(781) = -1.62, p = .11 (two-tailed). 

The mean difference was -.08 with a 95% confidence interval (CI) of -.19 to .02.  The active 

learning approach did not seem to have positively and sufficiently affected students in the pilot 

group to have higher scores than students in the traditional group on engineering program 

belonging. 

Sixth, an independent-sample t-test was conducted to assess differences in the mean 

scores for engineering program expectancy between students in the traditional and pilot groups at 

the end of the semester. The data suggest that there were no significant differences in the mean 

score for their perceptions of engineering program expectancy between the traditional group (M 
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= 4.72, SD = .77) and the pilot group (M = 4.82, SD = .67), t(781) = -1.94, p = .05 (two-tailed). 

The mean difference was -.11 with a 95% confidence interval (CI) of -.21 to .00.  The active 

learning approach did not seem to have positively and sufficiently affected students in the pilot 

group to have higher scores than students in the traditional group on engineering program 

expectancy. 

Seventh, an independent-sample t-test was conducted to assess differences in the mean 

scores for empowerment between students in the traditional and pilot groups at the end of the 

semester. The data suggest that there were no significant differences in mean scores for their 

perceptions of empowerment between the traditional group (M = 4.24, SD = .98) and the pilot 

group (M = 4.20, SD = 1.00), t(781) = .52, p = .60 (two-tailed). The mean difference was .04 

with a 95% confidence interval (CI) of -.11 to .19.  The active learning approach did not seem to 

have positively and sufficiently affected students in the pilot group to have higher scores than 

students in the traditional group on empowerment. 

Eighth, an independent-sample t-test was conducted to assess differences in the mean 

scores for usefulness between students in the traditional and pilot groups at the end of the 

semester. The data suggest that there were no significant differences in mean scores for their 

perceptions of usefulness between the traditional group (M = 4.08, SD = 1.12) and the pilot 

group (M = 4.08, SD = 1.15), t(781) = .01, p = .99 (two-tailed). The mean difference was .00 

with a 95% confidence interval (CI) of -.17 to .17.  The active learning approach did not seem to 

have positively and sufficiently affected students in the pilot group to have higher scores than 

students in the traditional group on usefulness. 

Ninth, an independent-samples t-test was conducted to assess differences in the mean 

scores for success between students in the traditional and pilot groups at the end of the semester. 
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The data suggest that there were no significant differences in the mean scores for their 

perceptions of success between the traditional group (M = 4.64, SD = .85) and the pilot group (M 

= 4.53, SD = .91), t(781) = 1.63, p = .10 (two-tailed). The mean difference was .11 with a 95% 

confidence interval (CI) of -.02 to .24.  The active learning approach did not seem to have 

positively and sufficiently affected students in the pilot group to have higher scores than students 

in the traditional group on success. 

Tenth, an independent-sample t-test was conducted to assess differences in the mean 

scores for interest between students in the traditional and pilot groups at the end of the semester. 

The data suggest that there were no significant differences in their perceptions of interest 

between the traditional group (M = 4.05, SD = 1.07) and the pilot group (M = 3.98, SD = 1.14), 

t(781) = .93, p = .36 (two-tailed). The mean difference was .08 with a 95% confidence interval 

(CI) of -.09 to .24.  The active learning approach did not seem to have positively and sufficiently 

affected students in the pilot group to have higher scores than students in the traditional group on 

success. 

Eleventh, an independent-sample t-test was conducted to assess differences in the mean 

scores for caring between students in the traditional and pilot groups at the end of the semester. 

The data suggest that there were no significant differences in the mean score for their perceptions 

of caring between the traditional group (M = 4.98, SD = .78) and the pilot group (M = 5.09, SD = 

.77), t(781) = -1.79, p = .07 (two-tailed). The mean difference was -.11 with a 95% confidence 

interval (CI) of    -.23 to .01.  The active learning approach did not seem to have positively and 

sufficiently affected students in the pilot group to have higher scores than students in the 

traditional group on caring. 
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The results of this study did not support the hypothesis that the pilot group would have a 

higher level of motivation at the end of semester as a result of using an active learning approach 

as an instructional technique.   

Normality of Data, EFA, and Measurement Models 
 This section presents information on the normality of data, results of the EFA, and the 

comparisons of different measurement models using chi-square difference tests. This information 

is needed to answer research questions two and three which relate to estimating the structural 

model. It is important to examine the normality of the data to ensure that this assumption has 

been met. The result of such an examination will allow us to determine whether or not any 

correction measures need to be taken, such as Satora Bentler correction, if the normality 

assumption has been violated. This correction can be made adding ROBUST ESTIMATION in 

the syntax when estimating both the measurement and structural models. Similarly, EFA was 

conducted on the estimation sample to determine the factor structure, which was then confirmed 

on the validation sample. Based on the results of the EFA and the correlations among the latent 

variables, five different measurement models have been estimated with the 11 latent variables 

used as the baseline model. The most viable model among the five was then cross-validated with 

the pilot sample.   

Normality of Data 
Skewness and kurtosis are measures of normality. For the traditional group, skewness 

ranged between -.42 and -2.33, and kurtosis ranged between -.231 and 7.48. On the other hand, 

for the pilot group, skewness ranged between -.02 and -1.1 and kurtosis ranged between -.1 and 

.11. There does not appear to be a clear consensus on an acceptable level of nonnormality. 

However, univariately, it was found that major problems arise when univariate skewness and 

kurtosis exceed two and seven, respectively (Curan, West, & Finch, 1996; Muthen & Kaplan 
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1992). In this study, however, only one variable (MI1—Major Intention 1) had skewness and 

kurtosis over two and seven.  

 Rating scale data are widely used in social sciences. Likert scales output is often 

considered as an interval scale even though it is more of an ordinal scale in stricter sense 

(Malhotra, 1996). However, this practice is considered acceptable because it occurs quite often in 

social sciences research (Kinnear & Taylor, 1991). According to Stewart, Barnes, Cote, Cudeck, 

and Malthouse (2001), variables rarely follow normal distribution. The data that come from 

ordinal scales are usually not normal (Stewart et al., 2001; Hancock, 2014). If the normality 

assumption is not severely violated, Maximum Likelihood (ML) estimation method yields 

reasonable results (Bollen, 1989; Hancock, 2014). In the case of severe normality issue, Satorra-

Bentler corrections could be used, but in this study this correction was not used based on the 

univariate skewness and kurtosis values of each variable.  

Exploratory Factor Analysis 
 Table 4.9 represents the factor loadings of 26 items of the MUSIC Model of Academic 

Motivation. The 26 items of the MUSIC scale were subjected to principal component analysis 

(PCA) via SPSS 22.0. The results show the existence of four components as opposed to five 

components after promax rotation, specifically, usefulness items and interest items loaded onto a 

single factor. The four components explained 70.96% of the variance. The results of this study 

do not support the use of a five factor MUSIC scale because usefulness and interest items loaded 

onto a single factor. However, usefulness and interest are theoretically distinct constructs (Jones, 

2009). Further, the five-factor MUSIC scale has been validated (Jones & Skaggs, 2012). 

Therefore, it was decided to confirm and compare the five-factor model with four-factor model 

by collapsing usefulness and interest into one factor.  
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Table 4.9 (p. 74-75) 
 
Factor Loadings for Exploratory Factor Analysis with Promax Rotation of the MUSIC Model of 
Academic Motivation (n=273—Estimation Sample) 
Variables No. of 

Items 
Factor 
Loadings 

Scale 
Alpha 

Variance 
Explained (%) 

Usefulness Items: 5  .93 43.75 
      In general, the coursework was useful to me.    .96   
      The coursework was beneficial to me.    1.01   
      I found the coursework to be relevant to my future.    .79   
      I will be able to use the knowledge I gained in this  
      course.   

 .81   

      The knowledge I gained in this course is important  
      for my future.   

 .86   

Interest Items: 6    
      The coursework held my attention.  .92 .93  
      The instructional methods used in this course held  
      my attention. 

 .73   

      I enjoyed the instructional methods used in this  
      course.  

 .58   

      The instructional methods engaged me in the  
      course. 

 .66   

      I enjoyed completing the coursework.  .77   
      The coursework was interesting to me.  .84   
Caring Items: 6  .91 14.36 
      The instructor was available to answer my  
      questions about the coursework. 

 .77   

      The instructor was willing to assist me if I needed  
       help in the course. 

 .87   

      The instructor cared about how well I did in this  
      course. 

 .82   

      The instructor was respectful of me.   .84   
      The instructor was friendly.  .86   
      I believe that the instructor cared about my  
      feelings. 

 .89   

Empowerment Items: 5  .87 7.27 

      I had the opportunity to decide for myself how to  
      meet the course goals.   

 .63   

      I had the freedom to complete the coursework my  
      own way.   

 .86   

      I had options in how to achieve the goals of the  
      course.   

 .80   

      I had control over how I learned the course content.    .83   

      I had flexibility in what I was allowed to do in this  
      course.   

 .84   

Success Items: 4  .87 5.57 
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      I was confident that I could succeed in the  
      coursework. 

 .88   

      I felt that I could be successful in meeting the 
      academic challenges in this course. 

 .72   

      I was capable of getting a high grade in this course.  .92   

      Throughout the course, I felt that I could be  
      successful on the coursework. 

 .83   

Note. Factor loadings < .40 are suppressed.  

 
Table 4.10 represents the factor loadings of 20 items of engineering identification and 

three engineering-related motivational factors (engineering utility, engineering program 

belonging, and engineering program expectancy).  The scale originally had 23 items, but all the 

three negatively worded items measuring engineering program belonging loaded onto a factor 

that was different from the rest of the items. Therefore, the three negatively worded items were 

excluded in the revised model. The extraction method and rotation method used were PCA and 

promax, respectively via SPSS 22.0.  The four components explained 68.52% of the variance 

with component 1 contributing 37.76%, component 2 contributing 15.16%, component 3 

contributing 9.10%, and component 4 contributing 6.5%. The correlations between the four 

factors were positive and ranged between small and medium.   

Table 4.10 (p. 75-76) 
 
Factor Loadings for Exploratory Factor Analysis with Promax Rotation of Engineering Identification and 
Three Engineering-Related Motivational Factors (n=273—Estimation Sample) 
Variables No. of 

Items 
Factor 
Loadings 

Scale 
Alpha 

Variance 
Explained (%) 

Engineering Utility Items: 6  .90 37.76 
      Knowing about engineering does not   
      benefit me at all. 

 .79   

      I see no point in me being able to do  
      engineering. 

 .90   

      Having a solid background in engineering is  
      worthless to me. 

 .87   

      I have little to gain by learning how to do  
      engineering.  

 .84   

      After graduation, an understanding of  
      engineering will be useless to me. 

 .85   

      I do not need engineering in my everyday life.  .65   
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Engineering Program Expectancy Items: 5  .90 15.16 
      Compared to other engineering students, I  
      expect to do well in my engineering-related  
      courses this year. 

 .86   

      I think that I will do well in my engineering- 
      related courses this year. 

 
 

.89   

      I am good at math, science, and engineering.  .77   
      Compared to other engineering students, I  
      have high engineering-related abilities. 

 .76   

      I have been doing well in my engineering- 
      related courses this year. 

 .89   

Engineering Identification Items: 4  .88 9.10 

      Being good at engineering is an important  

      part of who I am.  

 .86   

      Doing well on engineering tasks is very 

      important to me. 

 .93   

      Success in engineering school is very  
      valuable to me. 

 .87   

      It matters to me how well I do in engineering 
      school. 

 .67   

Engineering Program Belonging Items: 5  .77 6.50 

      I feel like a real part of the General  
      Engineering program. 

 .43   

      People in the General Engineering program  
      are friendly to me. 

 .82   

      I am treated with as much respect as other  
      students in the General Engineering program. 

 .82   

      The instructors in the General Engineering  
      program respect me. 

 .72   

      I feel proud of belonging in the General 
      Engineering program 

 .48   

Note. Factor loadings < .40 are suppressed.  

Table 4.11 represents the factor loadings of the two intention variables, major intention 

and career intention. They loaded onto a single factor. The amount of variance explained was 

75.05. The extraction method and rotation method used were PCA and promax, respectively via 

SPSS 22.0. The four items did not load onto two factors as expected. Therefore, two 

measurement models were estimated to compare the model-data fit: one where the two variables 

were considered as distinct and the other where two variables were considered as a single factor.   
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Table 4.11 
 
Factor Loadings for Exploratory Factor Analysis with Promax Rotation of the Major Intention and 
Career Intention (n=273—Estimation Sample) 
Variables No. of 

Items 
Factor 
Loadings 

Scale 
Alpha 

Variance 
Explained (%) 

Major/Career Intention Items: 4  .89 75.05 

      I plan to continue on in an engineering major.  .89   

      I  don’t  intend  to  change  my  major from 
      engineering to a non-engineering major. 

 .84   

      My eventual career will directly relate to  
      engineering. 

 .88   

      In the future, I will have a career that requires  
      me to have engineering skills. 

 .85   

 

Measurement Models Compared and Cross-Validated 
 Five measurement models were estimated and compared against the baseline 

measurement model (model 1) with 11 latent variables. The fit indices of the three major index 

classes for the five measurement models and the chi-square difference tests are presented in 

Table 4.12.  In two of the measurement models, usefulness and interest were collapsed into a 

single factor in model 2 and major and career intentions were collapsed in model 3 based on their 

factor loadings in EFA. In model 4, empowerment and interest were collapsed into a single 

factor based on their high correlations as presented in Tables 4.4 and 4.6. Model five is similar to 

the baseline model except the errors of usefulness items one and two were allowed to covary. 

This model was estimated for two reasons. First, the loading of usefulness item two in the EFA 

was over 1, which is problematic as it could be a sign of multicollinearity. Second, the 

modification indices of the baseline model suggested achieving the highest decrease in chi-

square value by correlating the errors of usefulness items one and two. Therefore, a decision to 

revise the measurement model was made because the results of the EFA and modification indices 

of the baseline measurement model were consistent. In other words, the model modification was 

theoretically and statistically reasonable. The issue of correlated errors could arise when the 
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items  are  “very  similarly  worded,  reverse  worded,  or  differentially  prone  to  social  desirability  

and so forth”  (Brown,  2006,  p.  181).  In  this  case,  the  two  items  appear  to  be  “similarly  worded.”  

The two items are: (1) In general, the coursework was useful to me (usefulness item 1), and (2) 

the coursework was beneficial to me (usefulness item 2).  

Results of the five measurement models were presented in Table 4.12, specifically their 

fit indices and chi-square difference tests. By collapsing two latent variables in models two 

(usefulness and interest were combined as a single factor), three (major intention and career 

intention were combined as a single factor), and four (empowerment and interest were combined 

as a single factor), the degrees of freedom increased by 10 each. For 10 degrees of freedom, the 

chi-square value of 18.307 is significant at the .05 level. The differences in chi-square values in 

the three models as compared to the baseline model were all greater than 18.307. Therefore, the 

less constraint baseline measurement model was better than models two, three, and four in 

explaining covariation in the data. The more constrained measurement  

Table 4.12 (p. 78-79) 

Chi-Square Difference Tests and Fit Indices of Competing Measurement Models 

Models χ2 Df Δ  χ2 Δ  Df SRMR RMSEA CFI 

(1) Baseline measurement 
model (11 latent variables) 

3463.57 1120   .056 .062 .971 

(2) Usefulness and Interest 
Combined (10  latent variables) 

3616.02 1130 152.54 10 .057 .064 .967 

(3) Major and career intentions 
combined (10 latent variables) 

3698.65 1130 235.08 10 .057 .065 .968 

(4) Empowerment and interest 
combined (10 latent variables) 

3896.15 1130 432.58 10 .058 .067 .966 
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(5) Errors of use1 and use2 
covary (11latent variables) 

3322.97 1119 140.60 1 .057 .060 .973 

 

models two, three, and four would have been better if the increase in chi-square values were less 

than 18.307 for an increase of 10 degrees of freedom. However, model five, which is similar to 

the baseline measurement model except for the covarations of the errors between usefulness 

items one and two, was better than the baseline measurement model. One degree of freedom was 

lost, as compared to the baseline model, in model five because one additional parameter was 

added. For one degree of freedom, the chi-square value of 3.841 is significant at the .05 level. In 

this study, for the loss of one degree of freedom, the chi-square went down by 140.60. Further, 

its RMSEA was less by .001 and CFI was greater by .002 compared to the baseline model. 

Therefore, model five provided a better fit to the data than the baseline model and it can be 

described  as  “one  tenable  explanation  for  the associations  observed  in  the  data”  (Mueller  &  

Hancock,  2008,  p.  506).  This  model  was,  therefore,  accepted  as  a  “good  explanation  of  our  data”  

(Keith, Hallam, Fine, 2004).  

The multiple squared correlation coefficients ranged between .36 and .93 and are 

presented in Table 4.13. This refers to the amount of variance explained in the dependent 

variable by an independent variable or a group of them. In the context of the measurement 

model, it refers to the amount of variance explained in the observed variables by their respective 

latent variables. The factor loadings of the measurement model ranged between .60 and .91 and 

are presented in Table 4.13. After respecifying the measurement model with one correlated error 

between usefulness items one and two, the modification indices further suggested correlating 

error variances, for example, between caring items one and two. However, it was decided against 

making further modification to the measurement model for three reasons. First, the fit indices 
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were within the acceptable range. Second, MacCallum, Roznowski, and Necowitz (1992) noted 

that respecifying a model that provides a good fit to the data may obtain better fit but increases 

the  likelihood  of  “fitting  small  idiosyncratic  characteristics  of  the  sample”  (p.  501). Third, 

Schumacker and Lomax (2010) advised against making changes to the initial model without 

substantive theoretical justification.  

Table 4.13 (p. 80-82) 

Factor Loadings for Confirmatory Factor Analysis of the MUSIC Model of Academic Motivation 
(n=539—Validation Sample) 
Variables No. of 

Items 
Factor 
Loadings 

Squared Multiple 
Correlation Coefficients 

Empowerment Items: 5   

      I had the opportunity to decide for myself how 
      to meet the course goals.   

  .75 .56 

      I had the freedom to complete the coursework   
      my own way.   

 .81 .66 

      I had options in how to achieve the goals of the  
      course.   

 .89 .78 

      I had control over how I learned the course  
      content.   

 .78 .61 

      I had flexibility in what I was allowed to do in  
      this course.   

 .81 .65 

Usefulness Items: 5   
      In general, the coursework was useful to me.    .88 .77 
      The coursework was beneficial to me.    .86 .74 
      I found the coursework to be relevant to my  
      future.   

 .85 .72 

      I will be able to use the knowledge I gained in  
      this course.   

 .89 .79 

      The knowledge I gained in this course is  
      important for my future.   

 .88 .77 

Success Items: 4   
      I was confident that I could succeed in the  
      coursework. 

 .82 .67 

      I felt that I could be successful in meeting the 
      academic challenges in this course. 

 .82 .67 

      I was capable of getting a high grade in this 
      course. 

 .79 .63 

      Throughout the course, I felt that I could be  
      successful on the coursework. 

 .85 .72 

Interest Items: 6   
      The coursework held my attention.  .83 .69 
      The instructional methods used in this course   .83 .70 
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      held my attention. 
      I enjoyed the instructional methods used in this  
      course.  

 .81 .65 

      The instructional methods engaged me in the  
      course. 

 .85 .72 

      I enjoyed completing the coursework.  .85 .72 
      The coursework was interesting to me.  .86 .73 
Caring Items: 6   
      The instructor was available to answer my  
      questions about the coursework. 

 .76 .57 

      The instructor was willing to assist me if I  
       needed help in the course. 

 .82 .68 

      The instructor cared about how well I did in  
      this course. 

 .75 .56 

      The instructor was respectful of me.   .82 .68 
      The instructor was friendly.  .84 .71 
      I believe that the instructor cared about my  
      feelings. 

 .81 .65 

    

  

Variables No. of 
Items 

Factor 
Loadings 

Squared Multiple 
Correlation Coefficients 

Engineering Identification Items: 4   

      Being good at engineering is an important  

      part of who I am.  

 .70 .49 

      Doing well on engineering tasks is very 

      important to me. 

 .82 .67 

      Success in engineering school is very  
      valuable to me. 

 .85 .72 

      It matters to me how well I do in engineering 
      school. 

 .78 .61 

Engineering Utility Items: 6   
      Knowing about engineering does not   
      benefit me at all. 

 .83 .69 

      I see no point in me being able to do  
      engineering. 

 .91 .83 

      Having a solid background in engineering is  
      worthless to me. 

 .92 .85 

      I have little to gain by learning how to do  
      engineering.  

 .95 .90 

      After graduation, an understanding of  
      engineering will be useless to me. 

 .91 .84 

      I do not need engineering in my everyday life.  .79 .63 
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Engineering Program Belonging Items: 5   

      I feel like a real part of the General  
      Engineering program. 

 .65 .42 

      People in the General Engineering program  
      are friendly to me. 

 .68 .46 

      I am treated with as much respect as other  
      students in the General Engineering program. 

 .70 .49 

      The instructors in the General Engineering  
      program respect me. 

 .70 .50 

      I feel proud of belonging in the General 
      Engineering program 

 .60 .36 

Engineering Program Expectancy Items: 5   
      Compared to other engineering students, I  
      expect to do well in my engineering-related  
      courses this year. 

 .82 .68 

      I think that I will do well in my engineering- 
      related courses this year. 

 
 

.88 .77 

      I am good at math, science, and engineering.  .72 .52 
      Compared to other engineering students, I  
      have high engineering-related abilities. 

 .71 .50 

      I have been doing well in my engineering- 
      related courses this year. 

 .85 .72 

    

 

Variables No. of 
Items 

Factor 
Loadings 

Squared Multiple 
Correlation Coefficients 

Major Intention Items: 2   

      I plan to continue on in an engineering major.  .96 .93 

      I  don’t  intend  to  change  my  major  from 
      engineering to a non-engineering major. 

 .83 .69 

Career Intention Items: 2   

      My eventual career will directly relate to  
      engineering. 

 .88 .78 

      In the future, I will have a career that requires  
      me to have engineering skills. 

 .89 .79 

 

Measurement model five as presented in Table 4.12 was estimated using the validation 

sample (2/3 of the traditional group) and was then cross-validated with the pilot group. 

Schumacker and Lomax (2010) advocated using a different set of data to validate the modified 

model. The fit indices of the three major index classes for the measurement model is presented in 
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Table 4.14 and the results demonstrate that the measurement model was successfully replicated 

with an independent sample as the values of the fit indices met the requirements of the cut-off 

score criteria for good model-data fit based on the three major index classes. 

Table 4.14 

Fit Indices of the Measurement Model—Cross-Validation Sample (Pilot Group) 

Model χ2 Df SRMR RMSEA CFI 

Measurement 
Model 

2559.099 1119 .069 .073 .955 

 

The multiple squared correlation coefficients ranged between .35 and .95 and are 

presented in Table 4.15. This refers to the amount of variance explained in the dependent 

variable by an independent variable or a group of them. In the context of the measurement 

model, it refers to the amount of variance explained in the observed variables by their respective 

latent variables.  

 The factor loadings of the measurement model ranged between .59 and .97 and are 

presented in Table 4.15. There was some room for improvement in the measurement model with 

the pilot data based on the modification indices. However, it was decided against modifying the 

model for the three reasons listed earlier.  

Table 4.15 (p. 83-86) 

Factor Loadings for Confirmatory Factor Analysis of the MUSIC Model of Academic Motivation 
(n=242—Pilot Group) 
Variables No. of 

Items 
Factor 
Loadings 

Squared Multiple 
Correlation Coefficients 

Empowerment Items: 5   

      I had the opportunity to decide for myself how 
      to meet the course goals.   

  .77 .59 

      I had the freedom to complete the coursework   
      my own way.   

 .83 .69 

      I had options in how to achieve the goals of the   .87 .75 
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      course.   
      I had control over how I learned the course  
      content.   

 .80 .64 

      I had flexibility in what I was allowed to do in  
      this course.   

 .79 .63 

Usefulness Items: 5   
      In general, the coursework was useful to me.    .88 .77 
      The coursework was beneficial to me.    .90 .81 
      I found the coursework to be relevant to my  
      future.   

 .87 .76 

      I will be able to use the knowledge I gained in  
      this course.   

 .86 .74 

      The knowledge I gained in this course is  
      important for my future.   

 .86 .74 

Success Items: 4   
      I was confident that I could succeed in the  
      coursework. 

 .85 .73 

      I felt that I could be successful in meeting the 
      academic challenges in this course. 

 .83 .69 

      I was capable of getting a high grade in this 
      course. 

 .81 .65 

      Throughout the course, I felt that I could be  
      successful on the coursework. 

 .84 .71 

Interest Items: 6   
      The coursework held my attention.  .79 .63 
      The instructional methods used in this course  
      held my attention. 

 .82 .68 

      I enjoyed the instructional methods used in this  
      course.  

 .83 .68 

      The instructional methods engaged me in the  
      course. 

 .86 .75 

      I enjoyed completing the coursework.  .86 .74 
      The coursework was interesting to me.  .86 .75 
Caring Items: 6   
      The instructor was available to answer my  
      questions about the coursework. 

 .70 .48 

      The instructor was willing to assist me if I  
       needed help in the course. 

 .77 .60 

      The instructor cared about how well I did in  
      this course. 

 .72 .52 

      The instructor was respectful of me.   .86 .74 
      The instructor was friendly.  .86 .74 
      I believe that the instructor cared about my  
      feelings. 

 .85 .73 

    

  

Variables No. of 
Items 

Factor 
Loadings 

Squared Multiple 
Correlation Coefficients 
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Engineering Identification Items: 4   

      Being good at engineering is an important  

      part of who I am.  

 .72 .52 

      Doing well on engineering tasks is very 

      important to me. 

 .87 .75 

      Success in engineering school is very  
      valuable to me. 

 .91 .83 

      It matters to me how well I do in engineering 
      school. 

 .83 .68 

Engineering Utility Items: 6   
      Knowing about engineering does not   
      benefit me at all. 

 .89 .79 

      I see no point in me being able to do  
      engineering. 

 .97 .93 

      Having a solid background in engineering is  
      worthless to me. 

 .92 .85 

      I have little to gain by learning how to do  
      engineering.  

 .97 .95 

      After graduation, an understanding of  
      engineering will be useless to me. 

 .90 .81 

      I do not need engineering in my everyday life.  .78 .61 
Engineering Program Belonging Items: 5   

      I feel like a real part of the General  
      Engineering program. 

 .59 .35 

      People in the General Engineering program  
      are friendly to me. 

 .80 .65 

      I am treated with as much respect as other  
      students in the General Engineering program. 

 .74 .55 

      The instructors in the General Engineering  
      program respect me. 

 .65 .42 

      I feel proud of belonging in the General 
      Engineering program 

 .59 .35 

Engineering Program Expectancy Items: 5   
      Compared to other engineering students, I  
      expect to do well in my engineering-related  
      courses this year. 

 .76 .57 

      I think that I will do well in my engineering- 
      related courses this year. 

 
 

.88 .78 

      I am good at math, science, and engineering.  .63 .40 
      Compared to other engineering students, I  
      have high engineering-related abilities. 

 .61 .37 

      I have been doing well in my engineering- 
      related courses this year. 

 .71 .51 
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Variables No. of 
Items 

Factor 
Loadings 

Squared Multiple 
Correlation Coefficients 

Major Intention Items: 2   

      I plan to continue on in an engineering major.  .90 .80 

      I  don’t  intend  to  change  my  major  from 
      engineering to a non-engineering major. 

 .90 .79 

Career Intention Items: 2   

      My eventual career will directly relate to  
      engineering. 

 .85 .72 

      In the future, I will have a career that requires  
      me to have engineering skills. 

 .87 .75 

 

Structural Models 
This section pertains to research questions two and three. These two research questions 

investigate the tenability of the domain identification model, specifically causality hypothesized 

among the variables as presented in Figure 1. In the model being tested, it was hypothesized that 

students’  motivation-related beliefs would predict engineering identification and three 

engineering-related motivational factors. The engineering identification and three engineering-

related motivational factors in turn are hypothesized to predict students’  engineering  major  

intention and engineering career intention. The structural model that provided the best fit to the 

validation sample after making modifications to the initial model was then cross-validated with 

the pilot data.  The modification process and the final model are presented first, followed by 

discussions on the effects of exogenous latent constructs on the first set of endogenous constructs 

(elements of the gamma matrix), and the effects of the first set of endogenous latent variables on 

the second set of endogenous constructs (elements of the beta matrix).   
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Traditional Group 
For the traditional group, the first structural model estimated was the model presented in 

Figure 1. This was the initial hypothesized model. A second structural model was estimated and 

compared against the first model. An additional parameter was added in the second model, 

specifically major intention was hypothesized to predict career intention. Thereafter, one 

parameter each was deleted in the subsequent models. Each model was compared with its 

immediate subsequent model using a chi-square difference test and the three fit indices. Table 

4.16 presents the chi-square difference test and the fit indices of the competing structural models.  

Table 4.16 

Chi-Square Difference Tests and Fit Indices of Competing Structural Models (p. 87-88) 

Models χ2(df) Df Δ  χ2 Δ  Df SRMR RMSEA CFI 

(1) Initial Model 3614.33 1136   .075 .063 .969 

(2) Path from Major to Career 
Added 

 

3512.49 1135 101.84 1 .074 .062 .971 

(3) Path from Expectancy to 
Career deleted 

3512.56 1136 .07 1 .074 .062 .971 

(4) Path from Belonging to 
Career deleted 

3512.73 1137 .17 1 .074 .062 .971 

(5) Path from Empowerment to 
Belonging deleted 

3512.75 1138 .02 1 .074 .062 .971 

(6) Path from Interest to 
Expectancy deleted 

3512.95 1139 .20 1 .074 .062 .971 

(7) Path from Usefulness to 
Belonging deleted 

3513.23 1140 .28 1 .074 .062 .971 
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(8) Path from Interest to Utility 
deleted 

3513.78 1141 .55 1 .074 .062 .971 

(9) Path from Usefulness to 
Expectancy deleted 

3514.53 1142 .75 1 .074 .062 .971 

(10) Path from Usefulness to 
Identification deleted 

3515.45 1143 .92 1 .074 .062 .971 

(11) Path from Caring to 
Expectancy deleted 

3517.88 1144 2.43 1 .074 .062 .971 

(12) Path from Usefulness to 
Utility deleted 

3520.79 1145 2.91 1 .075 .062 .971 

(13) Path from Empowerment to 
Identification deleted 

3524.35 1146 3.56 1 .075 .062 .971 

 

A parameter added in model two was a path from major intention to career intention. This 

makes theoretical sense because it is imperative for an individual to possess an engineering 

degree to pursue an engineering career. For loss of one degree of freedom, the chi-square value 

went down by 101.84 which was statistically significant at the .05 level. Further, the values of 

SRMR and RMSEA went down by .001 each while the value of CFI went up by .002. All these 

changes indicate that the proposed structural model two provided a better fit to the observed data 

compared to the initial model. Therefore, this model makes sense not just theoretically, but also 

statistically.   

However, not all of the hypothesized relationships among the latent variables were 

supported in model two. In other words, some of the path coefficients were significant as 

expected, while others were not. Further, the initial hypothesized model was close to a fully 

saturated model. Therefore, a series of modifications were made to model two, specifically, 

deleting path coefficients that were insignificant, one at a time, to arrive at a parsimonious 
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model. The path coefficients that had the lowest z values were deleted first. The output of model 

two showed that 13 path coefficients were not significant. However, in the final model, 11 path 

coefficients were excluded because two of the coefficients became significant after deleting 

insignificant path coefficients. Those two path coefficients were: (1) association between interest 

and engineering identification, and (2) association between empowerment and engineering 

program expectancy.  Eleven deleted parameters were reflected in models three through 11. The 

final structural model for the traditional group with standardized path coefficients are presented 

in Figure 4.1.  

Empowerment

Success

Interest

Caring

Engineering 
Identification

Engineering 
Utility

Engineering 
Belonging

Engineering 
Expectancy

Major Intention

Career Intention

-.127

.261

.369

-.185

.114

.728

.128

.213

.449

.285
.161

.529

.187

-.119

.315

.579
.079

.413

           

Figure 4.1. Final structural model-traditional group. 

In model three, a model was estimated again excluding the path from engineering 

program expectancy to career intention. That path had the lowest z value. For an increase of one 
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degree of freedom, the increase in chi-square value was less than 3.84. The three fit indices were 

similar between the two models. Therefore, the more parsimonious model three was better than 

model two. This pattern was consistent throughout the rest of the models. Beginning with model 

three, one parameter was excluded in each subsequent model. The chi-square value did not 

increase by more than 3.84 in any of the subsequent models. Based on chi-square difference tests 

and the three fit indices, model 13 was considered to be the best fitting and most parsimonious 

model explaining relations in the data reasonably well. All the hypothesized relationships in 

structural model 13 were significant.   

Pilot Group 
The model 13 estimated and presented in Table 4.16 was then cross-validated with the 

pilot data. The final structural model for the pilot group with standardized path coefficients are 

presented in Figure 4.2.  
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Empowerment

Success

Interest

Caring

Engineering 
Identification

Engineering 
Utility

Engineering 
Belonging

Engineering 
Expectancy

Major Intention

Career Intention

-.283

.351

.276

-.377

.018

.566

.005

.158

.414

.174
-.029

.479

.128

.101

.474

.585
.033

.416

 Figure 4.2. Final structural model—pilot group. 

The fit indices of the cross-validation are presented in Table 4.17. The fit indices 

presented in Table 4.17 suggest a successful replication of the proposed model estimated with 

the traditional sample. The value of SRMR suggest a mediocre fit. However, the values of 

RMSEA and CFI indicate an adequate model-data fit. Schumacker and Lomax (2010) noted that 

the proposed model can be considered as being supported by the observed data if majority of the 

fit indices used for the study have adequately met the cut-off criteria for an acceptable model. In 

the case of the pilot data, two out of three fit indices indicate an acceptable model.   
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Table 4.17 

Structural Model Validated on the Pilot Group 

Models χ2 Df SRMR RMSEA CFI 

(2) Structural Model  

 

2704.899 1146 .097 .075 .952 

 

Research Question 2 
Traditional group. Research question two focuses on the effect of the five MUSIC 

elements on engineering identification and three engineering-related motivational factors. Table 

4.18 presents the path coefficients and their standard errors along with the variances explained 

(R2). Of the five MUSIC elements, success, interest, and caring significantly predicted 

engineering identification. Controlling for other independent variables, empowerment and 

usefulness were not significant in predicting engineering identification. Therefore, these two 

variables were deleted from the final model to predict engineering identification. Success, 

interest, and caring together accounted for 27% of the variation in engineering identification. 

Engineering utility was significantly predicted by empowerment, success, and caring. The three 

explanatory variables accounted for 13.2% of the variance in engineering utility. The coefficient 

of empowerment was significant, however, it was not in the expected direction. Coefficients of 

usefulness and interest were not statistically significant while controlling for other elements of 

the MUSIC model. Therefore, these two variables were excluded from the final model to predict 

engineering program utility. Success, interest, and caring significantly predicted variation in 

engineering program belonging and the three independent variables explained 53.4% of the 

variation in engineering program belonging. Empowerment and usefulness were deleted from the 

final model to predict engineering program belonging. Success and interest were the only 
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MUSIC elements to significantly predict engineering program expectancy and these two 

independent variables accounted for 49.2% of the variation in engineering program expectancy. 

The other three MUSIC elements were excluded from the final model to predict engineering 

program expectancy.      

Table 4.18 

Path Coefficients, Standard Errors, and R2 – Traditional Group 

 Empowerment Usefulness Success Interest Caring R2 

Engineering 
Identification 

- - .261* 

(.054) 
4.951 

.128* 
(.036) 
3.525 

.161* 

(.049) 
3.323 

.270 

Engineering 
Program 
Utility 

-.185* 

(.066) 
-2.815 

- .369* 

(.072) 
5.095 

- .285* 

(.069) 
4.134 

.132 

Engineering 
Program 
Belonging 

- - .114* 

(.047) 
2.452 

.213* 
(.035) 
6.074 

.449* 

(.053) 
8.512 

.534 

Engineering 
Program 
Expectancy 

-.127* 
(.042) 
-3.023 

- .728* 

(.054) 
13.563 

- - .492 

 

Overall, of the five MUSIC elements, success and caring were significant in accounting 

for variances in engineering identification and three engineering-related motivational factors. 

Success had the highest effect on engineering identification, engineering program utility, and 

engineering program expectancy, while caring had the highest influence on engineering program 

belonging. In the final model, controlling for the other four MUSIC elements, usefulness was not 

significant in predicting engineering identification and three engineering-related motivational 

factors. Therefore, usefulness was not a part of any of the structural equations in the final model 

to predict the endogenous constructs related to engineering.  The variance explained for the 
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engineering identification and three engineering-related motivational factors ranged between 

.132 and .534. Theoretically, the inverse relationships between empowerment and engineering 

program utility, and empowerment and engineering program expectancy were hard to explain.  

However, signs of the coefficients could change depending on the variables included in the 

model and also because of high correlations among the independent variables (Keith, 2006). 

Multicollinearity could cause problems, such as negative coefficients, standardized regression 

coefficients greater than 1, and inflated standard errors. (Keith, 2006; Meyers, Gamst, & 

Guarino, 2006; Pedhazur & Schmelkin, 1991). The discussion of negative coefficients and 

multicollinearity are applicable to the next sub-section, specifically, the pilot group. The same 

discussions are also applicable to the two sub-sections under research question three.  

Pilot group. The pilot group was used to validate the modified structural model 13. Table 

4.19 presents the path coefficients and their standard errors along with the variances explained. 

In the case of pilot group, success was the only significant predictor of engineering identification 

and the three independent variables, which accounted for 20.2% of the variance in the dependent 

variable. Engineering program utility was significantly predicted by empowerment and success, 

but the three independent variables explained only 5% of the variation in the dependent variable. 

Interest and caring were the only explanatory variables that significantly predicted engineering 

program belonging. Taken simultaneously, success, interest, and caring accounted for 37.2% of 

the variation in engineering program belonging. The coefficients of empowerment and success 

were significant for engineering program expectancy and the two independent variables together 

explained 36.6% of the variation in engineering program expectancy.  

Not all of the path coefficients were significant in the cross-validation sample. One of the 

possible reasons could be differences in a sample size. Therefore, the cross-validation of the 
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revised and final model was done again on the pilot group but by increasing N to 539 to match 

the  traditional  group’s  sample  size.  With  an  increased  sample  size,  two  more  paths  became  

significant, specifically the associations between engineering program belonging and major 

intention, and caring and utility. Two of the empowerment coefficients were negative and  

Table 4.19 

Path Coefficients, Standard Errors, and R2 – Pilot Group 

 Empowerment Usefulness Success Interest Caring R2 

Engineering 
Identification 

- - .351* 

(.069) 
5.063 

.005 
(.058) 
.079 

-.029 
(.072) 
-.408 

.202 

Engineering 
Program 
Utility 

-.377* 
(.136) 
-2.783 

- .276* 
(.111) 
2.488 

- .174 

(.124) 
1.402 

 

.050 

Engineering 
Program 
Belonging 

- - .018 
(.056) 
.326 

.158* 
(.053) 
2.987 

.414* 
(.079) 
5.193 

.372 

Engineering 
Program 
Expectancy 

-.283* 

(.075) 
-3.782 

- .566* 

(.075) 
7.497 

- - .366 

 

significant as they were with the validation sample. Except for a slight difference in the variance 

explained between the two groups for engineering program utility, the amount of variance 

explained for the other three variables are similar in the two groups. Like in the case of the 

traditional group, success and caring were the best predictors of engineering identification, 

engineering program utility, and engineering program expectancy for the pilot group.   
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Research Question 3 
 Research question three pertains to examining the relationships between engineering 

identification and three engineering-related motivational factors and the two intention variables 

(major intention and career intention). 

 Traditional group. Table 4.20 presents the path coefficients and their standard errors 

along with the variances explained for the final two latent outcome variables. Major intention  

Table 4.20 

Path Coefficients, Standard Errors, and R2 – Traditional Group 

 Major 
Intention 

Engineering 
Identification 

Engineering 
Program 
Utility 

Engineering 
Program 

Belonging 

Engineering 
Program 

Expectancy 

R2 

Major 
Intention 

- .529* 

(.054) 
9.886 

.187* 

(.031) 
6.006 

-.119* 

(.051) 
-2.347 

.315* 

(.046) 
6.921 

.445 

Career 
Intention 

.579* 

(.054) 
10.749 

.413* 

(.058) 
7.183 

079* 

(.032) 
2.472 

- - .635 

 

was significantly predicted by all of its independent variables. In this equation, engineering 

identification had the highest coefficient meaning that the value of engineering domain to 

students’  sense  of  self  is  a  better  predictor  of  major  intention  and  career  intention.  In  the  same  

equation, the coefficient of engineering program belonging was negative which is perhaps due to 

collinearity. The four independent variables explained 44.5% of the variations in major intention. 

Career intention, on the other hand, was significantly predicted by all of its independent variables 

except engineering program belonging and engineering program expectancy. Therefore, these 

variables were deleted in the final model to predict career intention. The three independent 
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variables accounted for 63.5% of the variance for career intention. In this equation, major 

intention had the highest coefficient followed by engineering identification.  

 Pilot group. The pilot group was used as the validation sample. Table 4.21 presents the 

path coefficients and their standard errors along with the variances explained for the final two 

latent outcome variables. The coefficients of all the independent variables except for engineering 

program belonging were statistically significant and the four independent variables together 

accounted for 50.6% of the variation in major intention. Engineering identification had the 

highest effect on major intention, controlling for three engineering-related motivational factors.  

Table 4.21 

Path Coefficients, Standard Errors, and R2 – Pilot Group 

 Major 
Intention 

Engineering 
Identification 

Engineering 
Program 
Utility 

Engineering 
Program 

Belonging 

Engineering 
Program 

Expectancy 

R2 

Major 
Intention 

- .479* 

(.073) 
6.522 

.128* 

(.039) 
3.228 

.101 
(.073) 
1.386 

.474* 
(.075) 
6.305 

.506 

Career 
Intention 

.585* 

(.070) 
8.347 

.416* 

(.075) 
5.627 

.033 
(.035) 
.948 

- - .756 

 

Engineering program belonging was not statistically significant in explaining variations in major 

intention when the effects of the other three variables were statistically controlled. Career 

intention was significantly predicted by major intention and engineering identification, while the 

coefficient of engineering program utility was not significant. These three explanatory variables 

accounted for 75.6% of the variance for career intention. Major intention had the highest 

influence on career intention followed by engineering identification. Controlling for major 
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intention and engineering identification, engineering program utility did not predict career 

intention significantly.  

Comparison of the Structural Paths between the Two Groups 
 Research question four compares individual structural paths between the two groups. The 

similarities and differences in the effects of MUSIC constructs (exogenous latent constructs) on 

the engineering-related motivational factors (first set of endogenous constructs), which are 

elements of the gamma matrix are presented first followed by the effects of engineering related 

motivational factors on the intention variables (major and career intentions) which are  elements 

of beta matrix.   

Path Coefficients from MUSIC Constructs to Engineering Identification and Engineering-
Related Motivational Factors 
 Engineering identification. The association between success and engineering 

identification was stronger for the pilot group with a coefficient of .351 and a coefficient of .261 

for the traditional group. The relationship between interest and engineering identification was 

stronger for the traditional group with a coefficient of .128 and the strength of the same 

relationship for the pilot group was .005, which was not found to be statistically significant. 

Similarly, the relationship between caring and engineering identification was greater for the 

traditional group with a coefficient of .161 while the same coefficient was -.029 for the pilot 

group, which was not found to be statistically significant. Overall, patterns of relationships were 

similar in the two groups.  

 Engineering program utility. Empowerment significantly predicted engineering 

identification for both of the groups. The coefficients were negative in both cases and were 

greater for the pilot group (-.377) compared to the traditional group (-.185). Success significantly 

predicted engineering program utility in both of the groups, but the coefficient was greater for 
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the traditional group (.369) compared to the pilot group (.276). The association between caring 

and engineering program utility was greater for the traditional group with a coefficient of .285 

compared to .174 for the pilot group.  Overall, the relationships among these constructs were 

similar in the two groups 

Engineering program belonging. Of the five MUSIC elements, success, interest, and 

caring were retained in the final model to predict engineering program belonging. The influence 

of the three independent variables were greater in the traditional group as compared to the pilot 

group. Specifically, the coefficient of success was .114 for the traditional group, while the same 

coefficient was .018 for the pilot group. Similarly, coefficient of interest was .213 for the 

traditional group and .158 for the pilot group. Finally, the coefficients of caring was .449 for the 

traditional group and .414 for the pilot group. Overall, patterns of relationships were similar in 

the two groups.  

Engineering program expectancy. Empowerment and success were the only two 

MUSIC elements retained in the final model to predict engineering program expectancy. There 

was an inverse relationship between empowerment and engineering program expectancy for both 

the groups. The coefficient of empowerment was greater for the pilot group (-.283) compared to 

the traditional group (-.127). The coefficient of success was .728 for the traditional group and 

.566 for the pilot group. Overall, the relationships among these constructs were similar in the two 

groups. 

Path Coefficients from Engineering Identification and Three Engineering-Related 
Motivational Factors to Major and Career Intentions 
 Major intention. The path coefficients of engineering identification and three 

engineering-related motivational factors were significant as hypothesized for major intention, but 

the coefficient of engineering program belonging was negative for the traditional group and the 
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same coefficient was not significant for the pilot group. Comparing coefficients between the two 

groups, the association between engineering identification and major intention was .529 for the 

traditional group and .479 for the pilot group. Similarly, the coefficient of engineering program 

utility was greater for the traditional group (.187) than for the pilot group (.128). The coefficient 

of engineering program belonging was -.119 for the traditional group and .101 for the pilot 

group. The influence of engineering program expectancy on major intention was greater for the 

pilot group with a coefficient of .474 compared to .315 for the traditional group. These 

differences are small and overall pattern of relationships in the two groups is similar.  

 Career intention. Engineering program belonging and engineering program expectancy 

were not retained in the final model to predict career intention. The strength of the relationships 

between major intention and career intention were similar for the two groups with a coefficient 

of .579 for the traditional group and .585 for the pilot group. Similarly, the strength of the 

relationships between engineering identification and career intention were similar for the two 

groups with a coefficient of .413 for the traditional group and .416 for the pilot group. The 

coefficient of engineering program utility was .079 for the traditional group and was statistically 

significant, while the same coefficient was .033 for the pilot group but was not statistically 

significant.   

Summary 
 This chapter presented descriptive statistics and correlations among the 11 latent 

variables for the traditional and pilot groups. The analyses of the group differences on the 

motivational variables and intention variables were presented. No significant differences were 

found between the two groups on any of the variables both at the beginning and at the end of the 

semester. Further, discussions of normality of data was included and the univariate statistics 



101 
 

showed that the normality assumption was not severely violated. The exploratory factor analyses 

(EFA) of the estimation sample resulted in deletion of the three negatively worded items from 

engineering program belonging. The revised factor model was then validated with the validation 

sample. Based on the results of the factor loadings from the EFA and modification indices, the 

decision to covary usefulness items one and two was made. The measurement model provided a 

good fit to the data. This model was then cross-validated with the pilot data and the cross-

validation was successful as indicated by the three major fit indices. Next, the structural model 

was tested with the traditional data. A series of model modifications were made deleting each 

insignificant path with the lowest z value, one at a time, to obtain a parsimonious model. The 

final model arrived at was then validated with the pilot data. Some of the path coefficients were 

not significant in the pilot data, but overall, the final model provided a good fit to the pilot data. 

Finally, structural paths between the two groups were compared.     
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Chapter Five: Discussion and Conclusion 

Introduction 
This final chapter presents a brief overview of the results of the study, specifically its 

focuses on the group differences explored and the structural model that was tested. Further, 

discussions and conclusions of the results, implications and limitations of this study, and 

directions for future research are included in this chapter.  

Summary of the Findings 
Research Question 1 
 First year engineering students were assessed on their perceptions of motivation related 

constructs at the beginning of the semester and at the end of the semester. Differential 

instructional techniques were used on two groups of students, specifically traditional engineering 

design (TED) was used on the traditional group and an active learning approach was used on the 

pilot group. The purpose of the end of the semester survey was to examine the influence of an 

active  learning  approach  on  students’  motivation.  Results of all the independent sample t-tests 

were statistically insignificant indicating that this study failed to detect effects of an active 

learning approach on  students’  motivation. Some studies that showed effectiveness of an active 

learning approach are presented in the discussion section. Further, a lack of differences between 

the two groups found in this study and probable causes of these inconsistent findings are 

discussed in the discussion section.   

Structural Model 
 The  domain  identification  model  was  tested  to  predict  engineering  students’  major  

intention and career intention. The initially hypothesized structural model was presented in 

Figure 1. There were five exogenous variables and two sets of endogenous constructs. The five 

MUSIC elements were the exogenous variables. Engineering identification and the three 

engineering-related motivational factors (engineering program utility, engineering program 
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belonging, and engineering program expectancy) were the first set of endogenous variables. Each 

of the five exogenous construct was hypothesized to predict each of the first set of endogenous 

construct. The examination of associations between these two sets of variables formed the 

second research question of this study.  

Major intention and career intention formed the second set of endogenous variables. 

Each of the first set of endogenous constructs was hypothesized to predict each of the second set 

of endogenous constructs. The third research question of this study was guided by the 

examination of association between the two sets of endogenous construct. The initial model was 

of substantially saturated model. A series of model modifications were made by deleting 

insignificant paths one at a time to arrive at a parsimonious model using the traditional data. The 

fit indices (SRMR=.075; RMSEA=.062; and CFI=.971) of the final model with all the significant 

paths indicated that the proposed revised model provided a good fit to the observed data. The 

final structural model for the traditional group with standardized path coefficients is presented in 

Figure 4.1. This revised model was then cross-validated with the pilot data and the fit indices 

(SRMR=.097; RMSEA=.075; and CFI=.952) suggested that the model was successfully 

validated on an independent sample. The final structural model for the pilot group with 

standardized path coefficients are presented in Figure 4.2.     

Research Question 2 
 The second research question addressed the relationship of the dimensions of MUSIC 

model to engineering related constructs. Of the five MUSIC elements, usefulness was deleted 

from every structural equation to predict engineering-related constructs because controlling for 

the other four elements, usefulness did not significantly predict any of the dependent variables. 

Engineering identification was significantly predicted by success, interest, and caring. Success 

had the highest impact on engineering identification for both the groups. The variation in 
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engineering identification that the three independent variables accounted for was 27% for the 

traditional group and 20.2% for the pilot group. The three variables that predicted engineering 

program utility were empowerment, success, and caring. The coefficients of empowerment was 

negative for both the traditional and pilot groups. Success had the highest positive effect on 

engineering program utility for both the groups. Overall, the three variables accounted for 13.2% 

of variance in engineering program utility for the traditional group and 5% of the variance for the 

pilot group. Success, interest, and caring were found to have significant relationships with 

engineering program belonging. Of those three variables, caring had the strongest association 

with engineering program belonging for both the groups. The amount of variance the three 

variables explained in engineering program belonging for the traditional and pilot groups were 

53.4% and 37.2%, respectively. Finally, empowerment and success were the only two MUSIC 

elements that had significant effects on engineering program expectancy. The coefficients of 

empowerment was negative for both the groups. The coefficients of success for the traditional 

and pilot groups were large at .728 and .566, respectively. Empowerment and success explained 

49.2% of variation in engineering program expectancy for the traditional group and 36.6% for 

the pilot group.  

Research Questions 3 
 The research question three examined the relationship of engineering-related constructs 

to  students’  intentions  to  major  in  engineering  and  to  enter  an  engineering  career.  The 

engineering identification and three engineering-related constructs predicted major intention 

significantly. The coefficient of engineering program belonging was negative for the traditional 

group and it was in an unexpected direction. The same coefficient was not significant in the pilot 

group. Of the four variables, engineering identification had the highest impact on major intention 

for both the groups. The engineering identification, engineering program utility, engineering 
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program belonging, and engineering program expectancy accounted for 44.5% of variation in 

major intention for the traditional group and 50.6% of the variation for the pilot group. Career 

intention was significantly predicted by major intention, engineering identification, and 

engineering program utility. Major intention had the strongest association with career intention 

followed by engineering identification for both the groups. The amount of variance that major 

intention, engineering identification, and engineering program utility accounted for in career 

intention for the traditional and pilot groups were 63.5% and 75.6%, respectively. Overall, 

engineering identification had the highest influence on major intention and career intention 

compared to the three engineering-related motivational factors. It was found that engineering 

program belonging and engineering program expectancy did not have significant association 

with career intention.  

Discussion of the Findings 
Group Mean Differences 

The first research question pertains to the mean differences between students in the 

traditional  and  and  pilot  groups  on  students’  motivation-related beliefs, engineering 

identification and three engineering-related motivatioal factors, and the two intention variables 

(major intention and career intention). The difference between the two groups was in the 

instructional techniques that were used. The instructional techique used for the traditional group 

was that of traditional engineering design (TED), while the instructional technique used for the 

pilot group had more features of an active learning approach. For example, lecture and workshop 

sessions for the pilot group drew on research regarding student motivation (the MUSIC Model), 

meta-cognition, problem-solving, and problem-based learning. Students in both the groups had 

opportunities to interact between each other and their instructors. However, students in the pilot 

group had a greater amount of group work, which resulted in more interactions. Students in the 
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traditional group spent one workshop session on a team activity, while students in the pilot group 

engaged in team work during several workshop sessions. The results of this study did not support 

the hypothesis that the pilot group would have higher mean scores on those measures because all 

the independent samples t-tests showed that there were no significant differences between the 

two groups as demonstrated in Table 4.8.  

 Students were not randomly assigned to the two groups. In the absence of random 

assignment, it is difficult to determine that the two groups are equivalent in terms of the variables 

being investigated. However, with a pretest we can guage whether or not the two groups are 

similar on the measures collected before administring the intervention to the treatment group 

(Leedy & Ormrod, 2013).  This in turn gives researchers more confidence about any conclusions 

they would draw from post-treatment results (Pedhazur & Schmelkin, 1991).       

 Students completed a survey to indicate two intention variables (major and career 

intentions), engineering identification and three engineering-related motivational factors at the 

beginning of the semester, which can be described as a pretest. The results of the six inependent 

sample t-tests showed that there were no significant differences in the mean scores between the 

two groups on those six variables, except in the case of engineering program utility,  as 

demonstrated in Table 4.7. This indicates that the two groups were equivalent, especially on 

those measures collected at the beginning of the semester, except engineering program utility. 

Therefore, the lack of differences at the end of semester confirms that this study failed to detect 

effectiveness of an active learning approach at a statistically significant level.     

The result of this study was inconsistent with the findings of other studies. For example, 

according to Matusovich et al. (2012), students reported higher perceptions of usefulness when 

the student centered instructional techqnique (PBL) was used compared to students who were 
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taught the class using a traditional engineering design (TED) technique. Usefulness is one of the 

elements of the MUSIC model of academic motivation. In a similar study, Matusovich et al., 

(2011)  investigated  the  impact  of  the  two  instructional  techniques  on  students’  motivation  and  

the results showed that students felt more empowered,  yet another MUSIC element, when PBL 

was used as compared to when TED was used. Jones et al. (2013) found that the use of PBL 

increased  students’  motivation and other elements of the MUSIC Model.  

Although some earlier studies have shown that when students are in a more active 

learning environment, they are likely to be motivated and are likely to identify with the content 

domain. This study, however, did not find any differences in the two groups in any of the 

variables of interest. Three probable causes of these inconsistent findings were identified: (1) 

intensity of treatment, (2) timing of treatment, and (3) length of treatment. The first reason could 

be the lack of intensity or stregnth of treatment. The instructional technique used for the pilot 

group had features of an active learning approach, but was not a full-fledged active learning 

approach and probably not sufficiently different from the other group. Under such circumstances, 

it may be difficult to detect if the treatment yielded discernable effects or statistically significant 

benefits. The second reason relates to the timing of treatment. The data for this study were 

collected from first year engineering students during their first semester. Therefore, it is possible 

that students were highly motivated when they first began their undergraduate degree in 

engineering and their initial motivation level were the same when they completed the survey. 

The inclusion of senior students in such studies may give a clearer picture of the effectiveness of 

an active learning approach. The third reason could be the length of treatment. It is possible that 

a period of one semester may not be sufficient for students to form a strong identity and 

commitment to engineerng. Additionally, a period of one semester may not be sufficient for them 
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to determine whether or not their experiences in engineering are consistent with their initial 

expectations. The real impact of an active learning approach to emerge may require more than 

one semester and perhaps a greater intensity of treatment (full-fledged active learning approach).  

It is to be noted, however, that the lack of differences between the two groups can be seen 

as a positive result in the sense that there was no significant decline in the motivational level of 

students in the pilot group. The pilot program was implemented for the first time. The program 

was not fully developed then. In other words, the program was still evolving and there was a lot 

of fluidity. Introduction of any such new programs have the potential to create uncertainty and 

dissonance in students. Further, it will not be long before students in the two groups exchange 

information about the way their classes were taught further worsening dissonance in students. 

Therefore, it can be argued that this result can be seen as a positive outcome because the new 

program that was implemented for the first time and was still evolving did not led to the decline 

of motivation of students in the pilot group.   

Effects of MUSIC Constructs on Engineering-Related Motivational Constructs  
 Traditional group. The final proposed model provided a good fit to the observed data as 

reflected by its fit indices presented in Table 4.16 and 4.17.  The variance explained by different 

combinations of the five MUSIC elements ranged between 13.2% and 53.4% and these are quite 

substantial. Of the five MUSIC elements, success had significant association with all 

engineering-related constructs. Similarly, caring was found to have strong associations with all 

of the dependent variables except engineering program expectancy. Interest significantly 

predicted engineering identification and engineering program belonging. Overall, success and 

caring were the best predictors of engineering identification and engineering-related motivational 

factors. That means, when students feel that they have high probability of success in the 

coursework and feel cared for in the class, they are likely to have strong identification with 
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engineering fields, perceptions of strong sense of belonging with the engineering fields, and a 

high sense of commitment to engineering fields.  

Some of the path coefficients were not in the expected direction. Specifically, the 

coefficients of empowerment for engineering program utility and engineering program 

expectancy were negative. Theoretically, these negative relationshps were hard to explain. That 

students who have high perceptions of empowerment would have low engineering program 

expectancy does not make a lot of sense. The same goes for the relationship between 

empowerment and engineering program utility. Some of the possible statistical and theoretical 

reasons for these unexpected relationships are presented after the discussion of the associations 

between MUSIC elements and engineering-related constructs for the pilot group.   

Pilot group. The pilot group was used to validate the model that was provisionally 

accepted as having a good fit to the data.  The path coefficients of the pilot group were presented 

in Table 4.19.  

The fit indices, as presented in Table 4.17, suggest that the proposed revised model 

explained relations in the pilot data reasonably well. However, not all of the path coefficents 

were significant. Success was the only significant predictor of engineering identificaiton. 

Controlling for success, interest and caring did not significantly predict engineering 

identification. Empowerment, success, and caring were hypothesized to predict engineering 

program utility, but caring was not found to have significant association with engineering 

program utility. Success did not significantly predict engineering program belonging, but caring 

and interest did. Success was the only MUSIC element with  positive effect on engineering 

program expectancy. One of the reasons why all of the path coefficients were not significant 

could be due to the smaller sample size in the case of the pilot group.  
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Discussion of findings is presented first followed by inverse and unexpected relationships 

found  in  this  study.  Students’  perceptions  of  success  could  be  influenced  by  their  preparation  for  

college during their time in high school. Instructors can also play a role  in  developing  students’  

motivational beliefs, such as success, interest, and caring through design of the course and 

support systems. The perception of success fostered in students can have many benefits, 

including finding the activity they engage in enjoyable and commiting to challenging goals 

(Schunk & Pajares, 2005). Similarly, instructors can design courses in a way that would get 

students interested in course materials. Interest has been established to have positive association 

with, for example, goal setting, learning strategies, and achievement (e.g., Hidi & Renninger, 

2006). Caring is an important motivational variable that was found to have positive effect on, for 

example, self-efficacy, persistence, and performance (e.g., Freeman, Anderman, & Jenson, 2007; 

Walker & Greene, 2009). The fact that caring had the highest effect on engineering program 

belonging  is consistent with the current literature, as Furrer and Skinner (2003) and Ryan and 

Patrick (2001) noted that teachers can promote belongingness through building caring 

relationship with their students. The concept of caring is similar to constructs, such as 

relatedness, affiliation, and belongingness (e.g., Baumeister & Leary, 1995; Ryan & Deci, 2000). 

What are some of the possible statistical and theoretical reasons for the inverse and 

unexpected relationships found in this study for both the groups. The possible statistical reasons 

are presented first. There appears to be four possible statistical reasons for the inverse 

relationship between empowerment and engineering program utility. First, a close examination 

of inter-item correlations of empowerment and engineering program utility revealed that all of 

the correlations were weak and most of them were negative. Some of the sample items of 

empowerment  are  “I  had  the  freedom  to  complete  the  coursework  my  own  way”  and  “I  had  
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control  over  how  I  learned  the  course  content.”  Some  of  the  sample  items  of  engineering  

program  utility  include  “Knowing  about  engineering  does  not  benefit  me  at  all” and  “I  have  little  

to  gain  by  learning  how  to  do  engineering.”   Second, correlation between the mean scores of the 

two variables was .09, as presented in Table 4.6. Third, all the items of engineering program 

utility were negatively worded. This appears to be problematic because negatively worded items 

are not considered the exact opposite of postively or directly worded items (Barnette, 2000). 

Schriesheim and Hill (1981) noted that negatively worded items impair response accuracy. Many 

authors have (e.g., Barnette, 2000; Schriesheim & Hill, 1981) suggested against using negatively 

worded items. Robinson, Shaver, and Wrightsman (1991) suggested the use of bidirectional 

response options. Such an option would have some response options, for example, going from 

strongly agree to strongly disagree, while some other going from strongly disagree to strongly 

agree. Fourth, empowerment, which was hypothesized to predict engineering program utility 

highly correlated with other exogenous variables. Negative coefficients, when unexpected, could 

be results of multicollinearity or high correlations among the independent variables (Keith, 2006; 

Meyers, Gamst, & Guarino, 2006; Pedhazur & Schmelkin, 1991).  

The negative association between empowerment and engineering program expectancy 

may be due to high correlations among the independent variables. Some of the sample items of 

engineering  program  expectancy  are  “I  think  that  I  will  do  well  in  my  engineering-related 

courses  this  year”  and  “I  am  good  at  math,  science,  and  engineering.”  Keith (2006) noted that 

one of the reasons signs of coefficients change is due to the kind of variables included in the 

model. Empowerment and success were the two MUSIC elements used to predict engineering 

program expectancy in the final model. The coefficient of success for engineering program 

expectancy was .728 for the traditional group and .566 for the pilot group. High coefficients of 
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success for engineering program expectancy, in addition to an issue of multicollinearity, could 

have played some role in making the coefficents of empowerment for engineering program 

expectancy negative.  

Theoretically, it is hard to explain the inverse relationship between empowerment and 

engineering  program  utility.  Empowerment  is  defined  as  students’  perceptions of the amount of 

control they have over their learning. An example of an empowerment item is “I  had  options  in  

how  to  achieve  the  goals  of  the  course.”  Jones et al. (2010) defined engineering program utility 

as  “the  usefulness  of  engineering  in  terms  of reaching  one’s  short- and long-term  goals”  (p.  320). 

An  example  of  an  engineering  utility  item  is  “After  graduation,  an  understanding  of  engineering  

will  be  useless  to  me.” Greater autonomy in learning means less structure and a lack of clear 

guidance in completing coursework. It is, however, possible that students did not have much 

experience with a greater amount of autonomy during their high school years. Their learning 

perhaps occurred in a more structured manner with clear guidelines, expectation, and deadlines. 

Therefore, a plausible theoretical explanation for the inverse relationship between the two 

variable is that students fail to see the usefulness of engineering to them when students are left to 

their own device for the most part.  

 The inverse relationship between empowerment and engineering program expectancy 

was similarly intriguing. As noted earlier, the data for this study was collected from first-year 

engineering students during their first semester at a research intensive university. Theoretically, 

it is possible that many of those students may not have a lot of experiences with a greater level of 

autonomy over their learning during their high school years. Therefore, a higher level of 

empowerment leads to a lower level of expectancy belief for them because they probably need a 

lot of structure in their learning, for example, clear instructions, expectations, and deadlines. 
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Validating this model with senior students would bring more evidence and clarity to the nature of 

association between empowerment and engineering program utility, and empowerment and 

engineering program expectancy in the engineering context, or lack thereof.   

 Another unexpected result was the insignificant association between usefulness and all of 

the engineering-related constructs. Statistically, this may have been caused by multicollinearity 

among the five MUSIC elements. Specifically, the correlation between usefulness and interest 

was over .8 for both the groups and the correlation between usefulness and empowerment was 

over .7 for both the groups. Conceptually, the lack of influence of usefulness on any of the 

engineering-related constructs could be due to the fact that course students were enrolled in was 

an introductory engineering course. As appendices B through D show, this course covered topics 

to enhance soft skills, such as team skills, presentation skills, and problem solving skills, in 

addition to some technical skills. Therefore, it was possible that controlling for other MUSIC 

constructs, the degree of usefulness reported was not related to perceptions of engineering-

related constructs. Tables 4.4 and 4.6 showed that students’  reported  sense  of  usefulness  did  not  

correlate highly with engineering-related constructs. 

Effects of Engineering Identification and Three Engineering-Related Constructs on Major 
and Career Intentions 
 Traditional group. The engineering identification, engineering program utility, 

engineering program beleonging and engineering program expectancy significantly predicted 

major intention. The coefficient of engineering program belonging for major intention was 

negative and this was not in the expected direction. The correlation between mean scores of the 

two variables was .35. The inter-item correlations of the two variables ranged between .14 and 

.34. The probable causes of inverse relationship between engineering program belonging and 

major intentions, including measurement and statistical reasons, and theoretical reasons are 
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discussed after the presentation of the relationships between engineering-related construcs and 

intention variables for the pilot group. Controlling for the other three independent variables, 

engineering identification had the highest impact on major intention. Engineering program utility 

and engineering program expectancy also significantly predicted major intention. This result 

shows  that  supporting  students’  engineering identification, engineering program utility, and 

engineering program expectancy would increase their probability of pursuing engineering 

majors.    

Controlling for engineering identification and engineering program utlity, major intention 

had the highest influence on career intention followed by engineering identification. The results 

show that students who strongly intend to pursue engineering majors, who strongly identify with 

the engineering fields, and who see utility of engineering majors for their short-and long-term 

goals are more likely to pursue engineering careers. The hypothesized relationships between 

egnineering program belonging and career intention, and engineering program belonging and 

engineering program expectancy were not supported. The possible reasons why those hypotheses 

were not supported are discussed after the presentation of the relationship between engineering-

related constructs and the intention variables for the pilot group.   

Pilot group. The effects of engineering-related constructs on major intention for the pilot 

group is quite similar to that of the traditional group, except for engineering program belonging. 

The examination of the effects of engineering identification and the three engineering-related 

motivational factors on major and career intentions revealed that the effect of engineering 

program belonging on major intenion was not signficant. This insignificant path coefficient 

appears to have been due to a small sample size in the pilot group (N=242). When the final 

structural model was reestimated with the sample size increased to 539 to match that of the 
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traditional  group’s  sample  size,  engineering  program  belonging  significantly predicted major 

intention. In other words, if the sample size for the pilot group was closer to the traditional 

group, the results in the two groups would be more similar.  

Similarly, the effects of engineering-related constructs on career intention is quite similar 

to that of the traditional group. It is to be noted that the coefficients of engineering program 

utility for career intention for the two groups were not significantly different from each other. 

However, the same coefficient in the traditional group was statistically significant, while it was 

not for the pilot group.   

Overall, the effect of engineering program belonging on major intention was negative in 

the traditional group and insignificant in the pilot group. The unexpected relationship between 

engineering program belonging and major intention is discused first. Next, a lack of relationship 

between engineering program belonging and career intention, and engineering program 

expectancy and career intention are presented.  

A lack of  sense  of  belonging  has  been  associated  with  students’  intentions  to  switch  to  

other majors (Marra, Rodgers, Shen, & Bogue, 2012; Wao, Lee, & Borman, 2010). By that logic, 

higher  perceptions  of  sense  of  belonging  should  lead  to  students’  persistence  in  their majors. 

However, favorable perceptions of sense of belonging led to decreased major intention for the 

traidtional group and the same sense of perception did not affect statistically significantly change 

in the pilot group.  What could be the possible reasons for these inconsistent findings? The 

reasons could possibly be attributed to measurement and statistical issues, and perhaps some 

theoretical reasons.     

Possible measurement and statistical issues are discussed first. For example, engineering 

program belonging originally had eight indicator variables. Three of them were negatively 
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worded and five of them were positively or directly worded. The EFA suggested two distinct 

factors because all of the positively worded items loaded together and negatively worded items 

loaded together. Therefore, the three negatively worded items of engineering program belonging 

were deleted from the revised factor model. Negatively worded items, when used alone or in 

conjunction with positively worded items, affect internal consistency, factor structures, and other 

statistics (Barnette, 2000). When negative and positive items are mixed, it provides lower 

internal consistency (Schriesheim & Hill, 1981). Further, positively and negatively worded items 

used to measure a single factor load differently with positively worded items loading together 

and negatively worded items loading together (Knight, Chisholm, Marsh, & Godfrey, 1988; 

Pilotte & Gable, 1990). This is consistent with what happened to the factor loadings of 

engineering  program  belonging  measured  with  mixed  items  and  researchers’  claims that 

negatively worded items are not the exact opposite of directly worded items. Therefore, the 

current measures of engineering program belonging may require revision, including avoidance of 

negatively worded items.  

In addition to measurement and statistical issues that may be attributable to the inverse 

relationship between the two variables, there are a few plausible theoretical reasons. First, it is 

possible that parents of many of those students who participated in this study had made the 

decisions for them to be in engineering programs. Therefore, students may not be fully decided 

on completing majors in engineering during their first semester. Under such circumstances, 

students may not have strong senese of belonging, but if they did, it could very well be artificial. 

Second, the greatest percentage of attrition from engineering programs occur during the second 

year  of  students’  undergraduate  program.  What this could mean is that there exist a large number 

of students who were inclined to pursue non-engineering majors but were in this introductory 
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engineering class to explore the possibility of earning degrees in engineering. Those students 

may not be fully committed to pursuing engineering degrees and may be inclined to pursue non-

engineering majors. Not all of the students who leave engineering programs are ill-equipped to 

be successful in engineering.        

Controlling for major intention, engineering identification, and engineering program 

utility, engineering program belonging and engineering program expectancy did not predict 

career intention significantly. However, such findings are inconsistent with the current literature. 

For example, engineering program expectancy has been  defined  as  “one’s  belief  in  the  possibility  

of  his  or  her  success  in  engineering”  (Jones  et.  al.,  2010,  p.  320).  The  expectancy  belief  is  related  

to self-efficacy theory (Bandura, 1986). Expectancy for success has been defined as the 

expectation one has over  one’s  performance  on  upcoming  tasks  in  domains,  such  as  mathematics  

and engineering (Wigfield & Eccles, 2000). Expectancy beliefs have been shown to affect 

students’  grades,  persistence,  and  career  intention  (Lent,  Brown,  &  Larkin,  1986;;  Wright,  

Jenkins-Guarnieri, Murdock, 2013). However, in this study, the impact of engineering program 

expectancy and engineering program belonging on career intention was not signficant while 

controlling for major intention and engineering identification. It is possible that many students 

earn undergraduate degrees in engineering with a goal to pursue graduate degrees, and 

ultimately, careers in fields like law, medical, and business. Therefore, this study shows a lack of 

relationships between engineering program belonging and career intention, and engineering 

program expectancy and career intention. In other words, this study shows that the value of the 

domain  to  students’  sense  of  self  (engineering  identification)  is a better predictor of students’  

career intentions than engineering program belongong and engineeirng program expectancy. 

Engineering identification was defined as valuing engineering as part of their identity. Some of 
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the sample items of engineering identification are “Being  good  at  engineering  is  an  important 

part  of  who  I  am”  and  “It  matters  to  me  how  well  I  do  in  engineering  school.” However, it is also 

possible that the effects of engineering program belonging and engineering program expectancy 

on career intention was indirect through major intention.   

Engineering identificaton consistently predicted major and career intentions better than 

engineering program utility, engineering program belonging, and engineering program 

expectancy. This is an interesting finding that deserves further investigation and replication. Yet 

another interesting finding of this study was the significant association between major intention 

and career intention. It may be common sense to hypothesize that an engineering degree is 

required for an individual to have an egnineering career. However, there does not appear to be 

any studies where such an association between major intention and career intention was 

statistically modeled and tested.  

Contributions of the Study 
Theoretical Contributions 

Many cognitive and non-cognitive factors have been identified that are associated with 

students’  decisions  to  commit  to  engineering  majors  and  careers.  However,  the  problem  of  the  

demand-supply gap of STEM professionals has not been resolved. Despite tremendous success 

in the last six decades in understanding the complexities  associated  with  students’  career  

decision-making processes, definitive insights are still lacking. This study contributed to better 

understanding of students’  complex  decision-making processes. Therefore, the domain 

identification  model  can  be  a  new  lens  to  study  students’  commitment to engineering majors and 

careers. This model adds to the current literature on career theory, such as social cognitive career 

theory (SCCT).  
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There does not appear to be clear research on how domain identification is developed and 

the ways in which it influences other variables. Another contribution of this tudy was the 

understanding of how domain identification is developed and and how it influences other 

variables. The domain identification model tested in this study has certain antecedents and 

consequences. The results show some of the causes and effects of domain identification. Of the 

five MUSIC elements, success and caring were significant predictors of engineering 

identification and engineering-related motivational factors. The results of this study suggest that 

students who felt that they could be successful in an introductory engineering course, who were 

interested in the course, and who felt cared for in the class will have higher engineering 

identification. This study brings empirical support for three important components of success, 

interest, and caring and confirms earlier findings.  

The domain identification model tested in this study hypothesized that engineering 

identification and three engineering-related motivational factors predict major and career 

intentions. Controlling for engineering-related motivational factors, engineering identification 

had the highest impact on major intention. Similarly, the influence of engineering identification 

was greater than the three engineering-related motivational factors on career intention. Such 

findings show the importance of domain specific identification over other variables, such as 

engineering program expectancy in accounting for variance in major intention and career 

intention.  

Engineering program expectancy is related to self-efficacy theory. Expectancy belief is 

related  to  one’s  perceived  ability  to  be  successful  in  a  specific  domain,  such  as  engineering.  

Engineering program expectancy was found to have significant relationships with major 

intention, but its relationship with career intention was insignificant. This finding shows that 
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high  expectancy  beliefs  lead  to  students’  pursuing  engineering  majors, but not necessarily to 

pursuing engineering career. It is, however, possible that the effect of engineering program 

expectancy on career intention is indirect through major intention.  

Practical Contributions  
 The findings of this study have some implications for pedagogy. Students’  sense of 

identification can be increased through teaching and suppporting their sense of success, 

interesting them in the content, and demonstrating care for their success in the course. Focusing 

on teachers support and caring would also lead to increased sense of perceptions of engineering-

related  constructs.  Students’  sense  of  success  in  engineering  can  be  fostered  in  two  ways: (1) 

how prepared they are, and (2) learning environment. Enhancing student perceptions of their 

ability to succeed in engineering would strengthen their commitment to engineering majors and 

careers.  

Although instructors do not have control over how prepared students were to be 

successful in engineering programs in terms of their previous math and science achievements,  

they do have control over creating conducive learning environment and in designing courses in a 

way  that  that  will  boost  students’  sense  of  success. For example, providing clear guidelines for 

all assingments, breaking complex problems into more manageable units, providing timely 

feedback on their performance, and allowing students to redo their assignments are some of the 

things  that  can  be  done  by  the  instructors  to  enhance  students’  sense  of  success.   

Similarly, instructors can demonstrate in a number of ways that they care for how much 

their students learn and also care for their personal well-being. For example, showing concern for 

students’  success  or  failure  is  an  important  step  to  help  students  feel  cared  for.  Such a sense of 

caring could be instilled in students by following up with them if they are not doing well in the 

class or missing deadlines to submit assignments. Follow-up can be done through either email 
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communications or one-on-one meetings. Such attention can help students feel cared for. 

Instructors can also show flexibility, for example, by extending deadlines when their students are 

faced with situations in their personal lives beyond their control. The instructor can also 

encourage other students in the class to send students in grief with sympathy and get well soon 

notes. Such gestures have the potential to help students feel cared for.   

Limitations 
There are several limitations in this study. First, it is a cross-sectional study. Cross- 

sectional data is not the most appropriate for causal inferences because it violates one of the 

assumptions of causality, which is a temporal sequence, among others. The cause and effect 

inferences can be drawn only tentatively. Furthermore, it can be used to understand plausible 

relationships between variables of interest and see if the data is consistent with the hypothesized 

causal model.  

 The second limitation is the exploratory nature of this study. The initial hypothesized 

model was highly saturated. The model modification process was based on post hoc revisions. 

Therefore, there is a need to replicate this study and validate this model on more diverse student 

populations. The cross-sectional nature of the data and the exploratory nature of this study make 

the relationships among the latent variables more tentative and less confirmatory.   

Third, in this quantitative study, the data collected was self-reported by research 

participants. Self-reported data has numerous disadvantages, one of which is response bias.  

Reponse biases, such as acquiescence, deviant responding, and social desirability can 

compromise the validity of the scales (Paulhus, 1991).  

Fourth, students were not randomly assigned to two groups. Randomization is a key 

component of any experimental study and for making strong causal statements. Therefore, the 
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non-experimental design of this study restricts drawing cause and effect relationships between 

latent variables in the domain identficiation model. 

Fifth, there is not a sufficient number of participants from minority groups; for instance, 

women and people of color. The model data fit could perhaps be different in a sample that  

consisted of a greater number of participants from minority and underrepresented groups. 

However, the size of the minority groups did not permit estimation of factorial and strutural 

models. The data for this study was collected from a comprehensive research university with a 

predominantly white student population. Therefore, this model may be generalizable only to 

students attending similar institutions. Therefore, this study should be replicated with more 

diverse student populations.   

 Sixth, some of the measures of the latent variables were not satisfactory, specifically  

engineering program utility and engineering program belonging. Engineering program utility 

was measured with six indicator variables but all of them were negatively worded items. 

Engineering program belonging was measured with eight indicator variables and three of them 

were negatively worded items. Negatively worded items, when used alone or in conjunction with 

positively worded items, affect internal consistency, factor structure, and other statistics 

(Barnette, 2000). Further, there were some issues of multicollinearity. Despite these limitations, 

the findings of this study made some significant contributions as discussed in the previous 

section.   

Future Research 
 This  study  made  some  contributions  to  the  current  literature  on  students’  decision-making 

processes to commit to engineering majors and engineering careers. At the same time, it raised 

some questions as well. For example, the model used in this study was tested on data collected 
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from first year engineering students, specifically during their first semester at a research 

intensive university. Therefore, students may not have a lot to reflect on their engineering 

experiences. If they had, the relationships between variables could be different and stronger.  

This model should, therefore, be tested on senior students in a longitudinal study to confirm or 

examine the hypothesized association between the latent variables in the domain identification 

model. Longitudinal data will provide a strong evidence for causal inferences and growth and 

change  in  students’  intentions  to  stay  in  engineering.     

 The domain identification model tested in this study should be replicated with more 

diverse  samples.  For  example,  factors  that  affect  women’s  decisions  may  be  different  than  

men’s.  In addition, this study should be replicated with a similar study design and similar 

samples. Makel  and  Plucker  (2014)  noted  “if  education research is to be relied upon to develop 

sound policy and practice, then conducting replications on important findings is essential to 

moving towards a more reliable and trustworthy understanding of educational  environments”  (p.  

313). Longitudinal and replication studies would bring more evidence and clarity to the findings 

of the study.   

 The instructional technique used for the pilot group had more features of an active 

learning approach, but that was not a full-fledged active learning approach. Therefore, it cannot 

be concluded that the active learning approach did not produce the intended results. This could 

very well be an issue of duration and length of treatment because of which we failed to detect 

effectiveness of an active learning approach. Therefore, increasing the intensity of the active 

learning approach and the duration of this treatment may bring more clarity to the impact of an 

active  learning  approach  on  students’  academic  motivation and commitment to engineering, or 

lack thereof.  
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Conclusion 
 This study explored mean differences between the traditional and pilot groups on five 

elements of the MUSIC Model of Academic Motivation, engineering identification and three 

engineering-related motivational factors, and two intention variables (major intention and career 

intention). The purpose of exploring the group mean difference was to investigate the impact of 

an active  learning  approach  on  students’  academic  motivation.  This  study  failed  to  show  the  

expected impact of an active learning approach. Next, this study examined the tenability of the 

domain identification model. The revised model provided a good fit to the data. This model adds 

to the current literature on understanding  students’  decision-making processes to commit to 

engineering majors and engineering careers. The findings of this study showed that success, 

interest, and caring are important for forming engineering identification, and that success and 

caring are important predictors of engineering program utility and engineering program 

expectancy. Furthermore, it showed that engineering identification is a strong predictor of major 

intention and career intention.   

 

 

 

 

 

 

 

 

 

 



125 
 

References 
Adelman, C. (1998). Women and men of the engineering path: A model for the analysis of 

undergraduate careers. U. S. Department of Education: Washington DC.  

Al-Bahi, A. M. (2006, June). Development of a design phase checklist for outcome based  

 active/cooperative learning. Paper presented at the American Society for Engineering  

 Education’s  (ASEE)  annual conference and exposition. Chicago, IL.   

Al-Holou, N., Bilgutay, N. M., Corleto, C., Demel, J. T., Felder, R., Frair, K., Froyd, J. E., Hoit,  

 M., & Morgan, J. (1998, November). First-year integrated curricula across engineering  

 education coalitions. Paper presented at the annual meeting of the Frontiers in Education  

 Conference, Tempe, AZ.  

Amabile, T. M. (1985). Motivation and creativity: Effect of motivational orientation on creative 

 writers. Journal of Personality and Social Psychology, 48(2), 393-399.  

doi: 10.1037/0022-3514.48.2.393 

Ames, C. (1992). Classrooms: Goals, structures, and student motivation. Journal of Educational 

 Psychology, 84(3), 261-271. doi: 10.1037/0022-0663.84.3.261 

Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A 

 review and recommended two-step approach. Psychological Bulletin, 103, 411- 

 423. 

Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ: Prentice- 

 Hall. 

Barnette, J. J. (2000). Effects of stem and likert response option reversals on survey internal  

 consistency: If you feel the need, there is a better alternative to using those negatively  

 worded stems. Educational and Psychological Measurement, 60(3), 361-370.  

 doi: 10.1177/00131640021970592 



126 
 

Barrows, H. S. (2000). Problem-based learning applied to medical education. Springfield, IL:  

 Southern Illinois University Press. 

Barrows, H. S., & Tamblyn, R. (1980). Problem-based learning: An approach to medical  

 education. New York, NY: Springer.  

Bateman, T. S., & Crant, J. M. (1993). The proactive component of organizational behavior: A  

 measure and correlates. Journal of Organizational Behavior, 14(2), 103-118. 

 doi: 10.1002/job.4030140202  

Baumeister, R., & Leary, M. (1995). The need to belong: Desire for interpersonal attachments as  

 a fundamental human motivation. Psychological Bulletin, 117(3), 497-529.  

 doi: 10.1037/0033-2909.117.3.497 

Beam, T. K., Pierrakos, O., Constantz, J., Johri, A., & Anderson, R. (2009, June). Preliminary  

 findings on  freshmen  engineering  students’  professional  identity:  Implications  for   

 recruitment and retention. Paper presented at the 2009 ASEE Annual Conference and  

 Exposition. Austin, TX. 

Bergin, D. A. (1999). Influences on classroom interest. Educational Psychologist, 34(2), 87-98. 

 doi: 10.1207/s15326985ep3402_2 

Bernold, L. E., Spurlin, J. E., & Anson, C. M. (2007). Understanding our students: A  

 longitudinal study of success and failure in engineering with implications for increased  

 retention. Journal of Engineering Education, 96(3), 263-274.  

 doi: 10.1002/j.2168-9830.2007.tb00935.x 

Betz, N. E. (2008). Advances in vocational theories. In S. D. Brown & R. W. Lent (Eds.),  

 Handbook ofcounseling psychology (4th ed., pp. 357-374). New York: Wiley. 

Boggiano, A.  K.,  Main,  D.  S.,  &  Katz,  P.  A.  (1988).  Children’s  preference  for  challenge:  The   

 role of perceived competence and control. Journal of Personality and Social Psychology,  



127 
 

 54(1), 134-151. doi: 10.1037/0022-3514.54.1.134 

Bollen, K. (1989). Structural equations with latent variables. New York: Wiley.  

Bonewell, C., & Eison, J. (1991). Active learning: Creating excitement in the classroom. ASHE- 

 ERIC Higher Education Report No 1.Washington, D. C.    

Brewe, E., Kramer, L., & Sawtelle, V. (2012). Investigating student communities with network  

 analysis of interactions in physical learning center. Physical Review Special Topics— 

 Psychics Education Research, 8(1), 010101-9. doi: 10.1103/PhysRevSTPER.8.010101  

Brown, S. D., Alpert, D., lent, R. W., Hunt, G., & Brady, T. (1988). Perceived social support  

 among college students: Factor structure of the social support inventory. Journal of  

 Counseling Psychology, 35(4), 472-478. doi: 10.1037/0022-0167.35.4.472 

Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York, NY:  

 Guilford Press. 

Brush, S. G. (1991). Women in science and engineering. American Scientist, 79(5), 404-419.  

Bureau of Labor Statistics. (2005, November) Employment outlook: 2004-2014 occupational 

employment projections to 2014. Monthly Labor Review, 70-101. 

Bureau of Labor Statistics. (2010). Occupational outlook handbook, 2010-11 Edition,  

 Agricultural and food scientists. Retrieved from http://www.bls.gov/oco/ocos046.htm 

Byko, M. (2007). Rising above the gathering storm: Answering a call to action. The Journal of  

 the Minerals, Metals, and Materials Society, 59(5), 26-27. 

Carrico, C., & Tendhar, C. (2012, June). The use of the Social Cognitive Career Theory model  

 to  predict  engineering  students’  motivation  in  the  PRODUCED program. Paper presented  

 at the annual meeting of the American Society for Engineering Education (ASEE), San  

 Antonio, TX.   



128 
 

Cabrera, A., Colbeck, C., & Terenzini, P. (1998, November). Teaching for professional  

 competence: Instructional practices that promote development of group problem solving  

 and design skills. Paper presented at the meeting of the Association for the Study of  

 Higher Education, Miami, FL. 

Chan, D. (2006). Interactive effects of situational judgment effectiveness and proactive  

 personality on work perceptions and work outcomes. Journal of Applied Psychology,  

 91(2), 475-481. doi: 10.1037/0021-9010.91.2.475 

Chang, K. (2009, November 24). White House begins campaign to promote science and math  

 education. The New York Times. Retrieved from  

 http://www.nytimes.com/2009/11/24/science/24educ.html?pagewanted=all&_r=0  

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum.  

Cook, T. D., & Campbell, D. T. (1979). Quasi experimentation: Design and analysis issues for  

 field settings. Chicago, IL: Rand McNally. 

Covington, M. V. (1992). Making the grade: A self-worth perspective on motivation and school  

 reform. New York: Cambridge University Press. 

Crouch, C. H., & Mazur, E. (2001). Peer instruction: Ten years of experience and results.  

 American Journal of Physics, 69(9), 970-977. doi: http://dx.doi.org/10.1119/1.1374249 

Crouch, C. H., Watkins, J., Fagen, A. P., & Mazur, E. (2007). Peer instruction: Engaging  

 students one-on-one, all at one. In E. F. Redish & P. J. Cooney (Eds.), Research based  

 reform of university physics (pp. 1-55). College Park, MD: American Association of  

 Physics Teachers. 

Csikszentmihalyi, M. (1985). Reflections on enjoyment. Perspectives in Biology and Medicine,  

 28(4), 469-497. 

Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test statistics to nonnormality  

http://www.nytimes.com/2009/11/24/science/24educ.html?pagewanted=all&_r=0


129 
 

 and specification error in confirmatory factor analysis. Psychological Methods, 1(1), 16- 

 29. 

de Charms, R. (1976). Enhancing motivation: Change in the classroom. New York: Irvington. 

De Volder, M., & Lens, W. (1982). Academic achievement and future time perspective as a  

 cognitive-motivational concept. Journal of Personality and Social Psychology, 42(3),  

 566–571. doi: 10.1037/0022-3514.42.3.566 

Deci, E. L., Schwartz, A. J., Sheinman, L., & Ryan, R. M. (1981). An instrument to assess  

 adults’  orientation  toward  control  versus  autonomy  with  children: Reflections on intrinsic  

 motivation and perceived competence. Journal of Educational Psychology, 73(5), 642- 

 650. doi: 10.1037/0022-0663.73.5.642 

Dimitrov, D. M. (2012). Statistical methods for validation of assessment scale data in counseling  

 and related fields. Alexandria, VA: American Couseling Association.  

Drew, D. E. (2011). STEM the tide: Reforming science, technology, engineering, and math  

 education in America. Baltimore, Maryland: The Johns Hopkins University Press.  

Eccles, J. S. (2005). Subjective task value and the Ecccles et al. model of achievement-related 

 choices. In A. J. Elliot & C. S. Dweck (Eds), Handbook of competence and motivation  

(pp. 105-121). New York: The Guilford Press. 

Eccles, J. S., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J. L., et al. (1983). 

 Expectancies, values, and academic behaviors. In J. T. Spence (Ed.), Achievement and  

 achievement motivation (pp. 75–146). San Francisco: Freeman.  

Eccles, J. S., & Wigfield, A. (1995). In the mind of  the  actor:  The  structure  of  adolescents’   

 achievement task values and expectancy-related beliefs. Personality and Social  

 Psychology Bulletin, 21(3), 215-225. doi: 10.1177/0146167295213003  



130 
 

Elliot, A. J., & Harackiewicz, J. M. (1996). Approach and avoidance achievement goals and  

 intrinsic motivation: A mediational analysis. Journal of Personality and Social  

 Psychology, 70(3), 461-475. doi: 10.1037/0022-3514.70.3.461 

Eliot, M., & Turns, J. (2011). Constructing professional portfolios: Sense-making and  

 professional identity development for engineering undergraduates. Journal of  

 Engineering Education, 100(4), 630-654. doi: 10.1002/j.2168-9830.2011.tb00030.x 

Fast, L. A., Lewis, J. L., Bryant, M. J, Bocian, K. A., Cardullo, R. A., Rettig, M., & Hammon, K.  

 A. (2010). Does math self- efficacy mediate the effect of the perceived classroom  

environment on standardized math test performance? Journal of Educational Psychology,  

102(3), 729–740. doi: 10.1037/a0018863 

Felder, R. M. & Brent, R. (2003). Designing and teaching courses to satisfy the ABET  

 engineering criteria. Journal of Engineering Education, 92(1), 7-25. 

 doi: 10.1002/j.2168-9830.2003.tb00734.x 

Felder, R. M., Forrest, K. D., Baker-Ward, L., Dietz, E. J., & Mohr, P. H. (1993). A longitudinal  

 study of engineering student performance and retention: Success and failure in the  

 introductory course. Journal of Engineering Education, 82(1), 15-21.  

Felder, R. M., & Silverman, L. K. (1988). Learning and teaching styles in engineering education.  

 Journal of Engineering Education, 78(7), 674-681. 

Filak, V. F., & Sheldon, K. M. (2008). Teacher support, student motivation, student need  

 satisfaction, and college teacher course evaluations: Testing a sequential path model.  

 Educational Psychology, 28(6), 711-724. doi: 10.1080/01443410802337794 

Finn, J. D. (1989). Withdrawing from school. Review of Educational Research, 59(2), 117–142.  

Fleming, L., Engerman, K., & Williams, D. (2006, June). Why students leave engineering: The  

 unexpected bond. Paper presented at the annual meeting of the ASEE/IEEE Frontiers in  



131 
 

 Education, Chicago, IL.   

Flink, C. Boggiano, A. K., & Barrett, M. (1990). Controlling teaching strategies: Undermining 

 children’s  self-determination and performance. Journal of Personality and Social  

Psychology, 59(5), 916-924. doi: 10.1037/0022-3514.59.5.916 

Fortenberry, N. L., Sullivan, J. F., Jordan, P. N., & Knight, D. W. (2007). Engineering education  

 research aids instruction. Science, 317(5842), 1175-1176.  

Freeman, T. M., Anderman, L. H., & Jenson, J. M. (2007). Sense of belonging in college  

 freshmen at the classroom and campus level. The Journal of Experimental Education,  

 75(3), 203-220.  

French, B. F., Immekus, J. C., & Oakes, W. C. (2005). An examination of indicators of  

 engineering  students’  success  and  persistence.  Journal of Engineering Education, 94(4),  

 419-425. doi: 10.1002/j.2168-9830.2005.tb00869.x 

Froyd, J. E., & Ohland, M. W. (2005). Integrated engineering curricula. Journal of Engineering  

 Education, 94(1),  147-164. doi: 10.1002/j.2168-9830.2005.tb00835.x 

Furrer,  C.,  &  Skinner,  E.  (2003).  Sense  of  relatedness  as  a  factor  in  children’s  academic   

 engagement and performance. Journal of Educational Psychology, 95(1), 148-162. 

 doi: 10.1037/0022-0663.95.1.148 

Gallagher, S. A., Stepien, W. J., & Rosenthal, H. (1992). The effects of problem-based learning  

 on problem solving. Gifted Child Quarterly, 36(4), 195-200. 

Gates, Jr., J. & Mirkin, C. (2012, June). Encouraging STEM students is in the national interest.  

The Chronicle of Higher Education.  Retrieved from 

http://chronicle.com/article/Encouraging-STEM-Students-Is/132425/ 

Geisinger, B. N., & Raman, D. R. (2013). Why they leave: Understanding student attrition from  

 engineering majors. International Journal of Engineering Education, 29(4), 914-925.  

http://chronicle.com/article/Encouraging-STEM-Students-Is/132425/


132 
 

Goodchild, F. M. (2004). The pipeline: Still leaking. American Scientists, 92(2), 112-113.  

Goodenow, C. (1993). Classroom belonging among early adolescent students: Relationships to  

 motivation and achievement. Journal of Early Adolescence, 13(1), 21-43.  

doi: 10.1177/0272431693013001002 

Goodenow, C. (1993b). The psychological sense of school membership among adolescents:  

 Scale development and educational correlates. Psychology in the schools, 30(1), 79-90. 

Grandy, J. (1998). Persistence in science of high-ability minority students: Results of a  

 longitudinal study. Journal of Higher Education, 69(6), 589-620. doi: 10.2307/2649210 

Griffith, A. L. (2010). Persistence of women and minorities in STEM field majors: Is it the  

 school that matters? Economics of Education Review, 29(6), 911-922. 

Grolnick,  W.  S.,  &  Ryan,  R.  M.  (1987).  Autonomy  in  children’s  learning:  An  experimental  and   

 individual difference investigation. Journal of Personality and Social Psychology, 52(5), 

 890-898. doi: 10.1037/0022-3514.52.5.890 

Haghighi, K., Smith, K. A., Olds, B. M., Fortenberry, N., & Bond, S. (2008). The time is now:  

 Are we ready for our role? Journal of Engineering Education, 97(2), 119-121. 

 doi:10.1002/j.2168-9830.2008.tb00961.x 

Hake, R. (1992). Socratic pedagogy in the introductory physics laboratory. The Physics  

 Teachers, 30(9), 546-552. doi: http://dx.doi.org/10.1119/1.2343637 

Hake, R. R. (1998). Interactive engagement versus traditional methods: A six-thousand-student  

 survey of mechanics test data for introductory physics courses. American Journal of  

 Physics, 66(1), 64-74. doi: http://dx.doi.org/10.1119/1.18809  

Hancock, G. R. (2014, December). Introduction to Structural Equation Modeling. Workshop  

 Organized by the Center for Integrated Latent Variable Research at the University of  



133 
 

 Maryland, College Park, MD.  

Hein, G., Torrey, K., Hertel, J., Oppliger, D., Keith, J. M., & Archer, G. (2003, June).  

 Integrating engineering disciplines into a common first year engineering program. Paper  

 Presented at the annual meeting of the American Society for Engineering Education  

 (ASEE), Nashville, TN.   

Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational  

 Psychologist, 41(2), 111-127. doi: 10.1207/s15326985ep4102_4 

Hmelo-Silver, C. E. (2000). Knowledge recycling: Crisscrossing the landscape of educational  

 psychology in a problem-based learning course for preservice teachers. Journal on  

 Excellence in Teaching, 11, 41-56. 

Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn?  

 Educational Psychology Review, 16(3), 235-266.  

doi: 10.1023/B:EDPR.0000034022.16470.f3 

Hulleman, C. S., Durik, A. M., Schweigert, S. A., & Harackiewicz, J. M. (2008). Task values, 

 achievement goals, and interest: An integrative analysis. Journal of Educational  

Psychology, 100(2), 398-416. doi: 10.1037/0022-0663.100.2.398 

Hyde, M. S., & Gess-Newsome, J. (1999/2000). Adjusting educational practice to increase  

 female persistence in the sciences. Journal of College Student Retention, 1(4), 335-355. 

 doi: 10.2190/8WV7-UWY2-A1G9-7U3Y 

James, W. (1890/1981). The Principles of Psychology. Cambridge, MA: Harvard University  

 Press. 

Johnson, D. W., Johnson, R., & Anderson, A. (1983). Social interdependence and classroom  

 climate. Journal of Psychology, 114(1), 135-142. doi: 10.1080/00223980.1983.9915406 

Johnson, D. W., Johnson, R. T., & Smith, K. A. (1998). Active learning: Cooperation in college  



134 
 

 classroom 

Jones, B. D. (2009). Motivating students to engage in learning: The MUSIC Model of Academic  

 Motivation. International Journal of Teaching and Learning in Higher Education, 21(2),  

 272-285.  

Jones, B. D. (2010a). An examination of motivation model components in face-to-face and  

 online instruction. Electronic Journal of Research in Educational Psychology, 8(3), 915- 

 944.  

Jones, B. D., & Skaggs, G. (2012, August). Validation of the MUSIC Model of Academic  

 Motivation  Inventory:  A  measure  of  students’  motivation  in  college  courses. Paper  

 presented at the International Conference on Motivation 2012. Frankfurt, Germany. 

Jones, B. D., Epler, C. M., Mokri, P., Bryant, L. H., & Paretti, M. C. (2013). The effects of a  

 collaborative problem-based  learning  experience  on  students’  motivation  in  engineering   

 capstone courses. Interdisciplinary Journal of Problem-Based Learning, 7(2), 34-71.   

Jones, B. D., Osborne, J. W., Paretti, M. C., & Matusovich, H. M. (2014). Relationships 

among  students’  perceptions  of  a  first-year engineering design course and their 

 engineering identification, motivational beliefs, course efforts, and academic outcomes.  

International Journal of Engineering Education, 30(6), 1340-1356. 

Jones, B. D., Paretti, M. C., Hein, S. F., & Knott, T. W. (2010). An analysis of motivation  

 constructs with with first-year engineering sttudents: Relationships among expectancies,  

 values, achievements, and career plans. Journal of Engineering Education, 99(4), 319- 

 336. doi: 10.1002/j.2168-9830.2010.tb01066.x 

Jones, B. D. & Parkes, K. A. (2010). The motivation of undergraduate music students: The  

 impact of identification and talent beliefs on choosing a career in music education.  



135 
 

 Journal of Music Teacher Education, 19(2), 41-56. doi: 10.1177/1057083709351816 

Jones, B. D., & Skaggs, G. (2012, August). Validation of the MUSIC Model of Academic  

 Motivation  Inventory:  A  measure  of  students’  motivation  in  college  courses. Paper  

 presented at the International Conference on Motivation 2012. Frankfurt, Germany. 

Juvonen, J. (2006). Sense of belonging, social bonds, and school functioning. In P. A. Alexander  

 & P. H. Winne (Eds.), Handbook of educational psychology (pp. 655–674). Mahwah:  

 Lawrence Erlbaum Associates. 

Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and  

 Psychological Measurement, 20(1), 141-151. doi: 10.1177/001316446002000116 

Kanungo, R. N. (1979). The concepts of alienation and involvement revisited. Psychological  

 Bulletin, 86(1), 119-138. 

Kaplan, A., & Flum, H. (2009). Motivation and identity: The relations of action and development 

in educational contexts–An introduction to the special issue. Educational Psychologist, 

44(2), 73-77. doi:10.1080/00461520902832418 

Karplus, R. (1964). The science curriculum improvement study. Journal of College Science  

 Teaching, 2(4), 293-303. doi: 10.1002/tea.3660020406 

Kauffman, D. F., & Husman, J. (2004). Effects of time perspective on student motivation:  

 Introduction to a special issue. Educational Psychology Review, 16(1), 1-7.   

doi: 10.1023/B:EDPR.0000012342.37854.58  

Keith, T. Z. (2006). Multiple regression and beyond. Boston, MA: Pearson.  

Keith, T. Z., Hallam, C. D., & Fine, J. G. (2004). Longitudinal effects of in-school and out-of- 

 school homework on high school grades. School Psychology Quarterly, 19(3), 187-211.  

 doi: http://dx.doi.org/10.1521/scpq.19.3.187.40278 

http://psycnet.apa.org/doi/10.1521/scpq.19.3.187.40278


136 
 

Kinnear, T., & Taylor, J. (1991). Marketing research: An applied approach. New York:  

 McGraw Hill.  

Knight, R. G., Chisholm, B. J., Marsh, N. V., & Godfrey, H. P. (1988). Some normative,  

 reliability, and factor analytic data for the revised UCLA Lonliness Scale. Journal of  

 Clinical Psychology, 44, 203-206.  

Knight, J. D., Fulop, R. M., Marquez-Magana, L., Tanner, K. D. (2008). Investigative cases  

 student outcomes in an upper-division cell and molecular biology laboratory course at a  

 minority-serving institution. CBE Life Sciences Education, 7(4), 382-393.  

doi: 10.1187/cbe.08-06-0027 

Koenig, R. (2009). Minority retention rates in science are sore spot for most universities.  

 Science, 324(5933), 1386-1387.  

Koenig, K., Schen, M., Edwards, M., & Bao, L. (2012). Addressing STEM retention through a  

 scientific thought and methods course. Journal of College Science Teaching, 41(4), 23- 

 29.  

Kokkelenberg, E. C., & Sinha, E. (2010). Who succeeds in STEM studies? An analysis of  

 Binghamton University undergraduate students. Economics of Education Review, 29(6),  

 935-946. doi: http://dx.doi.org/10.1016/j.econedurev.2010.06.016  

Krapp, A., Hidi, S., & Renninger, K. A. (1992). Interest, learning, and development. In K. A. 

 Renninger, S. Hidi, & A. Krapp (Eds.), The role of interest in learning and development  

(pp. 3-25). Hillsdale, NJ: Erlbaum. 

Leedy, P. D., & Ormrod, J. E. (2013). Practical research: Planning and Design. Upper Saddle  

 River, NJ: Pearson. 

Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a unifying social cognitive theory of  

 career and academic interest, choice, and performance. Journal of Vocational Behavior,  



137 
 

 45(1), 79-122. 

Lent, R. W., Brown, S. D., Sheu, H.-B., Schmidt, J., Brenner, B. R., Gloster, C. S., Treistman, D.  

 (2005). Social cognitive predictors of academic interests and goals in engineering: Utility  

 for women and students at historically black universities. Journal of Counseling  

 Psychology, 52(1), 84-92. doi:10.1037/0022-0167.52.1.84 

Lent, R. W., Sheu, H.-B., Singley, D., Schmidt, J. A., Schmidt, L. C., & Gloster, C. S. (2008).  

 Longitudinal relations of self-efficacy to outcome expectations, interests, and major  

 choice goals in engineering students. Journal of Vocational Behavior, 73(2), 328–335.  

 doi:10.1016/j.jvb.2008.07.005 

Leuwerke, W. C., Robbins, S., Sawyer, R., & Hovland, M. (2004). Predicting engineering major  

 status from mathematics achievement and interest congruence. Journal of Career  

 Assessment, 12(2), 135-149. doi: 10.1177/1069072703257756   

Levett-Jones, T., Lathlean, J., Higgins, I., & McMillan, M. (2009). Staff-student relationships  

 and  their  impact  on  nursing  students’  belongningess  and  learning.  Journal of Advanced  

 Nursing, 65(2), 316-324. doi: 10.1111/j.1365-2648.2008.04865.x 

Levin, J., & Wyckoff, J. (1990). Identification of student characteristics that predict persistence  

 and success in an engineering college at the end of the sophomore year: Informing the  

 practice of academic advising. State College, PA: Pennsylvania State University.  

Li, N., Liang, J., & Crant, J. (2010). The role of proactive personality in job satisfaction and  

 organizational citizenship behavior: A relational perspective. Journal of Applied  

 Psychology, 95(2), 395-404. doi: 10.1037/a0018079 

Lichtenstein, G., Loshbaugh, H. G., Claar, B., Chen, H. L., Jackson, K., & Sheppard, S. (2009).  

 An engineering major does not (necessarily) an engineer make: Career decision making  

 among undergraduate engineering majors. Journal of Engineering Education, 98(3), 227- 



138 
 

 234. 

Lichtenstein, G., Loshbaugh, H. G., Claar, B., Bailey, T. L., & Sheppard, S. (June, 2007). Should 

I  stay  or  should  I  go?  Engineering  students’  persistence  is based on little experience or  

 data. Paper presented at the annual meeting of the American Society of Engineering  

 Education (ASEE), Honolulu, Hawaii.  

Lindley, L. D. (2005). Perceived barriers to career development in the context of social cognitive  

 career theory. Journal of Career Assessment, 13(3), 271-287.  

doi: 10.1177/1069072705274953 

Lucena, J. C. (2005). Defending the nation: U.S. policymaking in science and engineering  

 education from Sputnik to the war against terrorism. Lanham, MD: University Press of  

 America.  

Luttrell, V. R., Callen, B. W., Allen, C. S., Wood, M. D., Deeds, D. G., & Richard, D. C. S.  

 (2010). The mathematics value inventory for general education students: Development  

 and initial validation. Educational and Psychological Measurement, 70(1), 142-160.  

doi: 10.1177/0013164409344526 

MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modifications in  

 covariance structure analysis: The problem of capitalization on chance. Psychological  

 Bulletin, 111(3), 490-504.  

Major, D. A., Holland, J. M., & Oborn, K. L. (2012). The influence of proactive personality and  

 coping on commitment to STEM majors. The Career Development Quarterly, 60(1), 16- 

 24. doi: 10.1002/j.2161-0045.2012.00002.x  
 
Major, D. A., Turner J. E., & Fletcher, T. D. (2006). Linking proactive personality and the big  

 five to motivation to learn and development activity.  Journal of Applied Psychology,  



139 
 

 91(4), 927-935. doi: 10.1037/0021-9010.91.4.927  

Makel, M. C., & Plucker, J. A. (2014). Facts are more important than novelty: Replication in the  

 education sciences. Educational Researcher, 43(6), 304-316.  

 doi:10.3102/0013189X14545513 

Malhotra, N. K. (1996). Marketing research: An applied orientation. Prentice Hall, New  

 Jersey. Upper Saddle River, NJ: Prentice Hall. 

Mallinckrodt, B., & Wei, M. (2005). Attachment, social competencies, social support, and  

 psychological distress. Journal of Counseling Psychology, 52(), 358-367. 

 doi: 10.1037/0022-0167.52.3.358 

Manis, J. D., Thomas, N. G., Sloat, B. F., & Davis, C. (1989). An analysis of factors affecting  

 choices of majors in science, mathematics, and engineering at the University of  

 Michigan. Ann Arbor, MI: Center for Continuing Education of Women, University of  

 Michigan.  

Marra, R., Bogue, B., Shen, D., & Rodgers, K. (2007, June). Those that leave: Assessing why  

 students leave engineering. Paper presented at the annual ASEE/IEEE Frontiers in  

 Education Conference, Honolulu, HI. 

Marra, R. M., Rodgers, K. A., Shen, D., & Bogue, B. (2012). Leaving engineering: A multi-year  

 single institution study. Journal of Engineering Education, 101(1), 6-27.  

 doi: 10.1002/j.2168-9830.2012.tb00039.x 

Marra, R., Shen, D., Rodgers, K. A., & Bogue, B. (2009, April). Leaving engineering: A multi- 

 year single institution study. Paper presented at the annual meeting of the American  

 Educational Research Association, San Diego, CA.   

Marsh, H. W. (1990). A multidimensional, hierarchical self-concept: Theoretical and empirical 



140 
 

 justification. Educational Psychology Review, 2(2), 77-172. doi: 10.1007/BF01322177 

Marsh, H. W., & Yeung, A. S. (1997). Causal effects of academic self-concept on academic 

 achievement: Structural equation models of longitudinal data. Journal of Educational  

Psychology, 89(1), 41-54. doi: 10.1037/0022-0663.89.1.41 

Maton, K. I., Hrabowski, F. A., F. A., III, & Schmitt, C. L. (2000). African American college  

 students excelling in the sciences: College and postcollege outcomes in the Meyerhoff  

 Scholars program. Journal of Research in Science Teaching, 37(7), 629-654.  

Matusovich, H. M., Jones, B. B., Paretti, M. C., Moore, J. P., & Hunter, D. A. N. (2011, June). 

Motivating factors in problem-based learning: A student perspective on the role of the  

facilitator. Paper presented at the annual meeting of the American Society of Engineering  

Education, Vancouver BC, Canada.  

Matusovich, H. M., Paretti, M. C., Jones, B. D., & Brown, P. R. (2012, June). How problem- 

 based learning and traditional engineering design pedagogies influence the motivation of 

 first-year engineering students. Paper presented at the annual meeting of the American  

Society for Engineering Education, San Antonio, TX.  

Mazur, E. (1997). Peer  instruction:  A  user’s  manual. Upper Saddle River, NJ: Prentice Hall. 

McDade,  L.  (1988).  Knowing  the  “right  stuff”:  Gender,  attrition,  and  scientific  literacy.   

 Anthropology and Education Quarterly, 19(2), 93-114.  

Meece, J. L., Wigfield, A., & Eccles, J. S. (1990). Predictors of math anxiety and its  

 consequences  for  young  adolescents’  course  enrollment  intentions  and  performances  in 

 mathematics. Journal of Educational Psychology, 82(1), 60-70  

doi: 10.1037/0022-0663.82.1.60 

Melsa, J. L. (2007, June). The winds of change. ASEE banquet keynote speech at the annual  



141 
 

 meeting of the of the American Society of Engineering Education (ASEE), Honolulu, HI.  

Meyers, L. S., Gamst, G., & Guarino, A. J. (2006). Applied mulitvariate research: Design and  

 interpretation. Thousang Oaks, CA: Sage. 

Miller, J. D., & Kimmel, L. G. (2012). Pathways to STEMM profession. Peabody Journal of  

 Education, 87(1), 26-45. doi:10.1080/0161956X.2012.642274 

Moller-Wong, C., & Eide, A. (1997). An engineering student retention study. Journal of  

 Engineering Education, 86(1), 7-15. doi: 10.1002/j.2168-9830.1997.tb00259.x 

Mueller, R. O., & Hancock, G. R. (2008). Best practices in quantitative methods. In J. W.  

 Osborne (Eds.), Best practices in structural equation modeling (pp.488-508). Thousand  

 Oaks, California: Sage Publications. 

Murdock, T. B. (1999). The social context of risk: Status and motivational predictors of  

 alienation in middle school. Journal of Educational Psychology, 91(1), 62-75. 

 doi: 10.1037/0022-0663.91.1.62 

Muthen, B., & Kaplan, D. (1992). A comparison of some methodologies for the factor analysis  

 of non-normal Likert variables: A note on the size of the model. British Journal of  

 Mathematical and Statistical Psychology, 45, 19-30.  

National Academy of Engineering and the National Research Council. (2005). Enhancing the  

 community college pathway to engineering careers. Washington, DC. The National  

 Academies Press.  

National Research Council. (1999a). Harnessing  science  and  technology  for  America’s  economic 

 future. Washington, DC: The National Academies Press.  

National Research Council. (1999b). Transforming undergraduate education in science,  

mathematics, engineering, and technology. Washington, DC: The National Academies 

Press.  



142 
 

National Research Council (2001). Building a work force for the information economy.  

 Washington, DC: The National Academies Press.  

National Science Board. (2006). Science and engineering indicators 2006. Arlington, VA:  

 National Science Foundation.  

National Science Board, (2007). A national action plan for addressing the critical needs of the  

 U.S. science, technology, engineering, and mathematics education system. Arlington,  

 VA: National Science Foundation.  

Nelson, J., & Napper, S. (1999, November). Ramping up an integrated engineering curriculum to  

 full implementation. Paper presented at the annual meeting of the ASEE/IEEE Frontiers  

 in   Education Conference, San Juan, Puerto Rico. doi: 10.1109/FIE.1999.840421 

Noddings, N. (1992). The challenge to care in schools: An alternative approach to education.  

 New York: Teachers College Press. 

Ohland, M. W., Sheppard, S. D., Lichtenstein, G., Eris, O., Chachra, D., & Layton, R. A. (2008).  

 Persistence, engagement, and migration in engineering programs. Journal of Engineering  

 Education, 97(3), 259-278. 

Olds, B. M., & Miller, R. L. (2004). The effect of a first-year integrated engineering curriculum  

 on graduation rates and student satisfaction: A longitudinal study. Journal of Engineering  

 Education, 93(1), 23-35. doi: 10.1002/j.2168-9830.2004.tb00785.x 

Osborne, J. W. (1997). Identification with Academics and Academic Success Among  

 Community College Students. Community College Review, 25(1), 59-67.  

Osborne, J. W., & Rausch, J. L. (April, 2001). Identification with academics and academic 

outcomes in secondary students. Paper presented at the American Education Research 

Association, Seattle, WA. 



143 
 

Osborne, J. W., & Jones, B. D. (2011). Identification with academics and motivation to achieve  

 in school: How the structure of the self influences academic outcomes. Educational  

 Psychology Review, 23(1), 131-158. doi:10.1007/s10648-011-9151-1 

Osterman,  K.  F.  (2000).  Students’  need  for  belonging  in  the school community. Review of  

 Educational Research, 70(3), 323–367. 

Pascarella, E. T., & Terenzini, P. T. (2005). How college affects students: A third decade of  

 research. San Francisco, CA: Jossey-Bass.  

Pasley, K., Futris, T. G., & Skinner, M. L. (2002). Effects of commitment and psychological  

 centrality on fathering. Journal of Marriage and Family, 64(1), 130–138. 

Patrick, L., Care, E., & Ainley, M. (2011). The Relationship between vocational interests, self- 

 efficacy, and achievement in the prediction of educational pathways. Journal of Career  

 Assessment, 19(1), 61-74. doi:10.1177/1069072710382615 

Paulhus, D. L. (1991). Measurement and control of response bias. In J. P. Robinson, P. R.  

 Shaver, & L. S. Wrightsman (Eds.), Measures of personality and social psychological  

 attitudes, Vol. 1 (pp. 17-59). San Diego, CA: Academic Press. 

Pedhazur, E. J., & Schmelkin, L. P. (1991). Measurement design, and analysis: An integrated  

 approach. Hillsdale, NJ; Lawrence Erlbaum Associates.  

Pendergrass, N. A., Kowalczyk, R. E., Dowd, J. P., Laoulache, R. N., Nelles, W., Golen, J. A., &  

 Fowler, E. (2001). Improving first-year engineering education. Journal of Engineering  

Education, 90(1), 33-41. doi: 10.1002/j.2168-9830.2001.tb00564.x 

Pierrakos, O., Beam, T. K., Constantz, J., Johri, A., & Anderson, R. (2009, October). On the  

 development of a professional identity: Engineering persisters  vs engineering switchers.   

 39th ASEE/IEEE Frontiers in Education Conference, San Antonio, TX. 



144 
 

Pilotte, W. J., & Gable, R. K. (1990). The impact of positive and negative items stems on the  

 validity of a computer anxiety scale. Educational and Psychological Measurement, 50(3),  

 603-610. doi:10.1177/0013164490503016 

Quinn, R. G. (1995, November). Implementing large scale curricular changes—The Drexel 

 Experience. Paper presented at the annual meeting of the Frontiers in Education  

Conference, Atlanta, GA. doi: 10.1109/FIE.1995.483247 

Reeve, J. (2006). Teachers as facilitators: What autonomy–supportive teachers do and why their  

 students benefit. The Elementary School Journal, 106(3), 225–236. doi: 10.1086/501484 

Roedel, R., Kawski, M., Doak, B., Politano, M., Duerden, S., Green, M., Kelly, J., Linder. D., &  

 Evans, D. (1995, November). An integrated, project-based, introductory course in  

 calculus, physics, English, and engineering. Paper presented at the annual meeting of the  

 Frontiers in Education Conference, Atlanta, GA. doi:10.1109/FIE.1995.483132 

Rollins, J. C. (2011). U.S. Science, Technoglogy, Engineering, and Math (STEM) Education:  

 Education in a Competitive and Globalizing World. New York, NY: Nova Science  

 Publisher.  

Ruff, C. (2013). Examining and supporting domain identification and student interest in first 

year college students (Unpublished doctoral dissertation). Virginia Tech, Blacksburg, 

VA. 

Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and facilitation of intrinsic  

 motivation, social development, and well-being. American Psychologist, 55(1), 68-78.   

 doi: 10.1037/0003-066X.55.1.68 

Ryan, A. M., & Patrick, H. (2001). The classroom social environment and changes in 

 adolescents’  motivation  and  engagement  during  middle  school.  American Educational  



145 
 

Research Journal, 38(2), 437–460.    

Ryan, R. M., Stiller, J. D., & Lynch, J. H. (1994). Representations of relationships to teachers,  

 parents, and friends as predictors of academic motivation and self-esteem. Journal of  

 Early Adolescence, 14(2), 226-249. doi: 10.1177/027243169401400207 

Sadler, P. M., & Tai, R. H. (2007). The two high-school pillars supporting college science.  

 Science, 317(27), 457-458. 

Schaefers,  K.  G.,  Epperson,  D.  L.,  &  Nauta,  M.  M.  (1997).  Women’s  career  development:  Can   

 theoretically derived variables predict persistence in engineering majors? Journal of  

 Counseling Psychology, 44(2), 173-183. doi: 10.1037/0022-0167.44.2.173 

Schavelson, R. J., & Bolus, R. (1982). Self-concept: The interplay of theory and models. Journal  

 of Educational Psychology, 74(1), 3-17. doi: 10.1037/0022-0663.74.1.3 

Schmader, T., Major, B., & Gramzow, R. H. (2001). Coping with ethnic stereotypes in the  

 academic domain: Perceived injustice and psychological disengagement.  Journal of  

 Social Issues, 57(1), 93-111. doi: 10.1111/0022-4537.00203   

Schneider, D. R., Leon, M., Blink, C. V. D., Ahmed, N., Shah, D., & Li, K. (2008). Active  

learning and assessment within the NASA robotics alliance cadets program. International 

Journal of Engineering Education, 24(6), 1091-1102.  

Schraw, G., & Lehman, S. (2001). Situational interest: A review of the literature and directions  

 for future research. Educational Psychology Review, 13(1), 23-52.  

doi: 10.1023/A:1009004801455 

Schriesheim, C. A., & Hill, K. D. (1981). Controlling acquiescence response bias by item  

 reversals: The effect of questionnaire validity. Educational and Psychological  

 Measurement, 41(4), 1101-1114. doi: 10.1177/001316448104100420 

Schumacker, R. E., & Lomax, R. G. (2010). A  beginners’s  guide  to  structural  equation   



146 
 

 modeling. New York, NY: Routledge.   

Schunk, D. H., Meece, J. L., & Pintrich, P. R. (2014). Motivation in education: Theory, research,  

 and applications. Upper Saddle River, NJ. Pearson. 

Schunk, D. H., & Pajares, F. (2005). Competence perceptions and academic functioning. In A. J.  

 Elliot, & C. S. Dweck (Eds.), Handbook of competence and motivation (pp. 141-163).  

 New York: Guilford. 

Schunk, D. H., Pintrich, P. R., & Meece, J. L. (2008). Motivation in education: Theory, research,  

 and applications. Upper Saddle River, NJ: Pearson.  

Seibert, S., Crant, J., & Kraimer, M. (1999). Proactive personality and career success. Journal of 

  Applied Psychology, 84(3), 416-427. doi: 10.1037/0021-9010.84.3.416 

Seymour, E., & Hewitt, N. (1997). Talking about leaving: Why undergraduates leave the  

 sciences. Boulder, Colorado: Westview Press. 

Shapira, Z. (1976). Expectancy determinants of intrinsically motivated behavior. Journal of  

 Personality and Social Psychology, 34(6), 1235-1244. doi: 10.1037/0022-3514.34.6.1235 

Sheppard, S., & Jenison, R. (1997). Examples of freshmen design education. International  

 Journal of Engineering Education, 13(4), 248-261.  

Simons, J., Vansteenkiste, M., Lens, W., & Lacante, M. (2004). Placing motivation and future  

 time perspective theory in a temporal perspective. Educational Psychology Review,  

 16(2), 121-139. doi: 10.1023/B:EDPR.0000026609.94841.2f 

Simpkins, S. D., Davis-Kean, P. E., & Eccles, J. S. (2006). Math and science motivation: A  

 longitudinal examination of the links between choices and beliefs. Developmental  

 Psychology, 42(1), 70-83. doi: 10.1037/0012-1649.42.1.70 

Sorby, S. A., & Hamlin, A. J. (2001, August). The implementation of first-year engineering  



147 
 

 program and its impact on calculus performance. Paper presented at the annual meeting  

 of the International Conference on Engineering Education, Oslo, Norway.  

Steinberg, S. S. (1949). The relations of secondary mathematics to engineering education.  

 Mathematics Teacher, 42(8), 386-388. 

Stewart, D., Barnes, J., Cote, J., Cudeck, R., & Malthouse, E. (2001). Factor analysis. Journal of  

 Consumer Psychology, 10(1-2), 75-82. doi:10.1207/S15327663JCP1001&2_07 

Strenta, A. C., Elliott, R., Adair, R., Matier, M., & Scott, J. (1994). Choosing and leaving science  

 in highly selective institutions. Research in Higher Education, 35(5), 513-547.  

Suresh, R. (2007). The relationship between barrier courses and persistence in engineering.  

 Journal of College Student Retention: Research, Theory, and Practice, 8(2), 215-239. 

doi: 10.2190/3QTU-6EEL-HQHF-XYF0 

Tabachnick,  S.  E.,  Miller,  R.  B.,  &  Telyea,  G.  E.  (2008).  The  relationships  among  students’   

 future-oriented goals and subgoals, perceived task instrumentality, and task-oriented self- 

 regulation strategies in an academic environment. Journal of Educational Psychology,  

 100(3), 629-642. doi: 10.1037/0022-0663.100.3.629 

The National Academies. (1993). Science, technology, and the federal government: National  

 goals for a new era. Washington, DC: The National Academies Press.  

The National Academies. (1999). Capitalizing on investments in science and technology.  

 Washington, DC: The National Academies Press. 

Thurstone, L. L. (1947). Multiple factor analysis. Chicago, IL: University of Chicago Press. 

Tinto, V. (1987). Leaving college: Rethinking the causes and cures of student attrition. Chicago, 

IL: The University of Chicago Press. 

Tobias, S. (1990). They are not dumb, they are different: Stalking the second tier. Tucson, AZ: 

 Research Corporation.   

http://dx.doi.org/10.1207/S15327663JCP1001&2_07


148 
 

Torp, L., & Sage, S. (2002). Problems as possibilities: Problem-based learning for K-12  

 education. Alexandria, VA: ASCD.  

Trenor, J. M., Yu, S. L., Waight, C. L., Zerda, K. S., & Ting Ling, S. H. A. (2008). The relations  

 of ethnicity to female engineering students' educational experiences and college and  

 career plans in an ethnically diverse learning environment. Journal of Engineering  

 Education, 97(4), 449-465. 

Tyson, W. (2011). Modeling engineering degree attainment using high school and college  

 coursetaking and achievement, Journal of Engineering Education, 100(4), 760-777.  

 doi: 10.1002/j.2168-9830.2011.tb00035.x 

Vallerand, R. J., & Bissonnette, R. (1992). Intrinsic, extrinsic, and amotivational styles as  

predictors of behavior: A prospective study. Journal of Personality, 60(3), 599-620. 

doi: 10.1111/j.1467-6494.1992.tb00922.x 

Van Calster, K., Lens, W., & Nuttin, J. R. (1987). Affective attitude towards the personal future:  

Impact on motivation in high school boys. American Journal of Psychology, 100(87), 1-

13. doi: 10.2307/1422639 

Voelkl, K. E. (1997). Identification with school. American Journal of Education, 105(3), 294-

318.  

Walker, C. O., & Greene, B. A. (2009). The relations between student motivational beliefs and  

 cognitive engagement in high school. Journal of Educational Research, 102(6), 463-472. 

Walker, C. O., Greene, B. A., & Mansell, R. (2006). Identification with academics, motivational  

 style, and self-efficacy: Differential predictions for cognitive engagement? Learning and  

 Individual Differences, 16(1), 1-12. doi: http://dx.doi.org/10.1016/j.lindif.2005.06.004 

Wang, X. (2013). Why students choose STEM majors: Motivation, high school learning, and  

 postsecondary context of support. American Educational Research Journal, 50(5), 1081- 



149 
 

 1121. doi: 10.3102/0002831213488622 

Wao, Ho. O., Lee, R. S., & Borman, K. M. (2010). Climate for retention to graduation: A mixed  

 methods investigation of student perceptions of engineering departments and programs.  

 Journal of Women and Minorities in Science and Engineering, 16(4), 293-317. 

 doi: 10.1615/JWomenMinorScienEng.v16.i4.20 

Watkins, J., & Mazur, E. (2013). Retaining students in Science, Technology, Engineering, and  

 Mathematics (STEM) majors. Journal of College Science Teaching, 42(5), 36-41. 

Wentzel, K. R. (2005). Peer relationships, motivation, and academic performance at school. In  

 A. J. Elliot & C. S. Dweck (Eds.), Handbook of competence and motivation (pp. 279– 

 296). New York: Guilford.   

Widnall, S. E. (1988). AAAS presidential lectures: Voices from the pipeline. Science, 241(4874),  

 1740-1745.   

Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation.  

 Contemporary Educational Psychology, 25(1), 68-81. doi: 10.1006/ceps.1999.1015 

Wigfield, A., & Eccles, J. (1992). The development of achievement task values: A theoretical 

 analysis. Developmental Review, 12(3), 265–310.   

doi: http://dx.doi.org/10.1016/0273-2297(92)90011-P 

Wigfield, A., Tonks, S., & Eccles, J. S. (2004). Expectancy-value theory in cross-cultural  

 perspective. In D. M. McInerney and S. Van Etten (Eds). Big theories revisited: Research  

 on sociocultural influences on motivation and learning (pp. 165-1980. Information Age  

 Publishing. 

Williams, G. C., & Deci, E. L. (1996). Internalization of biopsychosocial values by medical  

 students: A test fo self-determination theory. Journal of Personality and Social  

 Psychology, 70(4), 767-779. 



150 
 

William, G. C., Freedman, Z. R., & Deci, E. L. (1998). Supporting autonomy to motivate  

 glucose control in patients with diabetes. Diabetes Care, 21(10), 1644-1651. 

Wood, R., & Bandura, A. (1989). Social cognitive theory of organizational management. The  

 Academy of Management Review, 14(3), 361-384.  

Zhang, G., Anderson, T. J., Ohland, M. W., & Thorndyke, B. R. (2004). Identifying factors  

 influencing engineering student graduation and retention: A longitudinal and cross- 

 institutional study. Journal of Engineering Education, 93(4), 313-320.  

 doi: 10.1002/j.2168-9830.2004.tb00820.x 

Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of  

 components to retain. Psychological Bulletin, 99 (3), 432-442.  

doi: http://dx.doi.org/10.1037     

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

http://psycnet.apa.org/doi/10.1037/0033-2909.99.3.432


151 
 

Appendix A (151) 
 
A comparison of FYE and Classic Fall 2013 
Course Objectives (FYE) 
At the conclusion of this course a student will be able to  

x Compare and contrast the contributions of different types of engineers in the development 
of a product or process. 

x Develop a plan of study for his/her undergraduate career 
x Synthesize information from several sources in addressing an issue 
x Communicate information effectively 
x Solve problems using a variety of strategies 
x Articulate holistic issues that impact engineering 
x Model an engineering system 
x Contribute to team efforts  

 
Course Objectives (Classic) 
Course Objectives:  Having successfully completed this course, the student will be able to: 

x Demonstrate a basic understanding of the engineering design process; 
x Demonstrate basic facility with hands-on design and design evaluation, accomplished by 

working in teams; 
x Demonstrate a knowledge of the disciplines of the Virginia Tech College of Engineering; 
x Demonstrate an understanding of professional ethics and application to real-life situations; 
x Apply the scientific method to problem solving including use of software where applicable; 
x Graph numeric data and derive simple empirical functions; 
x Develop and implement algorithms and demonstrate understanding of basic programming 

concepts; 
x Demonstrate a basic awareness of contemporary global issues and emerging technologies, 

and their impact on engineering practice. 
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Appendix B (152-153) 
 
Explicit Similarities and Differences Between the Two Classes 
 Classic FYE 

Linear/Power/Exponential 
functions 

Plotting by hand 

Finding and reporting equations 

Plotting in Matlab 

Finding and reporting equations 

Least Squares regression By hand and in excel In Matlab (but no coverage of 
theory) 

Sketching  Multiview and Isometric (1 
week) 

ENGE text pp 253 – 309 

No formal instruction 

Ethics In class discussion, Incident at 
Morales, ENgE text pp 157-183 

No formal instruction 

Design Sustainable Energy Project –  

Engineering Design Reading 

 

Problem Solving Project – 
Problem solving instruction 
rather than Design Process 
instruction. 

Teamwork  1 class – Forming, Storming, 
Norming,  …. 

Parts of several classes – Roles, 
dealing with conflict,  

Programming Flowcharting 

LABVIEW  

Loops 

Decisions (Case) 

Vectors 

Summing 

Flowcharting 

MATLAB 

Loops 

Decisions 

Vectors  

Max and min 

Sensors Ultrasonic sensor (with 
Labview) 

B 

Ultrasonic Sensor/Arduino/ 
Matlab 

Infrared sensor/Arduino/Matlab 
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General problems Some trig/geometry/logic 
problems 

Open ended ill structured 
problems – amount of 
trig/geometry etc needed varied 
with problem.  Groups chose 
from 7 problems –  

1. Assembly Plant 

2. Bass Boost 

3. Traffic control at PF and 
UCB. 

4. Water Rocket Launch 

5. Data Acq on Football helmet 

6. Obstacle avoidance robot 

7. Hanging the SEB engine 
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Appendix C (p. 154-155) 
 

Course Outline – Fall 2013 – FYE (Pilot Group) 
W Dates Workshop Class 
1 Aug 26-

30 
Product Archeology – Preparation (cell 
phone) /Course Introduction 
Investigate Global, Social, Environmental, 
and Economic factors around the design a 
cell phone (student choice of cell phone).  
What impacted design, what impact did 
phone have. 

Information Sources - College 
librarian presented on using the 
library, finding and evaluating 
sources, citing sources. 

2 Sept 2*–
6 

Product Archeology: Artificial Hip 
(Preparation phase) and Cell Phone (a 
simple text and talk phone) (Excavation 
Phase).  Look into GSEE factors affecting 
form and manufacture. 

Product Archeology: Follow up on 
Artifical Hip – investigating GSEE 
factors in class. 
Product Archeology = Engineering 

3 Sept 9-13 Engineering Careers –  Job Skills and 
competencies, Discuss similarities across 
all fields, discuss common skills. 
Common Book discussion - opportunities. 

Guest Speaker – Career Services 
– what can career services do for 
students 
 

4 Sept 16-
20 

Data Analysis and Representation 
Introduction to graphing – linear, 
exponential, and power.  Graphing Basics, 
using data and graphing to estimate the 
value of parameter 
Matlab: Introduction to vectors,  Graphing 

Professional Engineering/ABET 
Data Acquisition/LEWAS LAB 
 

September xx – October xx  Departmental Information Sessions  
5 Sept 23-

27 
Acquiring data – design an experiment to 
determine constant g.  Available 
measurement system can measure 
distance and time.  Can use pendulum 
eqns or eqns of motion. Mathematical 
Models  
Matlab: Script files 

Algorithm Development and 
programming 
Loops and Decisions – translation 
of problem to flowchart to code 

6  Sept 30-
Oct 4 

Data Acquisition 
Arduinos and ultrasonic sensor 
Gravity Experiment – measure dist and 
time 
Analyzing data – parsing (using part of a 
vector) 

Programming  
Max and Min 
Nested and stacked ifs 
.mat files 

Test 1  October 3 (Thursday) 7pm 
7 Oct 7-11 Line Following Robot –  

Getting to know the robot 
Communicating with the Robot 

Programming 
Logic, decisions, logical operators 
Robot Algorithm Testing 

8 Oct 14-
18 

Robot Testing Line Following Robot algorithm 
recap 
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Review of Test 1 
9 Oct 21-

25 
Problem Solving: Introduction 
 

Teamwork 
Feedback 
Contracts 

10 Oct 28-
Nov 1 

Problem Solving: Problem Definition 
Common Book 

TeamRoles 
Teamwork Goals 

11 Nov 4-8 Problem Solving: Representations  Pathways Planner  
12 Nov 11-

15 
Problem Solving: Questioning – 
Claims/arguments  
Pathways Planner Exercise 

No Lecture  

Test 2  November 14 (Thursday) 7pm 
13 Nov 18-

22 
Problem Solving: Documentation – 
supporting/justifying  
Assertion Evidence Form 

Technical Presentations 
Project Deliverables 

Thanksgiving Break November 25-29 

14 Dec 2 -6 Problem Solving: Evaluation 
Presentation Expectations 

Project Presentations 
Review of Test 2 /Exam notes 

15 129-11 Presentations No class 
Final Exam          December 13, 2013 (Friday)  7:00pm-9:00pm 
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Appendix D (p. 156-157) 
 

Course Outline  - Classic Fall 2013 (Traditional Group) 
Week Dates Lecture Workshop 
1 Aug 26-30 Course Introduction 

 
Workshop introduction 
Problem solving (hands-on) 

Friday, August 30, 2013            Last day to add classes 
2 Sept 2-6 Introduction to design 

Engineering as a 
profession 

Teamwork 
Team building design activity 
(hands-on) 

3 Sept 9-13 Problem solving 
Sketching  

Sketching activity (hands-on) 

Departmental Information Sessions (see course website for exact dates and times; you 
are required to attend four as part of the course) 
4 Sept 16-20 Graphing Design Project introduction 

Graphing (hands-on) 
5 Sept 23-27 Graphing 

Linear Regression 
Design Project discussion 
Graphing/least squares linear 
regression activity (hands-on) 

6 Sept 30 – 
Oct 4 

Problem Solving 
Mechantronics 

Mechatronics I (hands-on) 

TEST 1   October 3 (Thursday)   7:00 PM 
Friday, October 4, 2013                       Last day to drop classes without grade penalty 
7 Oct 7-11 Sustainability 

Flowcharting  
Flowcharting (hands-on) 

8 Oct 14-18 Problem Solving  
Ethics 

No workshops this week 

Friday, October 18, 2013           Fall Break 
9 Oct 21-25 LabVIEW programming  LabVIEW (hands-on) 

Ethics  
Monday, October 21, 2013                 Last day to resign without grade penalty 
Tuesday, October 22 – Tuesday, October 29, 2013        Course Request for Spring 2014 
10 Oct 28 – 

Nov 1 
LabVIEW Programming LabVIEW (hands-on) 

11 Nov 4 – 8 Intro to LabVIEW DAQ 
LabVIEW programming 

LabVIEW (hands-on) 
LabVIEW DAQ (hands-on) 

12 Nov 11-15 LabVIEW Programming LabVIEW programming 
TEST 2   November 14 (Thursday)   7:00 PM 
13 Nov 18-22 LabVIEW programming Design Project demonstration, 

Design Project: report, presentation 
slides, and peer evaluation are due 
11:59 PM the day before your 
workshop 

November 22, 2013         Deadline to request rescheduling of final exams that conflict 
or         
                                                   constitute a third exam within 24 hours  
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Saturday, November 30, 2013            Web Drop/Add begins for Spring Semester 2014 
November 23– December 1, 2013           Thanksgiving Break 
14 Dec 2-6 Globalization of 

engineering   
Practice & Study Abroad 

Mechatronics II (hands-on)  
Workshop Wrap up 

Friday, December 6, 2013                 Last day to apply for Course Withdrawal 
15 Dec 9-11 Course wrap up No workshop 
Thursday, December 12, 2013           Reading Day (no classes) 

 
 


