Coenzyme engineering of NAD(P)+-dependent dehydrogenases

Rui Huang

Dissertation submitted to the faculty of
the Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In

Biological Systems Engineering

Ryan S. Senger, Chair

Chenming Zhang

Jianyong Li

Justin R. Barone

November, 8th 2017

Blacksburg, Virginia

Keywords: coenzyme engineering, NAD(P) dependent dehydrogenases, directed evolution, high-throughput screening, biohydrogen, \textit{in vitro} synthetic biology

Copyright© 2017 by Rui Huang
Coenzyme engineering of NADP-dependent dehydrogenases

Rui Huang

Abstract

Coenzyme nicotinamide adenine dinucleotide (NAD, including the oxidized form--NAD$^+$ and reduced form--NADH) and the phosphorylated form--nicotinamide adenine dinucleotide phosphate (NADP, including NADP$^+$ and NADPH) are two of the most important biological electron carriers. Most NAD(P) dependent redox enzymes show a preference of either NADP or NAD as an electron acceptor or donor depending on their unique metabolic roles. In biocatalysis, the low enzymatic activities with unnatural coenzymes have made it difficult to replace costly NADP with economically advantageous NAD or other biomimetic coenzyme for catalysis. This is a significant challenge that must be addressed should in vitro biocatalysis be a viable option for the practical production of low-value biocommodities (i.e., biohydrogen). There is a significant need to first address the coenzyme selectivity of the NADP-dependent dehydrogenases and evolve mutated enzymes that accept biomimetic coenzymes. This is a major focus of this dissertation.

Establishment of efficient screening methods to identify beneficial mutants from an enzymatic library is the most challenging task of coenzyme engineering of dehydrogenases. To fine tune the coenzyme preference of dehydrogenases to allow economical hydrogen production, we developed a double-layer Petri-dish based screening method to identify positive mutant of the *Moorella thermoacetica* 6PGDH (*Moth*6PGDH) with a more than 4,278-fold reversal of coenzyme selectivity from NADP$^+$ to NAD$^+$. This method was also used to screen the
A thermostable mutant of a highly active glucose 6-phosphate dehydrogenase from the mesophilic host *Zymomonas mobilis*. The resulting best mutant Mut 4-1 showed a more than 124-fold improvement of half-life times at 60°C without compromising the specific activity. The screening method was further upgraded for the coenzyme engineering of *Thermotoga maritima* 6PGDH (*Tm*6PGDH) on the biomimetic coenzyme NMN⁺. Through six rounds of directed evolution and screening, the best mutant showed a more than 50-fold improvement in catalytic efficiency on NMN⁺ and a more than 6-fold increased hydrogen productivity rate from 6-phosphogluconate and NMN⁺ compared to those of wild-type enzyme. Together, these results demonstrated the effectiveness of screening methods developed in this research for coenzyme engineering of NAD(P) dependent dehydrogenase and efficient use of the less costly coenzyme in ivSB based hydrogen production.
Coenzyme engineering of NADP-dependent dehydrogenases

Rui Huang

General Audience Abstract

NADP and NAD are two of the most important electron carriers in cellular metabolism, and they play distinctive roles in anabolism and catabolism, respectively. Most NAD(P)-dependent dehydrogenases exhibit a strong preference for either NADP or NAD. This coenzyme preference, however, make it nearly impossible to replace the costly NADP with less costly NAD or biomimetic coenzymes in the biocatalysis application. How to engineer dehydrogenases through directed evolution and effective screening method to accept NAD or biomimetic coenzymes, is critical and the focus of this dissertation.

The use of in vitro synthetic biosystem (ivSB) to produce hydrogen form starch, is one of the most important in vitro synthetic biology projects, and it depends on NADP coenzyme. With other issues in this system solved, the efficient use of dehydrogenases along with low cost and stable coenzyme is the last obstacle to hydrogen production through industrial biomanufacturing. However, the 6-phosphogluconate dehydrogenase (6PGDH), one of the rate-limiting enzymes in this biosystem, exhibits a strong coenzyme preference for NADP⁺. For producing low-cost hydrogen, the coenzyme engineering of this dehydrogenase is urgently required. Its activity with less costly NAD or biomimetic coenzymes must be improved. The establishment of an effective screening method is the most challenging task for coenzyme engineering of dehydrogenases. In this research, we developed a Petri-dish double-layer based screening method for coenzyme engineering of thermophilic 6PGDH for activity for NAD⁺. This screening method was also used
to improve the thermostability of a highly active glucose 6-phosphate dehydrogenase from a mesophilic host, where the evolved mutant had a greatly improved thermostability without losing activity. The screening method was further upgraded to develop for coenzyme engineering on biomimetic coenzyme N$^+$MN. The engineered mutant showing a more than 50-fold increase in catalytic efficiency on N$^+$MN was used to develop the first biomimetic coenzyme dependent electron transfer chain for hydrogen production. This screening method is suitable to change the coenzyme selectivity of series of NAD(P)-dependent redox enzymes and show great potential in improving other properties, such as thermostability, substrate scope and optimal pH, of different dehydrogenases. With this method developed, we can efficiently use the low cost stable coenzyme in the biocatalysis, and break the last obstacle to industrial biomanufacturing of hydrogen production.
Acknowledgement

First, I would like to express my sincere thanks to my advisor Professor Y.-H. Percival Zhang. You are the most far-sighted scientist I have met and exhibit incredible self-control ability which really impressed me. I would like to thank you for opening my mind and grading up the taste in research, and for teaching me tremendous knowledge, techniques and skills in experiments and project management. I am proud of being your student and I would try my best to carry forward the techniques we developed in the coenzyme engineering of dehydrogenases.

Secondly, I would like to thank my committee chair, Professor Ryan S. Senger. Your advices on my research and editing of my manuscript are the priceless gifts for me. I would like also thank my current committee members, Professor Justin R. Barone, Professor Jianyong Li and Professor Chenming Zhang, and my previous committee member Professor Xueyang Feng for serving as my committee members, and for give me the brilliant comments and suggestions.

A special thanks to the Department of Biological System Engineering. I would like to say thank you again to our department Head, Professor Mary Leigh Wolfe for the support on my research and graduation. I would like also to thanks for all the smiles given by BSE staffs and other faculty. I would like to acknowledge the financial support I received from Virginia Tech and from graduate research assistantships.

I would like to thanks my family, my mother, father, and especially, my wife. Thank you all for having been still with me and for being with me always. I would like to thank you all my friends, Dr. Hui Chen, Dr. Jae-Eung Kim, Dr. Chao Zhong, Dr. Eui-Jin Kim, Dr. Chun You, Dr. Zhuguang Zhu, Dr. Xiaozhou Zhang, Fangfang Sun and Dr. Hanan Moustafa Abdallah, who supported me in research and writing, and encouraged me to go for my objectives.
Finally, I would like to use my favorite poem from Cheng Gu to end this thesis: I was given dark eyes by the dark night, yet I use them to search for light.
Tables of Contents

Abstract ... ii
General Audience Abstract .. iv
Acknowledgement .. vi
Tables of Contents ... viii
List of Figures .. xiii
List of Tables .. xvii
Chapter 1. Introduction ... 1

References ... 7

Chapter 2: Protein Engineering of Oxidoreductases on Nicotinamide-Based Coenzymes with the Applications to Synthetic Biology ... 8

Abstract ... 9

1. Introduction .. 10

2. Coenzyme engineering methods of nicotinamide-based coenzymes 13

2.1 Rational design .. 14

2.2 Semi-rational design .. 16

2.3 Random mutagenesis .. 18

2.4 Directed evolution based on high-throughput screening (HTS) 18

3. Applications of coenzyme engineering in in vivo synthetic biology 19

3.1 From NAD to NADP ... 21
3.2 From NADP to NAD ... 22

4. Applications of coenzyme engineering for \textit{in vitro} synthetic biology 23

5. Biomimetic coenzyme engineering .. 26

6. Conclusions .. 28

Acknowledgements ... 28

Figure legends ... 37

Chapter 3: High-Throughput Screening of Coenzyme Preference Change of Thermophilic 6-
Phosphogluconate Dehydrogenase from NADP\(^+\) to NAD\(^+\) .. 45

Abstract ... 46

Introduction .. 47

Results .. 50

Dual promoter plasmid for screening and protein expression 50

Optimization of screening conditions .. 50

Screening 6PGDH mutants for increasing NAD\(^+\) activity 51

Characterization of 6PGDH mutants ... 52

Discussion .. 54

Materials and Methods ... 58

Chemicals, plasmids and strains ... 58

Construction of pET28a-\(P_{\text{lac}}\)-6pgdh ... 58

Construction of mutant libraries by saturation mutagenesis 58

Optimization of heat treated temperature and time window 59

High-throughput screening of mutant libraries for increasing NAD\(^+\) activity 60
Overexpression and purification of wild-type 6PGDH and mutants ... 60
6PGDH activity assays ... 61
Structural analysis .. 62
Acknowledgment ... 62
References .. 63
Figure Legends .. 66

Chapter 4. Engineering a thermostable highly active glucose 6-phosphate dehydrogenase and its
application to biohydrogen production *in vitro* .. 73

Abstract ... 74
Introduction .. 75
Material and Methods ... 78

Chemicals and Media .. 78
Preparation of plasmid pET28a-*Ptac-g6pdh* .. 78
Random mutagenesis and library creation ... 79
Screening of thermostable mutants of ZmG6PDH ... 79
Protein overexpression and purification .. 81
Activity assay of ZmG6PDH and mutants ... 81
Half-life time of thermal deactivation ... 82
Estimation of total turnover number of ZmG6PDH .. 82
Differential scanning calorimetry analysis ... 82
Hydrogen production via *in vitro* synthetic biosystem ... 83
Structural analysis of ZmG6PDH and mutants ... 84
Results .. 85

Petri-dish-based double-layer screening method .. 85

Directed evolution of thermostable ZmG6PDH mutants .. 86

Characterization of ZmG6PDH mutants ... 86

Hydrogen production from maltodextrin via ivsB at elevated temperature 88

Discussion .. 89

Acknowledgments ... 93

References ... 94

Figure Legends ... 98

Chapter 5: Engineering a NADP-dependent dehydrogenase on nicotinamide mononucleotide: high-throughput screening and artificial electron transport chain 107

Abstract ... 108

Introduction .. 109

Results .. 113

A novel HTS approach ... 113

Optimization of the HTS approach ... 114

Validation of the HTS .. 116

Mutagenesis strategy ... 117

Characterization of Tm6PGDH and its mutants .. 118

In vitro hydrogen generation via an NMN-dependent ETC .. 120

Methods ... 121

Chemicals and Media .. 121
Preparation of plasmid pET28a-\textit{P}_{\text{lac}}-Tm6pgdh ... 121
Preparation of plasmid pET20b-\textit{Tmdi} ... 122
Preparation of plasmid pET20b-\textit{Pfunror} .. 122
Saturation mutagenesis and mutant library construction .. 123
Random mutagenesis and mutant library construction .. 123
Optimization of HTS .. 124
Screening of \textit{Tm}6PGDH mutants with increased activity on NMN$^+$ 125
Protein overexpression and purification .. 126
Activity assay of \textit{Tm}6PGDH and mutants ... 127
Conversion of NMNH via 6PGDH reaction ... 128
Activity assay of diaphorase GsDI ... 128
Hydrogen production via \textit{in vitro} artificial NMN-based ETC 129
Systems for continuous hydrogen measurement .. 129
Structural analysis of \textit{Tm}6PGDH and mutants .. 130
Discussion .. 130
Acknowledgments ... 136
References .. 137
Supporting information ... 141
Figure legend .. 141

Chapter 6: General Conclusions and Future Work .. 151

Appendix. Supporting information for engineering a NADP-dependent dehydrogenase on nicotinamide mononucleotide: high-throughput screening and artificial electron transport chain ... 153
List of Figures

Chapter 2

Figure 1. Structures of nicotinamide-based coenzymes and biomimetic nicotinamide coenzymes ... 40
Figure 2. Scheme of coenzyme engineering methods, including rational design, semi-rational design and directed evolution ... 41
Figure 3. Amino acid sequence alignment of the coenzyme-binding motif of various 6PGDH enzymes.. 42
Figure 4. Scheme of double layer based screening. The 6PGDH catalyze the oxidation of 6-phosphogluconate to ribulose 5-phosphate and CO₂, and reduction of NAD⁺ to NADH 43
Figure 5. Engineering the coenzyme preference of oxidoreductases in a metabolic pathway by protein engineering in vitro followed by the replacement of the wild-type enzyme with the mutant enzyme to solve the problem of coenzyme un-match... 44

Chapter 3

Figure 1. Chemical structures of NADP⁺ and NAD⁺... 70
Figure 2. Validation of the dual T7-tac promoter for 6PGDH screening in E. coli TOP10 and protein expression in E. coli BL21(DE3) .. 70
Figure 3. Scheme of the colorimetric assay for 6PGDH activity for NAD⁺ ... 71
Figure 4. Optimization of heat treated temperature and color development time 71
Figure 5. Photo image of the double layer screening of the library containing two-site
mutagenesis of A30/T32 .. 72

Figure 6. Surface view of wild-type 6PGDH with NADP+ and mutant A30D/R31I/T32I with NAD+ .. 72

Chapter 4

Figure 1. The scheme of Petri-dish-based double-layer screening method for fast identification of thermostable ZmG6PDH mutants ... 104

Figure 2. Heat-inactivation of wild-type and mutated ZmG6PDHs .. 104

Figure 3. (a) DSC of wild-type and thermostable mutants of ZmG6PDHs from generation 1 (Mut 1-1), 2 (Mut 2-1), 3 (Mut 3-1) and 4 (Mut 4-1). As the thermostability of mutants increased, the transition peak moved to higher temperatures. The experiments were repeated three times independently. Data shown are for one of three representative experiments. (b) Activity of wild-type ZmG6PDH and final mutant Mut 4-1, as a function of temperature. The temperature of optimal activity increases with improved thermostability ... 104

Figure 4. Hydrogen production from maltodextrin via in vitro synthetic biosystems 105

Figure 5. Dimeric structure model of ZmG6PDH mutant Mut 4-2 .. 106

Figure 6. Local environments of thermostabilized mutations ... 106

Chapter 5

Figure 1. Principles of high-throughput screening for coenzyme engineering on NMN+ 146

Figure 2. Iterative optimization of high-throughput screening ... 147

Figure 3. Pictures of high-throughput screening to identify active mutants on NMN+ 148

Figure 4. Directed evolution of Tm6PGDH for increasing activity on NMN+ 148
Figure 5. Hydrogen production via *in vitro* artificial NMN-based ETC... 149

Figure 6. Hydrophobicity change of coenzyme binding pocket of wild-type Tm6PGDH and mutant 6-1 ... 150

Appendix

Figure S1. The Enzymatic pathway for NAD(P) synthesis. The NAD is synthesized from nicotinamide mononucleotide (NMN) and ATP catalyzed by nicotinamide nucleotide adenylyltransferase (NMNAT), and NADP is synthesized from NAD and ATP catalyzed by NAD kinase (NADK) ... 155

Figure S2. Test of background signals from mesophilic redox enzyme and PMS. (a) Test of background signals from mesophilic redox enzymes in the heat-treated colonies. The *E. coli* TOP10 (pET28a-P*tac*) was a negative control while *E. coli* TOP10 (pET28a-P*tac*-Tm6pgdh) was a positive control. Colonies were treated at 70 for 1 h and duplicated on the filter paper. The heat-treated cells were then overlaid by the melted agarose solution containing substrates and mediator *GsDI* followed by incubation at room temperature for 3 days for color development. Two control groups with agarose solution excluding coenzyme NMN\(^+\) (6PG only) or both substrates 6PG and NMN\(^+\) (No substrate) were prepared to test background noise resulted from redox dyes and intracellular NAD(P). The pale colony color in negative groups suggested the deactivation of mesophilic redox enzymes, while the strong color change between NMN\(^+\)6PG group and no substrate group of *Tm6PGDH* indicated that the targeted thermophilic 6PGDH remains active after the heat treatment. (b) Test of background noise of PMS in the colorimetric assay. The colonies of *E. coli* TOP10 (pET28a-P*tac*-Tm6pgdh) were heat-treated and operated as described as above. The treated colonies were overlaid by the melted agarose with WST-1 or
without WST-1 (No dye) ... 156
List of Tables

Chapter 2

Table 1. List of product-oriented coenzyme engineering on natural nicotinamide coenzymes NAD(P)... 39

Chapter 3

Table 1. The strains, plasmids, and oligonucleotides used in this study .. 68
Table 2. Kinetics parameters of 6PGDH and mutants... 69

Chapter 4

Table 1. Comparison of enzymatic properties of characterized G6PDHs... 100
Table 2. The strains, plasmids, and oligonucleotides used in this study ... 101
Table 3. Characterization of ZmG6PDH and mutants ... 102
Table 4. Enzyme kinetics for ZmG6PDH and mutants ... 103

Chapter 5

Table 1. Apparent kinetic constants of Tm6PGDHs for NMN\(^+\) and NADP\(^+\) ... 145
Table 2. Activities of wild-type Tm6PGDH and Mut 6-1 for coenzymes... 145

Appendix

Table S1. Apparent kinetic parameters of dehydrogenases on NMN\(^+\) ... 157
Table S2. Characterization of redox dye for screening .. 158
Table S3. Apparent kinetic constants and activities of Tm6PGDHs for NAD(P)\(^+\) and NMN\(^+\).. 162
Table S4. List of Strains and Plasmids ... 163

Table S5. All Oligonucleotides Are Listed from 5’ to 3’ End ... 164

Table S6. Enzyme loadings for hydrogen production ... 165
Chapter 1. Introduction

Coenzyme nicotinamide adenine dinucleotide (NAD, including the oxidized form--NAD$^+$ and reduced form--NADH) and the nicotinamide adenine dinucleotide phosphate (NADP, including NADP$^+$ and NADPH) are two of the most important electron carriers in cellular metabolism. These two coenzymes share almost identical dinucleotide structure, except the additional phosphate group esterified at the $2'$-hydroxyl group of adenosine monophosphate moiety of NADP. The NAD and NADP play distinctive roles in catabolism and anabolism, respectively. NADH is usually reduced from NAD$^+$ via glycolysis and the citric acid cycle followed by its oxidation in the oxidative phosphorylation to generate ATP. NADPH can be produced by the pentose phosphate pathway, the one-carbon metabolism pathway and transhydrogenase, and consumed for the synthesis of cell materials (i.e., proteins, lipids, nuclear acids) and biochemicals (i.e., hydrogen, xylitol) (Chin and Cirino 2011; Cracan et al. 2017; Huang et al. 2016). Until now, over 1,800 types of redox enzymes have been characterized to oxidize or reduce NAD(P), and these enzymes always exhibit a strong selectivity of either NADP or NAD (You et al. 2017).

Coenzyme engineering that changes the coenzyme selectivity of NAD(P)-dependent dehydrogenases is of importance to the metabolic engineering, in vivo synthetic biology and biocatalysis. Because of the coenzyme selectivity of NAD(P) dependent dehydrogenases, the mismatch of strictly NAD$^+$-dependent dehydrogenases and NADPH-dependent reductases can result in the NADPH depletion and NADH accumulation (Wasylenko and Stephanopoulos 2015), followed by the decrease in conversion rate and yield of interested products. Besides the use of transhydrogenase to transfer hydride from NADH to NADPH, coenzyme engineering
matching the coenzyme specificity of dehydrogenases/reductases has been proved as a powerful tool to balance the NADH generation and NAD(P)H consumption, and facilitate the nearly theoretical product yields in the engineered microbe fermentation (Bastian et al. 2011). In the presence of a coenzyme transporter and biomimetic coenzyme, engineered dehydrogenases can be used to insulate the energy-transferring subsystem of interest from metabolic network as well, and create a new bio-orthogonal system for in vivo synthetic biology (Wang et al. 2017). Coenzyme engineering is also essentially important in biocatalysis and in the in vitro synthetic biology. Often, enzyme engineers seek to change the coenzyme specificities of dehydrogenases from NADP to NAD or biomimetic coenzymes for biocatalysis because (1) NAD and biomimetic analogues are less costly than NADP, (2) NAD and biomimetic analogues are more stable than NADP (Huang et al. 2016), (3) the small size biomimetic coenzymes have higher rates of diffusion (Campbell et al. 2012) and (4) the reduced biomimetic coenzymes may outperform the natural coenzymes, as was the case with the flavin dependent “ene” reductase (Knaus et al. 2016). Intensive studies of coenzyme engineering of NADP-dependent dehydrogenases have demonstrated its effectiveness in increasing the enzyme activity on the less costly coenzymes (Chen et al. 2016; Nowak et al. 2017; Scrutton et al. 1990). The efficient use of engineered dehydrogenase along with a low cost and stable coenzyme help minimize the coenzyme cost in the biocatalysis, which is vital for the in vitro production of low-value biocommodities, such as hydrogen (Zhang et al. 2010).

The use of in vitro synthetic biosystem (ivSB) to produce hydrogen from starch, is one of the most important in vitro synthetic biology projects. The natural dehydrogenases involved in this system prefer to use NADP. With the assistance of 17 thermophilic enzyme cascade reactions, this biosystem has shown a nearly 100% utilization efficiency of water splitting based
starch oxidation to hydrogen and a more than 90 mmole H₂/L/h of productivity rate at 50°C (Kim et al. 2017). As compared to traditional whole-cell biosystem for hydrogen production, this system also contains numerous engineering advantages, such as higher product yield, faster reaction rate, easier product separation, tolerance of toxic compounds, broaden reaction conditions, good engineering flexibility and more. Several strategies, such as development of enzyme complexes, creation of an artificial electron transfer chain (ETC) and optimization of recombinant protein expression have been addressed to further increase the enzymatic performance and decrease enzyme cost in the ivSB based hydrogen production. The efficient use of dehydrogenases along with low cost and stable coenzyme has become the last obstacle to industrial biomanufacturing for hydrogen production.

6-Phosphogluconate dehydrogenase (6PGDH) is one of the rate-limiting enzymes in this biohydrogen production system. The 6PGDH catalyzes the oxidation of 6-phosphogluconate to ribulose 5-phosphate and simultaneously reduces NADP⁺ to NADPH for hydrogen generation. Because 6PGDH usually shows strong coenzyme selectivity on NADP⁺ and low activities on NAD⁺ and biomimetic coenzymes, the biosystem with wild-type dehydrogenases has shown poor productivity rate when using unnatural coenzymes, although they are cheaper and more stable than NADP⁺. For producing low-cost biohydrogen, the coenzyme engineering of the 6PGDH is urgently required for increasing their activities on NAD or biomimetic coenzymes.

One of the key issues of coenzyme engineering is to develop an efficient method for identification of the desired mutants from large mutant libraries. The 96-well microplate method is commonly used to screen mutants based on the absorbency of reduced coenzymes (Brinkmann-Chen et al. 2013) or redox dye linked colorimetric assay (Johannes et al. 2007; Mayer and Arnold 2002). However, the microplate-based screening is often regarded as a costly,
time consuming and labor intensive. It also suffers from background signals coming from mesophilic redox enzymes and reduced coenzymes in the cell lysate (Mayer and Arnold 2002). A native gel based screening method (Banta and Anderson 2002) and a Petri-dish based screening method (Flores and Ellington 2005) were developed to decrease the background signal from the cell lysate but they were limited by the modest throughput capacity. Thus, a simple and effective high-throughput screening (HTS) is urgently needed for coenzyme engineering of dehydrogenases. In this research, we developed a Petri-dish double layer-based screening method for coenzyme engineering of NADP-dependent 6PGDH from thermophilic host Moorella thermoacetica (Moth6PGDH). In this procedure, a heat treatment was used to lyse cells, deactivate mesophilic redox enzymes and oxidize reduced compounds, such as NAD(P)H, but retain active thermophilic Moth6PGDH. The positive dehydrogenase mutants had activity on the unnatural coenzyme NAD\(^+\) and were identified by the PMS-TNBT colorimetric assay. Through two-rounds of directed evolution and screening, the coenzyme specificity of Moth6PGDH was changed from NADP\(^+\) to NAD\(^+\) and showed a 4,278-fold reversal of coenzyme selectivity in term of \(k_{cat}/K_M\).

This screening method was also used to address the low thermostability of the highly active glucose 6-phosphate dehydrogenase (G6PDH) from Zymomonas mobilis (ZmG6PDH). The G6PDH is another rate-limiting enzyme in the ivSB hydrogen production system, which regenerates NADPH by oxidizing glucose 6-phosphate. For \textit{in vitro} biocatalysis, G6PDH must posses both high activity and good thermostability due to the expense of the enzyme. Four generations of random mutagenesis and Petri-dish-based double-layer screening evolved the wild-type enzyme to a thermostable mutant Mut 4-1, which showed a more than 124-fold increase in half-life time \((t_{1/2})\) at 60\(^\circ\)C, a 3.43\(^\circ\)C increase in melting temperature \((T_m)\), and a 5\(^\circ\)C
increase in optimal temperature \((T_{opt}) \), without compromising its activity. In addition, the thermostable mutant was conducted to generate hydrogen from maltodextrin via the \textit{in vitro} enzymatic pathway, gaining a more than 8-fold improvement of productivity with 76% of theoretical yield.

The screening method was further optimized for coenzyme engineering of \textit{Thermotoga maritima} 6PGDH (\textit{Tm}6PGDH) on the smaller biomimetic coenzyme NMN\(^+\). Coenzyme engineering for activity with biomimetics is more challenging than that with NAD\(^+\), because the specific activity of the wild-type enzyme on biomimetic analogues can be three or four-orders of magnitude lower than those on NAD(P)\(^+\). The background signal from the intracellular NAD(P) or other reduced biomolecules in cell lysate may overwhelm the signal of reduced biomimetics and result in the fail of screening. For the developed HTS method, we minimized the background signal from 45% to 14% of total chromogenic signal by cell washing and use of optimal redox dye and mediator. With this HTS, we applied six-round directed evolution to improve the catalytic efficiency of \textit{Tm}6PGDH with NMN\(^+\) by a factor of 50. The specific activity of the best mutant 6PGDH on NMN\(^+\) was as high as 18 U/mg, comparable to that of the wild-type enzyme on its natural coenzyme NADP. Furthermore, we demonstrate the first NMN-based ETC comprised of engineered 6PGDH, FMN-containing diaphorase, and NiFe-hydrogenase for \textit{in vitro} biohydrogen production, where the engineered enzyme led to a more than 6-fold increased hydrogen productivity rate compared to wild-type enzymes.

This dissertation emphasizes the development of a novel petri-dish based HTS and its use for coenzyme engineering of NAD(P)-dependent dehydrogenases. In chapter 2, the methodology of nicotinamide based coenzyme engineering and applications of engineered enzymes in improving product yield and decreasing product costs are reviewed. Chapter 3 describes the
development of the Petri-dish double layer based HTS for coenzyme engineering of thermophilic 6PGDH on NAD$^+$. In Chapter 4, this screening method is used to increase the thermostability of highly active ZmG6PDH, where the final mutant exhibited greatly improved thermostability without compromising its high specific activity. In Chapter 5, we further optimize the screening method developed for coenzyme engineering on NAD. The new Petri-dish based HTS exhibited its effectiveness in coenzyme engineering of Tm6PGDH for activity with the smaller biomimetic coenzyme NMN$^+$. Based on the engineered 6PGDH and biomimetic coenzyme, an NMN-dependent ETC was created for hydrogen production from 6PG. Chapter 6 summarizes this work and gives suggestions for future research directions.
References

Chapter 2: Protein Engineering of Oxidoreductases on Nicotinamide-Based Coenzymes with the Applications to Synthetic Biology

Short title: Nicotinamide coenzyme engineering

Chun You¹*, Rui Huang², Zhiguang Zhu¹, Yi-Heng Percival Zhang¹,²*

¹ Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
² Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia 24061, USA

CY and HR contributed equally on writing this review.

*Corresponding authors:

Chun You
Email: you_c@tib.cas.cn

Yi-Heng Percival Zhang
Email: zhang_yh@tib.cas.cn
Abstract

Two natural nicotinamide-based coenzymes (NAD and NADP) are indispensably required by most oxidoreductases for catabolism and anabolism, respectively. Most NAD(P)-dependent oxidoreductases prefer one coenzyme as an electron acceptor or donor to the other due to their different metabolic roles. This coenzyme preference associated with coenzyme imbalance brings some challenges for high-efficiency of in vivo and in vitro synthetic biology pathways. Changing coenzyme preference of NAD(P)-dependent oxidoreductases is an important area of protein engineering, which is closely related to product-oriented synthetic biology projects. This review focuses on the methodology of nicotinamide-based coenzyme engineering with its application for improving product yields and decreasing production costs. Biomimetic nicotinamide-containing coenzymes have been proposed to replace natural coenzymes because they are more stable and less costly than natural coenzymes. Recent advances in switching of coenzyme preference from natural to biomimetic coenzymes are also covered in this review. Engineering coenzyme preference from natural to biomimetic coenzymes is becoming an importation direction for coenzyme engineering, especially for in vitro synthetic pathways and in vivo bioorthogonal redox pathways.

Keywords: Coenzyme engineering; Nicotinamide-based coenzymes; NAD; NADP; Protein engineering; Synthetic biology; Biomimetic coenzymes
1. Introduction

Protein engineering is the process of modifying amino acid sequence of proteins toward desired properties. The desired properties include improved substrate spectrum [1, 2], product selectivity [3, 4], enzyme activity [5], thermostability [6-8], solvent tolerance [8], etc. Protein engineering has been a powerful tool in biotechnology to generate a vast number of enhanced or novel enzymes for industrial applications and played a crucial role in advancing synthetic biology [9].

Synthetic biology is an emerging discipline that brings engineering principles to design and assemble biological components toward synthetic biological entities with an ultimate goal of cost-effective biomanufacturing [10]. The purpose of synthetic biology can be described as the design and construction of novel biological pathways, organisms or devices, or the redesign of existing natural biological systems to understand the complexity of biological systems and improve a wide variety of applications [11]. Its most important application may be the low-cost production of new drugs, chemicals, biomaterials, and bioenergy [12-18]. Synthetic biology could influence many other scientific and engineering fields as well as various aspects of daily life and society [17]. It can be divided into two areas: in vivo and in vitro [19].

In vivo synthetic biology mainly focuses on fundamental biological research facilitated by the use of synthetic DNA and genetic circuits on typical model microorganisms, such as *Escherichia coli*, *Bacillus subtilis* and *Saccharomyces cerevisiae*. It is a current predominant research area because living organisms can self-duplicate without major concerns of the biocatalyst preparation and possibly due
to a biotechnology paradigm based on thousands-of-year fermentation. In contrast, *in vitro* synthetic biology, sometimes called cell-free synthetic biology, is based on reconstituted enzyme mixture or cell lysates in one pot for the ultimate purpose of biomanufacturing [20-24]. Strictly speaking, *in vitro* synthetic biology is a little different from cell-free synthetic biology, where the former is based on reconstitution of (purified) enzymes, coenzymes and/or other abiotic components (for example, benzyl viologen for *in vitro* biohydrogen generation, and the latter is mainly based on cell lysates of one or multiple cell cultures. The *in vitro* synthetic biology platform has some distinctive advantages, like high product yield, fast reaction rate, highly engineering flexibility, high tolerance in toxic environment et al [19-21, 25]. The first industrial biomanufacturing example of cost-effective production of myo-inositol from starch has been demonstrated in China.

Oxidoreductases are the largest group of enzymes in the Enzyme Commission nomenclature. Coenzymes are usually required in these oxidoreductase-catalyzed reactions to transport electron, hydride, hydrogen, oxygen, or other atoms or small molecules in different enzymatic pathways [26, 27]. Typical coenzymes are nicotinamide adenine dinucleotide (NAD)/nicotinamide adenine dinucleotide phosphate (NADP), ubiquinone (CoQ), and flavin mononucleotide (FMN)/flavin adenine dinucleotide (FAD). Nicotinamide-based coenzymes for the transport and storage of electrons in the form of hydride groups are the most important because 80% of characterized oxidoreductases need NAD as a coenzyme and 10% of them need NADP as a coenzyme [27]. NAD and NADP are two kinds of ubiquitous
pyridine nucleotide coenzymes, which differ only by the additional 2’-phosphate group esterified to the adenosine monophosphate moiety of NADP (Fig. 1a). Because the phosphate group of NADP is sufficiently distant spatially and covalently from the chemically active nicotinamide moiety (red oval in Fig. 1a), nearly all oxidoreductases exhibit a strong preference for one to the other for implementing different metabolic roles [28].

Changing coenzyme preference of oxidoreductases is an important area of protein engineering. It has also been recognized as an important tool for in vitro and in vivo synthetic biology projects. For in vitro synthetic biology and cascade biocatalysis projects, coenzyme preference is usually switched from NADP to NAD, because the price of NADP is much higher than NAD (e.g., $200 per g for NADH (Sigma N8129), $6,000 per g for NADPH (Sigma N5130), $140 per g for NAD\(^+\) (Sigma N7004) and $1000 per g for NADP\(^+\) (Sigma N5755)). Also, NAD is more stable than NADP [2, 29, 30]. Furthermore, more NADH regeneration enzymes in vitro are available than NADPH regeneration enzymes [26, 31]. For in vivo synthetic biology projects, the switch of coenzyme preference can be conducted in both directions from NAD to NADP or from NADP to NAD for balancing coenzyme availability to increase metabolic pathway efficiency [32-36]. Coenzyme engineering from natural to biomimetic nicotinamide-based coenzymes (Fig. 1b and c) might further decrease the production cost for in vitro synthetic biology, because the cost and stability of biomimics are much better than natural coenzymes [37, 38]. Engineered enzymes with specificities on biomimetic nicotinamide coenzymes could
be used to develop bioorthogonal redox systems \textit{in vivo} without interfering with native biochemical processes [39-41].

In this review, we focus on methods of coenzyme engineering on switching nicotinamide-based coenzyme preference of oxidoreductases and the application of the mutant enzymes with different coenzyme preference in product-oriented synthetic biology. Latest advances in general design of coenzyme engineering and high-throughput screening methods for directed evolution are highlighted. Coenzyme preference change from natural to biomimetic coenzymes could be extremely important, especially for \textit{in vitro} synthetic biology, such as biohydrogen and bioelectricity generation from oligosaccharides [42-49].

2. Coenzyme engineering methods of nicotinamide-based coenzymes

Coenzyme engineering that changes enzymatic coenzyme preference has three major methods: rational design, semi-rational design and random mutagenesis (Fig. 2) [50, 51]. Table 1 presents some representatives of product-oriented coenzyme engineering for \textit{in vivo} and \textit{in vitro} synthetic biology by using these engineering methods. Rational design is a knowledge-based strategy on the basis of prior structural and/or functional knowledge, using specific residues to replace specific residues of the targeted enzymes by site-directed mutagenesis and hoping to get the mutant with the desired properties. Semi-rational design is also knowledge-based strategy, creating a mutant library by site-saturated mutagenesis (where all 20 natural
amino acids or a fraction of 20 are tested) at the specific residues. Random mutagenesis is a knowledge-free strategy, creating a mutant library by error-prone PCR or gene shuffling for the whole-gene randomization. The last two strategies always need an extra step for the screening or selection of the mutated enzymes possessing the desired properties from the mutant library. Chica and Doucet proposed a strategy and drew a flow chart about how to select the enzyme engineering approaches based on the availability of experimental tools and prior knowledge of structure and function [51]. Because most NAD(P)-based oxidoreductases usually have a highly conserved coenzyme-binding motif -- Rossmann fold, which was the first identified conserved protein domain based on sequence alignment and crystal structures [52, 53], rational design and semi-rational design creating ‘smart’ libraries are more widely used in coenzyme engineering projects than random mutagenesis that renders a large size of mutant library.

2.1 Rational design

Rational design is the oldest protein engineering tool to switch coenzyme preference of oxidoreductases. It mutates specific amino acid residues with another certain residue through site-directed mutagenesis on the basis of structures of NAD(P)-enzyme complexes and catalytic mechanisms. Generally speaking, coenzyme engineering starts with the identification of residues near coenzyme-binding sites [54, 55], residues binding with the 2’ phosphate group [56] or adenosine-binding pocket [57], or residues essential for catalytic activity [2, 58-61]. Chen et al.
performed amino acid-sequence alignment of the coenzyme-binding motifs of NADP- and NAD-preferred 6-phosphogluconate dehydrogenases (6PGDH) from *Thermotoga maritima* (Fig. 3a) [2]. The loop region amino acids (in red box of Fig. 3a) are responsible for interaction between enzymes and 2’-phosphate of NADP. The alignment of the loop region indicates that three amino acids (positions 32, 33, and 34) in NADP+ -preferred 6PGDHs are highly conservative (Fig. 3b). NADP-preferred 6PGDH has Asn32, Arg33 and Thr34, while NAD-preferred 6PGDH wild-type enzymes and NAD-preferred mutant have very conservative sequences (i.e., acidic aspartate residues) at the N-terminal end of loop region. When the key amino acid residues responsible for binding the 2’-phosphate group of NADP+ were changed by site-directed mutagenesis on this 6PGDH, the best mutant N32E/R33I/T34I exhibited a ratio of 96 of catalytic efficiency (k_{cat}/K_m) on NAD+ and NADP+, which is a ~64,000-fold reversal of the coenzyme selectivity from NADP+ to NAD+. In these residues, Arginine 33 plays a critical role in NADP+ binding by contributing a positively charged planar residue that interacts primarily with 2’-phosphate of NADP+. The most important point of coenzyme preference from NADP to NAD was a change of this key arginine to aspartate or glutamate [62-64]. Cui developed a novel computational strategy of altering the coenzyme preference that enhances the hydrogen-bond interaction between an enzyme and a coenzyme. This novel computational strategy only required the structure of the target enzyme without other homologous enzymes. By this rational design method, *Gluconobacter oxydans* Gox2181, which belongs to the short-chain dehydrogenases/reductases superfamily
(SDR superfamily), was engineered to show a much higher enzymatic activity by utilizing NADPH as its coenzyme through two-site mutation of Q20R&D43S [65].

Module swapping is another rational design method to switch coenzyme preference by replacing the original coenzyme binding pocket with new one from homology enzymes [66]. For example, Yaoi et al. changed the coenzyme preference of an isocitrate dehydrogenase by replacing the NADP-binding pocket with homogenous NAD-binding pocket [67]. Similarly, coenzyme preferences of a β-isopropylmalate dehydrogenase [68] and a short-chain dehydrogenase [69] have been reversed by using this strategy.

2.2 Semi-rational design

Semi-rational design is a powerful method to switch coenzyme preference by site-saturated mutagenesis on some critical amino acid residues deduced from bioinformatics analysis followed by screening of mutant libraries. Coenzyme engineering of an *E. coli* ketol-acid reductoisomerase (KARI) from NADP to NAD is a typical example of semi-rational design from Arnold’s lab [36]. Five amino acids in Rossmann fold of this KARI were determined based on previous work [70], sequence alignment and structure of cofactor binding pocket. Five individual libraries on each amino acid were made by site-saturation mutagenesis and screened for variants exhibiting a higher ratio of NADH to NADPH activities. A library was constructed by combining all beneficial mutations as well as the wild-type residues. The best variant, which had four mutation sites, exhibited much higher activity on NADH to NADPH,
resulting in a 54,000-fold change in the ratio of catalytic efficiency (k_{cat}/K_m) on NADH to NADPH compared to wild type enzyme [36]. Later, the same group proposed a general semi-rational approach to switch the coenzyme preference of KARI from NADPH to NADH by integrating previous results of an engineered NADH-dependent mutant of *E. coli* KARI, available KARI crystal structures, and comprehensive KARI-sequence alignment [59]. The specific patterns of amino acid residue replacement in β2αB loop showed positive effect on reversing the coenzyme specificity of KARI. Steps include (1) identification of the loop, (2) determination of β2αB-loop length and mutation based on loop length by site-directed mutagenesis and site-saturated mutagenesis to achieve coenzyme switch, and (3) improvement of overall activity on NADH via random mutagenesis. Recently, this group developed a structure-guided, semi-rational strategy for reversing enzymatic nicotinamide-based coenzyme specificity to all oxidoreductases [28] with the increased number of protein crystal structures with high resolution and homogenous oxidoreductase sequences with different coenzyme preference. It comprised three steps: enzyme structural analysis, design and screening of focused mutant libraries for reversing cofactor preference, and, finally, recovery of catalytic efficiency. The recovery of catalytic efficiency is based on the predicted positions in the amino acid sequence with dramatically increased probabilities of harboring compensatory mutations, not like random mutagenesis on the whole gene in the KARI engineering [59]. This online tool has shown the efficacy of inverting coenzyme preference of four structurally diverse NADP-dependent enzymes: glyoxylate reductase, cinnamyl alcohol
dehydrogenase, xylose reductase, and iron-containing alcohol dehydrogenase. The analytical components of this approach have been fully automated and available in the form of an easy-to-use web tool: Cofactor Specificity Reversal-Structural Analysis and Library Design (CSR-SALAD).

2.3 Random mutagenesis

Random mutagenesis of the entire DNA sequence may be the last solution to change enzyme properties without relying on crystal or modeling structure of target protein [71, 72]. However, this method is rarely used in changing coenzyme preference between NADP and NAD because coenzyme-binding domains are highly conserved based on some specific residues near to coenzyme-binding sites. However, this method may be very important to screen mutants that can work on biomimetic coenzymes, whose structures largely differ from NADP and NAD (Fig. 1). Random mutagenesis sometimes is very useful because some compensatory mutations that may be remote from the cofactor-binding sites [28].

2.4 Directed evolution based on high-throughput screening (HTS)

High-throughput screening method is urgently required to identify positive mutants from the library constructed by site-saturated mutagenesis or random mutagenesis. The use of 96-well microplate screening based on the absorbency of NAD(P)H at 340 nm or coenzyme linked colorimetric assay is straightforward to measure the activities of dehydrogenases [30, 59, 73]. However, the microplate-based screening is labor-intensive, time-consuming and may require automated machines
It is urgently needed to develop a simple and effective HTS method to determine coenzyme preference change of oxidoreductases. Recently, Zhang’s group developed a Petri-dish double layer-based screening method to identify mutants of thermophilic 6-phosphogluconate dehydrogenase (6PGDH) from *Moorella thermoacetica* with reversed coenzyme preference from NADP$^+$ to NAD$^+$ [1]. Colonies of a 6PGDH mutant library were treated by heat to deactivate intracellular mesophilic dehydrogenases and reductive compounds (i.e., NADPH and NADH), and disrupt cell membrane. A second semi-solid layer was made by pouring the melted agarose solution containing a redox dye tetranitroblue tetrazolium (TNBT), phenazine methosulfate (PMS), NAD$^+$, and 6-phosphogluconate. In it, 6PGDH catalyzes the hydration of 6-phosphogluconate, coproducing NAD$^+$ to NADH. In the presence of PMS and NADH, the colorless redox dye TNBT was reduced to black TNBT-formazan (Fig. 4A). More active 6PGDH mutants on NAD$^+$ can be examined with eyes (Fig. 4B). Positive mutants were recovered by direct extraction of plasmid from dead-cell colonies followed by plasmid transformation into *E. coli* TOP10 [1]. By using this method, our lab has also switched the coenzyme preference of *T. maritima* glucose 6-phosphate dehydrogenase (G6PDH) from NADP$^+$ to NAD$^+$ (submitted for publication).

3. Applications of coenzyme engineering in *in vivo* synthetic biology

In vivo synthetic biology and metabolic engineering is widely investigated for
its potential production of biofuels, amino acids, alcohols, natural products, and antibiotics [75, 76]. Because NAD and NADP have their different roles in catabolism and anabolisms, respectively, their supply and consumption as well as their balance is essentially important for engineered organisms. However, some synthetic pathways do not match of coenzyme supply and consumption, possibly resulting in low product yields and slow volumetric productivity. For example, Liao’s isobutanol synthesis pathway has a NADH-generation pathway for the production of isobutanol precursor followed by a NADPH-consumption step for the formation of isobutanol [77, 78]. As shown in Fig. 5, one coenzyme is more prevalent than the other coenzyme. The one enzyme in the pathway prefers high abundant coenzyme, while the other enzyme prefers low abundant coenzyme. This coenzyme imbalance leads to low-efficiency biosynthesis of desired product. To balance different coenzymes, several solutions could be taken. (1) The supply of oxygen to balance energy flux, possibly resulting in lowering product yield compared to theoretical yields. (2) The introduction of a transhydrogenase [79] catalyzes the reversible transfer of a hydride ion between of NADH and NADP⁺. However, transhydrogenase may not always shift the hydride ion in the correct direction [80]. Also, the introduction of new components into cells might increase the burden of the cells to manufacture products or direct energy flux to undesired directions. (3) Replacement of native enzymes with enzymes having different coenzyme specificity [81, 82]. However, finding a sequence with specific desired properties could be difficult, particularly when a few members of a protein family only have been characterized [60]. (4) The best solution is changing the
coenzyme specificity of the pathway oxidoreductases by protein engineering, and then introduce the mutant enzyme into the cells for the replacement of the wild-type enzyme to solve the coenzyme match and imbalance. Unlike preferred coenzyme engineering from NADP to NAD in vitro, coenzyme preference of enzymes in vivo could be changed both directions from NADP to NAD and from NAD to NADP [83]. In this section, we introduce some examples about improving the productivity of microbial cell factories by changing enzyme’s coenzyme preference.

3.1 From NAD to NADP

Amino acids represent one of the largest classes of fermentative products, whose production closely correlates with the availability of NADPH. For example, the synthesis of one mole of lysine requires four moles of NADPH in Corynebacterium glutamicum. Bommareddy et al. changed the coenzyme specificity of a native NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) from C. glutamicum to NADP by rational protein design (D35G/L36T/T37K/P192S) to produce more NADPH from glycolysis. The mutant GAPDH-containing C. glutamicum strain showed approximately 60% improvement of lysine production than wild-type strain [84]. A recombinant S. cerevisiae strain containing xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis can convert xylose to ethanol, along with the unfavorable excretion of xylitol due to intercellular redox imbalance caused by the different coenzyme specificity between NADPH-preferring XR and NAD+-dependent XDH. Watanabe et al. succeeded in generating several P.
stipitis XDH mutants with a reversal of coenzyme specificity toward NADP$^+$ by multiple site-directed mutagenesis of coenzyme-binding domain. For example, a quadruple mutant (D207A/I208R/F209S/N211R) showed more than 4,500-fold higher values in k_{cat}/K_m with NADP$^+$ than the wild-type enzyme, reaching a comparable value with the k_{cat}/K_m with NAD$^+$ of the wild-type enzyme [85]. They constructed a recombinant yeast coexpressing NADPH-preferring PsXR and NADP$^+$-dependent PsXDH, and the resultant recombinant yeast increased ethanol production and decreases xylitol excretion [32, 86].

3.2 From NADP to NAD

Isobutanol can be produced from glucose by the recombinant *E. coli* through a modified biosynthesis of branched-chain amino acids (BCAAs) pathway [59, 60, 77, 78]. The pathway generates two pyruvates and two NADH via glycolysis while consumes two equivalents of NADPH per isobutanol synthesis, where NADPH is consumed by ketol-acid reductoisomerase (KARI) and alcohol dehydrogenase (ADH). The fermentation of this strain was operated aerobically or micro-aerobically to activate the pentose phosphate pathway (PPP) or the tricarboxylic acid (TCA) cycle to provide sufficient NADPH. However, anaerobic conditions are preferred for large-scale biofuel production due to lower operating costs (e.g., cooling, mixing and aeration) as well as higher product yields. Under anaerobic conditions, isobutanol production by engineered *E. coli* suffered from a limited supply of NADPH because of the shutdown of PPP or TCA cycle [34, 36]. Bastian et al. investigated the
construction of an NADH-dependent pathway by using NADH-preferring engineered *E. coli* KARI and ADH to produce high-yield isobutanol under anaerobic conditions. The introduction of this NADH-dependent pathway enabled anaerobic isobutanol production at a theoretical yield [36]. Similarly, the NADH-dependent pathway containing PsXDH and PsXR was also introduced into *S. cerevisiae* [87, 88]. PsXR was engineered to use NADH by the mutation of R276H. The expression of PsXR/R276H mutant and wild-type (WT) PsXDH in *S. cerevisiae* can lead to a 20% increase in ethanol production and a 52% decrease in xylitol excretion, as compared with the WT strain.

4. Applications of coenzyme engineering for *in vitro* synthetic biology

In vitro synthetic biology is an emerging biomanufacturing platform with such advantages as, high product yield, improved energy conversion efficiency, fast reaction rates, broad reaction conditions, etc. [89]. This platform has shown great potential on the production of bioenergy (e.g., hydrogen and electricity), pharmaceuticals (e.g., heparin), and biochemicals (i.e., α-ketoglutarate, myo-inositol, isobutanol, fructose 1,6-biphosphate, polyhydroxybutyrate, and (R)-phenylethanol) [42, 90-97]. The pathway design principle of the *in vitro* synthetic biology platform requires balances between coenzyme supply and consumption as well as their type, so that it benefits from high energy-retaining efficiency biotransformation, having product yields and less energy consumption such as aeration, mixing and cooling.
energy, especially important for biomanufacturing biocommodities [12, 25]. NAD is preferable to NADP for in vitro synthetic biology because of its lower price [30, 66], higher stability [98], and more NAD-preferred oxidoreductases [26, 31]. In this section, we highlight several examples of in vitro synthetic (enzymatic) biosystems (ivSEB) involving coenzyme engineering from NADP to NAD. Cascade biocatalysis by engineered oxidoreductases with NADH or biomimetic cofactors along with coenzyme regeneration are not covered here, which can be referred elsewhere [38, 99, 100].

Biohydrogen is believed to be the best future transportation fuel. Hydrogen can be produced by ivSEBs from advanced water splitting energized by starch, sucrose and cellodextrins with a theoretical yield of 12 mol H₂ from per mol hexose and water [42, 45, 46], breaking Thauer limit of four moles of H₂ per mol glucose unit [101, 102]. In these ivSEBs, glucose 6-phosphate (G6P) is generated from ATP-free enzymatic phosphorylation of glucan (i.e., starch) and regenerated from non-oxidative pentose phosphate pathway and partial gluconeogenesis pathway. Two cascade dehydrogenases, G6PDH and 6PGDH oxidize G6P to ribulose 5-phosphate (Ru5P) and simultaneously reduce two NADP⁺ to two NADPH, which are converted into hydrogen with the help of hydrogenase or even a biomimetic electron-transport chain containing an abiotic electron mediator [42]. Economic analysis suggests that the replacement of NADP⁺ with NAD⁺ shows great impact on cost decrease of in vitro hydrogen production by changing coenzyme preference of G6PDH and 6PGDH from NADP⁺ to NAD⁺. Chen et al. changed the coenzyme preference of hyperthermophilic
T. maritima 6PGDH from NADP⁺ to NAD⁺ by rational design [2]. The best mutant shows ~64,000-fold reversal of the coenzyme preference from NADP⁺ to NAD⁺, resulting 25% higher current density of 6PGDH-diaphorase electricity production system [2]. Also, we further engineered T. maritima G6PDH to change its coenzyme preference. The best mutant shows a more than 262-fold reversal of the coenzyme preference from NADP⁺ to NAD⁺ (submitted for publication). By coupling the G6PDH and 6PGDH mutants into hydrogen production pathway, we achieved the highest in vitro hydrogen production rate of 530 mmole H₂/L/h at 80°C from starch (submitted for publication). Polyhydroxybutyrate (PHB) is a type of biodegradable polyester. It can be produced by microbes in response to physiological stress [103] or engineered E. coli harboring Streptomyces aureofaciens PHB biosynthesis genes [104]. Recently, Opgenorth et.al designed an in vitro pentose-bifido-glycolysis (PBG) cycle to breakdown glucose for the PHB synthesis. Through the PBG cycle, one mole of glucose can be converted to two moles of acetyl-CoA with four mole of NAD(P)H and two moles of CO₂. To prevent the accumulation of NADPH due to coenzyme imbalance, G6PDH and 6PGDH involved in the PBG cycle were engineered to change the coenzyme preference from NADP⁺ to NAD⁺. Engineered dehydrogenases were used to regulate the efficiency of pathway by incorporation with NADH oxidase, NADP⁺-dependent wide-type G6PDH and 6PGDH, exhibiting a more than two-fold improvement of product yield [91]. Sieber and coworkers designed an ATP-free ivSEB to produce pyruvate from glucose with two NADH molecules per glucose molecule; pyruvate can then be converted to ethanol and isobutanol, consuming the 2
moles of NADH per two moles of ethanol and one mole of isobutanol molecule, respectively [105]. The NADH-generating enzymes are glucose dehydrogenase (GDH) and glyceraldehyde dehydrogenase (AIDH). However, AIDH has a very low activity on NAD$^+$ compared to NADP$^+$. In order to minimize reaction complexity, the designed pathway was further consolidated to use the coenzyme NADH as the only electron carrier, AIDH was engineered by directed evolution to have a 8-fold higher activity for NAD$^+$ [106].

5. Biomimetic coenzyme engineering

To further decrease coenzyme costs in vitro, the best solution is the replacement of natural coenzymes with low-cost biomimetic ones [37, 66]. Biomimetic coenzymes, such as nicotinamide mononucleotide (NMN), nicotinamide mononucleoside (NR) (Fig. 1b) and 1-benzyl nicotinamide (BNA) (Fig. 1c), are not only less costly but also have better stability [38, 66]. NMN and NR are precursors of NAD(P) and is much smaller in size than NAD(P) (Fig. 1b) and BNA is a typical biomimetic nicotinamide coenzyme. Few wild-type redox enzymes have been reported to have promiscuous activities on NMN, including liver alcohol dehydrogenase [107] and glutamic dehydrogenase [108]. Scott and his coworkers have engineered Pyrococcus furiosus alcohol dehydrogenase working on NMN but its activity remains very low [109]. Fish et al. found that the pyrophosphate and adenosine groups in NAD(P) are not essential for the hydride transfer for some flavin-
containing oxidoreductases and proposed the use of BNA chloride to replace NAD(P) [110]. Clark and Fish collaborated to show that an engineered flavin-containing P450 mutant with two amino acid changes can utilize BNA [111]. Also, another group showed that engineered P450 can utilize Zinc dust as an electron source rather than natural coenzymes [112, 113]. In 2011, Zhao and coworkers presented a bio-orthogonal system that catalyzed the oxidative decarboxylation of L-malate with a dedicated biomimetic coenzyme, nicotinamide flucytosine dinucleotide (NFCD, Fig. 1b). The redox enzymes were engineered using site-saturation mutagenesis of the key amino acid sites [39], and the balance of this biomimetic coenzyme was achieved through a design enzymatic pathway containing two engineered enzymes, which can both use NFCD as coenzymes. This research opened the window to engineer bio-orthogonal redox systems for a wide variety of applications in in vivo synthetic biology.

Although a number of papers pertaining to engineering of NAD/NADP preference of oxidoreductases [89, 114, 115] (Table 1) and some general rules have been proposed for coenzyme engineering [28, 59, 65], coenzyme engineering on biomimetic coenzymes remains in its early stage due to their significant difference in structures and sizes (Fig. 1) [109]. This direction is becoming one of the top R&D priorities of in vitro synthetic biology.
6. Conclusions

Due to different coenzyme types, the imbalance of supply and consumption, coenzyme cost and stability, coenzyme engineering is one of the most important areas of protein engineering with its great application to in vivo and in vitro synthetic biology projects. With the increasing number of protein crystal structures with high-resolution and homogenous oxidoreductase sequences and the development of novel high-throughput screening methods, semi-rational design of switching coenzyme preference between NAD and NADP is becoming mature. Coenzyme engineering on biomimics is becoming an urgent task because such biomimics are more stable and less costly than natural ones [37, 66]. It is more and more acceptable that the in vitro synthetic biology platform could become a cornerstone of advanced biomanufacturing 4.0 for cost-competitive biomanufacturing low-value biocommodities and new food [116].

Acknowledgements

This study was mainly supported by the Key Research Program of the Chinese Academy of Sciences (Grant No. ZDRW-ZS-2016-3) and 1000-youth program of China to CY. Funds were partially provided by DOE EERE award (DE-EE0006968) to YPZ.
References

[35] Tamakawa H, Ikushima S, Yoshida S. Ethanol production from xylose by a recombinant Candida utilis strain expressing protein-engineered xylose reductase and xylitol

[63] Li L, Cook PF. The 2′-phosphate of NADP is responsible for proper orientation of the nicotinamide ring in the oxidative decarboxylation reaction catalyzed by sheep liver 6-phosphogluconate dehydrogenase. J Biol Chem 2006; 281:36803-10.

[65] Cui D, Zhang L, Jiang S, Yao Z, Gao B, Lin J, Yuan YA, Wei D. A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H). Febs J 2015; 282:2339-51.

[84] Bommareddy RR, Chen Z, Rappert S, Zeng AP. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng 2014; 25:30-
7.

Figure legends

Figure 1. Structures of nicotinamide-based coenzymes and biomimetic nicotinamide coenzymes. a) two natural coenzymes, \(\text{NAD}^+ \) and \(\text{NADP}^+ \), the chemical groups in the open red ovals are where the redox reaction occurs, these chemical groups are the same in all the coenzymes, b) biomimetic coenzymes derived from natural coenzymes, nicotinamide flucytosine dinucleotide (NFCD\(^+\)), nicotinamide mononucleotide (NMN\(^+\)), nicotinamide mononucleoside (NR\(^-\)), the chemical group in shaded area indicates the structure difference between NFCD\(^+\) and \(\text{NAD}^+ \), c) synthetic biomimetic coenzyme, 1-benzyl nicotinamide (BNA\(^-\)).

Figure 2. Scheme of coenzyme engineering methods, including rational design, semi-rational design and directed evolution.

Figure 3. a) Amino acid sequence alignment of the coenzyme-binding motif of various 6PGDH enzymes. The residues composing the loop region and responsible for coenzyme recognition are boxed. Red stars represent \(\text{M. thermoacetica} \) wild-type NADP\(^-\)-preferred 6PGDH and NAD\(^+\)-preferred 6PGDH mutant. Blue star indicates \(\text{T. maritima} \) 6PGDH studied in this research. b) Sub-alignments of key amino acid residues playing an important role in 2'-phosphate interaction. Colors in sequence logo refer to hydrophobic (black), positive charge (blue), negative charge (red) and polar (green) residues (This figure is a courtesy from (Chen et al. 2016a)).

Figure 4. a) Scheme of double layer based screening. The 6PGDH catalyze the oxidation of 6-phosphogluconate to ribulose 5-phosphate and \(\text{CO}_2 \), and reduction of
NAD$^+$ to NADH. In the presence of PMS, the NADH transfers its hydride and reduces the colorless redox dye TNBT to black color TNBT formazan. b). the process of double layer based screening method. The mutant library was treated by heat and overlaid by second agarose layer with reagents. The colonies featuring as darker color with halo were identified as positive mutants.

Figure 5. Engineering the coenzyme preference of oxidoreductases in a metabolic pathway by protein engineering *in vitro* followed by the replacement of the wild-type enzyme with the mutant enzyme to solve the problem of coenzyme un-match.
Table 1. List of product-oriented coenzyme engineering on natural nicotinamide coenzymes NAD(P).

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Source</th>
<th>Specificity</th>
<th>Mutations</th>
<th>Product</th>
<th>Increasing effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyceraldehyde 3-phosphate dehydrogenase</td>
<td>Corynebacterium glutamicum</td>
<td>NADH→NADPH</td>
<td>D35G/L36R/P192S</td>
<td>Lysine</td>
<td>~60% higher yield</td>
<td>[117]</td>
</tr>
<tr>
<td>NADH oxidase 2</td>
<td>Streptococcus mutans</td>
<td>NADH→NADPH</td>
<td>V193R/V194H</td>
<td>2-heptanone</td>
<td>ND</td>
<td>[118]</td>
</tr>
<tr>
<td>1,5-anhydro-D-fructose reductase</td>
<td>Sinorhizobium Morelense</td>
<td>NADPH→NADH</td>
<td>A13G</td>
<td>1,5-anhydro-D-mannitol</td>
<td>ND</td>
<td>[119]</td>
</tr>
<tr>
<td>Imine reductase</td>
<td>Streptomyces sp. GF3587</td>
<td>NADPH→NADH</td>
<td>K40A</td>
<td>2-methylpyrolidine</td>
<td>~64% higher conversion</td>
<td>[120]</td>
</tr>
<tr>
<td>Ketol-acid reductoisomerase</td>
<td>Escherichia coli</td>
<td>NADPH→NADH</td>
<td>A71S/R76D/S78D/Q110V</td>
<td>2-methylpropan-1-ol</td>
<td>3-fold higher titer</td>
<td>[36]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(isobutanol)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylose reductase</td>
<td>Pichia stipitis</td>
<td>NADPH→NADH</td>
<td>R276H</td>
<td>Ethanol</td>
<td>~20% higher yield</td>
<td>[88]</td>
</tr>
<tr>
<td>Xylose reductase</td>
<td>Candida tenuis</td>
<td>NADPH→NADH</td>
<td>K274R/N276D</td>
<td>Ethanol</td>
<td>~42% higher yield</td>
<td>[121]</td>
</tr>
<tr>
<td>6-phosphogluconate dehydrogenase</td>
<td>Thermotoga maritima</td>
<td>NADP⁺→NAD⁺</td>
<td>N32E/R33I/T34I</td>
<td>Electricity</td>
<td>~25% higher maximum power density and current density</td>
<td>[122]</td>
</tr>
<tr>
<td>6-phosphogluconate dehydrogenase</td>
<td>Geobacillus steathermophilus</td>
<td>NADP⁺→NAD⁺</td>
<td>N33D/R34Y/K38L</td>
<td>Polyhydroxybutyrate</td>
<td>ND</td>
<td>[123]</td>
</tr>
<tr>
<td>Glucose 6-phosphate dehydrogenase</td>
<td>Geobacillus steathermophilus</td>
<td>NADP⁺→NAD⁺</td>
<td>A47D</td>
<td>Polyhydroxybutyrate</td>
<td>ND</td>
<td>[123]</td>
</tr>
<tr>
<td>Glucose 6-phosphate dehydrogenase</td>
<td>Thermotoga maritima</td>
<td>NADP⁺→NAD⁺</td>
<td>S33E/R65M/T66S</td>
<td>Hydrogen</td>
<td>ND</td>
<td>Unpublished</td>
</tr>
</tbody>
</table>

39
Figure 1. Structures of nicotinamide-based coenzymes and biomimetic nicotinamide coenzymes

(a) NAD$^+$ and NADP$^+$

(b) NFCD$^+$, NMN$^+$, and NR$^+$

(c) BNA$^+$
Figure 2. Scheme of coenzyme engineering methods, including rational design, semi-rational design and directed evolution
Figure 3. Amino acid sequence alignment of the coenzyme-binding motif of various 6PGDH enzymes.
Figure 4. Scheme of double layer based screening. The 6PGDH catalyze the oxidation of 6-phosphogluconate to ribulose 5-phosphate and CO$_2$, and reduction of NAD$^+$ to NADH.
Figure 5. Engineering the coenzyme preference of oxidoreductases in a metabolic pathway by protein engineering in vitro followed by the replacement of the wild-type enzyme with the mutant enzyme to solve the problem of coenzyme un-match.
Chapter 3: High-Throughput Screening of Coenzyme Preference Change of Thermophilic 6-Phosphogluconate Dehydrogenase from NADP\(^+\) to NAD\(^+\)

Rui Huang,\(^1\) Hui Chen,\(^1\) Chao Zhong,\(^1\) Jae Eung Kim,\(^1\) Yi-Heng Percival Zhang\(^{1,2*+}\)

\(^1\) Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia 24061, USA

\(^2\) Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7\(^{th}\) Avenue, Tianjin Airport Economic Area, Tianjin 300308, China

* Corresponding Author: Y.-H. Percival Zhang (ypzhang@vt.edu), Tel: 540-231-7414, Fax: 540-231-3199
Abstract

Coenzyme engineering that changes NAD(P) selectivity of redox enzymes is an important tool in metabolic engineering, synthetic biology, and biocatalysis. Here we developed a high throughput screening method to identify mutants of 6-phosphogluconate dehydrogenase (6PGDH) from a thermophilic bacterium Moorella thermoacetica with reversed coenzyme selectivity from NADP$^+$ to NAD$^+$. Colonies of a 6PGDH mutant library growing on the agar plates were treated by heat to minimize the background noise (i.e., deactivate intracellular dehydrogenases and degrade inherent NAD(P)H) and disrupt cell membrane. The melted agarose solution containing a redox dye tetranitroblue tetrazolium (TNBT), phenazine methosulfate (PMS), NAD$^+$, and 6-phosphogluconate was poured on colonies, forming a second semi-solid layer. More active 6PGDH mutants were examined via an enzyme-linked TNBT-PMS colorimetric assay. Positive mutants were recovered by direct extraction of plasmid from dead cell colonies followed by plasmid transformation into E. coli TOP10. By utilizing this double-layer screening method, six positive mutants were obtained from two-round saturation mutagenesis. The best mutant 6PGDH A30D/R31I/T32I exhibited a 4,278-fold reversal of coenzyme selectivity from NADP$^+$ to NAD$^+$. This screening method could be widely used to detect a large number of redox enzymes, which can generate NAD(P)H reacted with the redox dye TNBT.

Keywords: 6-phosphogluconate dehydrogenase, coenzyme engineering, cofactor engineering, directed evolution, high-throughput screening
Introduction

Nicotinamide adenine dinucleotide (NAD, which includes NAD\(^+\) and NADH) and nicotinamide adenine dinucleotide phosphate (NADP, which includes NADP\(^+\) and NADPH) play distinctive roles in catabolism and anabolism, respectively. NAD and NADP differ in an additional phosphate group esterified at the 2’-hydroxyl group of adenosine monophosphate moiety of NADP (Fig. 1). Numerous redox enzymes use NAD(P) as a coenzyme, which is usually held within the Rossmann fold. Coenzyme engineering that changes coenzyme selectivity (i.e., NAD vs. NADP) of dehydrogenases and reductases is one of the important tools for metabolic engineering and synthetic biology. For example, to produce high-yield biofuels (e.g., butanol, fatty acid esters) under anaerobic conditions, it is essential to balance NADH generation and NAD(P)H consumption (Bastian et al. 2011; Brinkmann-Chen et al. 2013; Huang and Zhang 2011). In addition to using transhydrogenase to transfer hydride ion equivalents (H\(^-\)) from NADH to NADPH (Gameiro et al. 2013; Hou et al. 2009), coenzyme engineering matching coenzyme selectivity of dehydrogenases and reductases is essential to achieve nearly theoretical product yields (Bommareddy et al. 2014; Ehsani et al. 2009; King and Feist 2014). Coenzyme engineering is also essentially important in biocatalysis. Most times, changing the coenzyme selectivity of dehydrogenases from NADP to NAD is preferable due to (1) NAD is less costly than NADP (Rollin et al. 2013; Woodyer et al. 2003) and (2) NADH is more stable than NADPH (Banta and Anderson 2002; Wong and Whitesides 1981; Wu et al. 1986). Also, there are more NADH regeneration enzymes than NADPH regeneration enzymes (van der Donk and Zhao 2003). Intensive studies have been conducted for changing coenzyme selectivity of dehydrogenases from NADP to NAD (Brinkmann-Chen et al. 2013; Lerchner et al. 2013; Scrutton et al. 1990) and from NAD to NADP (Hoelsch et al. 2013; Johannes et al. 2007; Zheng
et al. 2013) as well as broadening coenzyme selectivity (Woodyer et al. 2003). Recent coenzyme engineering studies have expanded the coenzyme selectivity of some redox enzymes to biomimetic coenzymes (Ji et al. 2011; Paul et al. 2014; Rollin et al. 2013; Zhang et al. 2016).

Directed evolution is one of the powerful protein engineering tools that can change enzymes’ substrate selectivity. The most challenging task of directed evolution is the efficient identification of desired mutants from a large mutant library (Liu et al. 2009). As for coenzyme engineering, the use of 96-well microplate screening based on the absorbency of NAD(P)H at 340 nm is a straightforward choice (Brinkmann-Chen et al. 2013). Also, the signal of NAD(P)H can be detected by colorimetric redox indicators. For example, the Arnold’s group utilized a redox dye nitroblue tetrazolium (NBT) plus catalyst phenazine methosulfate (PMS) to determine enhanced thermal stability of 6-phosphogluconate dehydrogenase (6PGDH) with the natural coenzyme (NADP’) in the cell lysate of *E. coli* (Mayer and Arnold 2002). Later, Zhao and his coworkers applied this method to find out dehydrogenase mutants with relaxed coenzyme selectivity (Woodyer et al. 2003). However, the microplate-based screening is labor-intensive and time-consuming, involving colony picking, liquid cell culture, cell lysis, centrifugation, and enzyme activity assay. Due to high background noise of the intracellular reducing compounds and other redox enzymes in the cell lysate, Banta et al. utilized native gels to separate mutants of 2,5-diketo-D-gluconic acid reductase from the cell lysate, followed by the measurement of UV absorbency changes (Banta and Anderson 2002). However, this method required more steps and had lower capability of screening. Holbrook and his coworkers (El Hawrani et al. 1996) developed a method to duplicate colonies from Petri dishes to nitrocellulose paper followed by cell lysis by using lysozyme, detergent, and heat treatment. The targeted dehydrogenase activity was measured by the NBT-PMS assay (El Hawrani et al. 1996). Later, Ellington’s group applied
this method to identify lactate dehydrogenase mutants with their coenzyme preference change from NAD\(^+\) to NADP\(^+\) (Flores and Ellington 2005). Nevertheless, this screening method still requires a lot of steps and the throughput is modest due to smearing effect of colony duplication on nitrocellulose paper (El Hawrani et al. 1996). Therefore, it is urgently needed to develop a simple and effective high-throughput screening method to determine coenzyme selectivity change of dehydrogenases.

6-phosphogluconate dehydrogenase (6PGDH, EC 1.1.1.44), the third enzyme in the pentose phosphate pathway, converts the 6-phosphogluconate and NADP\(^+\) to ribulose 5-phosphate, NADPH, and CO\(_2\). 6PGDH from a thermophilic bacterium *Moorella thermoacetica* was utilized to generate NADPH for the high-yield hydrogen production (Rollin et al. 2015) and generate NADH for electricity generation in biobattery (Zhu et al. 2014), but the catalytic efficiency \(k_{cat}/K_m\) for NADP\(^+\) was far higher than that for NAD\(^+\). Increasing this enzyme’s coenzyme selectivity for NAD\(^+\) could be important to decrease NADP\(^+\) use and increase lift-time of biobattery and other applications, such as low-cost biohydrogenation powered by sugars (Wang et al. 2011).

In this study, we developed a simple Petri-dish-based double-layer screening for the identification of 6PGDH mutants with enhanced catalytic efficiencies for NAD\(^+\), where the second agarose layer contained a redox dye tetranitroblue tetrazolium (TNBT), a catalyst PMS, 6-phosphogluconate, and NAD\(^+\) and positive mutants were observed by darker color of heat treated colonies. Via this method, several 6GPDH mutants were identified with coenzyme selectivity reversed from NADP\(^+\) to NAD\(^+\).
Results

Dual promoter plasmid for screening and protein expression

For directed evolution, it is important to create the library with a large number of mutants and express enough recombinant proteins for characterization. In this study, the dual T7-tac promoter was constructed to control the expression of 6PGDH in both high transformation efficiency host E. coli TOP10 and high protein expression host E.coli BL21(DE3) (Fig. 2a). Plasmids and strains were listed in Table 1. Plasmid pET28a-Ptac-6pgdh consists of a strong inducible promoter T7, a modest inducible promoter tac, a lac operator, a ribosome binding site (RBS) and downstream 6pgdh gene. In E. coli TOP10, the modest expression of 6PGDH was accomplished by the tac promoter, while the T7 promoter was inactive due to a lack of T7 RNA polymerase. In E. coli BL21(DE3), high expression levels of 6PGDH was obtained under the control of both T7 and tac promoter. As SDS-PAGE analysis showed, although the 6PGDH expression was modest in E. coli TOP10, the 6PGDH expression level in E. coli BL21(DE3) was high and displayed 4.3-fold greater than that in E. coli TOP10 (Fig. 2b).

Optimization of screening conditions

The mechanism of colorimetric assay in double-layer screening was shown in Fig. 3. The reduced NADH generated by 6PGDH reacts with TNBT in the presence of PMS, yielding a black TNBT-formazan. Heat-treatment was applied to reduce the background noise from host mesophilic enzymes and metabolites (e.g., NADPH and NADH) (Berridge et al. 2005; Fahimi and Karnovsky 1966; Ishizuka et al. 1992) and disrupt cell membranes for NAD⁺ diffusion (Ninh et al. 2015; Zhou et al. 2011). For choosing the optimal heat-treatment temperature, two control colonies of E. coli TOP10, positive colonies with pET28a-Ptac-6pgdh and negative colonies with
pET28a-P_tac, were treated at 23, 60, 70 and 80°C for 1 h and color changes were observed after overlaying the second layer. As the result showed in Fig. 4a, the positive colonies and the negative colonies treated at 23°C (no heat-treatment) developed the same black color. When the heat-treatment temperature was greater than 70°C, the colonies of the negative control did not develop the black color, indicating the reduced background noises. From the colonies of positive control expressing 6PGDH, the colonies exhibited the darker color with haloes regardless of heat-treatment temperatures. Based on the result, the optimal heat-treatment temperature was 70°C.

The screening conditions were also influenced by NAD^+ concentration and reaction time. As shown in Fig. 4b, the E. coli colonies expressing 6PGDH developed darker color and larger haloes with increasing NAD^+ concentration and time interval. The colonies with the second layer containing 0 mM NAD^+ started developing the dark color after 2 h, while E. coli TOP10 colonies (pET28a-P_tac) did not develop the color under the same condition (data not shown), implying that the heat-treatment was not enough to degrade E. coli NAD(P)^+ completely (Hofmann et al. 2010; Honda et al. 2016). To minimize the impact of E. coli inherent NAD(P)^+, the screening time was recommended to be less than 2 h.

Screening 6PGDH mutants for increasing NAD^+ activity

After optimization of heat-treatment temperature and color development time, the double-layer screening method was used to determine 6PGDH mutants’ coenzyme selectivity change. Fig. 5 and Fig. S1 shows the image of a typical double-layer screening plate containing positive mutants compared to wild-type and negative mutants. It was found that the color densities of colonies were related to mutant activities for NAD^+ (data not shown).
To make a reasonable size mutant library with 5-fold coverage, the 6PGDH mutant library was conducted through two-round saturation mutagenesis. In the first round, the site-directed mutagenesis of R31 was conducted and approximately 200 colonies were screened. Two positive mutants, R31T and R31I, were identified and characterized (Table 2). Starting from the best mutant R31I, the two-site-saturated mutagenesis library A30/T32 was constructed. After screening of 5,000 mutants, another four positive mutants, R31I/T32G, A30C/R31I/T32K, A30E/R31I/T32D and A30D/R31I/T32I were identified.

Characterization of 6PGDH mutants

The activity and kinetic constants for NAD(P)\(^+\) of wild-type 6PGDH and mutants were summarized in Table 2. Through the first round screening, the R31I had a double \(K_m\) value (26.5 \(\mu M\)) for NADP\(^+\) and a one fourth \(K_m\) value (354 \(\mu M\)) for NAD\(^+\) compared to those of wild-type. Similarly, the R31T exhibited a 3.5-fold reversal due to higher \(K_m\) value for NADP\(^+\) and lower \(K_m\) value for NAD\(^+\). Starting from R31I, the second round mutant R31I/T32G had higher \(K_m\) of 104.4 \(\mu M\) for NADP\(^+\) than that of R31I but no significant change in \(K_m\) for NAD\(^+\). The A30C/R31I/T32K obtained lower \(k_{cat}\) of 6.23 \(s^{-1}\) but much higher \(K_m\) of 698 \(\mu M\) for NADP\(^+\). Meanwhile, its \(k_{cat}\) for NAD\(^+\) decreased to 6.0 \(s^{-1}\) and the \(K_m\) for NAD\(^+\) decreased to 404 \(\mu M\). The A30E/R31I/T32D had a very low \(k_{cat}\) value of 3.1 \(s^{-1}\) but a high \(K_m\) value of 660 \(\mu M\) for NADP\(^+\), resulting in catalytic efficiency for NADP\(^+\) as low as 4.7 \(mM^{-1} s^{-1}\). However, the \(k_{cat}\) and \(K_m\) for NAD\(^+\) decreased to 10.8 \(s^{-1}\) and 127 \(\mu M\), respectively, resulting in an increase in catalytic efficiency for NAD\(^+\) to 85.1 \(mM^{-1} s^{-1}\).

The best mutant was A30D/R31I/T32I in terms of \(k_{cat}/K_m\) for NAD\(^+\). Comparing with wild-type, the \(k_{cat}\) value for NADP\(^+\) decreased to 1.81 \(s^{-1}\) but the \(K_m\) value increased to 228 \(\mu M\). On the other hand, the \(k_{cat}\) value for NAD\(^+\) reduced to 5.75 \(s^{-1}\) and the \(K_m\) value decreased to
11.87 μM, which was comparable to the K_m value of wild-type for NADP$^+$ (13.9 μM). The catalytic efficiency of A30D/R31I/T32I for NADP$^+$ was decreased by 80-fold, while the catalytic efficiency for NAD$^+$ was increased by 54-fold, from 9 to 484.2 mM$^{-1}$ s$^{-1}$, resulting in a 4,278-fold reversal of coenzyme selectivity from NADP$^+$ to NAD$^+$.
Discussion

Here we developed an easy high-throughput screening method based on double-layer Petri dishes for determining the coenzyme selectivity of 6PGDH for NAD$^+$. In this screening, the reduced NADH generated from 6-phosphogluconate catalyzed by 6PGDH mutants could react with TNBT, generating the black TNBT formazan. Although double-layer screening is a very classical enzyme- or microorganism-screening technique without costly instruments, it was surprising that there were few efforts in coenzyme engineering possibly due to multiple reasons. Compared to colony duplication developed by the Holbrook’s group (El Hawrani et al. 1996), our method avoided colony duplication and possible smear effects during colony duplication, resulting in less labor and higher throughput screening capacity (e.g., 800 colonies per dish). Furthermore, we applied heat-treatment to kill the *E. coli* cells, disrupt cell membrane (Ninh et al. 2015; Ninh et al. 2013; Ren et al. 2007), degrade metabolites including NAD(P)H, and deactivate other *E. coli* enzymes that can work with NAD$^+$, but retain intracellular thermostable 6PGDH for a quick screening. This heat-treatment was efficient to decrease background interference and facilitate substrate mass transfer (Fig. 4) but it also killed the *E. coli* cells, resulting in a problem for recovering *E. coli* cells. To avoid living cell colony replication before heat-treatment as performed previously (Liu et al. 2009; Ye et al. 2012), we developed an alternative technique to recover the plasmid from dead *E. coli* colonies – picking black dead-cell colonies for micro-plasmid purification followed by the transformation of *E. coli* TOP10. We had a high-throughput screening capacity without any colony replication associated with smear effects and possible cross contamination.

The thermophilic redox enzymes are promising to be applied in biocatalysis because of the excellent thermal and operational stabilities. With the improved thermal stabilities of NAD$^+$
by *in vitro* salvage synthesis pathway (Honda et al. 2016) and the increased number of thermophilic redox enzymes from thermophiles (Wang and Zhang 2009) or engineered mesophilic counterparts (Mayer and Arnold 2002), the thermophilic redox enzymes have gained a great deal of interest as biocatalyst for the application in large scale (Turner et al. 2007). As a key issue involved in commercialization of biocatalytic processes, the coenzyme engineering of these enzymes will be continued and greatly needed in the future. The high-throughput screening method, which minimizes the background noise of *E.coli* and detects the specific activity of thermophilic redox enzymes, can be widely used in this important area. Besides that, this method can be possibly used on screening of mesophilic enzymes due to (1) thermal stabilities of mesophilic enzymes can be higher than the corresponding subtle mesophiles (Kwon et al. 2008). (2) Overexpressed enzymes are further thermal stabilized by intracellular factors such as high protein concentrations, salts, substrates and other general stabilizers (Vieille and Zeikus 2001). (3) Inherent counterpart of target redox enzyme can be knocked out to minimize the background noise (Mayer and Arnold 2002). Also, the heat-treatment temperature and observation time window in screening can be adjusted (e.g., treated at 60°C and observed for 15 min) to reduce the negative effect on target enzymes and obtain the optimal signal-to-noise ratio.

It was essentially important to find out a suitable redox dye for detecting NADH. Our preliminary experiment had tested a few redox dyes, including methyl viologen (Do et al. 2009), benzyl viologen (Mihara et al. 2002), neutral red (Park and Zeikus 2000), methylene blue (Wilner et al. 2009) and TNBT (Fahimi and Karnovsky 1966; Ishizuka et al. 1992; Kugler 1979). It was found that TNBT was the best because black formazan was very stable in the exposure of air and it had the strongest color change comparing with controls (data not shown). For example, oxidized methylene blue (blue color) is a pH-dependent redox dye that can react with NADH.
But its reduced form (colorless) can react with oxygen in air, resulting in slow regeneration of blue color. As a result, this dye was not suitable for screening dehydrogenases whose specific activities were low on non-natural coenzymes.

The E. coli TOP10 is a good strain for mutant library construction because of the high transformation efficiencies (e.g., \(10^{8-9}\) cfu/µg plasmid DNA). However, its ability of recombinant protein expression is much lower than that of E. coli BL21(DE3) utilizing the pET expression system, which suffers from low transformation efficiencies (e.g., \(10^6\) cfu/µg plasmid DNA) and possible undesired DNA recombination. A typical directed evolution protocol often involves screening in E. coli TOP10 followed by subcloning of mutant’s DNA sequences into pET plasmid and recombinant protein expression in E. coli BL21(DE3) (Shin et al. 2014; Weiß et al. 2014). To delete the subcloning step between screening and protein expression, we developed a dual promoter T7-tac (Fig. 2a). In E. coli TOP10 host growing on the LB medium, the tac promoter was responsible for modest expression of the target protein. In E. coli BL21(DE3) host plus IPTG, higher protein expression levels were achieved (Fig. 2b).

Six positive mutants were identified through two round mutant libraries. The arginine at position 31 of wild-type 6PGDH was critical to recognize 2′-phosphate of NADP⁺ and formed double hydrogen bonds with 2′-phosphate by the side chain, which was supported by previous studies (Sundaramoorthy et al. 2007; Tetaud et al. 1999). Similarly, T32 made another hydrogen bond with 2′-phosphate through the side chain. Besides that, A30 was also responsible for the formation of the NADP-binding pocket because of close proximity to 2′-phosphate in the structure model (Fig. 6a). After one-site mutation to isoleucine, the mutant R31I lost the ability of binding the 2′-phosphate of NADP⁺, resulting in a double increase in \(K_m\) for NADP⁺ and a four-time decrease in NAD⁺ (Table 2). Similarly, after mutating to threonine, the R31T had a
three-fold \(K_m \) increase for NADP\(^+\) but a two-fold \(K_m \) decrease for NAD\(^+\).

The A30D/R31I/T32I was the best mutant in terms of \(\frac{k_{cat}}{K_m} \) for NAD\(^+\). In addition to R31I, the extra mutation of alanine to aspartate at position 30 formed new hydrogen bonds with both 2’ and 3’-hydroxyl group of adenosine monophosphate moiety of NAD\(^+\) (Fig. 6b) and helped increasing the binding affinity for NAD\(^+\), further 30-fold decline in \(K_m \) for NAD\(^+\) compared to R31I. The replacement to the other acidic amino acid glutamate at the same position was also found at A30E/R31I/T32D with 3-fold lower \(K_m \) for NAD\(^+\) as compared to R31I. Recently, the mutant included replacement to aspartate at same position was reported for 6PGDH from \textit{G. stearothermophilus} with slightly decreased \(K_m \) (Opgenorth et al. 2016). The mutation threonine to isoleucine at position 32 broke the residual hydrogen bonds with 2’-phosphate of NADP\(^+\) and possibly decreased enzyme binding with NADP\(^+\), another 55-fold decrease in catalytic efficiency for NADP\(^+\). A decrease in binding affinity for NADP\(^+\) due to a mutation to a hydrophobic amino acid at the same threonine position was also reported for sheep liver 6PGDH mutant T34A (Li and Cook 2006). Overall, a combination of the deletion of hydrogen bonds with 2’ phosphate of NADP\(^+\) at positions 31 and 32 and then addition of more hydrogen bonds with hydroxyl group of NAD\(^+\) at position 30 resulted in a more than 4,000-fold reversal of coenzyme selectivity from NADP\(^+\) to NAD\(^+\).

In conclusion, a high-throughput screening method was established for determining the NAD\(^+\) selectivity of 6PGDH mutants. This double-layer method based on the colorimetric TNBT-PMS assay dramatically decreased dehydrogenase screening labor. The best 6PGDH mutant A30D/R31I/T32I showed a 4,278-fold reversal of coenzyme preference from NADP\(^+\) to NAD\(^+\).
Materials and Methods

Chemicals, plasmids and strains

All chemicals were reagent grade or higher, purchased from Sigma-Aldrich (St. Louis, MO) or Fisher Scientific (Pittsburgh, PA), unless otherwise noted. The M. thermoacetica genomic DNA was purchased from the American Type Culture Collection (Manassas, VA). All enzymes for molecular biology experiments were purchased from New England Biolabs (NEB, Ipswich, MA). Strains, plasmids, and oligonucleotides used in this study are listed in Table 1.

Construction of pET28a-P\textsubscript{tac}-6pgdh

Plasmid pET28a-P\textsubscript{tac}-6pgdh was constructed as follows. The inserted 6pgdh gene was amplified from M. thermoacetica genomic DNA by using a pair of primers 6PG_F/6PG_R and the linearized vector backbone was amplified from pET28a by using a pair of primers 28_back_F/28_back_R. The insertion and vector backbone were assembled into multimeric plasmids by prolonged overlap extension-PCR (You et al. 2012). The PCR product was directly transformed into E. coli TOP10, yielding pET28a-6pgdh. To make the dual promoter plasmid pET28a-P\textsubscript{tac}-6pgdh, the linear backbone of plasmid pET28a-P\textsubscript{tac}-6pgdh was amplified based on pET28a-6pgdh by using a pair of 5' phosphorylated primers T7_Tac_F/T7_Tac_R containing each half of the promoter P\textsubscript{tac} and was self-ligated by NEB Quick Ligation™ Kit. After transformation into E. coli TOP10, plasmid pET28a-P\textsubscript{tac}-6pgdh was obtained.

Construction of mutant libraries by saturation mutagenesis

The two-round DNA mutant libraries were constructed by the NEB Phusion site-directed mutagenesis kit. In the first round, the single-site saturation mutagenesis library R31 was
amplified based on pET28a-P_{tac}-6pgdh by using a pair of degenerate primers 31_NNK_F/31_NNK_R. The two-site saturation mutagenesis library A30/T32 was amplified from plasmid of pET28a-P_{tac}-6pgdh (R31I) by using a pair of degenerate primers 30_32_NNK_F/30_32_NNK_R. PCR reaction solution (50 μL) containing 1 ng of plasmid template was conducted as follows: 98°C denaturation for 1 min; 20 cycles of 98°C denaturation for 30 s, 60°C annealing for 30 s and 72°C extension for 3 min; and 72°C extension for 5 min. The PCR product was digested by DpnI followed by purification of gel electrophoresis and Zymoclean™ Gel DNA Recovery Kit (Zymo Research, Irvine, CA). The purified plasmid library was transformed into E. coli TOP10 for screening.

Optimization of heat treated temperature and time window

In order to test optimal heat treated temperature and time window for screening, the TOP10 carrying blank plasmid pET28a-P_{tac} and TOP10 with pET28a-P_{tac}-6pgdh were cultivated on the 1.5% agar LB medium with 50 μM kanamycin at 37°C overnight and at room temperature for another day. For optimizing heat treated temperature, colonies of TOP10 (pET28a-P_{tac}) and TOP10 (pET28a-P_{tac}-6pgdh) was treated at 23, 60, 70 and 80°C for 1 h, respectively. After cooling down, 8 mL of 0.5% melted agarose solution (60°C) containing final concentration of 50 mM Tris-HCl (pH 7.5), 50 μM TNBT, 10 μM PMS, 2 mM 6-phosphogluconate, and 1 mM NAD^+ was poured on the heat-treated colonies. After incubation at room temperature for 1 h, the 6PGDH activity of colonies was observed by the darkness of black color on white background. For detecting the suitable time window for screening, the colonies of TOP10 (pET28a-P_{tac}-6pgdh) were treated at 70°C for 1 h. After cooling down, the heat treated cell was overlaid by the same melted agarose reagent solution except changing the final concentration of NAD^+ to 0, 0.1,
0.3 and 1 mM, respectively. The color change of different groups was then observed at room temperature for 0, 0.5, 1 and 2 h. Each treatment contained three independent replicates.

High-throughput screening of mutant libraries for increasing NAD⁺ activity

The double-layer screening of 6PGDH mutants for NAD⁺ was performed as follows. After transformation of the mutant plasmid library, the *E. coli* TOP10 cells were spread on the 1.5% agar LB medium containing 50 μM kanamycin with an expected colony number of 500-800 per Petri dish. The dishes were incubated overnight at 37°C and at room temperature for another day to ensure enough recombinant 6PGDH expression due to the leaky activity of *tac* promoter in the LB medium (Xu et al. 2012). The colonies on plates were treated at 70°C for 1 h to kill cells, deactivate *E. coli* mesophilic enzymes, and degrade metabolites and reduced coenzymes. Eight mL of 0.5% melted agarose solution (60°C) containing final concentration of 50 mM Tris-HCl (pH 7.5), 50 μM TNBT, 10 μM PMS, 2 mM 6-phosphogluconate, and 1 mM (for library R31) or 0.1 mM (for library A30/T32) NAD⁺ was poured on the heat-treated colonies. After incubation at room temperature for 1 h, positive colonies were identified based on the formation of black colors. The agarose gel containing the single colony was isolated and mixed with 200 μL of the P1 buffer of Zymo ZR Plasmid Miniprep™ kit to resuspend the cell. The plasmid extracted by the plasmid purification kit was transformed into *E. coli* TOP10 for plasmid purification and DNA sequencing.

Overexpression and purification of wild-type 6PGDH and mutants

Plasmid pET28a-*P_tac-6pgdh* of wild-type or mutants was transformed to *E. coli* TOP10 for screening and BL21(DE3) for overexpression and protein purification. The transformed cells
were grown in the LB medium with 50 μM kanamycin at 37°C until A_{600} reached ~0.6-0.8 and then 0.1 mM IPTG was added to induce protein expression at 37°C for 6 h. Cell pellets were harvested by centrifugation and then were re-suspended in a 20 mM sodium phosphate and 0.3 M NaCl buffer (pH 7.5) containing 10 mM imidazole. After sonication and centrifugation, the His-tagged protein in the supernatant was loaded onto the column packed with HisPur Ni-NTA Resin (Fisher Scientific, Pittsburgh, PA) and eluted with 20 mM sodium phosphate buffer (pH 7.5) containing 300 mM NaCl buffer and 250 mM imidazole. Mass concentration of protein was determined by the Bradford assay using bovine serum albumin (BSA) as the standard and the 6PGDH expression level in different strain and purified 6PGDH were checked by SDS-PAGE and analyzed by using densitometry analysis (ImageJ).

6PGDH activity assays

The activities of 6PGDH and mutants were measured in 100 mM HEPES buffer (pH 7.5) with final concentration of 2 mM 6-phosphogluconate, 2 mM NAD(P)^+, 5 mM MgCl_2 and 0.5 mM MnCl_2 at 50°C for 5 min, as described elsewhere (Zhu et al. 2014). The formation of NAD(P)H was measured at 340 nm by a UV/visible spectrophotometer (Beckman Coulter, Fullerton, CA). The enzyme unit was defined as one μmole of NAD(P)H produced per min. For determining enzyme kinetic parameters on coenzymes, the enzyme activity was measured in same buffer as described above except changing the concentration of NAD(P)^+ from 5 to 5000 μM. The result was regressed by GraphPad Prism 5 (Graphpad Software Inc, La Jolla, CA) and apparent K_m and k_{cat} for NAD(P)^+ of 6PGDH was given based on Michaelis-Menten nonlinear regression. All the reactions contained three independent replicates and fitted with linear range.
Structural analysis

The three-dimensional structure modeling of wild-type 6PGDH and mutants were built by SWISS-MODEL based on the human 6PGDH (PDB: 2JKV) with 39.4% sequence identity. The structures of NADP⁺ and NAD⁺ were built by using Chemdraw (PerkinElmer, Waltham, MA). Starting from the initial protein and coenzyme structures, the conformation space accessible by NADP⁺ and NAD⁺ binding to the corresponding coenzyme binding area was analyzed by using the Autodock program (Scripps Research Institute, La Jolla, CA).

Acknowledgment

This project cannot be carried out without the support of the Biological System Engineering Department, Virginia Polytechnic Institute and State University, Virginia, USA. This study is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office under Award Number DE-EE0006968. Funding to YPZ for this work was partially supported by the Virginia Agricultural Experiment Station and the Hatch Program of the National Institute of Food and Agriculture, U.S. Department of Agriculture. Also, RH thanked Professor James Bowie for project discussion and thanked Professors Ryan Senger and Xueyang Feng for accessing some of their lab instruments.

Author Contributions Statement

P.Z. and R.H. wrote the main manuscript text, table and figures. R.H. conducted major experiments. H.C. conducted experiments of structure modeling of 6PGDH in Figure 6. C.Z. and J.K. were involved project discussion. All authors reviewed the manuscript.
Competing Financial Interests statement

The authors declare no competing financial interests.

Corresponding author

Correspondence to Yi-Heng Percival Zhang.

References

Li L, Cook PF. 2006. The 2'-phosphate of NADP is responsible for proper orientation of the nicotinamide ring in the oxidative decarboxylation reaction catalyzed by sheep liver 6-phosphogluconate dehydrogenase. J. Biol. Chem. 281(48):36803-36810.

Figure Legends

Figure 1. Chemical structures of NADP⁺ and NAD⁺. Structures of NADP⁺ and NAD⁺ were shown and the additional phosphate group on NADP⁺ was highlighted in gray.

Figure 2. Validation of the dual T7-tac promoter for 6PGDH screening in E. coli TOP10 and protein expression in E. coli BL21(DE3). (a) plasmid design of pET28a-Ptac-6pgdh. The DNA sequence of Ptac, lac operator and RBS were shown as underlined, italic and lower case, respectively. (b) SDS-PAGE analysis of 6PGDH expression from E. coli TOP10 and BL21(DE3). M, protein marker; Control, pET28a-Ptac; WT, pET28a-Ptac-6pgdh; P, purified Moth6PGDH. The 6PGDH was indicated with an arrow.

Figure 3. Scheme of the colorimetric assay for 6PGDH activity for NAD⁺. 6PGDH oxidizes 6-phosphogluconate (6PG) into ribulose-5-phosphate and CO₂, and reduces NAD⁺ to NADH. With the catalyst phenazine methosulphate (PMS), redox dye tetranitroblue tetrazolium (TNBT) is converted to black TNBT-formazan by the reduction of NADH.

Figure 4. Optimization of heat treated temperature and color development time. (a) Optimization of heat-treated temperature for screening. Colonies of E. coli TOP10 (pET28a-Ptac) was set as a negative control and E. coli TOP10 (pET28a-Ptac-6pgdh) was set as a positive control (6PGDH). Colonies were treated at 23, 60, 70 and 80°C for 1 h, respectively and observed after overlaying second layer. (b) Optimization of color development time. Heat-treated colonies of E. coli TOP10 (pET28a-Ptac-6pgdh) was overlaid by second layer containing 0, 0.1, 0.3 and 1 mM NAD⁺, and the color change profiles of colonies were photographed at 0, 0.5, 1 and 2 h.
Figure 5. Photo image of the double layer screening of the library containing two-site mutagenesis of A30/T32. The second layer contained 0.1 mM NAD$^+$. The color development time was 1 h. The positive mutants featuring darker colony color with halo were identified red arrows.

Figure 6. Surface view of wild-type 6PGDH with NADP$^+$ (a) and mutant A30D/R31I/T32I with NAD$^+$ (b). The amino acid residues A30, R31 and T32 of wild type 6PGDH and corresponding mutated residues of mutant A30D/R31I/T32I were depicted as sticks and replacements were marked as red. Atoms were colored based on types: N, blue; O, red; P, orange; C, green and H, white. Hydrogen bonding between residues and cofactor were shown as yellow line.
Table 1. The strains, plasmids, and oligonucleotides used in this study

<table>
<thead>
<tr>
<th>Description</th>
<th>Contents</th>
<th>Reference/sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain</td>
<td>Description</td>
<td>Contents</td>
</tr>
<tr>
<td>E. coli B21sex(DE3)</td>
<td>B F'-ompT gal dcm lon hsdS6(rB' mB') rne131 (DE3)</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>E. coli TOP10</td>
<td>F- mcrA crmrr-hsdRMS-mcrBC) Φ80lacZac80 ΔlacX74 recA1 araD139 Δ(ara leu) 7697 galU galK rpsL (StrR) endA1 nupG</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Plasmid</td>
<td>pET28a</td>
<td>Invitrogen</td>
</tr>
<tr>
<td></td>
<td>pET28a-6pgdh</td>
<td>Precursor of pET28a-P_{tac}-6pgdh</td>
</tr>
<tr>
<td></td>
<td>pET28a-P_{tac}-6pgdh</td>
<td>dual promoter (P_T7 and P_{tac}) and moth6pgdh</td>
</tr>
<tr>
<td></td>
<td>primers*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28_back_F</td>
<td>5'-CGACCAAGACCGACTAAGCCGATATGCATATGTATATCCTCTTCTTAAAG-3'</td>
</tr>
<tr>
<td></td>
<td>28_back_R</td>
<td>5'-GGCCACGACGTTGGCCCGGAACACACCACCCACCCACCCACGGATGAT-3'</td>
</tr>
<tr>
<td></td>
<td>6PG_F</td>
<td>5'-CTTTAAGAAGGAGATATACATATGCAATACGGGCTTTAGTCGGTCTTGGTGCG-3'</td>
</tr>
<tr>
<td></td>
<td>6PG_R</td>
<td>5'-ATCTCAAGGTTGCGTGGTGGTTCCCGGGCCACGTCGGTGCC-3'</td>
</tr>
<tr>
<td></td>
<td>T7_Tac_F</td>
<td>5'-Phos-GGTCACTATAATGTTGGAATTTGAGCCGAATAACAAATT-3'</td>
</tr>
<tr>
<td></td>
<td>T7_Tac_R</td>
<td>5'-Phos-GATGATATTTGCACTATAATGTTGAGGCTTTAATTTCCG-3'</td>
</tr>
<tr>
<td></td>
<td>31_NNK_F</td>
<td>5'-GAAGTGGCAGGATAGCCCNKACTAAGGCCTACCGTG-3'</td>
</tr>
<tr>
<td></td>
<td>31_NNK_R</td>
<td>5'-CCAGGGTAGCCTAGTMNNGGCTATCCTCGCACTTC-3'</td>
</tr>
<tr>
<td></td>
<td>30_32_NNK_F</td>
<td>5'-CATGGTCATGAAGTGGCAGGATACNNKATTNNKAAGGCTACCGTGAGCAAAAC-3'</td>
</tr>
<tr>
<td></td>
<td>30_32_NNK_R</td>
<td>5'-GCTTTGTCAGGCTAGCTMNNATMNNGTATCCTCGCACTTCATGACCATG-3'</td>
</tr>
</tbody>
</table>

Boldface nucleotide sequences indicate randomized positions.
<table>
<thead>
<tr>
<th>Mutations</th>
<th>K_m [μM]</th>
<th>k_{cat} [s$^{-1}$]</th>
<th>k_{cat}/K_m [mM$^{-1}$ *s$^{-1}$]</th>
<th>Ratio k_{cat}/K_m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NADP$^+$</td>
<td>NAD$^+$</td>
<td>NADP$^+$</td>
<td>NAD$^+$</td>
</tr>
<tr>
<td>WT</td>
<td>13.9 ± 1.1</td>
<td>1397 ± 111</td>
<td>8.73 ± 0.02</td>
<td>12.6 ± 0.4</td>
</tr>
<tr>
<td>R31T</td>
<td>35.5 ± 1.7</td>
<td>605 ± 47</td>
<td>10.83 ± 0.13</td>
<td>9.12 ± 0.23</td>
</tr>
<tr>
<td>R31I</td>
<td>26.5 ± 1.3</td>
<td>354 ± 12</td>
<td>11.53 ± 0.15</td>
<td>15.01 ± 0.17</td>
</tr>
<tr>
<td>R31I/T32G</td>
<td>104.4 ± 5.4</td>
<td>362 ± 23</td>
<td>11.9 ± 0.16</td>
<td>12.94 ± 0.27</td>
</tr>
<tr>
<td>A30C/R31I/T32K</td>
<td>698 ± 49</td>
<td>404 ± 33</td>
<td>6.23 ± 0.18</td>
<td>6.0 ± 0.2</td>
</tr>
<tr>
<td>A30E/R31I/T32D</td>
<td>660 ± 64</td>
<td>127 ± 7</td>
<td>3.1 ± 0.1</td>
<td>10.8 ± 0.2</td>
</tr>
<tr>
<td>A30D/R31I/T32I</td>
<td>228 ± 16</td>
<td>11.87 ± 0.55</td>
<td>1.81 ± 0.05</td>
<td>5.75 ± 0.05</td>
</tr>
</tbody>
</table>

Each value represents the average of three independent measurements.
Figure 1. Chemical structures of NADP⁺ and NAD⁺

![Chemical structures](image)

Figure 2. Validation of the dual T7-tac promoter for 6PGDH screening in *E. coli* TOP10 and protein expression in *E. coli* BL21(DE3)

![Validation diagram](image)
Figure 3. Scheme of the colorimetric assay for 6PGDH activity for NAD$^+$

6-Phosphogluconate \[\xrightarrow{6PGDH}\] NADH \[\xrightarrow{PMS}\] CO$_2$ \[\xrightarrow{\text{TNBT-Formazan (reduced)}}\] TNBT (oxidized) \[\xrightarrow{\text{NAD}^+}\] Ribulose-5-phosphate

Figure 4. Optimization of heat treated temperature and color development time

<table>
<thead>
<tr>
<th></th>
<th>23°C</th>
<th>60°C</th>
<th>70°C</th>
<th>80°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6PGDH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAD$^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 mM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1 mM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3 mM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 mM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 5. Photo image of the double layer screening of the library containing two-site mutagenesis of A30/T32

Figure 6. Surface view of wild-type 6PGDH with NADP\(^+\) and mutant A30D/R31I/T32I with NAD\(^+\)
Chapter 4. Engineering a thermostable highly active glucose 6-phosphate dehydrogenase and its application to biohydrogen production \textit{in vitro}

Rui Huang1, Hui Chen1, Wei Zhou2, Chunling Ma2, Yi Heng Percival Zhang1,2*

1 Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia 24061, USA

2 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China

* Corresponding Author: Y.-H. Percival Zhang (ypzhang@vt.edu), Tel: 540-231-7414, Fax: 540-231-3199
Abstract

Glucose 6-phosphate dehydrogenase (G6PDH) is one of the most important dehydrogenases responsible for generating reduced NADPH for anabolism and is also the rate-limiting enzyme in the Entner-Doudoroff pathway. For in vitro biocatalysis, G6PDH must possess both high activity and good thermostability due to requirements of efficient use and low expense of biocatalyst. Here we used directed evolution to improve thermostability of the highly active G6PDH from Zymomonas mobilis. Four generations of random mutagenesis and Petri-dish-based double-layer screening evolved the thermolabile wild-type enzyme to the thermostable mutant Mut 4-1, which showed a more than 124-fold increase in half-life time ($t_{1/2}$) at 60°C, a 3.4°C increase in melting temperature (T_m), and a 5°C increase in optimal temperature (T_{opt}), without compromising the specific activity. In addition, the thermostable mutant was conducted to generate hydrogen from maltodextrin via in vitro synthetic biosystems (ivSB), gaining a more than 8-fold improvement of productivity rate with 76% of theoretical yield at 60°C. Thus, the engineered G6PDH has been shown to effectively regenerate NADPH at high temperatures and will be applicable for NAD(P)H regeneration in numerous in vitro biocatalysis applications.

Key words: Glucose 6-phosphate dehydrogenase, thermostability, high activity, biohydrogen, directed evolution
Introduction

Glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) catalyzes the oxidation of glucose 6-phosphate (G6P) to 6-phosphogluconolactone (6PGL) with the concomitant reduction of NADP⁺ to NADPH. It is the first enzyme of the pentose phosphate pathway and one of the key enzymes in central metabolism (Iyer et al. 2002). It is also the rate-limiting enzyme of the Entner-Doudoroff (ED) pathway in Zymomonas mobilis, one of the fastest sugar utilizing microorganisms (Conway 1992; He et al. 2014). Because G6PDH is one of the most important enzymes for cellular NADPH regeneration, its overexpression has been used to produce sufficient NADPH in metabolic engineering and synthetic biology applications in vivo (Sekar et al. 2017; Zhao et al. 2015).

G6PDHs are distributed widely in many species from bacteria to humans. The G6PDH from Z. mobilis (ZmG6PDH), one of the most active characterized G6PDHs, has specific activities of 316 and 852 U/mg at 30 and 60°C (Table 1), respectively. However, this enzyme is not thermostable and loses its activity rapidly at elevated temperatures with a half-life time ($t_{1/2}$) of about seven minutes at 60°C (Table 1), which is unacceptable for biocatalysis processes (i.e., hydrogen) operating at high temperature (Kim et al. 2016). A few G6PDHs from hyperthermophilic microorganisms have been characterized and show increased thermostability. However, they have much lower specific activities compared to those of their mesophilic counterparts (Table 1), resulting in the poor space-time yield. Essentially, it is important to develop BioBrick enzymes (i.e., G6PDH) with both high specific activities (i.e., faster reaction) and great thermostability (i.e., prolonged lifetimes) so they can be used in effective and economically feasible ways for in vitro biocatalysis.
applications, such as production of hydrogen (Rollin et al. 2015), bioelectricity (Zhu et al. 2014; Zhu and Zhang 2017), and NAD(P)H regeneration (Wang et al. 2011).

Directed evolution is a powerful engineering tool to improve enzyme properties without knowledge of protein structure and catalytic mechanism. It has been used to improve thermostability of numerous enzymes (Baik et al. 2003; Johannes et al. 2005; McLachlan et al. 2008; Zheng et al. 2017). For example, Arnold and coworkers evolved *Bacillus subtilis* esterase to thermostable mutants without compromising its specific activity at low temperatures by screening mutants retaining high activity and increased thermostability (Giver et al. 1998). Zhao and coworkers applied the same strategy to increase the thermostability of *Pseudomonas stutzeri* phosphite dehydrogenase greatly (>7,000 fold greater half-life time at 45°C) with slightly higher catalytic efficiency (Johannes et al. 2005). A highly active G6PDH from a mesophilic bacterium *Leuconostoc mesenteroides* was engineered to increase thermostability through directed evolution (Kusumoto et al. 2010). However, in this approach, the best mutant retained 60% activity at 50°C for 1 h. This half-life time must be improved further for use of G6PDH in numerous *in vitro* biocatalysis applications (Kim et al. 2016; Rollin et al. 2015; Wang et al. 2011; Zhu et al. 2014).

The most challenging task of directed evolution is the effective identification of desired mutants from large libraries. This is often quoted as, “you get what you screen for” (You and Arnold 1996). The 96-well microplate-based screening is a straightforward method to measure residual enzyme activities after heat treatment (Mayer and Arnold 2002). However, this method is labor-intensive and requires costly automated instruments. Several Petri-dish-based screening methods have been developed to avoid colony picking and the
microplate-based screening. For example, beta-glucosidase mutants have been selected based on cell growth on cellobiose followed by facilitated screening using the growth of a second indicator strain (Liu et al. 2009). Mutants of thermophilic NADP⁺-preferred 6-phosphogluconate dehydrogenase (6PGDH) have been screened using a Petri-dish-based double-layer method for their enhanced activities on NAD⁺ (Huang et al. 2016). Activities of positive mutants were able to be measured using heat treatment followed by tetraniobblue tetrazolium (TNBT)/ phenazine methosulfate (PMS) colorimetric assay. However, this screening method requires thermophilic dehydrogenases as the engineering template because the heat treatment can deactivate mesophilic redox enzymes and reduced compounds inside the cell.

In this work, we started with ZmG6PDH, one the most active G6PDHs, and applied directed evolution to enhance its thermostability. We expanded the previous Petri-dish-based double-layer screening method that was limited to thermophilic enzymes to this mesophilic dehydrogenase. Via multiple rounds of random mutagenesis and screening, the best mutant was obtained with both high specific activity and improved thermostability. Furthermore, this mutant was used to demonstrate enhanced performance in hydrogen generation from maltodextrin via ivSB at high temperature.
Material and Methods

Chemicals and Media

All chemicals were reagent grade, purchased from Fisher Scientific (Pittsburgh, PA, USA) or Sigma-Aldrich (St. Louis, MO, USA), unless otherwise noted. The genomic DNA of *Z. mobilis* ATCC31821 was gifted from Dr. Min Zhang of the National Renewable Energy Laboratory (Golden, CO, USA). The primers were synthesized from Integrated DNA Technologies (Coralville, IA, USA). All enzymes for molecular biology experiments were purchased from New England Biolabs (NEB, Ipswich, MA, USA). Strains, plasmids, and primers are listed in Table 2.

Preparation of plasmid pET28a-Ptac-g6pdh

Plasmid pET28a-Ptac-g6pdh containing 1,455-bp wild-type *Z. mobilis* *g6pdh* gene (GenBank accession number: AHJ70511.1) under control of dual promoter PT7-Ptac was constructed for screening and overexpression of *ZmG6PDH*. The inserted *g6pdh* gene was amplified from *Z. mobilis* genomic DNA with a pair of primers G6P_F/G6P_R and the linearized vector backbone was amplified from pET28a-Ptac-6pgdh with a pair of primers Vect_F/Vect_R by using the NEB Phusion® high-fidelity DNA polymerase. The two PCR fragments were assembled by prolonged overlap extension PCR (POE-PCR) (You et al. 2012). The POE-PCR product was transformed into *E.coli* TOP10, yielding the plasmid pET28a-Ptac-g6pdh.
Random mutagenesis and library creation

A random mutant library encoding *g6pdh* gene was generated by error-prone PCR with a pair of primers G6P_F/G6P_R. The reaction solution with a total volume of 50 μL contained 5 ng/μL plasmid pET28a-P*{tac}*-g6pdh, 0.2 mM dATP, 0.2 mM dGTP, 1 mM dCTP, 1 mM dTTP, 5 mM MgCl₂, 0.004 mM MnCl₂, 0.05 U/μL the NEB regular Taq polymerase and 0.4 μM primer pairs (G6P_F/G6P_R). The PCR reaction was conducted as follows: 1 cycle of 94°C for 2 min; 16 cycles of 94°C for 30 s, 60°C for 30 s, 68°C for 1.5 min; and an extension cycle of 68°C for 5 min. The linearized vector backbone was amplified from pET28a-P*{tac}*-6pgdh as described above. The two PCR products after digestion by *Dpn*I were purified and assembled into multimerized plasmid using POE-PCR. The multimerized plasmid was digested to monomer linearized plasmid by *Xho*I followed by DNA purification and ligation (You and Zhang 2012). The 5 μg of ligation product was transformed into *E.coli* TOP10 competent cell, yielding around 20,000 mutants for screening. The mutation rate was estimated by sequencing the *Zmg6pdh* gene from ten randomly picked mutants for each library. To validate the accuracy of DNA sequencing, both sense and antisense strands were sequenced.

Screening of thermostable mutants of *ZmG6PDH*

For identification of thermostable mutants of *ZmG6PDH*, a Petri-dish based double-layer screening method was carried-out based on the heat treatment and TNBT/PMS colorimetric assay as described previously (Huang et al. 2016), with minor modifications as follows. Transformed cells containing a mutant plasmid library were spread on 1.5% agar
solid LB medium with 50 μg/mL kanamycin to obtain an expected colony number of 500–800 per Petri-dish. The Petri-dish was incubated at 37°C for 48 hours to ensure enough recombinant ZmG6PDH expression by leakage of the tac promoter (Simon et al. 1994). For the first round of screening, Petri-dish colonies were heated to 70°C for 1 hour to lyse cells, degrade reduced coenzymes, and deactivate E. coli mesophilic redox enzymes, such as E. coli G6PDH as well as most negative mutants of ZmG6PDH. Eight mL of the color development solution (60°C) comprised of 0.5% agarose, 50 mM Tris-HCl (pH 7.5), 50 μM TNBT, 10 μM PMS, 2 mM G6P, and 1 mM NADP+ was poured onto the heat-treated colonies. After incubation at room temperature for 2 hours, the thermostable mutants of ZmG6PDH were identified based on their darker color, and were isolated from Petri-dish by using sterile toothsticks followed by suspension in 200 μL of P1 buffer of Zymo ZR Plasmid Miniprep™ kit. Plasmids of positive mutants were extracted based on the protocol of Zymo ZR Plasmid Miniprep™ kit (Zymo Research Corp, Irvine, CA, USA) and transformed into E. coli TOP10 for DNA sequencing and E. coli BL21(DE3) for protein overexpression, respectively. For the second, third and fourth rounds of screening, colonies on Petri-dishes were heated to 70°C for 1.5, 2 and 2.5 hours, respectively. Positive mutants identified in the first, second, third and fourth generations were purified, diluted (1 μg/mL) and incubated in 100 mM HEPES buffer (pH 7.5) with 5 mM MgCl₂ and 0.5 mM MnCl₂ at 60°C for 0.5, 2, 9 and 12 hours, respectively. The initial and residual activities of mutants were measured based on the absorbency of NADPH at 340 nm. The mutant that showed highest ratio of residual activity to initial activity and no greatly loss of initial activity compared to that of the parent enzyme were selected and characterized for the next round of random mutagenesis and screening.
Protein overexpression and purification

The *E. coli* BL21(DE3) strains harboring plasmid encoding the *Zm*G6PDH or mutants were grown in LB medium with 50 μM kanamycin at 37°C. The IPTG-inducible overexpression and Ni-NTA purification of targeted enzyme was conducted as described previously (Huang et al. 2016). Mass concentrations of purified proteins were determined by Bradford assay with bovine serum albumin as the standard.

Activity assay of *Zm*G6PDH and mutants

Activities of wild-type *Zm*G6PDH and mutants were measured in 100 mM HEPES buffer (pH 7.5) containing 2 mM G6P, 1 mM NADP+, 5 mM MgCl2 and 0.5 mM MnCl2 for 3 minutes. The formation of NADPH was measured at 340 nm using a UV/visible spectrophotometer (Beckman Coulter, Fullerton, CA), where the millimolar extinction coefficients (ε) of NADPH is 6.22 mM⁻¹ cm⁻¹. The enzyme unit was defined as one μmole of NADPH produced per minute. For determining the enzymatic optimal temperature, activities of G6PDHs were measured with 0.01 μg/mL enzyme in the same buffer from 23 to 70°C. For determining steady-state kinetics of *Zm*G6PDH and mutants, enzyme activities were measured in the same buffer with 5-1000 μM NADP+ and 30-1000 μM G6P at 30°C. All the reactions were conducted in triplicate. All points were fit simultaneously to the ordered Bi-Bi rate equation (*Equation 1*), where the reaction mechanism was previously verified (Kanji et al. 1976). The kinetic constants were estimated by nonlinear least squares regression (SigmaPlot 12.5, San Jose, CA, USA). Reported errors are standard deviations.
\[V = \frac{E \cdot k_{cat} \cdot [NADP] \cdot [G6P]}{K_{ia}^{NADP} + K_{M}^{G6P} + K_{M}^{[NADP]} + [NADP] + K_{M}^{[G6P]} + [G6P]} \]

Half-life time of thermal deactivation

The purified protein (1 μg/mL) was incubated in 100 mM HEPES buffer (pH 7.5) containing 5 mM MgCl₂ and 0.5 mM MnCl₂ at 60°C. Small aliquots were taken at specific time points and chilled on ice for 5 minutes. Residual activities of enzymes were measured at 30°C as described above. Half-life times \((t_{1/2})\) of thermal deactivation were calculated using linear regression equation of semi-log plot of relative residual activities versus incubation time. All reactions were conducted in triplicate. Reported errors are standard deviations.

Estimation of total turnover number of ZmG6PDH

The total turnover number (TTN) of wild-type enzyme and final mutant Mut 4-1 were estimated based on their half-life times and specific activities at 60°C and calculated by using the **equation 2** (Rogers and Bommarius 2010), where the molecular weight of ZmG6PDH was computed as 5.5 x 10⁴ g/mol by using the online calculation tool https://web.expasy.org/compute_pi/.

\[
TTN = \frac{\text{Specific activity} \left(\frac{U}{mg} \right) \cdot \text{enzyme molecular weight} \left(\frac{g}{mol} \right) \cdot \text{half-life time (h)} \cdot 6}{\ln 2 \cdot 100}
\]

Differential scanning calorimetry analysis

Differential scanning calorimetry (DSC) was performed to determine the melting temperature \((T_m)\) of G6PDHs by using VP-cap DS calorimeter (MicroCal, Inc. Northampton, MA, USA) with a scanning rate of 1°C/min from 40°C to 80°C and 1 mg/mL of protein.
concentration. Before measurements, enzymes were dialyzed against 10 mM phosphate-buffered saline (PBS) buffer (pH 7.5) for 14 hours with one change of buffer followed by the degassed process by stirring gently in vacuo. Experimental traces were corrected for the calorimeter baseline gained by scanning 10 mM PBS buffer in both cells. The T_m was determined based on the maximum of the transition peak. All reactions were conducted in triplicate.

Hydrogen production via in vitro synthetic biosystem

The wild-type ZmG6PDH and the best mutant Mut 4-1 were tested to produce hydrogen from maltodextrin via in vitro synthetic biosystem (ivSB), where the enzyme cocktail contained ZmG6PDH or Mut 4-1, *Thermotoga maritima* α-glucan phosphorylase (αGP, GenBank accession number: AKE30817.1), *Thermococcus kodakarensis* phosphoglucomutase (PGM, GenBank accession number: BAD85297.1), *Geobacillus stearothermophilus* diaphorase (DI, GenBank accession number: JQ040550.1), and *Pyrococcus furiosus* Ni-Fe hydrogenase I (SHI, GenBank accession number: AAL81018.1, alpha subunit; AAL81015.1, beta subunit; AAL81016.1, gamma subunit; AAL81017.1, delta subunit). αGP, PGM and DI were overexpressed in *E. coli* BL21(DE3) and purified as described elsewhere (Kim et al. 2016; You et al. 2017; Zhu et al. 2014). Soluble [NiFe]-hydrogenase I (SHI) was kindly provided by Michael W. W. Adams (Chandrayan et al. 2015). Activities of individual enzymes were measured as described elsewhere (Kim et al. 2016; You et al. 2017). Specific activities of αGP, PGM, DI and SHI are 10, 200, 4 and 6.8 U/mg at 60°C, respectively. Enzymatic H$_2$ reactions were conducted in a bioreactor at 60°C. The
The reagent solution was comprised of 100 mM HEPES buffer (pH 7.5) containing 125 mM maltodextrin (dextrose equivalent (DE) 4.0–7.0), 125 mM sodium phosphate, 2 mM benzyl viologen, 1 mM NADP⁺, 5 mM MgCl₂, 0.5 mM MnCl₂, 0.5 mg/mL of αGP (i.e., 5 U/mL), 0.025 mg/mL of PGM (i.e., 5 U/mL), 0.001 mg/mL of wild-type ZmG6PDH or Mut 4-1 (i.e., 0.8 U/mL), 0.2 mg/mL of DI (i.e., 0.8 U/mL), and 0.3 mg/mL of SHI (i.e., 2 U/mL). Continuous H₂ measurement was conducted in a continuous flow system as described elsewhere (Kim et al. 2016). The collected data were analyzed by Origin 8.0 (Northampton, MA, USA). All runs were conducted in triplicate.

Structural analysis of ZmG6PDH and mutants

The three-dimensional homology model of WT ZmG6PDH and Mut 4-1 were made by SWISS-MODEL based on the crystal structure of *Trypanosoma cruzi* G6PDH (PDB: 5AQ1, 37% sequence identify). The structures of NADP⁺ and G6P were generated by using Chemdraw (PerkinElmer, Waltham, MA, USA). The conformation space of the corresponding coenzyme binding area was analyzed using the Autodock program (Scripps Research Institute, La Jolla, CA, USA). The putative catalytic active sites were predicted based on modeling comparison with active sites of *Trypanosoma cruzi* G6PDH (Mercaldi et al. 2016). The results were presented and analyzed using PyMOL (Schrödinger, Inc, Portland, OR, USA).
Results

Petri-dish-based double-layer screening method

An efficient high-throughput screening method is critical to identify positive mutant enzymes in a directed evolution experiment. Here, we applied our previously-published Petri-dish-based double-layer screening method, which was originally limited to thermophilic 6PGDH, to a mesophilic ZmG6PDH in this work. The inducible dual promoter, PT7-Ptac, was applied to control the expression level of ZmG6DPH and remove the subcloning step between screening of large mutant libraries in E. coli TOP10 and recombinant protein overexpression in E. coli BL21(DE3). In the E. coli TOP10, the modest expression of ZmG6PDH was accomplished by the tac promoter, while the T7 promoter remained inactive because of a lack of T7 RNA polymerase. In the E. coli BL21(DE3), high expression levels of ZmG6PDH were obtained under the control of both T7 and tac promoters.

The scheme of Petri-dish-based double-layer screening method is shown as follows. Mutant colonies growing on the solid agar plates were heat-treated to break the cell membrane and deactivate reduced coenzymes, mesophilic redox enzymes, and most negative mutants of ZmG6PDH. The heat-treated colonies were overlaid by a second agarose layer containing NADP⁺, G6P, phenazine methosulohate (PMS) and a redox dye tetraniurblue tetrazolium (TNBT). Only active thermostable mutants could reduce NADP⁺ to NADPH by the oxidization of G6P to 6PGL. NADPH then reduced the colorless TNBT to black TNBT-formazan in the presence of PMS to complete the screening method (Fig. 1a). As the result, the color densities of colonies were closely correlated with residual activities of mutants after
heat treatment. Positive mutants with deeper black colors were identified easily for plasmid extraction and transformation (Fig. 1b).

Directed evolution of thermostable ZmG6PDH mutants

Error-prone PCR was used to generate the random mutant libraries of ZmG6PDH with an estimated average of three mutations per gene. Approximately 20,000 mutants were screened in each round of mutant library. Approximately 5-10 thermostable mutants exhibiting deeper black colors were identified each round. The key properties (e.g., residual activity at 60°C and specific activity) of mutants were characterized. The best mutant with highest ratio of residual activity to initial activity without a significant decrease in specific activity was chosen as the parental gene for the next round of random mutagenesis. We repeated the mutagenesis, screening, and characterization four times, until no further improvement was achieved. During each round of screening, the heat treatment condition was increased more severely, for example, extended time length of heat treatment at 70°C. Corresponding mutation sites, specific activities at ambient and high temperature, half-life times and melting temperature changes of mutants are summarized in the Table 3.

Characterization of ZmG6PDH mutants

All selected mutants, along with wild-type ZmG6PDH, were purified and characterized. Half-life times of wild-type ZmG6PDH and mutants at 60°C were estimated by semi-log plot of relative residual activity vs. incubation time, showing first-order thermal deactivation kinetics (Fig. 2). The wild-type ZmG6PDH had a half-life time of 0.125 h (7.47
min) at 60°C (Table 3). The first round of random mutagenesis and screening selected the mutant Mut 1-1 with a half-life time of 1.69 h. Mutagenic PCR of Mut 1-1 created a second generation library, from which mutant Mut 2-1 was selected (half-life time of 9.35 hours). One additional mutation site was added in the third round of directed evolution, generating Mut 3-1 (half-life time of 11.82 hours). The process of random mutagenesis and screening was repeated, resulting in a more thermostable mutant Mut 4-1. At 60°C, the half-life time of Mut 4-1 was 15.52 hours, which is more than 124-fold higher than that of wild-type ZmG6PDH.

The melting temperature (T_m) changes between wild-type ZmG6PDH and mutants were measured from 40 to 80°C by DSC analysis. Similar with prolonged half-life times, positive mutants exhibited upward shifts of T_m (Fig. 3a). The most thermostable mutant Mut 4-1 showed the highest T_m (70.7°C). It is 3.4°C higher than that of wild-type enzyme (Table 3).

The activity-temperature profile for the wild-type enzyme and the most thermostable Mut 4-1 is shown in Fig. 3b. The activities increased with temperature until enzyme denature. The temperature optimum, T_{opt}, of the Mut 4-1 was 65°C, 5°C higher than that of wild-type ZmG6PDH. At the elevated optimal temperature (65°C), the specific activity of Mut 4-1 was 932 U/mg, slightly higher than that of wild-type at its optimal temperature (852 U/mg at 60°C). Although it was often observed a trade-off between high specific activity and good thermostability, evolved thermostable mutants analyzed here did not exhibit a great loss of specific activity (<15% loss of activity) with respect to that of wild-type enzyme at ambient temperature (30°C) or high temperature (60°C) (Table 3). The kinetic constants of
wild-type ZmG6PDH and thermostable mutants at 30°C are listed in Table 4. All mutants exhibited minor change of k_{cat} and K_M on NADP$^+$ and G6P compared to those of wild-type enzyme. The most thermostable mutant Mut 4-1 showed a comparable k_{cat} (288 s$^{-1}$) with unchanged K_M on NADP$^+$ and G6P, yielding the almost identical catalytic properties compared to those of wild-type enzyme.

Hydrogen production from maltodextrin via ivsB at elevated temperature

The G6PDH and thermostable mutants were consolidated with four thermophilic enzymes: (1) α-glucan phosphorylase from *Thermotoga maritima* (αGP); (2) phosphoglucomutase from *Thermococcus kodakarensis* (PGM); (3) diaphorase from *Geobacillus stearothermophilus* (Di) and (4) Ni-Fe hydrogenase I from *Pyrococcus furiosus* (SHI) to construct an ivSB and generate hydrogen from maltodextrin at 60°C. **Fig. 4a** shows the mechanism of the enzymatic pathway, which includes five sequential cascade reactions: (1) Phosphorylation of maltodextrin to glucose 1-phosphate (G1P) catalyzed by αGP; (2) Isomerization of G1P to G6P catalyzed by PGM; (3) Regeneration of NADPH from NADP$^+$ with concomitant oxidation of G6P to 6PGL catalyzed by G6PDH; (4) Reduction of BV$^+$ from BV$^{2+}$ and oxidation of NADPH catalyzed by Di; (5) Generation of hydrogen and oxidation of BV$^{2+}$ catalyzed by SHI.

When the thermostable mutant Mut 4-1 was included for hydrogen production, a high productivity rate and yield were observed (**Fig. 4b**). The maximum of volumetric hydrogen productivity was 24.7 mmol/L/h after 2 hours of reaction, and hydrogen integrated yield was 95.6 μmole after 12 hours of reaction, indicating 76% of theoretical yield was reached. In
contrast, the hydrogen production using wild-type exhibited a weaker production of hydrogen, showing only 3 mmol/L/h of volumetric productivity rate at 3 h and 9.8% of theoretical yield after 12 h of reaction. Compared to wild-type ZmG6PDH, Mut 4-1 led to an 8.3-fold and a 7.7-fold enhancement in productivity and yield, respectively.

Discussion

Obtaining enzymes featuring both good thermostability and high specific activity is a long sought goal for industrial biocatalysis and the in vitro synthetic biosystems. Enzymes with high activity enable to shorten reaction times, lower energy expenditure as well as minimize enzyme mass loading (Li et al. 2017). Enzyme with good thermostability means prolonged lifetime during production, storage and catalysis, and higher tolerance towards toxic chemicals (Wu and Arnold 2013). Provided with enzymes remain active, the elevated reaction temperature can display a series of advantages for catalysis, such as better degradation of bulky substrates (i.e., cellulose), faster mass transfer of intermediates, easier product separation (i.e., hydrogen) as well as decreased microbial contamination (Kim et al. 2016; Wu and Arnold 2013). However, natural enzymes characterized with both properties are very rare because a trade-off between activity and thermostability, as they seem to have evolved in different directions. Improving thermostability of highly active mesophilic enzymes (Giver et al. 1998) and inducing high activity of thermophilic enzymes (Li et al. 2017) are two conventional evolutionary paths to obtain engineered enzymes with both properties, showing success in protein engineering of numerous enzymes (de Abreu et al. 2017).
2013; Roth et al. 2017; Xu et al. 2015). Here, we started with ZmG6PDH, one of most active G6PDHs, and then increased its thermostability via directed evolution. The best mutant Mut 4-1 has a specific activity of 932 U/mg at 65°C with a 124-fold improvement in half-life time at 60°C, a 3.4°C increase in melting temperature, a 5°C increase in optimal temperature, compared to those of wild-type ZmG6PDH.

The ZmG6PDH mutant Mut 4-1 is characterized by both high specific activity and improved thermostability and has great potential for numerous biocatalysis applications. The Mut 4-1 is the most active characterized thermostable G6PDH and shows a specific activity of 932 U/mg at 65°C, which is 4 to 49-fold higher than those of other characterized thermostable counterparts (Table 1). Its high specific activity ensures the efficient regeneration of NADPH and led to an increase in the space-time yield of biocatalysis processes, such as the ivSB based hydrogen production and enzymatic fuel cell (Rollin et al. 2015; Zhu and Zhang 2017). The engineered ZmG6DPH has been evolved with a half-life time of 15.52 hours at 60°C, a more than 124-fold improvement compared to wild-type enzyme. Without a decrease in activity, the enhanced thermostability enables increase the total turn-over number (TTN) of ZmG6PDH by over two orders of magnitude (from 5 x 10⁵ to 6 x 10⁷) and greatly decrease the contribution of G6PDH to the overall production costs, which is critical for producing low-cost commodities (i.e., hydrogen, electricity) through the ivSB (Zhang et al. 2010; Zhu et al. 2014). Also, the ZmG6PDH has a high specific activity (355 U/mg at 30°C) and a high affinity ($K_M = 0.11$ mM) on NAD⁺ (Scopes 1997), a cheaper and more stable alternative of NADP⁺. This character suggests a potential application of thermostable mutant for high-temperature NADH regeneration without fine-tuning the
coenzyme selectivity. Furthermore, working as the first and rate-limiting step of the ED pathway, overexpression of thermostable mutant of ZmG6DPH might facilitate the glucose uptake rate in the thermostolerant Z. mobilis variant strain and increase its production of bioethanol and other biochemicals at high temperature (Charoensuk et al. 2017; Yang et al. 2016).

To further investigate a possible mechanism for enhanced thermostability, three-dimensional homology models of wild-type ZmG6PDH and Mut 4-1 were created. Six amino acid substitutions (A117S/G225S/F277I/Q324H/M381I/A476V0 from the nine mutation points of the mutant were predicted to confer enhanced thermostability. None of these mutations occurred near the putative catalytic active site residues (E212 and H236) (Mercaldi et al. 2016) or binding pocket of G6P and coenzymes (>5.5 Å) (Fig. 5), which is consistent with minor changes of kinetic data between wild-type enzyme and mutants. The thermostabilizing mutations are all distributed over the surface of ZmG6PDH except M381I and A476V. This finding underscores the importance of protein surface on stability and is accord with the hypothesis that surface-located parts of protein are involved in initial steps of irreversible thermal deactivation (Johannes et al. 2005). As for changes of molecular forces, the mutation A117S and G225S form new hydrogen bonds, a key factor attributed to increased thermostability (Zhang et al. 2016). The A117 is adjacent to the N-terminus of α7. The substitution of alaïne to serine in this position introduces a new hydrogen bond (3.1 Å) with the amine group of P118 (Fig. 6a), which strengthens the rigidity of the alpha helix. Similarly, mutation G225S creates a hydrogen bond (3.6 Å) with amide group of Q148, which might stabilize the surrounding surface region (Fig. 6b). Mutation Q324H and M381I
confer the improved thermostability through replacement of thermolabile amino acids (Fig. 6c and d). The Q324H and M381I are located in the protein surface and dimer interface, respectively. At high temperature, the glutamine and methionine are susceptible to deamidation and oxidization followed by the induction of enzyme destabilization (Liu et al. 2009). Replacement of glutamine to histidine might stabilize the enzyme by removing possible peptide backbone length change due to the deamidation (Daniel et al. 1996). Mutation of methionine to isoleucine might result in prolonged half-life times by contracting the tight and oxygen-resistant interface (Nomura et al. 2009). Introduction of favorable hydrophobic packing may also be helpful to stabilize ZmG6PDH at high temperatures. Mutation F277I changes the bulky phenylalanine residue to a smaller isoleucine residue, which might minimize possible steric clashes during conformation change at high temperature (Fig. 6e). Replacing alanine with valine at position 476 (Fig. 6f) could strengthen C-H/π interaction between the prolonged alkane side chain and aromatic ring of Y329, resulting in a positive effect on protein stabilization (Madhusudan Makwana and Mahalakshmi 2015). Given these observations, the ZmG6PDH could be further thermostabilized by using iterative saturation mutagenesis of each thermostabilized residue and identifying new beneficial sites for recombination (McLachlan et al. 2008).

In conclusion, this study improved the thermostability of ZmG6PDH from Z. mobilis by directed evolution without losing its naturally high specific activity. The Petri-dish-based double-layer screening, which was limited to use in thermophilic dehydrogenases previously, was adapted and applied to improve thermostability of this mesophilic G6PDH. The effectiveness of the thermostable mutant Mut-4 was demonstrated by the increased
productivity rate and yield of hydrogen from maltodextrin via the ivSB, suggesting the potential of thermostable ZmG6PDH mutants for high-temperature NAD(P)H regeneration in the in vitro synthetic biology platform.

Acknowledgments

This project could not have been carried out without the support of the Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences. This study was supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office under Award Number DE-EE0006968. The manuscript was edited by Ryan S. Senger.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.
References

Sekar BS, Seol E, Park S (2017) Co-production of hydrogen and ethanol from glucose in Escherichia coli by activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase (pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf) and 6-phosphogluconate dehydrogenase (gnd). Biotechnol Biofuels 10:85. doi:https://doi.org/10.1186/s13068-017-0768-2

Zhao X, Shi F, Zhan W (2015) Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant

Figure Legends

Fig. 1 The scheme of Petri-dish-based double-layer screening method for fast identification of thermostable ZmG6PDH mutants (a) and a photo of a typical screening plate (b), where positive mutants with darker colors are indicated by red arrows. G6P: glucose 6-phosphate; 6PGL: 6-phosphogluconolactone; PMS: phenazine methosulfate; TNBT: tetrainitroblue tetrazolium

Fig. 2 Heat-inactivation of wild-type and mutated ZmG6PDHs. The half-life times ($t_{1/2}$) of enzymes (1 μg/mL) at 60°C were estimated by the semi-log plot of relative residual activity vs. indicated periods of time

Fig. 3 (a) DSC of wild-type and thermostable mutants of ZmG6PDHs from generation 1 (Mut 1-1), 2 (Mut 2-1), 3 (Mut 3-1) and 4 (Mut 4-1). As the thermostability of mutants increased, the transition peak moved to higher temperatures. The experiments were repeated three times independently. Data shown are for one of three representative experiments. (b) Activity of wild-type ZmG6PDH and final mutant Mut 4-1, as a function of temperature. The temperature of optimal activity increases with improved thermostability

Fig. 4 Hydrogen production from maltodextrin via *in vitro* synthetic biosystems. (a) Scheme of the *in vitro* synthetic biosystems for hydrogen production. αGP: α-glucan phosphorylase; PGM: Phosphoglucomutase; G6PDH: glucose 6-phosphate dehydrogenase; DI: diaphorase; SHI: [NiFe] hydrogenase; Pₐ: phosphate; G1P: glucose 1-phosphate; G6P: glucose 6-phosphate; 6PGL, 6-phosphogluconolactone; BV(ox): oxidized benzyl viologen; BV(red): reduced benzyl viologen. (b) H₂ evolution profiles at 60°C via the *in vitro* synthetic biosystems. The result of wild-type
ZmG6PDH and the thermostable Mut 4-1 are shown with black and red line, respectively. The experiments were repeated three times independently. Data shown are for one of three representative experiments.

Fig. 5 Dimeric structure model of ZmG6PDH mutant Mut 4-2. The subunit A and B are colored gray and lightblue, respectively. Thermostabilized mutations and putative catalytic active sites are featured as red and yellow spheres, respectively. Substrate G6P and NADP\(^+\) are depicted as sticks and colored according to the types: N, blue; O, red; C, green and P, orange.

Fig. 6 Local environments of thermostabilized mutations (a) A117S, (b) G225S, (c) Q324H, (d) M381I, (e) F277I and (f) A476V in Mut 4-1. The subunit A and B are shown as cartoon and colored gray and lightblue, respectively. The interested residues and NADP\(^+\) are depicted as sticks. Native and mutated residues are colored blue and red, respectively. Thermolabile groups of glutamine and methionine are marked by red dashed circle. Distances to NADP\(^+\), hydrogen bonds and CH-\(\pi\) interactions are indicated by cyan, yellow and magenta dashed line, respectively. The pseudoatom is featured as black sphere. Distances of molecular forces are labeled in blue. Other atoms are colored according to the types: N, blue; O, red; C, green, P, orange and S, yellow.
Table 1. Comparison of enzymatic properties of characterized G6PDHs

<table>
<thead>
<tr>
<th>Organism</th>
<th>GenBank Number</th>
<th>Sp. Act. (^a) (U/mg)</th>
<th>Temp. (^b) (°C)</th>
<th>Half-life times</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesophilic host</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>APL65798.1</td>
<td>187</td>
<td>25</td>
<td>ND</td>
<td>(Fuentealba et al. 2016)</td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>AH003054.2</td>
<td>224</td>
<td>25</td>
<td>20 min, 52°C</td>
<td>(Gomez-Manzo et al. 2014)</td>
</tr>
<tr>
<td>Leuconostoc mesenteroides</td>
<td>AAA25265.1</td>
<td>719</td>
<td>25</td>
<td>10 min, 50°C</td>
<td>(Kusumoto et al. 2010; Lee and Levy 1992)</td>
</tr>
<tr>
<td>Leuconostoc mesenteroides</td>
<td>AAA25265.1</td>
<td>ND</td>
<td>ND</td>
<td>75 min, 50°C(^b)</td>
<td>(Kusumoto et al. 2010)</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>X57336.1</td>
<td>400(^c)</td>
<td>25</td>
<td>21 min, 45°C(^d)</td>
<td>(Hasmann et al. 2007)</td>
</tr>
<tr>
<td>Zymomonas mobilis</td>
<td>AHJ70511.1</td>
<td>390</td>
<td>25</td>
<td>ND</td>
<td>(Scopes et al. 1985)</td>
</tr>
<tr>
<td>Zymomonas mobilis</td>
<td>AHJ70511.1</td>
<td>316</td>
<td>30</td>
<td>7 min, 60°C</td>
<td>In this study</td>
</tr>
<tr>
<td>Thermophilic host</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquifex aeolicus</td>
<td>AY218838.1</td>
<td>19</td>
<td>70</td>
<td>2,700 min, 70°C</td>
<td>(Iyer et al. 2002)</td>
</tr>
<tr>
<td>Geobacillus stearothermophilus</td>
<td>JQ040549.1</td>
<td>35</td>
<td>50</td>
<td>15 min, 65°C(^e)</td>
<td>(Iyer et al. 2002; Rollin et al. 2015)</td>
</tr>
<tr>
<td>Thermoanaerobacter tengcongensis</td>
<td>AAM24260.1</td>
<td>262</td>
<td>70</td>
<td>900 min, 70°C(^e)</td>
<td>(Li et al. 2016)</td>
</tr>
<tr>
<td>Thermotoga maritima</td>
<td>AKE28931.1</td>
<td>20</td>
<td>80</td>
<td>20 min, 100°C</td>
<td>(Hansen et al. 2002)</td>
</tr>
</tbody>
</table>

\(^{a}\) Sp. Act is the abbreviation of specific activity
\(^{b}\) the half-life time of mutant was calculated based on residual activities at 50°C
\(^{c}\) the specific activity of G6PDH from *Saccharomyces cerevisiae* was based on data of commercial enzyme from Sigma-Aldrich
\(^{d}\) the half-life time of G6PDH from *Saccharomyces cerevisiae* was based on the residual activity of enzyme in cell free extract
\(^{e}\) the G6PDH from *Geobacillus stearothermophilus* retained 60% retention of activity after 15 minutes incubation at 65°C
<table>
<thead>
<tr>
<th>Description</th>
<th>Contents</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td>Contents</td>
<td>Sources</td>
</tr>
<tr>
<td>E. coli BL21 star™ (DE3)</td>
<td>F' ompT hsdSB (rB⁺, mB⁺) galdmrne131 (DE3)</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>E. coli TOP10</td>
<td>F' mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZ ΔM15 ΔlacX74 recA1 araD139 Δ(araleu)7697 galU galK rpsL (StrR) endA1 nupG</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Plasmids</td>
<td>Contents</td>
<td>Sources</td>
</tr>
<tr>
<td>pET28a-^P_tac^6pgdh</td>
<td>dual promoter (PT7 and P^tac^) and Moth6pgdh</td>
<td>(Huang et al. 2016)</td>
</tr>
<tr>
<td>pET28a-^P_tac^g6pdh</td>
<td>dual promoter (PT7 and P^tac^) and Zmg6pdh</td>
<td>This study</td>
</tr>
<tr>
<td>Primers</td>
<td>Sequence</td>
<td></td>
</tr>
<tr>
<td>Vect_F</td>
<td>5’-CATCGTCGAAACGGTATTTGTCTATATGTATGATCTCTTTCTTTAAGTTAAAC-3’</td>
<td></td>
</tr>
<tr>
<td>Vect_R</td>
<td>5’-GTGATGGGATTTGATGATTGAACACCACCACCACCACCACCTGACTGACGTCAGAGTCGAT-3’</td>
<td></td>
</tr>
<tr>
<td>G6P_F</td>
<td>5’-GTAAAACTTTTGTTAAAAGGAGATATACATATGACAAAATACCCGTCTGACGATG-3’</td>
<td></td>
</tr>
<tr>
<td>G6P_R</td>
<td>5’-AGCAGCCGATCCTCGAGTCTGTCGTGTTGTGGTGTTGTTGTTGTTGTTGTCATACAAAGTTACTCCATCAC-3’</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Characterization of ZmG6PDH and mutants

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>Mutations</th>
<th>Specific activity (U/mg)</th>
<th>$t_{1/2}$ (h, 60°C)</th>
<th>Fold</th>
<th>T_m (°C)</th>
<th>dT_m (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>-</td>
<td>316.2 ± 5.4</td>
<td>852 ± 10</td>
<td>0.125 ± 0.004</td>
<td>1</td>
<td>67.3 ± 0.2</td>
</tr>
<tr>
<td>Mut 1-1</td>
<td>A117S/Q324H/V443I/S470I</td>
<td>326.9 ± 5.4</td>
<td>772 ± 33</td>
<td>1.69 ± 0.04</td>
<td>14</td>
<td>68.8 ± 0.1</td>
</tr>
<tr>
<td>Mut 2-1</td>
<td>A117S/Q324H/M381I/V443I/S470I</td>
<td>314.2 ± 4.3</td>
<td>850 ± 12</td>
<td>9.35 ± 0.31</td>
<td>75</td>
<td>69.7 ± 0.1</td>
</tr>
<tr>
<td>Mut 3-1</td>
<td>A117S/F277I/Q324H/M381I/V443I/S470I</td>
<td>269.7 ± 3.2</td>
<td>741 ± 20</td>
<td>11.82 ± 0.45</td>
<td>95</td>
<td>69.6 ± 0.2</td>
</tr>
<tr>
<td>Mut 4-1</td>
<td>L99I/A117S/G225S/F277I/Q324H/M381I/V443I/S470I/A476V</td>
<td>298.6 ± 3.3</td>
<td>847 ± 21</td>
<td>15.52 ± 0.49</td>
<td>124</td>
<td>70.7 ± 0.1</td>
</tr>
</tbody>
</table>

Additional mutations relative to their parent enzyme are highlighted in bold. The half-lives ($t_{1/2}$) were measured with 1 μg/mL G6PDHs at 60°C. Each value represents the average ± standard deviation of triplicate measurements.
Table 4. Enzyme kinetics for ZmG6PDH and mutants

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>K_M (NADP$^+$, μM)</th>
<th>K_M (G6P, μM)</th>
<th>K_m (NADP$^+$, μM)</th>
<th>k_{cat} (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>14.3 ± 0.4</td>
<td>78 ± 2</td>
<td>40 ± 4</td>
<td>305 ± 3</td>
</tr>
<tr>
<td>Mut 1-1</td>
<td>24.0 ± 0.7</td>
<td>151 ± 4</td>
<td>68 ± 7</td>
<td>329 ± 3</td>
</tr>
<tr>
<td>Mut 2-1</td>
<td>22.5 ± 0.6</td>
<td>99 ± 2</td>
<td>35 ± 3</td>
<td>306 ± 3</td>
</tr>
<tr>
<td>Mut 3-1</td>
<td>19.9 ± 0.4</td>
<td>73 ± 1</td>
<td>54 ± 4</td>
<td>261 ± 2</td>
</tr>
<tr>
<td>Mut 4-1</td>
<td>15.9 ± 0.5</td>
<td>81 ± 2</td>
<td>22 ± 3</td>
<td>288 ± 3</td>
</tr>
</tbody>
</table>

Specific activities of G6PDH and mutants are measured at 30°C. Data were collected from triplicate measurements and enzyme kinetic parameters are fit to the ordered bi-bi rate equation (Kanji et al. 1976).
Figure 1. The scheme of Petri-dish-based double-layer screening method for fast identification of thermostable ZmG6PDH mutants

![Diagram of Petri-dish-based double-layer screening method]

Figure 2. Heat-inactivation of wild-type and mutated ZmG6PDHs

![Graph showing heat-inactivation of wild-type and mutated ZmG6PDHs]

Figure 3. (a) DSC of wild-type and thermostable mutants of ZmG6PDHs from generation 1 (Mut...
1-1), 2 (Mut 2-1), 3 (Mut 3-1) and 4 (Mut 4-1). As the thermostability of mutants increased, the transition peak moved to higher temperatures. The experiments were repeated three times independently. Data shown are for one of three representative experiments. (b) Activity of wild-type ZmG6PDH and final mutant Mut 4-1, as a function of temperature. The temperature of optimal activity increases with improved thermostability.

Figure 4. Hydrogen production from maltodextrin via *in vitro* synthetic biosystems.
Figure 5. Dimeric structure model of ZmG6PDH mutant Mut 4-2

Figure 6. Local environments of thermostabilized mutations
Chapter 5: Engineering a NADP-dependent dehydrogenase on nicotinamide mononucleotide: high-throughput screening and artificial electron transport chain

Rui Huang¹, Hui Chen¹, Ryan S. Senger¹,², Yi-Heng Percival Zhang¹,³*

¹ Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA

² Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA

³ Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China

*Corresponding author

Email: yhzhang@vt.edu
Abstract

NAD(P)-dependent redox enzymes play a central role in transferring electrons among chemical compounds in metabolic pathways. Engineering of coenzyme preference of NAD(P)-dependent dehydrogenases from dinucleotide coenzyme NAD(P) to small-size mononucleotide biomimetic analogues is of importance to systems biocatalysis and synthetic biology. Here we developed a high-throughput screening method involving sequential steps of colony growth on Petri dishes, colony duplication on filter papers, colony lysis, and vacuum washing for identifying novel coenzyme preference of 6-phosphogluconate dehydrogenase (6PGDH) on nicotinamide mononucleotide (NMN) while minimizing the background signal from intracellular coenzymes and other cellular reducing compounds. By using this method, we applied six-round directed evolution to improve its specific activity on NMN$^+$ by a factor of 50. The specific activity of the best engineered 6PGDH on NMN$^+$ was as high as 18 U/mg, comparable to that of the wild-type enzyme on its natural coenzyme NADP$^+$. Furthermore, we demonstrate the first NMN-based electron transport chain comprised of engineered 6PGDH, FMN-containing diaphorase, and NiFe-hydrogenase for in vitro biohydrogen production. These results suggest that engineered dehydrogenases could have the same activities on mononucleotide coenzymes as on dinucleotide coenzymes and costs of biomimetic coenzymes could be decreased greatly for systems biocatalysis.

Keywords: 6-phosphogluconate dehydrogenase, biomimetic coenzyme, directed evolution, high-throughput screening, NAD(P)-dependent dehydrogenase, nicotinamide mononucleotide, biohydrogen
Introduction

An electron transport chain (ETC) in living cells is comprised of a series of redox reactions that transfer electrons from electron donors to acceptors. ETCs play a central role in extracting energy from sunlight through photosynthesis and oxidation of carbohydrates for cellular respiration. Nicotinamide adenine dinucleotide (NAD, which includes NAD$^+$ and NADH) and nicotinamide adenine dinucleotide phosphate (NADP, which includes NADP$^+$ and NADPH) are the most important electron carriers, because two-thirds of redox enzymes use them to transfer electrons1. NAD(P)-dependent redox enzymes account for approximately 18% of 6,300 cataloged enzymes in the BRENDA database2,3. NAD and NADP play distinctive roles in catabolism and anabolism, respectively. NADH is usually produced from NAD$^+$ via the oxidation of organic substrates (e.g., glucose) followed by its oxidation for ATP generation, while NADPH is consumed for the synthesis of cellular macromolecules, such as proteins, lipids, and nuclear acids. NAD is a dinucleotide containing a nicotinamide riboside and an adenine linked by phosphate groups. NADP has an additional phosphate group esterified at the 2’-hydroxyl group of adenosine monophosphate moiety of NAD. NAD is synthesized from nicotinamide mononucleotide (NMN) and ATP catalyzed by nicotinamide nucleotide adenyltransferase and NADP is synthesized from NAD at a cost of a second ATP (Figure S1).

Engineering of coenzyme preferences of NAD(P)-dependent redox enzymes from NADP to NAD$^{4-6}$, the reverse7,8, and broadening of coenzyme selectivity9 are important areas of research in protein engineering and are relevant in metabolic engineering and synthetic biology1,10. The Arnold group has developed the Cofactor Specificity Reversal–Structural Analysis and Library Design (CSR-SALAD) web application, an easy-to-use tool for reversing enzymatic
natural nicotinamide cofactor specificity. This structure-guided, semi-rational strategy tool is based on comprehensive survey of previous studies of coenzyme engineering, a large number of protein crystal structures, and homogenous oxidoreductase sequences with different coenzyme preferences. However, this method cannot be applied to small-size non-natural biomimetic coenzymes. This is because structural similarities of biomimetic and natural derivatives are lacking. Appropriate coordination and binding of biomimetics in the coenzyme binding pocket require the introduction of novel hydrogen bond networks and van der Waals interactions, which might totally differ with those for NAD(P). Engineering redox enzymes to have activity with small nicotinamide-containing biomimetic coenzymes of less than half the size of NAD(P) is of significant scientific interest NAD(P), as these would be important for in vitro biocatalysis systems that suffer from costly and degradable coenzymes and for synthetic biology in developing bioorthogonal redox systems. It has proven difficult to engineer NAD(P)-dependent dehydrogenases to have activity with small-size less-costly and more stable nicotinamide-based biomimetic coenzymes; although, a few examples been demonstrated in recent literature, such as 1-benzyl-3-carbamoyl-pyridium chloride (BNA), nicotinamide mononucleotide (NMN), methyl-1,4-dihydronicotinamide (MNA), and 1-phenethyl-1,4-dihydropyridine-3-carboxamide. However, nearly all reported redox enzymes with activity with nicotinamide biomimetics are flavin-dependent oxidoreductases, such as enoate reductases, cytochrome P450 BM3, and DT diaphorase. The (enzyme-bound) flavin prosthetic group can oxidize biomimetic coenzymes and then its reduced flavin can be oxidized with other compounds, such as oxygen. Hence, the role of the nicotinamide ring is limited to reducing the flavin prosthetic group and, in principle, can be substituted by a variety of reductants. To our knowledge, the few examples of engineered NAD(P)-dependent (flavin-free) dehydrogenases with activity for NMN include horse
liver alcohol dehydrogenase \(^{20}\), Gaobacillus stearothermophilus lactate dehydrogenase \(^{21}\), and Pyrococcus furiosus alcohol dehydrogenase \(^{16}\). However, all these exhibit three-four orders of magnitude lower specific activity on NMN\(^+\) than their natural coenzymes (Table S1). Thought, it raises the question whether NAD(P)-dependent dehydrogenase mutants can exhibit comparable activities with NMN\(^+\).

Directed evolution is a powerful enzyme engineering method to improve and optimize wild-type enzymes in order to evolve robust biocatalysts for practical applications. However, the challenge is to develop efficient high-throughput screening (HTS) methods that evaluate the performance of mutated enzymes \(^{22}\). For activity with NAD(P), the use of 96-well microplate screening based on the absorbency at 340 nm is straightforward \(^{23}\). Also, NAD(P)H can be monitored with a colorimetric redox indicator, such as nitroblue tetrazolium (NBT) \(^{14,24}\). Holbrook and coworkers \(^{25}\) developed a method to transfer colonies from Petri dishes to nitrocellulose paper, followed by cell lysis and NBT assay \(^{25}\). Zhang and coworkers later developed an improved double-layer HTS by using a redox dye tetranitroblue tetrazolium \(^5\). However, these HTS assays cannot be applied to identify novel mutated dehydrogenases with activity for biomimetics due to the preference of a targeted dehydrogenase for its natural coenzyme and very high background signal caused by interaction of other intracellular reducing compounds with the redox dye \(^{11,16,21}\). Because of this, we sought to develop a novel HTS to identify dehydrogenase activity with biomimetic coenzymes while minimizing the background signal from the cell lysate.

6-phosphogluconate dehydrogenase (6PGDH, EC 1.1.1.44), the second dehydrogenase in the pentose phosphate pathway, converts the 6-phophogluconate (6PG) and NADP\(^+\) to ribulose 5-phosphate, NADPH, and CO\(_2\). This enzyme has been used to produce high-yield hydrogen \(^{26}\),
generate bioelectricity \(^{27}\), and regenerate reduced coenzymes for biohydrogenation \(^{28}\). The coenzyme preference of 6PGDH from *Moorella thermoacetica* \(^5\) and *Thermotoga maritima* \(^6\) have been changed from NADP\(^+\) to NAD\(^+\) via directed evolution and rational design, respectively. In this study, we developed a novel HTS for rapid identification of *T. maritima* 6PGDH mutants with activity for with NMN\(^+\), which is a precursor of NAD\(^+\), with less than half the size of NAD. The best mutant after multiple rounds of evolution exhibited comparable activities on NMN\(^+\) compared with the wild-type on NADP\(^+\). Furthermore, we demonstrate in this article the artificial NMN-based ETC for *in vitro* hydrogen production.
Results

A novel HTS approach

Effective identification of desired mutants from a large mutant library is the most challenging task of coenzyme engineering. Because dehydrogenases have generally poor activity with biomimetic coenzymes, the resulting signal in a HTS can easily be overwhelmed by background signals from the reducing environment within cells or impaired by oxygen exposure. Moreover, natural dehydrogenases always exhibit several orders of magnitude higher activities on natural coenzymes than biomimetic ones. Up to mM levels of intracellular natural coenzyme can exist in cell lysate. This can lead to significant interference when screening using cell lysate and biomimetics, resulting in a failure of the HTS.

We developed cycle integrating directed evolution followed by a novel HTS approach that effectively minimizes background signal from reducing cell lysates and intracellular coenzymes (e.g., NAD(P)) (Figure 1b). Two inducible promoters, Ptac and P7, were used for controlling modest expression of Tm6PGDH in E.coli TOP10 for screening and the high expression of TmG6PGDH in E. coli BL21 (DE3) for enzyme characterization, respectively. The transformed E.coli TOP10 cells harboring mutant libraries were firstly grown on the solid agar LB kanamycin media in Petri dishes and then heat-treated at 70°C for 1 hour to lyse the cells, deactivate natural E. coli dehydrogenases, and partially oxidize intracellular reducing compounds. Lysed colonies were transferred to the surface of a Whatman filter paper, which was put into a Buchner funnel. Washing buffer (50 mL each washing) was used to immerse the filter paper several minutes followed by vacuum filtration. The washed filter paper was put into another Petri-dish and overlaid by the melted agarose solution containing 6PG, NMN+, WST-1, and diaphorase from Geobacillus stearothermophilus (GsDI). In it, the Tm6PGDH catalyzed the
reduction of NMN⁺ to NMNH by oxidizing the 6-phosphogluconate to ribulose 5-phosphate while coproducing CO₂. The NMNH then reduced the colorless redox dye WST-1 in the presence of electron mediator GsDI, yielding the yellow WST-1 formazan (Figure 1a). Following the incubation at room temperature, the positive mutants were identified based on their deeper yellow color. This was followed by plasmid extraction and transformation into *E. coli* BL21 (DE3) for characterization.

Optimization of the HTS approach

Critical was choosing the proper redox dye to react with the reduced NMNH generated by *Tm*6PGDH mutants (which have activity with oxidized NMN⁺). Although intensive efforts have been conducted to determine NAD(P)-dependent dehydrogenase activities based on a chromogenic redox dye, such as NBT, 2,6-dichlorophenolindophenol (DCPIP), methylene blue, Alamar Blue (resazurin), and others, most of these are not suitable for HTS with NMN. We collected 24 redox dyes that change color based on oxidation/reduction state (Table S2) and screened them based on four criteria: (1) reduction potential of the dye, (2) oxygen tolerance, (3) dye sensitivity, and (4) mediator selectivity (Figure 2a). First, the redox potential of an ideal redox dye should be close to that of the reduced nicotinamide based coenzyme (i.e., NAD(P)H, -0.32 V) at a neutral pH, enabling generation of a color signal. The redox dyes with high redox potentials, such as iodine, potassium permanganate, potassium dichromate, were excluded because of potential to cross-react with other reductants (i.e., vitamin C, glutathione). Second, the reduced dye must be stable and cannot be re-oxidized by air. This eliminated seven dyes, including methyl viologen, benzyl viologen, neutral red, methylene blue, DCPIP, indigo carmine and phenazine methosulfate (PMS). Third, the extinction coefficient of the reduced dye should be
larger than that of the reduced coenzyme. This means a signal is amplified and cannot be
decolored by the over-reduction. This eliminated potassium ferricyanide and and Alamar Blue.
Fourth, the mediator should have high selectivity between the reduced biomimic and oxidized
dye and great stability for a long-term colorimetric reaction. Another nine redox dyes were
eliminated due to uncoupling reactions (i.e., P450s) or poor thermostability (i.e., azoreductase
from E. coli) of corresponding mediators. After careful selection and evaluation, the candidates
selected for further analysis were: tetrazolium redox dye, NBT, XTT and WST-1 (Figure 2b).

Figures 2c,d show the results of colony colorimetric assay of Tm6PGDH with activity on
NMN⁺. All three dyes, including NBT, XTT and WST-1, generated expected color change
catalyzed by enzyme-coupled reactions with NMN⁺. With the dyes selected, the NMN signal
comprised 55-59% of the total chromogenic signal. The background signals were generated by
nonspecific reactions between redox dyes and reduced cell materials and Tm6PGDH activity on
NAD(P) in cell lysate. Among these dyes, the WST-1 dye showed the lowest level of dye
background signals (around 10% of the total chromogenic signal) and was selected as the optimal
redox dye for further optimization of an HTS.

To minimize the background signal resulting from intracellular NAD(P) using the WST-1
dye, a immersion-filtration procedure was implemented where colonies on the filter paper were
washed by 0, 100, 200 and 400 mL phosphate sodium buffer (Figure 2e). With the identical low
dye background signal of the WST-1 dye, the noise from intracellular NAD(P) decreased from
35% to 4% of the total signal when washing buffer was added from 0 to 200 mL, and decreased
slightly further when the washing volume was increased to 400 mL. With this washing method
and the low background of the WST-1 dye, the signal of Tm6PGDH activity on NMN⁺ was
increased from 55% to 85% of the total chromogenic signal (Figure 2f). Given these
observations, the 400 mL washing volume was used throughout.

The selectivity and activity of the mediator was also a key determinant in developing the HTS for dehydrogenase activity with biomimetics. The highly selective and active mediators on NMNH is desirable because they ensure the effective hydride transfer from NMNH to WST-1 while minimize the background signals from reduced compounds or residual NAD(P) in the cell lysate. We tested three enzyme mediators (i.e., GsDI, PfuNROR and TmDI) and one chemical mediator (PMS) for the colorimetric assay with NMN⁺ (Figure 2g). The original GsDI was the best mediator, showing the highest signal with the biomimetic and the lowest background signal produced by reducing biomolecules and NAD(P) in cell lysate. The other mediators PfuNROR, TmDI and PMS were limited by increased background signal from intracellular NAD(P)⁺, low activity signal with NMN⁺, and increased dye background noise. These led to a decrease of chromogenic signal of the biomimetic to 66%, 46% and 21% of total chromogenic signal, respectively (Figure 2h). After optimization of redox dyes, washing volume, and mediators, the dye background noise and intracellular NAD(P) noise was ultimately minimized to less than 10% and 4% of the total chromogenic signal, respectively, while the signal from activity on NMN⁺ was increased from 55% to 85%. This improved the signal-to-noise ratio of the screening from 1.1 to 5.7, making it adequate for a HTS to discover mutated dehydrogenases with activity with NMN⁺.

Validation of the HTS

The optimal HTS was carried-out to identify mutants of Tm6PGDH with activity for NMN⁺ from libraries generated by three-rounds of saturation mutagenesis in positions in and around the NADP binding pocket and another three-rounds of random mutagenesis of the entire
gene. The screening conditions became more stringent (i.e., lower concentration of NMN⁺, shorter reaction time) during later rounds of screening. In early screens (rounds 1-4), positive mutants (featuring stronger yellow color) were identified by adding 1 mM NMN⁺ with 6 hours incubation. In later screens (rounds 5 and 6), 0.3 mM NMN⁺ was added, and a 4-hour incubation was used (Figure 3). Approximately 20,000 mutants were screened and about 10-20 positive mutants were identified in each round. The most active characterized mutant in each round was chosen as the parental gene for the next round of directed evolution. The mutagenesis, HTS, and characterization were repeated six times, until no further improvement was observed.

Mutagenesis strategy

Residues wild-type Tm6PGDH involved in the binding of 2’ phosphate (N32/R33/T34), pyrophosphate (A11/V12) and adenine moieties (D82/T83/Q86) of NADP⁺ were the mutagenesis targets for constructing the first three rounds of mutant libraries (Figure 4a). Starting with the wild-type Tm6PGDH exhibiting low activity on NMN⁺ (0.6 U/mg), the saturation mutagenesis of N32 with rational design of R33I and T34I, and screening created a mutant Mut 1-1 with slightly increased activity (0.68 U/mg) compared to the parent. The next mutant Mut 2-1, generated from library of A11/V12 and HTS, exhibited a more than 8-fold improved activity on NMN⁺ (4.66 U/mg). The saturation library of D82/T83/Q86 and screening evolved the 6PGDH to more active mutant Mut 3-1, which had a further 2-fold increase in activity on NMN⁺ (9.19 U/mg). Using the mutant Mut 3-1 as template, we did another three rounds of random mutagenesis and screening, and identified three new mutants Mut 4-1, Mut 5-1 and Mut 6-1 with gradual increases in activity with NMN⁺. The final mutant Mut 6-1, showed a more than 30-fold higher rate of desired reaction compared to wild-type enzyme, and reached a specific activity of 17.7 U/mg on NMN⁺,
which was comparable to that of wild-type enzyme on natural coenzyme NADP\(^+\) (18.0 U/mg) (Figure 4b).

Characterization of Tm6PGDH and its mutants

The mutation sites, specific activities, and apparent kinetic constants on NADP\(^+\) and NMN\(^+\) of Tm6PGDH and its mutants are given in Table 1. The wild-type Tm6PGDH had a \(k_{cat}\) of 1.3 s\(^{-1}\), a \(K_M\) of 30.6 mM on NMN\(^+\), resulting in a low catalytic efficiency of 0.043 mM\(^{-1}\) s\(^{-1}\). As expected, the wild-type enzyme worked perfectly on natural coenzyme, showing a high \(k_{cat}\) (15.9 s\(^{-1}\)), a low \(K_M\) (0.0012 mM) and high catalytic efficiency (13394.5 mM\(^{-1}\) s\(^{-1}\)) on NADP\(^+\). The Mut 1-1 carried two mutation sites R33I/T34I, which was introduced by designed mutations in the primer. The saturation mutagenesis and screening of N32 found the original asparagine was found as the optimal residue in this position. The mutation change led to an increase in \(k_{cat}\) (1.7 s\(^{-1}\)), an increase in \(K_M\) (37.9 mM) and a slightly improved catalytic efficiency on NMN\(^+\) (0.046 mM\(^{-1}\) s\(^{-1}\)) compared to those of parental enzyme, while the catalytic efficiency on NADP\(^+\) was greatly decreased to 1.3 mM\(^{-1}\) s\(^{-1}\), which was caused by the evaluated \(K_M\) (11.5 mM). An additional mutation site A11G and silent mutation of V12 were introduced into Mut 2-1. This new mutant exhibited a increased \(k_{cat}\) (10.2 s\(^{-1}\)), a decreased \(K_M\) (20.7 mM), resulting in a more than 12-fold increase in catalytic efficiency on NMN\(^+\) (0.49 mM\(^{-1}\) s\(^{-1}\)) compared to those of wild-type enzyme. A similar enhancement of enzymatic performance on NADP\(^+\) was also found in Mut 2-1 and the catalytic efficiency on NADP\(^+\) was increased from 1.3 to 13.2 mM\(^{-1}\) s\(^{-1}\). The Mut 3-1 harboring three new mutations D82L/T83L/Q86L showed a further increase in activity (\(k_{cat} = 19.3\) s\(^{-1}\)) and catalytic efficiency (0.7 mM\(^{-1}\) s\(^{-1}\)) but lower affinity (\(K_M = 27.5\) mM) on NMN\(^+\). Its catalytic efficiency on NADP\(^+\) was increased from 13.2 to 52.7 mM\(^{-1}\) s\(^{-1}\), which was caused by the
decreased K_M (0.39 mM) compared to Mut 2-1. Simultaneous improvement in activities and unchanged K_M on NMN$^+$ and NADP$^+$ was observed in the residual mutants generated by random mutagenesis. The final mutant Mut 6-1, which contained 18 mutations, showed a k_{cat} of 27.4 s$^{-1}$ on NMN$^+$, indicating a more than 20-fold and 1.5-fold higher maximum activity of wild-type enzyme on NMN$^+$ and NADP$^+$, respectively. With the decreased K_M (13.5 mM), the catalytic efficiency of Mut 6-1 on NMN$^+$ was increased to 2.04 mM$^{-1}$ s$^{-1}$, giving a more than 50-fold improvement comparing with that of wild-type enzyme. As for the properties on NADP$^+$, the k_{cat} of Mut 6-1 was increased to 28.9 s$^{-1}$, while its K_M was 0.19 mM, resulting in a more than 90-fold lower catalytic efficiency (148.6 mM$^{-1}$ s$^{-1}$) compared to that of wild-type enzyme. The apparent kinetic constants of wild-type enzyme and mutants toward NAD$^+$ were also determined. A gradual increase of catalytic efficiency on NAD$^+$ was observed accompanied with the evolutionary progression from the wild-type enzyme to the final mutant (Table S3).

To evaluate coenzyme scope change of Tm6PGDHs, we tested the specific activities of wild-type enzyme and newly optimized mutant Mut 6-1 against a range of nicotinamide based coenzymes (Table 2). We were pleased to find that the engineered enzyme Mut 6-1 was able to utilize all these coenzymes. As expected, the greatest change in specific activity was observed in the case of NMN$^+$. The Mut 6-1 had the specific activity of 17.7 U/mg, resulting in a more than 30-fold improvement compared to wild-type enzyme. The engineered enzyme also exhibited high activity on NAD(P)$^+$ (>27 U/mg), showing a more than 1.5 and 5.8-fold higher activity of wild-type enzyme on NADP$^+$ and NAD$^+$, respectively. Nicotinamide riboside (NR$^+$) is the truncated percursor of NMN$^+$ without the phosphate linked with the ribose ring. Surprisingly, The engineered enzyme Mut 6-1 had a specific activity of 0.014 U/mg on NR$^+$, 7-fold higher than that of wild-type enzyme. This level of activity, however, was still a more than 200-fold lower than that of
wild-type enzyme on natural coenzyme and more protein engineering works need to be done for its practical application. BNA$^+$ is a common synthetic coenzyme containing a hydrophilic benzyl group. In contrast to the previous observations, the engineered enzyme showed a 2.5-fold decreased activity (0.006 U/mg) on BNA$^+$ compared to that of wild-type enzyme.

In vitro hydrogen generation via an NMN-dependent ETC

The low-cost and stable biomimetic coenzyme is a long sought candidate to substitute the costly NAD(P) for the *in vitro* hydrogen generation. Here we constructed a NMN-dependent ETC by consolidating the wild-type *Tm*$_6$PGDH or the most active mutant Mut 6-1 with two thermophilic enzymes: (1) diaphorase from *Geobacillus stearothermophilus* and (2) Ni-Fe hydrogenase I from *Pyrococcus furiosus* (SHI), the biomimetic coenzyme NMN$^+$ and electron mediator benzyl viologen (BV$^{2+}$), to generate hydrogen (H$_2$) from 6PG at 60°C. Fig. 5a shows the mechanism of the enzymatic pathway, which includes three sequential cascade reactions: (1) regeneration of NMNH from NMN$^+$ with concomitant oxidation of 6PG to Ru5P and release of CO$_2$ catalyzed by *Tm*$_6$PGDHs; (2) Reduction of BV$^+$ from BV$^{2+}$ and oxidation of NMNH catalyzed by GsDI; (3) Generation of hydrogen and oxidation of BV$^+$ catalyzed by SHI.

When the wild-type *Tm*$_6$PGDH was used for hydrogen generation, only a small amount of hydrogen was obtained after 6.2 hours of reaction, and the corresponding maximum hydrogen productivity was 2 mmole H$_2$/L/h. However, when the wild-type enzyme was replaced by the most active mutant Mut 6-1 in the ETC, the *in vitro* hydrogen productivity was enhanced greatly. The maximum hydrogen productivity improved to 12 mmole H$_2$/L/h (reached after 5.3 hours of reaction), resulting in a more than 6-fold improvement in productivity rate compared to that of wild-type enzyme.
Methods

Chemicals and Media

All chemicals, including nicotinamide adenine dinucleotide phosphate (NADP\(^+\)), nicotinamide adenine dinucleotide (NAD\(^+\)), nicotinamide mononucleotide (NMN\(^+\)), 1-Benzyl-3-carbamoylpyridinium chloride (BNA\(^+\)), 6-phosphogluconate (6PG), and benzyl viologen (BV\(^2+\)), were reagent grade or higher and purchased from Fisher Scientific (Pittsburgh, PA, USA) or Sigma-Aldrich (St. Louis, MO, USA), unless otherwise noted. Nicotinamide riboside (NR\(^+\)) was purchased from CTMedChem (Bronx, NY, USA). Redox dye 3,3'-[3,3'-Dimethoxy-(1,1'-biphenyl)-4,4'-diyl]-bis[2-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride (NBT), 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-1) were purchased from Dojindo Molecular Technologies, Inc (Rockville, MD, USA). The 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) was purchased from Cayman Chemical Company Inc (Ann Arbor, MI, US). The genomic DNA of *Thermotoga maritima* and *Pyrococcus furiosus* were purchased from the American Type Culture Collection (Manassas, VA, USA). Primers were synthesized from Integrated DNA Technologies (Coralville, IA, USA). All enzymes for molecular biology experiments were purchased from New England Biolabs (NEB, Ipswich, MA, USA). Strains, plasmids are listed in Table S4 and primers are listed in Table S5.

Preparation of plasmid pET28a-\(P_{\text{tac}}\)-\(Tm6pgdh\)

Plasmid pET28a-\(P_{\text{tac}}\)-\(Tm6pgdh\) contains 1.4-kb codon optimized *Tmg6pgdh* under control of dual promoter \(P_{T7}-P_{\text{tac}}\). The parental *Tm6pgdh* gene was amplified from pET-ci-co6pgdh with a pair of primers Tm_6PG_F/Tm_6PG_R, and the linearized vector backbone was amplified.
from pET28a-P\textsubscript{wac-6pgdh} with a pair of primers Tm\textsubscript{6PGvect_F}/Tm\textsubscript{6PGvect_R} using the NEB Phusion® high-fidelity DNA polymerase. The two PCR fragments were assembled by prolonged overlap extension PCR (POE-PCR)31. The POE-PCR product was transformed into \textit{E.coli} TOP10, yielding the plasmid pET28a-P\textsubscript{wac-Tm6pgdh}.

Preparation of plasmid pET20b-\textit{Tmdi}

The plasmid pET20b-\textit{Tmdi} was constructed as follows. The gene encoding \textit{T. maritima} diaphorase (\textit{TmDI}) was amplified from genomic DNA of \textit{T. maritima} MSB8 with a pair of primers Tm\textsubscript{DI_F}/Tm\textsubscript{DI_R}, and the linearized vector backbone was amplified from pET20b with a pair of primers Tm\textsubscript{DIvect_F}/Tm\textsubscript{DIvect_R} using the NEB Phusion® high-fidelity DNA polymerase. The two PCR products were assembled by prolonged overlap extension PCR (POE-PCR)31 and transformed into \textit{E.coli} BL21(DE3) to obtain plasmid pET20b-\textit{Tmdi}.

Preparation of plasmid pET20b-\textit{Pfunror}

The plasmid pET20b- \textit{Pfunror} was constructed as follows. The gene encoding \textit{P. furiosus} NAD(P)H: rubredoxin oxidoreductase (\textit{PfuNROR}) was amplified from genomic DNA of \textit{P. furiosus} DSM 3638 with a pair of primers Pfu\textsubscript{NROR_F}/Pfu\textsubscript{NROR_R}, and the linearized vector backbone was amplified from pET20b with a pair of primers Pfu\textsubscript{NRORvect_F}/Pfu\textsubscript{NRORvect_R} using the NEB Phusion® high-fidelity DNA polymerase. The two PCR products were assembled by prolonged overlap extension PCR (POE-PCR)31 and transformed into \textit{E.coli} BL21(DE3) to obtain plasmid pET20b-\textit{Pfunror}.
Saturation mutagenesis and mutant library construction

Three successive rounds of saturation mutagenesis of *Tm6pgdh* were created using QuickChange Site-directed mutagenesis Kit, digested by *DpnI*, and transformed into *E.coli* TOP10 for screening as previously described. The library N32/R33/T34 was chosen for the first round saturation mutagenesis and amplified from pET28a-*P_{lac}-tm6pdh-di* by a pair of primes of 32,33,34_F/32,33,34_R. The positive mutant Mut 1-1 was used as template for the saturation mutagenesis of library A11/V12 and amplified by a pair of primes of 11,12_F/11,12_R. The positive mutant Mut 2-1 generated from second round mutagenesis and screening was used for the construction of mutant library of D81/T82/Q86 and amplified by a pair of primes 81,82,86_F/81,82,86_R. The positive mutant Mut 3-1 selected from this library was chosen as parental gene for creating mutant library of random mutagenesis.

Random mutagenesis and mutant library construction

A random mutant library encoding mutant Mut3-1 of *Tm6pgdh* was generated by error-prone PCR with an estimated average of five mutations per gene. The reaction solution with a total volume of 50 μL was comprised of 5 ng/μL plasmid, 0.2 mM dATP, 0.2 mM dGTP, 1 mM dCTP, 1 mM dTTP, 5 mM MgCl₂, 0.004 mM MnCl₂, 0.05 U/μL the NEB regular Taq polymerase and 0.4 μM primer pairs (Tm_6PG_F/Tm_6PG_R). The PCR reaction was conducted as follows: 1 cycle of 94°C for 2 min; 16 cycles of 94°C for 30 s, 60°C for 30 s, 68°C for 1.5 min; and a final extension cycle of 68°C for 5 min. The linearized vector backbone was amplified as described above. The two PCR products were digested by *DpnI*, purified and assembled into DNA multimers by POE-PCR. The PCR product after digestion by *XhoI* was purified, ligated and transformed into *E. coli* TOP10 competent cell for screening. The identified positive mutants
from each round library were purified and characterized. The most active mutant on \(\text{NMN}^+ \) was selected as the template for the next round error-prone PCR.

Optimization of HTS

The redox dye, washing volume of colonies and mediators were sequentially optimized to find the optimal conditions for HTS. Colonies of *E. coli* TOP10 carrying the plasmid pET28a-\(\text{P}_{\text{lac}}-\text{Tm6pgdh} \) were grown on 15 mL of 1.5% LB agar medium with 50 \(\mu \text{g/mL} \) kanamycin and incubated at 37°C for 2 days. The colonies were treated to 70°C for 1 hour, cooled down to the room temperature, duplicated on the surface of sterile qualitative filter paper (Whatman 410, size 7.5 cm) and placed into the new Petri-dish (size 9 cm).

To select the optimal redox dye, 20 mL of 0.5% agarose (60°C) containing 150 \(\mu \text{M} \) tetrazolium dye (i.e., NBT, XTT, WST-1), 0.13 \(\mu \text{M} \) GsDI (2.8 \(\mu \text{g/mL} \)), 2 mM 6PG, 1 mM \(\text{NMN}^+ \), 50 mM Tris-HCl (pH 7.5), 50 \(\mu \text{g/mL} \) chloramphenicol and 0.1% sodium azide, were applied to the colonies and incubated at room temperature for 3 days. The control groups with agarose solution excluding coenzyme \(\text{NMN}^+ \) (6PG only) or both substrates 6PG and \(\text{NMN}^+ \) (No substrate) were constructed to test the background caused by redox dyes and intracellular NAD(P).

To minimize the inference of intracellular NAD(P), the colonies duplicated on the filter paper were placed in the 47 mm filter and immersed in 50 mL of 50 mM phosphate-buffered saline (PBS) buffer (pH 7.5) for 3 minutes. The buffer was then drawn into the flask by vacuum filtration. The immersion-filtration procedure was repeated, and colonies were washed by 100, 200 and 400 mL PBS buffer, respectively. The washed filter paper was put into another Petri-dish, overlaid by 0.5% melted agarose solution containing 150 \(\mu \text{M} \) WST-1, 0.13 \(\mu \text{M} \) GsDI (2.8
ug/mL), 2 mM 6PG, 1 mM NMN+, 50 mM Tris-HCl (pH 7.5), 50 µg/mL chloramphenicol and 0.1% sodium azide, and incubated at room temperature for 3 days. The control groups were constructed as described above.

To determine the optimal mediator for the colorimetric assay, colonies duplicated on the filter paper were washed by 400 mL PBS buffer as described above. The colonies were placed into new Petri-dishes and overlaid by 0.5% melted agarose solution containing 150 µM WST-1, 2 mM 6PG, 1 mM NMN+, 50 mM Tris-HCl (pH 7.5), 50 µg/mL chloramphenicol and 0.1% sodium azide with 0.13 µM different enzyme mediator (i.e., GsDI, TmDI, PfuNROR) or 0.5 µM chemical mediator phenazine methosulfate (PMS). The agarose covered colonies were incubated at room temperature for 3 days. The control groups were constructed as described above.

The color changes of all colonies were measured by camera. The saturation of colony color was analyzed by uncalibrated OD function of imageJ (http://rsb.info.nih.gov/ij). The color difference between group containing both substrate 6PG and NMN+ and the group of 6PG only was defined as the signal of 6PGDH activity on NMN+. The color difference between group of 6PG only and no substrate, and the color density of no substrate group were defined as the background noise of intracellular NAD(P) and unspecific reaction of redox dyes, respectively. The conditions showing highest signal-to-noise ratio were identified as optimal.

Screening of Tm6PGDH mutants with increased activity on NMN

The HTS method was established as follows. Transformed cells containing mutant plasmid libraries were spread on the 15 mL of 1.5% agar LB medium containing 50 µg/mL kanamycin to reach an expected colony number of 500–800 per Petri-dish. The colonies were incubated at 37°C for 2 days to accumulate sufficient Tm6PGDHs for screening. The colonies
were treated to 70°C for 1 h to lyse the cell, degrade reductants and deactivate mesophilic redox enzymes inside the cell, such as *E. coli* 6PGDH. After cooling down to room temperature, the heat-treated colonies were duplicated on the surface of sterile qualitative filter paper (Whatman 410, size 7.5 cm). The colonies were placed in the filter and immersed in 50 mL of 50 mM PBS buffer (pH 7.5) for 3 min. After that, the waste buffer was withdrawn by vacuum filtration. The immersion-filtration procedure was repeated seven times, and colonies were washed by 400 mL PBS buffer. The washed colonies were put into the new Petri-dish (size 9 cm) and overlaid by 0.5% melted agarose solution containing 150 μM WST-1, 0.13 μM GsDI (2.8 ug/mL), 2 mM 6PG, 1 mM NMN⁺(for the first four rounds of screening) or 0.1 mM NMN⁺ (for the fifth and sixth rounds of screening), 50 mM Tris-HCl (pH 7.5), 50 μg/mL chloramphenicol and 0.1% sodium azide, and incubated at room temperature for 6 hours. Positive mutants of *Tm*6PGDH with improved activity for NMN⁺ were identified by the deeper yellow color. The colony showing the greatest color change of each Petri-dish was taken out by sterile toothsticks and suspended in 200 μL of the P1 buffer of Zymo ZR Plasmid Miniprep™ kit followed by the plasmid purification and transformation into *E. coli* TOP10 for DNA sequencing and *E. coli* BL21(DE3) for protein purification and characterization. The mutants showing the highest activity on NMN⁺ from each round of mutagenesis and screening were selected as the template for the next round of mutagenesis.

Protein overexpression and purification

E. coli BL21 strains harboring the Tm6PGDH and its mutants were grown in the LB medium with 50 μg/mL kanamycin at 37°C. The IPTG-inducible overexpression and Ni-NTA purification of targeted enzymes was conducted as described previously, where the 100 μM
IPTG was used for protein induction, 50 and 250 mM imidazole were used for washing and elution step of Ni-NTA purification, respectively. Likewise, the E. coli BL21 strains containing GsDI, TmDI and PfuNROR were grown the LB medium with 100 μg/mL ampicillin at 37°C, overexpressed by IPTG induction and purified by Ni-NTA column as described above. Mass concentrations of purified proteins were determined by the Bradford assay using bovine serum albumin (BSA) as the standard.

Activity assay of Tm6PGDH and mutants

The activities of Tm6PGDH and mutants were measured at 60°C for 5 minutes in a buffer comprised of 100 mM HEPES buffer (pH 7.5), 2 mM 6PG, 2 mM NADP⁺ or 20 mM NMN⁺, 5 mM MgCl₂, and 0.5 mM MnCl₂. The formation of NADPH or NMNH were monitored at 340 nm by a UV/visible spectrophotometer (Beckman Coulter, Fullerton, CA, USA), where the millimolar extinction coefficients (ε) of NADPH and NMNH are 6.22 mM⁻¹ cm⁻¹. The enzyme unit was defined as one μmole of NADPH or NMNH produced per minute. The apparent Michaelis–Menten kinetic constants of Tm6PGDH for NADP⁺ and NMN⁺ were determined using 0.001-2 mM NADP⁺ or 1-40 mM NMN⁺ with 2 mM 6PG, respectively. The data were collected and regressed by using the nonlinear least squares regression of GraphPad Prism 5 (Graphpad Software Inc, La Jolla, CA). The activities of Tm6PGDH and mutants on NAD⁺ and biomimetic coenzyme NR⁺ and BNA⁺ were measured in the same buffer by replacing the NADP to 2 mM NAD⁺, 20 mM NR⁺ and 1 mM BNA⁺, respectively. The formations of reduced coenzymes were monitored by using millimolar extinction coefficients (ε) of NADH (6.22 mM⁻¹ cm at 340 nm), NRH (6.86 mM⁻¹ cm at 336 nm) and BNAH (7.20 mM⁻¹ cm at 360 nm). All runs were conducted in triplicate.
Conversion of NMNH via 6PGDH reaction

To measuring specific activity of *G. stearothermophilus* diaphorase (GsDI) on NMNH, The NMNH solution was prepared by the 6PGDH reaction with 6PG and NMN\(^+\). In it, 1 U/mL Mut 6-1 was added in the degassed buffer containing 100 mM HEPES buffer (pH 7.5), 5 mM MgCl\(_2\) and 0.5 mM MnCl\(_2\), 10 mM NMN\(^+\) and 10 mM 6PG followed by oxygen exclusion through argon gas. The reaction solution was incubated at 60\(^\circ\)C for 1 hour and then ultra-filtered by using 10,000 MWCO Amicon centrifugal filters from Milliporesigma (Bedford, MA, USA) to separate the protein and solution. The formation of NMNH in the solution was monitored at 340 nm by a UV/visible spectrophotometer (Beckman Coulter, Fullerton, CA, USA), where the millimolar extinction coefficients (\(\varepsilon\)) of NMNH is 6.22 mM\(^{-1}\) cm\(^{-1}\). Commonly, 1 mM NMNH could be obtained after the 6PGDH conversion and followed ultra-filtration.

Activity assay of diaphorase GsDI

The specific activities of *G. stearothermophilus* diaphorase (GsDI) on NMNH with oxidized benzyl viologen (BV\(^{2+}\)) were measured at 60\(^\circ\)C for 3 minutes. The enzyme reactions were carried out in an anaerobic screwcap IR quartz cuvette (Reflex Analytical Co., Ridgewood, NJ) with a degassed buffer containing 100 mM HEPES buffer (pH 7.5), 2 mM BV\(^{2+}\), 1 mM NMNH, 5 mM MgCl\(_2\) and 0.5 mM MnCl\(_2\). The formation of reduced benzyl viologen was monitored 578 nm by a UV/visible spectrophotometer (Beckman Coulter, Fullerton, CA, USA), where the millimolar extinction coefficients (\(\varepsilon\)) of reduced benzyl viologen is 8.65 mM\(^{-1}\) cm\(^{-1}\). The specific activity of GsDI on NADPH and NMNH with BV\(^{2+}\) are 4.2 and 2.9 U/mg at 60\(^\circ\)C, respectively.
Hydrogen production via in vitro artificial NMN-based ETC

The wild-type Tm6PGDH and the best mutant Mut 6-1 were used to produce hydrogen from 6PG via in vitro artificial NMN-based ETC. The enzyme cocktail was comprised of wild-type Tm6PGDH or Mut 6-1, diaphorase (DI) from Geobacillus stearothermophilus, and Ni-Fe hydrogenase I from Pyrococcus furiosus (SHI), which was kindly provided by Michael W. W. Adams. The enzyme loadings are listed in Table S6. All enzymes were stored in 50% (wt/wt) glycerol at -80°C. For removing the possible effect of glycerol on hydrogen production, all enzymes were diluted to 0.1% glycerol by using 100 mM HEPES buffer, and concentrated with 10,000 MWCO Amicon centrifugal filters from Milliporesigma (Bedford, MA, USA) before use. The final reagent solution was comprised of 100 mM HEPES buffer (pH 7.5), 50 mM 6PG, 20 mM NMN+, 2 mM benzyl viologen (BV2+), 5 mM MgCl\textsubscript{2}, 0.5 mM MnCl\textsubscript{2}, 56 μg/mL wild-type Tm6PGDH or Mut 6-1, 333 μg/mL of DI, and 147 μg/mL of SHI. 25 μg/mL of kanamycin and 0.01% (w/v) sodium azide were added to protect against the microbial contamination. Enzymatic H\textsubscript{2} reactions were conducted in a bioreactor at 60°C. Continuous H\textsubscript{2} measurement was conducted in a continuous flow system with 50 mL/min ultrapure nitrogen (Airgas, Christiansburg, VA) as described below. The collected data were analyzed by Origin 8.0 (Northampton, MA, USA). All runs were conducted in triplicate.

Systems for continuous hydrogen measurement

Continuous hydrogen measurement was conducted in a continuous flow system purged with 50 mL/min ultrapure N\textsubscript{2} gas (Airgas, Christiansburg, VA). The hydrogen productivity was detected by a tin oxide thermal conductivity H\textsubscript{2} sensor (TGS 821, Figaro USA Inc., Arlington Heights, IL, USA) and equipped with a gas-tight flexible gas line. The temperature ranges of
reactor and condenser were set at 60°C and 21°C, respectively, which was under the control of refrigerated/heated circulating baths (NESLAB RTE7, Thermo Scientific; Isotemp 3016D, Fisher Scientific, USA). Data acquisition was exhibited with a USB-6210 device (National Instruments, Austin, TX, USA) and analyzed by Lab-View SignalExpress 2009 (National Instruments). The hydrogen signals were calibrated by in-line flow controllers and ultrapure H₂ gas (Airgas), as described previously

Structural analysis of Tm6PGDH and mutants

The three-dimensional homology models of wild-type Tm6PGDH and mutants were constructed by SWISS-MODEL based on the cystral structure of Lactococcus lactis 6PGDH (PDB: 2IYP, 46.5% sequence identifiy). The structures of NADP⁺ and NMN⁺ were generated by using Chemdraw (PerkinElmer, Waltham, MA). The conformation space of the corresponding coenzyme binding area was analyzed using the Autodock program (Scripps Research Institute, La Jolla, CA). The results were presented and analyzed by by PyMOL (Schrödinger, Inc, Portland, OR, USA).

Discussion

Enzyme-based biocatalysis is becoming accepted as an alternative to whole-cell fermentation, but large-scale applications remain restricted to hydrolyases (e.g., amylase, protease, cellulase) and isomerases (e.g., glucose isomerase), with limited involvement of redox reactions. Beyond the third wave of biocatalysis, in vitro biosystems comprised of numerous enzymes and coenzymes can be used to produce a myriad of products from special proteins and polypeptides, oligosaccharides, nucleotides, fine chemicals, isoprene, bioelectricity, hydrogen, alcohols, organic acids, to synthetic starch. However, high prices...
thousands of dollars per kg) and less stability of natural NAD(P) prevent their potential applications in in vitro production of low-value biocommodities. Low-cost stable biomimetics are of importance to decrease coenzyme costs in in vitro cascade biocatalysis. For instance, NMN$^+$ is a biomimetic coenzyme with a less than half size of NAD(P), showing successes in the enzyme-catalyzed reduction of cyclohexanone and electricity generation 47. The simple structure gives this coenzyme series of superior properties, such as shorter synthesis pathway (Figure S1), less fragile bonds 48, and faster mass-transfer rates 16, which can result in a decreased coenzyme cost in biocatalysis. However, wild-type dehydrogenases often work poorly with NMN$^+$ and exhibit three to four orders of magnitude lower specific activities on NMN$^+$ than those with natural coenzymes. Coenzyme engineering of dehydrogenases to increase activity with NMN$^+$ is essentially important for biocatalysis applications.

It is a great challenge to identify beneficial mutants from large enzymatic libraries. for coenzyme engineering on biomimetics. In this work, we developed an HTS application for identification of Tm6PGDH mutants with activity for NMN$^+$ and minimal background signal. The optimized HTS used a colorimetric assay, where the signal of reduced NMNH generated by Tm6PGDH mutants was generated using the redox dye WST-1 and mediator GsDI. This HTS proved to be simple and effective for coenzyme engineering with biomimetics and includes several advantages over alternative methods. Compared to standard 96- or 384-well plate assays, our method has higher screening capacity (approximately 800 colonies per petri-dish), simpler operation steps, less reagent consumption, less time required of cell cultures, and no need of using costly automation. Moreover, we applied the dual promoter T7-tac to control overexpression of Tm6PGDH and deleted the subcloning step involving the pET plasmid between screening and protein characterization, which was typically required in the directed
evolution protocol. The HTS detected dehydrogenase activity with biomimetic \(\text{NMN}^+ \) with precision, and the background signals in the colorimetric assay, such as inference of mesophilic redox enzymes and reduced coenzymes in the cell lysate, activity on intracellular NAD(P), and unspecific reactions between redox dyes and cell reduced materials were minimized by colony heat treatment, cell washing and the use of an optimal redox dye and mediator pair. Furthermore, because of the broad specificity of the mediator GsDI to accept different biomimetic coenzymes, such as NMNH, NRH, BNAH (unpublished), the screening method showed great potential in the coenzyme engineering of dehydrogenases for a series of biomimetic analogs. Although this method is designed for the coenzyme engineering of thermophilic dehydrogenase, this Petri-dish based screening is also suitable to evolve mesophilic dehydrogenases, such as glucose 6-phosphate dehydrogenase from *Zymomonas mobilis* (unpublished), to the thermostable mutants. The engineered enzymes were then enabled to use as the template for the coenzyme engineering on biomimetics by using this method.

Because of the low activity of wild-type enzymes with biomimetic coenzymes, the colorimetric assay used in the HTS is needed urgently in the fields of enzyme engineering and biocatalysis. The living cell, which contains a highly reducing environment, contributed the major proportion of background signal. The NAD(P), reduced compounds (i.e., vitamin C, glutathione, cysteine)\(^{49,50}\) and mesophilic redox enzymes\(^{51}\) inside the cell can generate or regenerate strong reducing power and overwhelm the signal of reduced biomimetic coenzymes. Also, the integrated cell membrane can inhibit the mass transfer of extracellular substrates from entering the cell, which further decreases the dehydrogenase activity on biomimetic coenzymes. To minimize background signals from a cellular environment, we applied heat treatment to break cell membrane, denature mesophilic enzymes, and partially oxidize reduced compounds. This
was followed by cell washing to lower the concentration of intracellular NAD(P). Because lysed cells contain nutrients that can support the growth of a small number surviving cells following heat treatment, growth inhibitors, such as sodium azide and antibiotics, were added to melted the agarose solution to stop colony regrowth and retain low background signal. The redox dye, itself, was identified as another significant source of background signal. Three tetrazolium based redox dyes, NBT, XTT and WST-1, were chosen from 24 collected indicators due to their strong and stable coenzyme dependent color development.

Although sharing the same tetrazole core, these dyes were observed to have different levels of background noises. The NBT, which had protein binding affinity 52, may react with free cysteine residues in the heat-deactivated proteins and result in strong false positive signal 49. XTT, was also reported to have modest reaction with reduced glutathione and cause the background noise 53. The WST-1, which showed stable color change with the lowest noise of redox dye, was chosen as the optimal redox dye. The mediator can be the chemical or enzyme which facilitates the electron transfer from electron donor (i.e., NMNH) to corresponding redox dyes. Due to the poor enzymatic performance of wild-type enzyme on biomimetics and possible noises, the mediator used for the coenzyme engineering on NMN$^+$ is required to have both selectivity and activity on NMNH. Although it is often used as coupled electron mediator with tetrazolium dyes, the chemical PMS is shown as a weaker mediator to oxidize NMNH compared to GsDI, no matter the catalyst units are calculated based on the molar concentration (10 μM of PMS vs. 0.125 μM of GsDI) or mass concentration (3.08 μg/mL of PMS vs. 2.88 μg/mL of GsDI). Moreover, its inherent yellow color and unspecific reactions with reduced cell materials result in a strong background noise, which minimize the specificity of the colorimetric assay (Figure S2). The enzyme mediator PfuNROR showing strong preference of NADPH 33, and the
TmDI showing low activity on NMNH could not meet the both requirements at the same time and generated different levels of noises. Only the G6DI which exhibited preference and high activity of smaller coenzymes \(^ {33}\) was chosen as the optimal mediator. Through iterative optimization of interested parameters, we finally minimize the background noise to less than 14% of whole chromogenic signal.

Molecular modeling of wild-type Tm6PGDH and Mut 6-1 were performed in order to shed light on the mechanism of substrate recognition. Seven amino acid substitutions (A11G, R33I, T34I, D82L, T83L, Q86L, A447V) from total 18 mutation sites of Mut 6-1 were predicted to confer the increased activity on NMN\(^+\). More than half of beneficial mutation sites were located in the coenzyme binding pocket. The mutations occurred here greatly change the hydrophobicity of coenzyme binding pocket (Figure 6a, 6c), which may force the truncated coenzyme to adopt a favorable conformation for catalysis. The mutation A11G contributed the majority of activity increase on NMN\(^+\). The A11 lies in the fingerprint motif (GxAxxG) of 6PGDH and protrudes into the coenzyme binding pocket (Figure 6b), which restricts the binding depth of coenzyme \(^ {54}\). The incorporation of the smaller glycine residue in this position (Figure 6d) increase the distance between hydrophobic side chain and the phosphate group of NMN\(^+\) (from 3.4 Å to 4.4 Å), which may introduce less repulsion interaction with coenzyme \(^ {54}\) and lead to an increased affinity in NMN\(^+\). The R33I and T34I are introduced by designed mutations in the primer. Previous results showed these two mutations increased the catalytic efficiency of Tm6PGDH on NAD\(^+\), a less complex coenzyme than NADP\(^+\) \(^ {6}\). We hypothesized these replacements would be also beneficial for accepting smaller coenzyme NMN\(^+\). Indeed, these mutations introduce a strong steric exclusion effect on accepting NADP\(^+\) \(^ {6}\). These mutations, however, might minimize the possible attraction towards the phosphate group of NMN\(^+\) and
increase the activity in NMN^+. The D82, T83, Q86 are three residue close proximity to the adenine moiety of NADP^+. Suprisingly, all these three residues were replaced to the same leucine in the mutant. Although they are far away from the binding site of NMN^+ (>10 Å), the strong hydrophobicity in this area might also prohibit the wrong allocation of the biomimetic coenzyme, generating a beneficial effect on NMN-dependent catalysis. Alanine at position 447 is the adjacent residue to the H448, which is responsible for interacting with 4-OH of 6PG in the homogenous 6PGDH from *Lactococcus lactis* \(^{54}\). The mutation from alanine to valine (A447V) might contribute a better acceptance of 6PG and facilitate the electron transfer from 6PG to the nicotinamide ring. Other mutations generated by the random mutagenesis, do not directly interact with both 6PG and NMN^+. The possible beneficial effects of these mutations are likely due to subtle reshaping of the active sites of enzyme for catalysis \(^{55}\).

The efficient use of thermophilic enzymes plus economically advantageous and stable biomimetic coenzymes are critical to produce the low price hydrogen (~$1.5 per kg) via the *in vitro* synthetic enzymatic pathway \(^{30}\). We created an NMN-dependent ETC containing engineered 6PGDH, FMN-containing diaphorase, and NiFe-hydrogenase and electron carrier BV\(^{2+}\) for hydrogen production and demonstrated the effectiveness of engineered mutants on increased hydrogen productivity rate. To achieve complete conversion of starch to hydrogen by using an NMN-dependent *in vitro* synthetic enzymatic pathway \(^{56}\), we are preparing to evolve two other redox enzymes involved in this pathway, glucose 6-phosphate dehydrogenase and diaphorase, and create the preferred mutants on this biomimetic coenzyme.

In conclusion, a novel HTS was developed to identify mutants of *Tm*6PGDH with activity with biomimetic coenzymes. Background signal in the colorimetric assay were greatly decreased by heat treatment, cell washing and the use of optimal redox dyes and enzyme mediators. The
best mutant Mut 6-1 showed a great increased catalytic efficiency, a comparable activity on NMN$^+$ compared to wild-type enzyme on NADP$^+$ as well as higher activity on natural coenzyme NAD(P) and NMN precursor nicotinamide riboside (NR$^+$). Based on the engineered enzyme, a novel NMN-dependent ETC was created for hydrogen production, demonstrating the effectiveness of engineered enzyme on improved hydrogen productivity rate. Coenzyme engineering along with the use of biomimetic coenzymes would break the last obstacle to industrial biomanufacturing catalyzed by in vitro synthetic enzymatic biosystems in biomanufacturing 4.0.

Acknowledgments

This project could not have been carried out without the support of the Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences. This study was supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office under Award Number DE-EE0006968.

Contributions

RH, HC, and YHPZ conceived the project, performed experiments, and analyzed data. RSS contributed to the writing and editing of the manuscript.

Conflict of interest

The authors declare that they have no competing interests.
References

17 Paul, C. E. *et al.* Mimicking nature: synthetic nicotinamide cofactors for C=C

Supporting information

Supporting information includes coenzyme synthesis pathway in vivo from NMN$^+$ to NADP$^+$, the structure analysis of individual mutation site conferring increased activity on NMN$^+$, comparisons of activities of redox enzymes on NMN$^+$, the analysis of 24 collected redox dyes, enzyme loading in hydrogen production experiments, details in apparent kinetics of mutants on NAD(P)$^+$ and NMN$^+$, and the information of strains, plasmid and primers.

Figure legend

Figure 1. Principles of high-throughput screening for coenzyme engineering on NMN$^+$. (a) The colorimetric assay for *Tm*6PGDH activity on NMN$^+$. The *Tm*6PGDH cleaves the 6-phosphogluconate into ribulose 5-phosphate and CO$_2$, and reduces NMN$^+$ to NMNH. The enzyme mediator GsDI catalyzes the consequent reduction of colorless WST-1 to yellow WST-1 formazan by oxidizing the NMNH. (b) The Schematic of high-throughput screening for identification of positive mutants on NMN$^+$. In this work, (1) the DNA mutations were introduced by saturation mutagenesis of coenzyme binding pocket and random mutagenesis of entire gene. (2) The DNA mutation library was transformed into *E. coli* TOP10 competent cell with high transformation efficiency, yielding the cell mutant library. (3) The colonies grown on the LB agar plate were heat-treated to deactivate the mesophilic enzymes and reduced compounds inside the cell followed by the duplication of colonies on the surface of filter paper. (4) The colonies on the filter paper were placed into a Buchner funnel and washed by several hundred mL of phosphate sodium buffer in order to decrease the concentration of intracellular NAD(P). (5) The washed colonies were overlaid by melted agaroase solution containing 6PG, a biomimetic (NMN$^+$), a mediator (GsDI) and a redox dye (WST-1), and (6) incubated at room
temperature for color development. (7) The positive mutants featuring deeper yellow colors were identified from Petri-dish. The corresponding colonies were isolated for plasmid extraction followed by transformation into *E. coli* cells for characterization. The most active mutant on NMN$^+$ was selected as the parent for the next round of mutagenesis.

Figure 2. Iterative optimization of high-throughput screening. (a) Schematic of down-selection of candidate redox dyes for screening. The 24 redox dyes contained derivatives of (1) indophenol, (2) indigo dye, (3) azo dye, (4) permanganate ion, (5) tetrazolium, (6) viologen, (7) heterocyclic quinoneimine and other uncategorized compounds. The redox dyes was then down-selected to find out the promising candidate molecules based on redox potential change, O$_2$ tolerance, dye sensitivity and mediator selectivity. (b) Candidate redox dyes for detection of *Tm*6PGDH on NMN$^+$. The structure of these three redox dyes had the same tetrazolium core with different modified groups linked with benzyl rings. The color change from oxidized form to reduced form of NBT, XTT and WST-1 were colorless to purple, colorless to orange and colorless to yellow, respectively. (c) Optimization of redox dyes for screening. The heat-treated colonies were overlaid by melted agarose solution containing tetrazolium redox dyes (i.e., NBT, XTT, WST-1), 6PG, NMN$^+$ and mediator GsDI and incubated at room temperature for color development. Two control groups with agarose solution excluding coenzyme NMN$^+$ (6PG only) or both substrates 6PG and NMN$^+$ (No substrate) were prepared to test background noise resulted from redox dyes and intracellular NAD(P). (d) Analysis of color change of heat-treated colonies. The saturation of colony color was analyzed by uncalibrated OD function of imageJ (http://rsb.info.nih.gov/ij). (e) Optimization of washing volume for screening. In order to minimize the background noise of intracellular NAD(P), the heat-treated colonies were washed by 0, 100, 200 and 400 mL of phosphate sodium buffer, respectively, followed by overlay of melted agarose solution containing
reagents and incubation for color development. (f) Analysis of color change of colonies. The pictures were analyzed as described above. (g) Optimization of mediators for screening. In order to find the mediator with high selectivity and activity on NMNH, the heat-treated colonies were washed and overlaid by the melted agarose solution containing different mediators (i.e., GsDI, TmDI, PfuNROR, PMS) for color development. (h) Analysis of color change of colonies. The pictures were analyzed as described above.

Figure 3. Pictures of high-throughput screening to identify active mutants on NMN⁺. (a) An example of Petri-dish result of first 4 rounds of screening. The colonies were overlaid by the melted agarose solution containing 1 mM NMN⁺ and incubated at room temperature for 6 hours. The positive mutants showing stronger yellow color were identified with red arrows. (b) An example of Petri-dish result of fifth-sixth rounds of screening. The colonies were overlaid by the melted agarose solution containing 0.3 mM NMN⁺ and incubated at room temperature for 4 hours. The positive mutants showing stronger yellow color were identified with red arrows.

Figure 4. Directed evolution of Tm6PGDH for increasing activity on NMN⁺. (a) Structure model of wild-type Tm6PGDH in complex with NADP⁺. Residues in close proximity (< 5 Å) to the 2’ phosphate, pyrophosphate and adenine moieties of NADP⁺ are colored red, blue and magenta, respectively, and chosen as interested target for saturation mutagenesis. (b) The evolutionary progression of mutants with increased activities on NMN⁺.

Figure 5. Hydrogen production via *in vitro* artificial NMN-based ETC. (a) Schematic of synthetic enzymatic pathway for hydrogen production. (b) H₂ evolution profiles at 60°C via *in vitro* artificial NMN-based ETC. The result of wild-type Tm6PGDH (WT) and the most active mutant Mut 6-1 of are shown with black and red line, respectively. The experiments were
repeated three times independently; data shown are for one of three representative experiments.

Figure 6. Hydrophobicity change of coenzyme binding pocket of wild-type Tm6PGDH (a) and mutant 6-1 (c). The interactions between NMN$^+$ and A11 and mutation A11G were shown in b and d, respectively. The corresponding distances were indicated as yellow dashed line with yellow label. The hydrophobicity scale of individual residue was estimated based on Normalized consensus hydrophobicity scale. The deeper red color indicated a higher scale of hydrophobicity. The original interested residues were labeled as black and the replacements were marked as orange. The biomimetic coenzyme NMN$^+$ was depicted as sticks. Atoms were colored according to the types: N, blue; O, red; P, orange; C, green.
Table 1. Apparent kinetic constants of *Tm*6PGDHs for NMN⁺ and NADP⁺

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Mutations</th>
<th>NADP⁺ Sp. Act. (U/mg)</th>
<th>kₜₐₜ (s⁻¹)</th>
<th>Kₘ (mM)</th>
<th>kₜₐₜ/Kₘ (mM⁻¹·s⁻¹)</th>
<th>NADP⁺ Sp. Act. (U/mg)</th>
<th>kₜₐₜ (s⁻¹)</th>
<th>Kₘ (mM)</th>
<th>kₜₐₜ/Kₘ (mM⁻¹·s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>-</td>
<td>18.0 ± 0.8</td>
<td>15.9 ± 0.2</td>
<td>0.0012 ± 0.0001</td>
<td>13394.5</td>
<td>0.60 ± 0.01</td>
<td>1.3 ± 0.1</td>
<td>30.6 ± 1.7</td>
<td>0.04</td>
</tr>
<tr>
<td>Mut 1-1</td>
<td>R33I/T34I</td>
<td>1.2 ± 0.2</td>
<td>14.8 ± 0.7</td>
<td>11.5 ± 1.1</td>
<td>1.3</td>
<td>0.68 ± 0.01</td>
<td>1.7 ± 0.1</td>
<td>37.9 ± 3.6</td>
<td>0.04</td>
</tr>
<tr>
<td>Mut 2-1</td>
<td>11G/R33I/T34I</td>
<td>10.2 ± 0.7</td>
<td>28.3 ± 0.6</td>
<td>2.1 ± 0.1</td>
<td>13.2</td>
<td>4.66 ± 0.02</td>
<td>10.2 ± 0.2</td>
<td>20.7 ± 0.7</td>
<td>0.49</td>
</tr>
<tr>
<td>Mut 3-1</td>
<td>11G/R33I/T34I/D82L/T83L/Q86L</td>
<td>16.4 ± 0.1</td>
<td>21.1 ± 0.3</td>
<td>0.39 ± 0.02</td>
<td>53.7</td>
<td>9.19 ± 0.09</td>
<td>19.3 ± 0.4</td>
<td>27.5 ± 1.2</td>
<td>0.70</td>
</tr>
<tr>
<td>Mut 4-1</td>
<td>3L/Q86L/I120F/D294V/Y383C/N387S/A447V</td>
<td>20.0 ± 0.3</td>
<td>21.9 ± 0.2</td>
<td>0.22 ± 0.01</td>
<td>101.0</td>
<td>12.31 ± 0.14</td>
<td>18.9 ± 0.4</td>
<td>15.1 ± 0.6</td>
<td>1.25</td>
</tr>
<tr>
<td>Mut 5-1</td>
<td>11G/K27R/R33I/T34I/F60Y/D82L/T83L/Q86L/K118N/I120F/D294V/F326S/Y383C/N387S/A447V</td>
<td>20.6 ± 0.4</td>
<td>23.6 ± 0.3</td>
<td>0.21 ± 0.01</td>
<td>113.0</td>
<td>16.40 ± 0.40</td>
<td>25.8 ± 0.8</td>
<td>16.0 ± 1.1</td>
<td>1.62</td>
</tr>
<tr>
<td>Mut 6-1</td>
<td>11G/K27R/R33I/T34I/F60Y/D82L/T83L/Q86L/K118N/I120F/D251E/D294V/F326S/F329Y/Y383C/N387S/V390G/A447V</td>
<td>27.1 ± 0.8</td>
<td>28.9 ± 0.3</td>
<td>0.19 ± 0.01</td>
<td>148.6</td>
<td>17.7 ± 0.35</td>
<td>27.4 ± 0.5</td>
<td>13.5 ± 0.5</td>
<td>2.04</td>
</tr>
</tbody>
</table>

Table 2. Activities of wild-type *Tm*6PGDH and Mut 6-1 for coenzymes

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>Specific activity (U/mg)</th>
<th>NMN⁺</th>
<th>NADP⁺</th>
<th>NAD⁺</th>
<th>NR⁺</th>
<th>BNA⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>0.60 ± 0.01</td>
<td>18.0 ± 0.8</td>
<td>4.9 ± 0.2</td>
<td>0.0020 ± 0.0001</td>
<td>0.00035 ± 0.0006</td>
<td></td>
</tr>
<tr>
<td>Mut 6-1</td>
<td>17.7 ± 0.35</td>
<td>27.1 ± 0.8</td>
<td>28.5 ± 0.2</td>
<td>0.014± 0.001</td>
<td>0.0031 ± 0.002</td>
<td></td>
</tr>
</tbody>
</table>

145
Figure 1. Principles of high-throughput screening for coenzyme engineering on NMN$^+$
Figure 2. Iterative optimization of high-throughput screening
Figure 3. Pictures of high-throughput screening to identify active mutants on NMN$^+$

![Images of Petri dishes showing activity over time with different concentrations of NMN$^+$](image)

Figure 4. Directed evolution of Tm6PGDH for increasing activity on NMN$^+$

![Graph showing specific activity over generations](image)
Figure 5. Hydrogen production via \textit{in vitro} artificial NMN-based ETC
Figure 6. Hydrophobicity change of coenzyme binding pocket of wild-type Tm6PGDH and mutant 6-1
Chapter 6: General Conclusions and Future Work

The coenzyme engineering of NAD(P)-dependent dehydrogenases is of importance for biocatalysis and synthetic biology in vivo and in vitro. The coenzyme engineering of 6PGDH on unnatural coenzymes, such as NAD$^+$ and biomimetic coenzyme NMN$^+$, is critical for efficient use of these less costly coenzymes in the in vitro synthetic biosystem for hydrogen production and facilitates the production of low-cost hydrogen. In this dissertation, we developed a HTS for coenzyme engineering of 6PGDH on NAD$^+$ and produced an engineered 6PGDH with a 4,278 fold reversal of coenzyme selectivity from NADP$^+$ to NAD$^+$. This method was also used to screen the mutant of highly active G6PDH with improved thermostability. The evolved mutant exhibited a more than 124-fold improvement in the half-life time at 60°C without losing its specific activity, and showed a more than 7-fold increased productivity rate and yield of hydrogen production from starch via the in vitro enzymatic pathway. With this method, we further added the novel cell washing step and used the optimal redox dyes and diaphorase to decrease the background signals coming from NADP$^+$ and reduced biomolecules in the cell lysate, and developed a new screening method for coenzyme engineering of 6PGDH for activity with the biomimetic coenzyme NMN$^+$. By using six-rounds of directed evolution and screening, we gained a more active mutant, which showed a more than 50-fold increase in catalytic efficiency on the NMN$^+$. Consolidated with two other thermophilic redox enzymes, diaphorase from Geobacillus stearothermophilus and Ni-Fe hydrogenase I from Pyrococcus furiosus, the engineered enzyme was used to
create a novel biomimetic coenzyme dependent ETC for hydrogen production, which showed a more than 6-fold increased productivity rate compared to the wild-type enzyme. These results demonstrated the effectiveness of new HTS in coenzyme engineering of NAD(P)-dependent dehydrogenases.

To construct the whole biomimetic coenzyme dependent \textit{in vitro} synthetic biosystem for hydrogen production, activities on NMN\(^+\) of three NAD(P)-dependent redox enzymes including glucose 6-phosphate dehydrogenase, diaphorase and hydrogenase, must be improved by coenzyme engineering. The efficient use of engineered dehydrogenases along with the biomimetic coenzymes would break the last obstacle to industrial biomanufacturing for hydrogen production catalyzed by \textit{in vitro} synthetic enzymatic biosystems in biomanufacturing 4.0.
Appendix. Supporting information for engineering a NADP-dependent dehydrogenase on nicotinamide mononucleotide: high-throughput screening and artificial electron transport chain

Rui Huang¹, Hui Chen¹, Ryan S. Senger¹,², Yi-Heng Percival Zhang¹,³*

¹ Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA

² Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA

³ Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China

*Corresponding author

Email: yhzhang@vt.edu
Supporting information

Engineering a NADP-dependent dehydrogenase on nicotinamide mononucleotide: high-throughput screening and artificial electron transport chain

Rui Huang¹, Hui Chen¹, Ryan S. Senger¹,², Yi-Heng Percival Zhang¹,³*

¹ Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA

² Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA

³ Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China

*Corresponding author

Email: yhzhang@vt.edu
Figure S1. The Enzymatic pathway for NAD(P) synthesis. The NAD is synthesized from nicotinamide mononucleotide (NMN) and ATP catalyzed by nicotinamide nucleotide adenylyltransferase (NMNAT), and NADP is synthesized from NAD and ATP catalyzed by NAD kinase (NADK)
Figure S2. Test of background signals from mesophilic redox enzyme and PMS. (a) Test of background signals from mesophilic redox enzymes in the heat-treated colonies. The E. coli TOP10 (pET28a-Ptac) was a negative control while E. coli TOP10 (pET28a-Ptac-Tm6pgdh) was a positive control. Colonies were treated at 70°C for 1 h and duplicated on the filter paper. The heat-treated cells were then overlaid by the melted agarose solution containing substrates and mediator GsDI followed by incubation at room temperature for 3 days for color development. Two control groups with agarose solution excluding coenzyme NMN⁺ (6PG only) or both substrates 6PG and NMN⁺ (No substrate) were prepared to test background noise resulted from redox dyes and intracellular NAD(P). The pale colony color in negative groups suggested the deactivation of mesophilic redox enzymes, while the strong change between NMN+6PG group and no substrate group of Tm6PGDH indicated that the targeted thermophilic 6PGDH remains active after the heat treatment. (b) Test of background noise of PMS in the colorimetric assay. The colonies of E. coli TOP10 (pET28a-Ptac-Tm6pgdh) were heat-treated and operated as described as above. The treated colonies were overlaid by the melted agarose with WST-1 or without WST-1 (No dye).
SI tables

Table S1. Apparent kinetic parameters of dehydrogenases on NMN^+

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Mutation</th>
<th>Host</th>
<th>Coenzyme</th>
<th>Other coenzymes</th>
<th>Sp. Act (U/mg)</th>
<th>Temp (°C)</th>
<th>k\text{cat} (s\text{–}1)</th>
<th>K\text{M} (mM)</th>
<th>k\text{cat}/K\text{M} (mM\text{–}1. s\text{–}1)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactate dehydrogenase</td>
<td>P16Q/C81S/N85R</td>
<td>Bacillus stearothermophilus</td>
<td>NMN^+</td>
<td>No</td>
<td>5.01-5.72\times10^{-6}</td>
<td>25</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Alcohol dehydrogenase</td>
<td>-</td>
<td>Equus caballus</td>
<td>NMN^+</td>
<td>Zn^{2+}</td>
<td>ND</td>
<td>37</td>
<td>0.024</td>
<td>10</td>
<td>0.0024</td>
<td>2-4</td>
</tr>
<tr>
<td>Alcohol dehydrogenase</td>
<td>-</td>
<td>Pyrococcus furiosus</td>
<td>NMN^+</td>
<td>No</td>
<td>ND</td>
<td>45</td>
<td>0.0005</td>
<td>2.5</td>
<td>0.0002</td>
<td>5</td>
</tr>
<tr>
<td>Alcohol dehydrogenase</td>
<td>K249G/H255R</td>
<td>Pyrococcus furiosus</td>
<td>NMN^+</td>
<td>No</td>
<td>ND</td>
<td>45</td>
<td>0.026</td>
<td>2.6</td>
<td>0.010</td>
<td>5</td>
</tr>
<tr>
<td>Tm6PGDH</td>
<td>K27R/F60Y/K118N/I120F/D29/4V/F326S/F329Y/Y383C/N387S/V390/G/A447V</td>
<td>Thermotoga maritima</td>
<td>NMN^+</td>
<td>No</td>
<td>0.047</td>
<td>60</td>
<td>1.3</td>
<td>30.6</td>
<td>0.04</td>
<td>This study</td>
</tr>
<tr>
<td>Tm6PGDH</td>
<td>-</td>
<td>Thermotoga maritima</td>
<td>NMN^+</td>
<td>No</td>
<td>17.7</td>
<td>60</td>
<td>27.4</td>
<td>13.5</td>
<td>2.04</td>
<td>This study</td>
</tr>
</tbody>
</table>

a, the specific activity of lactate dehydrogenase on NMN^+ is calculated one the basis of the absorbance change of NNMNH vs time plot from corresponding reference, where the mole extinction coefficient of NMNH is 6,220 at 340 nm.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Group</th>
<th>Structure</th>
<th>Color (ox)</th>
<th>Color (re)</th>
<th>E° (V, pH 7)</th>
<th>O_2 inference</th>
<th>Extinction coefficient (mM)</th>
<th>Mediator properties</th>
<th>Others</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl viologen</td>
<td>Bipyridinium</td>
<td></td>
<td>Colorless</td>
<td>Blue</td>
<td>-0.45</td>
<td>Yes*</td>
<td>9.8 (reduced, 578 nm)</td>
<td>NAD(P)H:rubredoxin oxidoreductase (NROR), reaction with Pyrococcus furiosus, no uncoupling reaction, thermophilic</td>
<td>Cell toxicity</td>
<td>6-10</td>
</tr>
<tr>
<td>Benzyl viologen</td>
<td>Bipyridinium</td>
<td></td>
<td>Colorless</td>
<td>Blue</td>
<td>-0.36</td>
<td>Yes</td>
<td>8.7 (reduced, 578 nm)</td>
<td>Diaphorase from Geobacillus stearothermophilus (GsDI), react with NMNH (Yes), no uncoupling reaction, thermophilic</td>
<td>Cell toxicity</td>
<td>6,11,13</td>
</tr>
<tr>
<td>Neutral red</td>
<td>Phenazine</td>
<td></td>
<td>Red</td>
<td>Colorless</td>
<td>-0.33</td>
<td>Yes</td>
<td>7.12 (oxidized, 540 nm)</td>
<td>No need</td>
<td>Red (pH <6.8), Yellow (pH >8.0)</td>
<td>6,14-17</td>
</tr>
<tr>
<td>WST-1</td>
<td>Tetrazolium</td>
<td></td>
<td>Colorless</td>
<td>Yellow</td>
<td>-0.14</td>
<td>No</td>
<td>37.0 (reduced, 433 nm)</td>
<td>GsDI, react with NMNH (Yes), no uncoupling reaction, thermophilic. 1-m PMS is another mediator</td>
<td>No</td>
<td>18-20</td>
</tr>
<tr>
<td>XTT</td>
<td>Tetrazolium</td>
<td></td>
<td>Colorless</td>
<td>Orange</td>
<td>-0.14</td>
<td>No</td>
<td>23.6 (reduced, 450 nm)</td>
<td>GsDI, react with NMNH (Yes), no uncoupling reaction, thermophilic. PMS is another mediator</td>
<td>No</td>
<td>20-24</td>
</tr>
<tr>
<td>NBT</td>
<td>Tetrazolium</td>
<td></td>
<td>Colorless</td>
<td>Dark blue</td>
<td>-0.13</td>
<td>No</td>
<td>30.0 (reduced diformazan, 560 nm)</td>
<td>GsDI, react with NMNH (Yes), no uncoupling reaction, thermophilic. PMS is another mediator</td>
<td>No</td>
<td>20,21,23,26</td>
</tr>
<tr>
<td>Indigo carmine</td>
<td>Indigo dye</td>
<td></td>
<td>Blue</td>
<td>Red (partially reduced), Yellow (reduced)</td>
<td>-0.13</td>
<td>Yes*</td>
<td>19.4 (oxidized, 610 nm)</td>
<td>Azoreductase from Bacillus cereus, reaction with NMNH (ND), no uncoupling reaction, mesophilic</td>
<td>Light sensitive, Yellow (pH >13)</td>
<td>27-32</td>
</tr>
<tr>
<td>Methylene blue</td>
<td>Phenothiazin</td>
<td>Blue</td>
<td>Colorless</td>
<td>+0.071</td>
<td>Yes<sup>d</sup></td>
<td>40.0 (oxidized, 613 nm)</td>
<td>No need</td>
<td>No</td>
<td>33-35</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>---------------</td>
<td>------------------------</td>
<td>---------</td>
<td>----</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Phenazine methosulfate (PMS)</td>
<td>Phenazine</td>
<td>Green</td>
<td>White (precipitation)</td>
<td>+0.080</td>
<td>Yes</td>
<td>26.3 (oxidized, 387 nm)</td>
<td>No need</td>
<td>Light sensitive</td>
<td>36-39</td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorophenolindophenol</td>
<td>Indophenol</td>
<td>Blue</td>
<td>colorless</td>
<td>+0.22</td>
<td>Yes<sup>e</sup></td>
<td>19.0 (oxidized, 600 nm)</td>
<td>No need</td>
<td>Red (pH< 5.7)</td>
<td>27,40-43</td>
<td></td>
</tr>
<tr>
<td>Potassium ferricyanide</td>
<td>Coordinated complex</td>
<td>Yellow</td>
<td>Green</td>
<td>+0.36</td>
<td>ND</td>
<td>1.0 (oxidized, 420 nm)</td>
<td>P450 CYP175A1 from Thermus thermophilus, reaction with NMNH (ND), uncoupling reaction (ND), thermophilic</td>
<td>No</td>
<td>44-46</td>
<td></td>
</tr>
<tr>
<td>Alamar Blue</td>
<td>Phenoxazin</td>
<td>Blue</td>
<td>Pink (fluorescence)</td>
<td>+0.38</td>
<td>No</td>
<td>73 (reduced 572 nm)</td>
<td>PMS, react with NMNH, no uncoupling reaction</td>
<td>Affected by fluorescent material. Over-reduction produces colorless byproduct</td>
<td>19,47-51</td>
<td></td>
</tr>
<tr>
<td>Azo-rhodamine derivative 9</td>
<td>Azo dye</td>
<td>Colorless</td>
<td>Green (fluorescence)</td>
<td>ND</td>
<td>ND</td>
<td>82</td>
<td>Azoreductase from E.coli, react with NMNH (ND), no uncoupling reaction, mesophilic</td>
<td>Radioactive substances required.</td>
<td>32,33</td>
<td></td>
</tr>
<tr>
<td>Carmoisine</td>
<td>Azo dye</td>
<td>Red</td>
<td>Colorless</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Azoreductase from Bacillus lentus B377, react with NMNH (ND), uncoupling reaction (ND), thermophilic</td>
<td>The reduced product amine can be toxic</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>1-Substituted phenols</td>
<td>Naphthalene</td>
<td>Blue (dimer)</td>
<td>Colorless</td>
<td>ND</td>
<td>ND</td>
<td>P450BSβ (CYP152A1) mutant from Bacillus subtilis, reaction with NMNH (ND), uncoupling reaction (ND), mesophilic</td>
<td>H$_2$O$_2$ required, which may react with NMNH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Substituted phenols</td>
<td>Phenol</td>
<td>Red or Brown (polymer)</td>
<td>Colorless</td>
<td>ND</td>
<td>ND</td>
<td>2-hydroxybiphenyl 3-monooxygenase from Pseudomonas azelaica HBP1, react with NMNH (ND), uncoupling reaction, mesophilic</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-Ethoxycoumarin</td>
<td>Coumarin</td>
<td>Blue (fluorescence)</td>
<td>Colorless</td>
<td>ND</td>
<td>ND</td>
<td>P450 from Rhodococcus sp, reaction with NMNH (ND), uncoupling reaction, mesophilic</td>
<td>O$_2$ required, low enzymatic activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-Ethoxyresorufin</td>
<td>Phenoxazin</td>
<td>Pink (fluorescence)</td>
<td>Orange</td>
<td>ND</td>
<td>ND</td>
<td>73 (oxidized, 572 nm)</td>
<td>P450s, reaction with NMNH (ND), uncoupling reaction, commonly mesophilic</td>
<td>O$_2$ required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indole</td>
<td>Indole</td>
<td>Blue (indigo)</td>
<td>Colorless</td>
<td>ND</td>
<td>ND</td>
<td>19.4 (oxidized, 610 nm)</td>
<td>P450CAM mutant from Pseudomonas putida, reaction with NMNH (ND), uncoupling reaction, mesophilic</td>
<td>O$_2$ required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td>Styrene</td>
<td>Purple (final product)</td>
<td>Colorless</td>
<td>ND</td>
<td>ND</td>
<td>P450 BM-3 139-3 mutant from Bacillus megaterium, reaction with NMNH (ND), uncoupling reaction, mesophilic</td>
<td>O$_2$ required, final color of product fades with time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Para-Nitrophenoxy analog (pNA)</td>
<td>p-Nitrophenol</td>
<td>Yellow</td>
<td>colorless</td>
<td>ND</td>
<td>ND</td>
<td>17.5 (oxidized, 400 nm)</td>
<td>P450 BM-3 mutant from Bacillus megaterium, reaction with NMNH (ND), uncoupling reaction (ND), mesophilic</td>
<td>O$_2$ required, esterase may result in false positive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
a, the reaction rate of reduced methyl viologen with oxygen is 6×10^6 mol/L/min. b, the standard potential of NBT and XTT are calculated on the basis of rate constant between superoxide and NBT/XTT, where the E_{O_2/O^2} is -0.15 V. c, the reaction rate of reduced Indigo carmine with oxygen is 2×10^{-4} mol/L/min. d, the reaction rate of reduced methylene blue with oxygen is 1×10^4 mol/L/min by using NADH as reducing power. e, the reaction rate of reduced 2,6-dichlorophenolindophenol with oxygen is predicted as 8×10^{-6} mol/L/min based on reaction of phenol indophenol with oxygen. Dyes with high redox potential, high oxygen sensitivity, low or unstable absorptivity change, dependence on low specificity mediators were shaded as orange, blue, light blue and gray, respectively.
Table S3. Apparent kinetic constants and activities of *Tn6PGDHs* for NAD(P)$^+$ and NMN$^+$

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Sp. Act. (U/mg)</th>
<th>k_{cat} (s$^{-1}$)</th>
<th>K_M (mM)</th>
<th>k_{cat}/K_M (mM$^{-1}$s$^{-1}$)</th>
<th>Sp. Act. (U/mg)</th>
<th>k_{cat} (s$^{-1}$)</th>
<th>K_M (mM)</th>
<th>k_{cat}/K_M (mM$^{-1}$s$^{-1}$)</th>
<th>Sp. Act. (U/mg)</th>
<th>k_{cat} (s$^{-1}$)</th>
<th>K_M (mM)</th>
<th>k_{cat}/K_M (mM$^{-1}$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>18.0 ± 0.8</td>
<td>15.9 ± 0.2</td>
<td>0.0012 ± 0.0001</td>
<td>13394.5</td>
<td>4.9 ± 0.2</td>
<td>55.9 ± 2.9</td>
<td>14 ± 1</td>
<td>4.1</td>
<td>0.60 ± 0.01</td>
<td>1.3 ± 0.1</td>
<td>30.6 ± 1.7</td>
<td>0.04</td>
</tr>
<tr>
<td>Mut 1-1</td>
<td>1.2 ± 0.2</td>
<td>14.8 ± 0.7</td>
<td>11.5 ± 1.1</td>
<td>1.3</td>
<td>6.2 ± 0.2</td>
<td>48.8 ± 1.3</td>
<td>7.9 ± 0.5</td>
<td>6.2</td>
<td>0.68 ± 0.01</td>
<td>1.7 ± 0.1</td>
<td>37.9 ± 3.6</td>
<td>0.04</td>
</tr>
<tr>
<td>Mut 2-1</td>
<td>10.2 ± 0.7</td>
<td>28.3 ± 0.6</td>
<td>2.1 ± 0.1</td>
<td>13.2</td>
<td>21.2 ± 0.1</td>
<td>29.8 ± 0.5</td>
<td>0.57 ± 0.02</td>
<td>52.6</td>
<td>4.66 ± 0.02</td>
<td>10.2 ± 0.2</td>
<td>20.7 ± 0.7</td>
<td>0.49</td>
</tr>
<tr>
<td>Mut 3-1</td>
<td>16.4 ± 0.1</td>
<td>21.1 ± 0.3</td>
<td>0.39 ± 0.02</td>
<td>53.7</td>
<td>15.5 ± 0.3</td>
<td>22.0 ± 0.4</td>
<td>0.46 ± 0.03</td>
<td>47.8</td>
<td>9.19 ± 0.09</td>
<td>19.3 ± 0.4</td>
<td>27.5 ± 1.2</td>
<td>0.70</td>
</tr>
<tr>
<td>Mut 4-1</td>
<td>20.0 ± 0.3</td>
<td>21.9 ± 0.2</td>
<td>0.22 ± 0.01</td>
<td>101.0</td>
<td>21.5 ± 0.2</td>
<td>24.6 ± 0.3</td>
<td>0.27 ± 0.01</td>
<td>90.1</td>
<td>12.31 ± 0.14</td>
<td>18.9 ± 0.4</td>
<td>15.1 ± 0.6</td>
<td>1.25</td>
</tr>
<tr>
<td>Mut 5-1</td>
<td>20.6 ± 0.4</td>
<td>23.6 ± 0.3</td>
<td>0.21 ± 0.01</td>
<td>113.0</td>
<td>25.5 ± 0.4</td>
<td>29.3 ± 0.5</td>
<td>0.24 ± 0.01</td>
<td>122.6</td>
<td>16.40 ± 0.40</td>
<td>25.8 ± 0.8</td>
<td>16.0 ± 1.1</td>
<td>1.62</td>
</tr>
<tr>
<td>Mut 6-1</td>
<td>27.1 ± 0.8</td>
<td>28.9 ± 0.3</td>
<td>0.19 ± 0.01</td>
<td>148.6</td>
<td>28.5 ± 0.2</td>
<td>29.8 ± 0.4</td>
<td>0.22 ± 0.01</td>
<td>138.0</td>
<td>17.7 ± 0.35</td>
<td>27.4 ± 0.5</td>
<td>13.5 ± 0.5</td>
<td>2.04</td>
</tr>
</tbody>
</table>
Table S4. List of Strains and Plasmids

<table>
<thead>
<tr>
<th>Strain/plasmids</th>
<th>Genotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli BL21<sup>star</sup>(DE3)</td>
<td>B<sup>+</sup>ompT<sup>-</sup>gal dcm lon hsdS<sub>B</sub><sup>(r</sup><sup>B</sup><sup>-</sup><sup>m</sup><sup>B</sup>−<sup>)rne131</sup>(DE3)</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>E. coli TOP10</td>
<td>F<sup>−</sup>mcr<sup>A</sup>c<sup>r</sup>mrr crm<sup>-</sup>hsd<sup>RMS</sup>-<sup>mcr</sup>BC<sup>−</sup>Φ80<sup>lacZ</sup>Δ<sup>80</sup>Δ<sup>lacX74</sup>recA<sup>1</sup>ara<sup>D139</sup>Δ(ara leu) 7697 galU galK rpsL (StrR) endA<sup>1</sup>nupG</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Plasmid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pET-ci-co<sup>6pgdh</sup></td>
<td>codon optimized Tm6pgdh</td>
<td>72</td>
</tr>
<tr>
<td>pET28a-P<sub>lac</sub>-<sup>6pgdh</sup></td>
<td>dual promoter (P<sub>T7</sub> and P<sub>lac</sub>) and Moth6pgdh</td>
<td>73</td>
</tr>
<tr>
<td>pET28a-P<sub>lac</sub>-<sup>tm6pgdh</sup></td>
<td>dual promoter (P<sub>T7</sub> and P<sub>lac</sub>) and Tm6pgdh</td>
<td>This study</td>
</tr>
<tr>
<td>pET20b-Gsdi</td>
<td>Gsdi</td>
<td>74</td>
</tr>
<tr>
<td>pET20b-Tmdi</td>
<td>Tmdi</td>
<td>This study</td>
</tr>
<tr>
<td>pET20b-Pfunror</td>
<td>Pfunror</td>
<td>This study</td>
</tr>
</tbody>
</table>
Table S5. All Oligonucleotides Are Listed from 5’ to 3’ End

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequence (5’→3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tm_6PG_F</td>
<td>CTTTAAGAAGGAGATATACATATGAAATCTCATATTGGTCATCGGTC</td>
</tr>
<tr>
<td>Tm_6PG_R</td>
<td>GTGTTGGTTGTGATGCTCGAGTCTCATATCTCTCTCTTCTCCAG</td>
</tr>
<tr>
<td>Tm_6PGvect_F</td>
<td>GACCGATGAGACCAATATGAGATTTCATATGTATATCTCTCTCTTTAAAG</td>
</tr>
<tr>
<td>Tm_6PGvect_R</td>
<td>CTGGGAGGAAGGAGATAGGACTGAGCAACACCACCACCACCACCAC</td>
</tr>
<tr>
<td>11,12_F</td>
<td>TGGTCTCATCGGTCCTGNNKNKATGGGTCAGAATCTGGGCTGAAATATT</td>
</tr>
<tr>
<td>11,12_R</td>
<td>CAGACCGATGAGCAATATGAGATTTCAT</td>
</tr>
<tr>
<td>32,3,34_F</td>
<td>TAAAGTGAGCGTGATNNKATTATTGCCCACGCTACAGAAGAATTCGT</td>
</tr>
<tr>
<td>32,33,34_R</td>
<td>ATACACGCTCCTTTATAGCCTTACGGAATATTCAG</td>
</tr>
<tr>
<td>81,82,86_F</td>
<td>GGTAAACCTGTTGACNNKNNKATTAGTNNKCTGCTGCCACATCTGGAGCCCTG</td>
</tr>
<tr>
<td>81,82,86_R</td>
<td>GTGAACAGGTTTACCCGTCACGATCCATGAGATTTTACGAG</td>
</tr>
<tr>
<td>Pfu_NROR_F</td>
<td>CTTTAAGAAGGAGATATACATATGAAATGGTAGTTATTGTGGAGAACG</td>
</tr>
<tr>
<td>Pfu_NROR_R</td>
<td>CAGTGTTGGTTGTGATGCTCGAGGAGATTGAGATGATGATGTTGGAGAAC</td>
</tr>
<tr>
<td>Pfu_NRORvect_F</td>
<td>CGTTTTCCAACAAATACACTCTTTATCAGATATATCTCTTCTTTAAG</td>
</tr>
<tr>
<td>Pfu_NRORvect_R</td>
<td>GAGATCTTATAGATTTCTACCTCCCTCGAGCACCACCCACCACCCACCACCACCG</td>
</tr>
<tr>
<td>Tm_DI_F</td>
<td>CTTTAAGAAGGAGATATACATATGAAATGGTAGTTATTGTGGAGAAC</td>
</tr>
<tr>
<td>Tm_DI_R</td>
<td>CAGTGTTGGTTGTGATGCTCGAGGAGATTGAGATGATGATGTTGGAGAAC</td>
</tr>
<tr>
<td>Tm_Dlvect_F</td>
<td>GTTTCCACAGACTCACTTATCCATATGATATCTCTTCTTTAAG</td>
</tr>
<tr>
<td>Tm_Dlvect_R</td>
<td>GGAAAGACTAAGAAGCAGCGACTGACGACACCACACCACCCACCCACCCACCGAG</td>
</tr>
</tbody>
</table>

The mutation sites of saturation mutagenesis were marked as bold
Table S6. Enzyme loadings for hydrogen production

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Abbrev.</th>
<th>E.C. #</th>
<th>Source</th>
<th>Purification</th>
<th>Spec. Act at 60°C (U/mg)</th>
<th>Mass loading (mg/mL)</th>
<th>Units (U/mL)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-phosphogluconate dehydrogenase</td>
<td>Tm6PGDH</td>
<td>1.1.1.44</td>
<td>T. maritima</td>
<td>His/NTA</td>
<td>0.6 (17.7)^a</td>
<td>55.6</td>
<td>0.03 (0.98)</td>
<td>This study</td>
</tr>
<tr>
<td>Diaphorase</td>
<td>GsDI</td>
<td>1.6.99.3</td>
<td>G. stearothermophilus</td>
<td>His/NTA</td>
<td>2.9</td>
<td>333</td>
<td>1</td>
<td>This study</td>
</tr>
<tr>
<td>[NiFe]-hydrogenase SH1</td>
<td>SH1</td>
<td>1.12.1.3</td>
<td>P. furiosus</td>
<td>His/NTA</td>
<td>6.8^b</td>
<td>147</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

^a, specific activities of wild-type *Tm*6PGDH and Mut 6-1 on 20 mM NMN^+ at 60°C were shown in regular form and parentheses, respectively. ^b, the specific activity of H2ase at 60°C was anticipated by using its activity at 50°C (3.4U/mg) and Q10 rule.
References

24. Lechpammer, S. *et al.* Development of an XTT tetrazolium salt-based assay for detection of specific

Zaugg, W. S. Spectroscopic characteristics and some chemical properties of N-methylphenazinium methyl sulfate (phenazine methosulfate) and pyocyanine at the semiquinoid oxidation level. *J. Biol. Chem.* **239**, 3964-3970 (1964).

Cabello, C. M., Bair, W. B., 3rd, Bause, A. S. & Wondrak, G. T. Antimelanoma activity of th.

Zhu, Z., Tam, T. K., Sun, F., You, C. & Zhang, Y.-H. P. A high-energy-density sugar biobattery based on a