List of Tables

Table 5-1. Linear interlaminar shear stress comparison .. 90
Table 6-1. Failure pressure and location for elliptical graphite-epoxy cylinders,
 geometrically linear analysis, Hashin failure criterion 94
Table 6-2. Failure pressure and location for elliptical graphite-epoxy cylinders,
 geometrically linear analysis, maximum stress failure criterion 95
Table 6-3. First fiber failure pressure and location for elliptical graphite-epoxy cylinders,
 geometrically linear analysis, Hashin failure criterion 97
Table 6-4. First fiber failure pressure and location for elliptical graphite-epoxy cylinders,
 geometrically linear analysis, maximum stress failure criterion 97
Table 6-5. Failure pressure and location for elliptical graphite-epoxy cylinders,
 geometrically nonlinear analysis, Hashin failure criterion 100
Table 6-6. Failure pressure and location for elliptical graphite-epoxy cylinders,
 geometrically nonlinear analysis, maximum stress failure criterion 101
Table 6-7. First fiber failure pressure and location for elliptical graphite-epoxy cylinders,
 geometrically nonlinear analysis, Hashin failure criterion 103
Table 6-8. First fiber failure pressure and location for elliptical graphite-epoxy cylinders,
 geometrically nonlinear analysis, maximum stress failure criterion 104
Table 6-9. Failure pressure, location, and mode for elliptical graphite-epoxy cylinders,
 geometrically linear and nonlinear analyses, two failure criteria 105
Table 6-10. Failure pressure, location, and mode for elliptical graphite-epoxy cylinders,
 geometrically linear and nonlinear analyses, two failure modes,
 Hashin failure criterion ... 107
Table B-1. End displacement required to satisfy axial equilibrium corresponding to an
 internal pressure evaluated using linear analysis 144
Table B-2. End displacement required to satisfy axial equilibrium corresponding to an
 internal pressure evaluated using nonlinear analysis 145