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Mantle melting processes: evidences from ophiolites, large igneous provinces, and
intraplate seamounts.

Pilar Madrigal
ABSTRACT

Melting processes in the mantle have a key role in plate tectonics and in the most colossal
phenomena in the Earth, like large igneous provinces, mantle plume upwellings, and the constant growth
of the pl an e tindhss studg wetuserhie geochemizal and petrological evideaserped in
ophiolites, large igneous provinces, and intraplate seamtunnderstandausestiming andimplications
of melting in these different tectonic environments.

We studiedmelting at extensional environmentf mid-ocean ridges ah backarc basins,
preserved in ophiolite§.he Santa Elena Ophiolita iCosta Rica&omprisesa wellpreserved fragment of
the lithospheric mantle that formed along a papeading center. Petrological models of fractional
crystallization suggest deep pressures of crystallization of >0.4 GPa for most of the sampbesl
agreemetwith similar calculations from slow/ultrslow spreading ridges and require a relatively hydrated
(~0.5 wt% HO) MORB-like source compaosition. Our findings suggest a complex interplay between
oceanic basin and baekc extension environments during trent Elena Ophiolite formation.

Secondlywe analyzedarge igneous provinces anegthmechanisms of formatioAs the surface
expression of deep mantle processes, it is essential to understand the time frames and geodynamics that
trigger these massive lava outpouriregsl theirimpact to life in the planeWWe analyze the record and
timing of preserved fragments of the Pacificean Large Igneous Provinces to reconstruct the history of
mantle plume upwellings and their relation with a demgted source like the Pacific Large Low Shear
Velocity Province during the Midurassic to Upper Cretaceous.

Lastly, we explore the occuence of lowvolume seamounts unrelated to mantle plume upwellings
and their geochemical modifications as they become recycled inside the mantle, to answer questions related
to the nature and originf wpper mantle heterogeneitiddle present evidence that enriched mantle
reservoir composedf recycled seamount materials can be formed in a shorter time period than ancient
subducted oceanic crushought to be the forming agent of the HIMU mantle reservoir endmember. A
A f dosmtingd , enriched reservoir could explain some of
intraplate magmas not related with an active mantle plume upwelling.
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Introduction

The Ear t isins constam statecof changing and the melting processes occurring
at all deptls in the mantle can attest for this dynamism. Melting occurs by the means of changes
on the physical and chemical conditions of portions of the mantle: increases in temperature,
decreases in pressure, a change in composition that lowers the mantle solidus. lirgis® s
then, thatmelting seems to be favorable at locations where either decompressienc@ai
ridges), thermochemical anomalies (mantle plumes) gD khput (subduction zones) are

responsible for the mechanisms of melting.

Nevertheless, there are @imstances where meltimgcursin aless understoothanney
either because of physical inaccessibility or restricting time scales. For examplespdading
ridges where magmia generatd at high depths; at locations where a mantle plume impacts the
lithosphere to create a large igneous province in short periods of time (<5Malpwratiume,

monogenetic volcanic seamounts untedisto mantle plume upwellings.

This study aims to contribute to the understanding of how melting occurs in thesalatypic
settings by exploring the geochemical and petrological characteristics ofgnaitiducts from

concrete locatiomand comparing them tther exampleworldwide

Chapter | concerns the study of the melt focusing zone preserved at the Santa Elena
Ophiolite in Costa RicaFor this study | collected geochronological, geochemical, and structural
data from the diabase intrusions that crosscut the peritioiriéerpret the origin of the ophiolite.

This chapter culminated in a publication in the journaldstin 2015:
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MADRIGAL, P., GAZEL, E., DENYER, P., SMITH, I., JICHA, B., FLORES, K.E.,
COLEMAN, D., SNOW, J 2015.A melt-focusing zone in the lithospheric mantle preserved in

the Santa Elena Ophiolite, Costa Rica. Lithos 230;2ER

Chapter Il covers tle study of the link between deep mantle dynamics, melting during
large igneous province (LIP) events, and the implications of these phenomidiedridhe planet.
For this, Icollected geochronological and geochemical data from accreted LIP terrahes at
margins of Nicoya Peninsula in Costa Rica. To assess the provenance aifhizagments we
created a series of kinematic models #taiw the paleotectonic evolution of these terranes. Our
kinematic models suggest a clear relationshipvbeh the emlacement of LIPsthe location of
mid-ocean ridgesand potential pulses of deep mantle upwellings, which is also confirmed by our
petrological modelxreated for LIPs globally. This chapter is currently under review in the journal

Nature Communications

MADRIGAL P. , GAZEL E., FLORES, K., JICHA, B., BIZIMIS, M., (in rev.). Record of

the Pacific LLSVP upwellings in the Cretaceo8abmitted to Nature Communications.

Chapter Ill aims to understand the nature of heterogeneities ubiquitous to the upper
mantle Pockets of more enriched recycled material in the upper mantle tend to melt preferentially
compared to the surrounding peridotite. These heterogeneities are sampleddoganididges,
creating enriched MORB signatures (EMORB), or by-Mslume intraplée magmatic processes.

We collected geochemical and geochronological data frorphone related seamounts accreted
to the margins of the Santa Elena Peninsula in Costa Rica, as a proxy for the composition of
subducted seamounts that later become thesgdbwme heterogeneities in the upper mantle. We
modeled the progressive enrichment of their isotopic evolution to suggest that the recycling times

of these seamounts are ~200-B20 Ma. In this time interval, subducted seamounts can become

11



as enriched as INIU-type reservoirsOur binary mixing modelsuggest thatraenrichednon
plume seamount reservoir in the upper manti@y be responsible for thesotopic diversity
observed in global examples of ocean island basalts and EMORB. This chapter will béesubmit

to Earth and Planetary Science Letters.
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Chapter 1: A melt-focusing zone in the lithospheric mantle
preserved in the Santa Elena Ophiolite, Costa Rica

Abstract

The Santa Elena Ophiolite in Costa Rica is comprised of apnetierved fragment of the
lithospheric mantle that formed along a patpoeading center. Within its exposed architecture,
this ophiolite records a deep section of the melt transport system of a slosllrapreading
environment, featuring a wetlleveloped melfocusing system focoalescent diabase dikes that
intrude the peridotite in a sukertical and sutparallel arrangement. Here we present an integrated
analysis of new structural dat8Ar/3°Ar geochronology, major and trace element geochemistry
and radiogenic isotopes ddtam the diabase dikes in order to elucidate the tectonic setting of the
Santa Elena ophiolite. The dikes are basaltic and tholeiitic in composition. Petrological models of
fractional crystallization suggest deep pressures of crystallization of >0.406R#$t of the
samples, which is in good agreement with similar calculations from slowsldinaspreading
ridges and require a relatively hydrated (~0.5 Wi HMORB:-like source composition. The
diabase dikes share geochemical and isotope signatubdsothtslow/ultraslow spreading ridges
and backarc basins and indicate mixing of a DMM source and an enriched marttaesnder
like EMII. The “°Ar/**Ar geochronology yields an age of ~131 Ma for a previous pegmatitic
gabbroic magmatic event that intrud#he peridotite when it was hot and plastic and an age of
~121 Ma for the diabase intrusions, constraining the cooling from near asthenospheric conditions
to lithospheric mantle conditions to ~10 Ma. Our findings suggest a complex interplay between
oceanc basin and baelirc extension environments during the Santa Elena Ophiolite formation.
We propose an alternative hypothesis for the origin of Santa Elena as an obducted fragment of an

oceanic core complex (OCC).
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1. Introduction
To understand the evolutiaf our planet, it is fundamental to constrain melt generation

and transport processes that occur in the mantle. In an extensional environment, when the upper
mantle crosses its solidus through decompression, melting initiates as amantdar network ©
melt(Karato and Jung, 1998; Kelemen et al., 2000; Faul, 2001; Dasgupta and Hirschmann, 2006)
Then, physical and chemical changes during reactive melt transport allow segregation of the partial
melts increasing the porosity of the upper mantle (ikedemen et al., 1997; Kelemen et al., 2000;
Spiegelman et al., 20014t extensional environments like matean ridges (Figl.1), basaltic
melts separate from the peridotite residue and react with the lithospheric mantle as they rise
buoyantly through thisetwork of melt(Kelemen et al., 2000; Bouilhol et al., 201After these
ascending melts coalesce and evolve beneath the ridge axis they erupt to produce new oceanic

crust(O'Hara, 1985)

Because it is difficult to reach deep segments of extensionaiesdi.e. miebcean ridges,
fore-arc basins, backrc basins) we rely on more accessible geologic features as analogous to
these environments, such as ophiolites. Ophiolites consist of ultramafic and mafic mantle
lithologies that formed along spreading s and get subsequently obducted or exposed onto
continents by tectonic processes. Conceptually, ophiolite assemblages are composed from bottom
to top, of peridotite (including Iherzolite, harzburgite and dunite) variably altered to serpentinite;
gabbroand diabase intrusions; and extrusive sequences of pillow lavas and massive flows that are
typically overlain by deepea sediment&oleman, 1971; Dewey and Bird, 1971; Dewey, 1976;
Steinmann et al., 2003; Dilek and Furnes, 2011, 204ihough such litblogical associations
have commonly been attributed to radean ridge or bae&rc origin, other interpretations for

ophiolite origins also exist, such as suptdbduction zone (SSZ) ophiolites, plumstated
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ophiolites and continental margin ophiolifesse Dewey and Casey, 2011, Dilek and Furnes, 2014

and references therein)

Based on geochemical affinities and order of mineral crystallizaddak and Furnes
(2011) developed a first order classification, separating ophiolites as subdusiaded and
subductiorunrelated types. Within their classification, radean ridge (MOR) type ophiolites
show geochemical consistency with normal foatan ridge basalt (MORB). Depending on the
proximity to features like mantle plumes, the geochemical affinity fiiayuate from MORB all
the way to enriched MORB (EMORB). In contrast, subduetelated ophiolites show a
progressive geochemical affinity from MORIRe to Island Arc Tholeiite (IAT) and Boninite in

the later stages of SSZ ophiolites (Dilek and FurB@sgl).

Even though the geochemical affinities expected in ophiolites areestalblished,
secondary processes occur after the formation of new oceanic crust must also be considered.
Hydrothermal systems that transport heat from the magma lenses toféoe suteract with the
crust resulting in hydrothermal alterations and ocean floor metamorResaince, 2008; Pearce,

2014 and references thereiBnrichments in large ion lithophile elements (LILE) that are usually
attributed to an arcelated fluid ineraction between the subducting slab and the mantle wedge,
could easily be mistaken with seawater interaction and contamination during the emplacement of
hot oceanic crust, and vice vef8oudier et al., 1988; Nicolas and Boudier, 2003)erefore, the
discrimination between MORype ophiolites and SSZ ophiolites has to be done carefully and by
integrating several geochemical tools. Consequently, in order to accurately assess the geochemical
fingerprinting of ophiolites, it is necessary to look at thedfimmobile element data. Fluid
immobile elements remain unaltered during weathering anetdowperature alteration. These

elements are characterized by high to intermediate charge/radius ratios and include most of the
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rareearth elements (REE) and highel@l strength elements (HFSHPearce, 2014)The
concentration of these elements is controlled by the chemistry of the magma source and the
crystallization processes that occur during the magmatic evolution. Several authors have worked
on creating fluidimmobile element proxies, which are compared to element ratios that correlate
with a specific geological proceg€ann, 1970; Pearce and Cann, 1971; Floyd and Winchester,

1975; Pearce, 1975; Shervais, 1982; Sun and McDonough, 1989; Pearce, 2008)

Another us@&l parameter for ophiolite characterization is its preserved architecture.
Variations of the magma supply and spreading rates can modify the architecture of the new oceanic
lithosphere(Nicolas and Boudier, 2003; Dilek and Furnes, 201&hiwatari (1985)linked
petrological and compositional features of ophiolites to their genesis and to variations in the
spreading rates (Fid..1). In this regard, the structure and composition of an ophiolite can aid to
the elucidation of the palespreading ratéCannat 1996; Godard et al., 2000; Dick et al., 2003;
Michael et al., 2003; Godard et al., 2008; Cannat et al., 2009; Till et al.,. Zdd}jionally, the
composition of the constituent peridotites and associated melts can contribute to characterize the
origin of an ophiolite. For instance, while harzburgite compositions may represent an uppermost
oceanic mantle melt source and higher degrees of partial melting, lherzolite compositions evidence
a deeper oceanic mantle, as they represent more fertile residjezs sulesser degrees of partial
melting (Fig.1.1) (Jackson and Thayer, 1972; Boudier and Nicolas, 1985; Dilek and Furnes, 2011)
Thus, ophiolite segments around the globe provide windows into fossilized melt transport systems
that once fed the oceanic arc crust and upper mantle. The presence of a zone of intense dike
emplacement that represents the rfmtusing part of the system is a common feature in these
exposed sections of the man(fRobinson et al., 2008)Vhen present, these dike networksvte

an insight to the magmatic origin and geochemical evolution of a particular ophiolite.
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Our study presents neffAr/3°Ar ages, major and trace element data, and radiogenic
isotopes from melts that intruded the Santa Elena Ophiolite, located in thevestérn Pacific
coast of Costa Rica. This ophiolite represents an emplaced fragment of 260 sper mantle
lithologies overthrusting an ancient accretionary comgBournon, 1994; Baumgartner and
Denyer, 2006; Denyer et al., 2006; Gazel et al., 20@81yer and Gazel, 2009; Tournon and
Bellon, 2009; Escudeviruete and Baumgartner, 201@&)ig. 1.2a). Occurrences of diabase dikes
around the peninsula are frequent, however the-pveierved diabase dike transport system is
largely exposed in two diffent sections of this ophiolite: the northwestern swarm and the
southeastern swarm (Figg2c). In both outcrops, the diabases intrude Iherzolite peridotite (Gazel
et al., 2006; Tournon and Bellon, 2009). The goal of this integrated structural, geoclardical
petrological analysis of the diabase nfeltusing system is to elucidate the magmatic origin and
evolution of the Santa Elena Ophiolite and the implications of its origin in the understanding of

melt transport and the evolution of the lithospheric thean

2. Geotectonic Background of the Santa Elena Ophiolite

Costa Rica is currently situated near the triple junction of the Cocos, Caribbean and Nazca
plates(DeMets, 2001)Across the Middle American Trench, the Cocos plate is being subducted
underneathhe Caribbean plate resulting in an active volcanic f(8aginor et al., 2011; Saginor
et al., 2013)Fig. 1.2b). A series of oceanic complexes have been accreted onto the Caribbean
Plate along the Pacific side of Costa Rica including the Santa Eleriali@p{Tournon et al.,
1995; Hauff et al., 2000; Hoernle et al., 2004; Denyer and Gazel, 2009; Herzberg and Gazel, 2009;
Buchs et al., 20135everal authors correlated the Santa Elena Ophiolite with other serpentinized

peridotite locations along the CadRicaNicaragua border suggesting that it represents-#h E
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suture zone between different tectonic blogk®urnon et al., 1995; Hauff et al., 2000;

Baumgartner et al., 2008; Denyer and Gazel, 2009)

The Santa Elena Ophiolite, constitutes a preservedngag of the upper mantle that
includes evidence for at least two different magmatic intrusive events. The oldest event is
constituted by decimetric to centimetric pegmatitic gabbroic veins that intrude the Iherzolite
without showing any sign of cooling ntans, suggesting that they were emplaced when the
peridotite was still at high temperatures and in a plastic &kateel et al., 2006)'he second and
younger event is the diabase dike Afettusing system, which crops out along the peninsula (Figs.

1.2 and1.3); generally presenting cooling margins in contact with the peridotite. The pillow basalts
from Murcielago Island§~110 Ma; Hauff et al., 200@o not show a clear lithological relation to

the rest of the Santa Elena Ophiolite. Even though they Ibeee interpreted as the uppermost
basaltic sequence in agreement with ophiolite architectural models, the contact between this unit
and the peridotite cannot be observed in the field. These pillow lavas are probably related to other
pillow basalts and maf lithologies in the Nicoya peninsula included in the Nicoya Complex
(Dengo, 1962)This complex is interpreted as segments of oceanic plateaus and the Caribbean
Large Igneous Province (CLIP), with geochemical affinities that are unrelated to the %anata El

Ophiolite(Sinton et al., 1997; Hoernle et al., 2004; Geldmacher et al., 2008)

The Santa Elena ophiolite is overlain by Campanian (Upper Cretaceous)-bedisty
reef limestones (Fidgl.1a) (Meschede and Frisch, 1994; Gazel et al., 2006; Baumgaatra.,
2008; Escude¥iruete and Baumgartner, 201g)ggesting that it was emplaced during the Upper
Cretaceous with the peridotitic complex at the hangiayl and an igneousedimentary complex
at the footwall, known as the Santa Rosa AccretionarygimniBaumgartner and Denyer, 2006;

Denyer and Gazel, 2009; Buchs et al., 20B3unit of layered gabbros (see Fig2a) has also
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been identified at the footwallournon and Azéma, 1980; Hauff et al., 2000; Arias, 20023

unit yielded arf°Ar/*°Ar age of 124+4.1 MgHauff et al., 200Q)Previous work fronGazel et al.
(2006)interpreted a suprasubduction zone origin for the Santa Elena ophiolite, considering the
layered gabbros unit as a part of the ophiolite. H#ie interpretation is revised light of the

new modern analytical data and our detail geologic mapping, as the layered gabbros unit belongs

to the footwall, in a highly deformed shear zone bellow the overthrusting ophiolite (sé&2&)g.

Based on spatial relations between the ldlgatal units that compose the Santa Elena
Ophiolite at least two rotation events can be identified in its geologic record. The pillow basalts
from Murcielago Islands display a near 80° tilt towards the north, while the northern Cretaceous
(Campanian) to Raogene sedimentary cover show a dipping angle ef@0owards the north
(Fig. 1.2a). However, the Pli®leistocene ignimbrite veneer appears unaffected by the rotation
(dipping angles of 5° E). These relative structural disposition suggests that thiéing@vents
(one preCampanian age and the second one roughly in the Upper Eocene) affected the entire
sequence for a current net rotation of 80° towards the (ietfyer et al., 2006; Denyer and Gazel,

2009)

3. Materials and methods

3.1 Structural methods and peridotite/dike determinations

Diabase dikes are exposed along the coasts and riverbeds of the Santa Elena Ophiolite
intruding the peridotite at a variable density of diabase vs peridotite between localitids2@ig.
A spatial analysis wagerformed along the northwestern and southern coasts of the peninsula in
order to quantitatively determine the dike density, dike orientation, and structural relationships

(Fig. 1.2a and c). We collected a continuous photographic record and structuslremants
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(strike/dip angles) of all the diabase dike outcrops on the coast. The data were corrected using the
program WIiRTENSOR(Delvaux and Sperner, 200@) account for a tectonic 80° tilt of the entire
complex towards the north in order to obtainahiginal strike and dip angle of the diabase dikes.

This tilt creates an apparent 80° increase in the dip anfjilée alikes intruding the blockhe
continuous photographic record from the coastal outcrops was used to generate panoramic sections
of the eninsula (Figl.3). We carried out a 2D analysis, which included calculation of Cartesian
areas in each of the panoramic images created. Considering the rock exposure areas of every
outcrop as the total area (100%) we calculated the relative abundgpeedotite and diabase.

We focused the analysis on the areas that display a continuous occurrence of peridotite and diabase

(i.e., along the NW and SE coast of Santa Elena peninsula)l(#ég.c).

3.2 Samples and analytical methods

Fresh diabase dikegere sampled from coastal exposures and riverbeds in the Santa Elena
Ophiolite. We also sampled pegmatitic gabbroic veins to constrain the timing of the evolution of

this ophiolite given the spatial relationship between the units.

Using a rock sawfresh peces of the samples were cut and later crushed into gravel,
cleaned with deionized water and digved to get rock chips of 4800 um in diameter. To
obtain the!®Ar/*°Ar data, the groundmass and mineral separates were irradiated for 60 hours at the
Oreggon State University TRIGAype reactor in the Cadmiudrined InLore Irradiation Tube. At
the University of WisconsiMadison Rare Gas Geochronology Laboratory, incremental heating
experiments were conducted using a 25 Watb @Qer. Each step of the expeent included

heating at a given laser power, followed by an additional 10 min for gas cleanup. The gas was
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cleaned with two SAES C50 getters, one of which was operated at ~450 °C and the other at room
temperature. Blanks were analyzed after every selamed heating step, and were less than 5 x

102° mol/V for %°Ar and 2 x 10" mol/V for “°Ar, respectively. Argon isotope analyses were
performed using a MAP 2150, and the isotope data was reduced using ArArCalc software
version 2.5 (http://earthref.orArCALC/). Ages were calculated from the bladiscrimination

and decaycorrected Ar isotope data after correction for interfering isotopes produced from
potassium and calcium in the nuclear reactges are reported/i t h 20 wuncertainti
the J uncertainty) and are calculated relative to a Fish Canyon standard age of 28.201 + 0.046 Ma

(Kuiper et al., 2008 n d a v*Kloibet63f+ 0.107 13°yr'! (Min et al., 2000)

For major and trace element aysss, alteratiofiree rock chips were selected under a
stereoscope microscope and were powdered in an alumina mill. Major element (wt%)
concentrations were measured bya¥ fluorescence (XRF; Siemens SR3000 spectrometer) at the
University of Auckland folbwing the methods described Ngrrish and Hutton (1969)n general,
precision for each major el ement 1is better tF
Norrish and Hutton (1969)race elements were measured by kaddation inductivelycoupled
plasma masspectrometry (LAICP-MS) at the Researc8chool of Earth Sciences, Australian
National University, using Excimer LPX120 laser (193 nm) and Agilent 7500 series mass
spectrometer following the method Bfigins et al. (1998)Samples were run in batches of 15
using the NIST612 glass standard atlileginning and end of each run to calibrate. USGS glass
standards BCR and AG\¢2 were also run to monitor analytical performance. Three replicate
analyses of standard BERand two replicates for standard A&Vindicate precision of <4%
(RSD) and accurachyetter than 8% confidence level, with the exception of thees Ni, Cu,

Cr, Laand Ta
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Basaltic glass samples collected from the Murcielago Island pillow basalts rims were
selected under a stereoscope microscope, and arrangednoharéund epoxy mant which was
later polished for electron microprobe (EMP) analyses. These analyses were performed at the
Electron Beam Laboratory at Virginia Tech with a Cameca SX50 Electron Microprobe using a 60
pm diameter electron beam at a 10 nA current a 15 kVe@teln voltage. Trace element contents
were obtained at Virginia Tech LACPMS lab facilities using an Agilent 7500ce ICPMS coupled
with a Geolas laser ablation system. Three analyses were performed in each glass using a 90 um
diameter spot and at 10 Hepetition rate. Standards were run at the start and end of the run to
correct for drift. The data was reduced using the USGS standard28CBHVO-2G and BIR
1. Replicates of these standards indicate a precision of <5% (RSD) and accuracy better than 10%
for the elements analyzed, with the exception of the elements Ni, Cu, Cr, Zn, Sr, Ta|Pihaind

was better than 30%

Radiogenic isotope analyses were conducted in the Geochronology and Isotope
Geochemistry Laboratory at the University of North Carol@taapel Hill. 500 mg of the selected
powdered samples were digested with a mixture of HF+kiN@eflon beakers. These solutions
were placed on a hotplate for three days at a temperature of 165 °C. Each sample was dried and
re-dissolved in HCI. After theidissolution three aliquots were separated for Sr, Nd and Pb, each
one containing 5 mg of sample; these aliquots were dried atids@ved in the appropriate acid
solution to undergo ion exchange chromatography col@ray et al., 2008)The separatesere
analyzed using a Micromass VG Sector 54 thermal ionization mass spectrometer (TIMS).
Strontium measurements were normalize®$of8Sr = 0.1194, and Nd isotopes'f@Nd/*Nd =
0.7219. Standard replicate measurements yielded aff&&fiSr=07D257 N 0. 000022

NBS 987, ameatf™Nd/A*Nd = 0.512112 N 01, 8nd 8mehfPbfoPriD f or
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1.0940 N 0. 00WBwitlf 2ndepn frictonatiod BaBrection of 0.098 + 0.008% per

amu(Coleman et al., 2004; Gray et al., 2008)

4. Results

4.1  Structural analysis of the diabase unit

After correcting for the 80° northward tilt of the ophiolite determined in the field the
general strike orientation for the diabase dikes throughout the Santa Elena Ophiolite is NNE in a
subparallelarrangement. The resulting dip angles reflect a predominance of angles higher than
60°, with a primary population of dikes dipping between 70° and 90°. Evidence of this disposition

is largely visible at the NW coast of the peninsula (Eiga).

The northwetern dike swarm (Fidl.2a) represents the higher density of diabase intruding
the peridotite in the entire ophiolite with a dip between 70° and 80° {&g). Our density
analysis suggests that in this section there is a significant increase of diabadeodike78% to
~92% (relative to the peridotite) towards the southwest in the direction of Punta Santa Elena (Fig.

1.2a), where the peridotites became boudins embedded in the net of diabase dikes.

The outcrops along the southern coast of the peninsularederpinantly composed of
peridotite with scarcer occurrences of diabase dikes. In this area the presence of diabase versus
peridotite is less than 20% (Fi§2a). The preferential strike direction for the southeastern dike
swarm is towards the NW, with acsmdary population striking ENB/SW. In this area, the
arrangement of the intrusions is clearly not parallel; however, most of the dip angles remain in a
range between 60° and 90° (Fig2c). Additionally, other diabase intrusions measured in the
interior d the peninsula yielded a preferential strike of NNEW with subvertical dip angles

(Fig. 1.2a).
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4.2 Geochronology and geochemistry data

The four new*°Ar/*°Ar ages collected in this work yielded an average age of 121 Ma
(considering the uncertainty withithe measurements) for the diabase dike intrusion event.
Diabase samples collected from the NW end of the Santa Elena Peninsula yielded 126.6 + 2.1 Ma
to 116 £ 5.1 Ma (Figl.2a). A sample from the southern coast of the peninsula yielded an age of
118.7 + 35 Ma. Also, a diabase sample from the inner part of the ophiolite was analyzed to achieve
a good geographical distribution throughout the peninsula; this sample provided an age of 124.7 £+
3.0 Ma. One of the pegmatitic gabbroic veins sampled that intthdgqueridotite when it was still

hot and plasti¢Gazel et al., 2008)ielded an age of 131 + 3.8 Ma

For this study we report 18 new major and trace element analyses for diabase dikes and 5
for Murcielago Islands basaltic glassd$ie compositions of thdiabase dikes are basaltic and
belong to the tholeiitic magmatic series (Figda, b). Petrographically, they are aphyric and
consist of a fine grained equigranular ensemble of -seimédral clinopyroxene and plagioclase
and minor olivine, with a predomirey ophitic texture characteristic of mafic hypabyssal
intrusions. The rim glasses from Murcielago Islands are basaltiesite in composition and also

belong to the tholeiitic series (Fity4a, b).

Along with the new analyses provided in this work frore tiabase dikes, we also
compiled geochemical data from previous studiésssmaul et al., 1982; Tournon, 1984;
Wildberg, 1984; Meschede and Frisch, 1994; Tournon, 1994; Ragazzi, 1996; Beccaluva et al.,
1999; Hauff et al., 2000; Arias, 2002; Tournon andld®e 2009) which are plotted as a shaded
area in Fig.1.4. Major element data were plotted against MgO (Eif§.and1.6) to evaluate
differentiation trends in the sample suite collected. Trace element data, normalized to a primitive

mantle compositiofMcDonaugh and Sun, 1995how a depleted composition in light rare earth
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elements (LREE) and a flat pattern in the heavy rare earth elements (HREE), suggesting a garnet
free, shallow mantle source.g. Salters and Stracke, 20QBig 1.7). Elevated concentratiomns
fluid-mobile large ion lithophile elements (LILE) such as Ba, K and Sr are indicative of seafloor
alteration(Staudigel et al., 1981; Staudigel et al., 1996; Staudigel, 2008)s, to avoid the
signature of ocean floor alteration, only fluid immobiatios were used to generate the
discrimination diagrams shown in Fih8. The Murcielago Islands pillow basalt glass rims show

a more enriched incompatibé&éement signature compared to that of the Santa Elena diabase dikes
(Fig 1.7e) which is almost identit to the basaltic glasses that belong to the Caribbean Large
Igneous Province (CLIP) and other basaltic suites found in Nicoya Pen{rtawé et al., 1997,

Sinton et al., 1997; Hauff et al., 2000; Hoernle et al., 2004)

The new Sr, Nd, and Pb radiogemsotope analyses were carried out using the freshest
samples of the diabase dikes, however Sr isotopes could still be affected by amgdevocean
floor alteration, and thus ebgning the spread in the dat@he measured diabase dikes isotope
values ange from 0.70283 to 0.703968f8rf°Sr; 0.51299 to 0.51341 #13Nd/ *Nd; 18.149 to
18.536 in?°PbF%Pb; 15.500 to 15.595 H"PbFPb; and 37.839 to 38.166 #PbP*Pb (Fig.
1.9). These measured-8id-Pb ratios were then calculated to the iniin) eruptive ratios using
the parent/daughter rati@sd an average age of 121 Ma. Age corrected ratios representative of
the mantle source were then projected to 121 Ma using parent/daughter ratios obtained inverting
the source composition from the most primitive diabase dike samg#&-fA05) to recreate the
evolution of the source in 121 Ma and compared with recently erupted material. The model was
done using aggregated fractional melting equat(@maw, 1970with a modal composition of

50% olivine, 25% orthopyroxene, 20% clinopyroxene and 5% spinel and the partition coefficients
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compiled byKelemen et al. (2003)These data were plotted in FIg9 and discussed in section

5.4.

5. Discussion

5.1  Architecture of theSanta Elena Ophiolite: diabase melt focusing zone analysis

The arrangement of dike intrusions in different tectonic environments provides important
insight into the type of melt emplacement that occurred at a given location. For instance, radial
arrangemets of dikes typically indicate environments such as arc volcanoes or ocean (istands
Ancochea et al.,, 2008; Acocella and Neri, 2009; Maccaferri et al.,, 20/hereas, in
environments characterized by extension regimes, melts are likely to mignagéadieularly to
the direction of the minimum compressive sti@$acdonald, 1982; Gudmundsson, 1990a; Paquet
et al., 2007; Gudmundsson, 2011gsulting in sukparallel to parallel dike assemblages. This
commonly occurs at midcean ridges and back arc inas where the intrusions normally show

similar strike orientations perpendicular to extension as well as paraleéstital arrangements.

Ophiolites, as preserved fragments of extension environments (e ac¢cead ridges, back
arc basins), usually siblay sheeted dike complexes composedikgrintruding-dikestructures of
tholeiitic composition, that have been interpreted as the feeder channels between magma
chamber/lenses and the overlying extrusive oceanic (Radtinson et al., 2008 and referesce
therein) At fast spreading ridges, such as in the exposed section at Hess Deep in the Pacific, the
sheeted dike complex is a welkveloped feature of the oceanic crust suggesting a high spreading
rate and a steady magma supf{®yewart et al., 2005; Weso et al., 2014)In contrast, at slow
(<60 mm/yr full rate), and ultraslow spreading (<20 mm/yr full rate) ridges the magma generation

is slow and tectonic extension and detachment faulting are the predominant trigger for melting,
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resulting in the absee of a weldeveloped sheeted dike compkSnow and Edmonds, 2007,
Robinson et al., 2008; Lagabrielle et al., 2019)e Santa Elena Ophiolite preserves a relatively
high density of diabase intrusions, however, in contrast to sheeted dike complex@ss the
typical gabbrd sheeted dikébasaltsequence and instead the dikes intrude the lithospheric mantle

peridotite directly and there is not an overlying widleloped basaltic crust.

The absence of horizontal intrusions indicates that during melatiigmo rheological or
mechanical barrier was encountered that led to lateral migration. The dike swarms exhibit an
almost vertical arrangement. Since dike emplacement tends to folleexigteng paths, we
suggest that this vertical to swbrtical emplaement corresponds to the location of previous
extension fractures, perpendicular to the direction of the minimum compressional stress. The
results presented in this work indicate that the Santa Elena Ophiolite was formed in a tectonic
environment subjedb extension, with an expected dike arrangement of eogegdn ridge system

(e.g. Gudmundsson, 1990b, 2011)

Mid-ocean ridge systems with slow and ulfaw spreading rates can account for the
emplacement of almost exclusively vertical intrusions duenmiadd melt productivityMichael
and Cornell, 1998; Dick et al., 2003; Gudmundsson, 20hlhese environments, dikes form at
greater depths intruding directly in the lithospheric mantle. Even though it has been recognized
that the rheological barrier tiie crustmantle boundary favors the formation of melt ponding (i.e.,
magma chambers or lenses) (Gudmundsson, 2011), there is no field evidence for such melt
accumulations in the Santa Elena Ophiolite. Commonly, melt migration in slow andlaltra
spreaing midocean ridges show little and generally deep melt ponding as a consequence of the
low rates of melt productivity in this tectonic environment (Michael and Cornell, 1998). Melt

forming in such conditions will travel along paths of minimum stressthlke extensional fractures
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and faults inherent to slow and ulskbw spreading ridges which are essentially vertical as

observed in the Santa Elena Ophiolite.

As melts are transported from the melt generation zone to the axis of extension, the
frequencyof intrusions decreases while their size and width increase (Kelemen et al., 1997;
Kelemen et al., 2000). In the Santa Elena Ophiolite, we encountered a high spatial density of
intrusions combined with distinct coalescent dikes as shown id Biglhe presnce of lherzolitic
peridotite and the coalescing channels of diabase correlate with what would be expected at greater
depths of the melt transport system in an extensional environment, characterized by a scarce
magmatic supply at deeper levels in thedgpbheric mantle (see Fi1.1). Moreover, this ophiolite
lacks of an extrusive wetleveloped basaltic crust on top of the sequence which supports the
interpretation that this ophiolite corresponds to a slow to-sloa spreading centéDick et al.,
2003;Cannat et al., 2009; Sauter et al., 20The absence of a walkeveloped gabbroic crust is
also evident in this ophiolite. This is a noted characteristic in ultraslow spreading ridges, where
the reduced melt production can lead to a small to nearlysteex gabbroic crugtiokat et al.,

2003; Michael et al., 2003)

5.2  Geochronology data

The spatial relationships between the diabase and gabbroic intrusions of the Santa Elena
Ophiolite become clearer in the light of the n&ar/*°Ar data collected itthis study. Both units
postdate the formation of the peridotitic massif, but the pegmatitic gabbroic veins are the first
magmatic event to occur (evidenced by crosing relationships), at circa 131 + 3.8 Ma. This
event is particularly interesting simthe field evidence suggests that there are no cooling margins
between the pegmatitic gabbro veins and the host peridotite. This implies that during the
emplacement the host rock and the intrusion were roughly at the same temperature. Most likely
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the gabboic melts infiltrated when the peridotite was still under plastic deformation conditions

(Gazel et al., 2006)

On the other hand, the diabase dikes present clear cooling margins suggesting that by the
time the diabase magmatic event occurred (roughhacli2l Ma) the peridotite had already
reached lithospheric temperatures. Consequently,*¥e®°Ar ages obtained in this study
constrain the cooling of the ophiolite massif to sometime between 131 + 3.8 Ma and the youngest
of the diabase dikes, 116 + 5Ma, which coincides with a Barremian to Aptian age. This
interpretation is in good agreement with the age constraints from other authors based in the rudist
bearing reef ages, that also places the tectonic emplacement no earlier than Campanian (Upper
Cretaceous) (Meschede and Wolfgang, 1998; Gazel et al., 2006; Baumgartner et al., 2008;

EscudetViruete and Baumgartner, 2014)

5.3 Fractional crystallization models and implications for crystallization pressures

The architecture of the Santa Elena Ophiolit;ng with the variable observed cooling
textures suggests that the diabase dikes were emplaced at depths within the lithospheric mantle
(Fig. 1.3). In order to better determine these depths, we used Petr@agiushevsky and
Plechov, 2011jo produce modslthat simulate the fractional crystallization processes at different
pressures (results in Fify5 andl1.6). For these calculations, we used the olivine (ol), plagioclase
(plag) and clinopyroxene (cpx) models of Danyushevsky (2001). The cotectic crystalliwas
modeled at a 100% fractionation of these minerals in equilibrium with a liquid (L+ol+plag+cpx).
When more than one mineral phase crystallizes together, the software calculates a
Apseudol i quiduso temperatur e (rBt@dofcrystalizationh i s
of the two or three mineral phases. These PST
where every discontinuity in the line indicates a new crystallizing mineral phasé .Bamnd1.6).

29



The calculations were made usimg tQFM buffer of oxygen fugacity according to the model of
Kress and Carmichael (1988)e created models from a pressure range of 0.001 GPa (1 atm) to
1.0 GPa, in 0.2 GPa increments, keeping the pressure constant during each run. The amount of
melt extrated in each step was 0.01%; this small calculation step improves the accuracy of the
model (Danyushevsky, 2001)The calculations stopped when the melt MgO content reached 3

wt%o.

To evaluate our initial hypothesis of a madean ridge origin for the meltsat formed the
diabase dikes, we input a primary magma composition for MORB (East Pacific Rise, EPR) from
Her zber g and, a®wel asragrimarg Mdymg calculated from our most primitive
diabase composition (Fid..6). Albeit, the resulting LLDs fothese models plotted in bivariate
major element diagrams were able to reproduce experimental MORB glasses at the same range of
pressures (see references in the figure caption), they failed to reproduce the crystallization trends
and compositional chang#sat can be observed in the diabase dike suite. Because aMEBRR
starting composition and our most primitive diabase sample did not describe the differentiation
path of our samples, the input composition was empirically modified by an optimizatioadneth
to include 0.5 wt% kD, 50.06 wt% Si@and 2.83 wt% N#D to the initial ERR-MORB. This final
compositionsuccessfully recreates and explains the compositional evolution of the diabase dikes.
One important result fromhis modeling is that the diabase dike compositions cannot be
reproduced by anhydrous MORB (Figh). The effect of small amounts ob® on MORB melt
compositions results in a displacement of the cotectic points (the discontinuities in the LLD) due
to the sippression of plagioclase crystallization relative to olivine and clinopyroxene (séeokig.

through e)YDanyushevsky, 2001 he estimated amount ob8 (0.5 wt%) necessary to explain
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our data is atypical for MORB, however, it still falls into the higd-erember of hydrated MORB

magmagHirth and Kohlstedt, 1996; Danyushevsky, 2001; Asimow and Langmuir, 2003)

The SiQ variation of the diabase dike suite is controlled by olivine partitioning as a
function of temperature and press@tangmuir et al., 1999). The crystallization of plagioclase
and pyroxene is most likely responsible for the increase in &6@tents at low pressures (<0.4
GPa). In the diabase dike samples, the cotectic crystallization of olivine and plagioclase is
suggested by a positive reelation between MgO and Abs (Fig. 1.5b). Using a MORB
composition, this correlation tends to be positive because increasing levels of fractionation will
lead to a decrease of MgO and>®@d in the melt due to the crystallization of olivine and
plagioclase respectively (Danyushevsky, 2001). As the pressure increases, the liquids in
equilibrium with Ol+Plag+Cpx will increase their &3 content and this can lead to a higher
modal plagioclase conter(Herzberg, 2004) FeQ shows the expected enrichment dgrin

fractionation of tholeiitic magma&immer et al., 2010)

CaO vs. MgO systematics (Fify5c andl.6) can be used to evaluate whether or not a melt
has crystallized clinopyroxene because CaO contents increase during the L+OIl and L+Ol+Plag
steps of crystalliation and promptly decrease as soon as the liquid starts to crystallize
Ol+Plag+Cpx. The sensitivity of CaO to pressure effects was evaluated by Langmuir et al. (1992)
and Herzberg (2004). The Santa Elena diabase dikes plot within the LLDs modeled froro 1 a
1 GPa (Figl.5); however, a larger set of samples plot at pressures >0.4 GPa. We also plotted our
data onto a projection of liquids for the equilibrium L+OIl+Plag+Cpx into the plane Anerthite
DiopsideEnstatite following the methods éferzberg and O'ara (1998)and Herzberg (2004)

(Fig. 1.5e). In this projection the pressures of crystallization of most of the diabase dikes also

yielded >0.4 GPa, further supporting a deep origin for the dikes. Although these values are model
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dependent and absolute pressuare not easy to obtain, our results are consistent with deep
crystallization in the lithospheric mantle rather than at crustal levels, as it is obvious in the field

exposures (Fidl.3).

The data from the Santa Elena Ophiolite were also compared to gaoahdata from
mid-ocean ridges globally, compiled Bale et al. (2013)Fast spreading ridges group around the
LLDs that belong to pressures from 1 atm to 0.4 GPa, which can be correlated with shallow depths
of melt crystallization. Correlations betwegpreading rate and depth of crystallization have been
noted by other authof&rove et al., 1993; Michael and Cornell, 1998; Herzberg, 2004; Escartin
et al., 2008)and in general, slower spreading rates are associated with deeper crystallization. In
this respect, the Santa Elena Ophiolite diabase dikes show a range of pressures of crystallization
that are consistent with deep crystallization environments. These pressures (>0.4 GPa) correspond
to depths >15 km (assuming an average density of ~3.C @gcrthe oceanic lithosphere). The
results are in good agreement with the estimated pressures of partial crystallization at the top of
the melting regime in slow and ulisdow spreading ridgefHerzberg, 2004)thus, providing
supportive information for a sloto ultraslow spreading rate for the extensional environment

preserved in the Santa Elena Ophiolite.

5.4. Trace element signatures and tectonic implications

In order to further understand the tectonic environment in which the Santa Elena Ophiolite
formed, the diabase dike trace element compositions were normalized to a Primitive Mantle
composition (McDonough and Sun, 1995). Priminemalized data are depleted in the most
incompatible elements, such as the LREE, consistent with the trace elementitompbdsa
depleted MORBike source(Salters and Stracke, 20045ig. 1.7a). When the trace element

patterns of the Santa Elena Ophiolite are compared with other primdivealized trace element
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compositions of other extensional tectonic environments;esults are similar to signatures that
are found in slow to ultralow spreading ridgesnd backarc spreading centers, but always at the

depleted end of these environments consistent with a normal MORB signatutegig.

Because magmas record informati@bout their original tectonic setting of formation in
their traceelement signatures, a series of geochemical proxies have been identified that can be
used to discriminate palgectonic environments (e.g., Pearce, 2008 and references therein). In
orderto better determine the tectonic environment that formed the Santa Elena Ophiolite, we used
fluid-immobile elements to distinguish between a-migan ridge environment and a subduction
influenced environment. For comparison, we compiled geochemicalrdatasérious ophiolites
(Mayari-Baracoa Ophiolitic Belt, Oman, Newfoundland, Josephine, Mirdita, Macquarie Island,
Ingalls, Tangihua, Shuanggou, Kizildag, Anatolia, Troodos, [Buakbma La Monja, La
Desideradpas well as trace element data from otherresital environments (Atlantis Massif,
Atlantis Bank, San Souci volcanic formation, Atlantic oceanic crust of ca. 121 Maslalva
spreading ceers, backarc basing and plotted along with the results from the Santa Elena

Ophiolite and the Murcielagol&énds pillow basalts in Fid..8.

In these fluidimmobile element systems the mantle array is defined by where MOIRB
data plots. Data that plots away from this array suggests the influence of subduction processes or
crustal interaction, as for example,nmgades that belong to SSZ ophiolites such as Oman,
Newfoundland, Ingalls, Anatolia, and Kizildag, plot away from the mantle array as indicated by
the fisubduction interactiono Vvectlda). Sasarlys hown
as shown intlte Ce/Nb vs. Th/Nb diagram (Fi@.8b), the subduction influenced samples plot
towards higher Ce and higher Th. Ce can be considered as a proxy)OfaoRtent, since both

elements have a similar incompatible behavior during melif@aunders et al., 1988This
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diagram provides an easy visualization of the effect of increasing subduction interaction, which is
especially evident in SSZ ophiolite samples. Bigc shows the Th/Yb vs. Nb/Yb diagram first
developed by Pearce (2008). Th and Nb are-lwedwn proxes for subduction input within a
system, as Th is carried by subduction fluids (especially sediment recycling) and Nb is retained by
a residual phase in the subducting fdfood et al., 1979; Pearce, 2008; Pearce, 201H4)s,
samples influenced by subdion fluids trend towards higher Th contents and lower Nb contents
relative to the mantle array. This is why samples coming from-aackasins plot parallel to and

higher than the mantle array and SSZ ophiolites also show an upward trend.

Our results inttate that the Murcielago Islands pillow basalts plot well into the mantle
array limits, trending towards the enriched endmember of MORB. Meanwhile, the Santa Elena
Ophiolite diabase dikes plot on the limits between the data fromdradkasins and slow ultra
slow spreading ridge MORB consistent with our previously discussed major element results. In
comparison with the global compilation, our data also show similarities with the Atlantis Massif,
Atlantic oceanic crust, and the Atlantis Bank (Hidga, band c). The location that shows the most
consistency with the diabase dikes are the tholeiites from the Mirdita Ophiolite in Albania. This is
a Jurassic ophiolite interpreted as a transition from a MORB to a SSZ envirofbiiektand
Furnes, 2009)SantaElena intrusions are also geochemically similar to the Continental Margin
Ophiolite classification oDilek and Furnes (2014yhich plot on the NMORSB field of the mantle
arrange and towards the upper limit. Therefore, our diabase dike samples reseB8-&ypk

magma that show only a fAhinto of subduction

5.5 Mantle signatures from radiogenic isotopes

Radiogenic isotopes are a reliable way to evaluate the source of a given sample, since they

do not fractionate during magmatic processes asamelting or crystal fractionation. In terms of
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radiogenic isotopes, MORB was thought to be derived through melting of a homogeneous mantle
reservoir (the upper mantle). However, more recent studies reveal the significant variations in the
radiogenic istope ratios indicating that it is more likely that they are generated from mantle
sources that are heterogene@8alters and Stracke, 2004; Workman and Hart, 2086jopic
variability in MORB from fast spreading and slow spreading ridges may diffendajgeon the

mixing mechanisms intervening in the systems. In this regard,-so@é convection contributes

to mixing of different sources at slow spreading ridges, producing geochemically homogeneous

reservoir{Samuel and King, 2014)

The new age coroted (accounting for the source evolution in ~121 Ma) data from the
Santa Elena Ophiolite mafic dikes are presented in F83. The diabase dikes share isotopic
signatures that resemble those from baegkbasins and slow to ultsdow spreading ridges and
are separate from those of fast spreading ridges {Fy. This is consistent with the results
discussed above for major and trace element compositions. The diabase sampféSrffad
values between 0.70285 and 0.70357 (E8g), which are on the highend for NMORB but not
as high as the range of EMORB. Also, they overlap with the 18(&f®Sr values for baclarc
basins. The UNd values obtained for the diabac:
against’Srf°Sr they overlap with data from slow and ultraslow spreading ridges, and with data

from back arc basins to a lesser ex{&ng. 1.9a).

The data also show that the diabase dikes are more enricélif’*Pb,2°’PbF*Pb and
208ppPO4pp than depleted DMM (Fid.9b, ¢ and d), following a linear array that suggests a mixture
of a depleted component and an enriched componeavitl)(Emost likely due to smalscale
convection, a consistent characteristic in skpweading system®&amuel and King, 2014The

EMII mantle reservoir is interpreted as deep mantle storage of metasomatized oceanic lithosphere
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or subcontinental lithospére(Workman et al., 2004 Petachment of subontinental lithosphere
may occur during continental break (Saunders et al., 1988)herefore, this isotopic signature
can be correlated with the remnants of lithospheric mantle components disseminatgdheurin
opening of the Atlantic and the pre@aribbean ocean. Additionally, the presence and mixing of
these likely subductiemodified remnants of the stdontinental lithosphere could account for the

subtle subduction signature evident in our samplesdiseassion in Gazel et al., 2012).

5.6. Paleotectonic setting for the Santa Elena Ophiolite formation

Data presented in this work shows that the Santa Elena Ophiolite preserves structural and
geochemical evidences for an extension environment of form&tibather it is a migbcean ridge
or a backarc basin environment is still a matter of further constraints, such as paleomagnetic
surveys and detailed tectonic reconstructions. However, the similarities with data coming from
backarc basin tectonic settindike Lau Basin and Marianas (Fify8) suggest that Santa Elena

Ophiolite might have originated from an analogous setting.

Moreover, the Santa Elena Ophiolite characteristics are comparable with the structure and
geochemical affinities present in some awe core complexes (OCC). For instance, the Godzilla
Megamullion located in the extinct Parece Vela Rift in the fmackbasin of the Marianas (Fig.

1.10) consists of an exposed lower crust to mantle sequence of plutonic rocks including peridotites
(Iherzoltes and harzburgites), gabbroic and diabase intrusions and a varying presence of a basaltic
crust(Ohara et al., 2001; Ohara et al., 2003; Loocke et al., 2@H3)ilippo et al. (2013also

mention that the basalts retain their MORB affinity and thelE RRd isotope compaositions appear
enriched by a minor slab component. OCCs like the Kane Megam(ilick et al., 2008and the

Atlantis Massif(Blackman et al., 2002 the Mid-Atlantic Ridge, or the Atlantis Bank in the
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Indian Ridge(Baines et al., 2() also show mantle sequences consisting in peridotites, diabase

dikes and to a lesser extent gabbros.

The idea of OCCs being preserved as ophiolites has been suggested by severdi.authors
Nicolas et al., 1999; Tremblay et al., 2009; Manatschal gP@l.1; Lagabrielle et al., 2015j
Santa Elena is an OCC preserved as an ophiolite, it would explain the lack of a basaltic crust since
in many OCCs low magmatic supply is common and the basaltic crust gets variably displaced by

the hangingwall duringdetachmen(Escartin et al., 2003; Dick et al., 2008)

An alternative model for the origin of Santa Elena would be that it represents a fragment
of the Mesquito Composite Oceanic Terrf@aumgartner et al., 2008) series of accreted Pacific
oceanic temnes conformed by mafic and ultramafic lithologies. This explanation is supported by
findings of Pacific Radiolarian fauna in different Caribbean locations thadgies the opening
of the ProteCaribbean(Baumgartner and Denyer, 2006; Baumgartner e2@08; Bandini et al.,

2011) This hypothesis however is not mutually exclusive to the OCC origin, since the preservation
and emplacement of this fragment of the lithospheric mantle could have happened in the context

of accretion of distinct Pacific terras.

Finally, a ProteCaribbean origin should also be explored in future studies. Proto
Caribbean remnants have been found along the Great and Lesser fdliesre et al., 1999;
Marchesi et al., 2006; Escue¥iruete et al., 2009)For instance, sam@erom the San Souci
Volcanic Group, in Trinidad y Tobago, which have been interpreted as preserved pieces-of Proto
Caribbean oceanic crugteill et al., 2014show similar fluid immobile element signatures as the

diabase dikes explored in this study (Ri@).
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6. Conclusions

Structural and geochemical evidence suggest an extensional environment for the formation
of the Santa Elena Ophiolite. The ophiolite architecture shows clear characteristicsoafeamd
ridge origin that include suparallel and sulvertical arrangement of the dikes, coalescing
channels of melt, absence of horizontal intrusions, zones of higher density of dikes relative to
peridotite. Additionally, the lack of overlaying sequences of developed oceanic crust, the
predominant presencd therzolite as opposed to harzburgite, and the absence of significant
magma chamber or lenses suggest that the Santa Elena Ophiolite is a preserved deep section (in

the lithospheric mantle) of a méticusing zone in a slow to ultslow spreading ridge.

Major and trace element data are also in good agreement with the assessment of the origin
of the Santa Elena Ophiolite as a slow/ufifew spreading center, possibly with a limited
subduction interaction. The calculated pressures of crystallization aeecmasistent of slow to
ultraslow spreading ridges, where partial crystallization can occur deeper in the mantle since there
is a lower magma supply and thus less heat flow. However, as evidenced from our geochemical
data, the tectonic environment ofiwaition for Santa Elena Ophiolite, even though it corresponds
with an oceanic extension environment, it was not purely a®tidan Ridge nor a Bagkrc
Basin settingsensu strictpbut possibly a combination between both environments. A possible
analogouseéctonic scenario could be similar to what is found at an oceanic core complex that
developed in a baeérc basin, where the proximity to transform faults reduces the velocity of the
spreading rates and induces detachment which emplaces the lithosphelec andrthe melt

focusing zone of the system at the seafloor.
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8. Figures
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Figure 1.1 Two models of the architecture of the oceanic crust modified from Kelemen et al. (2000) and
Cannat (1996). A) At a fast spreading ridgegmatic supply is abundant and melting occurs at shallower
levels in the lithosphere; these melts ascend and form coalescing channels (Kelemen, 2000). Melt fractions
are higher than at slow spreading ridges, which allow the development of an ocestnimdap (Cannat

et al., 2006). B) At ultraslow spreading centers, melts are triggered by detachment faulting which drives a
much deeper melting regime. Slower magma generation and lower melt fraction are characteristic of this
environment. In this modelmelt travels along a pxisting oceanic mantle lithosphere composed
predominantly of Iherzolite (Dick et al., 2003; Cannat et al., 2009).
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Figure 1.2. Overview map of the Santa Elena peninsula. A) Geologic map modified by our field
observations frm Tournon et al. (1994), Gazel et al. (2006) and EseVaaete and Baumgartner (2014).

B) Geotectonic setting of the Santa Elena Ophiolite after Denyer and Gazel (2009). C) Structural data for
the diabase dikes from the NW dike swarm and SE dike swasasurerl and corrected in this study.
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Figure 1.3 Photograppf r om t he di abase di ke swarms in the Sa

di kes and °~ peridotite. A) Southeastern -phrallelbase s\
arrangement. B) Boudins of peridotite created by the intruding skab@) Boudins of peridotite
northwestern diabase swarm. D) and E) Diabase dik

a metric scale.
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