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Abstract

Background: In gene regulatory networks, transcription factors often function as co-regulators to synergistically
induce or inhibit expression of their target genes. However, most existing module-finding algorithms can only
identify densely connected genes but not co-regulators in regulatory networks.

Methods: We have developed a new computational method, CoReg, to identify transcription co-regulators in large-
scale regulatory networks. CoReg calculates gene similarities based on number of common neighbors of any two
genes. Using simulated and real networks, we compared the performance of different similarity indices and existing
module-finding algorithms and we found CoReg outperforms other published methods in identifying co-regulatory
genes. We applied CoReg to a large-scale network of Arabidopsis with more than 2.8 million edges and we analyzed
more than 2,300 published gene expression profiles to charaterize co-expression patterns of gene moduled identified

by CoReg.

Results: We identified three types of modules in the Arabidopsis network: regulator modules, target modules and
intermediate modules. Regulator modules include genes with more than 90% edges as out-going edges; Target
modules include genes with more than 90% edges as incoming edges. Other modules are classified as intermediate
modules. We found that genes in target modules tend to be highly co-expressed under abiotic stress conditions,
suggesting this network struture is robust against perturbation.

Conclusions: Our analysis shows that the CoReg is an accurate method in identifying co-regulatory genes in large-
scale networks. We provide CoReg as an R package, which can be applied in finding co-regulators in any organisms

with genome-scale regulatory network data.
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Background

Characterization of the structures of gene regulatory net-
works is an essential step towards understanding tran-
scriptional regulation in living organisms. In recent
years, genome scale regulatory networks have become
available for many species [1-6]. In the human
ENCODE project, transcription factor (TF)-target inter-
actions for 119 human TFs have been identified using
Chromatin Immunoprecipitation followed by sequencing
(ChIP-seq) [1]. In the model plant species Arabidopsis
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thaliana, cell type-specific regulatory networks in xylem
and ground tissues were generated using enhanced yeast
one-hybrid (eY1H) for 267 TFs [4, 5]. Genome-scale TF-
target interactions can also be inferred from direct
sequencing of TF binding sites in vitro [7] and by meas-
uring TF binding specificity [8]. Recently, ePlant plat-
form has provided the integration of interaction data
and convenient access to TF-target interaction data for
plant research [9]. Co-expression and TF-binding site
based prediction is another approach to infer TF-target
interactions, which has been successfully implemented
in TF2Network [10]. These experimentally identified or
predicted gene regulatory networks typically contain
thousands of nodes and thousands to millions of edges
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(Fig. 1a) [1, 7], which provide much information regard-
ing the regulatory targets of each TF and the putative
regulators of each gene in the genome. A key challenge
is how to use these large-scale networks to identify func-
tional information for both TFs and their target genes.

One way to approach this problem is to find clusters
of genes with similar regulatory properties [11-13]. In
Arabidopsis, it has been shown that identification of co-
regulatory modules can provide insight into biological
function [5]. For example, analysis of a regulatory net-
work showed that two key transcription factors
(SHORTROOT and SCARECROW) that determine cell
fates in ground tissues are controlled by both activators
and repressors [5]. Co-regulatory targets of stress-
responsive transcription factors were found to be key
regulators of ABA responses [14]. In general, a regula-
tory network is represented by a directed graph and the
process of identifying clusters of nodes (regulatory mod-
ules) with similar network properties is called network
module finding [15] or modular decomposition [16].
Many computational approaches have been developed
for module finding, and these approaches are based on
various ways to calculate node similarities followed by
graph partitioning methods. For example, Walk Trap
(WT) [17] calculates the distance between nodes and
groups nodes based on pairwise similarity matrices; Edge
Betweenness (EB) [18] builds hierarchical relationship
between the nodes and partitions the network into mod-
ules; Label Propagation (LP) [19] performs simulation
on the network by propagating cluster labels. Other ex-
amples include leading eigenvectors [20] and spin-glass
[18]. These algorithms can be applied to either undir-
ected networks [17-20] or directed networks [15] and,
in many cases, performed well in finding groups of
densely connected nodes. However, densely connected
groups may not reflect biologically meaningful clus-
ters in regulatory networks. For example, in Fig. 1c,
gene A and gene B are biologically related because
they regulate the same target genes and will be ex-
pected to form one network module, which is not the
typical module that most clustering approaches are
designed to identify (Fig. 1c).

Here, we propose a new computational tool, CoReg, to
identify co-regulatory modules in genome scale regulatory
networks. CoReg calculates the similarity of genes based
on their common targets and regulators and groups highly
similar genes into co-regulatory modules. We compared
several similarity indices, including the Jaccard index, the
geometric index, and the inverse log-weighted similarity
index using simulated and real networks (Fig. 1b and d).
In simulated networks, we tested CoReg with different
module sizes. We also performed extensive rewiring-
simulation and tested CoReg on plant, human, and bacter-
ial networks. CoReg outperformed other commonly used
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module finding methods in identifying co-regulatory mod-
ules in all data sets tested. We identified many co-
regulatory modules in the Arabidopsis genome and dem-
onstrated that the expression levels of genes in some of
the modules are also highly correlated. Finally, we applied
CoReg to published gene expression data in Arabidopsis
and found that gene co-regulatory modules tend to be
highly co-expressed in abiotic stress conditions. CoReg is
implemented as an R package, which can be used to
analyze any regulatory network. Sample network data used
in this paper and the CoReg package can be downloaded
from GitHub (https://lilabatvt.github.io/CoReg/).

Results

Assessment of different module finding methods

There are typically two approaches to evaluate a computa-
tional method: using either existing biological knowledge
or using computational simulations as a “gold standard”.
Since there has not been a systematic study that summa-
rizes known co-regulatory modules in any species, we
performed computational evaluations in two ways: 1) we
generated simulated networks with pre-specified module
assignment for each node and evaluated different methods
using mutual information; and 2) we performed duplication-
rewiring simulation on real networks and evaluated the
results using receiver operating characteristic (ROC) curves
and rewiring recall score.

Performance assessment using simulated networks
We generated the simulated networks using a method de-
scribed in a previous publication [21]. We modified this ap-
proach to generate co-regulatory modules for directed
networks (See Methods). Simulated networks were gener-
ated using different combination of parameters to explore
the performance of algorithms in varying module size and
number of targets (see Methods for details). Briefly, each
regulator node was assigned to predefined modules. A pool
of candidate targets was selected for each module. Each
regulator node can link to a node either in the pool or a
node outside the pool according to a fixed probability. This
procedure was repeated until target nodes for each module
had been assigned. One of the key parameters is the prob-
ability prob. With higher prob, the generated modules will
have a stronger co-regulation pattern, characterized by
nodes in co-regulatory modules connecting to a small
group of nodes rather than random targets in the network
(Additional file 1: Figure S1). We then tested different
module-finding algorithms on the simulated network. The
performance was evaluated by comparing the algorithm
identified modules to the pre-specified modules using the
Normalized Mutual Information (NMI) score [22].

The NMI score (see Methods) between the pre-
specified modules and algorithm identified modules was
plotted against the co-regulation probabilities. We
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Fig. 1 The complexity of the A. thaliana regulatory network, two clustering strategies and the work flow of CoReg. a The complexity of
regulatory A. thaliana network. Each node represents one gene in the network and each edge represents an interaction between one TF and its
target. We classified the nodes into three categories based on the degree: 1) triangle, in-degree = 0; 2) rectangle, in-degree >0 and out-degree
>0; 3) circle, out-degree = 0. ¢ CoReg uses a clustering strategy different from existing clustering method. Typically, the network modules that nor-
mal clustering algorithm identifies are shown on the left. However, if there are two genes which share many targets and regulators in common,
they are most likely to be the actual co-regulators (shown on the right, gene A and gene B) CoReg is designed to work on the clustering problem
on the right. b The brief work flow of CoReg starting from input (a regulatory network). Red nodes in the second step represent common target
(for out-similarity) or regulator (for in-similarity) for the pair of nodes in the middle. CoReg adds up the incoming similarity and outgoing similarity
and then calculates a distance matrix. Next, distance matrix is used as the input to hierarchical clustering. In the last step, dynamic tree cut is per-

formed to obtain final module assignment for each node. d flowchart of CoReg analysis

plotted the NMI score curve for each similarity index
used by CoReg: 1) CoReg with inverse log weighted
similarity index, (CoReg+inv.); 2) CoReg with jaccard
index (CoReg +jaccard); and 3) CoReg with geometry
similarity index (CoReg + geometric). The three methods
were compared to the result generated by Walk Trap
(WT), Label Propagation (LP), and Edge Betweenness
(EB). Figure 2 shows the NMI scores under different pa-
rameters. In all the simulations, the NMI scores show an
increasing trend as the co-regulation probability in-
creases, indicating that algorithms perform better when
the network has a stronger co-regulation pattern. This
trend is apparent for all the methods tested using simu-
lated networks except for CoReg + inv. The NMI scores
for CoReg + inv. decrease when co-regulation probability
is greater than 0.6 (Additional file 2: Figure S2), which is
due to the high similarity between target genes (see Dis-
cussion). These results showed that CoReg + jaccard and
CoReg + geometric consistently outperformed the other
methods (Fig. 2).

Performance assessment using real networks

For real networks, we designed our simulation such that
the simulated networks are based on the known top-
ology of biological networks. We wused published

regulatory networks from human, Arabidopsis, and
Escherichia coli (E. coli) as the starting point for our
simulations (see Methods). In each simulation, we se-
lected a subset of regulators and duplicated those genes,
while preserving their neighbors in the network. We
then rewired the network with a pre-specified probabil-
ity to introduce noise to the network (for more details,
see Methods and Additional file 11: Figure S5). For each
species, we tested three rewiring probabilities (0.1, 0.3
and 0.5). In the simulated networks, a gene and its du-
plicated counterpart belong to the same co-regulatory
module, and these genes are used to evaluate algorithm
performance using receiver operating characteristic
(ROC) and area under the ROC curves (auROC).

For each species, we plotted the ROC curves for
CoReg + inv., CoReg +jaccard, and CoReg + geometric.
These similarity indices were compared to the similarity
index computed from Walk Trap (WT). LP and EB are
not used here because these two methods do not calcu-
late a similarity matrix and cannot be directly compared.
WT allows the user to specify the length of random
walks. We tested WT with steps=2 and steps =4.
Figure 3a, b, and ¢ show the ROC curves generated from
the three species with rewiring probability = 0.5, where
CoReg outperforms WT in all simulations. ROC curves
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Fig. 3 Evaluation of the different module-finding methods using real networks. We used different similarity indices for CoReg, CoReg_inv: CoReg
+inverse log weighted similarity index; CoReg_jaccard: CoReg + jaccard similarity index; CoReg_geometric: CoReg + geometry index. CoReg was
also compared to other three clustering algorithms, namely, Label Propagation (LP), Edge Betweenness (EB), Walk Trap (WT). We performed the
evaluation on A. thalina, E. coli and H. sapiens network, respectively (From left to right, species was indicated on the top of the figure). a, b, ¢ The
ROC curve for co-regulators pairs based on the ranking result from CoReg and WT. d, e, f Rewiring recall score for all the methods. We calculated
rewiring recall score under rewiring probability from 0 to 0.5. Each data point is the average score of five runs. Error bar was added to show the
standard error. For the human network, EB algorithm was not tested because computation cannot be finished within a reasonable amount of
time on large-scale network such as human network

J

for the three similarity indices have very similar per-
formance. The AUC values of CoReg+jaccard and
CoReg + geometric are always slightly higher than those
of CoReg + inv. (Table 1).

Rewiring recall score

The second step in finding co-regulatory modules is
node clustering. To assess and compare the performance
of different clustering methods, we calculated rewiring
recall scores (RRS) for all clustering methods and com-
pared the results obtained using different methods. The
rewiring recall score is a normalized measure of the ac-
curacy of the method. For an ideal clustering method,
each duplicated node and its original node should be-
long to the same module with only these two nodes in
this module. The RRS is designed to equal 1 under such
an ideal cluster assignment (see Methods). If a method

can find a module containing both the duplicated node
and its original node, but the module also includes other
nodes, the score will be less than 1 (see Methods). In
fact, RRS can be very small if the module includes large
number of nodes (Additional file 3: Figure S3). In our
simulations, RRS rarely equals 1, because if two genes
are regulating the same set of targets in the original net-
work, the duplicated simulation will introduce another
gene that is highly similar to both genes. In this situ-
ation, the RRS cannot equal 1 for the correct clustering.
Despite this limitation, RRS can be used to compare
relative performance between different methods.

In the A. thaliana network, the CoReg + geometric
index and CoReg + jaccard index outperformed all other
clustering methods, and their performances are similar
to each other (Fig. 3d). In the E. coli network, both the
CoReg + geometric index and the CoReg + jaccard index
have better performance than other methods when
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Table 1 AUC for CoReg with different similarity index and Walk Trap. Highest values in each row is in bold
Species Rewiring CoReg CoReg CoReg WT WT
probability inv jaccard geometric (4 steps) (2 steps)
A. thaliana 0.1 0.859 £ 0.035 0957 £0.017 0.972+0.014 0.597 +0.049 0.556 £0.033
A. thaliana 03 0.823 £ 0.031 0.939+0.010 0910 £0.036 0.548 +£0.048 0.526 £0.027
A. thaliana 05 0.794 +£0.035 0.872+0.034 0.866 + 0.031 0.531 £0.027 0.505 +0.038
E. coli 0.1 0.849 +0.048 0.968 +0.022 0.963 £0.013 0611 £0.030 0.971 +0.020
E. coli 03 0.813 £0.037 0.930+0.023 0919 £0.027 0.557 £0.035 0.827 £0.034
E. coli 05 0.819 £0.033 0.865 +0.024 0.878 £ 0.039 0.555 £0.028 0.683 + 0.060
H. sapiens 0.1 0914 +0.037 0.999 +0.001 0.999 + 0.002 0.500 +0.033 0.512 £0.025
H. sapiens 03 0.919+0.035 0.994 +0.007 0.991 +0.008 0.516 £0.016 0489 +0.025
H. sapiens 0.5 0.918 £0.032 0.983+0.010 0.983 +0.008 0.512 £0.027 0.503 +£0.025

CoReg inv.: CoReg + inverse log weighted similarity index
CoReg jaccard: CoReg + jaccard similarity index

CoReg geometric: CoReg + geometry similarity index

WT: Walk Trap

rewiring probability is equal to 0 and 0.1. However, as
the rewiring probability increases, performance of
CoReg + jaccard and CoReg + geometric drops much fas-
ter than that of CoReg + inv. (Figure 3e), and CoReg +
inv. started to outperform CoReg + jaccard and CoReg +
geometric when rewiring probability equals 0.2. The
RRS scores for other methods (WT, LP, and EB) also
slightly decrease as rewiring probability increases (see
Additional file 3: Figure S3). In the H. sapiens network,
the decreasing trend of performance is not very obvious
as compared to the other two species, presumably due
to the large size of the human network. Although no
single similarity index performed better than all others
in all species, in our simulations, CoReg + jaccard and
CoReg + geometric outperformed CoReg +inv. more
often than CoReg + inv. outperformed CoReg + jaccard
and CoReg + geometric. In the A. thaliana and E. coli
networks, CoReg + jac outperformed CoReg + geo.

Different tree cut strategies: Dynamic tree cut and static
tree cut

A proper strategy to cut the hierarchical tree is neces-
sary because 1) there is no prior knowledge available for
the expected number of modules and 2) it is really diffi-
cult to decide an optimal cutting height that works for
all the branches of the hierarchical tree. The parameters
provided by the dynamic tree cut algorithm gives more
parameters to adjust module size (see Methods), provid-
ing flexibility to tree cutting. Here, we explored the per-
formance of both static tree cut and dynamic tree cut
strategies for cutting a hierarchical tree. The perform-
ance of each method was shown in Fig. 4. For all three
species, dynamic tree cut has outperformed the static
tree cut in most of the rewiring probabilities. Thus, in
the case of co-regulatory modules finding, dynamic tree
cut performs better than static tree cut.

CoReg identified three types of co-regulatory modules
After computational simulation and comparisons, we de-
cided to use CoReg+jaccard in the following analysis
because of the consistent performance of this similarity
measurement. CoReg identified 87, 141, and 1208 co-
regulatory modules in A. thaliana, E. coli, and H. sapiens
networks, respectively. We focused on the A. thaliana
network for further explorative analysis, because we are
interested in the roles of co-regulatory genes in plant de-
velopment and abiotic stress responses and in regulatory
connections between those two processes. For the A.
thaliana network, the largest co-regulatory module con-
tains 13 nodes, while the smallest module contains only
two nodes. To annotate the transcription factors in this
network, we obtained transcription factor annotations
from the Plant Transcription Factor Database
(PlantTFDB) [23]. The co-regulatory module assignment
and protein family assignment for each transcription fac-
tor are provided as Additional file 4: Table S1 For each
co-regulatory module, we identified all the genes within
the module and their first neighbors in the network. All
the interactions between these genes and gene annota-
tions are presented in Additional file 5: Table S2.

Based on the in-degree and out-degree of the genes in
the co-regulatory modules, co-regulatory modules can
be classified into three types: 1) regulator modules,
which include genes with more than 90% of the edges as
out-going edges; 2) target modules, which include genes
with more than 90% of the edges as incoming edges; and
3) other modules, which are classified as intermediate
modules. A regulator module mostly consists of
regulators, which are likely to initiate transcriptional
regulation, whereas a target module contains mostly tar-
get genes of transcriptional regulation. An intermediate
module serves as a mediator for regulation activities.
Figure 5 shows examples for each type of module. The
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tree cut method by RRS

regulator module in Fig. 5a contains three regulators = AT2G22850), which connect to 8 regulators and 2 tar-
from module 61 (AT2G38340, AT5G15210, and gets. The three regulators connect to 16 target genes in
AT1G24625). The intermediate module in Fig. 5b con-  total. The target module shown in Fig. 5¢ includes three
sists of 6 genes from module 15 (AT5G44080, target genes from module 24 (AT5G17420, AT5G13180,
AT3G49930, AT2G31370, AT1G32150, AT1G09540 and  and AT5G44030), which are targeted by 19 TFs in total.
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included. a Regulator modules. b Intermediate modules. ¢ Target modules. Please see Additional file 5: Table S2 for the gene names for each module
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Additional file 5: Table S2 shows the module ID for each
gene. The presence of many common targets and com-
mon regulators demonstrates the co-regulation detected
by CoReg in complex directed networks.

CoReg identified both known and novel co-regulatory
modules

Because the co-regulatory modules are solely based on
their network connections, we investigated the expres-
sion patterns of genes in the same co-regulatory mod-
ules using published microarray expression data from
the AtGenExpress database [24—26]. The expression of
over 22,000 Arabidopsis genes was analyzed using
microarray hybridization and provided expression pat-
terns in three data sets: a developmental tissue series,
hormone treatments, and abiotic stress responses. In the
case of the developmental tissue series, various tissue
types including leaves, roots, flowers, and stems were
sampled at different developmental stages. In the case of
the hormone treatment data set, plant hormones—auxin,
cytokinin, gibberellin, brassinosteroid, abscisic acid, jas-
monate, and ethylene— were used to treat growing seed-
lings, and expression levels were monitored in time
course experiments. In the abiotic stress data set, time
course experiments were performed under abiotic stress
conditions, including heat, cold, drought, salt, high
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osmolarity, UV-B light, and wounding (see Methods). To
measure the correlation between the genes in co-regula-
tory modules in the A. thaliana network, we calculated
the Pearson Correlation Coefficient (PCC) between
genes and estimated the significance of PCC for each
co-regulatory module using these three different data
sets. Twenty-one out of 87 modules identified by
CoReg show significant co-expression (estimated P-
value <0.05) in at least one of the three data sets.
More specifically, there are 6, 13, and 4 modules showing
significant co-expression in the developmental, stress, and
hormone expression data sets, respectively. These results
suggest that genes in co-regulatory modules are co-
expressed across various conditions and play roles in tran-
scriptional co-regulation.

Among all modules identified by CoReg, module 69
includes two ethylene response factor (ERF) transcrip-
tion factors: AT3G60490 and AT5G25810 (Fig. 6a).
Genes in the ERF family play important roles in various
developmental and physiological processes in plants
[27], such as leaf petiole development [28], shoot forma-
tion [29], resistance to pathogen attack [30], and various
abiotic stresses [31]. Co-regulation between AT3G60490
and AT5G25810 was not previously reported.
AT3G60490 and AT5G25810 show a significantly high
correlation with each other in the developmental data

~N
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Fig. 6 Visualization of module 69,70 and 78, along with their first neighbors in the network. a Module 69 and all of its first neighbors. b Module
70 and all of its first neighbors. € Module 78 and all of its first neighbors. d Module 61 and all of its first neighbors
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set (PCC = 0.802, P-value <0.05), suggesting that module
69 is a co-regulatory module involved in developmental
processes.

CoReg also identified module 78, which contains two
WRKY transcription factors (Fig. 6¢). The members of the
WRKY transcription factor family are involved in diverse bio-
logical processes, such as response to biotic/abiotic stresses,
seed development, and seed germination [32]. The two tran-
scription factors, AT4G31550 (WRKY11) and AT2G24570
(WRKY17), are previously reported to be involved in the
regulation of basal defense against Pseudomonas syringae pv
tomato [33]. It was concluded that both WRKY11 and
WRKY17 act as negative regulators in this defense process,
and WRKY11 and WRKY17 double mutant plants showed
stronger defense than WRKY11 single mutant plants [33].
Expression analysis shows that this co-regulatory module has
a high expression correlation (average PCC =0.783, P-value
<0.05,) in the stress data set, suggesting both WRKY11 and
WRKY17 are active during abiotic stress response process.
The results from module 70 and 78 indicate that our method
can identify known co-regulatory modules through mining
large-scale gene regulatory networks. We therefore analyzed
other CoReg modules to identify significantly co-expressed
modules.

Among other modules identified by CoReg, module 70
(Fig. 6b) contains two transcription factors from the
nuclear factor YC (NF-YC) gene family: AT1G54830
(NF-YC3) and AT1G56170 (NF-YC2). NF-Y is a tran-
scription factor complex that includes subunit A, B and
C. The three subunits form a NF-Y transcription factor
complex that binds to promoters containing a CCAAT-
box [34, 35]. NF-YC2 and NF-YC3 were found to partici-
pate in the control of floral induction in A. thaliana
[35]. Our expression analysis shows that the two NF-YC
TFs are significantly highly correlated with each other in
the developmental data set (PCC = 0.800, P-value <0.05)
and in the stress data set (PCC =0.862, P-value <0.05).
The developmental data set covers a broad range of de-
velopmental stages from embryogenesis to senescence,
which suggests that co-regulation of NF-YC2 and NEF-
YC3 may also participate in stress response and other
developmental processes.

Module 61 contains three TFs (Fig. 6d). Two of them
are AT5G15210, encoding DREB19, which is active both
in development and in stress responses [36], and
AT2G38340, encoding ZFHD3/HB30, a homeodomain
protein with a role in the regulation of floral development
[37]. DREB19 had 12 targets in the module, while ZFHD3
had only five targets, four of which were co-regulated by
DREB19. The four co-regulated targets are each associated
with growth and development: BLH3, a TF that regulates
the transition from vegetative to reproductive develop-
ment [38]; PGSIP1, a protein involved in secondary wall
biosynthesis; AT4G28370, encoding an E3 ligase
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associated with plant cell wall modification; and
AT2G34710, encoding an HD Zip TF, PHB, which regu-
lates leaf vascular development through auxin responses.

CoReg reveals roles of co-regulatory modules in
Arabidopsis abiotic stress responses

To test whether genes in CoReg modules are also co-
expressed in a genome-scale network, we applied CoReg
to a large scale regulatory network generated by DAP-
seq with more than 2.8 million interactions and more
than 2300 gene expression profiles (Fig. 7). We applied
CoReg to the DAP-seq network to identify co-regulatory
modules. Then, for each co-regulatory module, we cal-
culated the pairwise PCCs for all the genes in the mod-
ule and obtained a module average PCC.

The gene expression data (2327 samples) were gener-
ated from 62 experiments with each experiment contain-
ing multiple replicated samples. These 62 experiments
fell into multiple categories, including biotic stresses,
abiotic stresses, hormone treatments, developmental
series, and mutant experiments. One experiment can be
assigned to multiple categories. Experiments that do not
fall into the categories listed above are classified as
“other types”. Information on experimental conditions
for each experimental data set is shown in Additional file
6: Table S3, and each experiment has a unique GSE id
from the gene expression omnibus (GEO) database. We
selected the 108 modules whose co-expression is signifi-
cant (p-value <0.05) in at least 1/3 of all 62 experiments
and plotted the PCC values for these 108 modules across
different treatments (Fig. 7). The co-expression values for
all 108 modules in different GSE accessions and the corre-
sponding p-value for these co-expression values are pro-
vided as Additional file 7: Table S4 and Additional file 8:
Table S5, respectively. Among these modules, we found
two major groups of coReg modules. Group 1 contains 15
target modules, 1 intermediate module, and 6 regulator
modules. Group 2 contains 30 target modules, 2 inter-
mediate modules, and 4 regulator modules. In both
groups, genes within the modules are highly co-expressed
in abiotic stress conditions, suggesting that modules iden-
tified by coReg are likely to be co-expressed under abiotic
stresses in Arabidopsis.

Discussion

Two recently published online tools, TF2Network [10]
and ePlant [9], have integrated DAP-seq data and TF
binding sites for regulatory network prediction and
visualization. TF2Network is an online tool, which al-
lows the user to infer candidate regulators from a list of
genes. ePlant provides a user-friendly interface for query
and visualization of regulations predicted by DAP-seq
experiments. To compare the results produced by CoReg
to TF2Network and ePlant, we selected all target genes
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left panel with black square

Fig. 7 Heat map for co-expression levels of CoReg-identified modules in DAP-Seq network. We first ran CoReg on the DAP-seq network to
identify the modules. Then for each co-regulatory module, we calculated the pairwise co-expression values for all the genes in the module and
averaged the pairwise co-expression to get a single co-expression value for the module. We selected 108 modules which are significantly
co-expressed (p-value <0.05) in at least 20 out of 62 experiments (See estimate p-value in large-scale network in Methods section) to plot the heat
map for co-expression. The conditions for each experiment are marked in the top panel with black squares. The module type is marked on the

of module 61 to infer their regulators in TF2Network
and ePlant. TF2Network identified 49 regulators for the
given list of targets, while CoReg identified 3 co-
regulators for the same set of targets. We did not find
any overlap between TF2Network identified regulators
and CoReg identified co-regulators. This difference is
likely because TF2Network method used TF binding
sites to infer interactions whereas CoReg used direct in-
teractions. However, CoReg can be applied to any net-
work such as a network predicted by the TF2Network
method. For ePlant, we submitted three co-regulators in
module 61 to search for their targets. ePlant identified
9620 targets in total, while there are 17 targets for mod-
ule 61 in our network. There are 11 targets that can be
found by both ePlant and CoReg. This result shows that,
while ePlant provides an overview of all potential targets
of given TFs, CoReg selects the subset of targets that are
commonly regulated by these TFs.

The three similarity indices calculated the similarity
score by measuring the proportion of overlap of first
neighbors. The difference is that inverse log-weighted
index takes into account the degrees of shared first
neighbors while the other two do not. The idea is that
two nodes may be more similar if they share some com-
mon low-degree neighbors, because high-degree neigh-
bors are more likely to connect to the nodes by pure
chance [39]. However, from our simulation result, this
strategy led to decreased performance when co-
regulation probability is high (prob > 0.6, Additional file 2:
Figure S2), and when the module size is larger than or
equal to the number of targets (e.g. module size = 15 or
20 and target =5). In these cases, regulators in the same
module share few targets, whereas targets have higher
degrees than the regulators. The inverse log-weighted
similarities between targets are thus higher than the
similarities between regulators, which causes CoReg to
fail to identify co-regulators in the same module. In con-
trast, the Jaccard index and the geometric index are nor-
malized by the total number of common neighbors and
the product of number of common neighbors, respect-
ively. These methods avoid the problem in the inverse
log-weighted similarity. Our results suggest that the
CoReg + geometric and the CoReg +jaccard are better
choices when the number of regulators is larger than the
number of targets. However, such situations are unlikely
to happen in transcription networks because the number

of transcription factors is usually much smaller than the
number of target genes.

Combinatorial regulation by transcription factors
(TFs) of target genes underlies the functioning of
gene regulatory networks and determines gene
expression levels during development and under both
biotic and abiotic stresses in many organisms. In
Arabidopsis and rice, WRKY transcription factors are
found to form four and nine co-regulatory clusters
respectively [40]. These clusters are involved in di-
verse signal transduction pathways and in pathogen
responses [40]. In a prokaryotic organism such as E.
coli, transcriptional co-regulation is a key mechanism,
for example, in regulating cellular responses to
changes in amino acid pools [41]. In human studies,
co-regulation was found to be significantly enriched
in gene regulatory networks and to be important for
maintaining the robustness of gene regulation [42].
Co-regulation is also involved in specific disorders in
human; for example, mis-regulation of two co-
regulators was shown to be related to the onset of
autism [43]. Transcriptional co-regulators are also
mis-regulated in breast and ovarian cancer [44].
These studies show that co-regulators occur ubiqui-
tously in all living organisms and are involved in
many biological processes, and our computational
method represents one important step towards identi-
fying all tissue- and condition-specific co-regulatory
modules.

In recent years, high throughput experimental tech-
niques, such as yeast one hybrid [4, 5], ChIP-seq [1, 14]
protein binding microarray (PBM) [8], and DNA affinity
purification sequencing (DAP-seq) [7], have significantly
increased the number of known transcriptional regula-
tory networks for many organisms. We have tested
CoReg in three different organisms and on networks
generated by four technologies, including ChIP-seq,
DAP-seq, Yeast-1-hybrid, and a literature database. Our
results showed that CoReg performed better than exist-
ing approaches for all these species and methods. These
powerful experimental techniques will provide CoReg
with abundant data sets to mine co-regulation informa-
tion in the future.

Besides direct TF-gene interactions analyzed in this
study, other genomic data, such as chromatin modifi-
cation data and DNA methylation data, are also
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available for many species. Both chromatin modifica-
tions and DNA methylations are known to regulate
gene expression. However, the challenge is that both
chromatin modification and DNA methylation data
are condition- and cell type-specific. Therefore, we
did not include chromatin modification or DNA
methylation in our analysis. Multiple other methods
exist for the incorporation of other types of regula-
tory information in CoReg. For a pair of regulatory
nodes in the network, the information of chromatin
modification or DNA methylation of the target genes
can be directly added to the similarity measurement
used by CoReg. Alternatively, other regulatory infor-
mation can be analyzed in a post-hoc fashion: for co-
regulatory modules identified by CoReg, one can per-
form enrichment analysis to identify which type of
chromatin modification or DNA methylations are
enriched in the co-regulatory modules.

Using Arabidopsis as a model system, we found that
CoReg not only detected known co-regulatory genes
such as WRKY transcription factors but also uncovered
previously unknown co-regulatory genes. By integrating
gene expression data with regulatory network informa-
tion, we identified co-regulatory modules that are highly
co-expressed under abiotic stresses and hormone treat-
ments and during plant development. These results sug-
gest that CoReg can be used to mine existing network
data and gene expression data to identify key co-
regulatory genes in many other organisms.

We identified three types of co-regulatory modules:
regulator modules, target modules, and intermediate
modules. By combining CoReg modules with gene ex-
pression data from almost all published studies in
Arabidopsis [45], we found that target modules tend
to be highly co-expressed under abiotic stress condi-
tions. For example, in module 24 (Fig. 5c), there are
three target genes co-regulated by 19 regulators, with
each of the three genes regulated by more than 10
regulators. This observation could represent one type
of structural stability in gene regulatory networks
where the network structure is robust against pertur-
bations because removal of each individual edge or
regulatory nodes has only a small impact on the total
number of regulators for each target gene. In con-
trast, in regulator modules (for example, module 61
in Fig. 5a), each regulator is regulating many genes
and mutations in any of the regulators can have a
strong effect on expression of the target genes. Genes
in module 24 and module 61 are highly connected
hub genes. However, in directed gene regulatory net-
works, perturbation of regulators of target modules
has a small impact on expression regulation. This
may explain why target modules are widely used in
abiotic stress responses in Arabidopsis.
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Conclusion

In this study, we developed a computational tool, CoReg,
for identifying co-regulators in gene regulatory network.
We performed simulation-based analysis to evaluate
CoReg and other module-finding algorithms. The results
show that CoReg outperforms other algorithms in iden-
tifying co-regulators. We applied CoReg to a genome-
scale regulatory network for Arabidopsis. Results ob-
tained from the subsequent co-expression analysis using
a large expression data set indicates that many highly
co-expressed modules in this network are associated
with abiotic stress, suggesting that target modules are
more robust against random perturbation of regulatory
networks.

Methods

Regulatory network data sets

A regulatory network involved in secondary cell wall syn-
thesis [4] and a SHORTROOT-SCARECROW regulatory
network [5] for A. thaliana were downloaded from online
supplementary materials. These two regulatory networks
were merged and duplicated interactions were removed.
To test CoReg in a larger network of Arabidopsis, we
downloaded a recent large-scale regulatory network gen-
erated by DAP-seq for A. thaliana [7]. The E. coli
regulatory network data was downloaded from http://
www.mrc-lmb.cam.ac.uk/genomes/madanm/ec_tf/ [3],
which integrated TF-DNA interactions for E. coli from
multiple publications. A H. sapiens network generated by
ChIP-seq was downloaded from http://encodenets.ger-
steinlab.org/ [1]. For H. sapiens, we used only the interac-
tions between the TFs and proximal promoters. Self-loops
and duplicated edges were removed using the igraph R
package [46]. However, self-loops and duplicated edges
could be integrated into our computational tool with add-
itional effort. In summary, there are 412 genes and 1490
edges in the A. thaliana yeast-1-hybrid network, 32,606
genes and 2,848,929 edges in the A. thaliana DAP-seq
generated network, 889 genes and 1405 edges in the E.
coli network, and 9057 genes and 26,043 edges in the H.
sapiens network.

CoReg method

Definition of directed networks

A regulatory network can be represented by a directed
graph G =(V,E), where V (set of nodes) is the set of
genes in the network and E (set of edges) is the set of
TF-gene interactions. In a directed graph, each edge is
represented by a pair of ordered nodes including a head
node and a tail node. The head node is a TF (a regula-
tor), whereas the tail node (a target) is the gene regu-
lated by the head node and can be either a TF gene or a
non-TF gene. Every edge e=(i,j),(ecE) in G links a
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head node v; to a tail node v; (v;,v;€ V). Here, the node
v; is an in-neighbor of v;, and v; is an out-neighbor of v;.

Define problem

In a directed network with |V] nodes, a module m is a
group of #n nodes that is represented by m = {vy, vy, ...V,
ve V,n<|V]|}. When there are M modules in the graph,
a partition P of the graph is a set of modules that divides
all the nodes V into M modules. The goal of CoReg, is
to find a partition P such that in each module m, for any
two genes v;andv; (v, v,€ m), the similarity S(v;v)) is
greater than S(v;vy) and S(vj,vi), (vi¢m). Here, we
tested several similarity scores and clustering approaches
to find this partition. We also validated our methods by
analyzing gene co-expression data.

CoReg takes a regulatory network (a directed graph) as
input and generates a module assignment for each gene.
CoReg first calculates a pairwise similarity score for all the
nodes in G to generate a similarity score matrix S. Then §
is transformed into a dissimilarity matrix S’. CoReg applies
hierarchical clustering followed by the dynamic tree cut al-
gorithm [47] to identify the modules. Figure 1b shows the
brief workflow for CoReg. The detailed description for each
step is given below. We evaluated CoReg using NMI, ROC
curve, and rewiring recall score (See Performance Assessment
in Methods section).

Similarity indices

We explored different similarity indices for calculating
the pairwise similarity score. Three similarity indices
were compared in this study: the Jaccard similarity index
[48], the geometric similarity index [48], and the inverse
log-weighted similarity index [39]. Given node v;, we de-
fine the set of in-neighbors and out-neighbors of v; as
N™(v,) and N““(v,). For every node pair v; and v;, we
computed in-similarity and out-similarity separately. For
each pair of nodes, the Jaccard index is calculated by
dividing the number of common neighbors by the total
number of neighbors for both nodes:

Jlin) | N (v,)nN () (V/) |
VisVj |N(in)(vi)UN(in) (Vj) |

](Wt) B |N(out)(vi)nN(out) (Vj) |
ViV |N(out)(w)UN(out) (V,’) |

The geometric index is the square of the number of
common neighbors of v; and v; divided by the product
of the number of neighbors of v; and v;:
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i INE ()N () |

visvi |N(in)(vi)|' | N(in) (Vj) |

(out) _ INC ()N (vy) ’2
I ()| N (1) |

For the Jaccard similarity index, if both v; and v; have
no common in-neighbors/out-neighbors, the corre-
sponding in-similarity/out-similarity score is set to zero.
For the geometric similarity index, if either v; or v; has
no in-neighbors/out-neighbors, the corresponding in-
similarity/out-similarity score is set to zero.

The inverse log weighted similarity index is the in-
verse log weighted sum of the degree of all the common
neighbors for v; and v;. The idea is that two nodes may
be more similar if they share some common low-degree
neighbors, because high-degree neighbors are more
likely to connect to the nodes by pure chance [39]. The
degree of the node c is represented by d(c).

) 1
I(m) _ §
Y o~ log(d(c))
ce{N("’) (vi)ontim) (v,) }

1
1(0ut) _ -
2 Toglde)
CE{N(W‘) (v;)on{out) (v/) }

For weighted networks, the degree of each node can
be replaced by the sum of edge weights.

Similarity and dissimilarity matrix

CoReg calculates the similarity score between every pair
of v; and v; to get in- and out-similarity matrices, re-
spectively. Similarity matrix § is the sum of two matri-
ces. A dissimilarity matrix §” was computed based on S:

S,’j = Wlsij(m) + wzsij(out)

~ max(S)-S;
i max(S)

where Sg") is the incoming similarity between gene v;
and v; and Séom the outgoing similarity between v;
and v, The maximum value in matrix § is denoted
by max(S). The values w; and w, represent weights
assigned to the incoming and outgoing similarity
matrices. In this study, we set w; = w, =1.

Hierarchical clustering and dynamic tree cut

Hierarchical clustering and dynamic tree cut is imple-
mented using the R built-in function "hclust” and the
R package DynamicTreeCut [47]. Hierarchical cluster-
ing was performed on the dissimilarity matrix with
complete linkage as the agglomeration method. The R
package DynamicTreeCut [47] was then used to cut
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the tree from hierarchical clustering with a "hybrid"
cutting method. The advantage of the dynamic tree
cut algorithm over the fixed height tree cut is that
the dynamic tree cut method takes into account the
shape of the hierarchical tree and cuts the tree adap-
tively. In brief, the core of a cluster consists of nodes
that have low dissimilarity with each other in the
cluster. The core scatter is the average of pairwise
dissimilarity in the core, and the cluster gap is the
difference between core scatter and the joining height
where the cluster joins the dendrogram. The dynamic
tree cut algorithm merges the clusters in the dendro-
gram from bottom to top. When the criterion of core
scatter and cluster gap is met, the cluster will stop
merging with other clusters. This process will con-
tinue until all the clusters stop merging. We chose
dynamic tree cut to process the dendrogram, because,
when no prior knowledge except for the network it-
self is provided, it is difficult to find a single unique
cutting height that works best. Here, we set the mini-
mum size of a cluster to 2, since the co-regulation
activity requires at least two genes to collaborate. The
R package DynamicTreeCut provides a parameter
"deepSplit" to conveniently set up the threshold for
cluster shape. The deepSplit parameter takes only
four values, 0, 1, 2, 3. The higher the value is, the
smaller the clusters tend to be. For the analysis in
this paper, we used the default value for deepSplit
(deepSplit=1). However, other values for deepSplit
can be set in our CoReg package. Please refer to the
supplementary materials of [47] for more details
about the algorithm.

Performance assessment

Overview of performance assessment In the following
subsections, we described the bipartite transformation,
generating simulated co-regulatory network, rewiring
simulation, estimation of AUC and ROC, and
comparison between different tree cutting methods.
Bipartite transformation was performed to transform
a directed network to an undirected network so that
LP, EB, and WT can be performed on this trans-
formed network. Simulated co-regulatory networks
were used to assess the ability of different methods to
identify pre-specified co-regulatory modules. Rewiring
simulation and estimation of AUC and ROC were de-
signed to assess the performance of different module
finding methods. Performance of different tree cutting
methods was compared to find the best strategy for
co-regulatory module finding. The network is first
randomly rewired and different module finding
methods were applied to the rewired network to gen-
erate modules. A performance score is computed
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based on the module finding result. AUC and ROC
were estimated using the similarity score calculated
from the rewired network. Figure 1d illustrates the
flow chart of the analyses.

Bipartite transformation for LP, EB, and WT To com-
pare the performance of CoReg to other module finding
algorithms, we applied CoReg, LP, EB, and WT algo-
rithms on the same data. However, LP, EB, and WT were
initially designed for undirected networks and cannot be
directly applied to directed networks. This could be
solved by transforming the directed network into a bi-
partite network [15]. Such an undirected network pre-
serves the direction information [15]. In this paper, we
applied a transformation process as described previously
[15]. A bipartite network is defined as Gg=(V},V, Ep)
and Gy is transformed from a directed network G = (V,
E) according to:

Vi = {vulveV, k2% > 0}
V= {vt\ve\/, kff’ > O}

where V), is the set of nodes transformed from source
nodes in G and V; is the set of nodes transformed from
target nodes in G and E, is the set of edges in Gp. kf,”
and k% are the in-degree and out-degree for node v,
and node v,, respectively. For each directed edge u —v
in G, we transformed u into a head node u, and
transformed v into tail node v, Then u; and v, will
be added into V, and V,, respectively. Then the
undirected edge between u; and v, is created.
Additional file 9: Figure S4 shows an example of
transforming the directed network into a bipartite
network. Next, we applied the LP, EB, and WT algo-
rithms on the bipartite networks, assigning the mod-
ule to V), and V,. If the head node and the tail node
were transformed from the same node but were given
different modules, we assigned to this node all the
modules that were assigned to both the head node
and the tail node. We implemented the bipartite
transformation and LP, EB, and WT using the igraph
R package [46].

Generating simulated co-regulatory network To as-
sess the performance of different module-finding
methods, we generate ground-truth modules by con-
structing a simulated network. The process is similar to
a published method [21]. The original method was pro-
posed to generate modules for a bipartite network. Here,
we modified this approach to generate co-regulatory
modules in a directed network. The simulation requires
five parameters:
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1. mSize: size of each module

2. mNum: total number of modules

3. targetNum: number of targets for each regulator
node

4. auxNum: number of auxiliary nodes

5. prob: co-regulation probability.

We constructed simulated networks by the following
steps:

1. Generate mSize x mNum regulator nodes. Each node
is assigned to one module and each module will
have an equal number of nodes (specified by mSize).

2. Generate auxiliary nodes as specified by auxNum.
These nodes are targets of regulators and will not
have any outgoing edges.

3. Select a pool of target candidates for each module.
The size of pool is equal to targetNum. Each pool is
considered as a set of potential co-regulated targets
for the corresponding module.

4. For each regulator node, with probability prob,
randomly select a target from the pool of target
genes. Otherwise, randomly select a target not in the
pool. With higher prob, regulator nodes in the same
module will tend to select nodes from the pool of
target genes, showing stronger co-regulating
modular structure (Additional file 1: Figure S1). The
numbers of targets for regulators are the same
(specified by targetNum). These steps will be
repeated until all regulator nodes have been assigned
the given number of targets.

The simulated network is generated as an edge list.
The pseudocode implementation is provided in
Additional file 10: Table S6. In our simulation experi-
ment, we explored the different settings of parameters.
We set mSize=(2, 5, 15, 20), mNum =10, targetNum
= (5, 15, 20), auxNum = 200, prob = (0, 0.2, 0.4, 0.6, 0.8,
1). We set mSize = (2, 5, 15, 20), because the number of
known transcription co-regulators are usually small. We
set targetNum = (5, 15, 20), mNum =10, and auxNum =
200, such that the total number of genes in the network
is similar to the number observed in the Arabidopsis
Y1H network. We set targetNum, mNum, and auxNum
also, because we want to reduce the total time of com-
putation. Higher targetNum or auxNum are likely to
lead to better performance, because the calculation of
similarity will be more stable with more nodes. Higher
mNum is unlikely to alter the performance. We used the
NMI score to quantify the correlation between pre-
specified modules and algorithm identified modules [22].

Network duplication and rewiring As no published
genome scale studies of true co-regulators are
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available, we constructed the true co-regulators by
duplicating nodes in the network. We also introduce
noise to the network by rewiring simulation. For a
given network G, we randomly selected n nodes from
the network and duplicated these nodes. If we dupli-
cate a small number of nodes, there will not be suffi-
cient nodes for performance analysis. If we duplicate
too many nodes, the duplicated network will drastic-
ally alter the topology of the original network. Be-
cause of these restrictions, we chose to set n=80
nodes in each of the networks. We define the set of
randomly selected original nodes as U and the set of
their duplicated nodes as U. The corresponding
nodes in U and U were denoted as u and u'. For
each duplicated node u;, the neighbors of u; were set
as neighbors for u;. For these duplicated nodes, each
node and its original node are a pair of “true” co-
regulators (i.e. u; -> u;). Negative co-regulators were
defined by randomly selecting one from the dupli-
cated nodes and another from duplicated nodes of
other nodes.

We rewired the edges connecting u; to its neighbors
with a selected probability. One edge starting from #; will
be randomly selected with given probability, then another
edge starting from another duplicated node in U will be
randomly selected as well. The target nodes of the two
edges will be swapped. Additional file 11: Figure S5 shows
the steps of rewiring in detail. The rewiring operations do
not change the total number of interactions or the node
degree distributions in the network. In our rewiring
simulation, we also preserved the topology of the original
networks by rewiring only duplicated nodes. We did not
perform rewiring simulation in the whole network,
because if we rewire the whole network with a given prob-
ability, the chance of rewiring the newly duplicated nodes
is very low.

Calculate rewiring recall score To compare the mod-
ule finding result of CoReg to WT, LP, and EB, we calcu-
lated rewiring recall scores according to following
equations:

uield

Sy, Wy,
score = W (7)
2
4
Wy, = (8)
1
my,
where s, = 1 if u; and u; are in the same module

otherwise s,, = 0. |U] is total number of nodes in U.
| V| is total number of nodes in the network. Here, m,,
is the number of nodes in the module of u; . Here, w,, is
a weight to reduce the effect of false positives due to
module size, since the larger the module size is, the
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more probable that the module will include both #; and
u; by pure chance. The denominator of eq. (7) is the the-
oretical maximum value of the numerator. The rewiring
recall score is a number between zero and one, and the
score will be equal to one when every pair of u; and u; is
in the same module and the module contains only u;
and u;.

Similarity between co-regulators for walk trap
method For Walk Trap, we calculated the similarity by
two steps. First, we converted the regulatory network to
a directed adjacency matrix A, which preserved direction
information. If node v; points to node v;, we mark the
entry A; as ‘1; otherwise ‘0’. All the diagonal entries were
set to ‘1’ to add self-loops to avoid being divided by 0 in
the walk trap algorithm. Second, we calculated a transi-
tion matrix T according to the equation below:

T. — A4y
T e Ax

Where the denominator is the out degree of node v;.
We calculated a probability matrix similar to what was
described in [17]. Here, the probability matrix is P=T",
and we set m =2 and 4. Similar to [17], we calculated
the distance between the co-regulators v; and v; using
the following equation:

i (Px-Py)’
D(Vi, 5 Vj) = k—l%
where d(v;) denotes the degree of node i and n is the
total number of nodes. Here, D(v;,v;) defines the pair-
wise distance between node v; and v;. Similarity for Walk
Trap is therefore defined as S;;=1-D(v;v;). We ranked
the co-regulators pairs using the above-mentioned simi-
larity measurement then computed ROC curves and
AUC values.

Comparison between dynamic tree cut and static tree cut

We first performed the duplication and rewiring
process as described in Methods section. Then we
calculated a distance matrix and applied hierarchical
clustering. In the next step, we applied both a static
tree cut method and a dynamic tree cut method. For
the static tree cut, we sampled the cutting height
from 0 to 1 (1 is the maximum tree height since dis-
tance ranges from O to 1) and increased the cutting
height by 0.1 each time (11 sampled points in total).
We evaluated each cutting height using RRS and then
picked the highest RRS for each rewiring probability.
For the dynamic tree cut, two parameters were used
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to find the optimal RRS: maximum cutting height and
deepSplit. The sampling process for maximum cutting
height is the same as the sampling process for cutting
height in static tree cut. The deepSplit parameter only
has five possible values (0,1,2,3,4). Therefore, a grid of
11 x 4 combinations was searched to find the optimal
RRS. K-means clustering was added to compare to
these two strategies. The parameter k ranges from 1
to the number of nodes in the network and increased
by (number of nodes)/10 each time. This produced 11
RRS for each rewiring probability. The highest RRS
was then picked as the optimal score.

Co-expression analysis

Expression data sets We downloaded expression data
sets for A. thaliana under stress [25], hormone [24], and
developmental condition [26]. The stress expression data
set was generated using A. thaliana exposed to various
abiotic stresses including heat, cold, drought, salt, high
osmolarity UV-B light, and wounding [25]. The hormone
expression data set was produced from A. thaliana sam-
ples treated with auxin, cytokinin, gibberellin, brassinos-
teroid, abscisic acid, jasmonate,the and ethylene [24].
Gene expression in developmental data set was detected
from A. thaliana in a series of developmental stages
[26]. To compute the co-expression level of coReg-
identified modules in genome-scale network, we down-
loaded over 2300 gene expression samples from a recent
publication that collected over 6000 expression samples
in total for A. thaliana [45]. We selected the experi-
ments that contain more than 10 conditions for co-
expression analysis.

Co-expression and p-value calculation We used ex-
pression data to estimate the correlations between co-
regulators. For each pair of co-regulators, we calculated
the Pearson Correlation Coefficient (PCC) of expression.
To estimate the module-level significance of correlation,
for each co-regulator module, we calculated the average
PCC over all the co-regulators pairs and randomly se-
lected the same number of genes from the whole gen-
ome and calculated average PCC. This step was repeated
1000 times. Thus, the p-value of PCC is defined as how
many times the random PCC is higher than the actual
PCC of a given module.

Estimate p-value in large-scale network Since the
number of expression data sets and the number of mod-
ules are large for the DAP-seq network, it is computa-
tionally expensive to compute a p-value by random
permutation as described previously. Here, we computed
the p-value using Fisher’s combined probability test.
Briefly, we first randomly selected two genes from the
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genome and calculated their co-expression value. This
was repeated for 10,000 times to generate an empirical
null distribution of pairwise co-expression. Then for
each module, we calculated the pairwise p-value for all
the genes in the module. A module level statistic com-
bining these p-values is calculated using the following
equation:

k
X%k = _22 In(p;)
=1

Where k is the total number of p-values and p; is the
ith p-value for the module. The statistic X3, follows the
x* distribution with 2 k degrees of freedom. The module
level p-value was then computed using the statistic X3,
and the x* distribution.

Additional files

Additional file 1: Figure S1. Co-regulation pattern in networks with
different co-regulation probability (specified by the parameter prob).
Network with higher prob is expected to have stronger co-regulation pat-
tern. We generated two modules ‘a” and ‘b" in this example network.
Modules are marked by different color. Zero-degree auxiliary nodes were
not shown in the Fig. A) network generated with prob = 0.1 B) network
generated with prob =09 (PDF 38 kb)

Additional file 2: Figure S2. Evaluation of different module-finding
methods using simulated networks with different parameters. From top row
to bottom row: mSize = 5, mSize = 15, mSize = 20. From left most column to
right most column: targetNum = 5, targetNum = 15, targetNum = 20. (PDF 73
kb)

Additional file 3: Figure S3. Rewiring recall score for LP, WT and EB in
real networks. We rescaled the y-axis to highlight the differences in the
curves for LP, WT and EB (PDF 29 kb)

Additional file 4: Table S1. Module identified by CoReg in yeast-1-
hybrid network. 0 means no module assignment (XLSX 18 kb)

Additional file 5: Table S2. Edges connecting each module member
with their first neighbors (XLSX 193 kb)

Additional file 6: Table S3. Experiments used in co-expression analysis
of DAP-seq network (XLSX 12 kb)

Additional file 7: Table S4. Co-expression levels (PCC) for each CoReg
modules. This table is ordered in the same way as the heatmap
(XLSX 92 kb)

Additional file 8: Table S5. P-values for co-expression analysis for Fig. 7
heatmap. (XLSX 96 kb)

Additional file 9: Figure S4. The example of bipartite transformation.
Network on the left is a directed network, which could be transformed
into a bipartite network on the right. The suffix '_h’ represents the head
node and ‘_t' means the tail node (PDF 11 kb)

Additional file 10: Table S6. Algorithm: Generate simulated network
(PDF 355 kb)

Additional file 11: Figure S5. Network duplication and rewiring. We
randomly selected a subset of nodes from the whole network then
duplicated them. New nodes that were duplicated from the original
nodes are referred as ‘pseudo node’. In the figure, A and E are the
pseudo nodes of A and E, respectively. This means before rewiring
occurs, A"and E duplicated all the edges from A and E (These duplicated
edges are the dashed edges in the figure). For rewiring, CoReg first goes
through every edge connecting to A"and attempts to rewire the edge
with given probability. Once CoReg decides to rewire that edge, another
edge in the network will be randomly selected. Then the target nodes
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for these two edges will be exchanged. In the case shown above, the
two edges marked by red box have their target nodes swapped.
Therefore, rewiring only applies on pseudo nodes and the original graph
remains unchanged during the process (PDF 27 kb)

Acknowledgements

This work is supported by the Virginia Agricultural Experiment Station
(Blacksburg).

and the USDA National Institute of Food and Agriculture, US Department of
Agriculture (Washington, DC). We thank Ruisheng Wang from Harvard
University for providing constructive feedback on this work.

Funding

This research is supported by a faculty startup fund to SL from the Crop and
Soil Environmental Sciences Department, College of Agriculture and Life
Sciences at Virginia Tech. The open access publication cost

is partly supported by Virginia Tech's Open Access Subvention Fund.

Availability of data and materials
CoReg package and network data are available at https./lilabatvt.github.io/
CoReg/.

Authors’ contributions

SL conceived the idea. SL and QS designed the experiments. QS developed
the R package and performed all the analysis. SL, QS, RG, and LH wrote the
manuscript. All authors read and approved the final manuscript.

Consent for publication
N/A

Competing interests
The authors declare that they have no competing interests.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

"program in Genetics, Bioinformatics and Computational Biology, Virginia
Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
’Department of Plant Pathology, Physiology, and Weed Science, Virginia
Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
3Department of Computer Science, Virginia Polytechnic Institute and State
University, Blacksburg, VA 24061, USA. 4Departmem of Crop & Soil
Environmental Sciences, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, USA.

Received: 9 June 2017 Accepted: 13 November 2017
Published online: 15 December 2017

References

1. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan K-K, Cheng C, et al.
Architecture of the human regulatory network derived from ENCODE data.
Nature. 2012;489:91-100.

2. Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, et al. A
comparative encyclopedia of DNA elements in the mouse genome.
Nature. 2014;515:355-64.

3. Babu MM, Teichmann SA. Evolution of transcription factors and the gene
regulatory network in Escherichia Coli. Nucleic Acids Res. 2003;31:1234-44.

4. Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, Gaudinier A, et al. An
Arabidopsis gene regulatory network for secondary cell wall synthesis.
Nature. 2014;517:571-5.

5. Sparks EE, Drapek C, Gaudinier A, Li S, Ansariola M, Shen N, et al.
Establishment of expression in the SHORTROOT-SCARECROW transcriptional
Cascade through opposing activities of both activators and repressors. Dev
Cell. 2016:1-12.

6. Balaji S, Babu MM, lyer LM, Luscombe NM, Aravind L. Comprehensive
analysis of combinatorial regulation using the transcriptional regulatory
network of yeast. J Mol Biol. 2006;360:213-27.


dx.doi.org/10.1186/s12918-017-0493-2
dx.doi.org/10.1186/s12918-017-0493-2
dx.doi.org/10.1186/s12918-017-0493-2
dx.doi.org/10.1186/s12918-017-0493-2
dx.doi.org/10.1186/s12918-017-0493-2
dx.doi.org/10.1186/s12918-017-0493-2
dx.doi.org/10.1186/s12918-017-0493-2
dx.doi.org/10.1186/s12918-017-0493-2
dx.doi.org/10.1186/s12918-017-0493-2
dx.doi.org/10.1186/s12918-017-0493-2
dx.doi.org/10.1186/s12918-017-0493-2
https://lilabatvt.github.io/CoReg
https://lilabatvt.github.io/CoReg

Song et al. BMC Systems Biology (2017) 11:140

20.

21,

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

O'Malley RC, Huang S, Shan C, Song L, Lewsey MG, Bartlett A, Nery JR, et al.
Cistrome and Epicistrome features shape the regulatory DNA landscape.
Cell. Elsevier Inc; 2016;166:1598.

Franco-Zorrilla JM, Lopez-Vidriero |, Carrasco JL, Godoy M, Vera P, Solano R.
DNA-binding specificities of plant transcription factors and their potential to
define target genes. Proc Natl Acad Sci U S A. 2014;111:2367-72.

Waese J, Fan J, Pasha A, Yu H, Fucile G, Shi R, et al. ePlant: visualizing and
exploring multiple levels of data for hypothesis generation in plant biology.
Plant Cell. 2017; tpc.00073.2017. doi:10.1101/173559.

Kulkarni SR, Vaneechoutte D, Van de Velde J, Vandepoele K. TF2Network:
predicting transcription factor regulators and gene regulatory networks in
Arabidopsis using publicly available binding site information. bioRxiv. 2017:
1-28.

Dobrin R, Beg QK, Barabési A-L, Oltvai ZN. Aggregation of topological motifs
in the Escherichia Coli transcriptional regulatory network. BMC
Bioinformatics. 2004;5:10.

Guelzim N, Bottani S, Bourgine P, Képés F. Topological and causal structure
of the yeast transcriptional regulatory network. Nat Genet. 2002;31:60-3.
Shalgi R, Lieber D, Oren M, Pilpel Y. Global and local architecture of the
mammalian microRNA-transcription factor regulatory network. PLoS
Comput Biol. 2007;3:1291-304.

Song L, Huang SC, Wise A, Castanon R, Nery JR, Chen H, et al. A
transcription factor hierarchy defines an environmental stress response
network. Science. 2016;354:598+.

Malliaros FD, Vazirgiannis M. Clustering and community detection in
directed networks: a survey. Phys Rep. 2013;533:95-142.

Bui-Xuan BM, Habib M, Limouzy V, de Montgolfier F. Algorithmic aspects of
a general modular decomposition theory. Discret Appl Math. 2009;157:
1993-2009.

Pons P, Latapy M. Computing communities in large networks using random
walks. Comput. Inf Sci. 2005;3733:284-93.

Newman MEJ, Girvan M. Finding and evaluating community structure in
networks. Phys Rev E. 2004,69:26113.

Raghavan UN, Albert R, Kumara S. Near linear time algorithm to detect
community structures in large-scale networks. Phys. Rev. E - Stat. Nonlinear,
Soft Matter Phys. 2007,76.

Newman MEJ. Finding community structure in networks using the
eigenvectors of matrices. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.
2006;74.

Guimera R, Sales-Pardo M, Amaral LAN. Module identification in
bipartite and directed networks. Phys. Rev. E - Stat. Nonlinear, Soft
Matter Phys. 2007;76.

Danon L, Diaz-Guilera A, Duch J, Arenas A. Comparing community structure
identification. J Stat Mech Theory Exp. 2005;2005:-P09008.

Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L, Luo J, et al. PlantTFDB 4.0:
toward a central hub for transcription factors and regulatory interactions in
plants. Nucleic Acids Res. 2016:gkw982.

Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W,
et al. The AtGenExpress hormone and chemical treatment data set:
experimental design, data evaluation, model data analysis and data access.
Plant J. 2008;55:526-42.

Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, et al. The
AtGenExpress global stress expression data set: protocols, evaluation and
model data analysis of UV-B light, drought and cold stress responses. Plant
J.2007,50:347-63.

Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, et al. A
gene expression map of Arabidopsis Thaliana development. Nat Genet.
2005;37:501-6.

Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF
gene family. Plant Physiol. 2006;140:411-32.

van der Graaff E, Dulk-Ras AD, Hooykaas PJ, Keller B. Activation tagging of
the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis
Thaliana. Development. 2000;127:4971-80.

Banno H, lkeda Y, Niu QW, Chua NH. Overexpression of Arabidopsis ESR1
induces initiation of shoot regeneration. Plant Cell. 2001;13:2609-18.

Gu YQ, Yang C, Thara VK, Zhou J, Martin GB. Pti4 is induced by ethylene
and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant
Cell. 2000;12:771-86.

Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, et al.
OsDREB genes in rice, Oryza Sativa L., encode transcription activators that

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Page 18 of 18

function in drought-, high-salt- and cold-responsive gene expression. Plant
J.2003;33:751-63.

Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors.
Trends Plant Sci. 2010:247-58.

Journot-Catalino N, Somssich IE, Roby D, Kroj T. The transcription factors
WRKY11 and WRKY17 act as negative regulators of basal resistance in
Arabidopsis Thaliana. Plant Cell. 2006;18:3289-302.

Kumimoto RW, Zhang Y, Siefers N, Holt BF. NF-YC3, NF-YC4 and NF-YC9 are
required for CONSTANS-mediated, photoperiod-dependent flowering in
Arabidopsis Thaliana. Plant J. 2010,63:379-91.

Hackenberg D, Keetman U, Grimm B. Homologous NF-YC2 subunit from
arabidopsis and tobacco is activated by photooxidative stress and induces
flowering. Int J Mol Sci. 2012;13:3458-77.

Krishnaswamy S, Verma S, Rahman MH, Kav NNV. Functional
characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19
and DREB26) in Arabidopsis. Plant Mol Biol. 2011;75:107-27.

Tan QK-G, Irish VF. The Arabidopsis zinc finger-homeodomain genes encode
proteins with unique biochemical properties that are coordinately
expressed during floral development. Plant Physiol. 2006;140:1095-108.
Zhang L, Zhang X, Ju H, Chen J, Wang S, Wang H, et al. Ovate family
protein1 interaction with BLH3 regulates transition timing from
vegetative to reproductive phase in Arabidopsis. Biochem Biophys Res
Commun. 2016;470:492-7.

Adamic LA, Adar E. Friends and neighbors on the web. Soc Networks.
2003;25:211-30.

Berri S, Abbruscato P, Faivre-Rampant O, Brasileiro ACM, Fumasoni |, Satoh
K, et al. Characterization of WRKY co-regulatory networks in rice and
Arabidopsis. BMC Plant Biol. 2009,9:1-22.

Hart BR, Blumenthal RM. Unexpected coregulator range for the global
regulator Lrp of Escherichia Coli and Proteus Mirabilis. J Bacteriol.
2011;193:1054-64.

Kim J, Choi M, Kim J-R, Jin H, Kim VN, Cho K-H. The co-regulation
mechanism of transcription factors in the human gene regulatory network.
Nucleic Acids Res. 2012,40:8849-61.

Sarachana T, Hu VW. Differential recruitment of coregulators to the RORA
promoter adds another layer of complexity to gene (dys) regulation by sex
hormones in autism. Mol. Autism. 2013;4:39.

Yang MQ, Koehly LM, Elnitski LL. Comprehensive annotation of bidirectional
promoters identifies co-regulation among breast and ovarian cancer genes.
PLoS Comput Biol. 2007;3:733-42.

He F, Yoo S, Wang D, Kumari S, Gerstein M, Ware D, et al. Large-scale atlas
of microarray data reveals the distinct expression landscape of different
tissues in Arabidopsis. Plant J. 2016,86:472-80.

Csardi G, Nepusz T. The igraph software package for complex network
research. Inter Journal Complex Syst. 2006;1695:1695.

Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical
cluster tree: the dynamic tree cut package for R. Bioinformatics. 2008;
24:719-20.

Bass JIF, Diallo A, Nelson J, Soto JM, Myers CL, Walhout AJM. Using
networks to measure similarity between genes: association index selection.
Nat Methods. 2013;10:1169-76.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolVled Central



http://dx.doi.org/10.1101/173559

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Results
	Assessment of different module finding methods
	Performance assessment using simulated networks
	Performance assessment using real networks
	Rewiring recall score
	Different tree cut strategies: Dynamic tree cut and static tree cut
	CoReg identified three types of co-regulatory modules
	CoReg identified both known and novel co-regulatory modules
	CoReg reveals roles of co-regulatory modules in Arabidopsis abiotic stress responses

	Discussion
	Conclusion
	Methods
	Regulatory network data sets
	CoReg method
	Definition of directed networks
	Define problem
	Similarity indices
	Similarity and dissimilarity matrix
	Hierarchical clustering and dynamic tree cut
	Performance assessment
	Comparison between dynamic tree cut and static tree cut
	Co-expression analysis


	Additional files
	Funding
	Availability of data and materials
	Authors’ contributions
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

